University of Kentucky
UKnowledge

Economics of Food and Agriculture

David L. Debertin
University of Kentucky, dldebertin@uky.edu

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/agecon_textbooks
Part of the Agricultural Economics Commons

Recommended Citation

Debertin, David L., "Economics of Food and Agriculture" (2014). Agricultural Economics Textbook Gallery. 4.
https://uknowledge.uky.edu/agecon_textbooks/4

This Book is brought to you for free and open access by the Agricultural Economics at UKnowledge. It has been accepted for inclusion in Agricultural Economics Textbook Gallery by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

ECONOMICS OF FOOD and AGRICULTURE

THIRD EDITION

DAVID L. DEBERTIN

Preface

Economics of Food and Agriculture (Third edition, 2014)

This is a heavily-revised version of an introductory agricultural economics text book "Economics of Food and Agriculture" that was originally published by Kendall Hunt, in 1990. The information on the original edition is as follows:

- Economics of Food and Agriculture
- David L. Debertin
- Paperback
- Publisher: Kendall Hunt Pub Co (June 1990)
- Language: English
- ISBN-10: 0840359691
- ISBN-13: 978-0840359698

The material is intended for use as a series of classroom presentations for an introductory agricultural economics course. No mathematics prerequisites other than basic algebra are required.

The 1990 versions of this book relied heavily on graphs that I constructed myself using secondary data. Now there are many other detailed sources, most notably the graphs contained in the USDA ERS chart gallery. In updating this version to the present, I retained a few of the graphs that were in the original version, but then located graphs created by the USDA ERS in their Chart gallery in order to add to and supplement the original information.

These slides were originally constructed employing Harvard Graphics routines. At that point in computing history, clip art as opposed to photographs was being used extensively. By retaining some of the quirky clip art from the original version, I have also retained some of the look and feel of the original edition.

This is the introductory-level version of a series of books I have written with microeconomics and production economics. The other available books are:

Applied Microeconomics: Consumption, Production and Markets

This is a microeconomic theory book designed for upper-division undergraduate students in economics and agricultural economics. This book is available as a free download at http://purl.umn.edu/158321

Amazon markets bound print copies of the book at amazon.com at a nominal price for classroom use. The book can also be ordered through college bookstores using the following ISBN numbers:

ISBN-13: 978-1475244342
ISBN-10: 1475244347
Basic introductory college courses in microeconomics and differential calculus are the assumed prerequisites.
Agricultural Production Economics (Second Edition, Amazon Createspace 2012) is a revised edition of the Textbook Agricultural Production Economics published by Macmillan in 1986 (ISBN 0-02-328060-3). As the author, I own the copyright. This is intended primarily for adoption at the beginning graduate level. Amazon markets bound print copies of the book at amazon.com at a nominal price for classroom use. The book can also be ordered through college bookstores using the following ISBN numbers:

ISBN-13 978-1469960647
ISBN-10 1469960648

Agricultural Production Economics is available as a free e-download at http://purl.umn.edu/158319
A companion 100-page color book Agricultural Production Economics (The Art of Production Theory) is also a free download. A bound print copy is also available on amazon.com at a nominal cost under the following ISBN numbers:

ISBN- 13: 978-1470129262
ISBN-10: 1470129264
This book is also available as a free e-download at http://purl.umn.edu/158320

List of Chapters

Chapter 1: Introduction
Chapter 2: The Structure of Agriculture
Chapter 3: Demand and Supply
Chapter 4: Introduction to
Elasticities
Chapter 5: Utility Analysis
Chapter 6: Agricultural Production Economics

Chapter 7: Producer Cost
Chapter 8: Production with Two Inputs or Outputs
Chapter 9: Alternative models of Competition

Chapter 10: Agricultural Marketing
Chapter 11: Credit in Agriculture Chapter 12: Public Policy Chapter 13: Economics of Resources
Chapter 14: Trade in Agricultural Goods
Chapter 15: Economic Systems in Other Countries
Chapter 16: World Food
Chapter 17: Rural Economic Development

Chapter 1: Introduction

An Introduction

 to Agricultural Economics
Problems in Agriculture of an Economic Nature:

1. Historic low returns to labor and other resources 2. Historic low family farm income
2. Government involvement in agriculture
3. Conflicts among taxpayers, consumers, farmers:

Consumers--want a clean, high-quality food supply and cheap food (or food stamps!).
Taxpayers--want low government outlays.
Farmers--want high incomes.
Environmentalists-want food free of chemicals produced in a manner which does not pollute the environment or increase global temperatures.

The interests of all of these groups

 may be in conflict.Farmers cannot have high incomes unless consumers and taxpayers are willing to pay.

Food free of insect damage may have pesticide residues.

Low-cost food may be genetically modified

Choice

Human beings have unlimited wants.
Human beings have limited resources for fulfilling these wants (income is limited).
Economics is concerned with how to best fulfill unlimited wants given limited resources.

Unlimited Wants

Limited Resources

How to Best Fulfill These Wants?

Agricultural Economics

Agriculture is a declining industry, with low returns to resources invested in agriculture. This leads to

problems and opportunities

for agricultural economists.

Model Building

In order to build a model of the real world, you must first understand the real world.
For an agricultural economist, this usually means understanding agriculture.

Agricultural economists abstract from reality when models are built. This means "leaving out" unimportant elements of the problem in order to more fully understand the important elements.

An economic model can be used to

simulate

 what might happen if particular economic policies are put in place.

An economic model can be used to

simulate

what might happen if particular economic policies are put in place.

Micro- versus Macroeconomics:

Micro prefix

"small"
"individual"
"single decisionmaker"
Consumer as the decisionmaker
Producer as the decisionmaker

Macro Prefix

"large"
"whole"
"entire"
Aggregate issues
many producers
many consumers

The U.S. Economy The Farm Economy

Opportunity Cost

If I choose this option, then I forgo the opportunity to do something else.

What is the cost
in terms of
forgone opportunities?

What is my "next best" Alternative?

Assume that $\$ 500,000$ is invested in a farm.
As an alternative, this money could have earned
2\% when invested in a bank certificate of deposit (CD).
Opportunity cost is the return from the next best risk-free investment.
$\$ 10,000$ is the opportunity cost of my \$500,000 investment.

This is an expense, whether we realize it or not.

As an alternative, invest the $\$ 500,000$ in the stock market.

Here the return has averaged 22\% over the last 3 years.
$\$ 110,000$ is the opportunity cost.

BUT-- THE INVESTMENT IS NOT RISK FREE!

Agricultural Economics

Economic problems applied to agriculture.

Some are microeconomic problems concerned with agricultural producers and consumers of agricultural commodities.

Some are macroeconomic problems concerned with how the national economy affects agriculture.

All involve the concepts of:

1. Scarcity (limited resources)

2. Unlimited wants

Within an agricultural setting what is the best, or optimal way to satisfy unlimited wants given limits and scarcity?

What is a Farm?

Old definition (before 1974)
Sells \$250 worth of agricultural products OR

10 or more acres.

New definition (after 1974)
Sells or "could sell"
\$1000 worth of agricultural products.
Lots of small farms!

Total Farm Population

Total People
Living on Farms

Approximately 4,700,000 people were living on farms in 2000 This has changed little if at all from 2000-2010

Farms, Land in Farms and Average Acres Per Farm, 1850-2012

Number of Farms by Sales Class, 2002 and 2007

Source: USDA Census of Agriculture, 2002 and 2007

USDA County Dependence

MINNG/ENERGY MANUFACTURING
METRO UNCLASSIFIED
Legend values are midpoints within the range
Source: USDA. Data are for 1989.

Non-metro Farming-Dependent Counties, 1950

Source: USDA ERS

Non-metro Farming-Dependent Counties, 2000

Source: USDA ERS

Number of farms, US

Source: Compiled from USDA Census of Agriculture Data

Average Acres of All US Farms

Source: Compiled from USDA Census of Agriculture Data

Approximate Percent of Total Sales of Agricultural Commodities by Sales Category, 1960-90

Source: USDA Census of Agriculture, 2007

The U.S. Farm Economy

Declining number of workers in production, output per worker continues to increase, and production of agricultural commodities exceeds demand by those who can afford.

This leads to low prices for agricultural commodities and low returns to many of the resources invested in agriculture.

An Historical Perspective

1960s were characterized by
low prices and oversupply.

Early 1970s were a boom time:
High Prices
Huge Export Market
Rapid Increases in Land Values
Many farmers thought that the
good times would last forever, and that
land prices would increase, forever.

What Happened in the 1980s?

Real interest rates increased
Export markets dried up
Commodity prices plummeted
Land values a fraction of their previous level

By the early 1980s, farming was in a major crisis. Lots of parallels between the farmland value crisis of the 1980s and the home price crisis of 2007-2013

What Happened in the 1990s?

There was a slow recovery as the federal government put big dollars into farm program payments, real interest rates have declined, and agricultural commodity exports increase as the value of the dollar declined.

Most importantly, farmland values began to stabilize, and increased in a few regions

The farming sector continued to face major problems:
Major droughts affected the production of
crops and livestock in 1988 and 1989
Debt/equity ratios returning to "normal."
Federal farm program payments reduced from pre 1988 levels, but still at high levels.

Prices of crops increased from 1987 levels, but beef and dairy producers worse off because of higher grain prices.

What is Happening in the 2000s?

There has been a rapid appreciation in farmland prices (again).
Generally, farmers have done ok, with usually adequate prices and crop yields
Crop producers have probably done better than livestock producers, overall.
Rural areas were generally less adversely affected by the 2007-2008 recession, high unemployment, and declining prices for residences than were urban areas.
The first decade of the 21 ${ }^{\text {st }}$ century was something of an economic rebirth for many rural areas.

There are new opportunities for young farmers.
Long run problems remain:

1. Oversupply--too much capacity to produce
2. Countries that need the food often don't have the money to buy
3. Still low returns to resources used in agricultural production:
-labor
-management
Many farmers still would be better off doing something else!

Chapter 2: The Structure of Agriculture

The Changing Structure of U.S. Agriculture

Number of farms declines nationwide as average acreages increase

Number and Average Acreage of Farms, U.S., 1970-90

Number of Farms, U.S., 1978-2007

Source: USDA Census of Agriculture, Various Years

Since 1990, the total number of farms in the US has changed very little, remaining at just over 2,000,000 farms. There continues to be a decline in numbers of smaller, fulltime commercial farms, but this is approximately offset by increases in numbers of part-time and hobby farms.

Living on small acreage is an increasingly popular Iffestyle!

Total Farm Population:

196015 million
2010 4.7 Million

From 1990 to 2010, the total number of people living on farms in the US has also changed very little, remaining at about 4,700,000 people.
However, the US total population continues to increase, so the percentage of the total US population living on farms continues to decline over time.

Small family farms are 88\% of US farm numbers but only 16% of the Output

Share of total farms and share of value of production, by farm type, 2010

1/ The value of production measures the value of commodities produced in a given year, without the effects of inventory change. It is calculated by multiplying the quantity of each commodity produced by the price of the commodity.
Source: USDA, National Agricultural Statistics Service and Economic Research Service, 2010 Agricultural Resource Management Survey, Phase III.

US Cash Recepts from Crop Sales, 2011

Source: USDA, Economic Research Service.

US Cash Recepts from Livestock Sales, 2011

Number and Size of Farms Varies From State to State

Number of Farms and Average Acreage, Selected States, 2002 and 2007

	Numbers (000)	Average Acreage		
	2002	2007	2002	2007
United States	2,167	2,201	436	418
Arizona	11	16	2,514	1,684
California	83	82	337	311
Indiana	63	62	240	239
Iowa	94	92	346	333
Kansas	65	66	736	705
Kentucky	90	86	152	163
Montana	28	29	2,133	2,068
North Carolina	56	52	166	164
North Dakota	31	32	1,279	1,241
Rhode Island	1	1	75	57
Texas	228	248	573	527
Wisconsin	78	78	206	195
Wyoming	9	11	3,750	2,745

Share of US Agricultural Production from Small Family Farms by Commodity, 2011

${ }^{*}$ Includes barley, corn, grain sorghum, rice, soybeans, wheat, and oats.
**Includes vegetables, fruits/tree nuts, and nursery/geenhouse products.
Note: Small family farms have gross cash farm income (GCFI) < $\$ 350,000$.
Source: USDA, Economic Research Service and USDA, National Agricultural Statistics
Service, 2011 Agricultural Resource Management Survev.

Farm prices have been approximately keeping up with input prices

Prices Received and Prices Paid, US Annual average, 1990-92=100

Source: USDA NASS

Gross Farm income has been increasing in most recent years

Net Farm Income

 is propped up by government payments

Off-Farm income and government payments make up an increasing share of the farmer's Income for many farms

Land and building values declined in many states
 From 1980-1990, but have rebounded spectacularly through 2012

Average Cropland Value, United States

Source: USDA NASS

Land prices have gotten so expensive that fewer and fewer active commercial farmers own significant amounts of their own land, but instead rent land from retired farmers (or their widows).

This often works well for both the active and the retired farmer. The active farmer does not need to tie up cash that could be more profitably used elsewhere in land payments. The retired farmer gets the appreciation (far better than a bank CD) as well as a steady income stream from the rent paid.

The Demand for Farm Machinery tends to move with crop prices (and income tax considerations)

1970
1990
2010

Retail Sales of Two- and Four-Wheel Drive Tractors, 1970-89

Total Wheeled Tractor Sales, US and Canada. 2003-2012

Year
Source: Deere publication

Consumption patterns for agricultural commodities are changing

Price of Beef

Quantity of Beef Consumed Per Year

Food Accounted for 15\% of Household Expenditures in 2011

Note: Other includes personal care products, tobacco, and miscellaneous expenditures, Source: U.S. Bureau of Labor Statistics, Consumer Expenditure Survey, 2012.

Per Capita Meat Consumption 1960 and 1988

1988

Per Capita Consumption of Meat 1960-90 (lbs.)

carcass weight basis

Per Capita Consumption of Meat 1960-90 (Percent of Total)

Per Capita Meat Consumption, 2009

Per Capita Consumption of Meat, Pounds per Capita, 1980-2009

Per Capita Consumption of Meat, as a Percent of the Total, 1980-2009

Food Eaten At Home And Away From Home

Expenditures on Food Eaten at Home vs Away-From-Home, 2011

- Food away from home
\square Food at home

By 2011, expenditures on food eaten at home was 51% of the total, and expenditures on food eaten away from home was 49% of total expenditures!

Farmers Share of Food Dollar At Home and Away From Home

At Home

Away From Home

Household income varies by commodity specialization, 2011

Dairy farmers get most of their household income from the cows: Not true for beef producers!

90 years of Structural Change in U.S. Agriculture

Year	1920	1950	1980	2000	2010
Number of farms (thousands)	6,518	5,648	2,440	2,167	2,192
Average farm size (acres)	147	213	426	436	419
Rural share of population (percent)	48.8	36.0	26.3	21.0	19.3
Farm share of workforce (percent)	25.4	12.1	3.4	1.8	1.6
Farm share of GDP (percent)	7.7	6.8	2.2	1.0	0.9

Note: 1920 data for farm share of GDP not available. Value reported is for 1930, as calculated by the Department of Agriculture, Economic Research Service.
Source: Department of Agriculture, National Agricultural Statistics Service, Farms, Land in Farms, and Livestock Operations; Bureau of Economic Analysis, GDP by Industry; Sobek (2006); CEA calculations.

Source: 2013 Economic Report of the President

Chapter 3: Demand and Supply

Demand

A Schedule Showing the
Amounts of a Good
Consumers are
Willing and Able to Purchase
At a Specified Set of Prices
During A Specified Period of Time

Quantityl unit of time

A Demand Schedule

Price
\$

Quantity Demanded Per Unit of Time
10
8
7
6
4
3
1
1
6

Supply

A Schedule Showing the
Amounts of a Good Producers Are Willing and Able to
Place on the Market
At a Specified Set of Prices
During A Specified Period of Time

Price

Quantity/ unit of time

A Supply Schedule

Price \$

Quantity Supplied Per Unit of Time

10
8
7
6
4
3
1 6
5
4
3
2
1
0

Equilibrium Demand and Supply Conditions

Equilibrium Conditions

Price $\$$	Quantity Demanded			Quantity Supplied
	10	0	6	
	8	1	5	
	7	2	4	
	6	3	3	Equilibrium
	4	4	2	
3	5	1		
	1	6	0	

Quantity/ unit of time

Q* Quantityl unit of time

Price

Q*
Q_{n} Quantityl unit of time
Shift in Demand

$Q_{n} \quad Q_{0}^{*} \quad$ Quantityl unit of time Shift in Demand

Shifters of the Demand Curve

1. Number of Consumers
2. Consumer Income
3. Consumer Tastes and Preferences
4. Consumer Expectations
5. Prices of Substitute And Complementary Goods

$\mathrm{Q}_{\text {* }}^{*} \quad \mathrm{Q}_{\mathrm{n}}$ Quantityl unit of time

Qn Q Quantityl unit of time

Shifters of the Supply Curve

1. Number of Producers
2. Costs of Production
3. Producer Expectations
4. Prices of Related Goods
5. Technology

Qo $\quad Q^{n}$ Quantityl unit of time

Chapter 4: Introduction to Elasticities

An Elasticity measures the responsiveness of one economic variable to changes in another economic variable

For example,
How responsive is quantity supplied to changes in the price of a good?

How responsive is quantity demanded to changes in the price of a good?

Any Elasticity is a Pure number...

 That is,
Elasticities have no units such as \$, lbs. or bushels

 3$$
\text { s -1.2 }{ }_{4.6}-0.06
$$

Any elasticity is a

ratio of two

 percentage changes in two different economic variablesPercent change in quantity demanded
Percent change in price

For example,

Suppose the two economic variables are

Quantity Demanded (Qd)

 and Price (P)

The Elasticity of Demand is defined as

The percentage change in Quantity Demanded divided by

the percentage change in Price

or as

$\% \triangle \mathbf{Q d}$
 $\% \triangle \mathbf{P}$

where \triangle denotes change
Greek Delta

An elasticity of demand is not the slope of the demand curve but is linked to the slope

For most (but not all!) demand curves the elasticity of demand varies as you move along the demand curve

Quantity/ unit of time

Price

0
C
Quantity Demanded/ unit of time

Quantity Demanded/ unit of time

Quantity Demanded/ unit of time

Demand elasticities are negative

 because price and quantity demanded move in opposite directions.Price up; Quantity Demanded down.

Elastic demand: a number more negative than -1

$$
-2,-3,-6.5
$$

Inelastic demand: A number between 0 and -1

$$
-0.2,-0.3,-0.73
$$

Unitary elasticity of demand: exactly -1

A Curve with Unitary Elasticity Everywhere

-1 elasticity of demand everywhere

Price

Quantity demanded per unit of time

$B C=O B$ Elasticity of demand =-1

0
 B
 C

Quantity demanded per unit of time

Quantity demanded per unit of time

Calculating Demand

 Elasticities

Suppose that

Price INCREASES

from \$6 to \$8 and Quantity Demanded DECREASES
from 12 units to 8 units

$$
\begin{gathered}
\frac{\% \triangle \text { in Qd }}{\% \triangle \text { in Price }}=\frac{\frac{8-12}{10}}{\frac{\$ 8-\$ 6}{\$ 7}}=\frac{7 \times-4}{10 \times 2} \\
=-28 / 20=-1.4=\text { Ed } \quad \text { Elastic! }
\end{gathered}
$$

Two Demand Curves
 Price

Quantity demanded / unit of time

D2 is more ELASTIC than D1 Qd is more responsive to Price change for D2 than D1

But, certain points on D2 are less elastic than certain points on D1

This is because
elasticities change
as you move along
the demand curve

Other Elasticities

Price Elasticity of Supply

$$
E_{s}=\frac{\% \triangle \text { in } Q_{s}}{\% \triangle \text { in } P}
$$

Usually Positive

Income Elasticity of Demand

$$
\mathrm{Ei}_{\mathrm{i}}=\frac{\% \triangle \mathrm{in} \mathrm{Q}_{\mathrm{d}}}{\% \triangle \text { in Income }}
$$

Usually Positive
Occasionally negative
Income Elasticity of Demand for hamburger

Engel Curve

Links Income and Quantity Demanded

Food

Clothing

Chapter 5: Utility Analysis

Utility:

A Measure of the Amount of
SATISFACTION
A Consumer Derives from Units of a Good

Utility as a basis for Demand

David's Utility Schedule for Hamburgers Number Total Utility

0	0
1	6
2	11
3	15
4	18
5	20
6	21
7	21.1

Diminishing Marginal Utility:

Each ADDITIONAL hamburger Produces Less and Less

ADDITIONAL SATISFACTION

David's Utility Schedule for Hamburgers

Number Total Utility Marginal Utility

0	0	$(6-0) / 1=6$
1	6	(11-6)/1 = 5
2	11	$(15-11) / 1=4$
3	15	$(18-15) / 1=3$
4	18	$(20-18) / 1=2$
5	20	$(21-20) / 1=1$
6	21	$(21.1-21) / 1=0.1$
7	21.1	(21.1-21)/1 = 0.1

Each additional hamburger produces less and less additional utility

Indifference Curve:

All Possible Combinations of Two Goods that Produce the Same Amount of Total Utility

Budget Line

Assume:

Price of Hamburger is $\$ 1.00$
Price of French Fries is \$.50 Income is 7.50

Could Purchase 7.5 Hamburgers 0 French Fries
or 15 French Fries, 0 Hamburgers or 9 French Fries, 3 Hamburgers

Many other feasible combinations with the $\$ 7.50$ of income

Price of Hamburgers /Price of French Fries
= Slope of Budget Line

Marginal Rate of Substitution of Hamburgers for French Fries
= Slope of Indifference Curve

Optimum Combination:
3 Hamburgers, 9 French Fries
where
Price of Hamburgers/Price of French Fries = Marginal Rate of Substitution of Hamburgers for French Fries

Impact of More Income

A new, higher budget line with the same slope
but reaches a higher indifference curve

Impact of Price Change for Hamburgers

Hamburgers
Special Today
All you can eat
50 cents each

Tracing the Demand Curve for Hamburgers

A Demand Schedule for Hamburgers

Consumer demand has its roots in consumer utility theory

Chapter 6: Agricultural Production Economics

Production with One Input and One Output

A Production Function:

Transformation of input into output

A technical relationship
(not behavioral)

Input:

Fixed versus Variable Inputs

Fixed--

> Farmer does not expect to vary

Over the planning horizon

Variable--

Farmer expects to vary
Over the planning horizon

Length of Planning Horizon:

 in the mind of the farmer 6 months?The Growing Season?
2 years?
10 years (for Christmas trees)?
Only the farmer knows for sure

Old idea--

Inputs could be categorized

Land--fixed
Labor--variable
Machinery--fixed (sort of!)

Not a correct idea

Correct idea:
Planning horizon determines whether inputs are fixed or variable

Short Run--All inputs fixed Intermediate Run--Some fixed, some variable
Long Run--All inputs variable

Inputs:

Traditional list

Land
Labor
Capital
Management t_{1}

With capital you can purchase

 land and laborIs management an input??

$$
x_{2}^{11}=
$$

A Production Function:

$Y=f(X)$

$\mathrm{Y}=$ output such as bu. of corn
$\mathrm{X}=$ input such as fertilizer
$f(x)=$ rule for transforming X into Y such as:

$$
\begin{aligned}
& Y=3 X \\
& Y=X^{0.5} \\
& Y=.3 X+.05 X^{2}-.002 X^{3}
\end{aligned}
$$

Each of these are production functions

The output
The Variable input

$\left(\begin{array}{ll}x_{2} \\ \times 3\end{array}\right.$

Inputs treated as fixed

Specific amount of output from a specific amount of input

Marginal Product

The incremental change in output associated with a 1 unit change in the use of the input

Marginal Product of input X : $\triangle y=$ change in y $\Delta x=$ change in x

$\triangle \mathrm{y}=$ change in y
$\triangle \mathrm{x}=$ change in x
= Marginal Product

Also called Marginal Physical Product or MPP for short

Diminishing,

Constant
and Increasing
Marginal Product

Case 1:

Constant Marginal Product

Constant Marginal Product

Output (y)

Constant slope

0

$$
\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}
$$

Constant Marginal Product

Output (y)

$$
y=2 x
$$

Constant slope

Triangles all the same size and slope
1 unit across
2 units up
1
1
2
4
Input (x)

Constant Marginal Product

Output (y)

$$
y=2 x
$$

Constant slope

Each additional unit of X produces two additional units of Y
1
1
2
4
Input (x)

Output (y)

1
0

$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$

Input (x)
Constant Marginal Product of b

Constant Marginal Product

 MPP
$x \quad \triangle x \quad y \quad y$
 $\triangle \mathrm{yl} \triangle \mathrm{x}$

Constant Marginal Product

 MPP| x | $\triangle x$ | y | y |
| :---: | :---: | :---: | :---: |$\quad \triangle y I \triangle x$

12

24

3
6

4
8
$5 \quad 10$

Constant Marginal Product

 MPP

Constant Marginal Product

 MPP

Constant Marginal Product

 MPP
b = Marginal Product of an Additional Unit of x

Constant MPP

$$
\frac{\Delta y=b}{\triangle x}
$$

Case 2:

Increasing

Marginal Product

$$
\begin{array}{r}
11 \\
6.5 \\
\\
3.5 \\
2 \\
0.7
\end{array}
$$

Output. (y)

Increasing

 marginal returns to thevariable input
$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad$ Input (x) Increasing Marginal Product

Increasing Marginal Product MPP

| x | $\triangle \mathrm{x}$ | y | $\triangle \mathrm{y}$ |
| :---: | :---: | :---: | :---: |$\quad \triangle \mathrm{Y} / \triangle \mathrm{x}$

2
2.0

3
3.5
$4 \quad 6.5$
$5 \quad 11.0$

Increasing Marginal Product MPP

Increasing Marginal Product

 MPP increases as x increases MPP

Increasing Marginal Product

 MPP increases as x increases MPP

Case 3:

Decreasing (Diminishing) Marginal Product

Output ${ }^{(y)}$
Decreasing (Diminishing) Marginal Product

1
0
1
2
3
4
5
Input (x)

Decreasing Marginal Product

$$
\begin{array}{rl}
\\
x \triangle x & y
\end{array} \quad \triangle y \triangle y / \triangle x
$$

Decreasing Marginal Product

		MPP	
$\mathbf{x} \triangle \mathbf{x}$	\mathbf{y}	$\triangle \mathbf{y}$	$\triangle \mathrm{y} / \triangle \mathbf{x}$

Decreasing Marginal Product

$\mathbf{x} \triangle \mathbf{X}$	y	$\triangle \mathrm{y}$	$\begin{array}{r} \quad \mathrm{MPP} \\ \triangle \mathrm{y} \\| \mathrm{x} \end{array}$
0	0		
	5		
	7		
3	8		
4	8.5		
5	8.8		

Decreasing Marginal Product

Decreasing Marginal Product

As the use of x increases, MPP decreases MPP

A Neoclassical Production Function

$$
X_{1} \mid X_{2} X_{3} X_{4} X_{5}
$$

A Neoclassical Production Function

Y

$$
X_{1} \mid X_{2} X_{3} X_{4} X_{5}
$$

A Neoclassical Production Function

$$
X_{1} \mid X_{2} X_{3} X_{4} X_{5}
$$

A Neoclassical Production Function

$$
X_{1} \mid X_{2} X_{3} X_{4} X_{5}
$$

A Neoclassical Production Function

$$
X_{1} \mid X_{2} X_{3} X_{4} X_{5}
$$

A Neoclassical Production

 FunctionMaximum TPP
\mathbf{Y}
Decreasing MPP

$$
X_{1} \mid X_{2} X_{3} X_{4} X_{5}
$$

A Neoclassical Production

 Function ${ }_{\text {maximum TPP }}$

$$
X_{1} \mid X_{2} X_{3} X_{4} X_{5}
$$

Law of Diminishing

(Marginal) Returns

As units of the variable input $\left(X_{1}\right)$ are added to units of the fixed inputs ($X_{2}, X_{3}, X_{4}, X_{5}$)
we eventually reach a point
where each ADDITIONAL unit
of the variable input (X_{1}) produces Less and Less ADDITIONAL output!

$$
X_{1} \mid X_{2} X_{3} X_{4} X_{5}
$$

Average

 Physical
Product

The ratio of output to variable input

> YIX
$\mathrm{YIX}_{1} \mid \mathrm{X}_{2} \mathrm{X}_{3} \mathrm{X}_{4} \mathrm{X}_{5}$
Average product of ALL units of X used (not the incremental unit)

TPP and APP

Input	Output (TPP)	APP
X	Y	Y / X
0	0	undefined
1	7	7
2	16	8
3	21	7
4	24	6
5	25	5
6	18	3

Marginal Physical Product Average Physical Product \sim_{n}^{\sim}

Do They have a Relationship???

MPP, APP
Maximum Positive but Decreasing APP
Positive
and Increasng APP


```
            Inflection
            Point of
        TPP
            Maximum
MPP,
APP
```

Maximum APP Positive
and Increasng APP

```
Positive but
Decreasing APP
APP
0
\[
X_{1} \mid X_{2} X_{3} X_{4} X_{5}
\]
```


Elasticity of Production

measures:

responsiveness of output to changes in the use of Inputs

A pure number
(has no units)

Elasticity of Production

 \% Change in output (Y)= divided by
\% Change in input (X)
$\frac{\% \triangle \text { in output } Y}{\% \triangle \text { in input } X}$

Elasticity of Production

\% \triangle in output Y

 \% \triangle in input $X$$=\frac{\triangle \mathbf{Y} / \mathbf{Y}}{\triangle \mathbf{X} / X}$
$=\Delta \underline{Y} \cdot \frac{X}{Y} \quad=$ MPP/APP MPP 1/APP
\%/ in output Y $\% \triangle$ in input X

= MPPIAPP

The Elasticity of Production (E_{p})
is the Ratio of MPP to APP

Ep > 1
 $0<E_{p}<1 \quad E_{p}<0$

(MPP>APP) $\quad E_{p}=1$

$\$$

When the elasticity of production is greater than one, MPP lies above APP, APP is increasing, but MPP may be either increasing or decreasing.

When the elasticity of production is between zero and 1, both MPP and APP are decreasing. However, MPP is positive here.

Wnen the elasticity of production is negative, MPP is negative, and TPP is falling. However, APP still remains positive.

Profit Maximixation: 1 input (X) and 1 output (Y)

Assumptions:

1. Constant Input Price

The producer can purchase as much or as little of the needed input at the going market price.

No producer can affect input prices by the amount of the purchase.

2. Constant Output Price

No producer can affect the price of the output (Y) because of the individual production decision.

The price of the input is \mathbf{V}. The price of the output is P.

3. Production Function Known with Certainty

This is an unrealistic assumption for agriculture!

Profit =

Total Revenue - Total Cost

$$
\begin{aligned}
& \Pi=\text { TR }- \text { TC } \\
& \Pi=P Y-V \cdot X \quad \text { but } Y=f(X)
\end{aligned}
$$

so

$$
\Pi=P f(X)-V \cdot X
$$

Total Value of Product
Total Factor Cost

Maximizing Profit:

Maximize the difference

 between
TVP and TFC

П Р.f(X)-V.X
Total Value of Product
TVP TFC

Total Factor Cost

What is the appearance of a

TVP CURVE?

The TVP curve is a production function with the vertical axis measured in dollar value of output, not physical units such as bushels or pounds.

$$
T V P=P \cdot T P P
$$

Production Function

TVP Curve

What is the appearance of a
Total Factor Cost (TFC) Curve?

Total Factor Cost (TFC) Curve

Now Superimpose TVP Curve

Profit is maximum where slope of TVP
= Slope of TFC

Slope of TVP = Slope of TPP ${ }^{\text {' }}$

$$
\begin{aligned}
& =\text { MPP'P } \\
& =\text { MVP }
\end{aligned}
$$

= Marginal Value of the Product
So profits are maximum where: Slope of TVP = Slope of TFC MVP = MFC
MVP = V
MVP = the input price,
assuming constant input and output prices

Stages

of
Production

Stage I

0 units of X
 to level of X which Maximizes AVP

Stage II

Level of X that Maximizes AVP

> to
> Level of X that Maximizes TPP $(0 \mathrm{MVP}$ and 0 MPP$)$

Stage III

Level of X that

 Maximizes TPP (0 MPP)
and Beyond

The Rational Producer...

1. Never produces beyond the point of maximum TPP (input prices are never negative)
2. Produces at the point of maximum TPP only if the input is free!
3. Does not normally produce in stage I of Production

Stage II is the

Rational Stage of Production
Where the profit maximizing point is found

Why not stage I?

\author{
AV

0
} AVP=APP.P

Draw an AVP curve. Pick any point on the AVP curve. Average Value of the Product = Average Physical Product times the product price

Stages of Production
 and Elasticities of Production

Stage I Ep > 1
 Stage II $0<E p<1$ Stage III Ep < 0 Rational Stage where $0<E p<1$

Ep > 1
 $0<E_{p}<1 \quad E_{p}<0$

(MPP>APP) $\quad E p=1$

$\$$

Stage I Stage II Stage III

$$
E_{p}>1 \quad 0<E_{p}<1 \quad E_{p}<0
$$

$$
(\text { MPP>APP }) \quad E p=1
$$

$\$$
0

Stage I Stage II Stage III

The Demand Curve for a Singe Input

All Points of Intersection Between MFC and MVP that lie in Stage II of Production

The Quantity of Input the Producer Would Use to Maximize Profits at Each Possible Input Price

Chapter 7: Producer Cost

Costs of Production

The Total Variable Cost

Curve

tet

Output
 (Y)

Output (Y)

Output
 (Y)

Output
 (\%)

Y^{*}

Output

(Y)

Links between TVC and the Production Function

TVC Function

TVC is the Mirror Image

of the Production Function

Now introduce

Total Fixed Cost

Fixed Costs Do Not Vary with output

$\$$

Total Cost = Total Variable Cost + (Total) Fixed Cost TC = TVC + (T)FC*

*leave off the T to avoid confusion with Total FACTOR Cost

Output
 (Y)

TC/Y = Average Cost = AC
TVC/Y =Average Variable Cost = AVC

Slope of TC or Slope of TVC
 = Marginal Cost = MC

Marginal Cost (MC) =

 Change in TC (or TVC) divided byChange in Output $\triangle T C / \triangle Y$

This is the cost of the Incremental unit of output

Total Revenue (TR) = Price (P) of output times the quantity of output (Y) produced

$$
T R=P \cdot Y
$$

Marginal Revenue (MR) =

 Change in Total Revenue (\triangle TR) divided by
Change in Output ($\triangle \mathrm{Y}$)

 $\triangle T R I \Delta Y$This is the return from the incremental unit of output

If the Product Price is Constant then Marginal Revenue is Constant

The producer can sell as much or as little as he wants at the going market price!

Farmers are Price-Takers

Average Fixed Cost (AFC) =

 Total Fixed Cost (FC) divided by Output (Y)$$
\begin{aligned}
& \text { AFC = FC/Y } \\
& \text { FC is constant }
\end{aligned}
$$

As output increases:

Y becomes larger and larger, and AFC becomes smaller and smaller

Form a rectangle, beginning with any point on the Average Fixed Cost curve.

Points A, B, and C are examples.
The areas of each of the three rectangles shown are equal.

The area of each of these rectangles is equal to total Fixed Cost (FC).

\$/Y

AFC

Output (Y)

Profit Maximization: the Output Side

$1 /$

Classic Rule:

Profits are Maximum

 whenMarginal Cost = Marginal Revenue

> MC=MR

Profit Maximizing Level of Output Y where

 Marginal Cost = Marginal RevenueMC=MR

Impacts of Changing

 Product Prices
Assumption:

The Demand Curve Faced by the Firm is Horizontal

The firm can sell as much or as little as it wants at the going market price

Demand is PERFECTLY ELASTIC

Output

These conditions apply in the Short Run

In the long run all costs are variable, and all costs must be covered

Short Run Supply Curve for the Firm:

That portion of MC above AVC

(Producer's willingness to Supply at Possible Prices)

Long Run Supply: Supply is MC above AC AC= AVC since all costs variable No FC or AFC

Length of Run, Costs, and Supply for the Firm

Very Long Run:

All Costs Variable Supply Curve is MC above AVC AVC = AC since $\mathrm{FC}=0$

Long Run:

 Most Costs Variable A Few Fixed Costs Supply is MC Curve above AVC AC not equal to AVC
Short Run:

Most Costs Fixed A Few Variable Costs AC not equal to AVC Supply is MC above AVC

Very Short Run:

 All Costs Fixed AC = AFC Perfectly Inelastic SupplyPrice
Supply

Fixed/Variable cost distinction

 existsin the mind of the decisionmaker

Sunk Cost

a cost which cannot be recovered
Seed in the ground can't be taken out again

Links between

 profit maximization on the input and

1. The input level where MVP=MFC produces the output level where MR=MC.
2. The input level on the inflection point of the TPP (TVP) curve produces the output level on the inflection point of the TVC curve.
3.

The input level that maximizes APP (AVP) produces the output level that minimizes AVC.

The input level that maximizes MPP (MVP) produces the output level that minimizes MC.

Chapter 8: Production with Two Inputs or Outputs

Agricultural Production Economics: Two Inputs

or Two Outputs

Factor-Factor Relationships

Two Inputs,
One Output

Production Function:

Variable inputs
Fixed inputs Output (TPP)*
*Total Physical Product

Isoquant
 (equal quantity)

X_{1}

Isoquants are

bowed inward because

 of the law of diminishing (marginal) returns Inputs are more productive when used with each other
Types of Isoquants:

Ammonia
82 \% N

Perfect Substitutes

Tractor Drivers Fixed Proportion

Nitrogen

Imperfect Substitutes (the normal case)

Marginal Rate of Substitution

$$
\operatorname{MRSX}_{1} \mathrm{X}_{2}=\triangle \mathrm{x}_{2} \| \Delta \mathrm{x}_{1}
$$

Marginal Rate of Substitution

$\operatorname{MRSX}_{1} \mathrm{X}_{2}=\triangle \mathrm{X}_{2} I \Delta \mathbf{x}_{1}$
Not constant, but the
slope varies along the isoquant: nitrogen and phosphate fertilizers are not perfect substitutes!

Isocost (Budget Line) for Fertilizer

Phosphate Fertilizer
X_{1}

Isocost (Budget Line) for Fertilizer

75 lb Phosphate 50 lbs Nitrogen

10016 Phosphate

Superimposing the Isoquant on the Budget Line:

Phosphate Fertilizer
X_{1}

Superimposing the Isoquant on the Budget Line:

Slope of Isocost =

Price of Phosphate

- Price of Nitrogen

Slope of Isoquant $=\quad-\frac{\triangle \text { Nitrogen }}{\triangle \text { Phosphate }}$

Superimposing the Isoquant on the Budget Line:

Slope of Isocost =
 Price of Phosphate

- Price of Nitrogen

Nitroge

Slope of I

Slope of Isoquant $=-\frac{\triangle \text { Nitrogen }}{\triangle \text { Phosphate }}$

Optimum Combination
where
Price of Phosphate
Price of Nitrogen

Nitrogen X_{2} Optimum Combination where

Fert-

 izer80 lbs

$$
=\frac{\triangle \text { Nitrogen }}{\triangle \text { Phosphate }}
$$

60 lbs
Phosphate Fertilizer
X_{1}

60 lbs
Phosphate Fertilizer
X_{1}

Selection of Combinations of Farm Enterprises

Product-Product Relationships

Two Products
One Variable Input

Production Function for Corn and Soybeans

Input X
Phosphate

Input X
Phosphate

Corn Yields Higher than Soybean Yields

Assume:

Farmer has 100 lbs Phosphate total
How should it be allocated
between corn and soybean production?
Depends on prices of corn \& soybeans

Data from Production Functions

Total	Phosphate	Phosphate	Corn	Soybean
Phosphate	on	on	Yield	Yield
Used	Corn	Soybeans	bu/Acre	bu/Acre

Data from Production Functions

Total Phosphate Used	Phosphate on corn	Phosphate on Soybeans	Corn Yield bul/Acre	Soybean Yield bul/Acre
100	100	0	135	0
100	80	20	133	20
100	60	40	125	28
100	40	60	110	35
100	20	80	60	41
100	0	100	0	45

Assume:

Price of Corn \$3.00/bu Price of Soybeans

\$8.00/bu

Isorevenue Line
All combinations of Corn and Soybeans that Produce the Same Total Revenue
for example, \$1000
could be produced from 125 bushels soybeans or 333 1/3 bushels corn Other possibilities????

Corn Q 333 1/3 bu.

Isorevenue for $\$ 1000$ total revenue

Soybean Price

Corn Price

Now Bring Back

Production Possibilities Curve

${ }^{160}$ Solution: 60 lbs Phosphate to Soybeans 140 - 40 lbs Phosphate to Corn

Output Expansion Path:

Connects points of tangency between the Product Transformation Curve and the isorevenue lines

This is a path along which the firm would expand as production of the two outputs is increased.

The slope of Product Transformation Curve equals the negative of the Rate of Product Transformation.

The slope of the Isorevenue Line equals the negative ratio of the output prices.

At the point of tangency between the Product Transformation Curve and the Isorevenue Line, the slope of the Product Transformation Curve and the slope of the Isorevenue Line are equal.
The Output Expansion Path connects all of these points.

The Rate of Product Transformation (RPT)

 is the negative of the slope of theProduct Transformation Curve.
Hence, the Rate of Product Transformation is

At the point of tangency between the Product Transformation Curve and the Isorevenue Line

$\frac{\triangle \text { Corn }}{\triangle \text { Soybeans }}=\frac{\text { Price of Soybeans }}{\text { Price of Corn }}$

For a specific input, or resource level, this is the optimum amount of corn and soybeans to be produced.

Chapter 9: Alternative models of Competition

Perfect and Imperfect Competition

Models of Competition

Perfect (Pure) Competition

Horizontal demand curve
P = MR = AR
No individual firm large enough to influence price

Demand "perfectly elastic"
(infinite elasticity)
Profit maximum where MC=MR Homogeneous product
(your corn and mine!)

Output

Price

No profit in long run equilibrium.

Output

Models of Competition

Monopolistic Competition

D not equal to MR
Demand curve not horizontal
(slight downward slope)
Demand elastic but not perfectly so
Some product differentiation
Elasticities more negative than -1
Examples: -3, or -25
Canned peas!!!

Price

Output

In monopolistic competition, pure (economic) profit is possible, but not assured in long run equilibrium.

Models of Competition

Oligopoly

"Few" sellers
Pricing and output decisions by firm linked to pricing and output decisions of other firms
in the industry
"Kinked" demand curve
Competition ignores price increases but follows price decreases
Prices tend to be sticky

For an Oligopoly, there are possible pure profits in the Long Run

Airlines, Automobiles and Computers
Product differentiation
is a key
characteristic

Impact of Changing Marginal Costs on Oligopoly Pricing

Models of Competition

Monopoly

1 Firm

Firm is the industry
There can be long run profits
Not always profitable
(Monopoly in hula hoops!)
Patents, licenses
D not equal to MR
Elasticity depends on how badly consumers need (want) the good
Are there good substitutes ?
Polaroid???

Contemporary views of Imperfect Competition

Bain Model (due to Joe Bain)

Economic Structure
 Conduct of Firms

Economic Structure

Conduct of Firms

4 P's
Price
Product
Promotion
Predatory practices

Industry

 PerformanceNumber of firms in Industry
Percentage of output by
Top 5, top 10 etc.
Concentration
ratio
Concentration
ratio

S

Do arrows run both directions???

Economic

 Structure
Conduct of

Industry Performance
s
C
P

Firm Growth options:

1. Horizontal mergers
2. Conglomerates
3. Vertical integration
4. Internal growth through reinvestment of profits

Limits to Growth:

1. Competition in industry
2. Access to capital markets
3. Demand for goods produced
4. Antitrust laws
5. Overall profitability
6. Patents, licenses
held by others

Agricultural Bargaining

Farmers are (usually) price-takers
Cooperatives formed: inputs--Southern States, Cenex outputs--dairy coops
attempt to cooperate to get lower input prices higher output prices
works (sometimes!)
dairy and oranges but not wheat and beef

Chapter 10: Agricultural Marketing

Marketing of Agricultural Commodities

Marketing Creates

Form Utility
 Time Utility Place Utility

The farm value represents only slightly more than a fourth of the price of food at the grocery store. The remainder consists of labor in processing and distribution, transportation, advertising, and other wholesaling and retailing costs.

Estimated Components of Retail Food Prices (\%)

\square Profits
- Packaging
-Transportation
- Other
Labor
- Farm Value

Law of Comparative Advantage

Corn

IN 130 bulAcre ND 70 bulAcre

Wheat

50 bu/Acre
40 bu/Acre

Indiana has Absolute Advantage in both corn and wheat production
North Dakota has a Comparative Advantage in wheat production
Indiana produces corn; North Dakota wheat then trade!

Need for Marketing

Approaches to the Study of Marketing

1. Functional approach

What functions is the market to perform???
a. Bring buyers \& sellers together
b. Processing, storage, transportation
c. Grading
d. Information, risk-bearing

Exchange functions:

where goods are traded
packaging, labeling, advertizing, promotion locating supplies of the good assembly

Physical Functions:

Form utility Time utility Place utility

Storage and transportation (oranges grown in California eaten in Kentucky)

Facilitating functions:

Increasing operational efficiency

Increasing pricing efficiency
P=MC????
Financing
Risk-bearing

Market information

 collection, dissemination, analysis

Approaches to the Study of Marketing

2. Institutional approach

Activities of organizations \& people
Merchant-middlemen take title to goods buy from wholesalers
Example: shopping mall merchants
What functions does a shopping mall perform?
A shopping mall is a MARKETING INSTITUTION
Comprised of MERCHANT MIDDLEMEN

Agent Middlemen
Do not take title to goods
Livestock auction
Compare a livestock auction with a shopping mall
Commissionmen \& brokers
often work on a percentage basis

Speculative Middlemen

Assume risk Seek gain
Hold title to goods or contracts
Gains from assuming risk

Facilitative organizations Chicago Board of Trade Minneapolis Grain Exchange

Commodity Futures Trading Commission Rules of the Game!

Approaches to the Study of Marketing

3. Structural approach

Bain Model

Marketing Margins

Difference between retail and wholesale price

Gross returns to retailer
Not net returns!
Not a measure of farmer's well being
Retail groceries 2\% profit on
gross sales
Markups surely higher than 2\%

Farmer's share of the food dollar is

an interesting statistic (under 16\%), but not a measure of the well-being of farmers

An indication of how much processing is involved Fresh beef vs TV dinner
Would farmers be better off if
consumers did not eat so many TV dinners?
(Alternately, does anyone still know what a TV dinner is??? Maybe substitute fast food!)

Futures Markets

Buy or sell contract
for future delivery of a good
Corn, soybeans, beef
Farmer: interested in locking in a price
Processor has similar interest
Farmer sells contract to deliver in future
Processor buys contract
Contract sets price, grade, delivery location \#2 corn at Mpls

A trader need not produce or want grain in order to buy or sell contracts

Speculators

Assume risk due to price fluctuations
Bet that price will move upward if they buy a contract downward if they sell a contract

Sell purchased contract later for higher price Buy back sold contract later for lower price Profit if speculator guesses the correct movement Losses otherwise
That's the risk involved

Contracts purchased and sold on margin Contract for 5000 bu. wheat
Speculator puts up only
a small percentage of value of the 5000 bushels of wheat
Big gains
Big losses

Losses can exceed money put up
Limits to how far prices move each day
(the market closes when the limit is reached)
Market moves rapidly
in "wrong" direction
Speculator can't get out
Liable for all losses due to price movement, not just the margin

Not for amateurs

Hedging

Objectives:
Reduce price uncertainty
Ensure a profit, if possible
Need to know:
Production potential
(how much do you intend to produce?)
Costs of production
Acceptable profit level

Hedging Dangers:

> Crop failure Death of livestock Price increases \quad (margin calls) Financing

Farmers therefore usually hedge only a portion of estimated production

Hedging Procedure:

Sell a contract for future delivery If price stable or declines Cost is margin plus brokerage fees
Buy back contract when crop is harvested Purchased contract cheaper than contract sold earlier

Futures contract price for commodity is ensured Sell crop produced on cash market
"Losses" offset by gains on futures contract In effect, the producer obtains the contract price less the brokerage costs of the transaction

If price increases, margin calls from brokers during the production season
Purchase contract when crop is harvested
Loss on the hedge but crop is sold on cash market
Gains on cash market offset losses on futures transaction

Farmer locked in contract price

Hedging Example:

As of April 1 Soybeans for Dec. delivery are $\$ 6.00 / b u$.
Profitable for farmer
Sells contract for 5000 bu.
Contract for $\$ 30,000$ December delivery
Now Assume that on
Dec. 1, Soybeans are selling for $\$ 9.00 / \mathrm{bu}$.
The Farmer repurchases the contract for $\$ 45,000$, and
loses $\$ 15,000$ on futures transaction
The farmer then sells 5000 bu. beans for $\$ 9.00 / \mathrm{bu}$. and makes $\$ 45,000$ on cash market
Net gain-\$45,000-\$15,000=\$30,000,
the same as if Soybeans were $\$ 6.00 / \mathrm{bu}$.

Again suppose that as of
April 1 Soybeans for Dec. delivery are $\$ 6.00 / \mathrm{bu}$ This price is again profitable for the farmer, who sells a Dec. contract for 5000 bu.
Contract for $\$ 30,000$ December delivery
Now assume that on
Dec. 1, Soybeans are selling for only $\$ 5.00 / b u$. The farmer repurchases the contract for $\$ 25,000$ Gain of \$5,000 on futures contract transactions
The farmer then sells 5000 bu. on cash market and gets $\$ 5.00 \mathrm{l}$ bu. or $\$ 25,000$ for the soybeans
Gain = \$25,000 from cash sales + \$5,000 from futures transactions
Total gain of $\$ 30,000-$ as if beans were $\$ 6.00 / \mathrm{bu}$.

Brokerage commissions on all of this
May need a friendly banker
Not for all farmers
Simple contracts that specify price at data of delivery may do as well or better

Puts \& Calls

RIGHTS TO PURCHASE or PLACE ON THE MARKET

a contract for
future delivery
of a good

Put = right to place on the

market a contract for
future delivery
of a good
Call = right to purchase from the market a contract for future delivery of a good

Specified price and date
These "rights" cost something
Rights may be but need not be
exercised

Cost of the "right" varies
depending on expectations regarding prices
If people expect prices to rise
there is little value to the right to place on the market at the current price
If people expect prices to fall the right to place on the market at the current price is valuable
How valuable depends on how far prices are expected to fall and the variability of prices

How sound are expectations???

Buy put=buy right to sell contract Buy call=buy right to purchase contract

Sell put = sell right to sell contract Sell call=sell right to purchase contract

Contracts are ordinary futures contracts
Puts \& Calls also used in stock market rights to buy \& sell stock at a specified price at some future point in time

Highly dependent on expectations!

Chapter 11: Credit in Agriculture

Agricultural Credit

Farmers as a whole are in an

excellent net worth situation

Owner's equity would be the envy of any small businessperson
Owner's equity is typically nearly 90\% of liabilities
Aggregate data masks problems of individual farmers
Shopping mall merchant vs. farmer
merchant usually has much greater debt load
Even real estate debt is low, in aggregate Agriculture not going broke-at least not in the aggregate

Sources of funds that finance farming activities have changed dramatically in the past 25 years

1970s and earlier:
Four main sources of funds:

1. Federal Land Bank and

Production Credit Associations
2. Commercial banks in located in rural areas 3. Farmers Home Administration (a federal agency)
4. Insurance companies (in certain regions)

Farm Credit Institutions

 in the 1970s and today Industry recognizes the unique characteristics of farmingBuilt to serve short and long-run credit needs

Federal Land Bank

Historically, lends money for farmland purchases
Occasionally made loans for other purposes but lending always made based on equity in farmland
Chartered by the federal government the Federal Farm Loan Act of 1916
Owned by member-borrowers NOT a federal agency

Federal Land Bank merged in 1987 with Production Credit Associations to form Farm Credit Services

Production Credit Associations

Established under laws enacted 1923-33
Short \& intermediate credit to farmers
Commercial banks not meeting critical needs
Did not like risks involved

Sell bonds to raise money
Owned by member-borrowers (farmers)

FARM CREDIT SERVICES

Also merged with the Federal Land Bank In 1987 to form Farm Credit Services

Farm Credit Services

Still operating under laws enacted 1923-33 Short \& intermediate credit to farmers

Commercial banks not meeting critical needs
Did not like risks involved

Sell bonds to raise money
Owned by member-borrowers (farmers) Chartered by the federal government

FARM CREDIT SERVICES

The farm financial crisis in the early 1980s dramatically reshaped agricultural credit. It became apparent that intermediate-term (for farm inputs and machinery) and long-term (farmland purchases) lending were intertwined and there was no longer a need for the two to be separate.

For example, farmers borrowed money for machinery purchases using land as collateral.

The outcome of this was Farm Credit Services which exists currently. Farm Credit Services is owned by member borrowers, but chartered by the federal government.

Commercial banks

Vary a lot in interest in ag lending
Portfolio balance: farm vs nonfarm
Rural banks--heavily invested in farming
Lots of variation in banker's willingness to lend money to farmers

Equity in farmland issues
Some farmers love commercial bankers Other farmers-the last place to look for a loan!

Commercial banks love loans where the collateral is excellent and the probability of loan default is low.
This was true for much of farming in the 1970s, when land values were appreciating rapidly, and crop and livestock prices were strong.

By 1980s, farmland values and crop prices were plummeting.
The result was large numbers of loan defaults.

The load defaults scared the socks off of rural bank lenders.
Bankers are very unhappy when the value of collateral is plummeting
Today, commercial banks, particularly small banks in rural areas, remain as a source of credit for some farmers, but loans get a lot more scrutiny with respect to the probability of default

Farmer's Home Administration FmHA (NOT FHA)

Former Federal agency
Lender of last resort for those who could not get loans elsewhere
Management assistance came along
FmHA ran the farm with farmer as hired worker!
Sent farmers into strange enterprises that built cash flow but need high management

Became part of the Farm Service Agency Terminated in 2006

Life Insurance Companies

Prefer manageable risk
No drought, disease
No random events you can't put in a mortality table

Select certain areas to lend lowa, historically

Were they in for a surprise when land values fell!

Increasingly scared off!
Better (less risky, higher return) nonfarm investments

Life Insurance Companies

Were a source of credit in major commercial farming areas such as in the Corn Belt

The decline in farmland values in the 80s chased them out of the business

No longer a major credit source

Traditional Credit Pyramid
Credit based on farmland values
Money for farm inputs and Machinery depended on stable and rising land values

The credit pyramid collapsed when farmland values collapsed in the 1980s

The foundation crumbled

Problems:

1. Importance of farmland (sensitivity to changes in farmland values)
2. Sometimes little cash on hand (need for continued short-term borrowing to cover expenses)
Cannot plant a crop with equity in land-need a source of credit (perhaps several sources)
Wealth does not necessarily mean good cash flow

Events of the 1980s

Federal Land Bank merged with PCAs
Linkages between short and long run Both using same collateral (farmland)

12 farm credit districts
Loan portfolio all in one industry
(agriculture)
A commercial banker would gasp at risks involved Need for government assistance
Without govt. backing bonds sold to raise money would have higher \& higher interest rates to account for risk of portfolio

Farm Credit-Past, Present, Future

Throughout recent times, risk in ag lending if not low, at least could be managed

Lower interest rates to farmers than urban dwellers
Importance of increasing farmland values
Lender little concerned with
repayment capacity so long as
land values continued to increase
If farmer could not repay, land could be resold and lender paid off

Farm Credit in the 21 ${ }^{\text {st }}$ Century

A modern commercial farm is a multimillion dollar enterprise, if you add the cost of land, machinery, buildings, equipment and inputs

Where does the money to finance such large enterprise come from?

$21^{\text {st }}$ century farm finance is very different from farm finance in much of the 20th century where farmers relied heavily on banks and other lending agencies for funds

Farmers are no longer as fixated on borrowing money to purchase farmland

Instead, they look to rent farmland from retired farmers and their spouses who own farmland

Retired farmers are happy to cash rent land as they get a better return than keeping the money in a bank plus the land appreciation which is not taxed unless they sell

This works well for many commercial farmers, as they can expand the operation without loan money and use the cash they have to buy inputs

Note that much of the capital is being supplied by the retired farmer, not the person doing the farming!

Machinery purchases no longer require a bank or credit agency loan. Instead, farmers can LEASE farm machinery for an annual "rent" in much the way a person leases a car without getting a regular car loan for purchase

Farm machinery dealers will even lease used equipment!

So two major expense items, the cost of the land and the cost of the machinery, are being financed by the retired farmer and the equipment dealer. So far, the farmer has not needed a bank loan or a loan from Farm Credit Services

Short-term loans for input purchases MIGHT be financed by the input supplier.

Alternately, the farmer MIGHT even have cash on hand from accumulated profits from previous year to self-finance these.

Each farmer will be in a different situation

Implications:

Commercial farmers may have little need for funds from traditional credit sources such as commercial banks and Farm Credit Services

Not all commercial farmers are relying on these non-traditional sources of financial capital, but increasing numbers are.

Note that young farmers can get started in farming using these methods without incurring a huge amount of debt!

U.S. Farm Assets and Liabilities, 2012

Owners' Equity is 90 \% of Total Assets invested in Agriculture Source: USDA NASS

Total Farm Assets, 2012, and their Components

Over 3 TRILLION dollars invested in U.S. Farming 82\% of that is farm Real estate

	billion \$
Total Farm assets	$3,010.3$
Real estate	$2,483.9$
Livestock	73.2
Machinery	272.9
Crops stored	42.0
Purchased inputs	23.7
Financial assets	114.6
	Source: USDA NASS

Components of U.S. Farm Assets, 2012

- Real estate
- Livestock
- Machinery
- Crops stored
- Purchased inputs
- Financial assets

Sources of Farm Debt, 2012

Total farm debt

Real estate
Farm Credit System
Farm Service Agency
Farmer Mac
Commercial banks 59.0
Life insurance companies 13.0
Individuals and others 12.9
Storage facility loans 0.7
Nonreal estate 127.3
Farm Credit System 42.5
Farm Service Agency 3.5
Commercial banks 59.9
Individuals and others 21.4
Source: USDA NASS

Components of of Farm Real Estate Debt, 2012

- Farm Credit System
- Commercial banks
- Life insurance companies
- All others

Components of of Farm Non-Real Estate Debt, 2012

- Farm Credit System
- Farm Service Agency
- Commercial banks
- Individuals and others

Source: USDA NASS

The Average Farm (2012)

Real Estate Livestock Machinery Crops Stored Farm Inputs Financial Assets

Total Assets
 \$1,129,024 \$33,274 \$124,060 \$19,079 \$10,751
 \$52,113

Debt of all sorts

Net Worth

\$1, 368, 302
\$1,231,802

Source: Compiled from USDA data assuming 2.2 million farms

Over 80 percent of farm assets are in real estate (live poor, die wealthy)
Farmers have relatively little money in checking accounts, savings accounts or other financial assets
Wealth tied up in instead in real estate
Machinery unimportant when compared with real estate

Urban dweller:
wealth in houses, stocks, bonds, \& bank deposits

Chapter 12: Public Policy

Agricultural

and

 Public Policy
Agricultural and Public Policy

Public policy requires group decisionmaking

Facts versus Values
Things people think are facts may actually be closely held values

Agricultural Creed (Don Paarlberg)

1. Farmers are good citizens
a high \% of the population should be on farms
2. Farming is a business and a way of life
3. Farms should be family owned \& operated
4. The land should be owned by the person who tills it
5. It is good to make two blades of grass grow where one grew before
6. Anyone who wants to farm should be free to do so
7. A farmer should be his own boss

These are values, not facts
 Nothing wrong with them, but... not necessarily supportable based on scientific evidence

The earth
is round!

Clearly a
fact, not a value judgement!

Much of the US industrial productivity (wealth) is due to the fact that we need only a small proportion of our people to produce food We could put a large share of our population back on the farm, but then who would run

the factories?

Would there be sufficient income for former urban dwellers, or would they need to reduce
 their standard of living? (Spreads net farm income ever thinner)

How much would it cost to provide additional ${ }^{p}$ needed public services in rural areas?

Farming might be considered a way of life for some people

In particular, for those who are independently wealthy or have part-time off-farm employment

Others must run as a business in order to feed and clothe the family

One cannot survive for long subsisting only on pleasant surroundings!

Policy Questions to think about:

 Is the family-sized farm the low-cost producer? How much more would the urban dweller pay for chicken produced on a family farm?

Eggs laid by free-ranging hens--
 are they worth more??? Will consumers be willing to preserve the family farm if it means significantly higher food prices???

How many laborers
can be hired before a farm ceases to be a family enterprise?

This is a value-laden issue!

What about custom harvesting?
Most farmers hire as they please
without worring about
philosophical questions such as these!
What difference does it make???

Should a farmer know all cows by name?

Renting land may be the only way some young farmers can get started

What is wrong with that?

What is inherently "good" about farm ownership?

While farmers might rank

higher than used car salesmen on
the social ladder, there is nothing inherently better about being a farmer than being engaged in any of dozens of other occupations.

Given the capital required to start, there is no way that everyone can be free to enter agriculture.
Historically, this may have been in part true during the period of time when the federal government gave away land to beginning farmers.

Investment in hamburger franchise versus investment in a farm.
Neither have easy entry.

Being ones own boss does not mean that one is free to do as he or she pleases (ask any dairy producer!!!!)

Safe haven of salaried employment versus income variability

Parity pricing of farm commodities:

Farmers are price-takers
Government should set price high enough so farmers get a "reasonable" income

Parity level:
Adjust prices such that purchasing power is equivalent to what it would have been 1909-1914* (adjusted for effects of inflation)
*1909-1914 was a period of good farm prices

Problems with parity pricing:

1. All benefits of new technology go to farmers in the form of higher prices. Is this fair to consumers?

Much of the new technology was produced by researchers using public support
(tax dollars)
2. Parity price capitalized into land values Renter may not benefit
3. Overproduction \& surpluses at parity price

Bargaining Power

Attempts to make farmers price setters, not price takers

Ability to restrict supply from market
is essential
Varying degrees of success
Grower coops such as oranges--good success Milk-federal govt. backs producers with milk marketing orders
Good discipline among growers essential
Does not appear to work for major commodities such as wheat, beef
corn or soybeans

Bargaining Power

Input side

Farmer owned coops

Southern States
CHS (Cenex)

Lower prices than business run for profit Profits returned to farmers as dividends No guarantee of efficiency \& low prices
Coops can be poorly run

Basic Problems in Farm Policy:

1. Overcapacity

can produce more than is needed

Small shift in S
causes big decrease in P
Inelastic D \& S

2. Price Instability

Domestic demand fairly stable Small shifts in export demand or crop failures cause big changes in price

3. Rural Poor

2012 : 8.5 million poor lived in nonmetropolitan areas
Poverty rates in nonmetropolitan areas are currently only slightly higher than in metropolitan areas
Non-metro
Metro

17 percent
14.5 percent

Poverty Rates by Metro/Non-Metro Residence, 1959-2012

Nonmetro Counties with High Poverty by Race/Ethnicity, 2007-2011

Source: USDA, Economic Research Service using data from the American Community Survey 5-year estimates, 2007-11.

Government Involvement in Agriculture

 Raise price of ag commodity(support price)

Federal government faces choices

 if prices are to be supported1. Buy up surplus

Sell when prices are high
"Ever normal granary"
2. Acreage allotments, poundage restrictions
Farmers may be better off, revenuewise, with small Q and large P
3. Land retirement

Conservation Reserve Program (CRP) Supply Restriction

Government Payments to Farmers, 2003-2013

Average farm household income continues to exceed average U.S. household income

The average farm household has a higher total income than the average non-farm household, if income from off-farm employment is counted!

Programs for Assisting Farmers

Commodity Credit Corporation loans (CCC loans)
Nonrecourse loans made to farmers based on some specified price (loan price or rate)
If price drops below, farmers need not (DO not) pay the difference

If price above the loan rate, famers get the additional amount

Also a source of short term credit as you get a loan on crop well before it is sold

Two-price plans

Farmers get one price for part of production, another price for the remainder

Milk--manufacturing (cheese, butter) milk priced lower than milk entering fluid market
This may be the same milk
Higher price for wheat for domestic market than for foreign market
Foreign demand more price elastic

Direct Payments to Farmers

Consumers benefit from lower price

 but Taxpayers pay the bill

Have farm programs increased farm income?

Yes \& No!

They have clearly helped stabilize farm incomes
Much of their value has been capitalized into higher land values

Farmers have perhaps become wealthier but do not necessarily have higher net incomes

Have farm programs preserved a structure of American agriculture consisting largely of family farms?

A good question
We wish we knew the answer!

Arguments on both sides of the issue
Not clear that they have
Not clear that they have not

A Question for Discussion......

Farm families, an average, have the same or better incomes than their urban counterparts.
Further, they are normally wealthier than urban dwellers.

Given this, should the Federal government continue to subsidize farm incomes through price supports and other mechanisms using tax dollars?

Farm Organizations-- what do they advocate?

American Farm Bureau Federation

Free market
No acreage allotments
Farmer should produce as much as he wants
Farm bureau and the ag. extension service
Buy lots of insurance
For "big" commercial farmers
Not for programs that smell like welfare assistance
Often supports Republicans
Largest Farm Organization, 50 states +Puerto Rico

National Farmers' Union

Pro price and income supports
Acreage allotments
Supply restriction
For the "little" guy
Generally supports liberal Democrats
Links to CENEX or CHS
Supports rigid govt. programs
Not enthusiastic about land retirement
Pro family farm \& rural life
Second largest, after the Farm Bureau

National Farmers Organization

Organize farmers to restrict supply and gain bargaining and pricing power

Farmers can limit production if they get together
Not excited about having the federal government limit production
Battles between farmers who restrict supply versus those that sell Not as active as they once were

National Grange

More of a rural social than a political organization Broadly Supports improved lives for rural people Not of great importance in federal farm policy Political strategy left to other farm organizations

American Agricultural Movement

Efforts aimed at generating public attention about the plight of the farmer
More extremist than NFO
Militant efforts aimed at supply control
Uncomfortable with much of basic ag. economics
Supports parity pricing for farm commodities
Not as active as they were 20-40 years ago when they organized strikes and tractor caravans to Washington DC.
Tactics were certainly colorful!!!

Chapter 13: Economics of Resources

Natural Resource Economics

Natural resource--

A resource provided by nature

Natural resources important to agriculture

1. Land
2. Water
3. Air???
4. Wildlife???
5. Minerals???

Types of natural resources:

Fund or Stock

Use "uses up" the resource
Nonrenewable or renewable only over a very long period of time
Oil, coal, gas,
Topsoil??
Soil productivity??

Flow Resource

Not "used up"
Renewable
Cover crop as a source of nutrients
Water maybe but....
irrigation water table???
Trees

Issues in agriculture involving natural resources

1. Soil Conservation 2)
2. Water quality
3. Chemical fertilizer runoff

4. Pesticides \& the Environment
5. Air pollution near livestock facilities
6. Agriculture near industrial areas
7. Acid rain
8. Wildlife \& agricultural production coyotes vs sheep hunters

9. Others

Pricing of Stock (nonrenewable) resources How should a stock resource be priced?

1. Cost of recovery

Over time, the easily recovered resource
will be removed first
increasing marginal cost of recovery
The first oil wells were but a few hundred feet deep
Stock resources ultimately become more expensive to recover as easily recovered supplies
are exhausted
New recovery technology needed to obtain supplies

Examples:

An ounce of gold from many tons of ore Large-scale off-shore drilling platforms

New technology can, in some instances, dramatically lower recovery costs In other instances, new technology can keep recovery costs from increasing

2. Cost of recovery plus money for investment in new technology for recovery

3. Use renewable resources instead
 grain alcohol as a fuel
4. Substitute nonrenewable resources in good supply for nonrenewable resources in short supply
coal versus oil for fuel \& electricity oil vs. natural gas

Total Resource Reserve

Ext-

 raction Feas-ibility

Decreasing certainty of existence

Total Resource Reserve

Decreasing certainty of existence

Total Resource Reserve

Ext-raction Feas-ibility

Total Resource Reserve

Ext-

 raction Feas-ibil-ity

Decreasing certainty of existence

Total Resource Reserve

Ext-raction
Feas-ibility

Decreasing certainty of existence

U.S. Oil production is rebounding as imports are falling

U.S. Crude Oil Production and Imports
(million barrels per day)

2013 U.S. Oil production estimated at over 7 million barrels/day

Oil Rigs in the Bakken Field of Northwest North Dakota (field started 2006)

Conclusion

We do not really "run out" of a nonrenewable resource

As new recovery technology develops some of the resource uneconomic to recover becomes economic to recover

As new discoveries are made
some potential reserves become proven reserves

Extraction always feasible at

some price...

But what price??

1. cost of extraction
2. extraction + Research \& Development costs
3. Imputed value, Implicit worth
(Cost of "next best" alternative)
Arab oil vs grain alcohol

An oil crisis, what happened?

We didn't run out of oil, at least not yet
Gasoline prices "reasonable" again
Monopoly power of oil cartel broken
Autos became more fuel-efficient
Small shifts in demand caused price reductions

Demand for oil, 1979, Short Run, U.S.

Long-run Demand and Supply for oil, U.S.

In the long run

Demand more price-elastic as cars become more fuel-efficient

More substitutes for oil
Old, oil-burning furnaces replaced
OPEC monopoly power reduced
less able to restrict supply as non-OPEC nations produce more

Supply gradually shifts outward
Prices gradually move downward

In the long run

New technology makes previosly uneconomic sources economic (Bakken field in North Dakota)

More substitutes for oil
Supply gradually shifts outward
Electric-powered vehicles
Wind farms
Solar panels
Better insulated homes and factories
More fuel efficient production practices in manufacturing

Soil Conservation

Problem: How do you get farmers to implement soil-conserving practices when they can make more money in the short run by not implementing the practices?

Borrowing from the productivity of land for future generations

Alternatives

1. Scold farmers threaten cajole

not very effective (usually)
hard to justify if your family is starving

Educational efforts
by Soil Conservation Service

2. Government subsidies

Federal government pays part or all of the cost of the conservation practice
This gets farmers interested (usually)
Why is SCS a government agency?
Farmers, as individuals would not look at long run
Subsidy programs heavily used
CRP is basically soil conservation

3. Develop conservation practices that are economically warranted in the short run

A few conservation practices are more profitable to farmer than conventional practices even in the short run

Min and no-till
as good or better yields
lower machinery costs
soil conserving compared to conventional tillage

Energy and U.S. Agriculture

How is efficiency in agricultural production measured?

1. Output Per Worker

US agriculture one of the most efficient in the world based on this criterion

Only one measure of efficiency
Assumes that labor is the
"high cost" input that
must be conserved
May not continue to be the most important measure

Resources used in US Agriculture

\square Tractor horsepower \quad Fertilizer/Acre \quad Chemicals/Acre \quad Labor/Acre
2. Output Per Unit of Fertilizer
3. Output Per Unit of Pesticide
4. Output Per Unit of Capital Invested
5. Output Per Unit of Liquid Fuels Energy

Based on measures 2-5, above, the U.S. probably does not rank high relative to other countries we would view as having more "primitive" agricultures

A major reason for our efficiency in terms of output per worker is because of our inefficiency based on these other measures...

What are the relevant criteria?
Who are we to say that we are right and other nations are wrong?
Our agriculture is very wasteful of nonrenewable resources

Our agriculture pollutes the environment with chemical fertilizers \& pesticides

Role of Agriculture in Greenhouse Gas Emissions

U.S. greenhouse gas emissions and carbon sequestration by economic sector, 2010

People Supported/Farm Worker, U.S., 1950-90

The current estimate is that each farmer feeds approximately 155 people!

Technologies that improve labor productivity continue to reduce the need for farm labor.

Is output per worker the appropriate

Measuring Stick?

Will this measuring stick continue to be appropriate?

What about the long term implications?
Nonrenewable resource supplies
Pollution and the environment
Do farmers have a responsibility?

Chapter 14: Trade in Agricultural Goods

International Trade

Basis for International Trade

Countries should specialize in production for which they have a

Comparative advantage

Why does the U.S. import products requiring large amounts of hand labor?

Oriental rugs
Weaving, baskets, etc.

Labor is cheap in countries producing these products
Products require little capital investment Americans value hand-made goods

Hand-made goods expensive given U.S. wage rates
Value of your grandmother's time
Couldn't set up an efficient factory to produce hand-sewn items in U.S.
U.S. imports items from countries
with a comparative advantage in producing hand-made goods

U.S. also imports high-tech items

VCR's
 TV sets
 Camcorders CD players

Electronics industry established in places like

Korea

Taiwan
Singapore Japan

Investment in automated, efficient plants

US exports agricultural commodities

Capital-intensive, low cost production of crops
Traditionally, the U.S. is the efficient producer
Comparative advantage in crops, beef, dairy
More threat from foreign competition for Labor-intensive crops

Tobacco

Horticultural crops

Agriculture improving in much of rest of world

> Soybeans--Brazil
> Wheat-Saudi Arabia

LG
Samsung
Cheaper, but labor rates increasing
Not all made in Korea
Korean-owned firms
"Japanese" electronics almost never made in Japan Japanese electronics sourced around the world

Why did Toyota invest in US?
Real wage rates only slightly lower in Japan Wage differentials no longer a big issue Import restrictions on cars built outside the U.S.
No restrictions on U.S. assembled cars
Honda 3 years ahead of Toyota with Ohio plant

Production of Motor Vehicles

Dodge Journey
Chevrolet Silverado
Chevrolet Impala
Lexus ES 350
Mazda MX-6
Honda Accord
Dodge Dart
Toyota Camry
Volkswagen Passat
Chevrolet Camaro

Saltillo, Mexico
Silao, Mexico
Oshawa, Canada
Georgetown, KY
Flat Rock, MI
Marysville, OH
Belvedere, IL
Georgetown, KY
Chattanooga, TN
Oshawa,Canada

Are you certain your american auto is american Or your foreign auto is foreign?

Production Possibilities Curve (U.S.)

Electronics goods

Production Possibilities Curve (U.S.)

Electronics goods

Production Possibilities Curve (U.S.)

Electronics goods

Production Possibilities Curve (U.S.)

Electronics goods

Production Possibilities Curve
 (U.S.)

Wheat

Point of Tangency

Indifference curve

PPC
Prevailing Relative Prices without trade

Electronics goods

Electronics goods
U.S. reaches higher indifference curve by trading wheat for electronics

Electronics goods
U.S. reaches higher indifference curve by trading wheat for electronics

Electronics goods

U.S. reaches higher indifference curve by trading wheat for electronics

U.S. reaches higher indifference curve by trading wheat for electronics

Electronics goods

International trade will make both countries

 better off if the relative prices for the two commodies does not correspond with the slope of the production possibility curve at the point of tangency with the corresponding indifference curve.

U.S. Balance of Trade

Cheap wheat but Americans demand foreign cars \& CD players
Value of currency ultimately determined by the value of goods produced by a country in world markets

Cheap wheat--no one wants \$ to buy U.S. wheat European currency valuable to us because Europe produces goods we like German Mercedes \& BMW

Currency of third world nation

 not valuable because economy does not produce what we wantLow-value currency relative to U.S. dollars
U.S. dollars always in demand
by residents of third-world countries
Russians get U.S. dollars by selling oil, gold, platinum nonrenewable natural resources

What would you purchase with currency from Mali?

Trade balances self regulating with free exchange rates
If \$ overvalued, imports rise, exports decrease

If \$ undervalued, exports rise, imports decrease
(high-priced Japanese imports)

Self-equilibrating adjustments

Tariff

A tax on imported items
to make them more expensive to consumers
Justification: protect domestic industry, but...
Protects domestic industry by taxing U.S. consumers
What's good for US industry may not be good for consumers

If some other country can produce an item cheaper, why worry about where it is produced?

Import quota

Limits quantity of a good that can be imported Effect similar to a tariff
Domestic producers raise prices
Consumer is the loser

Foreign producers raise prices under quota
Allows auto dealers to pad prices of foreign-made autos

Additional dealer profit, or

Adjusted market value
This is a consequence of the quota on Japanese autos

Economic Impact of a Quota

Qn Qo
Qd/unit of time

Economic Impact of a Tariff

Qo
Qd/u.t.

Qt Qo
Qd/u.t.

Arguments for Protection

Infant industry
Protect jobs
National security
Unfair competition from cheap foreign labor

Automobiles
only are
Available
. in the U.S. .

GATT

General Agreement on Tariffs \& Trade 80 + nations
85% of world trade
Where trade negotiations take place
Rules established for the conduct of trade
Rules and regulations agreed upon by
member nations

U.S. Ag Exports, Value, 1970, 1980, 1986

US Agricultural Exports, 2000-2012

Leading U.S. Ag. Exports as a Percent of Total Production, 1985

Exports as a Share of Total US Ag. Production, Average, 2008-2010

Source: USDA, Economic Research Service calculations based on data from U.S. Department of Commerce, U.S. Census Bureau, Foreign Trade Database; and USDA, National Agricultural Statistics Service, various reports.

Chapter 15: Economic Systems in Other Countries

Comparative Economic Systems

Fundamental Questions

1. What should be produced?
2. How Should it be produced?
(production technology)
3. How should it be distributed?

These questions must be answered by any economic system

Types of Economic Systems:

1. Capitalism

Government not involved in decisionmaking
Producers produce what the consumers want
Production technology--low cost way
Market determines prices \& output
Production resources owned by individuals not the government
Goods are distributed based on incomes of consumers

2. Pure Socialism

Government (people, collectively) own all the resources
No individual ownership
Government determines what is produced Government determines production technology Government allocates production to individuals Family income irrelevant (not needed)
No market incentives
Shortages of goods desired by consumers Government vs consumer utility function Requires careful planning
Economic incentives lacking

3. Mixed economic systems

Mixture of private \& public ownership
Allocation by government and according to incomes of consumers
Mixture of market signals and government planning
Production technology determined by mix of public \& private decisionmakers

Ours is a mixed economy

United States
Germany
France
Japan

Norway
Sweden South Korea Greece Italy

Republic of China
Cuba North Korea

Poland Russia?
Czechoslovakia
Hungary
Baltic States
Yugoslavia

Socialism in the U.S.

Public welfare programs for disadvantaged
Nationalized Medicare health insurance
More government rules and regulations affecting how goods are produced Increased emphasis on government intervention rather than market price signals

Captialism

in Eastern Europe

Production decisions increasingly based on what consumers want

Increased private ownership of resources
Market signals \& economic incentives
Income, not need, determines how goods are allocated among consumers

History of Russian Farms

1. Collective farms

Large-scale
Hundreds of workers
Emphasis on capital investment
Technology lags behind U.S.
Farmers allowed to sell output from small plots on the individual farms Small plots important source of production

Vestigal capitalism was present even before the breakup of the Soviet Union

2. State Farms

Even bigger than collective farms

 Run like factoriesAverage size-- 65,000 acres
Private plots also allowed
Average size declining
as new farms are formed near urban centers

Efforts underway to "privatize" ownership of resources and use markets and prices to encourage production.
Markets for agricultural commodities are no longer assured.

Agriculture in other parts of the

 Former Soviet UnionNot as well endowed as U.S. with rich farmland and ample rainfall

Ukraine more comparable to Kansas or North Dakota than to Indiana or lowa

Much yield variation because of weather variation
Technology for ag. traditionally lost out compared to space \& military projects

Crop failure leads to higher imports on world markets but this takes scarce foreign currency

The people want improved diets
More meat- less grain
Very costly to improve
Grain fed to cattle cannot be fed to humans

Lots of awareness of the need to improve the productivity of agriculture

Need for capital investment and economic incentives for the individual worker
Central plan for agriculture versus consumer utility function

Important issues remain.

On what basis should land and other resources be divided?

To what extent should farmers be protected from the "cold winds" of the competitive marketplace?

Should food prices to consumers fully reflect costs of production and market conditions?

Important transportation and distributional problems are of concern.
Supermarkets limited and the transportation from production areas is often poor!

Since the Breakup of the Soviet Union:

State and Collective farms have become largely stockholder-owned operations, with stock owned by the former state and collective farm workers

Shares to not represent titles to individual tracts of land, but are paper representing private ownership of a portion of the entire farm

Peasant farms: farmers own title to a small individual tract of land. With the breakup these were expected to become very popular, but it hasn't happened that way

Since the Breakup:

During the late 1990s, Russian agriculture fared poorly, without government guaranteed prices for both inputs and output. Yields and output were below levels of the collective and state farms

Since 2000, the situation has gradually improved, Output is up, and Russian farms are gradually faring better.

Free-market capitalism does not necessarily solve all problems, at least not over short periods of time!

A Changing Structure of Russian Agriculture

Indicator	Farm type	1990	1995	2000	2005
Agricultural land	Corporate farms	98	90	87	80
	Household plots	2	5	6	10
	Peasant farms	0	5	7	10
Cattle	Corporate farms	83	70	60	52
	Household plots	17	29	38	44
	Peasant farms	0	1	2	4
Agricultural					
production	Corporate farms	74	50	43	41
	Household plots	26	48	54	53
	Peasant farms	0	2	3	6

Shares of agricultural land, cattle headcount, and gross agricultural Output for farms of different types (in percent of respective totals)

Source: "Russian Agriculture" Wikipedia. For additional information, read the entire article!

Chinese Agriculture

How do you feed 1.4 billion people? Not at the Burger King!

Arable land moved from state-own farms to private plots

Has not traditionally relied heavily on food imports Increased recent emphasis on market system

Land for agriculture is becoming land for industry

Since the late 1990s

China's domestic food production has not kept Up with demand as rising incomes from Industrialization has occurred

China now imports and exports a variety of Agricultural commodities
Has not traditionally relied heavily on food imports
Increased recent emphasis on market system
Land for agriculture is becoming land for industry

China exports high-value manufactured goods, goods that would be expensive to produce with US labor, and uses part of the proceeds to buy agricultural commodities needed, especially those needed to and meat (mainly pork and chicken) to the diets of the Chniese people.

Labor costs are rising, and China may not long be the low-cost producer of manufactured goods such as electronics. This could be a problem for US ag exports.

The Wikipedia article "agriculture in China" is a most interesting reading and is recommended reading if you want to know more about Chinese agriculture, its structure and productivity.

Chapter 16: World Food

World Food Issues

World population 4.83 billion

 or morePerhaps 500 million or more undernourished
(plus those in centrally planned economies)

Estimated number of People with Insufficient Protein/Energy Supply by Regions (1974)

Since 1974, China has made great strides in feeding its people, and there is less hunger in Latin America than was true 50 years ago

Less developed african nations remain the most important areas of the world for insufficient caloric intake, plus certain countries in other parts of the world, such as Haiti and the Dominican Republic

World Population by Region, 1970-2000

Africa, Latin America and parts of Asia are still experiencing the most rapid growth in population, and these are areas where world hunger persists

World Population by Region, As a \% of Total Population

Approximately 7.1 billion people currently living in the world (US Bureau of the Census, 2010)

Population in North America, Europe,

Oceana, and parts of Asia increasing slowly

Africa, Latin America and parts of Asia increasing rapidly

Greatest population growth in countries least able to feed themselves

Geographical Distribution of World Food Problem, 1985

Percent of Population Undernourished according to UN Statistics (Wikipedia,

 "malnutrition")

Caloric Food Requirements \& Availability Per Capita

- Act. Cal. Avail
- Min Cal. Req.

Caloric Food Requirements \& Availability Per Capita

- Surplus or Deficit

Diets in Developed Countries High in Meat \& Animal Products High animal protein High fat

Diets in Third World countries
Low in Meat \& Animal Products
Lack Animal Protein
Soybeans, Rice
Low-fat high carbohydrate protein balance
Calories not enough

Issues in increasing world food supply

Land where needs are greatest not well suited to food production

Capital investment to improve production efficiency
Where does capital come from?
Foreign currency issues
Economic development
Export market development
Genetic improvements
Cultural, Institutional, Religious concerns (sacred cows)
U.S. Efforts:

1. Food give-aways

Public Law 480 "food for peace"
2. Private donations \& assistance
3. Technical assistance

Federal government (AID) Universities
4. Loans \& Grants for capital investment
5. Efforts at genetic improvement
(help grow food, not give them food)

Barriers:

1. Acts of god (hurricane, flood)
2. Cultural \& Religious barriers
3. Limitations due to poor soil inadequate rainfall
4. Financial barriers
(loans become grants)
5. Institutional barriers

Financial incentives to farmers
"Low cost" food for consumers

Possibilities:

1. Genetic Breakthroughs
2. Exports of nonfood items by third world countries as a source of foreign currency to buy food
3. Increase arable land base irrigation
Saudi Arabia did it but requires major capital investment
Cutting the rainforest!
4. Political \& Institutional changes
"Farm policy" of third world nation
5. Fish farming and food from the Sea

Limits:

1. Generosity of the US \& other developed countries
2. Phenomenal genetic breakthroughs occur infrequently and are often unplanned
3. Only huge capital investments could make some land suitable for ag use
4. Greenhouse effect, ozone layer other environmental concerns
5. Bounty of the sea not limitless

Malthus--food supply grows arithmetically population geometrically

Chapter 17: Rural Economic Development

Rural Development

Rural Development--

Efforts aimed at improving the quality of life in rural America
(farm \& nonfarm)
Economic development--
Efforts aimed at increasing per-capita income levels

Community development
Public policy at the local level
Public policy at the local level is frequently concerned with improving incomes and the quality of life for rural residents

Facets of Rural Development

Rural industrialization

brings (hopefully) higher paying jobs to rural residents

Public service delivery

 improved educationfire, police protection
libraries, recreational facilities hospitals, medical services other needed services

Rural Development issues:

What does the community need to do in order to attract new industry?
Consequences of population growth? desirable undesirable

Who pays for upgraded public services? taxpayer revolt

How do you deal with outsiders?
Brain drain from rural communities

Population growth:

 generally greatest in the counties near a metro areaUrban employment and income with rural lifestyle

Industry interested in locating near
(but not necessarily in) an urban center
How can public services be efficiently delivered in a nonmetro county detached from but near an urban center?

Some Rural Counties are Experiencing Population Growth: Others are Losing People (percent change, 2010-2012)

Source: USDA, Economic Research Service using data from U.S. Census Bureau.

Metro, Non-Metro and Micropolitan Counties, 2013

Source: USDA, Economic Research Service using data from the U.S. Census Bureau.

Annual Population Growth Rates for Metro and Non-Metro Areas, 2000-2010

Between 2000 and 2010, metro areas Far outdistanced Non-metro areas In population growth. This has changed Since 2010

Note: Adjustments to county population estimates following the 2010 Census may
partly explain the divergence in nonmetro trends during 2009-10 and 2010-11. It is
probably more realistic to assume a steadier decline in nonmetro population rates since 2008-09, in line with national trends.
Source: USDA, Economic Research Service, using data from the U.S. Census Bureau.

The Rate of Population Loss in Rural Areas to Metro Areas is Slowing

U.S. rural and urban population, 1940-2010

Source: USDA, Economic Research Service compilation of U.S. Census Bureau data.
1940-1990 data are from http://www.census.gov/population/censusdata/urpop0090.txt;
2000 data are from Summary File 1; and 2010 data are from
http://www.census.gov/geo/www/ua/uafacts.html.

By 2011, about 51 million people lived in rural areas

Rural communities located far from urban centers must rely on agriculture as a primary source of income
Businesses in these towns are frequently somehow linked to agriculture

USDA "farming dependent" counties
For these counties, their fate is
linked to the economic conditions
facing agriculture
Boom \& Bust

Energy-related industry
Coal \& Oil
Forestry \& Timber

Education in rural areas:

Expensive on a per pupil basis as the cost of teachers spread over relatively few students

Attitudes toward education in rural areas vary considerably from state to state and region to region

Limited course offerings
compared with urban schools
Loss of most talented students to high paying jobs in urban areas

Medical care in rural areas:

Frequently limited in availability family physician in rural community in private practice declining

Physicians like high-paying jobs in urban clinics

Care of elderly may be a problem in rural areas

Housing in rural areas:

Deemed substandard if it lacks indoor plumbing
Under 28 million rural housing units total
a million substandard
substandard units--59\% 1959
less than 5\% now
A number of rural counties still have significant numbers of substandard homes....

Rural Housing Units Lacking Complete Plumbing by County, 2010 (Percent)

Source: Housing Assistance Council "Taking Stock" Report

Persistent Poverty Counties, Metro and Non-Metro

Source: USDA, Economic Research Service. Persistent poverty counties had poverty rates of at least 20 percent in each U.S. Census 1980, 1990, and 2000, and American Community Survey 5-year estimates, 2007-11.

Government transfer payments to individuals as a percent of total county personal income, 2011

Source: USDA, Economic Research Service using data from the Bureau of Economic Analysis.

Rural areas do not get their proportionate share of federal aid

Urban congressmen support programs for urban poor
Rural congressmen are concerned with government assistance for farmers

Rural poor are often ignored
Renewed efforts are underway to redirect federal funds to rural areas

Rural Development Strategies:

1. More economic assistance to rural
residents other than farmers (i.e. food stamps)
2. Additional state and federal aid to rural schools to account for externalities and spillovers
3. Strategic plans for quality medical service delivery irrespective of where you live
4. Programs designed to further improve housing in rural areas
5. Assistance to local governments in community improvements
6. Redirection of federal projects toward remote rural areas
7. Assistance in developing plans for attracting new industry

Fewer than 5 million people live on farms but
59 million people live in non-farm rural areas
Public policy will be increasingly directed toward meeting the needs of non-farm rural residents.

