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ABSTRACT OF THESIS 

 

 

CONSTRAINED DIVERGENCE-CONFORMING BASIS FUNCTIONS FOR METHOD OF 

MOMENTS DISCRETIZATIONS IN ELECTROMAGNETICS 

 

  

Higher-order basis functions are widely used to model currents and fields in 

numerical simulations of electromagnetics problems because of the greater accuracy and 

computational efficiency they can provide. Different problem formulations, such as 

method of moments (MoM) and the finite element method (FEM) require different 

constraints on basis functions for optimal performance, such as normal or tangential 

continuity between cells. In this thesis, a method of automatically generating bases that 

satisfy the desired basis constraints is applied to a MoM formulation for scattering 

problems using surface integral equations. Numerical results demonstrate the accuracy of 

this approach, and show good system matrix conditioning when compared to other 

higher-order bases.  
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1. INTRODUCTION 

The use of higher-order basis functions in method-of-moments (MoM) 

discretizations allows for more accurate solutions to integral equations in 

electromagnetics without increasing mesh refinement [1]. Unfortunately, integral 

equation solutions to Maxwell’s equations result in dense system matrices due to 

convolution with the Green’s function. For problems with large numbers of unknowns, 

dense system matrices rapidly become impractical and various fast solvers have been 

proposed to decrease both solution time and memory requirements.  Performance of these 

fast solvers, however, is critically dependent on the system conditioning, which is related 

to things such as integral equation formulation, mesh density, basis function order and 

type, etc. In this paper we employ “constrained” bases similar to those in [2] in MoM 

formulations of electromagnetic scattering problems. These basis functions, tailored to 

each cell or pair of cells in the mesh, are constructed from scaled Legendre polynomials 

for orthogonality and result in a significant reduction in system matrix condition number. 

As the complexity and electrical size of scattering structures grow, high-order 

basis functions are used to retain accuracy without resorting to mesh refinement. Some 

relatively simple functions such as the power-based functions of [3] or the interpolatory 

Glisson-Wilton-Peterson (GWP) functions of  [4] serve this purpose. While these bases 

are well suited to direct matrix solvers, the high condition numbers of the resulting 

system matrices do not lend themselves as readily to solution by iterative or fast solvers 

[5]. 
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For larger MoM problems, fast methods such as iterative or sparse direct solvers 

are, in general, the only feasible option. Fast methods are sensitive to the system matrix 

conditioning, so the selection of basis functions that do not degrade the matrix condition 

number can significantly increase efficiency in solving large problems. In this thesis, we 

define a “well-conditioned” basis set to be a basis function set that does not degrade the 

system condition number significantly with increasing basis order. As pointed out in [1], 

the conditioning can be improved by choosing basis and test functions that are more 

nearly orthogonal to each other, which requires, in the case of Galerkin testing, that the 

basis functions be as mutually orthogonal as possible. While the requirement of normal 

continuity of basis functions across cell boundaries and/or the use of curvilinear meshing 

make perfect orthogonality difficult to achieve [1], close approximations to orthogonality 

have dramatically [1, 5] improved the system conditioning  over those using power-based 

and other non-orthogonal basis sets. Many of these methods employ the already mutually 

orthogonal Legendre polynomials as bases or use the Gramm-Schmidt procedure to 

orthogonalize higher-order functions with respect to each other [6]. Clever combinations 

or modifications of Legendre polynomials to achieve near orthogonality are reported in 

[1]. These methods give system matrix conditioning several orders of magnitude lower 

than the interpolatory bases of [4], and  the condition number grows much more slowly 

with increasing basis order [1, 5]. 

Sumic et al [7] derive a set of “maximally orthogonalized” higher-order basis 

functions from Legendre polynomials which exhibit a significant improvement in 

conditioning. These functions do not have rigidly determined forms but are constructed 

by solving systems of equations involving inner products of Legendre polynomials. 
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In this paper, the constrained basis approach used previously in a locally corrected 

Nyström code in [2, 8] is applied to a MoM formulation. This approach, originating from 

ideas concerning Helmholtz decompositions in [9, 10], is a more general way of 

constructing basis functions, starting from only a set of constraints and an underlying 

function set. Like the bases of [7], the final forms of the proposed bases are not given 

explicitly but are determined by the solution of a system of equations for each cell or 

edge in the mesh. The system is relatively simple, however, and does not involve 

integration to find the inner product between many pairs of functions. The singular value 

decomposition of this system yields vectors of coefficients that correctly weight a 

predetermined set of functions so that the weighted sum is a basis satisfying the desired 

constraints. For typical basis orders, this procedure has little computational cost and not 

only gives a far more flexible and general method for constructing bases than those 

previously proposed but also automatically brings about a significant improvement in 

matrix conditioning. Results in this paper show condition numbers significantly lower 

than those of [1] and comparable to those of [5]. 

In this thesis, the method-of-moments (MoM) context in which the constrained 

bases are employed and the general theory of the constrained basis approach with its 

particular application to quadrilateral surface MoM problems are described. Numerical 

results for error convergence are given to validate the accuracy of the proposed method, 

and system condition numbers for various scattering geometries are given for comparison 

with conditioning in other published results. 
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2. THEORY 

2.1. The Method of Moments 

Scattering problems involving perfect electrical conductors (PEC) can be solved 

using the electric field integral equation (EFIE) [11] 

 incˆ ˆ ˆ( , ) ( ) ( , ) ' () )(
S S

G ds j G dj k s
k


            n n r r J r n r r J rE r 0  , (1) 

where the equation is enforced for Sr .  If the scattering surface is closed, the magnetic 

field integral equation (MFIE) [12] 

 
inc ( ) liˆ ˆ ( ) ( , ) ( ),m

S
S

G dS S
r

n H n J rr rr r J r


        (2) 

may also be used. The notation lim
Sr

 in equation (2) indicates that the integral is enforced 

in the limit as Sr  from a point exterior to S. Here, G is the free-space Green’s 

function 

 
| |

|
(

|
, )

4

jke
G



 


 

r r

r
r

r
r ,  (3) 

S is the surface of the scatterer, incE  and inc
H  are the incident fields, J  is the surface 

current over S, and n̂  is a unit normal to S  that is oriented outward when S  is closed. 

Also, k    is the wave number and /    the wave impedance where   

and  are the permeability and permittivity of the medium, respectively. Both the EFIE 

and MFIE give spurious solutions for a closed surface at the discrete frequencies 

associated with the internal resonances of the surface [13]. One remedy for this 

breakdown is to use a combined field integral equation (CFIE) that is a linear 

combination of the EFIE and MFIE [13]. 
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A more concise expression is possible with the use of the operators  and  

where  

 ( , ) ( , ) ( ) ( , ) ( )
S S

j k G d
k

s j G ds


          F r r r F r r r F r   (4) 

 , ) ( ) ( , ) ( ) ( , )(
S S

G dS G dS          F r F r r r F r r r    (5) 

Physically,  ,J r  and  ,J r  represent the electric and magnetic fields, 

respectively, at a field point r radiated by an electric current density J . One can now 

rewrite (1) and (2) as 

    incˆ ˆ , , S  J rn E 0r rn   (6) 

and 

      inc ˆ , ,iˆ l m
S

S


   
r

n n J r J rr rH  . (7) 

The limiting operation in the MFIE can be removed by noting that  

       
1

ˆ ˆ, P.V.
2

li ,m ,
S

S


    
r

n J r J r n J r r   (8) 

where P.V.  indicates a principal value integral.  Use of (8) in (7) gives  

      inc 1
ˆ ˆ , ,

2
S   n n J r Jr r rH  , (9) 

where the P.V. notation is suppressed and should be apparent from context. If ( )J r  is 

approximated in terms of N known basis functions ( )nB r  with unknown coefficients n  

as 
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    
1

N

n n

n

J r B r


 ,  (10) 

then the EFIE can be expressed as 

  inc

1

ˆ ˆ( ) ,,
N

n n

n

Sn E r n B rr


     . (11) 

Note that each nB  should lie on S and be tangential to S  since it represents a physical, 

induced current.  A set of testing functions mT  for 1, ,m N  that also lie tangential to 

S can now be used to discretize the EFIE into the system of equations 

 

 

 

inc

1

1

ˆ , ,

,

ˆ ˆ ˆ

ˆ ˆ , 1, ,

N

m m n n

n

N

n m n

n

m N

n T n n T n B

n B

E

T n









    

   





 , (12) 

where the scalar product 
21( ), ( )F r F r  is defined by 

 1 2 1 2, ( ) ( )
S

dS F F F r F r . (13) 

Since 

 1 2 1 2
ˆ ˆ   n F n F F F   (14) 

if at least one of 1F   or 2F  is perpendicular to n̂ , i.e., tangential to S, (12) reduces to  

  inc

1

, ,
N

m n m n

n

T TE B


   . (15) 

This gives the matrix equation 

 [ ]E Z    (16) 

where 
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  ,mn m nZ T B    (17) 

and 

 inc,m mE T E  . (18) 

The MFIE can be similarly discretized from 

  inc

1

1
ˆ ˆ, , , ,, 1 ,

2

N

m n m n m n

n

m N


 
 

  





T n T B T n BH   (19) 

to give the matrix equation 

 [ ]H Y    (20) 

where 

  ,
1

ˆ,
2

mn m n m nY  T B T n B   (21) 

and 

 incˆ,m mH  T Hn  . (22) 

The CFIE is formed by the linear combination of (16) and (20) to give 

        1 1E H Z Y             (23) 

where 0 1  .  

2.2. Higher-Order Basis Functions 

In formulating the method of moments problem, the surface is meshed with, 

possibly curvilinear, quadrilateral or triangular cells. The basis functions used to model 

the current are each non-zero only on a cell or pair of cells. When a basis function 
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represents current that does not flow from one cell to its neighbor, and so has support 

only on a single mesh element, it is called a face basis. A basis function that is nonzero 

on two adjacent cells, however, is referred to as an edge basis and represents current 

flowing across the shared edge. 

As elements in a mesh discretization become finer, the current becomes almost 

constant over each cell, except near sharp edges. Thus, even simple bases that give only a 

low-order approximation of the current can yield a high degree of accuracy with 

sufficient discretization. The computational expense of the solution, however, grows 

extremely rapidly as the mesh is refined, and so higher-order basis functions are often 

preferred for modeling current. These bases not only are more economical, but also result 

in exponential convergence with mesh refinement for smooth structures. 

2.3. Constrained Bases 

The choice of the basis set nB  and the test set nT  has a significant influence on 

the solver performance. High-order bases can greatly improve accuracy without mesh 

refinement but can also result in poorly conditioned system matrix, which, as mentioned 

above, can drastically affect the computational efficiency of fast solvers. 

The divergence operator in the last term of (1) indicates the importance of normal 

continuity of current between mesh elements to prevent the presence of boundary 

charges. Similar conditions are necessary in other methods—FEM formulations, for 

example, require tangential continuity of bases across cell boundaries to maintain finite 

curl. 
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Typically, basis functions are chosen that analytically satisfy the appropriate 

continuity constraints on all cells throughout the problem.  Choosing bases that improve 

properties such as system conditioning can, however, be difficult. A more general and 

flexible approach is to take a set of functions { ( )qP r }, capable of spanning the desired 

basis space, with an appropriate set of  constraints, and to determine specifically for each 

basis the linear combination of these functions that satisfies the given constraints. This 

general approach is used to build the constrained bases proposed here. 

In practice, the constrained bases are constructed by picking an appropriate 

number Q  of such functions ( )qP r   and enforcing their linear combination to take some 

value at an appropriate set of points pr  in the basis domain. Typically, the points lie on 

the cell boundaries  of the cell or cells on which the basis is defined. For example, for 

divergence conforming bases one may enforce 

    1 1

1

ˆ ,0
Q

q b

q

q p p pr P r re


    (24) 

at mesh edges b   on the boundary of an object or 

        1 1 2

1 1

1 22ˆ ˆ ,q p p q p

Q Q

q q p

q

p c

q

r P r r P re e r 
 

       (25) 

along shared (common) mesh edges c  . Here, ˆ ( )p

n
e r is the unit normal to the edge at pr , 

pointing out of and tangential to the thn  cell.  For bases on adjacent cells that must be 

constrained relative to each other (e.g., must be continuous across the shared edge), (25) 

is used, where the superscripts distinguish cells. For N  constraints and Q  functions, 

matrix equations of the form 
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   ,[ ] 0n f n nC C     (26) 

for face bases and 

  

 

 

,

, ,

,

0

0

0

f n

m m

e m e n

n n

f m

C

C C C

C

 

 

       
               
    

  (27) 

for edge bases can be constructed. 0  denotes a zero vector. All matrix elements are of the 

form    ˆn n

p q pPe r r .  

The constraints for each face or edge are thus expressed in a N Q  constraint 

matrix [ ]C  with nullity N Q  [2], and so the null space of [ ]C  will contain the 

coefficients for N Q  linearly independent basis functions that satisfy the chosen 

constraints. These can be extracted from the matrix [ ]V  of right singular vectors found by 

taking the singular value decomposition (SVD) of [ ]C  as 

 [ ] [ ][ ][ ]HC U V  . (28) 

The N Q column vectors 0[ ]V  of [ ]V  associated with zero singular values in [ ]  are a 

basis for the null space of [ ]C , and so the columns of 0[ ]V  are valid coefficient vectors 

  satisfying (26). Since the dimensions of [ ]C  are small for typical basis orders, the 

SVD is inexpensive to compute. The matrix [ ]V  is unitary [14], and so the column 

vectors of 0[ ]V  are linearly independent. Thus, if the functions  { ( )}qP r  are an 

orthonormal set under a suitable inner product, then their linear combinations weighted 

by the elements in the vectors in 0[ ]V  are linearly independent basis functions. As 
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discussed below, components of the edge bases may be dependent on components in the 

face bases, creating redundancies, though these redundancies can be easily removed with 

simple matrix algebra. 

This summarizes the essence of the constrained basis approach. The more 

particular task of implementing this method in a MoM formulation with quadrilateral 

mesh cells is laid out in detail in the following section. 

2.4. Constrained Bases for Method of Moments Formulations 

In this paper, the proposed constrained-basis method is used to generate 

divergence-conforming bases on quadrilateral cells in a surface mesh, though in principle 

the method might be extended to curl-conforming bases as well as other surface or 

volume mesh elements. 

On a quadrilateral surface mesh element parameterized by the coordinates
1 2( , )u u  

(see Figure 1) the surface current density J can be decomposed into components parallel 

to a particular cell’s unitary vectors  i iu





r
a  [15] : 

 1 2 1 1 2 2J J   J J J a a  . (29) 

Each component can be expressed as a weighted sum of basis functions i

qB  as 

 
1

( )
Q

i i

i q

q

qJ B r


  . (30) 

where Q  is the number of bases used to represent iJ  on a particular cell or pair of cells. 

We assume in this work that 1J  and 2J  are represented by the same number of bases 



12 

 

although this is not necessary in general.  The basis functions i

qB  can be expressed in 

terms of the cell’s parametric coordinates as 

 1 2( ) ( , )i i

q q iB u uB r a  . (31) 

In EFIE formulations, the divergence operator in (1) reduces the order of 

1,( )i ii

q uB u 
 in the iu  direction by one. Since the divergence of the current is proportional 

to the charge density, for the charge representation to be complete to order p , the current 

bases must be of orders ( 1)p   and p  in the iu   and 1iu   directions, respectively. This 

charge-complete representation is desirable to avoid spurious solutions [16]. 

2.4.1. Face Bases 

Independent parametric coordinates and edge numbering for a single quadrilateral 

cell are defined in Figure 1, with [0,1]iu  . In what follows, all index arithmetic is 

modulo 4. Also, 0 21u u   and 3 11u u . The vector ˆ n

ie  is of unit length, and is 

tangential to the thn  cell, normal to the thi  edge; ˆ n

ie  can be calculated by normalizing the 

reciprocal unitary vector i
a  as defined in [15]. The current on the thn  cell is expressed in 

terms of the unitary vectors ia  as 

 1 21 2 1 2

n n n n nJ J   J J J a a  . (32) 

The normal continuity constraint demands that the component of current normal 

to a cell boundary be continuous across the boundary. For components of the current that 

do not flow across the edges of the cell, this means that the component normal to each 
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edge must be zero at that edge. These components, confined as they are to a single cell or 

face, are referred to as face bases. The face basis constraints can be expressed by 

 1 1 2 2( (ˆ ˆ ˆ( ) ) ( ) ( ,) ( ) ) 0, 0,1,2,3n n n n n n n n n

k k k k kJ JJ r e r a r e r a r e r r        .  (33) 

By definition, the unitary vector 1ia  is tangential to the i  and 2i  edges for 0,1iu   [4], 

and so normal continuity of 1

n

iJ   is guaranteed across these edges irrespective of 1

n

iJ  . 

Hence, 
n

iJ  need be constrained only on edges i  and 2i  such that  

 ˆ( ) ) 0,( , , 2n n n n

i i k k iJ k i   a r e r r   (34) 

for 1i   and 2i  independently. )(n

iJ r  is now approximated as a linear combination 

of Q  simpler functions , ( )i n

qP r : 

 
, ,

1

( ) ( )n i n i n

i q q

q

Q

PJ r r


  . (35) 

The unknown coefficients 
,i n

q  can be determined by enforcing (34) at 
pN  points along 

each edge. If 
n

iJ  is polynomial complete to order p in 
1iu 
, then 1pN p    points are 

required to ensure that (35) is identically zero over the boundary. The exact location of 

the points depends on the function space  qP . The face constraints become 

      , ,

1

ˆ[ ] 0
Q

n n i

p

n

p p

i n

i k q q

q

Pr r ra e 


    (36) 

for , 1,2...n

p k pp Nr  , and , 2k i i  . The constraints in (36) for the thn  mesh cell 

can be expressed by the matrix equation 
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,

2,

]

]

[
0

[

i n

face

i n

C
C

C
 



 
 


   


 , (37) 

where 

 , , ( ,ˆ[ ( ) ( )] ), 2 , k n n i n n

pq i p k p q p p kPC k i i   a r e r r r  . (38) 

Equations (35)-(37) apply to both independent current directions in the cell, that is, to 

both 1i   and 2i  . 

It is worth noting that only for 1p   do face bases exist, since for 0p  , faceC    

in (37) is a 2 2   full rank matrix with no null space. 

2.4.2. Edge Bases 

Currents that flow across shared cell boundaries, called edge bases, also obey the 

constraint in (36) at the edges opposite the shared edge, but on the shared edge the 

component normal to the edge is not identically zero. Parametric coordinate and edge 

notation for adjacent cells are illustrated in Figure 2. If the edges m

i
 and n

k
 of the thm  

and thn  cells, respectively, coincide, the continuity constraint on an edge basis that flows 

across this common edge c can be expressed as 

 ˆ ˆ( ) ( ) ( ) ( ) 0,m m n n

i k c    J r e r J r e r r   (39) 

where p
J  signifies the current on the 

thp  cell and ˆ p

qe  signifies the outward unit normal to 

the 
thq  edge on the 

thp  cell. As above, this reduces to 

            ˆ ˆ[ ] [ ] 0,    m m m n n n

i i i k k k cJ J    a e a er r r r rr r  . (40) 

When p

iJ  is expressed as in (35), the constraints simplify to  
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, , , k,

1 1

ˆ ˆ[ ] ( ) [ ] ( ) 0,    m m i m i m n n k n n

i i q q k k q q c

Q Q

q q

P Pa e r a e r r 
 

       . (41) 

Enforcing the constraints in (41)  at 1pN p   distinct points along c  allows us to write 

the matrix equation 

 
, , 0

m

i m k n

n
C C





 
          

 
  (42) 

where the superscripts i  and k  indicate the edge numbers on the thm  and thn  cells, 

respectively, and  

 

, ,

, ,

ˆ( ) ] ),

ˆ( ) ] ),

[ ( ) (

[ ( ) (

k n n n k n n

k p k q p p k

i m m m i m

pq p

pq p

m

i p i q p p i

C

C

P

P

a r e r r r

a r e r r r

 

 


 . (43) 

The constraint in (42) is combined with the constraint that the normal components along 

the edges opposite the shared edge be zero to form the complete edge basis constraint 

matrix  

 

2,

, ,

2,

[ ] [0]

[ ] [ ] [ ]

[0] [

0

]

i m

m

i m k n edge

n

k n

C

C C C

C










 
 
 

 
   
 

   , (44) 

where [0]  signifies an appropriately sized zero matrix block. 

Once a constraint matrix  C  is assembled,  solutions to (37) and (44) are found 

using the SVD of [ ]C  as 

 [ ] [ ][ ][ ]HC U V   , (45) 

or, because [ ]U  and[ ]V  are unitary matrices,  
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 [ ][ ] [ ][ ]C V U  . (46) 

As will be discussed in the following section, a proper selection of functions  qP r  and 

sampling points 
pr  will make  C   rank deficient, and [ ]  will contain zero singular 

values. Let 0[ ]V  be the column vectors of [ ]V  corresponding to these singular values. The 

column vectors of 0[ ]V , therefore, are a basis for the null space of [ ]C , and each column 

vector 
0,pv  of 0[ ]V  is a solution to (37) or (44). Finding these vectors is all that is required 

to construct the face bases, whose normal component must merely go to zero at the 

opposite edges of their associated cell.  

The edge bases, on the other hand, represent currents flowing across the shared 

edge. Since (42) is also satisfied by the vectors 0,

0

m

pm

p'
v

v
 

  
 

 and 
0,

0
n

q

q

n
v'

v

 
  
 

 for the 

adjacent face bases on the thm  and thn  cells, respectively, these components are 

represented in the resulting edge basis function and are redundant with the corresponding 

face bases. These redundant edge bases are not representative of non-zero current flowing 

across the edge. In other words, currents that go to zero at the shared edge also satisfy 

continuity at the edge, but these currents are represented by the face bases and must be 

eliminated to leave only edge bases that represent currents continuous and non-zero at the 

shared edge. This can be accomplished by projecting the column vectors in 0[ ]V  for the 

edge onto those for the adjacent faces 
0[ ]mV  and subtracting the projection from the edge 

null space to get the projected matrix [ ]P . Here, [ ]P  is given by 
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0 0 0[ ] [ ] [ [ ] [ [ ]][ ] ][ ]m m n

T T

nP V v v V v v V       , (47) 

where the [ ]mv  matrices are made up of the vectors m

pv' . Finally, the SVD of [ ]P  is 

taken: 

 [ ] [ ][ ][ ]P P P HP U V  . (48) 

The column vectors in [ ]U  corresponding to non-zero singular values in [ ]  make up a 

basis for the projected null space generated by [ ]P , and are therefore used as the 

coefficient vectors for the edge bases. 

2.5. Choice of Underlying Function Set 

An advantage of the constrained basis approach is the freedom to choose the 

underlying function set { ( )}nP r , from which the basis functions are built, without any 

significant modification of program code. These functions must meet certain criteria and 

can significantly impact the efficiency of the numerical solution. In this thesis, we choose 

a mixed-order basis set of Legendre polynomials ( )nP x , so that a 
thp  order basis on the 

thq  cell has the form 

 
1

1 1

0 0

( , ) ( ) ( )
p p

q i i q i ii
i mn m n

m n

u u P u P u
g




 

 

 
a

B   (49) 

where g  is the surface Jacobian calculated at 1)( ,i iuu  . These bases, of order (p+1) and 

p in the iu  and 1iu   directions, respectively, have the advantage mentioned above of an 

order-p complete representation of the charge, which helps avoid spurious resonances. 

Furthermore, the Legendre polynomials obey the orthogonality property  
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1

1
( ), (

2

2 1
) ( ) ( )m n m n mnP x P x P x P x

n
dx 


 

  . (50) 

Following [1], the polynomials are scaled to obtain the scaled Legendre 

polynomials ( )nP x  

 
2 1

( ) ( )
2

n n

n
P x P x


  , (51) 

which implies, according to (50), 

 ( ), ( )m n mnP x P x   . (52) 

This scaling is simple and its computational expense negligible, but it produces a marked 

improvement in matrix conditioning, as will be seen in the next chapter. This gives the 

final basis functions the form 

 
1

1 1

0 0

( , ) ( ) ( )
p p

q i i q i ii
i mn m n

m n

u u P u P u
g




 

 

 
a

B .  (53) 

Due to the variation of ia  and g , the orthogonality in (52) on ideal reference cells is 

not generally preserved when general curvilinear cells are used. Moreover, even on ideal 

reference cells, complete mutual orthogonality is not attained since edge bases are not 

orthogonalized with the overlapping face or edge bases defined on adjacent cells.  

Using these scaled Legendre functions, the constraint matrices for face and edge 

bases have elements defined by 

 , 1ˆ
1

( ) ( ( )( ) ) ), ( , 2,k m m m i m

l i k q r s k

i

s

s

s s P P kC u u i i
g


 

  
 





  



a r e r r ,  (54) 

where 
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 ( , ) ( 1)l q r q p r   ,  (55) 

sg  is the surface Jacobian computed at sr , and iu , 1iu   are the parameterized 

coordinates of the point sr  on the thm  cell. The particular sr  are chosen as the roots of the 

Legendre polynomials on the parameterized interval (0,1) along each constrained edge  

although other choices such as equally-spaced points should be suitable as well. The 

constraint matrix [ ]C  will have dimensions 2( 1) ( 1)( 2)p pp    for face bases and 

3( 1) 2( 1)( 2)p pp    for edge bases. Since 2( 2) 3p   for 0p   and ( 2) 2p   for 

1p  , the [ ]edgeC  and [ ]faceC  matrices will be rank deficient and have a null space for 

0p   and 1p  , respectively. The total number of bases faceN  associated with each face 

and the number of bases edgeN  associated with each edge (with redundancies removed) 

can be calculated as in [2]: 

 2 ( 1)face p pN     (56) 

 1edgeN p   . (57) 

In this chapter the derivation of a discretized MoM formulation from the field 

integral equations is summarized. The constrained basis approach is then introduced and 

used to generate divergence-conforming bases on quadrilateral cells for a MoM 

formulation. In the next chapter, numerical results showing accuracy and system 

conditioning demonstrate the effectiveness of the method.  
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Figure 1: Parameterized coordinate and edge notation for quadrilateral cell 
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Figure 2: Parameterized coordinate and edge notation for adjacent quadrilateral cells 
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3. NUMERICAL RESULTS 

In this chapter, the accuracy and efficiency of solutions to electromagnetic 

scattering problems using the proposed constrained bases in a MoM code are 

investigated. All simulations use a Galerkin-like testing procedure, and the underlying 

function set consists of the scaled Legendre polynomials, unless otherwise specified. 

Accuracy is judged by the relative root-mean-square (RMS) error in the far-field 

radiation pattern scattered by a sphere or a cube. For comparison with other basis sets, 

condition numbers for various basis orders are computed for parallel-plate and corner 

reflector geometries. Finally, frequency sweeps for a PEC sphere show the effect of the 

CFIE on the matrix condition number as well as the effect of the constrained bases on the 

conditioning of the electric, magnetic, and combined field integral equation systems 

across a frequency range. 

3.1. Accuracy 

The far-field scattering of a plane wave from a PEC sphere can be computed 

analytically [17], and therefore presents the most obvious and objective standard for 

accuracy comparison. Accuracy is gauged by the RMS error [18]  

 
2

2

)| ( ) (

| ( |

|

)

n n n
rms

n n

c a
Error

a

 






   (58) 

between the computed solution )(c   and the reference solution )(a  , for   from 0 to 

180 degrees in 1-degree increments, at constant  . First, a sphere of 1-meter radius was 

meshed with quadrilaterals and illuminated by a 50 MHz plane wave traveling in the ẑ  

direction. In Figure 3, the EFIE, MFIE, and CFIE cross-sections are compared to the 

analytic solution for the first 2 basis orders. Figure 4 and Figure 5 show the relative EFIE 
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solution error for constrained bases of order 0, ,5p   versus maximum mesh edge 

length. Also plotted is the relative error in the surface area of the discretized sphere. Here, 

p is the order to which the surface charge representation is polynomial complete and o is 

the mesh order where 1o   indicates linear elements. In Figure 4, the mesh order is set to 

1o p  , and the resulting solution error is bounded below by the mesh discretization 

error. Accordingly, in Figure 5, the mesh order is set to 1o   for 0p   and 2o p  for 

1,2,p   . The resulting solution errors for basis orders 1p   are now somewhat higher 

than the corresponding mesh errors, though solutions with even basis order show a 

significant increase in accuracy compared to the results in Figure 4. 

3.1.1. Convergence 

Figure 6, Figure 7, and Figure 8 show the EFIE, MFIE, and CFIE ( 0.2  ) error 

convergence, respectively, for basis orders 0, ,5p  . A 10th order sphere mesh is used 

to eliminate the effects of mesh error. The exponential convergence rates for all three 

formulations are shown in Table 1. 

The cause of the MFIE divergence at higher orders has not yet been ascertained. 

A likely explanation is a loss of singularity cancellation due to numerical precision. The 

integral term in (2) can be rewritten as 

        ˆ ˆ, ,
S S

G dS G dSn J r r r n r r J r             . (59) 

Since 2 ˆexp( ) / 1/G jkR jk R R R     , there is a  21/ R  singularity when r  and r  

become close to each other with the overlap of source and field domains. A Duffy 

integration[19] is used which cancels a 1/ R  singularity. Also,  R̂ J r  becomes 
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parallel to n̂ , and  ˆn̂ R J r  approaches 0 as R . The Duffy integration and vector 

cross products should cancel the 21/ R  singularity, but suspected numerical precision 

issues prevent  ˆn̂ R J r   from approaching 0 as R when R  is less than about the 

square root of machine precision. This produces divergence when higher orders of 

numerical integration bring source and field points too close to one another.  

The far-field scattering for a sphere of solid dielectric material with 10.0r   was 

also simulated (using the Müller formulation [20]). Analytic and numerical scattering 

cross-sections are plotted in Figure 9, and the relative error convergence in Figure 10. 

The first four basis orders converge similarly to those for the PEC sphere, though as with 

the MFIE simulations for the PEC sphere, the higher basis orders show some divergence 

for finer meshes.  

As there exists no known analytic solution for far-field scattering from a cube, the 

scattering cross-section for a PEC cube meshed with 15,000 cells using the interpolatory 

Glisson-Wilton-Peterson (GWP) functions [4] with 1p   is taken as a reference. RMS 

error comparison between this reference and constrained basis results is plotted in Figure 

11. 

While the solutions for the sharp-edged cube converge more slowly than those for 

the sphere (approximately as 1.4h  where h  is the maximum edge length), convergence is 

nevertheless consistent and well-behaved. The use of a numerical reference becomes 

apparent at higher orders, where the constrained basis solution becomes more accurate 

than the GWP reference as the mesh is refined. 
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3.1.2. Integration Order Variation 

Figure 12 shows the relative error in the PEC-sphere scattering problem when 

different fixed-point numerical integration orders are used for the field integration. 

Raising the integration order does bring about a small improvement in accuracy 

especially at higher orders, though the solution begins to stagnate for finer meshes when 

5p  . 

3.2. Matrix Conditioning 

MoM system matrices for several different types of geometry were analyzed in 

order to demonstrate the effect of the constrained bases on system matrix conditioning. In 

Figure 13 the condition number resulting from the use of the GWP bases is compared to 

that from the constrained bases both with and without optimal scaling of the underlying 

function set. This comparison illustrates not only the much slower growth of the matrix 

condition number when the constrained bases are used but also the reduction by nearly an 

order of magnitude with a simple scaling of the underlying function set. 

For comparison with the bases presented by Jorgenson et al in [1], two parallel-

plate simulations were run. In the first case, two 6λ square plates with 1λ separation were 

meshed and the system matrix constructed for basis orders 0, ,5p  . The discretization 

was varied to match the number of degrees of freedom (DOF) for each basis order to that 

in [1], as may be seen in Table 2. The condition numbers for the constrained bases, the 

interpolatory bases of [4], and the hierarchical Legendre bases of [1] are plotted in Figure 

14. 
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As shown, the matrix conditioning stays relatively constant for the first 6 function 

orders, on the order of 10². Not only is this an order of magnitude lower than the 

conditioning achieved by the basis set in [1], but it shows no consistent or significant 

growth as the basis order increases. 

For two circular plates with diameter 10λ and 1λ separation, the condition number 

is somewhat larger but still stays well below that of the interpolatory case and 

approximately an order of magnitude below the results in [1] at higher orders, as shown 

in Figure 15. Table 3 shows average cell dimensions and number of DOF for each basis 

order for comparison with the equivalent problem in [1].  

In order to compare with the maximally orthogonal bases in [5], simulations like 

those above were performed for a 6λ PEC corner reflector. The number of DOF for each 

basis order, for comparison with [5], is shown in Table 4, and as may be seen in Figure 

16, the resulting condition numbers are very similar to those in [5]. In addition, the 

scattering cross-section for a plane wave incident from 45     is plotted in Figure 

17. 

In summary, the constrained basis functions compare well with and even improve 

significantly upon the matrix conditioning achieved by other highly-orthogonal 

Legendre-based bases.  

3.3. Frequency Behavior 

From [17], the first four TE and TM resonant frequencies for a PEC spherical 

cavity are 0.13093, 0.18465, 0.21438, and 0.23728 GHz. Simulation sweeps over this 

frequency range using both the constrained bases and the interpolatory bases of [4] were 
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run with EFIE, MFIE, and CFIE formulations. The system conditioning is shown in 

Figure 18 for both methods and all formulations, and one sees not only the successful 

elimination of the spurious resonances by the use of the CFIE, but also the consistency 

with which the constrained basis matrix conditioning stays approximately 3 orders of 

magnitude below that of the interpolatory cases across the entire frequency range for all 

formulations. 

3.4. Timing 

Taking the SVD of an m n  matrix is a comparatively expensive computation, 

and while this makes the solution of entire MoM system matrices by SVD impracticable, 

the constraint matrices here for basis order p have dimensions not greater than  

3( 1) 2( 1)( 2)pp p   . For functions with 0,1,...,5p  , as Figure 19 illustrates, these 

bases are found to have a cost comparable to that of the interpolatory bases. This is in 

spite of the constraint matrix being formed and factored for every cell pair, a redundancy 

which could readily be removed by storing the basis function coefficients after the initial 

computation. 
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Table 1: Convergence rates h (  listed) for 10th order sphere 

Formulation \ p 0 1 2 3 4 5 

EFIE 3.0 4.0 5.8 5.0 7.1 7.1 

MFIE 2.0 4.0 6.1 4.19* 7.9 *** 

CFIE 2.0 4.0 5.7 4.9** 7.1* 8.9* 
*used first 2 points 

**used last 3 points 

***did not converge 
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Table 2: Quad cell size in wavelengths and number of DOF for each basis order in square 

parallel plates test 

Basis order p 0 1 2 3 4 5 

Quad Size λ    0.38 0.38 0.6 0.86 1.0 1.2 

DOF 960 3968 3480 3024 3480 3480 
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Table 3: Quad cell size in wavelengths and number of DOF for each basis order in 

circular parallel plates test 

Basis order p 0 1 2 3 4 5 6 

Quad Size [λ]   0.36 0.36 0.65 0.92 0.94 1.61 1.61 

DOF 2514 10148 7482 7656 8310 4980 6790 
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Table 4: Quad cell size in wavelengths and number of DOF for each basis order in corner 

reflector test 

Basis order p 0 1 2 3 4 5 6 7 

Quad Size[λ]   1/8 1/3 2/3 1 1.2 1.5 2.0 2.0 

DOF 13680 7668 4293 3384 3675 3384 2583 3384 
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Figure 3: Scattering cross section for basis orders p = 0,1 with 1-m PEC sphere 

discretized with 24 quad cells at 50 MHz 
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Figure 4: Average far-field relative error for 1-meter radius sphere at 50 MHz using 

EFIE. Constrained basis order is 0, ,5p  , and mesh order is o = p+1. Integration 

tolerance is 810  . 
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Figure 5: Average far-field relative error for 1-meter radius sphere at 50 MHz using 

EFIE. Constrained basis order is 0, ,5p  , and mesh order is  1o   for 0p   and 

2o p  for 1,2,p   . Integration tolerance is 1110  . 
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Figure 6: Average far-field relative error for 1-meter radius sphere at 50 MHz using 

EFIE. Constrained basis order is 0, ,5p  , and mesh order is 10o  . Integration 

tolerance is 810 . 
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Figure 7: Average far-field relative error for 1-meter radius sphere at 50 MHz using 

MFIE. Constrained basis order is 0, ,5p  , and mesh order is 10o  . Integration 

tolerance is 610 . 
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Figure 8: Average far-field relative error for 1-meter radius sphere at 50 MHz using 

CFIE. Constrained basis order is 0, ,5p  , and mesh order is 10o  . Integration 

tolerance is 810 . 
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Figure 9: Far field radiation pattern for 1-meter dielectric sphere with ϵr=10 at 50 MHz. 

Integration tolerance is 810 . 
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Figure 10: Accuracy convergence for dielectric sphere far-field scattering at 50 MHz.  

Integration tolerance is 810  
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Figure 11: EFIE relative error for 1-meter PEC cube at 50MHz. Integration tolerance is 
810  
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Figure 12: EFIE convergence rates for 1-meter PEC sphere far-field scattering at 50 

MHz, with integration order (p+k) for k = 1,2,3 Integration tolerance is 810 . 
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Figure 13: Comparison of EFIE matrix condition numbers for different bases for a 1-

meter PEC sphere discretized with 384 quadrilateral cells at 300MHz. Integration 

tolerance is 810 . 
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Figure 14: EFIE condition numbers for constrained, interpolatory, and Hierarchical 

Legendre basis systems are compared for 6λ×6λ plates with 1λ separation at 300MHz. 

Integration tolerance is 810 . 



44 

 

 

 

 

 

 

Figure 15: EFIE condition numbers for constrained, interpolatory, and hierarchical 

Legendre basis systems are compared for 10λ diameter plates with 1λ separation at 

300MHz. Integration tolerance is 810 . 
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Figure 16: EFIE condition numbers for constrained, interpolatory, and max-ortho basis 

systems for 6λ corner reflector at 300MHz. Integration tolerance is 810 . 
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Figure 17: Far-field scattering from 6λ PEC corner reflector at φ = 45°. Integration 

tolerance is 810 . 
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Figure 18: EFIE, MFIE, and CFIE condition numbers over first 4 resonant frequencies 

for sphere of radius 1-meter, plotted for both constrained and interpolatory bases.  

Integration tolerance is 810  for EFIE and CFIE formulations, 610  for MFIE. 
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Figure 19: EFIE matrix fill time for 384-quad, 1-meter radius sphere at 50MHz using 

constrained and interpolatory bases. Mesh order is 1o p   .Integration tolerance is 810 . 
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4. CONCLUSION 

In this thesis, a method for generating basis functions suitable for MoM 

discretizations of integral equations is presented, implemented, and validated. Constraints 

suitable for the construction of high-order divergence-conforming [18] bases on 

quadrilateral cells are discussed. The singular value decomposition of constraint matrices 

is used to produce bases that exhibit good accuracy and convergence characteristics, on 

par with interpolatory bases of the same order. This method of basis function generation 

is not limited to divergence-conforming bases but can in theory be used to impose other 

constraints such as curl-conformity with relatively minor program alterations. Moreover, 

the function set from which the bases are generated can be modified with similar ease.  

A significant advantage of the constrained basis approach is the improved system 

conditioning achieved when a proper function set is chosen. In this thesis, the use of 

Legendre polynomials as the underlying function set gave good conditioning that 

increased slowly with basis order as compared to the interpolatory bases of [4]. Proper 

scaling of the Legendre polynomials, however, brought about even better conditioning, 

resulting in system matrices with conditioning comparable to or better than those reported 

[1, 5] for other highly orthogonal bases.  

One of the most prominent features of the constrained bases is their versatility. 

Accordingly, many opportunities remain to extend their use into various areas of 

computational electromagnetics. Their application to triangular meshing has yet to be 

addressed, as well as to volume integral equations to reduce the number of required DOF 

and improve matrix conditioning. The application of the technique to locally-corrected 

Nyström discretizations [2, 8] based on augmented formulations [21, 22] is especially 
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appealing as it eliminates boundary charges [2]. Besides its use in integral equation 

methods, the constrained basis approach could readily be used in other methods, for 

instance, to generate the curl-conforming bases in finite element formulations. 
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