
Research Report
KTC-15-11/SPR14-480-1F
DOI: http://dx.doi.org/10.13023/KTC.RR.2015.11
!

!

!

Spatial Database for Intersections

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/232567265?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 Our Mission

We#provide#services#to#the#transportation#community#through#research,#
technology#transfer#and#education.#We#create#and#participate#in#partnerships#to#

promote#safe#and#effective#transportation#systems.!

© 2015 University of Kentucky, Kentucky Transportation Center
Information may not be used, reproduced, or republished without our written consent.!

Kentucky Transportation Center

176 Oliver H. Raymond Building
Lexington, KY 40506-0281

(859) 257-4513
fax (859) 257-1815

www.ktc.uky.edu!

Research Report
KTC-15-11/SPR14-480-1F

Spatial Database For Intersections

By

Eric R. Green
Research Engineer

Chris Blackden
Research Analyst

and$

Michael A. Fields
Research Analyst

Kentucky Transportation Center
College of Engineering
University of Kentucky
Lexington, Kentucky

in cooperation with
Transportation Cabinet

Commonwealth of Kentucky

and

Federal Highway Administration
U.S. Department of Transportation

The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the data
presented herein. The contents do not necessarily reflect the official views or policies of the University of Kentucky,
the Kentucky Transportation Center, the Kentucky Transportation Cabinet, the United States Department of
Transportation, or the Federal Highway Administration. This report does not constitute a standard, specification, or
regulation. The inclusion of manufacturer names or trade names is for identification purposes and should not
be considered an endorsement.

August 2015

1. Report No.
KTC-15-11/SPR14-480-1F

2. Government Accession No. 3. Recipient’s Catalog No

4. Title and Subtitle

Spatial Database For Intersections

5. Report Date
August 2015

6. Performing Organization Code

7. Author(s): Eric R. Green, Chris Blackden, Michael A. Fields 8. Performing Organization Report No.
KTC-15-11/SPR14-480-1F

9. Performing Organization Name and Address
Kentucky Transportation Center
College of Engineering
University of Kentucky
Lexington, Kentucky 40506-0281

10. Work Unit No. (TRAIS)

11. Contract or Grant No.
KYSPR 14%480

12. Sponsoring Agency Name and Address
Kentucky Transportation Cabinet
200 Mero Street
Frankfort, Kentucky 40622

13. Type of Report and Period Covered

14. Sponsoring Agency Code

15. Supplementary Notes
Prepared in cooperation with the Kentucky Transportation Cabinet and the Federal Highway Administration

16. Abstract

Deciding which intersections in the state of Kentucky warrant safety improvements requires a comprehensive inventory
with information on every intersection in the public roadway network. The Kentucky Transportation Cabinet (KYTC)
had previously catalogued only those intersections where state-maintained roadways met. However, this inventory did
not account for intersections between state- and locally-maintained routes, nor was it designed to accommodate regular
updates. As such, the Kentucky Transportation Center (KTC) at the University of Kentucky developed a methodology to
create and maintain a full inventory of every intersection in the state. The database contains precise location information
as well as several safety and operational attributes for each point of an intersection. By replicating the topology factors
used in the Highway Safety Manual (HSM), the research team categorized every intersection type, and developed. Safety
Performance Functions (SPF) for each intersection type. The SPFs were used to rank each intersection. It is anticipated
that this project’s deliverables will be used to increase KYTC’s ability to effectively allocate funds to maintain and
improve intersection safety. Making the database available to expert users will allow continuous improvements. In the
future, AADT data and traffic control information could be included.

17. Key Words
Intersection, spatial database, safety performance function, nodes,
cross intersection, tee intersection, approaches, legs

18. Distribution Statement
Unlimited, with approval of the Kentucky
Transportation Cabinet

19. Security Classification
(report)
Unclassified

20. Security Classification (this
page)
Unclassified

21. No. of Pages
23

22. Price

$

3

TABLE OF CONTENTS

Executive Summary .. 5

1. Introduction ... 6

1.1 Background and Objectives ..6

1.2 Literature Review ..6
1.2.1 Classifying Intersections ...6
1.2.2 Safety Analysis ...6
1.2.3 Development of Safety Performance Functions ...7

2. Methodology .. 8

2.1 Preprocessing ..8
2.1.1 Plotting the Node Usage Table ...8
2.1.2 Wandering Nodes ..9

2.2 Tabular Processing ..10

2.3 Intersection Database ..12
2.3.1 Building Intersections in ArcMap ...12
2.2.2 Derived Fields and Psuedo-intersections ..13
2.2.3 Route Ranking System and Master Nodes ..14
2.2.4 Additional Data ...16
2.2.5 Approach Counts ...17
2.2.6 Calculating Entering Traffic ...18

3. Intersection Datbase and Safety Performance Functions ... 20

3.1 Intersection Classification ...20

3.2 Safety Performance Functions ..21

4. Conclusions .. 23

References .. 24

$

4

LIST OF FIGURES

Figure 1: Intersecting Divided Route. ... 9$
Figure 2: The Process’ Merge Logic .. 11$
Figure 3: Deleted Pseudo-intersection .. 14$
Figure 4: Intersection With Four Approaches .. 18$

LIST OF TABLES

Table 1: Intersection Classification .. 20$
Table 2: SPF Parameters ... 22$

$

5

EXECUTIVE SUMMARY
$

Deciding which intersections in the state of Kentucky warrant safety improvements requires a
comprehensive inventory with information on every intersection in the public roadway network. The
Kentucky Transportation Cabinet (KYTC) had previously catalogued only those intersections where
state-maintained roadways met. However, this inventory didn’t account for intersections between state-
and locally-maintained routes, nor was it designed to accommodate regular updates. As such, the
Kentucky Transportation Center (KTC) at the University of Kentucky developed a methodology to create
and maintain a full inventory of every intersection in the state. The database contains precise location
information as well as several safety and operational attributes for each point of an intersection. By
replicating the topology factors used in the Highway Safety Manual (HSM), the research team categorized
every intersection type, and developed Safety Performance Functions (SPF) for each intersection type.
The SPFs were used to rank each intersection. It is anticipated that this project’s deliverables will be used
to increase KYTC’s ability to effectively allocate funds to maintain and improve intersection safety.
Making the database available to expert users will allow continuous improvements. In the future, AADT
data and traffic control information could be included.

$

6

1. INTRODUCTION

1.1 Background and Objectives

Intersections are one of 10 areas of emphasis listed in Kentucky’s most recent Strategic Highway Safety
Plan (SHSP). Crashes that occur at intersections represent approximately 25% of all collisions in
Kentucky (Kentucky Traffic Collision Facts). Representatives from the Kentucky Transportation Cabinet
(KYTC) have expressed that a maintainable intersection database is needed to reduce the number of
crashes. Because state transportation agencies have become increasingly reliant on spatially explicit data,
a spatially-enabled intersection database would benefit many areas of transportation. In 2003, the
Kentucky Transportation Center (KTC) conducted a research study on vehicle crashes at intersections.
The dataset produced during that research has since become the primary database used by the Cabinet for
intersection safety analysis and prioritization ranking. Unfortunately, this database was created to analyze
safety over a fixed time period and is now out-of-date.

The objective of this research study is to develop a comprehensive database that inventories all
intersections in the state of Kentucky-- one that includes the points where all state-maintained and locally
maintained roadways intersect. The major impetus for creating this database is to equip KYTC with the
knowledge it needs to prioritize intersections for safety improvements. To that end, it is important to
categorize intersections so they can be compared with one another. Comparisons must focus on similarly
functioning sites instead of generating one priority list that ignores important geometric and operational
differences. The database that resulted from this study can be updated using an automated process. It can
identify any changes to roadway geometry that would alter the attributes of intersections. In addition to
point features used for locating intersections, this database accounts for each intersection’s zone of
influence. This encompasses the area around intersection points at which crashes are assumed to be
attributable to the intersection.

1.2 Literature Review

1.2.1 Classifying Intersections
Various methods have been developed to classify intersections and evaluate their safety. Simandl et al.
(2015) used Google Maps/ Street View to collect visual observations of an intersection with a preset form
or web portal. Observations were linked to an intersection node in spatial database, which were plotted
using linear referencing. Simandl et al. limited their study to a small subset of intersections (non-
signalized, state-route) in the state of Alabama. Campbell and Knapp (2005) discussed a more
comprehensive intersection classification system in the state of Wisconsin. They used parameters such a
traffic volume, number of legs, and presence of a median. These categories were then cross-referenced
with crash data. Garber et al. (2011) expanded on earlier work by creating Safety Performance Functions
(SPF) on the intersection classification system they developed for Virginia (although with far fewer
categories than Campbell and Knapp used).

1.2.2 Safety Analysis
In recent analyses, intersections have been ranked using a procedure called critical rate analysis (Green,
2004). Critical rate analysis, however, is problematic for several reasons. First, it assumes a linear
relationship between the number of crashes and traffic volume. Recent studies have determined that this is
not a valid assumption. For example, sites with very low annual average daily traffic (AADT) that have
experienced even one crash tend to have disproportionately high critical rates. For most roadway and
intersection types, the relationship between the number of crashes and traffic volume is exponential
(Srinivasan, 2011). The Highway Safety Manual (HSM) outlines procedures to develop SPFs that more

$

7

realistically represent the relationship between crashes and traffic volume. Unlike critical rate analysis,
the SPFs also account for regression to the mean by using an Empirical Bayes statistical method.

1.2.3 Development of Safety Performance Functions
The HSM uses safety performance to recommend processes and guidelines for decision making. To
properly apply the HSM procedures, SPFs should be developed after analysis of state-specific crash data.
Developing SPFs by using historical data from local agencies should increase the accuracy and reliability
of crash estimates. These estimates can help evaluate the potential effectiveness of alternative
countermeasures. The HSM’s regression models estimate the predicted average crash frequency for a site
based on data from similar sites. After SPFs were developed for each site, they were adjusted using the
Empirical Bayes (EB) approach to improve the accuracy of estimates and to address possible changes
from regression to the mean.

$

8

2. METHODOLOGY

The spatial intersection database was created using ArcMap and Excel. The final product included a
geodatabase with a polygon feature class called “Intersections” and a corresponding table containing
classificatory attributes, including crash statistics. Selected intersections from this table – those satisfying
certain data requirements explained below – were then used as inputs for the Safety Performance
Function described in Chapter 3.$

2.1 Preprocessing

2.1.1 Plotting the Node Usage Table

We began with a table provided by KYTC called “Kentucky Node Usage.” The table is regularly updated,
but for this pilot study, we used a version from November 2014. This table described nodes in the
Kentucky road network. Nodes represent points where routes: 1) begin, 2) end, 3) intersect one another,
or 4) change designation. Aside from intersections, route designations change most frequently at county
boundaries. The same node, except in the case of a dead end route, was represented by multiple records in
the table and was thus read by ArcGIS as multiple points “stacked” at the same spatial coordinate. For
clarity, we referred to nodes as individual records and multi-record nodes as “node stacks.” Stacked
nodes, with some exceptions (see below), shared a unique identification number designated as
“Knu_Node_ID” (knu = Kentucky node usage) in the node usage table. The number of nodes in a stack
coincided with the number of approaches at that point. A dead-end has one node, a change in route
designation outside of an intersection has two, a three-legged intersection has three, a four-legged has
four, and so forth (with exceptions for distance breaks, which is explained later).

In addition to node IDs (NIDs), important fields in the usage table were “Knu_S_E,” “Knu_Rt_Ne,” and
“Knu_Rt_Mp.” The “Knu_S_E” field classified each node as S (start) or E (end). The letters occurred
individually (e.g., it contained an S but not an E) if a route terminated at a node stack. But they were
paired if it passed through a node stack (unless they were incorrectly plotted due to distance breaks).
“Knu_Rt_Ne” contained the 17-character unique Route ID the node belonged to, and “Knu_Rt_Mp” was
the milepoint along the route the node occurred on.

Using a companion shapefile called “AllRds_M” (which is short for: All Roads, measured), that is also
maintained by KYTC, the node usage table was plotted using ArcGIS’s linear referencing tools.
Specifically, ArcGIS uses the route “Knu_Rt_Ne” and milepoint “Knu_Rt_MP” data to insert points at
the appropriate distances along the line segments in “AllRds_M.” This process can be expedited if the
node usage table and the “AllRds_M” shapefile are first exported into a geodatabase (GDB). The
resulting plot was a collection of points called an event layer, which we saved as a point feature class in
the same GDB. Placing aside the problems introduced by distance breaks, we distinguished node stacks
that constituted an intersection by counting the number of nodes in a stack (or nodes with the same ID
number). A node stack with three or more nodes was either an intersection or part of an intersection.
These were designated “centerline intersections” to distinguish them from the larger intersections they
may be a part of.

Taken alone, centerline intersections do not adequately describe all intersections. Since they are based on
lines of zero width, even a tiny offset between intersecting approaches results in two or more node
stacks/centerline intersections that are clearly part of the same intersection (when the width of the actual
roads are viewed). As shown in Figure 1, more complicated intersections often appear as multiple
centerline intersections. For instance, a three-legged intersection involving a divided route (represented as

$

9

two parallel lines) results in two node stacks. A Y-intersection results in at least three, and interchanges or
other very complex intersections can encompass many node stacks.

$
Figure'1:'intersecting'divided'route,'an'example'of'one'intersection'containing'four'distinct'centerline'intersections.'

2.1.2 Wandering Nodes
Distance breaks confuse the linear reference system and lead to node stacks that contain incongruent node
IDs. Usually, routes can be represented as discrete and continuous lines, but in some cases breaks occur in
the middle of a route, dividing a route into two or more discontinuous segments. Measuring the distance
along the route (which linear referencing uses to plot the nodes) ignores the distance breaks, or treats
them as wormholes, so that each discontinuous end of the break has an identical milepoint. Since linear
referencing places only one point for each node, a point could randomly be placed on either side of the
distance break. When that happens, the node usage table adds an extra node labelled as a distant break to
mark it.

Although inserting a distance break node in a node stack throws off the 1:1 node-to-leg ratio, this is not a
serious problem. Distance breaks are clearly identified in the table and can be selected and deleted.
However, if ordinary nodes are displaced on the wrong side of a distant break, a more complicated fix is
required.

Through a series of dissolves, summaries, and joins, the research team created an attribute table that
contained all of the node stacks and the corresponding plot location of the multiple node IDs (NIDs). The
attribute table included up to three fields for each NID; there was no stack that had more than three
distinct NIDs. Assuming that all multi-NIDs were errors, we applied a series of tests to calculate which
NID was the correct one for each stack. First, we assumed that whichever NID had fewer nodes in a stack
was misplaced. Second, for cases where there were equal numbers of multiple NIDs in a stack, we
checked to see if one of the NIDs had already been assigned – with certainty – to another stack. If it had
we discarded it, and the remaining NID was adopted as the correct one. Third, for the remaining

$

10

undecided stacks, if one of the NIDs occurred exclusively in this stack and nowhere else, and the other(s)
did not, the exclusive NID was taken to be correct. After performing the third test, a significant number of
undecided stacks remained. However, none of these were located at intersections. As such, they could be
ignored. In fact, all of the remaining set consisted of only two non-DB NIDs each: each connecting two
dead-end distance breaks.

Using the information gleaned from this procedure, we created a corrected feature class of nodes. The
wandering nodes were assigned to their proper coordinates – a feature class designated as “TrueNodes.”
There were a very small number of NIDs that legitimately occupied more than one coordinate, all of
which were so close together (less than 12 feet) that there was no doubt that they belonged to the same
intersection or were located on opposite sides of a divided highway. For the rest of “TrueNodes” records,
each NID had exactly one spatial coordinate.

Using a dissolve let us count the number of nodes in a node stack and join the counts back to
“TrueNodes” using the node ID. Those nodes that belonged to groups of three or more were then exported
into a feature class called “IntsctNodes” (i.e., ‘intersection nodes’).

2.2 Tabular Processing
To move from node to intersection, we first plotted the legs of the approaches of the intersection (as
lines). $The node usage table already contained some of the information we needed, as each node record
was defined as either the start (S) or end (E) point of a line segment. Each E node had a corresponding S
node upstream with the same route ID. Except for non-cardinal routes, the sequence S-to-E followed the
direction of increasing route milepoints in the state of Kentucky (milepoint information was embedded in
“AllRds_M,” which is why it was necessary to use this particular file for linear referencing). A portion of
the route, usually about 100 feet outward from the intersection node, was defined as being within the zone
of influence for an intersection (an area in which a given crash is likely to be influenced by proximity of
the intersection).

Each node had a milepoint field. This was previously used to plot points with “AllRds_M.” To create line
segments for approaches, we attached to each node record another point that was a specified distance (100
feet by default) from it and along an approach. This segment’s direction was defined by whether or not
the node was an S or an E. For example, a four-legged intersection with no intersections nearby plotted as
four 100-foot approach segments radiating out from a central point, which resembled an X or plus sign.
Where intersections (i.e., centerline intersections) were close enough that their zones of influence
overlapped, adjustments were made to the 100-foot distance. Adjustments also were made if the section
number of the route indicated that the centerline intersection was part of a larger intersection system (such
as an interchange or a Y-intersection). These adjustments took one of two forms. We either merged two
or more nodes along the same route into one intersection or truncated their zones of influence to avoid
overlap. An example of the merge logic is illustrated in Figure 2.

$

11

$
Figure'2:'The'process’'merge'logic'merged'the'pair'of'node'stacks'on'the'left,'but'not'the'pair'on'the'right.'

We created the attribute table in Microsoft Excel because the software facilitated easy rearrangement of
the data in the necessary sequence. Excel’s cell reference system also expedited comparisons between
adjacent records. Excel’s major drawback was that it did not handle very large datasets well, which led to
very long processing time and frequent crashes. We tried to limit this problem by deleting unnecessary
nodes from the table. First, we deleted all distance break nodes. Then we deleted any node IDs (node
stacks) with fewer than three of the same ID in a set (i.e., those that did not constitute a centerline
intersection). This reduced the table to a more manageable size, although it led to another problem that
stemmed from the absence of distance breaks, which is described at the end of this section.

The table was strictly ordered by route ID, S/E identifier, and ascending milepoints (the S/E identifier was
identical to the original field, “Knu_S_E,” except that it was reversed for non-cardinal routes). We
developed formulas to compare each node record to the one before or after it (depending on whether the
node was S or E) to determine whether the intermediate approach segments should be merged, truncated,
or left at default. First we determined if two consecutive nodes were on the same route. If nodes along the
same route were merged, we treated them as part of the same intersection. If two nodes’ zones of
influence overlapped but were not close enough to merge, their approach segment was truncated so that it
equaled half the length of the gap minus 1/1000th of a mile (a small gap was left between segments to
prevent their touching). The decision to merge or to truncate was based on the type of route, the type of
route of the neighboring node, and the length of the gap separating them (i.e. length along the route, not
the absolute distance between the two nodes). Any two node stacks with a gap less than 35 feet were
merged into the same intersection. If the gap was more than 200 feet they were neither merged nor
truncated. For gaps 35–200 feet long, nodes were defined as anti-merge, merge-happy, or neutral. Nodes
belonging to routes with the section number 000 were classified as anti-merge and were never merged
with one another at distances over 35 feet. Merge happy nodes were those that belonged to Y-
intersections or non-cardinal routes, or had a neighboring node that did. These were merged for distances

$

12

under 200 feet. Anything else was considered neutral and was merged up to 100 feet, but they were
truncated if the distance was between 100 and 200 feet.

In spatial terms, the product of the tabular calculations was the description of a line segment that either
started or ended at each node. This segment could then be plotted with the linear referencing tool. For
each node record, two fields were created to specify the milepoints at each end of the segment – one
identical to the node’s original milepoint, one at a distance (direction determined by the S/E identifier)
that was ascertained through the merge/ truncate calculations described above. If we had performed a
merge, the second milepoint was identical to that of the next node along the route.

In some cases, distance breaks threw off area-of-influence calculations. Calculating segment length took
into account the position of the next node along the route and was truncated accordingly if another node
was found within the specified distance. If the segment encountered a node stack with a distance break, it
was cut off at that point. This would have worked for all distance breaks but we removed all node IDs
with less than three real nodes (i.e. not including distance breaks), since these could not be part of an
intersection. Excel was overtaxed performing this set of calculations on so many records. As such, we
simplified the dataset as much as possible before doing the calculations. Where unmarked (non-
intersection) distance breaks occurred within an intersection’s area of influence, overshoots occurred.
This produced detached line segments that appeared far removed from their associated intersections.
Detecting and removing these during post-processing was not challenging, but in the future this step
could be avoided by leaving non-intersection distance breaks in the table after flagging them for special
treatment.

2.3 Intersection Database
$
2.3.1 Building Intersections in ArcMap
Plotting the modified table with “AllRds_M” using the Linear Referencing tool produced a large batch of
line segments. When overlaid atop the previously plotted point features, these radiated outward from the
point location of each node stack. In some cases this process linked nearby node stacks together. These
segments were used to create polygons that represented each intersection. Because ArcMap is best
equipped to combine touching or overlapping features as polygons, we created rectangular polygons
based on each line with a buffer distance of five feet. We used the option for flat-ended buffers to
preserve the gaps between proximate intersections. The dissolve tool was then used to merge all touching
or overlapping rectangles into single polygons (this is why preserving the gaps between intersections is
important).

The new polygon feature preserved the merge, truncate, and zone-of-influence logic from the tabular
processing, but reduced the number of features/records to one per intersection. At this point, the new
intersection features lacked attributes except for geometry and object ID (OID), which ArcMap adds to
feature classes automatically. To give each intersection a unique identification, we copied the OID into a
new field called “IntsctID” (OID itself is not a stable identifier because it changes when files are
modified).

Creating the polygons resulted in several cases where intersection segments were merged inappropriately
– mainly at overpasses. However, this set was small enough that errantly merged polygons were readily
located (using the select-by-location function to find intersection polygons that overlapped another feature
class, “PONTUS,” which inventories Kentucky’s bridges and overpasses). We manually edited the
polygons to correct these mismatches. Several additional intersection polygons that represented pseudo-
intersections (e.g., points at which a divided highway begins or ends) were later deleted. However, to
detect those, we introduced additional data to the new intersection dataset. For this and other reasons,

$

13

attribute data from point and line feature classes were needed to populate the new intersections attribute
table. We accomplished this using a process called stamping. To do this we executed a one-to-many
spatial join of the intersection polygons to the points or line segments with the desired data. Doing this
stamped each feature in the target with the intersection ID of the polygon it fell within. Desired attributes
in the stamped features were then summarized (or dissolved with a “Statistics Field” set to sum by
intersection ID). The resulting table was then joined back to intersection polygons with the newly derived
data. To maintain clarity, we created two copies of the intersection polygon feature. One called “Stamps”
was left as is. The other, called “Intersections,” was augmented with attribute fields from later processing.

2.2.2 Derived Fields and Psuedo-intersections
To aggregate the data, we used the dissolve tool with statistical fields extensively on the node features to.
First, the “IntsctNodes” feature was stamped with the intersection IDs so that each node falling inside one
of the intersection polygons adopted the latter’s unique identifier (the “IntsctID” field). “IntsctNodes” was
then dissolved by various fields or by combinations of fields to count or otherwise summarize other
attributes. For example, we counted the nodes in each stack by dissolving for Node ID with a statistics
field that counted object IDs (or any other unique identifier). A secondary dissolve by intersection ID was
carried out on the derived stack features in order to count the node stacks that fell within an intersection
(in most cases there was only one stack per intersection, but more complicated intersections had several).
We counted the number of unique route IDs in one node stack to identify loopbacks – points at which a
route curves around to intersect itself. A loopback occurred if the same route ID appeared on 3–4 nodes in
the same stack.
Counting the number of nodes with the same route ID within an intersection was crucial for calculating
the number of approaches per intersection (see Figure 3 below). Any of these counts could then be copied
into “Intersections” (the polygon feature) using a one-to-one table join.

For some of the desired statistical characteristics, additional fields were added to the feature class prior to
the dissolve. Parts of the Unique Route ID (“Knu_Rt_Ne” in the original node usage table) were split off
to create fields for Section ID (the last 3 characters) and LRS-ID (the first 13 characters). Section IDs
were three-digit codes that defined routes based on their type. For instance, the Y-leg of a Y-intersection
was defined by the range of section numbers, 020–029, and a crossover by 030–069. A section number of
000 indicated a standard route. A number of additional count fields were added to identify nodes by route
types. These were then populated with ones or zeroes depending on whether the section ID fell within the
range defined by that category. By definition, each node can only belong to one type. As such, nodes
cannot have more than one of these count fields populated with a one. During the subsequent dissolves, a
statistics field was added for each count. This field tabulated the number of nodes that belonged to each
section ID category within the dissolve grouping.

Count fields helped researchers identify pseudo-intersections for deletion. Pseudo-intersections are: 1)
divergence/ convergence points on divided highways, 2) isolated crossovers, 3) the divergence point of
non-merging Y-intersections, and 4) route-congruent ramp intersections (i.e., intersection of ramps and
other routes of the same LRS-ID). Node stacks with three nodes and a ratio of 2:1 between standard route
(000) and non-cardinal divided highway route (010) nodes was defined as a divided highway pseudo-
intersection. Any three-node stack that contained a crossover had the potential to be part of an isolated
crossover. These node stacks were not deleted. They were used to define secondary binary count fields,
this time with ones and zeroes in fields to signify different types of pseudo-intersections. Another
dissolve of the node stacks by “IntsctID” grouped the node stacks in an intersection with counts of the
number of node stacks that were pseudo-intersections. A new calculation field was then added to this
table, which subtracted the number of pseudo-intersections from the count of total node stacks. If this
field equaled zero (i.e., all of the node stacks in the intersection were pseudo-intersections), it flagged the
entire intersection for deletion. Figure 3 below shows such an example of a deleted intersection.

$

14

$
Figure'3:'The'intersection'polygon'on'the'right,'highlighted'in'red,'was'deleted'as'a'pseudoBintersection,'representing'merely'
the'start'of'a'divided'route.

2.2.3 Route Ranking System and Master Nodes
We used route rankings to determine main routes and master nodes for each intersection. For this purpose,
a table called “RouteRank,” — containing all 17-character route IDs in Kentucky — was created. Each
route was assigned a unique number, with lower numbers signifying a route that took higher precedence.
The number used to rank routes contained up to 16 significant digits and extended out nine decimal
places. The digits to the left of the decimal of the rank referred to the route’s position within a hierarchy
that was based on route prefix, government level, and route number. The decimal portion arbitrarily ranks
routes that would otherwise receive identical ranks. It accounted for section IDs, county numbers, and
route suffix (letter characters that sometimes appear at the end of route numbers).

The highest number component of the rank was the class modifier. This was based on a prefix and
whether or not the route was a ramp. In some cases, it took into account government-level attributes.
Ramps were assigned a class modifier of 2 million regardless of prefix. Interstates and parkways were
assigned zero; U.S. routes were assigned 10,000; Kentucky routes 20,000; and XX routes (pending
ownership designation) 30,000. All of these prefixes were defined as government level 1, while all other
prefixes had a government level 2 or higher. These other prefixes were assigned a class modifier that was
calculated by multiplying an integer by 10,000 (which was derived from adding 2 to the government
level), so that the lowest government level would be 40,000; levels were spaced at intervals of 10,000
from there on. For example, a city maintained road has a government level of 4 would have a class
modifier of 60,000.

Class modifiers (except those equal to zero) had four trailing zeroes so that route numbers – which at
most had four digits – could be added to them without distorting the previously defined rankings. The
class modifier plus the route numbers constituted the integer portion of the rank. The route suffix included
in some route numbers (e.g., U.S. 31W) were removed from the whole number and included in the
calculation of the decimal portion of the rank.

$

15

The decimal portions of the rank were derived similarly. Different components of the ranking were
assigned three positions within nine decimal places. We limited numbers to nine decimal places because
including a larger number bogged down ArcGIS GDB tables. The lowest component of the number (that
is, the component furthest from the decimal point) was reserved for county number and was equal to
county number (1 to 120) times 0.000000001. Section number (0 to 992) was assigned to the middle three
decimal digits. It was calculated by multiplying the number by 0.000001. The first three digits after the
decimal point were reserved for a number derived from the trailing letter characters of some route
numbers. Because most route numbers did not include letters, these three digits were most often zeroes.
Some trailing letters were followed by an additional trailing letter or a number up to 9. Both of these
characters were converted to numbers and then multiplied by 0.01 and 0.001, respectively, and then
summed. The first trailing character – always a letter – was converted to the numeric equivalent of its
position in the alphabet (so, A = 0.01 and Z = 0.26). Converting the second character was complicated by
the need to squeeze both numbers into three digits. To avoid different character combinations producing
identical values, multiples of ten had to be avoided when converting the second character. If the second
letter had been converted in the same manner as the first, so that J = 0.010, then the character set B and
the character set AJ would both convert to 0.020. Letters were assigned numbers in alphabetical order,
skipping 10 and 20, so that J = 11 (0.011 after the multiplication step), T = 22, and Z = 28. If the second
character was the number one, we converted it to 29; all other numbers were converted by adding 29 to
them (so, 7 = 36, or eventually 0.36). Thus, a trailing letter of WW would equal (23*0.01) + (25*0.001) =
0.23 + 0.025 = 0.255.

The entire ranking procedure we adopted is as follows:

[class modifier] + [route number, stripped of trailing characters] + [trailing character 1
conversion]*0.01 + [trailing character 2 conversion]*0.001 + [section ID]*0.000001 + [county
number]*0.000000001

This formula produced a unique number for any 17-character Unique Route ID. Any set of two or more
routes (for instance in a node stack or intersection) can be compared to determine which one takes
precedence.

By definition, intersections include multiple nodes (at least three, sometimes many more) and (except in
the case of loopbacks) multiple routes. To anchor the intersection to one point, we selected one of the
nodes at the intersection to serve as the index or master node. One of the routes at an intersection was also
selected as the main route. One of the classification system’s principal features (see below) hinged on
this, namely whether or not the main route in the intersection was divided or undivided.

We determined both Main Route and Master Node using the “RouteRank” table. First a new field was
created in “IntsctNodes” for Rank (“RtRank”). The route rank table was then joined to “IntsctNodes”
based on route ID. Then, the rank from the table was copied into the new field and we removed the join.
After this, we created a summary table for “IntsctID’ with a statistic for minimum “RtRank.” The
summary table was then re-joined to “IntsctID’” based on the field “RtRank,” by only keeping matching
records. The matched records were exported to a new intermediate feature class, which was then
dissolved by “IntsctID,” route ID, node ID, and milepoint (“Knu_Rt_Mp”). The attribute table of the final
dissolve contained a unique main route for each intersection. However, it sometimes included more than
one candidate for Master Node. The latter situation arose in cases where the main route intersected nodes
with different milepoints (those could be nodes with the same ID but different milepoints in the case of
loopbacks). When this situation materialized, we assigned priority to the node with the lowest milepoint.
Those were selected by repeating the summary-join-export procedure described above, but using
minimum milepoint instead of minimum “RtRank.”

$

16

The final table was joined to “Intersections,” and the new data were copied into newly created fields –
denoted “MnRoute” and “MasterNd.”

2.2.4 Additional Data
Data for approach counts, main routes, and master nodes were all derived from information already
contained in the node table. But additional data were required to classify intersections and to develop the
safety performance functions (see below). These included data on traffic controls, traffic volume,
directionality (one-way or two-way), crash statistics, jurisdictional level (state or local), and functional
classes (including whether the route was designated urban or rural). Many more attributes were
aggregated and integrated in the dataset, but these did contribute to the final version. Various methods
were used to aggregate and integrate this data, but the most efficient method typically involved a variation
of the stamping method described previously, using either “IntsctNodes” or “IntsctSeg” as intermediaries
for the transfer.

The statistics for crashes for 2009–2014 (total crashes and crashes broken down by severity type) were
based on a table that summarized the intersections in each segment according to route ID, beginning
milepoints, and ending milepoints. Each crash was assigned a date, route, and milepoint. If a crash
milepoint fell between the endpoints of a segment we assigned it to that segment, and count fields were
generated for the total number of crashes as well as the number of crashes in each severity type (the
KABCO scale was used). The resulting table was linear referenced, stamped with intersection IDs,
aggregated by intersection ID with sum of total and subcategory crashes included, and joined with
“Intersections.” This and any of the segment-based data (see below) could also be spatially joined to an
already-stamped “IntsctSeg” feature class, and summarized by intersection later as one large batch.

AADT and other classificatory data were downloaded from KYTC’s website, drawn either from the fields
of the “AllRds” shapefile or from more specialized datasets listed under Highway Information System
(HIS). Data were acquired as shapefiles, however, they were not used directly. Instead, DBF tables were
extracted and their data re-plotted using the standard version of “AllRds_M.” This step eliminated minor
geometric differences found among some routes in the different datasets. These differences occurred
because the Cabinet frequently updated its data. Before we re-plotted data, some tables were
superimposed using the Route Overlay tool-- based on route and start and end milepoints. The Route
Overlay tool superimposed segments defined by each milepoint pair and split any that overlapped into
smaller segments. This preserved the attributes of all parent segments.

Re-plotted segments were clipped to intersections and stamped with intersection IDs. To determine if
multiple new data segments overlapped one approach segment, we executed a select-for-location for
segments that touched point features in “IntsctNodes.” If we had found any that did not touch an
intersection node, they would have been deleted based on the assumption that the part of a route segment
closest to the intersection took priority.

Where categories were very simple, researchers took a more straightforward approach of selecting-by-
location and using the field calculator rather than directly joining features or attribute tables. For example,
the “Jurisdiction” field in “Intersections” was populated by selecting state routes on a route plot,
selecting-by-location intersections that touched the selected routes, and entering “state-state” in the field
calculator for the selected features. A new selection for local roads was then created in the route feature
class and another select-by-location done for “Intersections”, but this time with “select from current
selection” checked. The result was a smaller selection all mislabeled “state-state.” Recalculating the
selected features as “state-local” overwrote this smaller set while leaving the correct “state-state” category
untouched. By default, all of the remaining unfilled records in jurisdiction were “local-local.”

$

17

The data for intersection controls was derived from a separate KYTC file called route logs. This shared a
similar architecture as the node usage file, with points stacked at intersections. However, intersections
were allocated one point per route, rather than one per approach. It also encompassed a much smaller
subset of intersections than node usage. Like the node usage table, when plotted in ArcMap, points were
situated on the wrong side of distant breaks. These were referred to as “junction-disjunctions” in the route
log table. The research team used a procedure similar to the one described in the section 2.1.2 above to fix
this. Not every intersection control point lined up with the exact point of an intersection in “AllRds_M,”
although most did. Non-aligning points were discarded, but most of these could be salvaged in future
iterations of this database by using one or more of the proximity tools in ArcGIS to assign them to the
closest intersections. The study used table and spatial joints to integrate the points that lined up with
intersections.

The primary information used from route logs came from the field “CntrType,” which classified traffic
controls into a small number of categories including stop signs, traffic lights (signals), and no control.
Since route log point features are specific to routes and not whole approaches, we assumed that where a
route constituted two legs the traffic control type applied to both. Route logs were only available for a
limited number of intersections, but often not for all of the approaches. We stretched this number by
making a couple of assumptions. For signalized intersections, we assumed that control applied to all legs
entering the intersection (whether or not the intersecting route was covered by route logs or not). Where
the route log listed “no control” for a state route intersecting a local route and had no data for the local
route, we assumed that the local route must have a stop control.

2.2.5 Approach Counts
Approach refers to a route through which traffic enters or leaves an intersection. For simple intersections
with one node stack, the number of approaches equals the number of records (omitting distance breaks)
with the same node ID. If intersections have multiple node stacks, counting approaches is more
complicated. For example, a Y-intersection with three node stacks has nine individual nodes, but only
three approaches. The segments between the node stacks that make up the intersection are internal to the
intersection. As such, they do not constitute approaches. There are far more complicated combinations of
node stacks that occur in some intersections, often combining multiple Y-intersections, divided routes,
crossovers, and other types of converging routes.

To count the approaches in an intersection, the team first calculated the number of approaches per route
within an intersection. Certain types of routes were considered redundant; that is, they were not separate
approaches but merely a sub-component of one that had already been accounted for. For example, the
cardinal and non-cardinal sides of a divided highway were classified as one approach. We resolved this
by labelling NC routes as having zero approaches. We used the same logic for Y-intersections and
crossover routes, since they were internal to the intersection and did not generate traffic that entered or
left that had not been accounted for previously. For all other route types, we classified a route as having
one approach if it terminated at the intersection, two approaches if it passed through the intersection, and
three approaches if it formed a loopback. At a one-stack intersection, this equaled the number of nodes
per route, but at complicated intersections a route might pass though several node stacks, generating two
extra nodes for each one it passed though. See Figure 4 below for an example. A route, however,
generated only one node on a route where it terminated (i.e., its starting or ending point). Therefore, a
route with an odd number of nodes terminated at the intersection, where one with an even number of
nodes passed through it (correcting for loopbacks).

$

18

$
Figure'4:'Intersection'with'four'approaches,'one'each'for'KY'1211'and'CS'1562'(odd'numbers'of'nodes)'and'two'for'US'60'
(even'number'of'nodes).

To count the number of approaches per route, we used the new fields and dissolve-count statistics
described in section 2.2.2. These calculations performed a series of joins and dissolves, which produced a
table that counted the number of nodes per route per intersection, with additional fields indicating the
presence of loopbacks and identifying redundant routes (any within the range 010–069). A field called
“ApprRt” was added to this table indicate the number of approaches for each route. For loopbacks, this
equaled 3, and for redundant route types, 0. For all other cases, routes were assigned a 1 if it had an odd
number of nodes and a 2 was assigned for an even number. A final summary table was then generated for
the “IntsctID” field with a field that summed all “ApprRt” numbers for that intersection. We then jointed
this table with the Intersections feature class; the sum of “ApprRts” was copied into a field labeled
“ApprCnt.”$

2.2.6 Calculating Entering Traffic
Researchers calculated the volume of traffic entering intersections by using the value of Average Annual
Daily Traffic (AADT) for each leg, basing the estimate on whether it was a one- or two-direction leg. The
AADT value was obtained from a downloadable HIS shapefile called “TF” (i.e., traffic flow);
specifically, this information was contained in a field called “Last_Count.” This was available for a
limited number of road segments. It contained estimates of road traffic passing through the segment (both
ways, except in the case of one-way routes). The Cabinet’s “AllRds” shapefile contained the field
“TYPE_OP,” which defined whether a route was one-way, two-way, or part of a divided route. To correct
for minor differences between “TF” and “AllRds” and the version of “AllRds_M” we worked with the
DBF tables extracted from the “TF” file, combined them using the route overlay tool, and then re-plotted
them with our “AllRds_M.”

A spatial join assigned data from the new, combined event layer to the segments of the Approaches
feature class wherever they overlapped. The “TF” data did not cover all of the intersection segments. For

$

19

intersections with missing data, a proxy value of 300 was assigned. 300 is an arbitrary number, one that is
adequate for the pilot project. In future iterations of this database, we hope to improve estimates of the
proxy values, possibly based on the AADT of nearby routes or with county-specific estimates.

Our goal was to estimate the total amount of traffic entering intersections, while the AADT
(“Last_Count”) values from “TF” included traffic in both directions (with the exception of one-ways).
Therefore, AADT for two-way segments (or divided segments) were halved, while those for one-ways
were either taken in their entirety or reduced to zero. This was contingent on what direction the traffic
moved relative to the intersection. The following formulas were used for this calculation:

 If TYPE_OP = 1 and Knu_S_E = S, entering traffic = LAST_COUNT*1
 If TYPE_OP = 1 and Knu_S_E = E, entering traffic = LAST_COUNT*0
 If TYPE_OP = 2 or TYPE_OP = D, entering traffic = LAST_COUNT*0.5

The formulas adjusted AADT figures for each route so they could then be summed together by
intersection to gauge how much traffic entered intersections. For the purposes of the Safety Performance
Function (SPF), however, this figure was split into two numbers – one for traffic entering via the
intersection’s main route (called “Major AADT” in the SPF) and one for traffic entering the intersection
from all other routes at the intersection (called “Minor AADT”). In the rare event that either of these
equaled zero (which could happen if the “Last_Count” field in the original traffic function table was zero,
or if the only major or minor route was one-leg one-way leaving the intersection), we changed the number
to 1 because the SPF development could not include zeroes in the major or minor AADT fields.

$

20

3. INTERSECTION DATBASE AND SAFETY PERFORMANCE FUNCTIONS

3.1 Intersection Classification
To develop Safety Performance Functions (SPF), the intersection dataset was divided into 20 categories.
Approximately one-third of all intersections had sufficient attribute data to be classified using this
scheme. Most of the excluded intersections were local routes that intersected other local routes. Typically,
these lacked route-log information or AADT values. Table 1 lists the 20 categories, briefly describes
them, and provides a count of how many intersections fell into each category. The category with the most
intersections was “U3rP,” which was undivided 3-legged rural intersections with a stop control on at least
one leg. Other intersection types, such as “D3rS” are comparatively rare, and there were only a handful of
intersections (for which data were available) that met this description in the entire state. There were a total
of 182,384 intersections inclusive of all categories.
'

Table 1: Intersection Classification

Type Code Description Count
1 U3rF undivided 3-leg rural full stop 78
2 U3rP undivided 3-leg rural (at least) partial stop 37256
3 U3rS undivided 3-leg rural signal 96
4 U3uF undivided 3-leg urban full stop 68
5 U3uP undivided 3-leg urban (at least) partial stop 10252
6 U3uS undivided 3-leg urban signal 583
7 U4rF undivided 4+ leg rural full stop 77
8 U4rP undivided 4+ leg rural (at least) partial stop 4202
9 U4rS undivided 4+ leg rural signal 166

10 U4uF undivided 4+ leg urban full stop 89
11 U4uP undivided 4+ leg urban (at least) partial stop 2484
12 U4uS undivided 4+ leg urban signal 1492
13 D3rP divided 3-leg rural (at least) partial stop 729
14 D3rS divided 3-leg rural signal 26
15 D3uP divided 3-leg urban(at least) partial stop 1292
16 D3uS divided 3-leg urban signal 335
17 D4rP divided 4+ leg rural (at least) partial stop 459
18 D4rS divided 4+ leg rural signal 66
19 D4uP divided 4+ leg urban(at least) partial stop 560
20 D4uS divided 4+ leg urban signal 832

Numerous features were examined before we settled on these categories. The classifications were based
on three considerations: 1) whether the intersection was divided or undivided; 2) the number of
approaches; and 3) the type of traffic control (e.g., full stop, at least partial stop, or signal). These
variables existed in 24 combinations; four combinations (all of which were full-stop intersections on
divided routes) did not occur in the dataset. This left the 20 remaining classes listed in Table 1.

$

21

3.2 Safety Performance Functions
We developed SPFs for each of the 20 intersection categories. For a given category, each intersection, its
five-year crash history, and the AADT of each approach were compiled in a table. Using the R statistical
software program, we performed negative binomial regression analysis twice for each category. The first
analysis examined all crashes during the five-year period, while the second looked at only fatal and
serious injury crashes (KAB). Regression analysis was performed on the data using the following
functional form:
 !

" = $%&&'()%*+, &&'()-.+/

Where: y = predicted number of crashes

AADTmaj =Major approach entering average annual daily traffic
AADTmin =Minor approach entering average annual daily traffic
a, b1, b2 are parameters from the negative binomial regression

The following code was used to generate the needed parameters:

#To read the data into R
data=read.csv("//C:/RevSPF.csv",header=T)
attach(data)

#Use this to specify a subset of data (comment out this and the next line if uneeded)
data<-subset(data, ClassNum==3)
attach(data)

#Define variables (comment and uncomment based on severity)
crash=(All_Crashes)
#crash=(KAB_Crashes)
logMajADT=log(MajAADT)
logMinADT=log(MinAADT)

#To load the MASS library which contains the command glm.nb
library(MASS)

#To generate the negative binomial models
init.theta = 3
model1=glm.nb(crash~logMajADT+logMinADT,init.theta=init.theta) ##Fitting

#To retrieve the summary of the models
summary(model1)

Table 2 summarizes the output of the regression equation for each intersection type.

$

22

Table 2: SPF Parameters

All Crashes

KAB Crashes

Type Intercept Log_Maj Log_min Theta

Type Intercept Log_Maj Log_min Theta

1 -6.8508 0.7453 0.2635 0.86

1 -7.52232 0.74916 0.07044 0.225

2 -10.0896 0.84818 0.58105 0.8584

2 -11.8225 0.77761 0.63695 0.6706

3 -6.78382 0.89225 0.15249 1.95

3 -8.29651 0.92564 -0.06765 1

4 -2.40847 0.23563 0.25905 2.254

4 -5.8866 0.1858 0.3356 4

5 -6.58266 0.70294 0.29223 0.9444

5 -10.5728 0.8795 0.28738 0.9064

6 0.13917 0.23507 0.10347 2.013

6 -3.22177 0.29948 0.11612 1.466

7 -8.17309 1.11404 0.08278 2.74

7 -14.6596 1.75784 -0.04074 0.51

8 -9.69662 0.74447 0.72347 1.0202

8 -12.541 0.68717 0.93473 0.755

9 -1.19747 0.20673 0.25183 1.895

9 -9.8758 0.6791 0.5097 1.834

10 -2.17487 0.19232 0.35288 1.363

10 -2.24074 -0.06297 0.24041 0.676

11 -1.72875 0.2612 0.21699 0.9774

11 -6.95671 0.51766 0.30547 0.7413

12 1.26001 0.11229 0.14798 1.6518

12 -1.6062 0.14811 0.14768 1.234

13 -4.97683 0.24124 0.59428 0.7245

13 -8.8937 0.4526 0.6505 0.498

14 -2.6982 0.4885 0.1142 1.945

14 -4.6441 0.4695 0.1449 1.43

15 1.61303 -0.06379 0.15371 0.6737

15 -3.51331 0.19135 0.20701 0.5931

16 0.5548 0.20884 0.11222 1.948

16 -2.54404 0.26389 0.12154 2.538

17 -6.38656 0.25745 0.79386 0.891

17 -11.1975 0.5557 0.8629 0.577

18 -1.21364 0.18135 0.32262 3.57

18 -2.52751 0.15942 0.22736 1.872

19 -1.90987 0.26754 0.2528 1.0849

19 -7.80787 0.57463 0.36916 1.348

20 1.16855 0.15029 0.15579 1.8189

20 -0.97881 0.12115 0.13871 1.794

$

23

4. CONCLUSIONS

This study produced a comprehensive, fully updateable intersection database. Adopting the node usage
table as the database’s foundation ensured that the location information in the intersection database was
able to reflect any updates in roadway geometry that may have caused adjustments in downstream
milepoints. The database will be revised regularly to reflect any edited, removed, or added nodes in the
node usage table. Each intersection ID was indexed to one or more node IDs. Comparing the current node
usage table to previous versions will let users identify any changes, flag them, and apply the appropriate
correction to the associated intersection.

Using the SPFs developed as part of this study will provide a more data-driven approach to decision
making on intersection safety, as compared to the previous critical rate analysis. We anticipate that
considering the effects of regression-to-the-mean and ensuring that low-volume intersections are not
ranked artificially high will assist KYTC in deciding where to prioritize the installation of intersection
safety countermeasures.

There are many ways in which the processes described in this report could be refined and expanded in
future versions of the database. A major limitation with the current version is the absence of AADT data
and traffic control information for many (in fact, most) of the intersections in the larger database. It has
been suggested that existing county-specific data for Vehicle Miles Travelled (VTM) could serve as a
proxy to estimate AADT when exact measures are unavailable. Future iterations of the process will likely
integrate interchanges as an analytical category. Preliminary work suggested that the skew angles between
intersection approaches could be meaningfully integrated into the intersection classifications.
Furthermore, it is anticipated that once the database and associated SPF results are made available to
expert users, additional improvements will be suggested. As such, a quality control protocol will be
implemented to ensure that errors in the database are addressed each year.

$

24

REFERENCES

Green, Eric, & Agent, Kenneth. (2003, August). Crash Rates at Intersections. Kentucky Transportation
Center, University of Kentucky College of Engineering, Lexington, KY. Retrieved from Web: 10
September, 2014.

Kentucky Transportation Center. (2012, October 1). Kentucky Strategic Highway Safety Plan 2011-2014.
KTC, University of Kentucky College of Engineering, Lexington, KY. Published By: Kentucky
Transportation Cabinet Office of Highway Safety, Frankfort, KY. Retrieved from Web: 1 Nov. 2014.

Kentucky Transportation Center. (2013). Kentucky Traffic Collision Facts. KTC, University of Kentucky
College of Engineering, Lexington, KY. Retrieved from Web: 3 Oct. 2014.

Srinivasan, Raghavan, & Carter, Daniel. (2011, December). Development of Safety Performance
Functions for North Carolina. University of North Carolina Highway Safety Research Center. Chapel
Hill, NC.

Simandl, Jenna K, Graettinger, Andrew J., Smith, Randy K., & Barnett, Timothy E. (2015). GIS-Based
Non-Signalized Intersection Data Inventory Tool to Improve Traffic Safety. Transportation Research
Board Annual Meeting 2015 Paper #15-1585.

Campbell, John R. & Knapp, Keith K. (2005). Geometric Categories as Intersection Safety Evaluation
Tools. Proceedings of the 2005 Mid-Continent Transportation Research Symposium.

Garber, Nicholas J., Rivera, Griselle, & Lim, In-Kyu. Safety Performance Functions for Intersections in
Virginia. TRB 90th Annual Meeting Compendium of Papers.

