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Light-by-light scattering nonlogarithmic corrections
to hyperfine splitting in muonium

Michael I. Eides
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and Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300, Russia

Valery A. Shelyuto’

D. I. Mendeleyev Institute for Metrology, St. Petersburg 190005, Russia
(Received 10 November 2013; published 28 January 2014)

We consider three-loop corrections to hyperfine splitting in muonium generated by the gauge invariant
set of diagrams with a virtual light-by-light scattering block. These diagrams produce both recoil and
nonrecoil contributions to hyperfine splitting. Recoil corrections are enhanced by large logarithms of the
muon-electron mass ratio. Both nonrecoil and logarithmically enhanced radiative-recoil corrections were
calculated some time ago. Here we calculate nonlogarithmic radiative-recoil corrections generated by the

insertions of the light-by-light scattering block.

DOI: 10.1103/PhysRevD.89.014034

I. INTRODUCTION

Theoretical and experimental research on hyperfine
splitting (HFS) in the ground state of muonium has a long
history, see e.g., [1-3]. Measurement of the HFS in
muonium is currently the best way to determine the value
of the electron-muon mass ratio. Nowadays the HFS in the
ground state of muonium is measured [4,5] with error bars
in the ballpark of 16-51 Hz, and a new higher accuracy
measurement is now planned at J-PARC, Japan [6]. The
value of a*(m,/m,) is obtained from comparison of the
HFS theory and experiment with the uncertainty that is
dominated by the 2.3 x 1078 relative uncertainty of the
HES theory [3]. Improvement of the HFS theory would
allow further reduction of the uncertainty of the electron-
muon mass ratio. The current theoretical uncertainty of the
HES interval is estimated to be about 70—100 Hz, respective
relative error does not exceed 2.3 x 1078 (see discussions
in [1-3]). Reduction of the theoretical error of the HFS
theory in muonium to about 10 Hz is a realistic goal [1,2].
Still unknown contributions include three-loop purely
radiative corrections, three-loop radiative-recoil correc-
tions, and nonlogarithmic recoil corrections (see detailed
discussion in [2,3]) which are the main sources of the
theoretical uncertainty. Below we consider three-loop
radiative-recoil contributions to HFS generated by the
light-by-light (LBL) scattering diagrams in Fig. 1 (and
by three more diagrams with the crossed photon lines).
These radiative-recoil corrections are additionally
enhanced by the large logarithm of the electron-muon
mass ratio. The logarithm squared and single-logarithmic
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terms are already calculated [7,8]. Here we calculate the
nonlogarithmic contribution.

We will follow the general approach to calculation of the
three-loop radiative-recoil corrections to HFS developed in
[7,9-15] and start with the general expression for the LBL
scattering contribution in Fig. 1 (see, e.g., [1,2]):

az(Za)m 3IM? d*q
AE = ey
B M F( 128>/in2q4
1
T(q% qo). (1
( ?+2Mqq 6]2—2M(Z0> (4 q0). )
where
e )_l/d“k Lo,
T9) =75 | 12k \k2 1 2mky | K2 — 2mky

X (y%kyP) (7" 4r") S apy
&k (kP
= (r"qr") / . M‘Saﬁyw ()

in’k* k2 — 2mbk,

k* is the four-momentum carried by the upper photon lines,
g" is the four-momentum carried by the lower photon lines,

(8]

g + E
uov
FIG. 1. Diagrams with light-by-light scattering block.
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m 1s the electron mass, M is the muon mass, Z = 1 is the
muon charge in terms of the electron charged used for
classification of different contributions, and S, is the
light-by-light scattering tensor. The Fermi energy is
defined as

m,

Ep =3 (Za) " <;) 3”’“72, 3)

where m, is the reduced mass. The angle brackets in Eq. (2)
denote the projection of the y-matrix structures on the HFS
interval (difference between the states with the total spin
one and zero).

The integral in Eq. (1) contains both nonrecoil and recoil
corrections to HFS that are partially already calculated (see
[1,2,8] for a collection of these results):

2
z
AL a,)Ep[—0.472514(1)]
/4
a(Za) . m[9 M 27 91
Ep— |>In>— —3003) ———+—
e FM[4nm+< €3 -3 +8)
M
cin My co] , @)
m
where a,, is the muon anomalous magnetic moment.

The leading nonrecoil term in Eq. (4) is generated by the
nonrelativistic pole in the muon propagator,
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1 in
———— —Z5(qy), 5
i aMg 0 uo ) ©)

and was calculated in [16,17]. This is a numerically
dominant contribution and it should be extracted analyti-
cally from the expression in Eq. (1) before calculation of
the radiative-recoil corrections.

Recoil corrections generated by the diagrams in Fig. 1
contain three loop integrations and each of them could in
principle generate a large logarithm of the electron-muon
mass ratio. The strongly ordered region of integration
momenta m K k K p < g < M would produce a loga-
rithm cubed contribution but it turns into zero due to the
tensor structure of the LBL block and fermion factors in
this region [9]. The large logarithm squared, calculated in
[7], arises from two integration regions, m < k ~ p <
g<M and m<k<p~qg<M. Calculation of the
single-logarithmic contributions is more involved and
requires knowledge of the leading terms in the large
momentum expansion of the function T(g?% g,) in
Eq. (2). In [8] after integration over the photon momenta
k and g we obtained an integral representation for this
function written as a sum of the ladder and crossed
diagrams contributions in Fig. 1:

T(q*. q0) = 2T1(4* q0) + Tc(4*. q0)- (6)

The ladder contribution is represented as a sum of nine
multidimensional integrals,

128 1 1 1 1
TL<q2’ CIO) _TA dy\/() dz/() duA dtZTL,i(y’Z’ u,t, qz’ qO)’ (7)

where
1 2d2 2 2 2\ 2 5 2 2 d
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3 1-2 2 1—1)(1—u)? 1— 2221 —2)g* (1 — 1 —u)?
TL,z—§(2q2+q%){—< lyz: yz t)(A T 5 ”)—yz(l(_y;)q ( mg(z “) } ©)
1-2y) +2yz(1—1)(1—u)? u(l—u y222(1 = 2)g* (1 — Hu(l — u)?
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=2y +2yz(1-0)(1 —u)? u(l—u) y’22(1-2)¢* (1 = Nu(l — u)?
Tes _{ 1—y A2 A L (S A3 }
x [<2q2+q3)12+qo(5q2+q%)rd : (11)
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The crossed diagram contribution is represented as a sum of three multidimensional integrals,
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In Egs. (8)—(20),
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A= g{—q2 +2bgy + aZ] ,

1 m?u
g { xy(1—xy)
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b=, d—éu{z— _X], r=m(l —u)t,
g 1 —xy
u(l —yz)(1 —x 4+ xyz
g=go—&, go=" X ).
y(1 = xy)

and x = 1 in Egs. (8)—(16), while £ = 1 in all Egs. (8)—(20)
except (13).

The large momentum expansions of the ladder and
crossed functions T; (4>, qo)s

7o 162¢° ta5 [, —¢® 8= 5] 1647+ 245
L3 2 m 9 6] 3 g
(22)
642> + g3 [, —¢* 8
Tenmw——"2 00 —L _2¢(3) 4=
C 3 q2 n m2 g()+3
324 + 243
— =2 =0 23
3 p (23)

as well as the large momentum expansion of the total
function T,

PHYSICAL REVIEW D 89, 014034 (2014)

II. CALCULATION OF NONLOGARITHMIC
CONTRIBUTIONS

In terms of the function T(g?, q,) the total contribution
to HFS of the diagrams in Fig. 1 in Eq. (1) can be written in
the form

(25)
where

3M? [ d*q 1 1
- T(q%.q0).
128/1’7r2q4 <q2+2Mqo+q2—2Mqo) (4"40)

(26)

J:

We calculate this integral in Euclidean space and para-
metrize Euclidean four-vectors ¢, = .
After the Wick rotation [d*q — (4xi/2) [$° ¢*dg*x
J&dOsin® 0, and the integrand simplifies:

M2

d*q N M?
in’q* \q* +2Mqy  q> —2Mq,
dq*dfsin’6 AM?

- 2 220"
z q~ + 4M-cos-0

27)

Only the even in ¢, terms in the function T(g?, qo)
contribute to the integral in Eq. (26). In order to simplify
further integration we symmetrize the explicit expression
for T(q?, q,) with respect to gq. All terms in Egs. (8)—(16)
and Egs. (18)—(20) contain powers of the standard denom-

2¢° +q0 q° 872 37 inator (—g* + 2bq, + a®) [see definition in Eq. 21)]. It
T=2T,+Tc~-32 In ———C( )— 77 +E was shown in [8] that one can neglect the term 2bg,
5 5 calculating the logarithmic contributions. Then after the
_%q +2q0’ (24) Wick rotation it is convenient to write the symmetrized
3¢ denominators inside the function T (g2, qo) in the form
were calculated in [8]. Both the already known double- 1 = 1 _ £ c0s20 (28)
logarithmic and the new single-logarithmic radiative-recoil (—q2 + 2bqy + az)” (q2 + az)” " ’
contributions to HFS were obtained in [8] from these large
momentum expansions. Below we will use the exact q0 5
explicit expressions for the function 7(¢>, g,) to calculate (—=q* + 2bqy + a®)" = 000870, (29)
a nonlogarithmic radiative-recoil contribution generated by
the diagrams in Fig. 1. where
|
4b*q? 0 ab’q?
=5, Ey=——5& = 55— [3(¢? 4b*q*cos’0
1 (q2+a2)D 2 aaz | (q2+a2)2D2[ (C] +a ) + q ]
S 8b%¢> 2 2\4 2 222 202 4 4.4 2bg’
53_5<@> glsz(Q +a) +6(q +(1)ch059+8ch059], 01:7,
0 4bg? 1/ 0)\? 2bg?
0: =20 =g+ 0= (5 ) 0= st 4~ o). (0)
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and
D = (g* + a*)* + 4b>g*cos?0. (31)

The numerators on the left-hand side in Eqgs. (28) and
(29) can be multiplied by polynomials in ¢ and g3. These
polynomials on the right-hand side (rhs) turn into poly-
nomials in (—g?) and (—g*cos®6).

The function J in Eq. (26) depends on g = m/(2M) only
due to the integrals containing in the integrand the first term
on the rhs in Eq. (28). We call these integrals y integrals,
and the general methods of their calculation are developed
and described in [18,19]. These y integrals generate both
nonrecoil and recoil contributions. Recoil contributions
produced by the p integrals contain logarithmically
enhanced terms and u-independent contributions we are
looking for.

The integrals of the other terms on the rhs in
Egs. (28) and (29) (C integrals) do not generate large
logarithms and the corresponding recoil contributions
remain finite when u goes to zero. Separate consideration
of the ¢ and C integrals significantly simplifies further
calculations.

The explicit expression for the integral J in Eq. (26) after
the Wick rotation has the form [we use the volume element
in Eq. (27)]

3 [odf (= e
J=—— 7% " 4osin20
1287 )y 4 A S 2+ aMPcos?o
x T(q?*, cos?0), (32)

where we rescaled the integration momentum g — gm. The
function T(g?, cos? 6) is the same function as in Eq. (26)
but with the Wick rotated momenta and after the sub-
stitutions in Egs. (28) and (29). As a result of rescaling this
dimensionless function T(g?, cos? @) depends now on the
dimensionless momentum ¢ and the parameter m = 1 in
Eqgs. (8)—(16) and (18)—(21).

We are looking for the y-independent terms in the small
u (large M) expansion of the integral in Eq. (32). It is
tempting to substitute 4M?/(m*q* + 4M? cos® ) —
1/cos?>@ directly inside the integrand in Eq. (32).
Obviously this is not safe since the integral over € can
become divergent at cos & = 0 if an extra factor cos® @ is
not supplied by the function 7'(g?, cos 8). Just by inspec-
tion we see that there are entries in the function
T(g?,cos’> @) that do not contain such a compensating
factor. The reason for this spurious divergence at
cos 8 = 0, or, what is the same, at g, = 0 is pretty obvious:
qo = 0 corresponds to the nonrecoil contribution to HFS,
and this spurious divergence is cut off by 1/M in the
original integral. This is the mechanism how an apparently
recoil integral in Eq. (32) produces a nonrecoil correction
of order 1/u. Hence, in case of such spurious divergence we

PHYSICAL REVIEW D 89, 014034 (2014)

cannot make the substitution 4M?/(m*q* + 4M*cos*0) —
1/cos?@ inside the integral, and we need to calculate
the integral over angles more accurately. By inspection
we see that the integrals over angles in Eq. (32) have
the form

AM? (=
_— / dBsin?6
T Jo

cos2"0
q* + 4M?cos*0

cos2"9

1 k2
—— | dosinto -7 g d(q), (33
”A S0 37+ cos?0 w(q) + Pu(q), (33)

where n =0, 1,2,3, ..., and explicitly for n =0, 1, 2, 3
(see [19])

8.0 1 1

Di(q) =", P(g)=|1+=55—-1-——,
(@) 1q () 1q* Hq

H 2.2 1 1
q)l(q):_:uq ]+//¢2q2_] + 3,

1 1 1
——+ @@\ 1+55—-1]].
2 'uqu

Yh(q) =g+ 1
H 1 2.2 1 2.2
P(q) = —— W@ 5+ g

(O]

8

16 8

LY B F (34)
3 Hq ’uzqz .

Considering the integrand in Eq. (33) and/or the small u
expansions of the functions in Eq. (34),

X

D3(q) + 26(q) im0 = —
0 o\q) -0 uq

1

E_”q’

1

1
5(q) + 5() o T o(1*q*), (35)

we observe that only the integrals with n = 0 generate
singular at 4 — 0 contributions and do not admit the naive
substitution 1/(u?q> + cos?@) — 1/cos*>@ in the inte-
grand. Using the explicit expansions in Eq. (35) it is easy
to check now that to separate the nonrecoil (1/p) contri-
butions in the integrals and simplify the calculation of
pu-independent terms in Eq. (32) in the small u case it is
sufficient to make the substitution

014034-5
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dq’
T 2 2
1287:/ / dfsin’0 e (g*, cos*0)

3 dq
—T(q? 20 =
~ 128 N [,MI (¢*, cos 0)
1 [= 1
+/ d¢9sin2€73< 5 )T(qz,cosze)]. (36)
7 Jo cos-0

Here we have introduced a new “principal value”
prescription for integration over 6:

1 [z 1
— do =0. 37
ﬂ[) 73<cos2t9> ©7

As usual with the principal value p(1/ cos? ) cos®d = 1.
Using this rule we can easily derive the rules for integration
of the products P(1/ cos? §) with arbitrary polynomials of
cos® @ and sin® @, for example,

1 (= 1

— désin*0P

HA s <cos29>
| [ | 3
— dOsin*@ = ——.
ﬂ'A - 73<cosz€> 2

These principal value prescriptions are justified by
the series expansions in Eq. (35) for n =0 and by the
explicit expression in the integrand in Eq. (33) for
any n > 1.

The principal value prescription in Eq. (36) is a
convenient and effective method for extracting the
u-independent recoil corrections from the integral in
Eq. (32). Still there remains a loophole. It was implicitly
assumed that the integral over ¢ in the integral with the
principal value in Eq. (36) is convergent at large momenta
due to the function T/g?, and effectively the integration
momentum is bounded, uqg <« 1. Clearly this assumption
is wrong for all terms generating logarithmically enhanced
recoil corrections. Still, the leading logarithms arise
exactly in the region ug < 1 and we can use Eq. (36)
to calculate these logarithms. We need to use the exact
integrals in Eq. (33) to calculate the nonleading loga-
rithms and p-independent contributions in the case when
T/q* does not guarantee convergence of the momentum
integral in Eq. (36).

After calculations we obtain nonlogarithmic contribu-
tions to HFS produced by the ladder

-1,
(38)

PHYSICAL REVIEW D 89, 014034 (2014)

2
Z
Ak, =T g M os3071(5) (39)
b M
and by the crossed diagrams,
2
Z
g =T g M 6sen). o)
P 3 M

The total nonlogarithmic recoil contribution to HFS
generated by the diagrams in Fig. 1 is

AE™os — 2AE, + AE,

2
- (Z“) EF—[S 9949(1)] ~ 1.6 Hz.  (41)
77,'

III. CONCLUSIONS

Combining the new nonlogarithmic contribution to HFS
in Eq. (41) with the other contributions of the light by light
scattering block in Fig. 1 calculated earlier [1,2,8] we
obtain the total contribution to HFS generated by these
diagrams:

a*(Za)

AE = (1 +a,)Ef[—0.472514(1)]
a*(Za) 9 M 27% 91
E m2= 4 (—3¢3) - Z 42
e FM{4nm+<3§(3) 3+8>
M
xIn —+ 5.9949(1)} ~ —240.0 Hz. 42)
m

This result makes us one step closer to calculation of all
nonlogarithmic three-loop radiative-recoil corrections to
HFS. Only two gauge invariant sets of diagrams with two
radiative photon insertions either in the electron or the
muon line remain uncalculated. We hope to report on the
respective results in the not so distant future.
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