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ABSTRACT OF DISSERTATION 

 

 

NANOSTRUCTURED SEMICONDUCTOR 

DEVICE DESIGN IN SOLAR CELLS 

 

    We demonstrate the use of embedded CdS nanowires in improving spectral 

transmission loss and the low mechanical and electrical robustness of planar CdS window 

layer and thus enhancing the quantum efficiency and the reliability of the CdS-CdTe 

solar cells. CdS nanowire window layer enables light transmission gain at 300nm-550nm. 

A nearly ideal spectral response of quantum efficiency at a wide spectrum range provides 

an evidence for improving light transmission in the window layer and enhancing 

absorption and carrier generation in absorber. Nanowire CdS/CdTe solar cells with 

Cu/graphite/silver paste as back contacts, on SnO2/ITO-soda lime glass substrates, yield 

the highest efficiency of 12% in nanostructured CdS-CdTe solar cells. Reliability is 

improved by approximately 3 times over the cells with the traditional planar CdS 

counterpart. Junction transport mechanisms are delineated for advancing the basic 

understanding of device physics at the interface.  Our results prove the efficacy of this 

nanowire approach for enhancing the quantum efficiency and the reliability in window-

absorber type solar cells (CdS-CdTe, CdS-CIGS and CdS-CZTSSe etc) and other 

optoelectronic devices. 

    

    We further introduce MoO3-x as a transparent, low barrier back contact. We design 

nanowire CdS-CdTe solar cells on flexible foils of metals in a superstrate device structure, 

which makes low-cost roll-to-roll manufacturing process feasible and greatly reduces the 

complexity of fabrication. The MoO3 layer reduces the valence band offset relative to the 

CdTe, and creates improved cell performance. Annealing as-deposited MoO3 in N2 

reduces series resistance from 9.98 Ω/cm2 to 7.72 Ω/cm2, and hence efficiency of the 

nanowire solar cell is improved from 9.9% to 11%, which efficiency comparable to 

efficiency of planar counterparts. When the nanowire solar cell is illuminated from 

MoO3-x /Au side, it yields an efficiency of 8.7%.  This reduction in efficiency is attributed 

to decrease in Jsc from 25.5mA/cm2 to 21mA/cm2 due to light transmission loss in the 

MoO3-x /Au electrode. Even though these nanowire solar cells, when illuminated from 

back side exhibit better performance than that of nanopillar CdS-CdTe solar cells, further 

development of transparent back contacts of CdTe could enable a low-cost roll-to-roll 

fabrication process for the superstrate structure-nanowire solar cells on Al foil substrate.  

    

 



KEYWORDS: Nanowire CdS-CdTe Solar Cells; Light Transmission; Quantum          

                          Efficiency; Reliability; MoO3-x Back Contact. 
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Chapter 1  Introduction 

1.1 World Energy Outlook   

   World annual energy consumption is predicted to grow from the approximately 15 

TW/year (1 TW = 1012 W) at present to about 30 TW/year by 20501.  Struggling to meet 

this huge demand, the global energy sector will also face two pressing issues: declining 

fossil reserves and climate change caused by artificially produced greenhouse gas 

emissions. According to statistics of international energy agent2, it can be predicated that 

at our current burn rate of oil, oil reserves are between 40 and 80 years globally and 

between 50-150 years if the resource base is included2. Nature gas reserves can maintain 

between 200-500 years2. Similarly, coal reserves are estimated between 200-2000 years2. 

Although fossil energy is likely to be relatively inexpensive resource for hundreds of 

years, obviously beyond 2050, they are exhaustible and recovery of coal, oil and natural 

gas presents impossible. Further, associated release of CO2 has dramatically altered and 

continues to changing the composition of the atmosphere and could create detrimental 

effect on global temperature, sea levels, and weather patterns2. In addition, price of fossil 

energy will naturally rise due to strongly increased energy demand and their exhausted 

supply. Hence, driving future energy policy scenarios is based on renewable energy.  

(And the discussion above also shows that fossil energy is likely to be a relatively 

inexpensive method of obtaining primary power even in 2050 and beyond, given its 

adequate supply globally in the various forms of oil, gas, and coal). 

   There is a wide variety of renewable energy sources: nuclear power, hydroelectric 

power, wind, biomass and solar energy. Nuclear power is considered a leading candidate 

for reduced-carbon-emission electricity production. There is many concerns, however, 
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including uncertainty about the size of nuclear fuel reserves, the efficiency of nuclear 

reactors when using lower-grade uranium ores, and the likelihood of finding satisfactory 

solutions for nuclear waste disposal2. In terms of renewable sources, hydroelectricity is 

relatively inexpensive, benign, and available in many areas of the world. However, 

globally, the amount of technically feasible hydroelectric power has been estimated to be 

approximately 1.5 TW3. Hence, hydroelectricity will not make a significant contribution 

toward meeting the 10-20 TW global carbon-free power requirements in 2050 year3. 

Wind power is approaching competitiveness with conventional power production and 

may be considered as an important source in meeting future energy needs. Considering 

practical sitting constraints, total usable wind energy production over the entire globe is 

estimated about 2-4 TW, much less than the 30 TW level3. In addition, biomass is 

impossible to become an alternative power for massive deployment in the future due to 

very inefficient property and only storing less than 1% of the total incident energy.  

   Solar energy is a renewable, and a pollution–free source of energy that is ubiquitously 

available in sufficient quantity. With roughly 175,000 TW of solar power striking the 

earth’s surface, a practical and feasible solar power potential is estimated about 600TW 

for terrestrial application1,4. Thus, for a 10% efficient solar farm, at least 60 TW of power 

could be supplied from terrestrial solar energy resources, and this amounts to twice the 

projected world energy need by 20504. Hence, solar energy is, in fact, the only renewable 

resource that has enough terrestrial energy potential to produce 10-20 TW carbon-free 

power by 2050 year5. In a word, solar technology becomes as an integral part of the 

solution to meet the world’s energy demand.   
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1.2 Solar Energy Current status and Future Prospects 

   Solar energy makes our society clean from one that relies on fossil fuels to one that 

utilizes sustainable energy sources. World solar power generation grew rapidly and 

growth rate was 35% in 20135. The growth of solar power accounted for more than half 

of renewable energy generation growth. Solar photovoltaic (PV) electricity constitutes 

the fastest growing renewable energy technology in the world. In Germany, more than 1.3 

million solar power plants generated 5.3% of electricity consumption6, in Italy; PV 

systems generated 7% of electricity consumption, Belgium, Bulgaria, Czech Republic6, 

Greece and Spain PV generation also exceeded 3% of electricity demand6. While fast 

growth rate, due to a small base, global 135GW of solar PV installation capacity in 2013 

is only 0.7 percent of total amount of electricity that was generated that year by all 

sources6. Figure 1a and 1b shows global electricity production from various power 

sources at the end of 2013 and 20507. As shown in Figure1, fossil fuels dominated and 

generated 78% of global electricity. Power capacity from renewable energy increased 

from 19% at 2012 to 22.1% at 20137, primarily due to growth of hydropower. Solar 

electricity accounted for a very small amount of electrical generation in most of countries. 

Therefore, it is expected that solar energy deployment will be greatly increased.  

   From renewable market report forecast, solar energy will supply 2% of global 

electricity generation before 20195. By 2030, without major changes of policy, 

contribution of PV to the global electricity demand could be between 7% and 11%5, and 

renewable energy will provide one-third of total generation. The latest long-term 

photovoltaic (PV) technology roadmap shown that, by 2050, approximately 16% of 

world electricity supply could be delivered by PV5, and concentrating solar power (CSP) 
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plants will provide an additional 11% of solar thermal electricity, and total renewable 

energy will provide 79% of global electricity production5. In short, by 2050, these solar 

technologies will prevent the emission of more than 6 billion tons of carbon dioxide per 

year5. This amount is more than all current energy related CO2 emissions from the United 

States or almost all of the emissions from the transport sector worldwide today5. It is 

predicted that 1700 GW of PV will be deployed by 2030, and at 2050, PV power will be 

deployed 4670GW5. To achieve the vision, the installation of total PV capacity each year 

needs to rise rapidly, from 36 GW in 2013 to 124 GW per year on average, with a peak of 

200 GW per year between 2025 and 20405.  

 

   

 

 

 

 

 

 

   

 

 

     

 

Figure 1, Estimated renewable energy share of global electricity production, a)end of   

2013, b)2050.                          
 

a 

b 
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1.3 Potential PV Cost Reduction  

  Wide-scale deployment of solar cells to date has been blocked by their cost. To achieve 

large deployment of 300-600GW of PV at 2019, 1700GW of PV at 2030 and 4670GW of 

PV at 2050 from current deployment of 135GW of PV, it is important to make the solar 

electricity cost competitive with other sources of energy at least by 2020. As compared 

with the cost of coal-based electricity with approximately $0.04/kilowatt-hours (kWh)1, 

the present cost of photovoltaic-generated electricity is in the range of $0.20 to 

$0.35/kWh1. Costs of cells and modules will decline further when deployment increases 

and technology improves in the next two decades. Figure 2a and 2b show the roadmap of 

expecting module cost. According to Figure2a, it is expected that module costs will be 

fallen to $0.3/W to $0.4/W by 20355. Utility-scale capital expenditures cost will reach the 

lowest at about 2020, and would fall below $1/W by 2030 on average, and would then 

reach a level of $0.7/W by 20505. 

   The SunShot Initiative strongly supports development of low-cost and high-efficiency 

photovoltaic (PV) technologies in order to achieve roadmap cost reduction. According to 

Figure 2b, SunShot Initiative has made cost target of $0.06 per kilowatt-hour for utility-

scale PV by 2020. Currently, the solar industry is already more than 60% of the way to 

achieve the Sunshot cost target8. 

  Hence, in support of cost reduction target to double renewable energy generation by 

2020, the Energy Department invested more than $59 million funding to support solar 

energy innovation today. The Department of Energy is making $45 million funding to 

quickly transfer innovative solar manufacturing technologies to market, and is also 

awarding more than $14 million to help communities develop multi-year solar 
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deployment plans for installing solar electricity in homes, communities and businesses9. 

These funding investments will greatly promote development of cost-effective solar 

electricity competitive with fossil fuel electricity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         Figure 2, Roadmap of expecting module cost a) Sunshot Initiative target at 2017 

year, and b) at 2035. 
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1.4 Current Photovoltaic Materials and Devices 

      Photovoltaics (PV) use semiconductor materials to generate electricity from solar 

energy. The PV effect was discovered in 1839 through studying the effect of light on 

electrolytic cells by Becquerel10. Solar cells developed rapidly in the 1950s owing to 

space programs and satellites utilization of crystalline Si solar cells with efficiency of 6–

10%, in addition, the energy crisis of the 1970s greatly stimulated research and 

development for PV10. Current PV materials devices are dominated by crystalline Si solar 

cells, multicrystalline Si solar cells, thin-film amorphous Si solar cells, CdTe thin film 

solar cells, CIGS solar cells, CZTSSe(CZTS)solar cells, and perovskite solar cells. The 

recent results on these leading types of solar cells are described in the following. 

  1.4.1. Shockley and Queisser Efficiency Limits 

  The limiting efficiency of a single junction solar cell was analyzed by Shockley and 

Queisser (1961). According to Shockley and Queisser model, the thermodynamic 

efficiency of an ideal single homojunction solar cell is estimated as 31%. The efficiency 

of a single homojunction solar cell is limited by absorption losses of photons with 

energies below the bandgap energy and thermal relaxation of carriers created by photons 

with energies above the bandgap energy10. Figure 3 shows the evolution of world-record 

efficiencies of laboratory cells. Table 1 shows currently confirmed terrestrial cell and 

module efficiencies measured under the global AM1.5 spectrum at 25°C. 

1.4.2. Silicon Solar Cells 

1.4.2.1 Crystalline Silicon Solar Cells 

Crystalline silicon is the most mature technology and has been benefitted from 

decades of development by the integrated circuit (IC) industry. Most commercial Si solar 
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cells utilized boron-doped single-crystal wafers (around 400 µm thick) grown by the 

Czochralski (CZ) process. As shown in figure 3, the average efficiency of silicon solar 

cell has improved in the last twenty years by about 0.3% per year10. The improvement of 

these efficiencies was due to improved contact and surface passivation of the cells along 

the front and rear surfaces, as well as an improved understanding of the role of light-

trapping in Si solar cells. By the end of 2014, crystalline Si solar cells have achieved 

open-circuit voltage Voc of 740 mV, short-circuit current density Jsc of 41.8 mA/cm2, fill 

factor of 82.7% and power conversion efficiency of 25.6%, which were fabricated by the 

Panasonic HIT11.  

Modules usually have to guarantee a lifetime of 25 years at minimum 80% of their 

rated output, or a lifetime for 30 years at 70% of the rated output. The module 

efficiencies lag efficiency of the laboratory cells. The best-performing commercial 

modules were based on back-junction and interdigitated back-contact.  At the beginning 

of 2015, the commercial crystalline Si modules have reached fill factor of 80.3% and 

efficiencies of 22.9% by UNSW/Gochermann, and fill factor of 80.1% and efficiencies of 

22.4% by SunPower company11.     

1.4.2.2 Multi-Crystalline Silicon Solar Cells    

   Multi-crystalline silicon solar cells have the greatest market share followed by mono-

crystalline silicon photovoltaics. Multi-crystalline silicon solar cells can reduce the cost 

requirements for the mounting structure and installation. The Multi-crystalline Silicon 

industry was expecting to reduce polysilicon prices, and improve wire cutting technology, 

which leads to reduced wafer thicknesses and keeps multi-crystalline silicon solar cells 

competitive. For world-record efficiencies of laboratory cells, the multi-crystalline Si 

solar cells has achieved open-circuit voltage Voc of 662.6 mV, short-circuit current 



9 

 

density Jsc of 39.03 mA/cm2, fill factor of 80.3% and power conversion efficiency of 

20.8%, demonstrating efficiencies of more than 20%11. The For confirmed module 

efficiency, multi-crystalline silicon modules have demonstrated fill factor of 76.2% and 

efficiencies of 18.5%11. Although multi-crystalline Si modules have lower module 

efficiency compared with crystalline Si modules, their lower cost manufacture techniques 

make them cost-effective PV modules, hence having larger market share than crystalline 

Si modules.  

1.4.2.3 Thin-film Amorphous and Polycrystalline Silicon Solar Cells  

   Amorphous and thin-film polycrystalline silicon solar cells are all alternatives to 

crystalline Si solar cells. Compared to crystalline silicon cells, thin-film Si solar cells 

have the following important advantages that: i) The thickness of Si can be reduced from 

400µm to 50 µm; ii) devices can be deposited at low temperature (< 200 °C), enabling 

the fabrication of lightweight, flexible laminates on low-cost substrates; iii) devices can 

be fabricated by low cost and high throughput roll-to-roll processing on flexible 

substrates. The unique features provided competitive advantages in consumer products 

and building integrated photovoltaics markets. However dangling (Si-H) bonds can be 

destroyed under visible light, the amorphous Si cells were hampered by poor stability and 

inferior efficiencies. Thin film amorphous Si techniques usually applied hydrogen 

passivation techniques to reduce dangling bonds and increase material quality. The best 

successful laboratory amorphous cells were achieved as 10.2% conversion efficiency 

(Voc=896mV, Jsc=16.36 mA/cm2, and FF=69.8%)11. In addition, for the best commercial 

modules, stabilized efficiency remains low and was 6–7%. At present, about 8–10% of 

the worldwide PV production uses amorphous Si technology10. 



10 

 

1.4.3 Thin-Film Chalcogenide Solar Cells 

1.4.3.1 Cadmium Telluride (CdTe) Solar Cells  

   CdTe solar cells were manufactured by single company of First Solar and have the 

lowest manufacturing costs currently.  First Solar’s success has been due to their ability to 

integrate various process steps into an in-line manufacturing process which reduce the 

processing time from glass to a finished module down to 2.5 hours. The biggest challenge 

for CdTe lies in the improvement of device efficiency. First solar collaborated with 

General Electric company and made significant process for efficiency improvement. The 

recorded laboratory cells have been confirmed with Voc of 876mV, Jsc of 30.25 mA/cm2, 

FF of 79 .4% and power conversion efficiency of 21% at 1.0623 cm2 area11. Module 

efficiency has been raised from 13.5% to current levels of 17.5% by the end of 2014 

through a combination of process integration, research, and development11. In the short 

term First solar is targeting over 18% as an achievable goal for module efficiency. The 

main progress has been made in enhancement of photocurrent by replacing the FTO with 

advanced TCOs such as cadmium stannate and ITO. However, the improvement was not 

trivial because ITO is expensive and cadmium stannate is a complex material. 

   One issue about large-scale CdTe manufacturing is related with cadmium toxicity and 

tellurium availability. Cadmium is a toxic element, and it can continue to be produced as 

a natural byproduct of Zn mining. However tellurium availability is limited. Hence, the 

optimum solution for CdTe PV technique is to sequester cadmium in an environmentally 

beneficial manner, and to implement 100% recycling in order to address the issue of Te 

availability. 
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1.4.3.2 Copper Indium Gallium Selenide (CIGS) Solar Cells 

     Among I–III–VI compounds, copper indium diselendide (CuInSe2 or CIS) CIS has 

beneficial properties for thin-film solar cells. CIS has a band gap of 1.05eV slightly off 

the maximum efficiency energy gap of 1.5eV. The real breakthrough in CIS thin-film 

solar technology was from the pioneering work of Boeing Corporation, where three-

source co-evaporation of Cu, In, and Se elements raised the efficiency from 5.7% in 1980 

to above 10% in 198210. Efficiency improvements attained by NREL were due to 

bandgap engineering for 1.5eV by adding Ga and S and improvement of the absorber 

layer by adding Na, resulting in CIGS solar cells. 

   CIGS was the efficiency leader among thin film technologies cells but were currently 

exceeded by CdTe solar cells with 21% efficiency. At the beginning of 2015 year, the 

world-record efficiency in the laboratory is 20.5% with Voc of 752mV, Jsc of 35.3 mA/cm2, 

FF of 77.2% and was achieved by Solibro company11. At present, the performance of 

commercial modules is only about 15.7%, which is much lower than that of CdTe 

modules11. Difference between laboratory cells and module was attributed to the quality 

of the absorber layer. 

  Commercial production of CIGS began in 2007, with a few companies operating 

facilities with 10-30 MW/year capacities but the large production has not happened 

because reproducibility and production yield have proven to be challenging12. In terms of 

large-scale terrestrial applications, this material has a disadvantage because indium and 

gallium are very limited resources. 

1.4.3.3 Earth Abundant Copper Zinc Tin Sulfide Selenide (CZTSS) Solar Cells 

   Driven by concerns about the availability of In, Te, Ga and Ge in the current 2nd 

generation CIGS thin-film solar cells, earth abundant materials including oxides and 
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sulfides of base metals (e.g., Fe, Cu) with band gaps in the range of 1-2 eV were 

developed. The most successful system to date has been copper-zinc-tin-sulfide 

(selenide), or CZTS, which were investigated by IBM group13. CZTS shares similar 

device structures and fabrication techniques with CIGS. The similarities to CIGS solar 

cells have accelerated CZTS solar cells’ initial success, and champion CZTS devices in 

the laboratory has approached 12.6% efficiency with Voc of 513.4mV, Jsc of 

35.21mA/cm2 and FF of 69.8%11. Even so, these same similarities may become 

limitations in the long run. Currently, the CZTS solar cells are in the experimental 

research stage and haven’t been commercially manufactured by industry. It needs further 

investigation that the CZTS solar cells deserve for further investment.    

1.4.3.4 Perovskite Solar Cells  

   Perovskite solar cells are one of the hottest prospects in current solar energy research, 

offering high power outputs from low-cost materials that utilized low-cost and simple 

solution processes to form devices. Organic/inorganic halides perovskite solar cells have 

strongly attracted the attention of the photovoltaic community when efficiencies of 10% 

were first achieved since late 2012. Interest has soared in the innovative device structures 

as well as new materials, promising further improvements. The excellent properties and 

the innovative device structures in perovskite solar cells have resulted in a enormous 

increase of publications. Solution processed perovskite photovoltaics have achieved 

efficiencies of 20.1% for a very small area 0.1cm2, with Voc of 1059mV, Jsc of 

24.65mA/cm2 and FF of 77%11. The cells were fabricated by the Korean Research 

Institute of Chemical Technology (KRICT) and measured at Newport Technology and 

Applications Center. Hence perovskite solar cells have been established as a robust 

candidate for commercialization. 
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   However, perovskite cells’ power conversion efficiency often varies depending on how 

it is measured, suggesting an underlying instability in the cells’ light-gathering perovskite 

materials. In addition, perovskite cells’ performance is greatly degraded from about 15% 

efficiency to around 5% efficiency in two days, and the most reliable perovskite cells can 

maintain 17 days14. Hence, it is impossible to photovoltaic panels working for a decade or 

more. Secondly, the highest efficiency solar cells were reported with CH3NH3PbI3 

which includes unfriendly element lead, and when without inclusion of lead, perovskite 

solar cells showed obviously reduced power conversion efficiency. Thirdly, researchers 

are struggling to extend the range of the light absorption wavelengths, which is a key 

strategy for improving their efficiency or so achieved by typical silicon or thin-film solar 

cells. In addition, the basic working mechanisms are still being debated, which will be 

crucial to design the optimum device configuration and maximize solar cell efficiencies. 

Hence the scientific challenges developing environment friendly perovskite materials and 

addressing efficiency and reliability issues are keys to make this technology market-

viable. 

 

 

 

 

 

 

 

        

        Figure 3, The evolution of world-record efficiencies of laboratory cells15. 
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Table 1 Confirmed terrestrial cell and module efficiencies measured under the global 

AM1.5 spectrum (1000 W/m2) at 25°C11
 

 

Materials Efficiency 

(%) 

Area(cm2) Voc (V) Jsc 

(mA/cm2) 

Isc 

(A) 

Fill 

Factor(%) 

Si Cell (crystalline) 25.6 ± 0.5 143.7 0.74 41.8  82.7 

Si Module 

(crystalline) 

22.9 ± 0.6 778 5.60  3.97 80.3 

Si Cell 

(multicrystalline) 

20.8 ± 0.6 243.9 0.6626 39.03  80.3 

Si Module 

(multicrystalline) 

18.5 ± 0.4 14661 38.97  9.149 76.2 

Si Cell 

(amorphous) 

10.2 ± 0.3 1.001 0.896 16.36  69.8 

Si Cell 

(microcrystalline) 

11.4 ± 0.3 1.046 0.535 29.07  73.1 

a-Si/nc-Si (thin-

film cell) 

12.7 ± 0.4 1.000 1.342 13.45  70.2 

a-Si/nc-Si (tandem) 12.2 ± 0.3 14322 202.1  1.261 68.8 

CdTe Cell 21.0 ± 0.4 1.0623 0.8759 30.25  79.4 
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CdTe Module 17.5 ± 0.7 7021 103.1  1.553 76.6 

CIGS Cell 20.5 ± 0.6 0.9882 0.752 35.3  77.2 

CIGS Module 15.7 ± 0.5 9703 28.24  7.254 72.5 

CZTSS Cell (thin 

film) 

12.6 ± 0.3 0.4209 0.5134 35.21  69.8 

CZTS Cell (thin-

film) 

8.5 ± 0.2 0.2382 0.708 16.83  70.9 

Perovskite (thin 

film) 

20.1 ± 0.4 0.0955 1.059 24.65  77.0 

GaAs Cell (thin 

film) 

28.8 ± 0.9 0.9927 1.122 29.68  86.5 

GaAs Module (thin 

film) 

24.1 ± 1.0 858.5 10.89  2.255 84.2 

 

1.5 Current PV Module Manufacturing Cost and Market Shares  

   To been projected to meet the U.S. Department of Energy SunShot Initiative goal of 

$1/W by 2020, most of the PV leading technologies are emphasized on reducing 

manufacturing costs. For most of the commercial module technologies, efficiency is 

adequate, and emphasis is on developing cost-effective manufacturing technologies that 
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can significantly lower the production cost below $1/W. Table 1 shows manufacturing 

costs and market shares of the leading PV technologies.  

   The manufacture of solar PV systems basically comprises of four phases: 1) production 

of the semiconducting material; 2) production of the PV cells; 3) production of PV 

modules, a process whereby the cells are encapsulated with protective materials and 

frames to increase module strength; and 4) installation of PV modules, including the 

inverter to connect the PV system to the grid, the power control systems, energy storage 

devices and the final installation in residential or commercial buildings or in utility-scale 

plants. The cost of a PV module typically ranges between 30-50% of the total cost of the 

system. The remaining costs include the balance of system and the installation, which can 

be 20% for utility-scale PV plants, 50-60% for residential applications, and as a high as 

70% for off -grid systems, including energy storage and back-up power5. 

   Hence, to make PV system price to $1/W of Sunshot Initiative goal, price of PV 

module has to be reduced to around $0.5/W.    PV module prices have declined very 

rapidly due to market competition, increasing industrial production and improved 

efficiency. The module cost of crystalline Si PV systems have fallen by more than 60% 

over the last several years. In 2012, average manufacturing cost of Si PV modules was 

$0.75/W, and currently, the cost of silicon PV modules is $0.65/W16.  

  Compared with crystalline Si PV systems, the production of thin film PV system is less 

energy intensive and requires significantly less semiconducting material. Thin film PV 

modules are therefore generally cheaper. First Solar sets thin-film CdTe module 

efficiency of 17.5%, which makes that average manufacturing cost of CdTe modules is 

reduced to $0.61/W, becoming the cheapest of solar modules17. First Solar expects its 
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average manufacturing cost to be reduced to $0.35/W in 201817. That will make the total 

installed cost of a CdTe module (including racking and inverters) from approximately 

$1.59/W at present to below $1/W by 2017, meeting the US Sunshot Initiative goals at 

least three years ahead of time, and occupying a large market share.  

   While the CdTe technology is growing sufficiently fast, thin-film CIGS module 

production is still in the beginning stages. This is due to difficulties between laboratory 

and large-scale production technologies. 15.7% module efficiency made by Solar Frontier 

has promoted that the average manufacturing cost of CIGS models is reduced to 

$0.64/W16.  It is expected that rate of decline will be steep for CIGS thin-film modules, 

and module manufacturing cost will be reduced to $0.5/W in next several years. 

Continued cost reductions of PV systems are essential for accelerating the attainment of 

grid-parity of electricity generated using on-grid solar PV systems . 

   Currently, crystalline silicon and the so-called thin-film technologies dominate the 

global PV market. Crystalline silicon PV is the most developed technique and currently 

dominant PV technology with approximately 85-90% of the PV market share18. All the 

thin-film technologies combined have 13% of the market, where CdTe and CIGS PV 

techniques share 6% and 2% of the market respectively18. With increased deployment of 

solar electricity and shortage of Si materials, quick penetration of the thin film PV 

technologies into the world PV market is therefore required. It is expected that CdTe and 

CIGS modules will increase their market share in the world PV market in coming years 

due to their lower costs.  
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1.6 PV Future-Low Cost, Reliable and Earth Abound Solar Cells 

  1.6.1 Current PV Issues and Requirements for Future PV Technologies 

   While significant reductions in manufacturing costs of various commercial PV modules 

has been made, research are doubting whether these materials and synthesis methods can 

achieve truly inexpensive and global-scale solar electricity. Considering monocrystalline 

silicon solar cells, the most important factor limiting the development of crystalline Si 

solar cells is the production cost of the 250-300mm thick crystal Si wafer due to indirect 

energy gap and low absorption coefficient property of Silicon. Production of the high-

purity silicon, high-temperature crystal growth, and vacuum processing methods used for 

doping and contact application are all energy-intensive techniques. It has been reported 

that a third or more of the total energy was consumed on the purification of metallurgical 

grade silicon to solar grade. Material cost is the largest contributor to the overall cost of 

crystalline Si cells. Due to the directionality and strength of the covalent bond in Si, Si is 

hard to cut through and requires high temperatures to process Si19. It excludes attempts to 

synthesize Si by low-cost methods. Therefore, the electricity consumption for Si solar 

modules is very high. For example, if crystalline Si cells are deployed to generate about 4% 

of the worldwide electricity production, the amount of crystalline Si wafers required is 

about 2,350,000 tons/year19. This amount of crystalline Si wafers would require about 

1.6×1012 kWh or about 10% of the world electricity production19. High energy 

requirement for production of crystalline Silicon modules is a fundamental limit to make 

a noticeable contribution to electricity generation.    Thin film CdTe and CIGS solar cells 

use very thin layers of semiconductor material deposited on a low cost material such as 

glass, plastic or metal, hence they have been projected to meet SunShot Initiative cost 

goal. However, the high performance CdTe and CIGS solar modules require high-
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temperature and high vacuum processing, specifically deposition and annealing at around 

500C-600 °C, resulting in high energy consumption for a solar cell module1. III-V GaAs 

compound semiconductor solar cells are usually fabricated on single crystal substrates 

using expensive epitaxial deposition techniques and hence are extremely expensive1. In 

other words, all commercial PV technologies involve the use of energy intensive thermal 

and vacuum-based techniques, which actually offset their advantages to the world 

electricity generation. 

   To achieve approximately 5TW deployment of PV at 2050 (16% of world electricity 

supply delivered by PV), materials availability is the important for low-cost solar cells. It 

is inevitable that silicon will face shortages. For CdTe solar cells, it has been estimated 

that existing mineral reserves would achieve 0.3TW of installed capacity before tellurium 

scarcity becomes a limiting factor in cost. Based on current tellurium refinery output, a 

maximum production rate of CdTe solar cells is 5GW/year1. For CIGS solar cells, 

according to the limited availability of indium, Ga and Se, similar capacity and growth 

limits were estimated as 0.09TW and 7GW/year respectively1. In addition, these cells 

also contain extremely rare and toxic elements. It is the potential dangerous to introduce 

large quantities of the toxic elements into the ecosphere through manufacturing and waste 

handling1. Thus, while Silicon, CdTe and CIGS solar cells may be important parts of a 

diversified renewable energy solution, their overall deployment of less than 1TW has 

limited impact on the 30TW energy demand by 20501. 

1.6.2 Solution Processed and Earth Abundant Solar Cells   

   In response to truly inexpensive and wide-scale photovoltaic electricity generation, 

there are needs for less energy-intensive deposition methods such as solution-based 
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deposition. Solution-based deposition methods have the advantage of being low-

temperature and scalable as well as no vacuum requirements, hence avoiding abundant 

energy consumption on thermal and vacuum system and greatly reducing manufacturing 

costs. The solution based deposition methods are suitable for wide-scale fabrication of 

inexpensive solar cells on a variety of supporting substrates. The methods can not only 

fabricate traditional solar panels but also coat non-planar objects, which make them 

possible for integration of photovoltaics into various form components. Thus, solution 

synthesis methods are necessary to produce low cost photovoltaic modules for various 

home, business and on-grid and off-grid applications.  

  To meet massive deployment of low cost PV modules by 2050, several basic 

requirements for ultra-low-cost photovoltaics can be summarized: abundant, inexpensive 

materials; low-temperature, atmospheric fabrication of crystalline materials; scalable 

synthesis on low-cost substrates; suitable efficiency and stability and low-toxicity1. There 

are nine inorganic materials which have been identified as having both the potential for 

annual electricity production in excess of worldwide demand and material extraction 

costs less than that of crystalline Si.  It is possible, through low temperature solution 

synthesis, to synthesize polycrystalline thin films of the earth abundant, stable and non-

toxic materials. For example, polycrystalline Cu2O, Cu2S, and CuO, have been known as 

earth abound materials for solar cells, can be produced by electrochemical deposition 

near room temperature1. The ability to synthesize abundant photovoltaics using low-

temperature, solution-based synthesis methods is essential to reduce PV system cost for 

wide-scale implementation of low-cost photovoltaic electricity generation, and is a great 

interesting area for future research.   
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1.6.3 Nanostructured Earth Abundant Solar Cells by Low-Temperature, Solution 

Synthesis Methods  

    Ultra-low cost solution-based synthesis generally results in materials of poorer 

crystallinity and phase purity and more defects than those produced by vacuum and high 

temperatures deposition methods1. Thus, the solution based methods can significantly 

reduce costs, however, they will create high concentrations of grain boundaries, charge 

traps and recombination centers, which limit the distances over which photogenerated 

carriers can be transported and collected. Thus, techniques need to be developed for 

producing suitable structures of these solution-synthesized materials that enable the 

efficient carrier collection. 

    Photovoltaic nanostructure allows the use of these solution-based methods to achieve 

high efficiency and low cost solar cells. Usually, materials synthesized by low cost 

solution methods have a large number of defects and impurity, reducing minority carrier 

lifetime1. Nanostructure diameter can be tuned to match the diffusion length of minority 

carriers and the thickness can be tailored to maximize light trapping and absorption. 

Hence, the nanostructure solar cells are still thin enough that photogenerated carriers can 

be efficiently transported before combination, while the overall cell thickness is sufficient 

to absorb all incident radiation. Nanostructure can provide considerable performance 

enhancements for low grade photovoltaic materials fabricated by low cost solution 

methods. Hence, photovoltaic materials have been nanostructured to simultaneously 

achieve high efficiencies and low cost.  

  The development of ultra-low-cost nanostructure inorganic solar cells, which utilize 

abundant materials and inexpensive solution based fabrication methods, is in the early 

stage and promising. These devices are inherently more stable than organic-based 
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equivalents, which make them considerably interesting and are extremely promising as 

the cheapest solar cells. Through continued development of nanoscale materials and 

devices, inexpensive solar power will be able to meet world energy demands.    
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Chaper 2 Fundamental Theory of Solar Cells 

  2.1 Solar Cell Operation Principle  

   2.1.1 p-n junction 

A solar cell is a device which converts sunlight into electricity. Light shining on the 

solar cell produces both a current and a voltage. This process requires a material to 

absorb light and raise electrons to a higher energy state, and the transport of this higher 

energy electron from the solar cell into an external circuit. Then, electrons dissipate their 

energy in the external circuit and returns to the solar cell. Photovoltaic energy conversion 

often uses semiconductor materials and inorganic-organic materials in the form of a p-n 

junction.  

In a typical photovoltaic cell, p-n junctions are formed by joining n-type and p-type 

semiconductor materials, as shown in figure 4. Since the n-type region has a high 

concentration of electrons and the p-type region has a high concentration of holes, 

electrons diffuse from the n-type side to the p-type side. Similarly, holes diffuse from the 

p-type side to the n-type side. In a p-n junction, when the electrons and holes diffuse to 

the other side of the junction, they leave behind exposed charges on dopant atom sites, 

which are fixed in the crystal lattice and are unable to move. On the n-type side, positive 

ions are exposed, and on the p-type side, negative ions are exposed. An electric field 

forms between the positive ions in the n-type material and negative ions in the p-type 

material. This region is called the "depletion region" since the electric field quickly 

sweeps free carriers out, hence the region is depleted of free carriers. A "built in" 

potential Vbi due to electrical field of depletion region is formed at the junction, which is 

a difference between the electric potential at the edges of the depletion layer.. The electric 

file at depletion region creates a energy barrier that prevents electrons from diffusing into 
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p-type side, and similarly, prevents holes from diffusing into n-type side. Most of 

electrons in the n-type region are unable to move into the p-type side because they can 

not have enough energy to overcome the energy barrier at the p-n junction. On the other 

hand, any electron from the p-type region as minority carriers can move into the n-type 

region, because there is no any barrier to stop it. Because they are minority carriers, the 

concentration of these electrons is very small, however, it is sufficient to produce 

transitions of electrons from the p-type to the n-type side that exactly compensate for the 

diffusion current in the opposite direction. In an equilibrium condition, diffusion current 

is equal to drift current, and the electron current through the junction is zero20.  

 2.1.2 Photovoltaic Effect 

  Figure 4 illustrates the basic operation of a solar cell. The generation of current in a 

solar cell involves two key processes. The first process is the absorption of incident 

photons to create electron-hole pairs. When the incident photon has an energy greater 

than the bandgap of the semiconductor, the solar cell generates electron-hole pairs, i.e., 

excess charge carriers. Most holes generated in the n-region, as well as electrons 

generated in the p-region, far from the junction are minority carriers and recombine with 

the majority carriers before they can diffuse to the junction. If the carrier recombines, 

then the light-generated electron-hole pair is lost and no current or power can be 

generated. Therefore, the lifetime of these carriers has to be sufficient to enable these 

carriers to reach and traverse the field region of the collecting diode. Only minority 

carriers generated within a diffusion length of each side of the junction can diffuse to the 

edge of the depletion region and are immediately accelerated by the electric field to the 

opposite side of the junction, which produces photocurrents. For example, only those 
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electrons generated in the p-region which have not recombined before can reach the n-

region. These electrons need to be generated at a distance not farther than a diffusion 

length from the n-region. Similarly, only those holes generated a distance within diffusion 

length from the n-region can diffuse and reach the p-region. When the light-generated 

minority carrier reaches the p-n junction, it is swept across the junction by the electric 

field at the junction, where it is now a majority carrier. Moreover, since the electric field 

in the space charge region is high, all the electrons and holes generated in the space 

charge region are accelerated toward the opposite directions, contributing to the 

photocurrent. Photocurrents come from electron-hole pairs generated in the depletion 

region and within a diffusion length of their respective n-type or p-type partners. When 

the minority charge carriers have traversed the electric field region, they become the 

majority carriers. When the emitter and base of the solar cell are connected together, i.e., 

the solar cell is short-circuited, the light-generated carriers flow through the external 

circuit. 

The collection of light-generated carriers does not by itself give rise to power 

generation. A voltage must be generated as well as a current for power generation. The 

collection of light-generated carriers by the p-n junction causes a movement of electrons 

from p-type side to the n-type side and holes from n-type side to the p-type side of the 

junction. Under short circuit conditions, there is no build up of charge, therefore the 

photogenerated carriers exit the device as light-generated current and voltage is zero. 

     However, when the photogenerated carriers are prevented from leaving the solar cell, 

then the collection of photogenerated carriers causes an increase in the number of 

electrons on the n-type side of the p-n junction and, a similar increase in the number of 
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holes in the p-type side. This separation of charge creates an electric field at the junction 

which is in opposition to that already existing at the junction, thereby reducing the net 

electric field. Since the electric field represents a barrier to the flow of the forward bias 

diffusion current, the reduction of the electric field increases the diffusion current. A new 

equilibrium is reached in which a voltage exists across the p-n junction. The current from 

the solar cell is the difference between IL and the forward bias current. Under open circuit 

conditions, the forward bias of the junction increases to a point where the photogenerated 

current is exactly balanced by the forward bias diffusion current, and the net current is 

zero. The voltage required to cause these two currents to balance is called the "open-

circuit voltage"21.  

2.1.3 Operation of Thin Film Solar Cells 

    For thin film solar cells, due to the close proximity to the surface with its high surface 

recombination, electron-hole pairs recombine rapidly near the surface, resulting in low 

quantum efficiencies. Since electron-hole pairs should not be generated in this layer, it 

must have a large energy gap. It is called a window layer, through which photons pass 

unimpeded, but which protects electrons and holes from recombining at the front contact. 

The interface between the window layer and the absorber should have a low density of 

interface states in order to prevent recombination at the interface and enhance 

photocurrent.  

A disadvantage of many materials with direct transitions and favorable energy gaps, 

is that they can’t be doped equally well n-type and p-type. Thus, the structure required for 

solar cells demands heterojunctions. Generally, cadmium sulfide (CdS) has a wide 

bandgap (2.41 eV), and function as window layer and protects electrons and holes from 
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recombining at the front surface.  CdS can be natively n-doped and the interface between 

the CdS window layer and the absorber has a low density of interface states. The 

heterojunction solar cells with window layer and absorber include n-type CdS/p-type 

CdTe, n-type CdS/p-type CIGS, and n-type CdS/p-type CZTS. 

 It is interesting to note that amorphous silicon is the class of thin-film materials. 

Amorphous silicon is silicon without a crystalline structure. Because of the lack of long-

range order, the momentum of electrons in bound states and unbound states is largely 

undetermined. As a result, no phonons are required for transitions between these states in 

order to satisfy the conservation of momentum. The transitions are direct and have large 

absorption coefficients. However, the lack of order has the disadvantage that the states for 

electrons and holes are not confined to bands, the states fill the entire forbidden zone. The 

inclusion of about 10% hydrogen serves to saturate many of the dangling bonds of the 

silicon atoms in the amorphous structure. The density of states in the forbidden zone is 

drastically reduced, and the material can now be doped. However, the saturation of 

dangling bonds with hydrogen is not stable. During illumination, the bonds are broken by 

the capture of holes. This property, (Staebler-Wronski effect) leads to a continuous 

decrease in the efficiency of solar cells made of a-Si:H22. 
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Figure 4, Basic operation of a solar cell. 

2.1.4 Absorption of Materials  

For solar cells, the generation of electrons and holes by the absorption of photons is 

the most important process. The absorption determines the thickness of the absorber 

required to absorb all the radiation falling on it when the photon energy is greater than the 

bandgap. Absorber thickness is very important because it impacts efficiency and material 

and time of deposition costs. Because of these two facts, highly absorbing, robust, and 

inexpensive absorbers give the best optimization and highly attractive for reduce 

manufacturing costs.  

    The probability for the absorption of a photon of energy is defined by the absorption 

coefficient α, which depends on the material properties and also on the wavelength of 

light. Semiconductor materials have a sharp edge in their absorption coefficient, since 

light which has energy below the band gap does not have sufficient energy to excite an 

electron into the conduction band from the valence band. Consequently this light is not 

absorbed. The absorption coefficient for several semiconductor materials is shown figure 

5. 

The most widely used absorber material, silicon has a poor absorber because it is an 

indirect bandgap semiconductor, and the transition for electrons from the valence band to 
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the conduction band minima requires a momentum exchange at the time of absorption 

and this reduces the probability for absorption. For crystalline silicon absorbers, the 

indirect bandgap gives a range of values for α(λ) from 1*102 cm-1 at 953nm to 1*104 cm-1 

at 2.5eV and 496nm20, so the challenge is to achieve effective absorption at the near 

infrared part of the solar spectrum. The consequence for an effective absorption of light 

in silicon is that the thickness would be 200µm, which is the typical thickness of 

crystalline silicon solar cell. This will apply a great challenge to achieve silicon of high 

purity at great thickness of 200µm for silicon solar cell technologies.  

Contrasting with indirect bandgap semiconductors, direct bandgap semiconductors 

rapidly rise absorption coefficient to exceeding 1*104 cm-1 above the bandgap energy and 

can increase to exceeding 1*105 cm-1 for higher photon energy. This direct bangap 

structure is typical for most of the II-VI and III-V classes of direct bandgap 

semiconductor materials, for the chalcogenides such as copper indium diselenide and 

earth-abound CZTSSe, and for the perovskite materials. The direct bandgap materials 

have very strong light absorption and a thickness of only 1–2 micrometers is enough to 

absorb 90% of the available solar spectrum for photon energy greater than the bandgap. 

Therefore, the diffusion length of minority carriers can be reduced. A higher impurity 

concentration and the present of grain boundaries can be tolerated. Therefore, these 

materials can be formed on thin-film with about 6 micrometer thickness. All these 

advantages hold the promise of significant cost reductions for the production of solar 

cells. 

   The absorption coefficient then has a large value. For the absorption of that part of the 

solar spectrum which can be absorbed, a thickness of only a few um is sufficient for thin-

http://en.wikipedia.org/wiki/Direct_bandgap
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film solar cells. For the same number of recombination centers as in a thick silicon cell, a 

higher impurity concentration and the presence of grain boundaries in the film can be 

tolerated. Because of the smaller distances to the membranes at the surfaces, the diffusion 

lengths can also be smaller. This allows the use of materials with lower mobility. All 

these advantages hold the promise of significant cost reductions for the production of 

solar cells. 

 

 

 

    

 

 

 

 

              Figure 5, The absorption coefficients of several semiconductor materials. 

2.1.5 Quantum Efficiency  

Quantum efficiency (QE) is the ratio of the number of carriers collected by the solar 

cell to the number of photons of a given energy incident on the solar cell. QE can be 

expressed in the following: 

ŋ =
𝐼𝑝ℎ

𝑞∅
=

𝐼𝑝ℎ

𝑞
(

ℎ𝜈

𝑃𝑜𝑝𝑡
)                                (1) 

   Where Iph is the photocurrent, φ is the photon flux(=Popt/hν), and Popt the optical power.  

   When all photons of a certain wavelength are absorbed and the resulting minority 

carriers are collected, then the quantum efficiency at that particular wavelength is unity. 
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The quantum efficiency for photons with energy below the band gap is zero. The 

quantum efficiency for most solar cells is reduced due to recombination, incomplete 

absorption and reflection. 

    Quantum efficiency includes external and internal quantum efficiency. The external 

quantum efficiency of a solar cell includes the effect of optical losses such as 

transmission and reflection. However, it is interesting to look at the quantum efficiency 

of the light left after the reflected and transmitted light has been lost. Internal quantum 

efficiency refers to the efficiency with which photons that are not reflected or transmitted 

out of the cell (ignore reflection and transmission) can generate collectable carriers. By 

measuring the reflection and transmission of a device, the external quantum efficiency 

curve can be corrected to obtain the internal quantum efficiency curve. 

   The quantum efficiency in the depletion region is approximately unity because the 

electron-hole pairs are quickly swept apart by the electric field and are collected. Away 

from the junction, the quantum efficiency drops. When the carrier is generated more than 

a diffusion length away from the junction, then the quantum efficiency is quite low. When 

the carrier is generated closer to a region such as a surface, high surface recombination 

will reduce the quantum efficiency. Therefore, making photocarrier generation in the 

depletion region, increasing large diffusion length, conducting surface passivation and 

reducing light absorption at front surface will enhance quantum efficiency and hence the 

light-generated current. 

2.2 Solar Cell Parameters 

   Typical current–voltage (J–V) curves of a solar cell in the dark and under illumination 

are shown in figure 621.  Power is generated when the cell operates in the fourth quadrant 
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of the graph where voltage is positive and current is negative. The solar cell operates in 

the fourth quadrant. Under illumination, the dark curve will be shifted by the 

photogenerated current density (JL). The IV curve of a solar cell is the superposition of 

the IV curve of the solar cell diode in the dark with the light-generated current. The light 

has the effect of shifting the IV curve down into the fourth quadrant where power can be 

extracted from the diode. Illuminating a cell adds to the normal "dark" currents in the 

diode.  

 

𝐼 = 𝐼0 [exp (
𝑞𝑉

𝑛𝑘𝑇
) − 1] − 𝐼𝐿                                        (2) 

 

where I0 is the reverse saturation current, n is diode ideality factor and IL is light 

generated current. 

 

 

 

 

 

 

 

 

   Figure 6, A typical current–voltage characteristic of a solar cell in the dark and under 

illumination. 
 

   Primary parameters that describe the performance of a photovoltaic device are the 

short-circuit current density(Jsc), open-circuit voltage (Voc), fill–factor (FF) and 
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conversion efficiency.  

   The short circuit current Jsc is the current density that flows through the junction under 

illumination at zero applied bias. In the ideal case, Jsc equals the photogenerated current 

density (JL). Therefore, the short-circuit current is the largest current which may be drawn 

from the solar cell. The short-circuit current mainly depends on quantum efficiency and 

spectrum of the incident light (the number of photons). 

   The open-circuit voltage VOC is the maximum voltage available from a solar cell when 

the current through the junction is zero, and can be expressed as 

                   

                              𝑉𝑜𝑐 =
 𝑛𝑘𝑇

𝑞
ln (

𝐼𝐿

𝐼0
+ 1)                  (3) 

   

   The above equation shows that Voc depends on the saturation current of the solar cell 

and the light-generated current. Because Il typically has a small variation and the reverse 

saturation current may vary by orders of magnitude, the reverse saturation current plays 

in a key role in Voc. The saturation current, I0 depends on recombination and energy band 

in the solar cell. Open-circuit voltage can identify the amount of recombination and 

junction quality in the device.  

  The short-circuit current and the open-circuit voltage are the maximum current and 

voltage respectively from a solar cell. However, at both of these operating points, the 

power from the solar cell is zero. The point on the J–V curve that yields the maximum 

power is referred to as the maximum power point; the corresponding current density and 

voltage are maximum current Jmp and maximum voltage Vmp. The fill factor is a 

parameter which determines the maximum power from a solar cell. The FF is defined as 
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the ratio of the maximum power from the solar cell to the product of Voc and Isc. The FF 

is a measure of the squareness of the J–V curve and is also the area of the largest 

rectangle which will fit in the IV curve. The FF is given by 

  

      𝐹𝐹 =
𝑉𝑚𝑝𝐼𝑚𝑝

𝑉𝑜𝑐𝐽𝑠𝑐
                         (4) 

 

The efficiency is the most commonly used parameter to compare the performance of 

a solar cell. The efficiency of a solar cell is defined as the ratio of the maximum output 

power Pmax to the input power (incident power) Pincident, and can be expressed as 

   ŋ =
𝑉𝑜𝑐𝐼𝑠𝑐𝐹𝐹

𝑃𝑖𝑛
                       (5) 

               

 The efficiency depends on the spectrum and intensity of the incident sunlight and the 

temperature of the solar cell. Therefore, conditions under measurement of efficiency need 

to be carefully controlled. Terrestrial solar cells are measured under AM1.5 conditions 

and at a temperature of 25°C. For space applications, solar cells are measured under AM0 

conditions. 

  2.2.1 Efficiency as a function of their energy gap 

     The short-circuit current of a solar cell depends on the absorbed photon current. It is a 

maximum for a semiconductor with an energy bandgap of zero and decreases with 

increasing energy gap. However, the open-circuit voltage Voc is zero when energy bangap 

becomes zero and increases with increasing energy gap. Therefore, the efficiency is 

therefore zero while energy bandgap becomes zero and infinite. The efficiency as a 

function of the energy gap is calculated when only radiative recombination is considered. 
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Figure 7 shows the conversion efficiency of a solar cell as a function of bandgap. The 

figure 7 demonstrates that optimal conversion efficiency for a single junction solar cell 

has a bangap of 1.1eV-1.5eV, and maximum conversion efficiency occurs in the bandgap 

of approximately 1.5eV.  The silicon, GaAs, CdTe are in the range of 1.1eV-1.5eV. In 

addition, GIS and CZTS have been tuned their bandgaps to 1.5eV by adjusting 

concentration of the Ga or other element. Therefore, to achieve maximum conversion 

efficiency for a single junction solar cell, the bandgap of materials has an energy bandgap 

of approximately 1.5eV.  

 

 

        Figure 7, Power conversion efficiency of a solar cell as a function of bandgap. 

 

2.3 Non-ideal Effect and Double Diode Model 

   A real solar cell has a parasitic series (Rs) and shunt resistance (Rsh). There are several 

physical mechanisms responsible for these resistances. Series resistance, Rs, is composed 

of the bulk resistance of the semiconductor materials and that of the front and back 

contacts. Shunt resistance, Rsh, is caused by leakage across the p–n junction and around 
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the edge of the cell. An ideal cell will have high shunt resistance (Rsh = ∞) and low series 

resistance (Rs = 0). Modest Rs affects mostly the far–forward voltage region above Vmp 

but the open–circuit voltage is not affected by Rs, because no current flows at Voc. The 

influence of Rsh is visible in the low voltage range (near zero voltage). Both, Rs and Rsh 

can reduce the FF by a predictable amount. High values of Rs and low values of Rsh can 

also reduce Jsc and Voc respectively. The effects of Rs and Rsh on the J–V characteristics 

are illustrated graphically in figure 821. 

 

 

 

 

 

 

 

 

 

Figure 8, Effect of series and shunt resistances on the J–V curves 
 

   Many of the parameters that describe a solar cell are extracted from the current-voltage 

curves. Non–idealities such as light-to-dark crossover and the current limiting behavior in 

the far-forward bias are examined in the first quadrant. The shunt resistance Rsh is 

obtained from the plot of the derivative dJ/dV vs. the applied voltage V. Near Jsc and in 

the reverse bias, the dJ/dV plot will be constant and its value equal to the shunt 

conductance G. The series resistance Rs is determined from the plot of dV/dJ above the 

Voc region. Diode ideality factor may be calculated from the slope, nkT/q. Depending on 
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the dominant current transport mechanism the diode quality factor for a well behaved 

curve, is expected to be in the range between 1 and 2. A diode ideality factor of one is the 

ideal case, diode ideality factor of two occurs when bulk recombination is the dominant 

current transport mechanism, and diode ideality factor more than 2 indicates tunneling or 

interfacing recombination is the dominant current transport mechanism.   

  Equivalent circuit 

   Non-ideal effect of a real solar cell can be modeled as a double diode model. Figure 9 

shows the double diode model. In this model, the solar cell is modeled as a current source 

connected in parallel with a rectifying diode (band-band recombination). The current 

source is also shunted by another diode that models the space charge recombination 

current due to impurity, and a shunt leakage resistor to account for the partial short circuit 

current path due to the semiconductor impurities and non-idealities. In addition, the solar 

cell metal contacts and the semiconductor material bulk resistance are represented by a 

resistor connected in series with the cell23. 

 

Figure 9, Equivalent circuit of a double diode model 

    

 In this double-diode model, the cell terminal current is calculated as follows: IL = I ph − 

ID1 − ID2 − Ish  
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Where IL is the terminal current, Iph is the cell-generated photocurrent, D1 and D2 are the 

first and second diode currents, Ish is the shunt resistor current. The terminal current of IL 

can be expressed by following equation23 where two diode currents are expressed by 

Shockley equations.   

 

    

 

                                                                                                                         (6) 

 

 

   

Where Rs and Rsh are the series and shunt resistances respectively; ISD1 and ISD2 are the 

diffusion and saturation currents respectively; VL is the terminal voltage; n1 and n2 are the 

diffusion and recombination diode ideality factors; k is Boltzmann’s constant; q is the 

electronic charge and T is the cell absolute temperature in Kelvin.    

2.4 Semiconductor-Metal Contact 

    The metal is characterized by the chemical potential of its electrons, and the absolute 

value of the chemical potential is known as the work function of the metal. In general, 

metal-to-semiconductor contacts can behave either as a rectifying or as an ohmic contact 

depending on the characteristics of the interface. Metals with a small work function, 

therefore, are favorable for the exchange of electrons and make good, so called ohmic, 

contacts to n-type semiconductors. For a p-type semiconductor with work function s and 

a metal with work function m,
 
an ohmic metal/semiconductor contact is formed when 
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the work function of metal is larger than the work function of p-type 

semiconductor( sm  ).This situation produces a dipole-oriented negative in the metal 

and positive in the semiconductor, and thereby hole accumulation (majority carrier 

concentration above that dictated by doping) in the semiconductor, and therefore no 

electrostatic barrier to hole transport into the contact. And also, electrons see a potential 

barrier from the Fermi energy of the metal to the conduction band of the semiconductor, 

equal to the difference between the work function of the metal and the electron affinity of 

the semiconductor. This large-workfunction case produces an ohmic contact for holes in 

p-type material. There would be a barrier for electrons. 

  A rectifying contact is formed when the work function of metal is less than the work 

function of p-type semiconductor ( sm  ).This means holes would have to be 

depleted (majority carrier concentration below that dictated by doping) in the p-type 

semiconductor, an electrostatic barrier to holes would develop in the semiconductor, and 

we would have actually succeeded in making a rectifying Schottky barrier diode to the p-

type material20. 

  Both ohmic and Schottky metal/p-semiconductor interfaces are shown in figure 10. 

At the Schottky-contact interface, holes see a barrier b as they travel from the 

semiconductor towards the metal, but such a barrier is absent in the case of ohmic contact 

interface. 

 

 

 

 



40 

 

       

 

 

 

 

 

 

 

              Figure 10, Ohmic and Schottky metal/p-semiconductor interfaces. 
 

   Schottky contact is formed at the junction, and the contact barrier height, b , for holes 

at the interface in the absence of interface states, is given by the difference between the 

valence band edge and the Fermi energy in the metal. 

              ( )
g

b m

E

q
     (7) 

  Though in practice thermal effects make 0.3 eV or less sufficient, the barrier heights at 

0.3eV or a zero or negative value would be preferred for making ohmic contact.  

    For contacts on covalent semiconductors, the band bending in the semiconductor is 

found to depend less strongly on the work function of the metal than would be expected 

from the difference in the work functions. This is probably due to the presence of surface 

states on the semiconductor surface, which are charged due to the contact with the metal. 

Together with the surface charge on the metal, the surface charge on the semiconductor 

forms a charge double layer, over which a potential step occurs which depends on the 

dipole moment of this layer. The potential difference between in the interior of the 

semiconductor and the interior of the metal is still given by the difference in the work 
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functions, but it is now divided between the band bending of the space charge layer and 

the usually unknown, potential difference across the dipole layer.  

   In additional cases, there is a way a low-work function metal can give ohmic behavior 

for p-type material. When the semiconductor is very highly doped, at least in the vicinity 

of the contact, a majority carrier depletion layer caused by an inappropriate work function 

of a metal is only very thin. It can in fact, for suitably high doping levels, be so thin that 

the majority charge carriers can tunnel through this potential barrier between the 

semiconductor and the metal20.  
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Chapter 3 Device Design and Experimental Procedures 

 3.1 Material Property  

  CdTe photovoltaics have energy return investment exceeding that of traditional fossil 

fuels, provide the shortest energy payback time among all photovoltaic technologies for 

terrestrial applications, and has the second largest market share after the conventional 

crystalline silicon technology. In addition, CdTe photovoltaics have superior tolerance to 

high energy irradiation and are more suitable for space applications24. From basic physic-

chemical properties, CdTe is an optimum material for use in thin film solar cells. CdTe 

has an energy gap of 1.45 eV, well suited to absorb the solar light spectrum. The energy 

gap is direct, resulting in an absorption coefficient for visible light of >105 cm-1 so that 

the absorber layer need only be 2μm thick to absorb >90% of light above the band gap. 

Above 500 ℃, the stoichiometric compound of CdTe is the stable solid phase. In the high 

temperature phase a slight nonstoichiometry is present in the form of a slight Cd 

deficiency, leading to a native p-doping of films. This property makes it relatively easy to 

produce CdTe films suited for thin film solar cells. No excessive care has to be taken in 

preparing CdTe films as long as the substrate temperature is sufficiently high. Due to the 

strong ionicity of the material, the strong bonding leads to an extremely high chemical 

and thermal stability, reducing the risk of degradation of performance or any liberation of 

Cd to a very low level. No degradation intrinsic to the CdTe can be expected. 

   However, in polycrystalline thin films, doping becomes more difficult because of the 

enhanced compensation and segregation effects at the grain boundaries. In fact, because 

of these characteristics of the doping mechanism, the grain boundaries in polycrystalline 
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CdTe thin films can be made more p-type than the bulk, reducing and the minority carrier 

recombination at the grain boundaries. Difficulties encountered in doping of CdTe do not 

affect its PV performance, but they create problems in making a low-resistance ohmic 

contact to the material. 

3.2 Development of Thin-film CdS-CdTe Solar Cells  

   Thin-film solar cells based on CdTe are the cells with a long tradition. The first thin-

film solar cell device was cuprous sulphide/cadmium sulphide heterojunction in 1954 by 

Reynolds et al25. Cuprous sulphide/cadmium sulphide solar cells displayed severe 

stability problems, and their development was discontinued by the early 1980s. In 1963, 

the first thin-film cell on CdTe, a p-Cu2Te/n-CdTe heterojunction, a structure similar to 

the CdS cells, obtained 6% efficiency reported by Cusano26. For 9 years after the work 

reported by Cusano, there was not much to report about this material. In this interval, n-

cadmium sulfide (CdS) was recognized to be most effective heterojunction parter of p-

CdTe. In 1972, an efficiency of 6% in CdTe/CdS thin film solar cells reported by Bonnet 

and Rabenhorst27. In 1983, Bulent reported the efficiency of 9.15% in thin film 

CdS/CdTe heterojunction solar cell formed by electroplated technique28. In 1982, Tyan et 

al in the labs of Kodak reported 10% efficiency in n-CdS/p-CdTe heterojunction solar 

cells29. Furthermore, the cell featured only a very thin CdS-layer was recognized to 

improve the blue response. In 1992, efficiency in n-CdS/p-CdTe heterojunction solar 

cells was improved to 14.6% by close-space sublimation in a paper of Chu et al30. Britt et 

al in 1993 reported that a CdS/CdTe solar cell of greater than 1 cm2 area obtained 15.8% 

efficiency in an AM1.531. In this paper, CdS films were prepared by chemical bath 

deposition and p-CdTe films were deposited by close-spaced sublimation31. In 2001 and 
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2004, Wu et al reported  a CTO/ZTO/ CdS/CdTe polycrystalline thin-film solar cell with 

an NREL-confirmed total-area efficiency of 16.5%, which is the highest efficiency ever 

reported for CdS/CdTe solar cells32. In the paper, novel materials CTO film, ZTO buffer 

Layer were developed to improve performance limited by conventional transparent 

conductive oxides with an average transmission of only 80%32. This is a little over half of 

the 29% theoretical limit. Currently, CdTe efficiency has been improved to 20.4% by the 

First Solar11. It has been estimated that practical CdTe devices with 25% efficiencies 

should be feasible in the near future17.  Thus considerable work will likely be required to 

optimize the materials as well as the fabrication techniques. 

3.3 Technical Issues 

    Window-absorber type solar cells, including the devices using CdS windolw layer 

coupled with an absorber layer of CdTe, continue to be the most cost-effective 

photovoltaic technologies, which are potentially competitive with conventional power 

sources for terrestrial applications. In the past great effort has been devoted toward 

reducing the cost and increasing the power conversion efficiency (PCE) of these cells.  In 

the quest for reaching the Schokley-Queiser limit in PCE, a major hindrance in these 

solar cells has been the loss of photocurrent caused by parasitic light absorption in the 

planar CdS window layer. Planar CdS is responsible for absorption loss of 22-24%33 and 

a photocurrent loss of approximately 7 mA/cm2 32-34   [2,17,18].  

Several groups have worked on reducing the absorption loss in planar CdS window 

layer. One approach was to reduce the planar CdS thickness, for example, to 

50nm34,35[17,19]. This method demonstrated favorable spectral response at wavelengths 

longer than 500nm, but the parasitic absorption loss remained for wavelengths shorter 
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than 500nm. Furthermore, such planar window layer thinning presents significant 

challenges of its own. Substrate roughness and pinholes can exacerbate shunting and 

negatively influence open circuit voltage (Voc)
32,36 [2,20].  It necessitates an additional 

high resistivity buffer layer between the TCO and the CdS window layer. More recent 

approach is to widen the band gap of the CdS window layer by replacing CdS with the 

Cd1-xZnxS alloy through the high cost MOCVD method [19].  Quantum efficiency 

spectrum data appears that the gain in transmission over the 300-512 nm range was very 

modest and the transmission became detrimental in the 500-860nm range. Also, the 

quality of CdTe film deposited on top of the Cd1-xZnxS may be the cause of a relatively 

low open circuit voltage of 0.67 V-0.71 V. 

   A stable back-contact that is not significantly rectifying is essential for good 

performance and long-term stability of n-CdS/p-CdTe solar cells. Due to (5.9eV) sum of 

electron affinity (4.4eV) and bandgap(1.5eV) of p-CdTe, no metal with work function 

larger than 5.9eV to form ohmic contact. In practice, often the CdTe surface is chemically 

etched to create a Te-rich surface, and then Cu is incorporated as a key element to locally 

increase the effective doping level on the surface.  However, Cu is known to be a fast 

diffuser in p-CdTe. The diffusion of Cu could be beneficial for the solar cell since it can 

dope CdTe p+ giving a momentary increase in the efficiency but, in any case, at long run 

the efficiency decreases since Cu can diffuse along the CdTe grain boundary. In addition, 

due to polycrystalline CdS with pinholes and high defects, planar CdS can accelerate cell 

degradation because Cu diffuses from CdTe into planar CdS and further into SnO2 

through pinholes and defects of the planar CdS, forming deep penetration and introducing 

microshunts37. As a result, main junction and back ohmic contact behavior are 
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aggravated37. 

3.4 Device Design 

   we present an approach for overcoming these challenges through a stack nanowire solar 

cell structure with diffused p-n junction. The stack nanowire solar cell configuration is an 

array of CdS nanowires embedded in a transparent anodized aluminum oxide (AAO) 

matrix which replaces planar CdS as a nanowire window layer for tailoring optical 

properties, a CdTe absorber layer grown on the top of them; this nanowire CdS-CdTe 

device structure is illustrated in Figure. 11B, which is different with CdS nanopillar 

structure 38. Carrier generation and transport of the stack nanowire and the conventional 

planar CdS-CdTe solar cells are shown in Figure 11C and 11D. The fine features of the 

CdS nanowires confined by nanopores in AAO matrix favorably increase the optical 

energy band gap and extend transmittance edge of CdS39-41. The length of CdS nanowires 

is 100 nm, which is significantly smaller than the wavelength of the incident. Hence, 

scattering induced absorption, as seen in long-length silicon nanostructures15, 16 , is not a 

major factor here. 

   Under such circumstances, a part of incident light across the entire spectrum range can 

directly transmit through absorption-negligible AAO matrix (Figure 11C), and the other 

part of incident light transmitted through CdS nanowires (Figure 11C) can be enhanced 

due to their larger effective energy band gap39-41. Hence, much broader and stronger 

spectral range of incident light reaches the CdTe absorber layer where photons are 

absorbed and converted to carriers. Such configuration significantly suppresses parasitic 

absorption loss in the window layer, and extends the optical generation of carriers into the 

broad solar spectrum, resulting in enhanced light absorption and carrier generation and 
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collection. Further, this structure is particularly advantageous because junction interface 

area between the CdS nanowires and the polycrystalline CdTe is reduced (Fig. 1e) due to 

the CdS nanowires touching the CdTe at only a fraction of the planar interfacial area (Fig. 

1e).  Reduced interface area leads to reduced interface recombination and decreased 

effective reverse saturation current, which would, in turn, lead to a substantial increase in 

the Voc of the solar cell. In addition, due to low defect density and the robustness of the 

CdS nanowires, the stack nanowire CdS-CdTe solar cells can prevent deep diffusion of 

Cu ion at back contact into the window layer. As a result, aging and reliability are 

strongly improved.  

3.5 Experimental Procedures  

    To realize the above advantages offered by nanowire window layer solar cells, there is 

need for a relatively inexpensive process to economically fabricate large periodic arrays 

of semiconductor nanowires. To this purpose, we developed a lost-cost, template-assisted 

and metal catalysts-free electro-deposition process, to simply and efficiently grow 100 

nm-CdS nanowires on transparent substrates. The key points are that due to fine 

geometric confinement of the AAO membrane, the CdS nanowires maintain their 

nanostructure characteristics during the various subsequent high temperature processes. 
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Figure 11,  (a), Schematic structure of a planar CdS/CdTe solar cell.  (b), Schematic 

structure of a vertical stack nanowire CdS/CdTe solar cell, where light blue color 

represents absorption- negligible AAO.  (c), Electron and hole transport through reduced 

junction interface area in the nanowire CdS/CdTe solar cell.  (d), for comparison, electron 

and hole transport through junction interface in a conventional planar CdS/CdTe solar 

cell. 

3.5.1 AAO Membrane Fabrication  

Commercially available ITO/ soda-lime glass substrates with sheet resistance of 23-

28 Ω/square were cut into 1 inch by 1 inch pieces and cleaned in acetone, methanol, de-

ionized water and dried in nitrogen flow. A 100 nm thick tin oxide (intrinsic SnO2) layer 

and a 5 nm thick titanium layer were deposited on ITO by direct sputtering. The thickness 

of Ti layer has been optimized for standard membrane fabrication. When the Ti thickness 

less than 4nm, due to surface roughness of sputtered Ti layer, samples could crack at 

electrolyte–air interface during anodization. While the Ti thickness is more than 5.5nm, 

a 

b 

c d 
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anodization process may be extended to several hours, leading to incomplete anodization 

process.     

  Next, a 100nm thick aluminum (Al) layer is deposited on the top of Ti layer by 

electron beam evaporation. Anodized aluminum oxide (AAO) membrane is formed by 

the following steps. The Al film is anodized in a 0.3 M oxalic acid solution under a 50 V 

bias until Al is completely anodized where the electrolyte is maintain at a constant 

approximately 5 °C.  Insertion of Ti is thought to improve adhesion and passivation, 

however, it will result in barrier layer. The formation of the barrier layer prevents growth 

of the nanowires. Only those nanopores of AAO membrane without the barrier layer can 

be fully filled with the nanowires. Therefore, introduction of a series of barrier layer 

removing processes is crucial to uniform nanowire growth. Firstly, the as-anodized 

samples are etched in 5% phosphoric acid (H3PO4) for 40minutes to partially remove the 

barrier layer. Reactive ion etch (RIE) is an important process to completely remove the 

barrier layer. The RIE process is set as an anisotropic etching with 90W of RF and 250W 

of ICP power, which etching rate of vertical dimension is faster than that of horizontal 

dimension. Then, the samples are etched in 5% phosphoric acid solution for 5minutes to 

dissolve removed barrier layer particles. Figure12 a and b show schematics of Al layer on 

ITO and formed AAO membrane. Figure 12c shows transmittance spectra of the as-

anodized, H3PO4-etched, and RIE-etched AAO membrane for comparison. 
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Figure 12,  Schematics a) of Al layer on ITO and b) formed AAO membrane, and c) 

comparison of transmittances between as-anoidzed, H3PO4-etched and RIE-etched AAO 

membrane. 
 

As shown in Figure 12c, the as-anoidzed AAO membrane exhibits approximately 

similar transmittance behavior with the H3PO4-etched and RIE-etched AAO membrane in 

the range of 343-860nm. However, existence of the barrier layer reduces transparence and 

causes that the transmittance of the as-anoidzed AAO membrane reduces from 0.98 at 

343nm to 0.28 at 300nm. The barrier layer removing processes enhance transparence. 

H3PO4 etching widens pore dimension of nanopores and partially removes the barrier 

layer, hence the transmittance of the AAO membrane is enhanced, and corresponding 

transmittance is 0.98 at 306nm and 0.28 at 270nm. The transparence of the AAO 

a b 

c 
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membrane is further improved by the RIE etching process, which demonstrates that the 

barrier layer has been totally removed through fully filled CdS nanowires. The resulted 

AAO membrane reveals completely negligible absorption and approximate 100% 

transparence across the studied wavelengths longer than 295 nm and the transmittance 

only reduced to 90% at 271nm.  Negligible absorption property indicates that AAO 

membrane is ideal to support nanowire growth without introduction of another light 

absorption loss. Therefore, the AAO membrane provides an approach to grow 

nanostructures for solar cell applications.  

 

3.5.2 CdS Nanowire Growth and Scanning Electron Microscope Characterization of 

CdS nanowires  

   Figure 13 shows schematics illustration of CdS nanowires embedded into nanopores of 

AAO membrane. The CdS naowires on transparent substrates are fabricated using 

electrodeposition. Electrolyte for the CdS nanowires deposition is a mixture of 0.5g 

cadmium chloride (CdCl2) and 0.5g elemental sulfur in 50mL dimethyl-sulfoxide (DMSO) 

solution. The CdS nanowires are deposited under a high dc current density of 7mA/cm2 

and at a high deposition temperature of 160°C to form nanowires. Following high 

temperature and high dc current growth, the CdS nanowires are soaked in a 75%-

saturated CdCl2 for 15 minutes, and are annealed at 400℃ for 30 minutes with 100-sccm 

Argon purge.  
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Figure 13, Schematics illustration of CdS nanowires embedded into nanopores of AAO 

membrane.   

   

  Material characterization of the CdS nanowires was conducted with a scanning 

electron microscope (Hitachi S-900 field emission SEM).  Figure 14a and b show the top 

views of scanning electron microscopy (SEM) images of the nanoporous AAO membrane 

and the free-standing CdS nanowires, respectively, and figure 14c shows the cross-

sectional view of CdS nanowires embedded in the AAO matrix. From figure 14c, 

nanopores are completely filled with CdS nanowires, which are highly ordered, vertically 

aligned and dense. Length, diameter and the average distance between the centers of 

neighboring nanowires were estimated at approximately 100 nm, 60 nm and 106 nm 

respectively. The porosity of the AAO membrane and the area density of CdS nanowires 

were calculated to be 32% and 1.14x1010 nanowires/cm2 respectively. Such well-aligned 

nanowire arrays produced from the quasi-periodic arrangement of transparent AAO 

membranes are advantageous because they exhibit lower optical reflection than the arrays 

of random arrangements 42-44. It should be noted that different forms-fully embedded and 

free standing nanowires can be readily grown, and various nanowire parameters including 

length, diameter and pitch could be varied controllably (see Experimental  section).  

Furthermore, the AAO membranes and the nanowires can be grown on a large variety of 

rigid and flexible substrates, indeed all substrates, which allow for the deposition of 
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aluminum (Al) film and its anodization. 

 

       

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 14, SEM images; (a), top view of a nanoporous membrane of anodized aluminum 

oxide (AAO); (b), top view of an array of 100 nm long free-standing CdS nanowires; (c), 

cross-sectional view of a 100 nm long CdS nanowire array embedded in the AAO 

membrane. 

3.5.3 Fabrication of CdTe absorber layer  

3.5.3.1 Close-spaced Sublimation  
  The CdTe is deposited by close-space sublimation (Figure 15) following the steps below. 

First, the CdTe source plate is made for the depositions. The source plate consisting of a 

piece molybdenum(Mo) substrate is loaded in the deposition chamber as shown in Figure 

15. For source plate fabrication, CdTe is sublimated from a graphite boat packed with a 

chunk of CdTe powder (99.99% Alfa Aesar). Source plates are fabricated in 15-torr He, 

with a boat temperature of 600℃, a substrate susceptor temperature of 500℃, 2 mm 

b a 

c 
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spacing, and a deposition time of 30 min. The resultant CdTe films are greater than 100 

mm thick and have about 80% coverage of the glass substrate. After each use as a CdTe 

source, the CdTe source plate is blown with N2 to remove any loosely adhered oxides or 

CdTe particles. 

3.5.3.2  CdTe Layer by Close-spaced Sublimation and CdCl2 Treament 

   Next, p-CdTe absorber layer was deposited in a closed-space sublimation system. 

Source for depositing CdTe was formed by the CSS system using a chunk of CdTe 

powder (99.99% Alfa Aesar) heated to a boat temperature of 625◦C, while the substrate 

temperature was set at 525◦C; deposition time was 20minutes. During CdTe deposition, 

the chamber was pumped down to a background pressure of approximately 0.25 torr; then 

He with 5% O2 was introduced at a total pressure of 15 torr. The source and substrate 

were ramped together to 507◦C, then the source temperature was quickly increased to 

630◦C. The source and substrate were maintained at 570 ◦C, and 630◦C for 2.3 minute 

deposition.  

    In-situ annealing and post CdCl2 treatments will be important processes to improve the 

performance of CdTe films. In-situ annealing helps relax the stress and CdTe 

recrystallization. When the substrate is cooled to 400℃ in chamber of CSS, films are 

annealed in-situ for 10 minutes. Then, a CdCl2 anneal is performed. The pieces are 

soaked in a 75%-saturated CdCl2 in methanol solution. The substrates are dipped for 30 

min at room tempearture. After that dip, the pieces are then placed on an aluminum plate 

in a tube furnace that is purged with Argon. The furnace is then set at 400℃ and left on 

for 30 min with a flow of 100-sccm Argon. After cooling to a maximum of 50℃, the 

pieces are rinsed in DI water to remove any excess CdCl2. 

   Figure 15a and b show the surface morphologies of as-deposited CdS films. Figure 16c 
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show the surface morphologies of CdTe films after the heat treatment with CdCl2. It is 

obvious that as deposited CdTe films have a smooth and compact morphology, consisting 

of crystallites with grain size between average 5µm to 6µm. Films heat treated with 

CdCl2 have a similar structure to as-deposited films. The anneal produces bulk 

recrystallization of the CSS-deposited CdTe films and slightly increase the grain size to 

7µm to 9µm after CdCl2 treatment (Figure 16c). It can be expected that the performance 

of solar cells with CdTe films annealed with CdCl2. This is because that CdCl2 treatment 

increases the grain size and eliminates fast-recombination centers in the CdTe film, 

eliminates small grains at the grain boundaries, and causes interdiffusion of CdS and 

CdTe at the interface and decreases the interface recombination. 

Figure 15e and f show the cross section SEM images of CdTe film. At the deposition 

above, it is estimated that thickness of CdTe is the 10μm-15μm. The thickness is much 

higher than the 6-8μm, therefore thickness needs to be reduced to optimize the series 

resistance and Voc.   
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Figure 15, The surface morphologies of as-deposited CdS films. (c) the surface 

morphologies of CdTe films after the heat treatment with CdCl2. (d) the surface 

morphologies of CdTe films after NP etching.  (e), (f) (g)the cross section SEM images 

of CdTe film.                                  

3.5.4 Back Contact Formation 

   Before the deposition of contact electrode to CdTe, the cells were etched in a solution 

of nitric and phosphoric acid (NP) (1% HNO3, 88% H3PO4, 35% DI-water) for 35seconds.  

Figure 16d show the surface morphologies of CdTe films after NP etching. This purpose 

was to clean up the surface of CdTe film and render it tellurium rich (Te+). The cells 

were then masked to define the back contact area. Next, 5 nm thick copper layer was 

deposited onto the back contact area by sputtering. Graphite paste (with 1200-2400 Ω/ml) 

and silver paste electrodes were painted on to the back contact area. The cells were then 

heated at 150 ◦C for 10 min to facilitate forming a Cu2Te layer and for curing the 

graphite/silver paste electrode.  To separate solar cell dots and to define the area of each 

cell, a cutter tool was used to cut through the p-CdTe and CdS layer.  The area of a typical 

such cut/scratch was measured under an optical microscope. Schematic of the finished 

nanowire CdS-CdTe solar cells is showed in figure 16.   

 

Figure 16,  Schematic of the finished nanowire CdS-CdTe solar cells. 
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Chapter 4 Result and Discussion 

4.1 Effect of Anodic Aluminum Oxide Membrane on Performance of 

Nanostructured Solar Cells  

4.1.1. Introduction   

      Solar energy is one of the most promising renewable energy to meet increasing 

energy demands in the future. In the past years, tremendous efforts have been devoted in 

reducing cost and increasing efficiency of photovoltaics such that they can be potentially 

large-scale deployed32,45-48. Recently, particular interests of cost-effective solar cells are 

to utilize nanostructures or nanostructured materials to reduce volume of semiconductor 

materials, and enable beneficial optical management, novel conversion mechanism and 

improvement of carrier generation and collection 39,43,49 . 
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     Anodic aluminum oxide (AAO) membrane has been widely applied into growth of 

nanostructures50-53. Due to it’s highly regular and aligned nanoporous structures with high 

pore density in the range of 109-1011cm-2 50, AAO membrane becomes an ideal template 

for assisted growth of nanometer-scale structures.  Most recent, several groups had grown 

CdS nanostructures through AAO membrane and have configured them intro 

nanostructured solar cells38,39,41,54. The grown nanostructured solar cells mainly focused 

on nanopillor CdS-38 or nanowire CdS-CdTe solar cells39,41,54 because CdTe solar cells 

have the shortest energy payback time55 and superior tolerance to high energy irradiation 

for terrestrial and space applications24. These nanostructured CdS-CdTe solar cells have 

exhibited favorable optical, electrical and mechanical properties38,39,54. Specially, in 

nanowire CdS-CdTe solar cells, CdS nanowires as window layer have enabled light 

transmission gain in the window layer so that light absorption was enhanced in CdTe 

absorber54. The nanowire CdS-CdTe solar cells have further showed a nearly ideal 

spectral response of quantum efficiency and their reliability was improved by 

approximately 3 times. The nanowire CdS-CdTe solar cells grown through AAO 

membrane enhanced absorption and carrier generation abilities through tuning light 

transmission of the window layer and simultaneously obtained strong reliability benefits54. 

However, there are concerns for influence of AAO membrane on photovoltaic 

performance of the nanowire solar cells grown through AAO membrane. These concerns 

are concentrated on light transmission property of AAO membrane, the effect of AAO on 

light absorption property of the solar cells, and it’s influence on carrier transport, and it’s 

mechanical effect. Herein, we present three geometries of the nanowire CdS-CdTe solar 

cells to explore the effect of AAO membrane on photovoltaic performance of the 
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nanowire solar cells. We characterized and compared morpholotical features, spectral 

response characteristics, dark- light current-voltage (I-V), and carrier transport for the 

three geometries of the nanowire solar cells. We also demonstrate fabrication details in 

the nanowire growth processes, which can be adopted for other optoelectronic devices to 

tune light transmission through nanostructures. These results provide insight into 

absorption, charge transport and carrier collection properties in the nanowire solar cells 

through AAO membrane-assisted methods.  

4.1.2 Results and Discussion  

4.1.2.1 Nanowire Solar Cell Architecture Characteristics and Analysis 

      Top view and cross sectional SEM images of three geometry CdS nanowires are 

shown in Figure 18a, 18b, 18c, 18d and 18e respectively. Figure 18a and 18b show 

support and constrain of the AAO membrane on the CdS nanowires. As shown in Figure 

18c and 18d, removing the AAO membrane forms free standing nanowires. The free 

standing nanowires can keep their vertical-standing structures on deposition of CdTe. 

Partially exposed CdS nanowires are revealed in Figure 18e.  Long rang, well-aligned 

and dense rows and columns are characteristics of the three geometric CdS nanowires. 

Average length, average diameter and the average distance of between the centers of 

neighboring nanowires are estimated as100nm, 60nm and 106nm respectively. Thus, 

porosity and area density of CdS nanowires are calculated as approximately 32% and 

1.14*1010 nanowires/cm2. These nanowires can maintain their original nanowire 

structures even when they are treated with multiple high temperature annealing processes, 

which is obviously better than nanocrystalline reported in the literature32. In other words, 

CdS nanowires and AAO membrane typically take up only about 32% and 68% of 

physical area respectively. It is expected that when they function as the nanowire window 
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layer, they will exhibit unique optical and electrical properties different from those of 

planar CdS window layer.  
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Figure 17, a) Top view and b) cross sectional SEM images of the CdS nanowires fully 

embedded in the AAO membrane. c)  Top view and d) cross sectional SEM images of the 

free-standing CdS nanowires. e) Top view SEM images of the CdS nanowires partially 

embedded in the AAO membrane.  

4.1.2.2. Optial Characteristics of Three Geometric CdS Nanowires  

 For CdS window layer-CdTe absorber layer solar cell architecture, high power 

conversion efficiency depends on solar spectrum range of photons transmitted through 

the window layer and further reached in the CdTe absorber. Hence, it is important to 

characterize transmission of the three geometric CdS nanowires over a broad range of 

wavelengths (300-860nm), covering a light spectra from very low wavelength to bandgap 

edge of CdTe absorber.  Figure 19 summarizes transmittance spectra of the three 

geometric CdS nanowires. Compare with transmittance of the free standing CdS 

nanowires, the fully embedded and partially embedded CdS nanowires demonstrate 

similar and close transmittance behaviors at the wide wavelength range from 300nm-

860nm. It further confirms that AAO membrane has a negligible absorption behavior. 

Observed from Figure 19, strong transmission of the three geometric CdS nanowires 

begin at approximately 350nm, which reveals higher bandgap of CdS nanowires arising 

from confinement of AAO nanopores39,41,53. SEM images of the CdS nanowires have 

shown that CdS nanowires and AAO membrane occupy 32% and 68% of physical area in 
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the window layer respectively. For CdS nanowires fully or partially embedded in AAO 

membrane as the nanowire window layer, a part of incident light across the entire 

spectrum range can directly transmit through absorption-negligible AAO membrane, and 

the other part of incident light is transmitted through CdS nanowires with high 

transmission due to their larger effective energy band gap39,41,53.  For comparison, in free 

standing CdS nanowires, those incident lights transmitted through AAO membrane will 

directly reach the CdTe absorber through air ambient. As a result, much broader and 

stronger spectral range of incident light reaches the CdTe absorber layer where photons 

are absorbed. In addition, the front surface recombination loss which deteriorates device 

performance of the nanostructure silicon solar cells is effectively avoided because the 

photons of the wide wavelength are efficiently guided into CdTe absorber through the 

nanowire CdS window layer. In other words, AAO membrane-assisted grown CdS 

nanowires effectively increase light transmission in the window layer and thus improve 

the absorption of CdTe absorber.  

 

Figure 18, Transmittance spectra of fully embedded, partially embedded and free-

standing CdS nanowires. 
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4.1.2.3  J-V Characteristics of Three Geometric Nanowire CdS-CdTe solar cells  

    AAO membrane can form interfaces with CdTe, and influence of these interfaces on 

the photovoltaic properties were characterized through studying the three geometric 

nanowire solar cells under dark and 100mW/cm2 illumination. Figure 20a, 20b and 20c 

show the J-V characteristics of the three geometric nanowire solar cells, and Figure 20d 

illustrates comparison of their J-V data. Crossover between dark and illuminated J –V 

curves is observed in the three geometric nanowire solar cells, which is commonly related 

with photoconductivity of CdS nanowires and CdTe as well as the space charge variation 

under illumination.  

   Two macroscopic parameters-diode quality factor (N) and reverse saturation current 

density (Jo) that describe the performance of the main junction are extracted from dark J-

V curves. Extraction of N and Jo is taken from the slope and intercept of the dark ln(J)-V 

data in forward bias between 0.35 and 0.65V, which avoids influence of series and shunt 

resistances on collection of accurate value. N and Jo from dark J-V data are shown in 

Table 2. It is clearly demonstrated that the partially embedded nanowire solar cells 

(PENSC) have the N of 2.50 and Jo of 6.32*10-8 A/cm2, which are obviously lower than 

corresponding value of 2.79, and 1.19*10-7 A/cm2 of the free standing nanowire solar 

cells (FSNSC). In addition, the fully embedded nanowire solar cells (FENSC) shows the 

n of 2.53 and and  Jo of 6.45*10-8 A/cm2, slightly higher those of PENSC. N and Jo 

represent interface defects, traps and junction behavior. Higher N and and Jo indicate that 

there are a large amount of interface defects and traps, which induce interface 

recombination and tunneling currents in the free standing nanowire solar cells. Through 

maintaining CdS nanowires in AAO membrane for partially embedded and fully 
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embedded nanowire solar cells, interface defects, traps and junction behavior are 

noticeably improved. Given that Fill factor and Voc are directly affected by the values of 

N and Jo, the lower N and Jo are desirable for the better device performance. Hence, AAO 

membrane has a mechanism to benefit interface and junction behaviors between CdS 

nanowire and CdTe film, which reduces the dark recombination current and improves 

device performance. 
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Figure 19, J-V characteristics of (a) free standing nanowire solar cells, (b) fully 

embedded nanowire solar cells, and (c)  partially embedded nanowire solar cells 

respectively. (d) J-V comparision of the three geometric nanowire solar cells. 
 

     Under a full sun intensity of 100 mW/cm2, the partially embedded nanowire solar cells 

exhibit short current density (Jsc) of 25.9mA/cm2, open circuit voltage (Voc) of 764mV 

and fill factor of 57.1%, which results in an overall power conversion efficiency of 

11.29%. The fully embedded nanowire solar cells are characterized by Jsc of 

d 
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25.85mA/cm2, open circuit voltage (Voc) of 762mV, fill factor of 56.5%, and power 

conversion efficiency of 11.09%. Compared to other two geometric cells, the power 

conversion efficiency in the free standing nanowire solar cells reduced to 9.9%, because 

the Jsc , Voc and FF are respectively decresed to 25.3mA/cm2, 738mV and 53%. The 

comparison illustrates the role of structure on device performance. 

Table 2 Photovoltaic data of the three geometric nanowire solar cells. 

Structure  n                           Jo(A/cm2) Jsc(mA/cm2) Voc 

(mV) 

 

FF(%) 

Efficiency 

(%) 

Rs(Ω 

/cm2) 

Shunt 

Resistance 

(Ω /cm2) 

PENSC 2.50 6.32*10-8 25.9 764 57.1 11.29 4.46 286 

FENSC 2.53 6.45*10-8 25.85 762 56.5 11.09 4.47 272 

FSNSC 2.79 1.19*10-7 25.3 738 53 9.9 4.86 219 

    

Figure 21a, 21b and 21c show schematics of light transmission of window layer, and 

electron-hole separation and transport in the three geometric nanowire solar cells. The 

three gemotric nanowire solar cells exhibit large short current density exceeding 

25mA/cm2.  High Jsc is attributed to CdS nanowire window layer, which transmits wider 

spectrum through the CdS nanowires (occupy 32% of the window layer), and also 

transmits the whole spectrum through air or transparent AAO membrane (occupy 68% of 

the window layer). High transmission in the CdS nanowire window layer leads to more 

photons directed into the CdTe and improved absorption there. Hence, this result is in an 

agreement with the light transmittance spectra of the three geometric CdS nanowires in 

Figure 19. 

  Similar transmission spectrum characteristics of the three geometric CdS nanowires 
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suggest that approximately equal photoexcited carriers are created in CdTe film. Then Jsc 

depends on effective carrier transport through interface and bulk. Observed from Figure 

21a and 21b, CdS nanowires only form junction with CdTe on the top of the individual 

CdS nanowires, and CdTe forms interface with AAO membrane (Figure 21b, fully 

embedded nanowire)  or CdTe forms interface with air (Figure 21a, free-standing 

nanowires) in the rest of area in the window layer. As shown in the Figure 21c, because 

CdS nanowires are exposed approximately 20nm, and CdTe crystals contact not only the 

top but also the lateral sides of the CdS nanowires, junction is formed on the top and 

lateral sides of the CdS nanowires. In addition, those CdTe crystal area contacting sides 

of the CdS nanowires is supported by 80nm-long AAO membrane and forms the interface 

with it.  

            

a 
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Figure 20, Schematics of carrier generation and transport in a) free standing nanowire 

solar cells, b) fully embedded nanowire solar cells and  c)  partially embedded nanowire 

solar cells respectively.  

 

As shown in Figure 21a, in the free standing nanowire solar cells, CdTe above CdTe-air 

interface exposure to outer ambient exacerbates interface defects and traps. It is possible 

that humidity and oxygen can penetrate into interface of CdS nanowires and CdTe. As a 

result, oxygen migration forms an oxidation layer and leads the traps and interface 

defects, which block carrier transport. Hence, higher N and J0, and lower Jsc and Voc are 

observed. Further, CdTe-Air interface provides shunting paths such that CdTe tentacles 

can directly contact with SnO2, and form microjunction. The free standing nanowire solar 

c 

b 
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cells exhibit low shunting resistance of 219Ω/cm2 and low shunting resistance is 

responsible for low Voc. 

Through maintaining AAO membrane as the part of window layer, interface defects and 

traps due to humidity and oxygen are reduced. Further, due to insulting property of AAO 

membrane, it prevents the formation of CdTe-SnO2 microjunction. Consequently, 

photovoltaic performance of the devices is obviously improved, and efficiency is 

enhanced to over 11%.  As shown in the Figure 21d and table 2, the partially embedded 

nanowire solar cells show the efficiency slightly higher than the fully embedded 

nanowire solar cells.  In the fully embedded nanowire solar cells, non-ideal and non-

uniform nanowire growth makes a few nanometer growth discrepancies possible. 

Although CdTe has high possibility to contact individual CdS nanowires, existence of 

gaps inevitably increases interface roughness and introduce interface defects, which have 

been revealed by the slightly increased N and Jo and reduced fill factor. Partially 

removing AAO and exposing CdS nanowires with 20nm avoid nanometer level gaps 

between CdS nanowires and CdTe as well as CdTe exposure to ambience. Furthermore, 

because CdTe above AAO membrane laterally contacts the CdS nanowires, a most of 

electron-hole pairs are generated in axial direction and also a small quantity of electron-

hole pairs are generated in lateral direction (Figure 21c). The carrier generation and 

collection are improved. Efficiency is increased to approximately 11.3%.  

  Figure 21 shows that photoexcited electrons above AAO and air travel an extra 

distance (approximately 50nm according to SEM images) to reach the CdS nanowires. 

The extra distance could incur additional resistance. It is concerned if such extra transport 

distance could result in large series resistance. It has been reported that light absorption 
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occurs in CdTe depletion region within a micrometer range34. In high electrical field 

depletion region of CdTe, carriers can be quickly drifted into opposite sides and are 

collected.  Therefore 50nm extra distance much less than micrometers only causes a 

slight increase in series resistance.  High series resistance in the three geometric nanowire 

solar cells is arising from CdTe film and back contacts, which graphite paste used in our 

laboratory to form back contacts has sheet resistance of 1200-2400Ω/sql.  A detail 

analysis on the extra resistance will be in a future project. 

In addition, we found that by including AAO membrane to embed the CdS nanowire, 

reliability of the nanowire solar cells is improved.  Electrically insulating property of the 

AAO membrane and the low defect features in the CdS nanowires prevent the deep 

diffusion of Cu ions (Cu usually included in the back contacts to p-CdTe) into the CdS 

nanowires and then into SnO2. The main CdS-CdTe junction and the Cu-induced 

conducting contact behavior are maintained. In other words, AAO membrane provides 

additional mechanical advantages expect its favorable optical-electrical properties.  

4.1.2. 4. Conclusion  

      We grew 100nm long and well aligned CdS nanowires which are fully embedded and 

partially embedded in AAO membrane are as well as a free standing form to function as 

nanowire window layer. The nanowire window layers are configured into solar cells to 

investigate effect of AAO membrane on device performance. The three geometric CdS 

nanowires show similar transmittance spectra, indicating that AAO membrane has 

negligible-absorption property and the number of photons absorbed by CdTe absorber is 

approximately equal. Hence, power conversion efficiency is related with carrier transport 

and collection. Free standing nanowire solar cells have efficiency of 9.9%, and through 

inclusion of AAO in the solar cell structure, efficiency is improved to approximately 
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11.1%. Further structure optimization through partially exposed CdS nanowires yields 

efficiency of approximately 11.3%. Reasons are indentified that i) AAO membrane 

effectively reduces interface defects and traps caused by humidity and oxygen in the free 

standing devices;  Further, ii) it prevents direct contact of CdTe tentacles with SnO2 and 

formation of microjunction. Partially embedded nanowire solar cells further reduces 

influence of non-ideal and non-uniform nanowire growth and generates a most of carriers 

in axial direction and also a small quantity of carriers in lateral direction, thus becoming a 

promising solar cell structure. Including AAO membrane in solar cell structure can obtain 

favorable optical-electrical properties as well as mechanical advantages. 

4.2 Embedded Nanowire Window Layers for the Enhancement of Quantum 

Efficiency in Window-Absorber Type Solar Cells 

4.2.1 Spectral Transmittance of CdS Nanowire Window Layer 

    For gaining a quantitative understanding of the transmission advantage of the 100 nm 

long, embedded CdS nanowires layer over the 100 nm thick, traditional planar CdS film, 

we compared the spectral transmission of both in the wavelength range of 300-860 nm 

(Figure 22a).  The substrate in both cases was a 100 nm thick tin oxide (SnO2) layer 

sputtered on top of the ITO-coated-soda lime glass. The transmission spectrum of the 

100nm thick AAO membrane (Figure 22b) exhibits practically complete transmission at 

wavelengths longer than 240nm. It is clear that absorption-negligible characteristics 

displayed by AAO membranes make them an ideal choice for the development of 

nanostructure designs for a host of applications in solar cells and other optoelectronic 

devices.  

At wavelengths longer than 550 nm, where the photon energy is smaller than 2.4 eV 
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(the energy band gap of planar CdS), the two curves overlap each other.  However, the 

CdS nanowire curve shows substantially higher transmission from 335 nm to 550 nm, 

while in this wavelength range, the spectral transmission of planar CdS is very poor. This 

difference could arise from, (i) the larger effective energy band gap of the nanowire CdS 

layer leading to higher optical transmission than that of the planar CdS layer39-41and/or, 

(ii) the nanowire CdS covering only a fraction (32%) of the substrate, the rest covered by 

the embedding AAO matrix.  

In the long wavelength range, for example at 860 nm, the transmission of the CdS-

SnO2-ITO-soda lime glass stack is about 70%.  Thus, substantial optical losses are due to  

the intrinsic-SnO2/ITO/the soda-lime glass. Higher transmission can be obtained by 

replacing the intrinsic-SnO2/ ITO/the soda-lime glass with a higher transmission, higher 

quality substrate32. On the other hand, the higher transmission glass is more expensive 

and would add to the manufacturing costs.   

 It is clear that the CdS nanowires as the novel window layer suppresses the absorption 

loss at wavelengths below 550 nm and the spectral range of photons reaching the CdTe 

absorber is dramatically increased to 300-860 nm, compared to the 512 -860 nm range for 

the case of the planar CdS counterpart.  In addition, because the photons of low 

wavelengths are efficiently guided into the absorber layer, the front surface 

recombination loss which often exists and deteriorates device performance in the silicon 

solar cells 43 is effectively avoided. Because of the fact that the photons are absorbed and 

converted to the photocurrent in the absorber layer, the two effects lead to enhanced 

carrier conversion for the nanowire solar cell configuration. 
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Figure 21 Transmission spectra of, (a), the 100 nm long embedded CdS nanowires and of 

100 nm thick planar CdS film; (b),100 nm thick AAO membrane; (c), Photon flux density 

comparison of the CdS nanowire and planar solar cells; (d), Photon enhancement in the 

CdS nanowire solar cells; in all cases,  the substrates is SnO2/ITO/Soda-lime glass. 

 

     To gauge the effect of the transmission enhancement advantage of the CdS nanowires 

on the photocurrent (Jsc) of the nanowire solar cells, the overall photon flux (P) reaching 

the CdTe absorber was calculated.  Figure 3C shows the photon flux P nanowires that can be 

converted to the photocurrent in the nanowire solar cells, and also shows the photon flux 

P planar in the planar solar cells for comparison. The nanowire solar cells yield the photon 

flux which is higher than that of its planar counterpart in the wavelength range of 300 nm 

to 550 nm. The additional photon flux reaching the CdTe absorber layer because of the 

enhanced transmission of CdS nanowires window layer is plotted as a function of 

wavelength in Figure 3D.  

     The photon flux data of Figure 22 indicates that a solar cell employing a CdS 

nanowire window layer would yield a higher Jsc value than the cell with a planar CdS 

window layer. It is estimated that the total number of carriers and Jsc are 18.65*1016/cm2s 

and 29.84 mA/cm2 for the nanowire solar cells.  These numbers exceed the corresponding 

values of 15.64*1016/cm2s and 25.03 mA/cm2 for the planar counterpart.  The Jsc 

d 



78 

 

increases by 4.81 mA/cm2, which corresponds to a gain of 19.2% when the CdS 

nanowires window layer replaces the planar CdS window layer.  In a hypothetical case 

where transmittance of a substrate is approximate 100%, Jsc values for the nanowire solar 

cells and counterpart planar solar cells were calculated to be 32.1 mA/cm2 and 26.6 

mA/cm2 respectively, constituting an increase of 5.49 mA/cm2 in Jsc and a gain of 20.6% 

over the base. Hence, one can expect even higher Jsc values in the future, when intrinsic 

SnO2/ITO-soda lime glass substrates in the present device configuration are replaced by 

high quality transparent substrates.  

Another advantage of the nanowire solar cells is that because CdS nanowires 

embedded in AAO templates typically take up only about 32% of the physical area, the 

interface area at the junction between CdS nanowires and CdTe is reduced approximately 

by a factor of 3. When interface recombination is the dominant electron transport 

mechanism across the heterojunction, which appears to be the case for these CdS-CdTe 

solar cells, then reduction in interface area would lead to an equivalent reduction in the 

effective reverse saturation current I0.  Since the open circuit voltage Voc is dependent on 

I0 and short current Isc, both of these effects would result in gain of approximately 7.3% 

in Voc.  Overall, the Jsc gain of 19.2% and the Voc gain of 7.3% would lead to a 

cumulative gain of 27.8% in the power conversion efficiency of the CdTe solar cell on 

intrinsic SnO2/ITO-soda lime glass substrates. The corresponding gain in the power 

conversion efficiency of the CdTe solar cell on high quality transparent substrates would 

be 30%. 

4.2.2 Current-Voltage Characteristics of Nanowire CdS/Au Schottky Diode 

For a more detailed characterization of the CdS nanowire surfaces, and the electron 
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transport through the CdS nanowire arrays, Schottky diodes were produced by selectively 

etching AAO templates to partially expose the CdS nanowires, and then depositing Au 

contacts on the top of the CdS nanowires through a circular mask of 1/8 inch diameter, 

corresponding to an electrode area of 0.07 cm2. For comparison, identical Au contacts 

were deposited on the planar CdS to form Au/CdS film Schottky diodes. Note that in the 

case of the nanowire CdS device, the actual CdS-Au junction area is only 0.022 cm2, 

which is 32% of the electrode area of 0.07 cm2.  This is because the porosity is 32% and 

CdS nanowires occupy only that fraction of interface area; the rest is aluminum oxide.  In 

case of planar CdS device, the electrode area and the CdS-Au junction area are the same. 

Next, current-voltage characteristics of Au/CdS Schottky diodes were measured in 

dark and under “one sun” illumination; here, gold contact was biased positively with 

respect to the bottom ITO contact. The “nominal” current density versus voltage (J–V) 

characteristics of the Au/CdS nanowire Schottky diodes are shown in Fig. 23a.  For 

comparison, J-V characteristics of Au/CdS film Schottky diodes are shown in Fig. 23b. In 

the current voltage characteristics of both CdS nanowire diodes and CdS thin film diodes, 

current increased slightly over its dark value, when sunlight was incident.  This is thought 

to be due to additional light generated electron-hole pairs in CdS.    
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Figure 22, Current density versus voltage characteristics of Schottky diodes made of; (a): 

Au/CdS nanowire array; (b): Au/CdS planar thin film. 

          

Analysis of J vs. V data of the Schottky diode on nanowire CdS layer of Fig. 23(a) 

yielded the effective reverse saturation current density (J01) and diode ideality factor (A) 

values of 5.1*10-7 A/cm2 and 3.67 in the dark and 6.7*10-7 A/cm2 and 3.68 in light.   

These are “nominal” values in that the electrode area of 0.07 cm2 was used for calculating 

a 

b 
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J01.  The “actual” effective reverse saturation current density (J02) values inside the CdS 

nanowires are, J02 =1.6 x10-6 A/ cm2 in dark and J02 =2.1x10-6 A/ cm2 under one sun 

illumination.  The CdS nanowire surface area of 0.022 cm2 was used for calculating the 

“actual”, J02.  Values of diode ideality factors (A), are not affected by the above change in 

area. 

Similar analysis of J vs. V data of the Schottky diode on planar CdS film of Fig. 23(b) 

yielded the effective reverse saturation current density (Jo) and diode ideality factor (A) 

values of 8.5*10-6 A/cm2 and 6.2 in the dark and 6.0*10-5 A/cm2 and 6.6 in light.    

In Fig.23, CdS nanowire diodes show higher current density in forward bias than the 

CdS film devices.  This is thought to be related to a higher concentration of electrons in 

the CdS nanowire arrays. A super-stoichiometric content of Cd atoms in CdS crystals has 

been observed in the past by various researchers [18, 19].  Conductance measurements on 

the CdS nanowires yielded conductivity values of 355µScm-1 and 279 µScm-1 for 

nanowires under one sun illumination and in the dark respectively.  The corresponding 

values for the CdS films were 43.6µScm-1 and 7.4 µScm-1.  Thus, under illumination, the 

conductivity of the nanowire arrays increased by 27.4%, while the conductivity of the 

film was enhanced by 491.7%. This widely different effect of sunlight radiation could be 

related to the fact that the effective energy band gap of CdS nanowires is substantially 

higher than that of CdS film and is therefore less responsive to the sunlight radiation, 

which is simply transmitted through.  

4.2.3 C-V characteristics of nanowire CdS/Au Schottky diode 

     Capacitance-voltage measurements were conducted to study the behavior of depletion 

layer at the Au-CdS nanowire junction in the Schottky diode.  The resulting plot of C-2 
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versus V at a measurement frequency of 1MHz is shown in Fig.24.  It is nonlinear.  

Therefore, equation (4) below was used for determining the variation in net space charge 

density, qN(x), near the junction interface [10]. 

 

 𝑁(𝑥) =
2

𝑞𝐴2ℇ𝑠
[−

1

𝑑(1/(𝐶𝐷
2)/𝑑𝑉

]................................................................(8) 

  Here, qN (x) is the net space charge density; x is the depletion layer depth into CdS 

from the Au–CdS interface; q is the charge of one electron; A is junction area; CD is the 

measured device capacitance in Farads. Capacitance-frequency measurements done 

earlier had revealed that at the relatively high measurement frequency of 1MHz, the deep 

defects and traps in CdS could not follow the measurement signal, and therefore, N(x) 

was a reasonably reliable measure of effective carrier concentration in CdS at the edge of 

depletion layer.   

 

    At zero bias, the junction capacitance per unit area was 1.88 x10-7 F/cm2, 

corresponding to a depletion layer width of 25.4 nm.  For all calculations in this section, 

the surface area of CdS nanowires (0.022 cm2) was used as the junction area.   

 

From the slope of plot in Fig.24 in the lower amplitude reverse bias region, equation (4) 

yielded N(x)= 3.4x1017 cm-3 at x=29.7 nm, which corresponds to a plane at a distance of 

29.7 nm from the Au/CdS interface.  Similarly, a value of N(x) = 4.6x1016 cm-3, was 

obtained in the higher amplitude reverse bias region, for x= 80.5 nm, a plane at a distance 

of 80.5 nm from the Au/CdS junction. 
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Figure 23, C-2 Vs. V Characteristic of a nanowire CdS/Au Schottky diode 

     

This variation from 3.4x1017 cm-3  to 4.6x1016 cm-3 in effective carrier concentration along 

the length of CdS nanowire is thought to be related to CdCl2 annealing treatment of the 

CdS layer prior to the deposition of Au contact. During the CdCl2 heat treatment, chlorine 

accumulates at the surface of CdS nanowires. Chlorine is a known n-type dopant for CdS; 

it makes CdS nanowire highly conductive (n+) at the top (near the Au-CdS junction). It 

has been reported in many earlier studies that CdCl2 treatment is very effective in 

improving the structural and electro-optical characteristics of the CdS-based diodes and 

solar cells. We have found from our preliminary nanowire solar cell experiments that the 

efficiency of nanowire CdS/CdTe solar cells shows same value or improved value when 

subjected to multiple CdCl2 treatments; however, the efficiency values of planar 

CdS/CdTe solar cells are greatly reduced with even one time over-treatment or after a 

second CdCl2 treatment.  This indicates that nanowire CdS/CdTe solar cells can avoid 

some of the negative effects found in their planar counterparts for CdCl2 treatments, and 
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their performance can be repeatedly reactivated by CdCl2 treatments.  In any case, it is 

clear that CdCl2 treatments affect the structural and electro-optical properties of nanowire 

CdS-based devices in a number of complex ways.    These effects are currently under 

investigation in our laboratory.   

   Relatively high conductivity of CdS nanowires is a positive feature in terms of the 

performance of the CdS-CdTe solar cell.  Similarly high carrier concentration values have 

been reported earlier by NREL group on the CdS side of their high efficiency CdS/CdTe 

solar cells [24].  Carrier concentration in their CdS film varied from 1018 cm-3 at the 

surface to 1014 cm-3 in the bulk. Using a CVD process, Ma et al. [25] produced indium-

doped CdS nanowire with carrier concentration of (2.7 ± 0.2) × 1017 cm−3.  However, 

their process required the use of a metal catalyst.  For solar cell applications, such a 

catalyst can cause defects and recombination centers which are not desirable. 

4.2.4 Quantum Efficiency of Nanowire CdS-CdTe Solar Cells 

     Figure 25a shows the normalized spectral response of the external quantum 

efficiency (EQE) of the (intrinsic soda-lime glass/ITO/ intrinsic SnO2/NW-

CdS/CdTe/graphite paste) solar cell device, which was measured by an independent 

group at the PV Measurements Inc.56. EQE value increases steadily from 40% at 335 nm 

to 80% at 380 nm, and 90% at 400 nm; it peaks at 535 nm, and then stays practically 

constant until reaching the energy band gap edge of the CdTe absorber layer.  In the 300 

nm to 550 nm wavelength range, the EQE response of the nanowire solar cells, shown in 

Figure 25a, is substantially higher than reported by other groups who have tried to 

enhance the quantum efficiency of CdS-CdTe solar cells by various other methods, which 

include reducing the thickness of the planar CdS window layer and increasing the optical 

app:ds:activate
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energy band gap by alloying32,36,45-47,55,57-62.  Such strong EQE response at very wide 

spectral range proves that the CdS-CdTe solar cells including CdS nanowires as the 

window layer enhance light absorption and carrier generation and collection. It should be 

noted that the above device is built on the inexpensive and low transparent intrinsic 

SnO2/ITO/soda lime glass substrate.  Later, when such low transparent substrate is 

replaced by a higher transmission substrate, the EQE response of the nanowire window-

absorber solar cells will be even further improved. 

    Wu et al used nanocrystalline CdS:O of 70-80 nm thickness for the window layer32.  

However EQE enhancement in their device was much smaller than seen in Figure 25a.  In 

their case32, EQE reached 90% of its maximum value at approximately 500 nm, while for 

our device, EQE reaches 90% at 400 nm.  One possible reason is that our embedded CdS 

nanowires can maintain their fine nanostructured features even when exposed to 

subsequent high temperature CdTe deposition and CdCl2 annealing treatments. On the 

other hand, Wu et al’s nanocrystalline CdS film (nano-CdS: O) can lose its 

nanocrystalline structure feature due to the grain growth and recrystallization that happen 

during the high temperature treatments. 

   Energy band gap widening in CdS by alloying is another approach that has been 

investigated36.  However, the EQE response seen in Figure 25a is higher than the EQE 

response of their device36 not only in the (300-550) nm wavelength range, but also in the 

(550-850) nm range. A possible reason for this may be that alloying led to the creation of 

impurities and defects, which enhanced the optical scattering in CdS and possibly 

increased electron-hole recombination in CdTe near the CdS-CdTe heterojunction.  

Also, comparing the EQE response of Figure 4A in the (300-550) nm range with those 
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of the CdS-CIGS 45,46,57,58,62 and CdS-CZTS cells 47,59-61,63 employing thin CdS layers, it 

becomes clear that the nanowire CdS approach is substantially superior to the “thinning 

CdS” approach, and performance of CdS-CIGS and CdS-CZTS cells would also be 

further improved if nanowire CdS were to be used as a window layer in that technology.  
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Figure 24  (a), Relative EQE of the nanowire CdS/CdTe solar cells without antireflection 

coating; (b), J-V characteristics of the nanowire CdS/CdTe/Cu/graphite/Silver paste solar 

cells, without antireflection coating under dark and 1-sun illumination. (c) J-V 

characteristics of the nanowire CdS/CdTe/MoO3-x/Au solar cells, without antireflection 

coating under dark and 1-sun illumination. 
 

4.2.5 J-V Characteristics of Nanowire CdS/CdTe Solar Cells   

    Figure 25b shows the J-V characteristics of one of our best nanowire CdS/CdTe solar 

cells, when tested under standard conditions of room temperature and 100 mW/cm2 

irradiation. The cell had an area of 0.018 cm2, and yielded an open-circuit voltage Voc of 

770 mV, a short current density Jsc of 26 mA/cm2, a fill factor, FF of 60%, and a power 

conversion efficiency (PCE) of 12%. It should be noted that the 12% efficiency value was 

achieved in our laboratory on an intrinsic SnO2/ITO-soda-lime glass substrate and 

without antireflective coating. This is the first time that a nanowire CdS/CdTe solar cell 

has displayed an efficiency value higher than 10%.  

The relatively high value of 26 mA/cm2 for Jsc in the stack nanowire CdS-CdTe solar 

cell is significantly higher than Jsc of 21 mA/cm2  in core-shell nanopillar CdS-CdTe solar 

cells 38. Higher Jsc is attributed to the stack, diffused p-n nanowire solar cell configuration 

for transmission gain in the nanowire window layer and light absorption gain in the CdTe 

c 

b 

c 
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absorber. It is higher than the Jsc of 25.88 mA/cm2 reported in their high efficiency thin 

film CdS/CdTe solar cell, which employed a planar CdS with 70-80nm thickness for the 

window layer 32.  However, their solar cell device had two other extraneous advantages, (i) 

an antireflection coating and, (ii) a high quality, high cost CTO/ZTO/Corning 7059 glass 

substrate instead of the low cost, commercial, intrinsic SnO2/ITO/soda lime glass 

substrate used in our device.  

   The cause of the relatively high short circuit current in our nanowire-CdS/CdTe solar 

cell is thought to be the enhanced optical transmission of the embedded CdS nanowire 

window layer and light absorption gain in the CdTe absorber, which, in turn, leads to the 

excellent external quantum efficiency (EQE) response of Figure 4A. Hence, our nanowire 

cell is not limited by the poor low wavelength response associated with the planar solar 

cell.  Theoretical calculations show that if a high performance transparent substrate were 

to replace the low quality intrinsic SnO2/ITO/soda lime glass substrates, then Jsc would 

increase by another 2.3 mA/cm2.  Thus, the photocurrent can be further enhanced readily 

in the future, based entirely on our current cell fabrication processes.  

As of now, the 770 mV value for the Voc of the nanowire solar cell device structure is 

notably higher than Voc of 620mV in core-shell nanopillar CdS-CdTe solar cells 38. In 

addition, it is higher than that of other cells  (670mV-710mV) based on band gap 

widening in the window layer36. Higher Voc is indeed expected because of the reduced 

saturation current density due to reduced interface area between CdS nanowires and CdTe 

as well as the higher photocurrent.   Theoretical considerations indicate that these 

nanowire CdS/CdTe solar cells can achieve Voc of about 912 mV and a resulting increase 

in PCE of 27.8%-30%.  Currently, the Voc of 770 mV in our nanowire CdS/CdTe solar 
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cells is only 84% of the maximum theoretical value. It is thought that the low vacuum 

(0.35 torr, higher than 0.02 torr used in CdS/CdTe solar cells64) and low deposition 

temperature limitations in our current fabrication facilities are responsible for 

introduction of a large number of defects and traps. In addition, high resistive graphite 

paste with 1200-2400 Ω/sql applied in back contacts negatively impacts Voc, where Voc 

was observed as 818mV before coating back contacts. The identification of the 

mechanisms which limit the Voc of the nanowire CdS-CdTe solar cells and the finding of 

the pathways to further improvements will be discussed in more detail in following 

sections. 

    When MoO3(10nm)/Au(15nm) as back contact to CdTe,  the nanowire solar cells 

yielded Voc of 753 mV, Jsc of 25.5 mA/cm2, a fill factor, FF of 57.1%, series resistance of 

7.72 Ω/cm2, and a power conversion efficiency of 11%, shown in Figure 25c. Our 

nanowire CdS-CdTe cell design with MoO3-x /Au back contacts has demonstrated the 

performance comparable to efficiency of 12.2%-14.1% in planar cells with MoO3-x /metal 

back contacts65-67.  

   It should be noted that the power conversion efficiency of our nanowire CdS/CdTe 

solar cell is the highest efficiency achieved among the nanostructured device designs in 

the CdS-CdTe solar cell technology(with efficiency 5.6%-6.5%). Although using 

nonoptimal Cu/graphite/silver pastes as back contacts, our nanowire solar cells exhibited 

efficiency lower than best planar CdS-CdTe solar cells reported in the literature32,  

efficiency of our nanowire CdS-CdTe cell design with MoO3-x /Au back contacts is 

comparable to efficiency of planar counterparts 65-67. We project that the efficiency of the 

nanowire solar cell can be significantly enhanced in the future through further 



90 

 

optimization of CdS nanowire layer and the CdTe absorber layer, avoidance of high 

resistivity buffer layer of intrinsic SnO2, and integration with the several conventional 

approaches, such as utilizing high conductivity and transparent substrates and applying 

low resistance back contacts. 

   We assess stabilization of nanowire CdS/CdTe solar cells at 120 °C thermal tests under 

air ambient for 240 hours. Degradation of power conversion efficiency is alleviated by 

approximately 3 times through inclusion of CdS nanowires as window layer (supplement 

information). The improvement in reliability is thought to be due to the electrically 

insulating property of AAO membrane and the fact that the low density of defect features 

of the CdS nanowires prevents deep diffusion of Cu ion into CdS nanowires and SnO2. 

Recombination centers and micro shunts are significantly reduced. The nanowire 

CdS/CdTe structure relieves the main cell junction degradation and maintains the Cu-

induced ohmic contact behavior. However, in planar CdS-CdTe solar cells, due to 

polycrystalline CdS with pinholes and high defects, Cu diffuses farther into SnO2 through 

pinholes and defects of the planar CdS, forming deep penetration and introducing 

microshunts. As a result, main junction and back ohmic contact behaviour are aggravated. 

4.2.6 Carrier Concentration Distribution and Interface characteristics in Nanowire 

CdS/CdTe Solar Cells 

    Carrier concentration distribution and interface characteristics are critical parameters 

for identifying the pathways to further enhancement in the performance of nanowire solar 

cells.  They were measured by performing the capacitance-voltage (C-V) measurements, 

at the fixed, high frequency of 1MHz over a set of temperatures, 300, 275, 250, 225, 200 

and 175 ok. The depletion layer width and the net space charge density profile N(x) was 

calculated. Figure 26a shows the C-2 versus voltage characteristics of the nanowire 
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CdS/CdTe solar cell at 300 oK and 250 oK in the dark and under sunlight illumination. 

These curves are not linear but can be represented approximately by two straight line 

tangents, one at zero bias and the other at the “strong” bias of -2.5V.  Slopes of these two 

tangents yield the space charge density values, N1 and N2.  Table 3 summarizes extracted 

net space charge density N1 and N2  and depletion layer widths at a set of temperatures in 

the 300 oK to 175 oK range. 

    From Figure 26a and Table 3, we observe that net space charge density is higher at 

large reverse bias (-2.5V) than at zero bias.  N1 and N2 encompass the hole carrier density 

arising from the shallow acceptor traps near the valance band of the p-type CdTe layer, as 

well as the “deep” mid gap traps.  Depending on the type of impurity or defect, mid gap 

traps can manifest as donor type trap states or as acceptor type trap states.  Reduced value 

of  N1 in the region nearer to the heterojunction interface in the dark indicates a higher 

density of donor type traps and/or a lower density of acceptor type traps near the 

nanowire CdS/CdTe junction 68. 

Also, in the dark, both N1 and N2 increase as the device temperature is decreased from 

300 oK to 175 oK (Table 3).   This is understandable because at lower temperature, less 

energy is available for the “deep” traps to donate and/or accept an electron; hence their 

effectiveness is reduced.  On the other hand, even at the low temperature of 175 oK, there 

is enough thermal energy available for the shallow acceptor levels to accept an electron 

from the valance band of CdTe. 

    Under one-sun illumination, values of both N1 and N2 are smaller than their dark values.  

This indicates that the active deep mid gap trap in CdTe is the donor type and not the 

acceptor type.  Under illumination, more donor type traps are able to donate electrons to 
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the conduction band of CdTe.  This results in additional positive space charge in the 

midgap traps, which opposes the negative space charge in the shallow acceptor traps.  

The net value of space charge density (N1 as well as N2 ) is thus reduced. 

    The shallow acceptor trap level in CdTe is thought to be due to ionized cadmium 

vacancy, VCd− acceptor defect and chlorine  center VCd2- -ClTe
+ acceptor defect 69.   The 

deep donor type trap level, on the other hand, may be related to the doubly ionized 

interstitial Cu++ion 68.  If this is the case for the nanowire CdS/CdTe solar cells, then the 

inclusion of Cu in the back contact to CdTe may be responsible for this deep trap and the 

CdCl2 annealing treatment may be partially responsible for the shallow acceptor levels.  

In addition, the inter-diffusion of sulfur and tellurium across the CdS-CdTe junction is 

likely to be playing a role as well.   

Considering that the deep donor trap is an effective recombination center, further 

optimization of Cu concentration at the back contact to CdTe and interface passivation to 

suppress donor trap density will effectively reduce Jo and enhance Voc for these nanowire 

CdS/CdTe solar cells.  This investigation, including the detailed characterization of mid 

gap traps is planned in our laboratory in the near future.       
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Figure 25 (a), C-2 versus voltage curves of the nanowire CdS/CdTe solar cell at  300 oK  

and 250 oK in dark and light; (b), Diode ideality factor (n) and α as functions of 

temperature in dark and under illumination; (c), Open circuit voltage as a function of 

temperature under one-sun illumination; (d), Four mechanisms for electron transport 

across the nanowire CdS-CdTe heterojunction. 
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Table 3 Depletion Layer Widths and Space Charge Densities of the nanowire CdS/CdTe 

solar cell at various temperature. 

  

4.2.7 Current Transport Processes in Nanowire CdS/CdTe Solar Cells   

    To gain deeper insight into the nature of electron transport across the nanowire CdS-

CdTe heterojunction, and to identify the processes which limit device performance in 

these solar cells, I-V characteristics of a typical nanowire device were measured at 

different temperatures in the 300 ºK -175 ºK range. Figure 27b shows variations with 

temperature in the values of diode ideality factor, A and α (= q/AkT).  It is interesting to 

note that the value of A is greater than 2, and increases from 2.56 to 3.98 and from 4.5 to 

7.4 in the dark and in light, respectively, as the device temperature is reduced from 300 

ºK to 175 ºK . The slope α (α= q/AkT) varies slightly with temperature, between 15.4 and 

16.7 in the dark, and between 8.3 and 8.87 in the light. According to the theoretical 

models developed earlier70, it is the sequence of tunneling current and the interface 

recombination current, which can  lead to the α being independent of temperature and the 

T(K)   Dark Light  

W0 

(µm) 

N1(W(0)) 

*1015cm3-3   

W-2.5V 

(µm) 

N2(0.8µm) 

*1015cm-3 

 

W0 

(µm) 

N1(W(0)) 

*1015cm-3 

W-2.5V 

(µm) 

N2(0.8µm) 

*1015cm-3 

 

300 0.69 8.54 0.85 15.3 0.24 10.1 0.54 10.33 

275 0.70 8.54 0.83 23.7 0.26 7.89 0.60 12.3 

250 0.81 11.2 0.90 36.0 0.29 5.17 0.65 14.3 

225 0.82 11.9 0.91 36.1 0.31 4.96 0.66 15.7 

200 0.83 13.3 0.92 36.8 0.35 4.51 0.69 13.6 

175 0.87 15.7 0.94 42.3 0.39 5.29 0.70 12.7 
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diode ideality factor (A) being in excess of 2.   

Figure 26d illustrates schematically the two electron transport processes at the 

nanowire CdS-CdTe heterojunction. These are, (i) tunneling of electrons from n-CdS 

nanowires, across the narrow CdS depletion layer region to the interface states, followed 

by trickling down the interface states until they reach the top of the CdTe valance band 

and recombine with holes; and, (ii) tunneling of electrons from n-CdS nanowires, across 

the narrow CdS depletion layer region to the mid-gap trap levels in CdTe, followed by 

recombination with holes in the valance band of CdTe54. For illustration, the other two 

less dominant processes involving the diffusion of electrons from CdS followed by 

recombination in CdTe are also shown in Figure 26d.  The latter two are less dominant 

because they are associated with A being less than 2.  Thus, it appears that the densities of 

interface states and traps enable the tunneling-recombination processes over the electron 

transport processes of diffusion followed by bulk or space charge layer (SCL) 

recombination.  

Temperature dependence of Voc provides another valuable tool for determining the 

performance limit of solar cells, whereby the activation energy, Ea of the dominant 

recombination mechanism can be extracted through the literature71.  Figure 26c shows a 

plot of Voc versus T, which, when extrapolated to T=0, yields a value of 1.19 eV for Ea. 

The fact that this number is smaller than 1.45 eV, the energy band gap of CdTe, is another 

indication that, because of the non-ideal electron transport processes such as tunneling 

and interface recombination at the junction, the Voc of nanowire CdS-CdTe solar cell 

remains smaller than what it can be. 
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Table 4 Jo and Voc of a nanowire CdS/CdTe solar cell at various temperatures. 

T(K)              Jo
  (A/cm2) Voc (mV) 

300            5.5*10-8 770 

275            3.8*10-8 800 

250            1.6*10-8 840 

225            3.3*10-9 875 

200              6.1*10-10 910 

175               1.3*10-10 940 

 

     Table 4 shows the variations in Jo
 and Voc of the nanowire CdS/CdTe solar cell with 

decreasing temperature. When Jo decreases from 5.5*10-8A/cm2 at 300 oK to 3.3*10-

9A/cm2 at 225 oK, the corresponding Voc increases from 770 mV to 875 mV. This 

suggests a pathway to improve the Voc in the future. Traps and interface state density 

needs to be reduced so that the value of Jo at room temperature can be brought down to 

10-9A/cm2, and the value of Voc increased to 875 mV. This can be accomplished by 

optimization of CdS nanowire layer and the CdTe absorber layer( high vacuum of 

0.02torr), avoidance of high resistivity buffer layer of intrinsic SnO2, and integration with 

the several conventional approaches, such as utilizing high conductivity and transparent 

substrates and applying low resistance back contacts. 

 4.2.8. Conclusions  

In summary, we have demonstrated a stack nanowire window-absorber type solar cell 

structure with diffused p-n junction for overcoming low efficiency in nanostructured 

CdS-based solar cells, and light transmission loss and low reliability of conventional 

planar CdS-based solar cells. CdS nanowires embedded in AAO membrane with 
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occupancy rate of 32% tailor optical properties and enable light transmission gain 

especially from 300nm to 550nm in the window layer. Light spectrum directed into 

absorber layer is hence extended and light absorption loss at short wavelength is 

improved. A nearly ideal spectral response of quantum efficiency from 300 nm to 860 nm, 

the bandgap edge of CdTe, provided the evidence for improving light transmission in the 

window layer and enhancing carrier generation and collection in absorber. A nanowire 

CdS/CdTe solar cell with Cu/graphite/Silver paste as back contact, on SnO2/ITO-soda 

lime glass substrates, with no additional antireflection coating, yielded power conversion 

efficiency of 12% under 1sun illumination, which is currently the highest efficiency in 

nanostructured CdS-CdTe solar cells. In addition, with MoO3-x /Au back contacts, the 

nanowire CdS-CdTe solar cells exhibited efficiency comparable to efficiency of planar 

counterparts. The observed photocurrent value of 26 mA/cm2 is substantially higher than 

that of core-shell nanopillar CdS-CdTe solar cells and exceeds that of reported high 

efficiency thin film CdS/CdTe solar cell. Voc of 770 mV value is significantly higher than 

Voc (620mV) of core-shell nanopillar CdS-CdTe solar cells, and window layer band gap 

widening cells (670mV-710mV). We further showed that reliability is improved by 

approximately 3 times through the use of embedded CdS nanowires as window layer. 

Interface states, deep traps and current transport are identified for further improvement in 

Voc and efficiency. This could be done with the optimization of CdS nanowires and CdTe 

characteristics and interface passivation and reducing series resistance in back contacts. 

This nanowire window layer design offers an opportunity for other optoelectronic devices 

to enhance light transmission through nanostructures. The nanowire CdS-CdTe solar cell 

configuration can be applied for other window-absorber solar cells like CdS-CIGS and 
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CdS-CZTSSe solar cells to enhance their absorption and carrier generation abilities 

through tuning light transmission of the window layer and simultaneously obtain strong 

reliability benefits. 

4.3 Nanowire CdS-CdTe Solar Cells with Molybdenum Oxide as Contact 

4.3.1 Introduction  

    CdTe32, Cu(In,Ga)Se2 
45, Cu2ZnSn(S,Se)4 

13, silicon72, and perovskites73 are among the 

leading photovoltaic technologies being developed to generate low-cost solar electricity. 

In particular, CdTe photovoltaics have energy return investment exceeding that of 

traditional fossil fuels and provide the shortest energy payback time among all 

photovoltaic technologies for terrestrial applications55. In addition, CdTe photovoltaics 

have superior tolerance to high energy irradiation and are more suitable for space 

applications24.  

    Development of a transparent and stable contact to the CdTe absorber layer has 

remained challenging and is of great interest because it can further advance the 

technology where CdTe solar cells are fabricated on flexible foils of metals in a 

superstrate device structure. The metal foil-based CdTe solar cells can be implemented by 

a high-throughput roll-to-roll manufacturing process, resulting in significant cost 

reduction, high material utilization and fabrication scalability24. Traditionally, CdTe solar 

cells on metal foils are configured with an inverted substrate structure24,55. However, 

CdTe solar cells using the substrate structure yield lower efficiency values than their 

superstrate counterparts24. The substrate structure imposes many restriction on process 

optimization, for example, the rather difficult etching process on the CdTe layer prior to 

contact formation, diffusion of impurities to the contact of CdTe, and CdCl2 treatment 
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effect on CdS and CdTe layer24,55. Hence, formation of superstrate structured CdTe solar 

cells on metal foils is one of the most promising options for low cost and high efficiency 

photovoltaic technologies.  

    Recently, we have developed nanowire CdS-CdTe solar cells to address light 

absorption loss and reliability issues, where CdS nanowires embedded in a transparent 

anodic aluminum oxide (AAO) membrane replace planar CdS as the window layer and 

CdTe is deposited on the top of the CdS nanowires (Figure 27a)74. Such nanowire CdS-

CdTe solar cells reduced light absorption loss in the low wavelength region, exhibited a 

nearly ideal spectral response of quantum efficiency from 335nm to bandgap of CdTe 

absorber, and simultaneously had strong reliability. By exploring a transparent back 

contact for CdTe film, the nanowire CdS-CdTe solar cells could allow the shining of 

sunlight through the back contact and thus realize the superstrate configuration 

(Figure27b). Because AAO is formed by anodizing aluminum, the nanowire CdS-CdTe 

solar cells can be grown on aluminum foil; this makes the roll-to-roll manufacturing 

process feasible and greatly reduces the complexity of fabrication (Figure27c).  

 In this work, molybdenum oxide (MoO3) is studied as a transparent back contact to the 

CdTe absorber layer, due to its high transparency (higher than 80%) in the visible and 

near IR range and its behavior like that of a high work function metal75-77. In addition, its 

electrical and optical properties can be tuned by controlling the oxygen stoichiometry 

during processing. Several groups have applied MoO3/Ni and MoO3/Au back contacts 

into CdS/CdTe solar cells and reported  12.2%-14.1% values for power conversion 

efficiency65-67. Here, we investigate the effects of a thin MoO3/Au layer as the transparent 

back contact on the nanowire solar cells through front and back side illuminations. We 
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further investigate possibility of reducing resistance of MoO3 back contacts due to its 

insulation property by post-processing annealing. In the following sections, the effects of 

the MoO3/Au back contact layer on the structural and device properties of the nanowire 

CdS-CdTe solar cells are demonstrated and their loss mechanism and further 

improvement are discussed.  

 

 

                                                                             

 

 

b 
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Figure 26, (a), Schematic of a CdS nanowire window layer-CdTe absorber solar cell on 

TCO substrate illuminated from front side. (b), Schematic of a CdS nanowire window 

layer-CdTe absorber solar cell on TCO substrate with almost transparent back contacts 

which can be illuminated from front and back side. (c), Schematic of a CdS nanowire 

window layer-CdTe absorber solar cell on Al foil with almost transparent back contacts 

which can be illuminated from back side.  

4.3.2 Experimental procedures  

    The nanowire CdS/CdTe solar cells are prepared by our previously established 

methods74. The solar cells were fabricated on ITO coated soda-lime glass substrates with 

sheet resistance of 23-28Ω/square. The fabrication processes include formation of AAO 

membrane by anodizing aluminum film, electro-deposition of CdS nanowires with 

100nm height , close-space sublimation of CdTe to a thickness of 10µm , and CdCl2 

treatments at 400◦C.  Without NP etch, MoO3 thin films with a thickness of 10 nm were 

thermally evaporated on clean CdTe surfaces from stoichiometric MoO3 powder (Alfa 

Aesar, 99.9%), where the pressure was less than 1*10-5 Torr and the deposition rate was 

maintained as 0.5 Å/s. Samples were masked and then annealed at 200◦C in N2 for 10 

mins. In the last step, 15nm Au was deposited by sputtering process. For a comparative 

study, after thermal evaporation of molybdenum oxide, samples were directly coated with 

15nm of Au without the intervening annealing step.  After depositing Au layer, all of the 

c 
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samples were annealed at 200◦C in Argon for 10mins. Structures of CdS nanowires 

embedded in AAO templates were characterized via scanning electron microscopy (S-

900-SEM).  Current–voltage (I –V) was measured by a solar simulator set at 100mW/cm2, 

calibrated by a power meter.    

4.3.3 Results and Discussion  

  4.3.3.1 SEM Characterization  

CdS nanwires are characterized by scanning electron microscopy (SEM). Figure 28a 

shows free standing CdS nanowires where AAO membrane has been completely removed 

by a highly selective NaOH solution. Figure 2b shows cross-sectional view of CdS 

nanowires. As seen in Figure28b, CdS nanowires are embedded in AAO nanopores; some 

nanopores are missing their CdS nanowires; it is likely that many nanowires are knocked 

off from the nanopores during device fabrication and/or measurement sample preparation 

steps.   Overall, CdS nanowires form uniform and dense arrays; values of the average 

length of nanowires, the average diameter and the average distance between the centers 

of neighboring nanowires are 100nm, 60nm and 106nm respectively. Based on the CdS 

nanowires features, porosity is approximately 32% and area density of CdS nanowires is 

calculated as approximately 1.14*1010 nanowires/cm2. This high density CdS nanowire 

array was grown perpendicular to the glass-ITO substrate, but can also be directly grown 

on aluminum foil and other flexible substrates. These embedded CdS nanowires function 

as the window layer and are configured into the CdS nanowire window layer-CdTe 

absorber layer solar cells.   
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Figure 27, (a), Top view SEM image of free-standing CdS nanowires, and (b), Cross-

sectional view SEM images of CdS nanowires embedded in AAO membrane. 

4.3.3.2 Quantum Efficiency of the Nanowire CdS-CdTe Solar Cells 

     Quantum efficiency characterization is especially interesting in exploring how the CdS 

nanowires embedded in the AAO membrane as the window layer effectively improve 

light transmission and how the nanowire CdS-CdTe solar cells effectively absorb light 

and generate and collect carriers. The normalized external quantum efficiency (EQE) of a 

typical nanowire solar cell is shown in Figure29. These nanowire solar cells were 

fabricated on intrinsic SnO2/commercially available ITO-soda lime glass substrate with 

low transparency and high resistivity. 

    As shown in Figure29, the nanowire CdS-CdTe solar cells exhibit relatively strong 

quantum efficiency response from 345nm to 845nm, which is the bandgap edge of CdTe 

absorber. Such EQE response indicates that a very wide spectral range of incident 

photons is almost completely absorbed and photogenerated carriers are effectively 

collected. It is clear that CdS nanowires embedded in transparent AAO membrane 

CdS Nanowires 
AAO  

nanopores 

d 

a b 
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effectively enhance transmission of the window layer.  As a result, the wide spectrum of 

sunlight above 345nm can be directed into the CdTe absorber where photons are 

absorbed and converted into charge carriers. Thus by using the embedded CdS nanowires 

as the window layer, abilities of carrier generation and collection in the CdS-CdTe solar 

cells are effectively enhanced. 
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Figure 28, Normalized relative EQE of the nanowire CdS/CdTe solar cells on intrinsic 

SnO2/ITO/Soda-lime glass substrate. 

4.3.3.3 Photovoltaic Characteristics of Nanowire CdS-CdTe-MoO3-x-Au solar cells  

     The performance of the nanowire CdS-CdTe solar cells with MoO3/Au back contacts 

was characterized. Figure 4 shows the J-V characteristics of the nanowire solar cells with 

MoO3/Au contacts with N2 annealing under dark, 1-Sun front side illumination and 1-

Sun back side illumination, as well as the cells with MoO3/Au contacts without N2 

annealing under 1-Sun front side illumination.  There is no roll-over effect observed in 

any of the light J-V curves. Hence, incorporation of MoO3/Au as a back contact to CdTe 

film eliminates the commonly observed blockage to the to hole transport across the 

interface between the CdTe layer and the “traditional” back contact. It has been reported 

that MoO3 has high work function of 5.5 eV-6.86eV and has a behavior like that of a 
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metal76,77. This high work function of MoO3 is thought to form a well-aligned buffer 

layer and to reduce the effective barrier height, thus facilitating the formation of quasi- 

ohmic back contacts to CdTe.  

The optimal thickness of the MoO3 layer is observed to be approximately 5nm-10nm, 

while the thickness of CdTe by closed-space sublimation is about 10µm-12 µm. Thinner 

MoO3 layer, less than 5nm, is not enough to guarantee a continuous coverage and 

efficient contacts for hole transport due to surface roughness of CdTe. Thicker MoO3 

layer, more than 10nm, leads to decrease of short current density (Jsc) and fill factor (FF) 

due to high resistivity of the MoO3 layer. To reduce resistance and guarantee a 

continuous layer, we deposited the 10nm MoO3 layer as the buffer layer of back contacts 

for CdTe absorber in this work. Table 5 summarizes cell performance parameters.  

The reported cell performance was achieved on intrinsic SnO2/ITO-soda-lime glass 

substrates and without antireflective coating. The nanowire CdS-CdTe solar cell made 

without annealing MoO3 in N2 prior to  coating with the Au back contact,  yielded an 

open-circuit voltage, Voc of 756 mV, a short current density Jsc of 25.1 mA/cm2, a fill 

factor FF of 52.2%, and a power conversion efficiency (PCE) of 9.9%.  The series 

resistance and shunt resistance were estimated as 9.98 Ω/cm2 and 303.1 Ω/cm2. As 

comparison, these values of Voc, Jsc and fill factor are lower than the Voc of 770mV, Jsc of 

26 mA/cm2 and fill factor of 60% seen in the best nanowire CdS-CdTe solar cell with 

Cu/graphite back contacts. Hence there is room for further optimization and performance 

improvement. Low shunt resistance might have been caused by contribution from the 

incomplete isolation of cells and less than satisfactory scribing of intrinsic SnO2. Lower 

fill factor and Jsc are attributed to high series resistance, which is higher than the series 
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resistance of planar CdS-CdTe solar cells. Fully stoichiometric MoO3 with only Mo6+ is 

insulating and has a rather high resistivity of 103–104 Ωcm 65,66. Although J-V curves 

show that the incorporation of thin MoO3 layer does not lead to the roll-over behavior , 

still, high resistivity attribute of MoO3 may lead to some blockage of hole transport. This 

would show up as a high  effective series resistance, leading to lower values fill factor 

and Jsc.  

When MoO3 is exposed to N2 annealing before depositing Au as back contact, the 

performance of the nanowire solar cells is improved.  The Jsc and fill factor are improved 

to 25.5 mA/cm2 and 57.1% respectively, and the series resistance is reduced from 9.98 

Ω/cm2 to 7.72 Ω/cm2, and shunt resistance is increased to 333.3 Ω/cm2, leading to power 

conversion efficiency of approximately 11%. It has been reported earlier that after 

annealing in N2, a small amount of MoO2 as well as Mo4+ ions are present in the MoO3 

film, and MoO2 is metallic76,77. Consequently, it is thought that after annealing at 200°C 

in N2 for 10 minutes, evaporated MoO3 film has in it the mixed oxidation states of Mo, 

mainly attributed to MoO3 and MoO2 phases75-77. These mixed oxidation states of Mo 

(MoO3-x) can sustain the dominant high work function behavior arising from MoO3 and 

also reduce resistivity due to metallic behavior of MoO2 phase. Hence, series resistance 

of the nanowire solar cells is significantly reduced, and fill factor and power conversion 

efficiency are improved. An increase in Jsc for the annealing MoO3 (MoO3-x) back contact 

case is attributed to reduced barrier height due to lower resistivity of MoO3-x/Au back 

contacts.  
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Figure 29, J-V curves of nanowire CdS-CdTe solar cells with as deposited MoO3/Au 

back contacts under front side illumination, annealing MoO3/Au back contacts under 

dark, front side and back side illuminations.  

 

    To illustrate the feasibility of a relatively transparent MoO3-x/Au hole selective contact 

to p-CdTe, we illuminated the nanowire solar cells from back-contact side (MoO3-x/Au 

side rather than SnO2/ITO/Soda-lime glass side). The resulting J-V characteristics and the 

photovoltaic performance are shown in Figure 30 and Table 5.  Under back side 

illumination, the nanowire CdS-CdTe solar cell with MoO3-x/Au back contact exhibits Jsc 

of 20.9 mA/cm2, Voc of 749mV, fill factor of 55.2%, corresponding to a power conversion 

efficiency of 8.6%. Comparing with [15], our cells demonstrate Jsc comparable with Jsc of 

21 mA/cm2 ; however, in our case, efficiency is much higher than the 5.8% value 

reported for the nanopillor CdS-CdTe solar cells with Cu/Au (1 nm/13 nm) back contacts 

from back side illumination38.  

   When comparing with front-side illumination, thicker MoO3-x (10nm) and Au (15nm) 

are responsible for low optical transmission. Although MoO3-x has bandgap of 3.0-3.8eV 

and high transparency of more than 80% from 400nm to near IR range, still, Au of 15nm 



108 

 

thickness could cause relatively strong transmission losses. Hence, obvious decrease in 

efficiency is on account of lower Jsc based on low transmission from back side 

illumination. By further exploring transparent back contacts of CdTe, for example, 

transparent metal at nanoscale in the future, the superstrate structured nanowire CdS-

CdTe solar cells on Al substrate can become a low complexity  and high efficiency solar 

technique. 

Table 5  Photovoltaic properties of nanowire CdS-CdTe solar cells with MoO3/Au as 

back contacts. 

Back 

Contacts 

Illumination 

Conditions 

Jsc(mA/cm2) Voc 

(mV) 

FF(%) Efficiency 

(%) 

Rs(Ω 

/cm2) 

Rsh(Ω 

/cm2) 

 

MoO3/Au 

 

MoO3/Au 

annealing 

 

MoO3/Au 

annealing 

 

Front-Side 

 

 

Front-Side 

 

 

Back-Side 

 

25.1 

 

 

25.5 

 

 

20.9 

 

 

756 

 

 

753 

 

 

749 

 

 

52.2 

 

 

57.1 

 

 

55.2 

 

 

 9.9 

 

  

10.97 

 

 

8.64 

 

9.98              

 

 

7.72 

 

 

10.21 

 

303.1 

 

 

  333.3 

 

 

  346.3  

 

Considering that MoO3-x behaves like a high work function metal with a low density of 

states at the Fermi level and has transparent properties in the visible and near IR 

range75,76, it is chosen as a transparent back contact candidate for nanowire CdS-CdTe 

solar cells. For a better understanding of the MoO3-x back contacts, the energy band 
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diagram of the junction between CdTe and MoO3-x /Au is illustrated in Fig. 31 below.  A 

work function of 5.7eV and energy bandgap of 3.2eV are assumed for MoO3-x, and the 

electron affinity of 4.4eV and energy band of 1.5 eV are assumed for CdTe75. Figure 31 

illustrates the energy band discontinuities between CdTe and MoO3-x/Au .  It is noted that 

Au, when placed directly next to p-CdTe, would form a blocking, Schottky diode contact 

with a barrier height of 0.8eV.  This would prevent hole transport from CdTe to Au 

contact and reduce cell performance. Introducing the thin MoO3-x interlayer between 

CdTe and Au removes the Schottky diode problem.  Now, a valance band offset of 

approximately 0.2eV occurs between the CdTe and the MoO3-x layers.   Thus , MoO3-x 

layer  functions as a well-aligned buffer layer to reduce barrier height relative to CdTe. 

Hence it plays an important role to ensure hole extraction and transport to the electrode. 

As a result, the nanowire CdS-CdTe solar cells yield enhanced performance. In addition, 

due to its transparent properties, MoO3-x layer, as a back contact to CdTe provides a 

potency to achieve superstrate structured nanowire solar cells on flexible metal foil 

substrate.  

 

 

       

 

 

              

 

Figure 30, Band discontinuities between CdTe and MoO3-x/Au back contacts. 
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    Our nanowire CdS-CdTe cell design with MoO3-x /Au back contacts has demonstrated 

the performance comparable to that of planar counterpart with MoO3-x /metal back 

contacts under front side illumination65-67. For back side illumination, it has exhibited 

performance much better than that of nanopillar CdS-CdTe solar cells with Cu/Au 

contact38, and its performance is comparable to that of planar CdS-CdTe solar cells with 

substrate structure24,78. It clearly illustrates the concept of MoO3-x as a transparent hole 

selective contact to p-CdTe due to its well-aligned band structure.  

   Various potential improvements of our nanowire solar cell design with MoO3-x/metal 

back contacts can be envisioned including optimization of MoO3-x layer to further reduce 

resistance, and optimization of CdS nanowires and CdTe layer to further improve Voc and 

Jsc. The FF could be improved by replacement or ideal scribing of intrinsic SnO2 to 

increase shunt resistance and optimization of MoO3-x layer for low series resistance. 

Development of a transparent metal layer on the MoO3-x will improve light transmission 

loss and significantly enhance Jsc under back-side illumination. Furthermore, MoO3-x with 

the transparent metal as the back contacts of CdTe could make the nanowire solar cells on 

Al foil with superstrate structure promising and facilitate a roll-to-roll fabrication process 

application on such solar cells, thus providing a route toward a scalable, low-cost solar 

cell architecture. 

4.3.4 Conclusion    

We have fabricated nanowire CdS-CdTe solar cells and introduced MoO3-x as a 

transparent, low barrier back contact. The MoO3 layer reduces the valence band offset 

relative to the CdTe, and creates improved cell performance. Annealing as-deposited 

MoO3 in N2 reduces series resistance from 9.98 Ω/cm2 to 7.72 Ω/cm2, and hence 
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efficiency of the nanowire solar cell is improved from 9.9% to 11%. When the nanowire 

solar cell is illuminated from MoO3-x /Au side, it yields an efficiency of 8.7%.  This 

reduction in efficiency is attributed to decrease in Jsc from 25.5mA/cm2 to 21mA/cm2 due 

to light transmission loss in the MoO3-x /Au electrode. Even though these nanowire solar 

cells, when illuminated from back side exhibit better performance than that of nanopillar 

CdS-CdTe solar cells [15], further development of transparent back contacts of CdTe 

could enable a low-cost roll-to-roll fabrication process for the superstrate structure-

nanowire solar cells on Al foil substrate. 

4.4 Ambient Air-Stable Nanostructured Window Layer Solar Cells   

4.4.1  Introduction 

      Thin film photovoltaic (PV) devices including CdS/CdTe solar cells have become 

promising low-cost technologies32,79 and have reached power conversion efficiency (PCE) 

values higher than 20% in recent years32,72. It is well established that the wide terrestrial 

applications reinforce the need for these PV devices to deliver reliable and competitive 

power output over long-time in harsh environment conditions80. These PV devices, for 

example CdS/CdTe solar cells, have exhibited good reliability when they are properly 

encapsulated55,81-83; however, in general, unencapsulated cells exhibit degradation when 

tested under accelerated tests conditions80,84.  It has been found that, especially for high 

efficiency, unencapsulated cells, device characteristics are maintained temporarily and 

then their performance deteriorates in humid ambient at room temperature37,84,85.  For 

CdS/CdTe solar cells, one of the factors for degradation is related with back-contact 

reliability 37,86-89. General approach to form back-contact of CdTe cells involves including 

metal, for example Cu, as a key element in the contacting process32,80. During the 
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operating life of the cell, the Cu migrates and diffuses along the grain boundary toward 

the main CdTe/CdS heterojunction37,80,89.  Fill factor and efficiency or power output of 

the cells degrade dramatically due to deteriorating back contact and main junction80,84.  

Another factor is oxidation under ambient atmosphere condition, which hinders carrier 

collection due to carriers getting trapped in the oxidized sites 84.  

Recently, nanostructured devices and materials have created great interest because they 

enable tailoring and tuning of optical and electrical properties at nanoscale39,54,90,91. We 

have developed nanowire CdS/CdTe solar cells where CdS nanowire array replaces 

planar CdS film as a window layer and CdTe maintains its polycrystalline structure on the 

top of the window layer92. Figure 32a and 32b illustrate the nanowire and conventional 

planar solar cell structures respectively. We have demonstrated that such nanowire 

CdS/CdTe solar cells show a nearly ideal spectral response of quantum efficiency from 

335nm to 850nm.  Electrical robustness of the nanowire CdS/CdTe solar cells was first 

noticed when these cells did not show performance reduction even after multiple 

annealing treatments in highly concentrated CdCl2 during processing. On the other hand, 

the performance of the planar CdS–CdTe counterpart was significantly lower, when 

during processing, it was subjected to highly concentrated CdCl2.annealing treatments, 

probably because of structural deterioration at the CdS/CdTe(S) interface during 

subsequent CdCl2 treatments32,93,94. When nanowire CdS-CdTe heterojunction was stored 

in air for long time, without the protection of the top graphite paste electrode, their open 

circuit voltage showed some reduction due to surface oxidation of CdTe. However, this 

loss was reversible; cells could be revived by simply performing another annealing 

treatments in highly concentrated CdCl2 ambient.  This revival option was not available 
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in the case of the planar CdS-CdTe cells.   

Further, when the NW-CdS/CdTe cells, with back contacts in place but no 

encapsulation, were stored in humid, room temperature conditions for one year, their 

performance was not noticeably decreased.  However, the planar solar cells, tested under 

same conditions, exhibited large degradation.  It appears that the nanowire solar cells 

have a better interface at the CdS/CdTe junction, which is more robust against 

environment driven degradation.   

  Following through on above observations, we conducted thermal tests at 120 °C 

ambient air for 120 and 240 hours on the nanowire CdS/CdTe solar cells coated with 

Cu/graphite contacts. For comparison, the same thermal tests and characterizations were 

performed on planar CdS/CdTe solar cells with same Cu/graphite contacts. In the 

following paragraphs, we present and compare stability and degradation mechanisms of 

these nanowire and planar CdS-CdTe solar cells. We expect through this work that such 

nanowire solar cell structure can be applied into other photovoltaic devices which need to 

provide not only good efficiency but also long-time reliability. And also it provides a 

design basis that traditional high resistivity buffer layer between ITO and CdS is 

unnecessary and a nanowire CdS-CdTe solar cell without high resistivity buffer layer is 

possible in order to reduce manufacturing cost. 
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Figure 31, (a), Schematic of nanowire CdS-CdTe solar cell device structure where 100nm 

CdS nanowires (yellow color) embedded in absorption-negilible AAO membrane 

(shallow blue color) function as a nanowire window layer, and CdTe absorber is 

deposited on the top of the nanowire window layer. (b), Schematic of conventional planar 

CdS-CdTe solar cell device structure where planar CdS functions as a planar window 

layer and CdTe absorber is deposited on the top of the planar CdS. 

4.4.2. Experiemental Details   

The nanowire CdS/CdTe solar cells were prepared by the well established methods in 

our group41,54. The back-contact was formed by processes where 10nm copper was 

sputtered onto the back contact area and was followed by graphite paste (1200-2400 

ohms/sq, PELCO Conductive Graphite, No.16058) and silver paste. Planar CdS/CdTe 

solar cells were prepared in same experimental conditions except that planar CdS was 

grown to 100nm thickness by chemical bath deposition. Substrate for both of type solar 

cells is intrinsic tin oxide (SnO2) layer/ITO-coated soda-lime glass.  

Reliability tests were conducted on elevated thermal tests. The thermal tests for both 

types of solar cells were carried out in annealing furnace where the non-encapsulated 

cells were kept at 120°C for 240 hours in ambient air. Current–voltage (I –V) 

characteristics were measured in dark and one-sun illumination, on all cells at the 

beginning (t=0), after 120 hours of thermal cycle and after 240 hours of thermal cycle.   

(a) (b) 
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4.4.3. Results and Discussion  

     Stabilization of the nanowire CdS/CdTe solar cells is reflected by external quantum 

efficiency (EQE). The cells was stored under room and humid ambient for eight and a 

half of (8.5) months before EQE tests. Figure 2a shows the normalized spectral response 

of the external quantum efficiency (EQE) of the nanowire CdS/CdTe solar cells after 8.5 

months storage, which was measured by an independent group at the PV Measurements 

Inc.56.   

    After 8.5 month storage under ambient air, EQE exhibits a nearly ideal spectral 

response from very low wavelength at 335nm to near bandgap of CdTe absorber at 

850nm.  Even though, we do not have the initial EQE, the fact that, the EQE at 8.5 

months is “nearly ideal”, the degradation over 8.5 months must have been rather minimal.  

This indicates that the nanowire solar cells have enough robustness to withstand the 

effects of humidity and oxidization on cell performance over a long period of time.  

The maximum power conversion efficiency of the nanowire CdS/CdTe solar cells 

made in our group was 12% with open circuit voltage (Voc) of 770mV and photocurrent 

density of 26mA/cm2 at 1sun illumination. There is a room to improve the efficiency. 

Deposition of CdTe under 0.35 torr vacuum, high resistive graphite paste (1200-2400 

ohms/sq) as back contact and inscribed SnO2 layer negatively impact efficiency of both 

of the nanowire and planar solar cells. Three representative nanowire cells with initial 

average initial efficiency of 10.3% and three representative planar cells with average 

initial efficiencies of 9.75% were selected as samples for thermal tests under ambient air, 

where planar solar cells with lower efficiency are due to lower photocurrent. J-V data at 

baseline and after thermal cycle for a representative nanowire device with Cu/graphite 

contacts are shown in figure 33d and 33e respectively. Figure 33b and 33c show J-V data 
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at baseline and after thermal cycle for a representative planar device with Cu/graphite 

contacts for comparative illustration. Average photovoltaic values of three nanowire cells 

and three planar cells are extracted for performance comparison. Table 6 shows extracted 

average photovoltaic data of nanowire and planar solar cells under dark and 1-sun 

illumation after fabrication (t=0), 120 hours (t=120hrs) and 240 hours (t=240hrs) of 

120°C thermal cycle. 

4.4.3.1 Comparision of dark J-V characteristics of nanowire and planar Solar Cells 

under Thermal Cycle 

     

As shown in Figure 33b and 33c, the planar solar cells exhibited substantial 

degradation in 120 hour 120°C-thermal cycle, and such degradation becomes severer in 

240 hour thermal cycle. The noted feature of degradation is indicated by roll-over of the 

J-V curves of the planar solar cells in thermal cycle. A stronger roll-over appears in J-V 

curves under 240 hour thermal cycle, suggesting that long-time thermal cycle under air 

has dual effects on accelerated degradation of the planar solar cells. The roll-over in J-V 

characteristic is associated with the interface between the CdTe absorber layer and the 

back contact.  Oxidation and moisture can degrade this interface to the extent that the 

contact junction takes on the characteristics of an M-I-S device and is no longer a 

straightforward conducting contact95.   

As for the CdS-CdTe junction, we observe, from Table 6, that the extracted average 

diode ideality factor (A) is 2.43 after fabrication, and its value is increased to 2.99 and 

4.15 at 120 and 240 hour thermal cycle respectively. The degradation is estimated as 23% 

at 120 hour thermal cycle and 70.8% at 240 hour thermal cycle. The average reverse 

saturation current density (Jo) increases from 5.35*10-8A/cm2 at t=0 (baseline) to 
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5.99*10-7 A/cm2 at 120 hour thermal cycle, and further deteriorates to 1.97*10-6 A/cm2 at 

240 hour thermal cycle. The thermal cycle in air atmosphere causes degradation of 

reverse saturation current density Jo by 10.2 times and 35.8 times for 120 and 240 hours 

respectively. The Jo and A represent junction performance; hence increased value of Jo 

and A indicate junction deterioration of the planar solar cells during long time thermal 

cycle. It is noted that degradation under air occurs nonlinearly, revealing that the planar 

solar cells can provide a substantial reliability, for example 120 hours, to suppress 

detrimental effects of heat and air (H2/O2), and the longer time thermal cycle causes 

accelerated deterioration. 

As shown in Figure 33d and 33e, there is no roll-over occurring in the J-V curve of the 

nanowire solar cells at 120 and 240 hour thermal cycle, suggesting less degradation and 

no apparent barrier to carrier transport at the interface between CdTe and the back contact.  

The thermal cycle causes diode ideality factor (A) to be degraded only 5.8% and 13.7%, 

and average value of A varies from 2.41 at baseline to 2.55 after 120 hour cycle and to 

2.74 after 240 hour cycle. Corresponding reverse saturation current density (Jo) degraded 

by 0.27 and 0.89 times, and its average value increases from 5.15*10-8A/cm2 at baseline 

to 6.56*10-8 A/cm2 at 120 hour cycle and to 9.72*10-8 A/cm2 at 240 hour cycle. 

Compared with degradation of A and Jo of the planar solar cells, A is improved by 

approximately 3.9 times and 5.1 times, and Jo is significantly improved at 120 and 240 

hour cycle. The nanowire solar cells show a relatively slow degradation and favorable 

junction stabilization against heat and H2/O2. These better diode ideality factors illustrate 

that although the nanowire solar cells is coated with Cu/graphite as back contacts, its 

device configuration  has features, which retard the degradation of main CdS-CdTe 
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junction and back electrode-CdTe contact junction.  
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Figure 32 (a), Relative EQE of the nanowire CdS/CdTe solar cell with intrinsic 

SnO2/ITO/soda lime glass substrate; (b) Dark and light J-V curves of planar solar cells 

with Cu/graphite back contacts after fabrication and b)120 hour thermal cycle, and (c) 

240 hour thermal cycle;  Dark and light J-V curves of nanowire solar cells with 

Cu/graphite back contacts after fabrication and (d) 120 hour thermal cycle, and (e) 240 

hour thermal cycle.  

4.4.3.2 Comparision of light J-V characteristics of nanowire and planar solar cells 

   As shown in table 6 and light J-V curves, degradation of the planar solar cells appears 

in large reductions in Voc, Jsc and shunt resistance and increase in series resistance. It is 

observed that series resistance drastically increases from 6.47Ω/cm2 to 24.35 Ω/cm2 (120 

hour cycle) and then to 97.15 Ω/cm2 (240 hour cycle); thus it increased by 2.7 time and 

14 times respectively. Significant degradation also occurs in shunt resistance. It value is 

estimated as 272.5Ω/cm2 after fabrication to 161 Ω/cm2 (120 hour thermal cycle) and 

then to 73.5 Ω/cm2 (240 hour thermal cycle), resulting in degradation of 41% (120 hour 

thermal cycle) and 73% (240 hour thermal cycle). It is considered that drastic increase in 

series resistance is indicative of back contact degradation [1,20] and is responsible for 

decrease of Jsc from 24.46mA/cm2 at baseline to 22.2 mA/cm2 (decreased by 9%) at 120 

hour thermal cycle and then to 18.9mA/cm2 (decreased by 22.7%) at 240 hour thermal 

cycle. Shunt resistance reduction is a characteristic of the main junction degradation, 
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which causes drop of Voc by 6.9% (from 741.5mV to 690mV) and by 19% (from 

741.5mV to 600mV) at 120 and 240 hour thermal cycle respectively. For the planar solar 

cells, it is the back contact and main junction degradation that causes efficiency drop by 

27.15% and 54.15% respectively during 120 and 240 hour accelerated thermal cycling 

testing.  

   Replacing planar CdS with CdS nanowires as the window layer, the solar cells 

exhibited improved reliability performance against thermal cycle and humidity. After 120 

and 240 hour thermal cycle, Voc is slightly decreased by 1.2% (from 743mV to 734mV) 

and 2.7% (from 743mV to 723mV), Jsc yields 6.4% (from 25.7mA/cm2 to 24.05mA/cm2) 

and 14.4% (from 25.7mA/cm2 to 22mA/cm2) drops; and  efficiency is decreased by 8.75% 

and 24.3%.  Compared with degradation of the planar solar cells, after 120 and 240 hour 

thermal cycle, the nanowire solar cells improve reliability of Voc by approximately 5.7 

times and 7 times; Jsc by approximately 1.4 times and 1.6 times; and efficiency by 

approximately 3.1 times and 2.2 times. Stabilized Voc is an evidence of good junction 

behavior under thermal cycle and humidity. Decrease of fill factor and efficiency is 

primarily caused by drop in Jsc. Hence, it is thought that there is a barrier for carrier 

transport at back contact interface under thermal cycle. It is the back contact degradation 

rather than the main junction degradation that mainly impacts the reliability of the 

nanowire solar cells. Thus, the nanowire solar cells have a mechanism to protect the main 

junction from detrimental effects of humidity and thermal cycle.  

These observations are in agreement with our finding that after cells are stored in room 

ambient for one year, the planar solar cells exhibited the strongest reduction in Voc, Jsc , 

FF and the increase in series resistance. However, there is little deterioration in the J-V 
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characteristics of the nanowire solar cells after one year storage.  The nanowire solar cells 

can withstand high concentration CdCl2 annealing treatments for multiple times and 

exhibit good photovoltaic performance. However, after a strong CdCl2 treatment, the 

performance of the planar solar cells demonstrated irreversible deterioration effect. These 

agree well the results of the thermal cycle test that the nanowire solar cells have a solid 

and robust junction and interface to prevent degradation.  

It should be noted that our results regarding the improvement in aging by a factor of 3 

are applicable only to those planar CdS-CdTe devices, which use copper in the back 

electrode and are not encapsulated. Also, when using Cu:ZnTe as back contact and 

applying thermal cycle to the  encapsulated cells, degradation of cell performance in 

planar CdS devices is expected to be lesser than seen in our   unencapsulated devices. 

Still, due to the nanostructure features of the AAO and the CdS, the nanowire CdS-CdTe 

devices are, overall, more robust and alleviate thermal and humidity detrimental effects.
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Table 6 Comparison of average photovoltaic properties in nanowire and planar CdS /CdTe solar cells under thermal thermal 

cycle. 
Device A J0(A/cm2) Jsc 

(mA/cm2) 

Voc (mV) FF(%) Efficiency 

(%) 

Rs 

(Ω /cm2) 

Shunt 

Resistance 

(Ω /cm2) 

Efficiency 

Degradation 

(%) 

 

Planar graphite/  

Baseline 

 

Planar graphite/  

thermal cycle 

(120hrs) 

 

Planar graphite/  

thermal test 

(240hrs) 

 

2.43±0.04 

 

 

2.99±0.1 

 

 

 

4.15±0.26 

 

 

 

5.35*10-8±0.55*10-8 

 

 

5.99*10-7±1.77*10-7 

 

 

 

1.97*10-6±0.96*10-6 

 

 

 

 

24.46±2.4 

 

 

22.2±0.2 

 

 

 

18.9±0.4 

 

  

 

741.5±3.5 

 

 

690±5 

 

 

 

600±10 

 

53.8±1.1 

 

 

46.3±1.9 

 

 

 

39.4±1.4 

 

 

 

9.75±0.35 

 

 

7.1±0.4 

 

 

 

4.45±0.35 

 

 

6.47±0.16 

 

 

24.35±0.75 

 

 

 

97.15±5.45 

 

 

272.5±3.5 

 

 

161±11 

 

 

 

73.5±9.5 

 

 

 

 

 

27.15±1.45 

 

 

 

54.15±1.65 
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NWgraphite/ 

baseline 

 

NWgraphite/ 

thermal cycle 

(120hrs) 

 

NWgraphite/ 

thermal cycle 

(240hrs) 

 

 

2.41±0.03 

 

 

 

2.55±0.06 

 

 

 

2.74±0.09 

 

 

 

5.15*10-8±0.45*10-8 

 

 

 

6.56*10-8±0.34*10-8 

 

 

 

9.72*10-8±1.78*10-8 

 

 

25.7±0.1 

 

 

 

24.05±0.15 

 

 

 

22.0±0.6 

 

 

 

743±5 

 

 

 

734±5 

 

 

 

723±5 

 

 

 

53.9±1.2 

 

 

 

53.1±1.3 

 

 

 

48.55±0.45 

 

 

 

10.3±0.3 

 

 

 

9.4±0.3 

 

 

 

7.8±0.3 

 

 

 

6.22±0.35 

 

 

 

7.94±0.5 

 

 

 

10.73±0.55 

 

 

274±9 

 

 

 

248±12.4 

 

 

 

211.5±8.5 

 

 

 

 

 

 

 

8.75±0.25 

 

 

 

24.3±0.7 
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4.4.3.3 Stablization mechanics of nanowire solar cells  

 Cu is a common element among the back contact technologies for making conducting 

contact to p-CdTe absorber layer.  These technologies include, HgTe:CuTe-doped 

graphite paste, Cu-doped ZnTe,CuxTe and Au/Cu.  Copper is known to improve contact 

properties and carrier concentration at the back surface of CdTe. In our work, back 

contact is achieved by vapor deposition of 10nm thickness Cu on approximately 10µm 

thick CdTe layer and subsequent graphite past brushing and annealing at 150°C. Analysis 

of J-V characteristics in the planar solar cells demonstrates that there are at least two 

mechanisms responsible for severe degradation under thermal cycle. The formation of J-

V rollover and significant increase of series resistance is the result of back contact 

degradation. At 120°C air thermal cycle, oxygen can migrate through the back contact 

and form oxidation on the CdTe surface. The oxidation layer traps carriers and decreases 

hole transport from CdTe to electrode, resulting in a back-contact Schottky barrier95. 

Depletion of Cu at the back contact/CdTe interface is another major factor, which is 

responsible for back contact degradation. Cu is considered as a fast diffuser89. For 120 

hour thermal cycle at 120°C air atmosphere, obvious increase of series resistance and 

moderate degradation of shunt resistance suggest that thermal cycle for 120 hours has 

facilitated Cu in the back contact to diffuse into the polycrystalline CdTe film along grain 

boundaries87, and accumulate in the CdS. When Cu is diffused into the CdTe, hole 

density and carrier lifetime in CdTe are decreased because Cu occupies the interstitial 

positions and forms compensating donor defects37,89.  After Cu diffuses away from the 

back contact, the back contact becomes a Cu-depleted rectifying contacts89.  This 

rectifying back contact is thought to be the cause of observed rollover in the J-V 

characteristics of the planar solar cell after the 120 hour thermal cycle. Accumulation of 
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Cu in the CdS can create acceptor states84, however at initial 120 hour thermal cycle, 

such Cu acceptor concentration is much less than electron concentration of approximately 

1018/cm3 in n-CdS, thus Cu accumulation in CdS could not lead to detrimental effects on 

junction stability. As a result, series resistance and Jsc are obviously degraded, however 

Voc and shunt resistance are maintained relatively stable. Longer thermal cycle leads to 

excessive Cu quantities in CdS. Excessive Cu doping of CdS could create acceptor states 

and recombination centers which are compared with effective donor concentration of CdS. 

Furthermore, because the planar CdS is composed of polycrystalline CdS with pinholes, 

Cu accumulated in CdS film diffuses farther into SnO2 through pinholes of the planar 

CdS, forming deep penetration and introducing microshunts. As a result, main junction is 

aggravated. Because of this degradation, all photovoltaic parameters, A, Jo, Voc, Jsc, FF, 

and efficiency are negatively affected. 

Unlike the case of the planar solar cells, the nanowire solar cells do not exhibit the roll-

over in their J-V characteristics even after the 240 hour thermal cycle. Similarly, in the 

nanowire solar cells, it is relatively easy that Cu diffuses from the back contact into CdTe 

film along CdTe grain boundaries under thermal thermal cycle. However, continuous 

diffusion of Cu is dramatically impeded due to structure and features of the nanowire 

window layer. The nanowire window layer is formed by CdS nanowires embedded in 

AAO membrane. The AAO membrane is typically crystalline, insulating and 

thermodynamically stable, and occupies 68% area of the SnO2/ITO substrate54.  Cu ions 

seek low resistive locations to migrate to; hence it is unlikely that Cu would find its way 

to the surface of the AAO membrane, for the purpose of diffusing. Thus, continuous 

diffusion of Cu is prevented by AAO/CdTe interface. Moreover, CdS nanowires are 
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ordered-aligned crystalline structures with low defects, dramatically avoiding pinhole 

defects, which exist in the planar CdS32. Such low defect and ordered structure of the 

CdS nanowires effectively suppress diffusion of Cu into CdS nanowires, and there is very 

low probability that Cu ion can further migrate into SnO2 through the CdS nanowires. 

Consequently, recombination centers in CdS and microshunts are significantly reduced. 

The nanowire CdS/CdTe structure alleviates degradation of the main cell junction, which 

agrees well with stabilized value of Voc and shunt resistance after 240 hour thermal cycle. 

The nanowire window layer prevents deep diffusion of copper. In other words, it 

maintains the Cu-induced conducting contact between CdTe and graphite, and greatly 

reduces the back contact barrier and roll-over characteristics of the J-V curve.  

Note that the diffusion of Cu in CdTe film over long time or under thermal cycle 

conditions leads to more compensating donor defects and reduced hole density, which 

cause a reduction in Jsc. of the nanowire solar cells. Another factor that can degrade I-V 

characteristics is the oxidation caused by the thermal cycle of high temperature in the air 

ambient. This oxidation layer is commonly the dominant factor in the increase of series 

resistance and back contact degradation. Degradation of series resistance and Jsc is 

responsible for drops in fill factor and efficiency for the nanowire solar cells. 

Generally, a planar window layer thinning approach is used to reduce the absorption 

loss in the planar CdS window layer. Pinholes in the planar CdS and substrate roughness 

exacerbate shunting and negatively influence open circuit voltage. It is necessary that an 

additional high resistivity buffer layer is deposited between the TCO and the CdS 

window layer32 in order to reduce shunting issues due to pinholes of the planar CdS. 

Earlier, we demonstrated that the nanowire CdS/CdTe solar cells reduced absorption loss 
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in the window layer and enable a nearly ideal spectral response of quantum efficiency, 

indicating effective light absorption and carrier collection. In this work, we further 

revealed the nanowire solar cells enable long-term performance to be effectively 

improved and can potentially deliver reliable power output against harsh operation 

environment. Hence the traditional high resistivity buffer layer between ITO and CdS is 

likely to be unnecessary. This would lead to reduced manufacturing costs as well as 

reduced series resistance for the solar cell. The reliability investigation provides a basis to 

design a nanowire CdS/CdTe solar cell without high resistivity buffer layer.   

The nanowire solar cell structure offers an opportunity to not only yield high efficiency 

but also deliver reliable power. It is expected that such nanowire solar cell structure can 

be applied into other type of solar cells, including organic-inorganic mixed solar cells, 

which need to improve carrier generation and collection, and simultaneously address 

reliability issues.  

4.4.3.4. CONCLUSION 

Thermal cycle induced degradation of nanowire solar cells and planar cells kept at 120 °C 

ambient air for 120 and 240 hours was measured, compared and analyzed. Power 

conversion efficiency of the planar solar cells decreased by 27.15% and 54.15% 

respectively. Corresponding efficiency of the nanowire solar cells is reduced by 8.75% 

and 24.3% respectively after 120 and 240 hour thermal cycle. It was demonstrated that 

the nanowire solar cells exhibit degradation of power conversion efficiency, which is 

approximately 3 times smaller than the degradation in the planar solar cells. The 

enhanced performance in nanowire solar cells is thought to be due to the electrically 

insulating property of the AAO membrane and the low defect features in the CdS 
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nanowires; these prevent the deep diffusion of Cu ions into the CdS nanowires and then 

into SnO2. Further, because of reduced copper diffusion, recombination centers and 

microshunts are significantly reduced. Thus, nanowire CdS/CdTe structure reduces the 

degradation of the main CdS/CdTe junction and also maintains the Cu-induced 

conducting contact behavior at the back contact between the Cu-graphite electrode and 

the CdTe absorber layer. High reliability of the nanowire solar cells suggests that 

traditional high resistivity buffer layer between ITO and CdS is unnecessary and a 

nanowire CdS-CdTe solar cell without high resistivity buffer layer is possible in order to 

reduce manufacturing cost. The nanowire solar cell structure offers an opportunity to 

achieve effective carrier generation and collection and hence high quantum efficiency, but 

also simultaneously address reliability issues. These concepts for improving efficiency 

and reducing degradation with time are applicable to other types of solar cells, including 

organic semiconductors cells and mixed inorganic-organic solar cells. 

4.5 Nanotube Photovoltaic Configuration for Enhancement of Carrier Generation 

and Collection  

4.5.1 Introduction  

The increasing demand for energy and its environmental impact led to renewed efforts 

and novel approaches to develop cost-effective photovoltaics. Recently, development of 

nanostructured devices and materials has created a new paradigm for reducing cost and 

improving power conversion efficiency of photovoltaic device.43,96,97 Solar cells have 

been benefited from structures in multiple dimensions on nanoscale.43,96-101 Nanowires, 

nanorods and nanoparticles have been extensively used to reduce volume of 

semiconductor materials, enable beneficial optical management and novel conversion 
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mechanisms in polymer-based and silicon solar cells.43,96-107 A few was concentrated on 

CdS nanopillar- and CdS nanowire-based photovoltaics,38,39,108 and power conversion 

efficiency are lower than 10%, which is difficult to compared with corresponding planar 

solar cells.  

    Power conversion efficiency depends on effective light absorption and efficient photo-

carrier generation and collection.  In this regard, we designed a three-dimensional (3D) 

nanotube solar cell structure where a n- or p-type semiconductor material 

(semiconductor-1 or S-1) is formed in the shape of nanotubes (yellow color in Figure 1A), 

and a second, p- or n-type semiconductor material (semiconductor-2 or S-2) is deposited 

inside the inner walls of nanotubes and is also made to wrap around the outer wall of the 

nanotubes (purple color in Figure 1A). The S-2 can be continuously deposited on the top 

of S-1. We developed a low-cost, anodic aluminum oxide (AAO) membrane-assisted 

method to efficiently grow geometric feature tuned nanotubes.  Utilization of AAO 

membrane-assisted methods is because AAO membrane possesses highly ordered and 

controlled nanoporous structure, and absorption-negligible, electrical insulating and 

thermodynamically stable properties.50,109,110 In addition, we have found in our group that 

the nanostructures embedded in AAO membrane exhibited strong reliability to restrain 

performance degradation in harsh environment. Therefore, it becomes a low cost and 

reliable method for growing nanostructures for photovoltaic applications. AAO 

membrane has been widely applied into growth of nanostructures, usually nanowires 

since 1990s.38,39,50-52,54,90,110,111 Development of nanopillar–array photovoltaics promoted 

application of the AAO membrane-assisted vapour–liquid–solid growth method into CdS 

nanowires.38 However, growth of nanotubes through AAO membrane-assisted methods 
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was primarily focused on carbon nanotubes,112-114 and few reports were concentrated on 

growth of CdS nanotubes.115 Previous studies have not yet applied these nanotubes for 

3D solar cell structure.  

In this work, we report on 3D nanotube solar cells for enhancing carrier generation and 

collection, and make nanotube CdS-CdTe solar cell as an example.  Figure 34c shows 

visual images of the fabrication process flow of the nanotube CdS/CdTe solar cells. The 

CdS nanotubes are grown by electrodeposition inside the ordered nanopores of AAO 

membrane. After removing AAO membrane and forming free-standing CdS nanotubes, 

the CdTe absorber is not only grown in the inner core of nanotubes but also replaces the 

membrane and is filled in the intertube space, which surrounds the outer walls of 

nanotubes (Figure 34a and 34c). Such 3D nanotube solar cell configuration can improve 

photocarrier generation and collection by generating and separating photocarriers in 3D 

directions. Specifically, photocarriers can be generated and transported in the inner core 

space of nanotubes and in the intertube space between nanotubes along radial direction, 

and also be generated and transported above the nanotubes along the axial direction 

(Figure 34b). This type of structure is particularly advantageous for those absorbers or 

sensitizers with short minority carrier lifetime. Because nanotubes with inner diameter 

and intertube space at nanometer scale can facilitate carrier to be effectively collected 

before recombination, the 3D nanotube solar cells can relax the long minority carrier 

collection length required by conventional absorbers. 

For CdS-CdTe solar cells, because CdS functions as a window layer and CdTe 

functions as an ideal absorber material, we develop 200nm-long CdS nanotubes to reduce 

light absorption loss in the CdS window layer. It should be noted that length of nanotubes 
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can be readily varied (see Methods section) for various types of solar cell applications.  In 

the following paragraphs, we present materials and electro-optical characterizations and 

the charge transport processes in the nanotube CdS-CdTe solar cells. By investigation of 

photovoltaic performance of the nanotube CdS-CdTe solar cells in this work, we expect 

that such nanotube solar cell structure will be applied into organic-inorganic solar cells, 

for example, CdS-CuPC solar cells and those solar cells with short minority carrier 

lifetime.  

4.5.2 Experimental Section  

Formation of AAO membrane. Nanotube-CdS/CdTe solar cells were prepared on 

ITO/soda-lime glass substrates through process steps: AAO membrane formation, CdS 

nanotube growth, CdTe deposition, and back contact formation. First, a 100nm thick 

intrinsic tin oxide (SnO2) layer and a 5nm thick titanium layer were RF sputtered onto 

cleaned ITO-coated glass substrates with sheet resistance of 23-28 Ω/square. A 200nm 

thick aluminum (Al) layer was then deposited by electron beam evaporation. The Al film 

until Al was completely anodized into anodized aluminum oxide (AAO).  The as-

anodized AAO membrane was etched with a 5% phosphoric acid solution for 40minutes 

and then subjected to a reactive ion etch (RIE) treatment for 2minutes, resulting in an 

absorption-negligible AAO membrane. These solar cells can thus be illuminated through 

transparent AAO/SnO2/ITO glass substrates, greatly reducing light transmission loss. 
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Figure 33,  (a), Schematic of three-dimensional nanotube solar cell device structure 

where a n-or p--type semiconductor material (S-1) is formed as nanotubes (yellow color), 

and absorbers or sensitizers is deposited inside the nanotubes (purple color) and are 

wrapped around the outer wall of nanotubes (purple color). (b), Photocarriers are 

generated and transported in the inner core and in the intertube space between nanotubes 

along radial direction, and above the nanotubes along axial direction.  (c) Visual images 

of fabrication steps for a 3D nanotube CdS-CdTe solar cell, including aluminum 

deposited on the top of a substrate; formation of absorption-negligible nanoporous AAO 

membrane; CdS nanotubes filled in the nanopores of AAO membrane by electro-

deposition;  partially exposed CdS nanotubes and CdTe absorber deposited in the inside 

of the CdS nanotubes, in the intertube space between CdS nanotubes and on the top of 

embedded CdS nanotubes. 

 

     Growth of CdS Nanotubes. For growth of the CdS nanotubes, 0.042M cadmium 
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were used as precursors. The growth of the CdS nanotubes depends on concentration of 

CdCl2, dc current density and deposition temperature. We found that the CdS nanotubes 

can be optimally formed at lower concentration of CdCl2, lower dc current density of 

2mA/cm2 and deposition temperature of 100°C, with the growth time maintained at 20s. 

The growth mechanism of the CdS nanotubes will be discussed in the following 

paragraphs.  After the formation of CdS nanotubes , the samples were soaked in a 75% 

CdCl2 solution for 15 minutes, and were subjected to  an annealing treatment for 30 

minutes at 400℃ under 100-sccm Argon flow. 

     Fabrication of CdTe Absorber.The samples were then placed in a 0.1M NaOH solution 

for 10mins to partially remove AAO membrane and expose 170nm height of CdS 

nanotubes, while the rest of the CdS nanotubes (30nm) remained embedded in the AAO 

membrane. Next, before the deposition of CdTe, the CdS nanotubes were dipped in a 

0.1M HCl solution for 5s to clean the surface. CdTe was deposited in a closed-space 

sublimation system, where the CdTe source and the nanotube CdS substrate substrate 

were first heated to the relatively low temperatures  of 470◦C and 100 ◦C respectively.  

They were kept at those temperatures for 1 minute.    Then, source and substrate were 

ramped together to a common temperature of 575 ◦C.  Next, source temperature alone 

was increased to 635◦C and maintained there for 30 seconds under the flow of 15 torr He 

(with 5% O2 background gas). Thus CdTe got deposited in the inner cores of CdS 

nanotubes, in the intertube space between the CdS nanotubes and on top of the nanotube 

CdS substrate.  After CdTe deposition, the nanotube solar cells were immersed in a 75% 

CdCl2 methanol solution for 30 minutes and then annealed at 400 ◦C for 30minutes under 

the flow of 100-sccm Argon.  
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    Formation of Back Contact. The solar cells were then etched in a mixture solution 

(1:88:35) of nitric and phosphoric acid for 35s.  This etch is known to make the CdTe 

surface rich in tellurium (Te+), which in turn facilitates the formation of a a pseudo-

ohmic contact between the graphite paste and the p-CdTe. Next, to further facilitate the 

pseudo-ohmic contact formation, a 5 nm thick copper layer was sputtered onto the back 

contact areas.  Then contact layers of graphite paste (PELCO Colloidal Graphite, 16051, 

TED PELLA, INC.) and silver paste were applied with a brush.  Finally, cells were 

annealed at 150 ◦C for 10 minutes to cure the graphite/silver paste.  Thus finished 3D 

nanotube CdS-CdTe solar cells were obtained.  

    Materials and device characterization. Material characterization of the CdS 

nanotubes was conducted with a scanning electron microscope (Hitachi S-900 field 

emission SEM). Optical transmittance spectra were measured with a Cary, Model 50 

Probe UV-Visible Spectrophotometer. Quantum efficiency data was extracted from 

measurements made by an independent PV measurements company.56  Electrical 

properties of the nanotube CdS-CdTe solar cells were characterized by current–voltage 

(I–V) as functions of light intensity and temperature in the 175 ºK -300 ºK range. A 

standard ScienceTech SS150 solar simulator was used for device illumination, the solar 

simulator was calibrated with a standard light meter. For low temperature measurement, 

nanotub solar cells were mounted inside an Oxford’s vacuum cryostat with a helium 

refrigerator unit (Sumitomo Heavy Industries Ltd). 

4.5.3 Results and Discussion  

4.5.3.1 Scanning Electronic Micoscope  

The AAO membrane-assisted electrodeposition, described above, can form CdS 

nanotubes or CdS nanowires, depending on growth conditions. CdS nanotubes are 
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formed only at lower concentration of CdCl2, lower dc current density, and lower 

deposition temperature. At higher concentration of CdCl2, higher than 7mA/cm2 of dc 

current density and higher than 160°C deposition temperature, CdS nanowires instead of 

CdS nanotubes are formed. 54  The possible growth mechanism of CdS nanotubes can be 

explained as follows. Elemental sulfur diffused to the AAO template was subjected to 

reduction reaction to s-2 ions at nanopores. Cd+2 was attracted to nanopores in action of 

electrical field. Inside the nanopores, s-2 immediately reacts with Cd+2 , forming CdS 

crystalline. Under lower concentrations of CdCl2, lower current density and temperature, 

the CdS preferentially nucleates and grows onto the nanopore walls of the AAO template 

due to lower Gibbs free energy at nanopore walls. At the bottom of the nanopores, low 

current density and temperature cannot provide sufficiently high energy because the the 

Gibbs free energy at the nanopore bottom is high. Therefore, CdS nucleation at nanopore 

bottom is suppressed. The precipitation of CdS takes place on nanopore walls of the AAO 

templates. When the concentration of CdCl2 is reduced, precipitation rate of CdS is 

correspondingly decreased. Therefore, in a short growth time, the CdS nanotubes are 

formed. High current density and high temperature provide energy higher than Gibbs free 

energy at bottom of nanopores, therefore, CdS can nucleate and quickly grow along walls 

and bottom of the nanopores, resulting in CdS nanowires. Observing from appearance, 

the CdS nanotubes exhibit a color, which is lighter yellow than that of the CdS nanowires. 

   AAO membrane and CdS nanotubes were characterized by scanning electron 

microscopy (SEM). Figure 35a shows a SEM image of the top surface of AAO 

membrane, which possesses well-ordered nanopore features with diameter of 

approximate 80nm. Figure 35b shows top surface view SEM image of CdS nanotubes 
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embedded in AAO membrane. Figure 35c, 2d and 2e show top view and side view SEM 

images of free-standing CdS nanotubes respectively, where AAO membrane has been 

removed. The CdS nanotubes are ordered structures with an average length, inner 

diameter and wall thickness of approximately 200nm, 35nm and 20nm respectively. From 

examination of SEM images, average center-to-center distance between CdS nanotubes is 

110nm and thus the average intertube spacing is 35nm. Based on the CdS nanotube 

feature parameters, a porosity and CdS nanotube density are determined as 36.5% and 

2.26x1010 nanotubes /cm2 respectively.  

Through SEM images, we anticipate that these high density CdS nanotube arrays 

provide novel ways to manipulate light absorption, and carrier generation and collection. 

As observed from SEM images, the nanotubes with 35nm inner diameter and 35nm 

intertube space will enable carriers to be effectively collected before they are lost by 

recombination, and hence will significantly improve carrier collection for those absorbers 

(for example, CuPC) with short minority carrier diffusion length, for example less than 

100nm.    
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Figure 34, (a) Top view SEM image of AAO membrane. (b) Surface top view SEM 

image of CdS nanotubes embedded in AAO membrane. (c) Side view of free-standing 

CdS nanotubes. (d) Side view of free-standing CdS nanotubes. 

 

4.5.3.2 Absorption and Transmittance of CdS nanotubes 

     The fundamental absorption and transmittance of CdS nanotubes are especially 

interesting to understand their unique characteristics of light manipulation. UV-visible 

spectroscopy measurement was conducted over spectrum wavelengths from 300nm to 

900nm, which cover most of sunlight photons of energy higher than the band gap of the 

CdTe absorber. Figure 36a and 36b show absorption and corresponding transmittance 

spectra of CdS nanotubes embedded in the AAO template. The CdS nanotubes exhibit 

nearly zero absorption and strong transmission from 450nm to 900nm. Only a weak 

absorption peak is observed at 600 nm and the corresponding transmittance is decreased 

to 0.88. A long absorption tail extends from 450nm to 296nm, and the corresponding 

transmittance is reduced from 0.925 to 0.10 between 450nm and 296nm, where the 

transmittance of the CdS nanotubes is reduced to 0.8 at 430nm. It is considered that such 

unique optical absorption and transmittance properties are related to transparent AAO 

membrane and geometry of CdS nanotubes. First, the absorption-negligible AAO 

membrane facilitates the transmission of sunlight through the substrate.. The length of the 

d 
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CdS nanotubes is about 200nm, which is significantly smaller than the wavelength of 

incident light, thus making light scattering negligible. This phenomenon is different from 

the enhanced light scattering in long silicon nanowire structures.43,100  

    It should be noted that when the size of the nanotubes, for example length, exceeds the 

wavelength of the incident light, the nanotubes provide enhanced light scattering and 

light trapping, which increase the effective light path and light absorption.43,100  Such 

long nanotubes can be favorably utilized for absorber materials. In the CdS-CdTe solar 

cell application, the CdS nanotubes were grown with 200nm length in order to function 

as a window layer, and benefit light absorption and carrier generation and collection in 

the CdTe absorber.  

This unique light absorption behavior exemplifies beneficial properties of 200nm-long 

CdS nanotube geometry, which, here, is designed to enhance light absorption and carrier 

conversion in the CdTe absorber layer.  This beneficial effect is further elucidated through 

the use of AM 1.5D spectrum and measured absorption spectrum of CdS nanotubes to 

simulate photon flux (P), which can be converted to carriers through the nanotube solar 

cells. 
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Figure 35, (a) Absorption spectra of CdS nanotubes embedded in the AAO membrane. 

(b) Corresponding transmittance of CdS nanotubes. (c) Simulated photon flux that is 

absorbed by the nanotube CdS-CdTe solar cell. (d) Relative EQE of the 3D 

nanostructured CdS-CdTe solar cells. 

c 

d 

b 



140 

 

 Figure 36c shows that the simulated photon flux P nanotubes that can be absorbed and be 

effective converted into photocurrent in nanotube CdS-CdTe solar cells.  Photon flux P 

nanotubes was simulated on the basis of the measured transmittance spectrum of CdS 

nanotubes and absorption coefficient of CdTe at AM 1.5D spectrum. As shown in Figure 

36c, simulation demonstrates that unique optical behavior of the CdS nanotubes yields a 

greater overall photon absorption enhancement for the nanotube CdS-CdTe solar cells. 

Integrating the photon flux shown in Figure 36c and assuming that each photon generates 

one electron-hole pair (EHP), the 3D nanotube CdS-CdTe solar cells create the total 

electron-hole pairs of 18.23*1016/cm2s and photocurrent density of 29.18mA/cm2. These 

data suggest that CdS nanobute array geometry, through tailoring optical properties at 

nanoscale, potentially enhances photon current density.         

Figure 36d shows the normalized spectral response of the external quantum efficiency 

(EQE) of a nanotube CdS-CdTe solar cell on intrinsic SnO2/ITO/soda-lime glass, which 

was measured by an independent group at the  PV Measurements Inc.56  EQE value 

increases steadily from 80% at 385 nm to 90% at 445 nm; it peaks at 565nm, and then 

stays strong until reaching 825nm which corresponds approximately to the energy band 

gap of the CdTe absorber layer.  Integrating the spectral response of EQE and assuming 

100% of maximum response and no transmittance loss in the substrate, photocurrent 

density is calculated to be 28.05 mA/cm2.  The photocurrent density calculated from EQE 

response is in agreement with the photon flux simulation. Strong EQE response from a 

broad spectral range indicates that the nanotube solar cell structure configuration can 

benefit photocarrier generation and collection. It should be noted that the above device is 

fabricated on the inexpensive and low transparent intrinsic SnO2/ITO/soda-lime glass 
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substrate.  Later, when the low transparent substrate is replaced by a higher transmission 

substrate, spectral response of the nanotube solar cells will be further improved. 

4.5.3.3 Photovoltaic Performance of nanotube CdS-CdTe Solar Cells 

      Characteristics of the photovoltaic performance of the nanotube CdS-CdTe solar cells 

were studied under dark and 1Sun irradiation using a solar simulator, which was 

calibrated through a standard light meter. Figure 37a shows the current density–voltage 

(J-V) characteristics of the nanotube solar cells under dark and standard 1-sun 

illumination conditions. Extracted J-V data of the CdS-CdTe nanotube solar cells yields 

short current density (Jsc) of 25.5 mA/cm2, open circuit voltage (Voc) of 750mV and fill 

factor of 55.9%, resulting in an overall power conversion efficiency of 10.7%.  
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Figure 36, (a) J-V curves of the nanotube CdS-CdTe solar cells under dark and 1Sun 

illumination. (b) J-V curves of the nanotube CdS-CdTe solar cells as a function of 

illumination intensity. (c) Voc and Jsc of the nanotube CdS-CdTe solar cells as a function 

of illumination intensity. (d) Voc of the nanotube CdS-CdTe solar cells as a function of 

temperature under one-sun illumination. (e), Carrier transport along inner core and 
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intertube space of nanotubes in radial direction, and above the nanotube in axial 

direction, where yellow color represents CdS nanotubes, purple color represents absorber. 

 

Measurement of photovoltaic properties as a function of illumination intensity (Figure 

37b and table 7) shows that the efficiency is varied by 8%, indicating stability of the 

nanobute solar cells under light intensity. Efficiency is substantially higher and reaches 

10.9% at 0.5 Sun illumination. Hence it is possible to improve efficiency exceeding 10.7% 

in the future.  Dependence of Jsc and Voc on the light intensity is shown in Figure 37c and 

table6. The Jsc increases from 6.81 mA/cm2 to 38.8 mA/cm2 and Voc increases from 

675mV to 770mV with light intensity, suggesting that photo-generated carriers are 

dominated and photon flux intensity doesn’t cause obvious increase of reverse saturation 

current, which reveals a well junction at CdS nanotubes and CdTe absorber.   

Table 7  Photovoltaic property of the nanotube CdS-CdTe solar cells as a function of 

illuminations intensity. 
 

Sun 
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0.25SUN 

 

0.5SUN 

 

1SUN 

 

1.5SUN 

6.81 

 

13.7 

 

25.5 

 

38.8 

675 

 

710 

 

750 

 

770 

57.6 

 

56 

 

55.9 

 

50.6 

10.6 

 

10.9 

 

10.7 

 

10.08 

7.75 

 

7.47 

 

4.92 

 

3.95 

935.7 

 

431.6 

 

228.6 

 

128.2 

    



144 

 

The intrinsic SnO2/ITO-soda-lime glass substrate used here has relatively low 

transmittance and hence negatively impacts photocurrent. Still, nanotube solar cells 

exhibit relatively high short current density of 25.5 mA/cm2 under 1-Sun illumination 

without antireflective coating.   High Jsc depends on effective light absorption, and 

efficient carrier generation and collection. In the 3D nanotube solar cell structure, CdTe 

forms junctions with CdS nanotubes in radial and axial dimensions (Figure 37e) because 

CdTe contacts inner core and intertube space of the CdS nanotubes, and the space above 

the nanotubes (Figure 37e). When light illuminates from transparent side, incident light 

transmits through the CdS nantubes and the transparent AAO membrane into the CdTe 

absorber where most of photons are absorbed and generate carriers (Figure 37e).  Hence, 

the light absorption behavior is improved. Carrier transport behavior is another factor for 

high Jsc. Photo-generated electrons in CdTe layer above the plane of CdS nanotubes drift 

readily into the CdS nanotubes along the axial direction and are then collected by the 

front contact. In addition, because the CdTe laterally contacts CdS nanotubes from their 

inner core space and outer wall space, those photo-generated electrons drift into CdS 

along the radial direction (Figure 37e). Thus, more direct paths are provided along three 

dimensions for carrier generation and transport. In other words, carrier generation and 

transport occur in three dimensions which include the axial direction above wall of CdS 

nanotubes, and the radial direction along inner core and intertube space of CdS nanotubes 

(Figure 37e).  It is in this manner that the unique 3D nanotube photovoltaic structure 

facilitates carriers to be effectively generated and collected. 

     The fill factor is attributed to series and shunt resistances. The series resistance is 

estimated to be 4.92Ω/cm2. This series resistance is arising from bulk and contact 
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resistances. One reason is that the graphite paste we used for back-contacts had a sheet 

resistance of 1200-2400Ω/sq.  Low shunt resistance might have been caused by 

contribution from the incomplete isolation caused by less than satisfactory scribing of 

intrinsic SnO2.  Another reason for the low shunt resistance is related to non-optimal 

growth of CdS nanotubes. In short, the fill factor and efficiency can be substantially 

improved in future by optimizing the growth of CdS nanotubes, developing a low-

resistance back-contact to CdTe, and replacing intrinsic SnO2 with high transparent TCO.  

   Diode ideality factor (A), reverse saturation current density (Jo), and shunt conductance 

for the junction performance are extracted from dark J-V curve.  Fits to ln(J)–V data in 

forward bias between 0.5V and 0.8V are approximately linear and yield diode ideality 

factor, A of 2.49 and Jo of 1.210-7A/cm2. From the slope of the J–V characteristic at zero 

bias, the shunt conductance is estimated to be 2.3910-4(S/cm2), which corresponds to a 

shunt resistance of 4184Ω/cm2. A value of A higher than 2 and a relatively high Jo 

indicate that tunneling and interface recombination are participating in the electron and 

hole transport processes across the p-n junction.70  In the dark, the shunt conductance is 

close to the  lower end of shunt conductance values reported in the literature of planar 

CdS-CdTe solar cells.116  This suggests that the interface structure is not a significant 

factor for the shunting effect. Thus I-V analysis indicates that the nanotube solar cells 

have those fundamental diode characteristics which are essential for making solar cell 

devices with power conversion efficiency higher than 10%. However, the diode behavior 

could be further improved for enhancement of power conversion efficiency. 

The Voc value of 750 mV in these nanotube solar cells is higher than the value of 

620mV for the CdS nanopillar solar cells reported earlier.38  However it is lower than 
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845mV, which is the  Voc of the one of the best planar solar cells.32  It is a factor that 

limits the efficiency and needs to be improved in the future.  To identify the processes 

which limit device performance in these nanotube solar cells, we conducted I-V 

characteristics at different temperatures in the 300 ºK -200 ºK range. Figure 37d shows 

Voc as a function of temperature. As expected, Voc increases with decreasing temperature 

due to reduction in temperature dependent losses associated with the reverse saturation 

current of the CdS-CdTe heterojunction. Voc approaching the value of Eg/q=1.45 volts 

(band gap of CdTe absorber) as T approaches zero indicates an ideal p-n junction.71   For 

our device, Voc in Figure 4D extrapolates to a value of 1.18 volts as T approaches 0 K. 

This is lower than the value of 1.45 volts for CdTe and is an indication of the presence of 

non-ideal current transport mechanisms involving tunneling and interface recombination 

at the CdS-CdTe interface.71 We are in the process of devising strategies for reducing the 

tunneling and interface recombination currents at the junction interface in these nanotube 

solar cells. 

For the first time, we have fabricated nanotube CdS-CdTe solar cells with power 

conversion efficiency (PCE) of over 10 %.  The efficiency could be further improved 

through improvement of Voc and fill factor, by means of follows: reducing the densities of 

traps and interface states through optimizing growth of CdS nanotubes and CdTe, 

developing low-resistance back contacts, and better understanding of nanotube junctions 

and interfaces.  

4.5.3.4 Conclusion   

In summary, we first time fabricated and characterized the nanotube CdS-CdTe solar 

cells where CdTe absorber is filled in the inner core space and intertube space of the CdS 

nanotubes. We grown CdS nanotubes with inner diameter, wall thickness and intertube 
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spacing of 35nm, 20nm and 35nm respectively; and a porosity and CdS nanotube density 

are 36.5% and 2.26x1010 nanotubes /cm2 respectively. Such fine features of CdS 

nanotubes enable more efficient carrier collection because of reduced recombination, 

especially in those cases where the minority carrier lifetime is short resulting in a 

diffusion length less than 100 nm. In such nanotube solar cells, carrier generation and 

collection occur in three dimensions which include inner core and intertube space along 

the radial direction, and above the nanotubes along the axial direction. We have 

demonstrated through a very wide and strong quantum efficiency spectra that the 

configured nanotube solar cells can effectively enhance carrier generation and collection. 

In preliminary experiments,  the nanotube CdS-CdTe solar cells, with no additional 

antireflection coating, exhibited short current density of 25.5 mA/cm2, open circuit 

voltage of 750mV, and power conversion efficiency of 10.7% under 1Sun illumination. 

Analysis of the junction characteristics of the nanotube CdS-CdTe solar cells indicated 

well-defined diode junction and interface, with various optimizations, a far higher PCE 

value is reachable. By enhancing generation and collection of carriers in 3D directions, 

such nanotube solar cell configuration will find a general application especially for solar 

cells whose absorbers have short minority carrier lifetime. 
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Chapter 5 Summary and Future Work 

5.1 Design of Nanowire CdS-CdTe Solar Cells Without High Resistivity Buffer 

Layer 

This work has demonstrated that CdTe solar cells including CdS nanowires as window 

layer can enhance spectral response of quantum efficiency at a wide spectrum range and 

strongly improve reliability. Generally, in planar CdS-CdTe solar cells, to reduce the 

absorption loss in planar CdS window layer, one approach was to reduce the planar CdS 

thickness to 50nm. Such planar window layer thinning presents significant challenges i) 

substrate roughness and pinholes can exacerbate shunting and negatively influence open 

circuit voltage (Voc); ii) it necessitates an additional high resistivity buffer layer between 

the TCO and the CdS window layer. The high resistivity buffer layer could increase series 

resistance and manufacturing costs.  

This work has shown that when embedded CdS nanowires are used for the window 

layer instead of the traditional planar CdS film, reliability of power conversion efficiency 

is increased by a factor of approximately 3, and light absorption loss in the window layer 

is strongly suppressed.  This is  because that the CdS nanowires are embedded in the 

absorption-negligible anodized aluminum oxide (AAO) membrane, and the junction 

surface area between nanowire CdS and CdTe is reduced substantially by 68%; and also, 

CdS nanowires in the pores of AAO membrane are crystalline in nature and have low 

density of defect features. Therefore, in the nanowire CdS-CdTe solar cells, it is 

unnecessary to include the traditional high resistivity buffer layer between ITO and 

nanowire CdS. This would lead to reduced manufacturing costs as well as reduced series 

resistance for the solar cells. 
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Therefore, the nanowire CdS-CdTe solar cells can be configured into glass/ITO/CdS 

nanowires embedded in AAO/ CdTe/ back contact structure. In addition, the nanowire 

CdS-CdTe solar cells can be additionally configured into aluminum foil/CdS nanowires 

embedded in AAO/ CdTe/ back contact structure. 

5.2 Route of Improvement Power Conversion Efficiency of Nanowire CdS-CdTe 

Solar Cells 

    We have demonstrated that the nanowire solar cells yielded an open-circuit voltage Voc 

of 770 mV, a short current density Jsc of 26 mA/cm2, a fill factor, FF of 60%, and a power 

conversion efficiency (PCE) of 12%. However, according to theoretical simulation, 

nanowire solar cells can yield 29.84 mA/cm2, Voc of 912mV, the Jsc gain of 19.2%, Voc 

gain of 7.3%, and a cumulative gain of 27.8% in the power conversion efficiency on 

intrinsic SnO2/ITO-soda lime glass substrates. The corresponding gain in the power 

conversion efficiency of the CdTe solar cells on high quality transparent substrates would 

be 30%, where Jsc value is calculated to be 32.1 mA/cm2. 

 Hence, there is a lot of room to improve efficiency of nanowire CdS-CdTe solar cells. 

Low Voc and fill factor are mainly responsible for low efficiency. The low Voc  is related 

with interface states and deep traps. High series resistance and low shunt resistance are 

responsible for low fill factor.  

 Voc and shunt resistance can be improved by optimizing growth of CdS nanowires, 

reducing low vacuum from 0.25 torr to 0.02 torr, increasing deposition temperature of 

CdTe film, and optimizing the CdCl2 heat treatment.  These steps can significantly reduce 

interface states and deep straps, hence increasing Voc and shunt resistance. 

  Series resistance can be obviously decreased by reducing the thickness of bulk CdTe 
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film, and replacing high resistive graphite paste with 1200-2400 Ω/sql with low 

resistance of Cu doped graphite paste. When series resistance is reduced, the power 

conversion efficiency will be significantly improved. 
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