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EMOTIONAL ENHANCEMENT AND REPETITION EFFECTS DURING 

WORKING MEMORY IN PERSONS WITH MILD COGNITIVE IMPAIRMENT 

 

 This dissertation introduces a framework for understanding differences in how 

emotional enhancement effects might influence memory in aging adults and then 

summarizes the findings of three studies of how repetition effects and emotional 

enhancement effects influence working memory in older adults without cognitive 

impairment (NC), older adults with amnestic mild cognitive impairment (MCI), and older 

adults with mild Alzheimer’s disease (AD). In these experiments, individuals with AD 

showed cognitive impairment in terms of accuracy and reaction time, but individuals with 

MCI showed milder behavioral impairment that was confined to manipulations of working 

memory. Individuals with AD showed relative sparing of repetition effects in behavioral 

performance, and this sparing was linked to an altered cortical repetition effect using event-

related potentials (ERPs). Repetition effects in MCI appear absent in emotional tasks that 

lack a working memory component, but are present in a neural repetition mechanism that is 

evoked in the presence of working memory. Finally, persons with MCI showed working 

memory processing similar to persons without impairment when working with stimuli of low 

arousal and positive hedonic valence, but when working with stimuli of high arousal and 

negative hedonic valence, their working memory processing more resembled the AD 

phenotype. 

Keywords: event-related potentials, Alzheimer’s disease, emotional memory, working 

memory, repetition effects 
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Preface 

 This dissertation summarizes three experiments that have attempted to assess the 

behavioral viability of discrete memory systems in people with dementia due to Alzheimer’s 

disease (AD); people who are experiencing its preceding clinical state, mild cognitive 

impairment (MCI); and in otherwise-similar older adults without cognitive impairment (NC). 

A goal of this enterprise is to identify potential aspects of cognition that might be relatively 

spared in function or neural implementation as the disease progresses. In these experiments, 

visual working memory, the capacity to hold visual information in one’s mind for intentional 

manipulation, is assessed as a capacity known to be impaired in persons with clinical 

Alzheimer’s disease. Emotional enhancements effects (i.e., the ability of arousing, pleasant, 

or unsettling stimuli to be encoded into memory more reliably or vividly than other stimuli) 

and repetition effects (i.e., the unconscious tendency for repeated stimuli or phenomena to 

be more reliably encoded into memory, more easily retrieved from memory, and/or 

differentially processed in the brain) are assessed as capacities believed to be relatively intact 

in Alzheimer’s disease. 

 In Chapter 1, these ideas have been developed into a review paper, which argues that 

discrepancies in the literature regarding emotional enhancement effects in mild cognitive 

impairment merit investigation and may represent an unappreciated clinical opportunity, 

especially in light of the established clinical benefits of repetition effects. Further, I suggest 

that emotional enhancement effects likely benefit individuals with milder clinical stages of 

AD provided that they do not concurrently compete for resources also allocated to spatial 

attention. 

 In Chapter 2, I analyze the behavioral results of Experiment 1, where visual working 

memory and repetition effects were assessed in the absence of emotional enhancement 

effects. The main findings were that a) nonmatching stimuli (i.e., stimuli distracting research 

participants from the working memory task at-hand) showed behavioral reaction time 

slowing at an earlier clinical stage than did matching stimuli, and b) that individuals with AD 

showed exaggerated benefits from repetition relative to other participants. I suggest that 

these findings, respectively, correlate to attention dysregulation in dementia and suggest that 

repetition effects are spared in the current visual working memory paradigm context. 

 In Chapter 3, I analyze the electrophysiological data from the same experiment and 

use principal components analysis (PCA) to disentangle the classical electrophysiological 

waveform into discrete neural phenomena. The major finding was that repetition effects for 

a neural component measured only at posterior electrode sites showed an effect in AD that 

was opposite that of individuals with milder impairment or who lacked impairment. 

Although this effect did not correlate with behavioral differences in reaction time outcomes, 

I suggest that these findings may nonetheless suggest cognitive plasticity in posterior cortex 

for maintenance of near-normal repetition effects for this task in AD, perhaps reflecting 
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plasticity at occipital cortex, which is pathologically spared relative to other cortical regions 

in AD. 

 In Chapter 4, I analyze electrophysiological data from two further experiments: one 

that assesses repetition effects in the presence of emotional enhancement effects, and one 

that assesses both faculties in the context of a working memory task. In this chapter, I focus 

on aspects of the results that were related to repetition effects. The major finding is that 

whereas repetition effects appeared quite impaired in participants with MCI in the context of 

the task without working memory, incorporating working memory into the experiment 

stimulated a neural component where individuals with MCI did show a typical repetition 

effect. I suggest that this finding emphasizes that cognitive challenge can reveal capacities of 

individuals with AD that would otherwise appear extinct. Further, I suggest that the finding 

may help contextualize disparate findings about the status of repetition effects in AD. 

 In Chapter 5, I assess findings from those experiments that were unrelated to 

repetition effects. The main finding was that individuals with MCI showed a reversal of 

traditional working memory processing that was unique to high arousal negative stimuli. In 

other words, whereas the processing difference between matching and nonmatching stimuli 

was approximately equivalent between people with and without impairment for low arousal 

positive stimuli, high arousal negative stimuli evoked different working memory processing 

patterns for persons with and without MCI. Further, this altered pattern has been linked to 

the clinical course of AD in earlier behavioral (e.g., in Chapter 2) and electrophysiological 

data. I suggest that this finding that high arousal negative stimuli exacerbate effects of AD 

on memory processing may be generalizable to arousing, unsettling environments of persons 

with AD. 

 I would like to thank you, reader, and the rest of my dissertation and evaluation 

committee for your guidance and evaluating of these materials. I hope that they reflect my 

progress and effort over the preceding four years and that they feel worthwhile to review.
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Chapter 1: A Review of Emotional Memory Enhancement in Aging and 
Dementia 

Adapted from Broster et al. (2012). Does emotional memory enhancement assist the 

memory-impaired? Frontiers in Aging Neuroscience 4. 

EXECUTIVE SUMMARY 

I review recent work on emotional memory enhancement in aging and demented cohorts 

and evaluate the viability of incorporating emotional components into cognitive 

rehabilitation for mild cognitive impairment and mild Alzheimer dementia.  First, I identify 

converging evidence regarding the effects of emotional valence on working memory in 

healthy aging.  Second, I introduce work that suggests a more complex role for emotional 

memory enhancement in aging and identify a model capable of unifying disparate research 

findings.  Third, I survey the neuroimaging literature for evidence of a special role for the 

amygdala in mild cognitive impairment and mild Alzheimer dementia in emotional memory 

enhancement.  Finally, I assess the theoretical feasibility of incorporating emotional content 

into cognitive rehabilitation given all available evidence. 
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Introduction 

 Contemporary cognitive rehabilitation, especially when delivered alongside 

pharmacotherapy, has been shown to improve memory outcomes and delay dementia 

progression in individuals with amnestic mild cognitive impairment (MCI) and mild 

Alzheimer dementia (AD) (Mimura & Komatsu, 2007). Historically, however, clinical results 

of cognitive dementia interventions have been somewhat mixed. In fact, the findings of trials 

investigating the efficacy of such practices in the 1980s led clinicians to question the validity 

of the entire behavioral intervention paradigm for the treatment of AD (Hopper, 2003; 

Mowszowski, Batchelor, & Naismith, 2010). 

 These early cognitive rehabilitation interventions focused on improving explicit 

memory as a means of treating the explicit memory loss typical of AD. Other forms of 

memory, including implicit memory, are relatively spared by AD. Implicit memory includes 

those aspects of memory of which the individual lacks conscious awareness. For example, 

procedural memory, the memory of how to perform physical tasks, is one aspect of implicit 

memory. Repetition learning, the passive, automatic learning of associations upon repeated 

exposure, is another (Kessels, Remmerswaal, & Wilson, 2011). 

 The advent of implicit memory-based methods represented a major theoretical shift 

in the development of more efficacious cognitive rehabilitation protocols. Rather than 

focusing only on improving explicit memory directly through rehearsal, these protocols also 

utilize intact implicit memory to compensate for eroding explicit capacity (Mimura & 

Komatsu, 2007). Pilot studies have suggested improved efficacy for implicit memory-based 

intervention methods (Jean et al., 2010; Kessels & de Haan, 2003a, 2003b; van Halteren-van 

Tilborg, Scherder, & Hulstijn, 2007; Zanetti et al., 1997). 
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 The success of this approach leads us to question whether other neurocognitive 

systems broadly implicated in memory are relatively intact in patients with progressive 

dementia such that those systems may be analogously harnessed to help compensate for 

eroded explicit capacity. In other words, much as implicit memory treatment appears 

promising for ameliorating early explicit memory decline, perhaps recruiting other relatively-

intact memory processes in individuals with early impairment can additively help delay 

significant functional impairment. One candidate system that involves structures relatively 

spared in AD is the emotional processing system, and its integration with memory systems 

has garnered significant attention over the past decades (Pessoa, 2008, 2009, 2010; Pessoa & 

Adolphs, 2010). To evaluate whether this system might show promise in further enhancing 

cognitive rehabilitation protocols, I first describe how emotional memory enhancement, the 

tendency of emotional content to be better-remembered than non-emotional content, might 

change with aging and dementia. 

Emotional memory enhancement is intact in older adults  

 A major behavioral basis for the belief that emotional content might improve 

memory outcomes is the persistent finding that, even in older adults, emotional content is 

remembered more accurately and/or more quickly than non-emotional content for both 

short-term and longer-term recall of visual images (F. Boller et al., 2002; Borg, Leroy, Favre, 

Laurent, & Thomas-Anterion, 2011; Evans-Roberts & Turnbull, 2011; Mikels, Fredrickson, 

et al., 2005; Mikels, Larkin, Reuter-Lorenz, & Cartensen, 2005; Moayeri, Cahill, Jin, & Potkin, 

2000; Nashiro & Mather, 2011a, 2011b). This is independently-demonstrated for emotional 

stimuli of both positive valence and negative valence relative to non-emotional control, and 

it is demonstrated in mild AD participants (F. Boller et al., 2002; Borg et al., 2011). 
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 In tests simultaneously evaluating positively and negatively-valenced stimuli relative 

to non-emotional control, both types consistently increase memory performance better than 

non-emotional stimuli, and, for older adults, positive valences tend to produce better results 

than negative valences (Murphy & Isaacowitz, 2008; Nashiro, Mather, Gorlick, & Nga, 2011). 

The tendency for older adults to perform better on positively-valenced stimuli with regard to 

measures of attention, recognition, and emotional memory enhancement has been termed 

the age-related positivity effect (Charles, Mather, & Carstensen, 2003; Gruhn, Scheibe, & Baltes, 

2007; Isaacowitz, Allard, Murphy, & Schlangel, 2009; Isaacowitz, Toner, & Neupert, 2009; 

Lockenhoff & Carstensen, 2007; Mather & Knight, 2006), and the positivity effect 

phenomenon itself is sufficiently well-established that separate attempts to model the 

phenomenon compete for legitimacy in the emotional aging literature (Carstensen, Pasupathi, 

Mayr, & Nesselroade, 2000; Knight et al., 2007; Labouvie-Vief, Diehl, Jain, & Zhang, 2007; 

Labouvie-Vief, Lumley, Jain, & Heinze, 2003; Mather & Knight, 2005; Scheibe & Carstensen, 

2010). 

 One account of the positivity effect holds that changes in valence biases reflect top-

down changes in emotional regulation with aging (Carstensen et al., 2000). In other words, it 

appears that older adults may have unique mental processes that enable them to encode 

positively-valenced stimuli in a manner categorically different from younger adults (Charles 

& Piazza, 2007). This perspective suggests that older adults may have special valence-specific 

cognitive biases that may be used in the context of emotional memory enhancement to 

improve memory outcomes. 

 This positivity effect may not be observed in some subpopulations of older adults. 

For example, individuals with major depressive disorder or who have recovered from major 
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depressive disorder show preferential attention to negatively-valence stimuli (Kerestes et al., 

2012), which may predispose them to encode valence differently from individuals without a 

history of depression. Whether these effects persist in the face of the positivity effect is 

unknown, but, given the association between depression and cognitive impairment, the 

competing trends should be noted in the short term and formally evaluated in future work 

(Burt, Zembar, & Niederehe, 1995; Korczyn & Halperin, 2009). 

 For the purposes of this review, the observations that older adults show emotional 

memory enhancement, particularly with positively-valence stimuli, and that Alzheimer 

participants may also show a degree of emotional memory enhancement are sufficient for 

motivating further inquiry. I next look at how emotional memory enhancement differs in old 

age and dementia. 

Dementia changes the emotional realm 

 While emotional memory enhancement, as prior discussed, is intact to a certain 

extent in older adults, individuals with MCI, and individuals with AD, all of these groups do 

significantly differ from younger adults on certain attention and memory measures (E A 

Kensinger, 2008). The prior-discussed positivity effect between younger and older adults is 

just one example of such a difference, and the themes implicit in that effect are broadly 

consistent even for non-visual modalities, attention paradigms, and neurofunctional work 

(Leclerc & Kensinger, 2011; Orgeta, 2011a, 2011b; L. Yang & Hasher, 2011). However, 

differences in emotional memory enhancement between non-demented older adults and 

older adults with AD have been reported for a range of experimental paradigms, and some 

even report lack of significant emotional memory enhancement. For example, older adults 

with AD do not appear to benefit from emotional memory enhancement in the processing 
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of complex information such as verbally-related stories and even some short-term memory 

delay recognition memory paradigms (Abrisqueta-Gomez, Bueno, Oliveira, & Bertolucci, 

2002; E. A. Kensinger & Corkin, 2003a, 2003b; E. A. Kensinger, Krendl, & Corkin, 2006). 

These differences in patients with AD are attested when investigating both only positively- 

and only negatively-valenced stimuli (Hamann, Monarch, & Goldstein, 2002; Padovan, 

Versace, Thomas-Anterion, & Laurent, 2002). 

 Contrarily, other work indicates that even individuals with AD benefit modestly 

from emotional memory enhancement (E. A. Kensinger, Brierley, Medford, Growdon, & 

Corkin, 2002) For example, while emotional memory enhancement was attenuated relative 

to healthy, age-matched controls, patients with mild AD showed improved memory for 

emotional items in a free recall paradigm (Nieuwenhuis-Mark, Schalk, & de Graaf, 2009). 

Indeed, some studies imply that people with AD may show enhanced flashbulb memory (i.e. 

vivid, visuospatially-detailed memories) for events with particularly intense arousal and 

emotional content (Kazui, Mori, Hashimoto, & Hirono, 2003). Other controlled work on 

flashbulb memories suggests that these faculties are intact in AD (Budson et al., 2004; Ikeda 

et al., 1998; Kazui et al., 2000; Moayeri et al., 2000). The strength of this phenomenon within 

individuals may be linked to amygdala mass (McGaugh, Cahill, & Roozendaal, 1996; Mori et 

al., 1999; Phelps, 2004; Phelps, Delgado, Nearing, & LeDoux, 2004). The work reviewed 

earlier in the context of valence effect differences similarly finds intact emotional memory 

enhancement of some form in people with AD (F. Boller et al., 2002). 

 These data demonstrate that different paradigms come to different conclusions 

about whether people with AD benefit from emotional memory enhancement or the 
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positivity effect, though studies suggest these phenomena may be partially intact. To attempt 

to contextualize these disparate findings, I investigate a few studies in more detail. 

Can emotional memory decrement occur? 

 While most studies indicate emotional memory enhancement in older adults and 

some further observe a form of this in people with AD, I have also cited work that fails to 

observe this phenomenon in the demented population. Borg (2011) and colleagues have 

elucidated a model suggesting that emotional content inexorably monopolizes a certain share 

Figure 1.1: Contextual Model of Emotional Enhancement Effects. A model derived from Borg (2011) and colleagues’ 

view of how occupied or impaired cognitive resources can change how emotion affects memory encoding. If 

individuals’ executive function resources are otherwise engaged or individuals’ executive function is impaired, as 

in Alzheimer dementia, the model predicts greater likelihood of emotional memory decrement. Patients with 

intermediate executive function impairment, as in MCI or mild AD, would be hypothesized to have relatively 

normal emotional memory enhancement. 



8 
 

of executive function resources (Figure 1.1) based on the finding that memory deficits were 

greater for emotional than non-emotional stimuli when a task required more executive 

demand or when individuals had impaired executive resources (e.g., secondary to dementia). 

 For a simple visual recognition task younger adults, older adults, and mild AD 

patients all showed emotional memory enhancement. However, older adults and mild AD 

patients no longer showed emotional memory enhancement in a more executive function-

demanding visual binding task, and AD patients also showed a between-task performance 

difference for non-emotional stimuli.  Borg (2011) and colleagues argued that emotional 

memory enhancement requires executive function resources and that that resource usage 

could either help or hinder ultimate performance depending upon total available resources, a 

function of each individual, and resources necessary for a given task. 

 This contextualization helps explain the disparate findings prior reviewed. Individual 

differences in the degree of executive dysfunction between cohorts and differences in 

executive function required for a given task would affect whether emotional memory 

enhancement, emotional memory decrement, or neither would occur in people with AD. 

These findings also contextualize research reports outside the dementia literature that appear 

at-odds with consensus elsewhere. For example, the finding that older adults more than 

younger adults fail to remember details of complex emotional scenes such as robberies 

(Aizpurua, Garcia-Bajos, & Migueles, 2011) may be explained in part by such stimuli having 

more complex, less controlled elements than the simpler stimuli normatively employed in 

the psychological literature. 

 This model greatly resembles the “dual competition” framework articulated by 

Pessoa (2009). That framework, based on work with younger cohorts, suggested, namely, 
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that interactions between cognition, motivation, and emotion could affect whether 

emotional memory enhancement or emotional memory decrement would occur. 

 It is worth noting that this model does not account for the finding that patients with 

AD appear to have intact flashbulb memory. Whereas the model might predict that memory 

of complex events requiring concurrent executive function may suffer given emotional 

context, flashbulb memory, tending as it does to be associated with emotionally-arousing 

events, shows the opposite trend. One possibility is that recollection per se is what these 

paradigms test, and that recollection itself does not require extensive executive resources, 

even though processing the event itself may well have required them. Another possibility is 

that details of the various events have been confabulated in ways that are not accounted for 

by the various protocols, and this confabulation masks impairment not otherwise recorded. 

 Concerns about the specific applicability of flashbulb memory findings aside, this 

model suggests that while integrating emotional content into cognitive rehabilitation for 

people with MCI or very mild AD may be efficacious, it may be less useful for more-

impaired populations, and emotional memory decrement may even occur if the rehabilitation 

protocol in question requires intensive executive control. 

 I next look to neuroimaging for evidence of the neurological mechanism underlying 

Borg (2011) and colleagues’ executive resource hypothesis. 

Toward a neural mechanism for Borg (2011) and colleagues’ executive 

resource hypothesis 

 Neuroimaging of emotional memory enhancement in aging and AD populations 

remains in its infancy. Most imaging work with patients with AD focuses on memory effects 
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per se in the absence of emotional context. Nevertheless, these memory findings have 

revealed intriguing emotional brain region effects. Patients with AD show abnormal 

connectivity and activation of emotion-related brain regions even when engaging in 

putatively non-emotional memory tasks (Rosenbaum, Furey, Horwitz, & Grady, 2010). 

Specifically, increased connectivity between amygdala and pre-frontal cortex for a working 

memory task was seen in participants with AD relative to controls in spite of no differential 

indication of arousal correlates during the task. Rosenbaum (2010) and colleagues suggest 

that this difference represents recruitment of compensatory pre-frontal brain structures, and 

that the amygdala acts as an intermediary through which pre-frontal resources are accessed. 

During an emotionally-neutral delayed match-to-sample task, I found significantly more 

task-related amygdala activation in participants with MCI than in age-matched older adults 

(Figure 1.2). Our findings are analogous to those reported by Rosenbaum et al. (2010). 

 

Figure 1.2: Pilot data corroborating Rosenbaum’s findings. I observe significant right amygdala activation during a 

working memory task in an older patient with mild cognitive impairment (right, white background), but not in an 

older control participant (left, black background). The red blob shows activation from a Z map of all objects (p < 

0.000001). 
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 One possible criticism of both these neuroimaging findings is that memory-impaired 

cohorts may experience anxiety when asked to perform a task at which they are impaired. In 

other words, the amygdala and frontal responses in these groups could reflect functionally-

irrelevant anxiety about performance. To address this concern, Rosenbaum (2010) and 

colleagues point to a lack of arousal difference between groups and argue that that similar 

arousal indicates that anxiety was not responsible for the observed effects. 

 These findings, if valid, provide a possible neurological mechanism for emotional 

memory enhancement. They also provide a mechanism for Borg (2011) and colleagues’ claim 

that executive function resources, implicated as they are in pre-frontal cortical structures, 

determine whether emotional memory enhancement or emotional memory decrement will 

occur. Specifically, the preoccupation of pre-frontal executive function resources with an 

executive function-intensive task could disrupt pre-frontal recruitment and explain why 

emotional memory enhancement fails to occur. 

 The finding that interaction between the amygdala and prefrontal cortices plays a 

significant role in implementing cognitive-emotional interactions is consistent with the 

amygdala’s theoretical role as a coordinator of cortical functions regarding affectively-

significant events (de Gelder, van Honk, & Tamietto, 2011; Pessoa & Adolphs, 2010). It is 

further consistent with anatomical connectivity research in the non-human primate, which 

purports that the relationship of the amygdala to the prefrontal cortex, and to the 

orbitofrontal cortex in particular, is likely implicated in emotional processing (Ghashghaei & 

Barbas, 2002). Non-primate animal research also supports this conclusion (Quirk & Beer, 

2006). 
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 Future work should investigate this phenomenon while more aggressively measuring 

correlates of arousal and anxiety. However, even if the effect turns out not to be 

differentiable from presumed-functionally-irrelevant task anxiety, the mechanism may 

nonetheless prove interesting. For example, arousal may be an epiphenomenon of the 

emotional memory enhancement phenomenon. 

Summary and relevance for cognitive rehabilitation  

 I have reviewed evidence that patients with AD better remember emotional content, 

but only if that content is not accompanied by complex, mentally-taxing phenomena. The 

neurological mechanism underlying this benefit may lie in the amygdala’s role as an 

intermediary to the executive resources of the frontal cortex. I assert that the available 

scientific evidence suggests that patients with MCI or mild AD may benefit from integrating 

emotional memory enhancement into the rehabilitation process. In particular, the evidence 

implies that coupling positively-valenced stimuli to non-complex elements of the cognitive 

training process may be of particular use in non-depressed patients identified as having 

amnestic MCI or mild AD. Some cohorts, such as depressed patients, may have attenuated 

positivity effects and likewise show reduced benefit from therapy. Also drawing from Borg 

(2011) and colleagues’ model, cognitive rehabilitation could target executive function directly. 

Increased executive resources could increase patients’ ability to benefit from emotional cues 

in their daily lives (Jean et al., 2010; H. Li et al., 2011; Martin, Clare, Altgassen, Cameron, & 

Zehnder, 2011). 

 I have also identified two models, one behavioral (Borg et al., 2011) and one 

neuroaffective (Rosenbaum et al., 2010), capable of consolidating many of the research 

findings reported while characterizing interactions between emotional memory enhancement, 
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aging, the task difficulty at the algorithmic and implementational levels, respectively. 

Stronger tests of these findings, particularly regarding the role of the amygdala in recruiting 

prefrontal structures in MCI and dementia, would help confirm a promising model that 

describes how brain systems compensate for early cognitive impairment. 
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Chapter 2: Dementia is Associated with Non-Match Deficits and Maintained 

Repetition Effects 

Adapted from Broster et al., (2013). Repeated Retrieval During Working Memory Is 

Sensitive to Amnestic Mild Cognitive Impairment. Journal of clinical and experimental 

neuropsychology 35 (9), 946-959 

EXECUTIVE SUMMARY 

Study of repeated learning mechanisms has been limited in amnestic mild cognitive 

impairment, a preclinical stage of Alzheimer disease modifiable by cognitive rehabilitation. I 

assessed repeated contextual working memory decline as an indicator of amnestic mild 

cognitive impairment in a sample of 45 older adults recruited from the tertiary care setting. 

Results indicated that contextual working memory impairment distinguished adults with 

preclinical disease from those without impairment despite similar overall cognitive 

performance, and comparison of the indicator with standard-of-care neuropsychological 

measures indicated discriminant validity. Contextual working memory impairment may 

represent a novel predictor of Alzheimer disease conversion risk. 
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Introduction 

 Decades of experimental and clinical work have identified memory systems disrupted 

or spared in the course of amnestic mild cognitive impairment (MCI) and its typical 

successor state, Alzheimer disease (AD) (Baars et al., 2009; Hodges, Erzinclioglu, & 

Patterson, 2006; Kessels & de Haan, 2003a; Wiggs, Weisberg, & Martin, 2006). Identifying 

vulnerable cognitive capacities enables early identification of persons at risk for AD so that 

appropriate early interventions may be delivered, and identifying spared memory capacities 

informs the development of cognitive training interventions that may serve to delay 

functional AD impairment (Belleville et al., 2011; Belleville et al., 2006; Carlesimo et al., 

1998). Since treatment options at the AD stage of impairment remain limited, identifying 

persons with preclinical AD has become an important clinical goal. 

 Despite the traditional focus on the dysfunction of episodic delayed recall in AD, the 

association of AD with declining working memory (WM), a short-term memory system that 

holds information on-line for cognitive manipulation, has been appreciated since the 1990s 

(Baddeley, Bressi, Della Sala, Logie, & Spinnler, 1991; Belleville, Peretz, & Malenfant, 1996; 

Bisiacchi, Tarantino, & Ciccola, 2008; Borella, Carretti, & De Beni, 2008; Collette, Van der 

Linden, & Salmon, 1999; Moulin, James, Freeman, & Jones, 2004; Ribeiro, Guerreiro, & De 

Mendonca, 2007; Rochon, Waters, & Caplan, 2000; Schrijnemaekers, de Jager, Hogervorst, 

& Budge, 2006; Seelye, Schmitter-Edgecombe, & Flores, 2010). Indeed, cognitive 

researchers have converged upon an understanding that WM experiences parallel decline in 

the earliest stages of clinical AD, and neurophysiology has linked disrupted WM processing 

to progressive MCI (Belleville, Sylvain-Roy, de Boysson, & Menard, 2008; Kramer et al., 

2006; Matsuda & Saito, 2009; Missonnier et al., 2007; Missonnier et al., 2006; Saunders & 
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Summers, 2010, 2011). The similar clinical prognoses of episodic memory and WM in AD 

have been correlated to their shared neural mechanisms. Functional neuroimaging has 

implicated a left-lateralized network including the left inferior frontal gyrus, inferior and 

medial temporal cortices, and posterior parietal cortices in WM, and these regions, 

particularly medial temporal structures such as the hippocampus, are classically associated 

with episodic memory (Oztekin, McElree, Staresina, & Davachi, 2009; Parasuraman, 

Greenwood, Haxby, & Grady, 1992; Ranganath, Cohen, Dam, & D'Esposito, 2004). 

 In contrast to WM and episodic memory, nondeclarative forms of memory such as 

repetition priming (RP), characterized by unconscious changes in cognitive processing due to 

mere exposure to associations between phenomena, appear broadly spared in aging and AD 

(Fleischman & Gabrieli, 1998; Gabrieli, Corkin, Mickel, & Growdon, 1993; Kessels et al., 

2011; Wilkinson & Yang, 2012; L. Yang & Krampe, 2009). Individuals with particularly 

severe AD pathology may even exhibit enhanced nondeclarative memory (Klimkowicz-

Mrowiec, Slowik, Krzywoszanski, Herzog-Krzywoszanska, & Szczudlik, 2008). Indeed, 

cognitive interventions to improve functioning in MCI and AD utilizing this spared 

nondeclarative capacity have been devised, and they appear efficacious (Jean et al., 2010; 

Kessels & de Haan, 2003a; Mimura & Komatsu, 2007; van Halteren-van Tilborg et al., 2007; 

Zanetti et al., 1997). However, the degree of impairment in specific aspects of nondeclarative 

memory in MCI and AD remains controversial. For example, some studies have reported 

that persons with clinical AD show impairment in certain nondeclarative memory tasks, 

especially for tasks where the ability to distinguish related phenomena on-line is implicated 

or where long-term encoding would be necessary for the observation of nondeclarative 

effects (Ferraro, Balota, & Connor, 1993; Fleischman & Gabrieli, 1998; Fleischman, Gabrieli, 
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Wilson, Moro, & Bennett, 2005; Henke, 2010; Mitchell & Schmitt, 2006; Pihlajamaki, 

O'Keefe, O'Brien, Blacker, & Sperling, 2011). 

 I suggest that this apparent discrepancy may be partially resolved by an appreciation 

that despite their dissimilar clinical fates in AD, episodic memory, RP, and WM systems 

collaborate and interact “on-line” during cognitive processing due to medial temporal and 

frontal cortical co-involvement (Guo, Lawson, & Jiang, 2007; Koenig et al., 2008). This 

possibility is highlighted by the tendency of reports of nondeclarative memory impairment in 

AD to be linked to either a long-term delay or relevance to an on-line task. This interaction 

presents a potential clinical opportunity. Altered neural mechanisms associated with 

cognitive decline are potential cognitive or neuroimaging biomarkers of cognitive 

dysfunction. Indeed, neural structures overlapping with those that subserve WM functions 

have been used to identify participants at risk for AD conversion with success. For example, 

the default mode network, a system of brain regions characterized by activity covariation in 

the absence of an ongoing cognitive task, incorporates medial temporal and prefrontal 

structures, and resting state analyses have identified systematic changes to these structures 

both in persons with AD and in at-risk individuals who have not yet received a clinical 

diagnosis (Buckner et al., 2009; Celone et al., 2006; Sperling, 2007). However, the underlying 

neural mechanisms subserving the default network and WM are distinct (Greicius, Krasnow, 

Reiss, & Menon, 2003; Hampson, Driesen, Skudlarski, Gore, & Constable, 2006; Kim et al., 

2009; Sambataro et al., 2010). In our opinion, given the special status of WM in clinical AD, 

WM indicators of MCI are understudied and of potential clinical interest.  

 In this study, I used a paradigm designed to simultaneously probe WM and RP to 

test for behavioral and electrophysiological indicators of MCI and mild AD relative to an 
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age- and education-matched healthy elderly control group. I previously reported that healthy 

older adults showed disproportionate WM impairment for WM nonmatch stimuli relative to 

younger adults, but also that older adults benefitted more from RP than did younger adults 

(Caggiano, Jiang, & Parasuraman, 2006; Lawson, Guo, & Jiang, 2007). I hypothesized that 

given the underlying neurodegenerative processes, persons with MCI and AD would show 

an exaggerated form of typical cognitive aging: individuals with MCI and AD would show 

disproportionate impairment at WM nonmatch stimuli relative to an appropriately-matched 

control group, but RP would be enhanced in these groups. 

Methods 

Power Analysis 

 A priori power analysis was performed using G*Power to identify the sample size 

necessary to detect mixed interaction terms of moderate effect size or greater for the current 

study (Faul, Erdfelder, Buchner, & Lang, 2009; Faul, Erdfelder, Lang, & Buchner, 2007). 

The analysis revealed that 30 participants would be necessary for 80% power to detect such 

effects. 

Participants 

 45 age- and education-matched participants – 18 normal older control (NC), 17 

participants with MCI, 10 individuals with AD – were recruited directly from the University of 

Kentucky Alzheimer Disease Center (UK-ADC) cohort or from tertiary care memory clinics 

associated with the Sanders-Brown Center on Aging (Abner et al., 2012; Schmitt et al., 2012). 

Recruiting directly from memory clinics reduces the risk that cognitive effects observed 

result from non-AD memory impairment conditions such as thyroid or vitamin B12 
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deficiency (Jicha et al., 2008; Luck et al., 2007). NC participants were healthy UK-ADC 

cohort volunteers (n = 4) or referrals to the memory clinic for evaluation who did not 

receive a clinical diagnosis and were considered NC based on criteria listed below (n = 14). 

In keeping with contemporary clinical criteria (Albert et al., 2011; Arsenault-Lapierre et al., 

2011; Lekeu et al., 2010; Reid & Maclullich, 2006), MCI was indicated by A) absence of 

dementia, B) absence of cognitive, clinical, or behavioral symptoms consistent with sources 

of non-amnestic cognitive impairment, and C) objective memory impairment evidenced by 

performance more than 1.5 standard deviations below age-standardized normal values on at 

least one of several memory measures including Wechsler Memory Scale Logical Memory 

(WMS-R), the California Verbal Learning Test (CVLT-II), and the Benton Visual Retention 

Test (BVRT-5, Forms C & D). AD was diagnosed using Alzheimer's Disease Dementia 

Workgroup criteria, which hold, briefly, that insidious-onset dementia is present in the 

absence of another psychiatric or neurological condition (McKhann et al., 2011). All 

participants were recruited directly from the tertiary care setting and had received 

comprehensive work-up to rule-out other psychiatric or neurological causes of cognitive 

impairment. Individuals with AD and MCI had been diagnosed within 12 months of data 

collection, all research participants had been evaluated clinically within 12 months of data 

collection, and all research participants were evaluated clinically on an annual basis to check 

for conversion to MCI or AD. In other words, all participants were clinically evaluated both 

prior to and subsequent to research participation to confirm their clinical status. All 

participants were between age 65 and 90 with visual acuity better than 20/50 with corrective 

lenses in at least one eye. Exclusion criteria included history of stroke; epilepsy; head trauma; 

CNS infection, chronic infectious disease; psychiatric illness including substance abuse, 

major depression, or other mood disorder; or other neurological disease (Robert et al., 2006). 
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Participants taking medications known to affect cognitive function, such as sedatives or 

opiates, were similarly excluded. 

 Neuropsychological data collected from participants nearest in time to their research 

participation have been summarized in Table 2.1. Because participants who were recruited 

from the UK-ADC and the Sanders-Brown memory clinic were evaluated through slightly 

different neuropsychological protocols, some data were missing.  Multiple imputation (MI) 

was used to account for missing data using participant age, education, and non-missing 

neuropsychological scores as predictors to limit the influence of systematic missingness on 

the covariance matrix.  Mean and standard error values listed are based on non-imputed 

scores, but omnibus hypothesis-testing was conducted using pooled MI results. Because few 

AD participants completed the DIGIF, DIGIB, and DSYM tests, I have omitted such mean 

and standard error estimates as well as pairwise comparisons for the AD group. Note that 

GDS30 scores lower than 9 indicate non-pathological affect. For all neuropsychological tests 

except for TRAILA, TRAILB, and the GDS15, a larger score indicates better performance, 

whereas the opposite is true for TRIALA/B and the GDS15. Hence, the signs of 

correlations of TRAILA/B and GDS15 have been reversed in this chart for ease of 

interpretation. Positive ρ values indicate that large differences in the neuropsychological 

status of individuals in a dyad were related to large differences in the size of the relevant 

repetition effect. 

 All participants provided written informed consent before participation. This study 

was approved by the Institutional Research Board (IRB) of the University of Kentucky.
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Table 2.1: Neuropsychological summary for cohort of experiments discussed in Chapters 2 and 3. NC = normal control, MCI = mild cognitive impairment, AD = 

Alzheimer’s disease; N = number of participants, Females = number of female participants, Age = age of participant in years, Education = formal education of 

participants in years; MMSE = mini-mental status examination, LOGIMEMI = Logical Memory Story A, Immediate Recall, LOGIMEMII = Logical Memory 

Story A, Delayed Recall, DIGIF = Digit Span Forward, DIGIB = Digit Span Backward, ANIMALS = Category Fluency (Animals), VEG = Category 

Fluency (Vegetables), TRAILA = Trailmaking A, TRAILB = Trailmaking B, DSYM = Digit Symbol, BOSTON = Boston Naming Task, GDS30 = 

Geriatric Depression Scale, long-form; df, F/χ2, and p indicate statistical summaries for the omnibus tests of group differences for each column; Pairwise comparisons p 

NC-MCI and MCI-AD = pairwise group comparisons, as indicated, for each significant neuropsychological omnibus F test. Welch’s robust test of means was used for 

measures showing heterogeneity of variance. Variance displayed is the standard error of the mean (SEM) for each group. 

 N Females Age Education MMSE LOGIMEMI LOGIMEMII DIGIF DIGIB ANIMALS VEG TRAILA TRAILB DSYM BOSTON GDS30 

N 18 11 75.1 ± 1.2 16.2 ± 0.7 29.3 ± 0.2 13.9 ± 0.8 13 ± 0.9 9.8 ± 0.4 7.4 ± 0.5 20.3 ± 1.8 14.7 ± 1.2 34.1 ± 1.9 73.0 ± 3.8 49.3 ± 2.0 28.9 ± 0.3 2.4 ± 0.5 

MCI 15 5 75.0 ± 2.4 17.0 ± 0.5 27.8 ± 0.5 9.9 ± 0.9 7.0 ± 1.2 8.5 ± 0.5 6.1 ± 0.6 16.9 ± 1.3 12.6 ± 1.2 41.5 ± 3.4 118.2 ± 18.8 39.6 ± 3.9 28.5 ± 1.8 4.5 ± 1.4 

AD 13 8 75.8 ± 1.6 17.7 ± 1.3 25.4 ± 0.9 7.2 ± 1.2 2.7 ± 1.0 7.7 ± 0.5 5.7 ± 0.5 11.1 ± 1.6 10.4 ± 1.3 62.8 ± 8.0 158.4 ± 31.4 50.7 ± 8.2 27.8 ± 0.7 6.4 ± 1.4 

df 2 2, 25.3 2, 20.4 2, 17.1 2, 38 2, 38 2, 36 2, 36 2, 36 2, 33 2, 14.7 2, 12.7 2, 31 2, 16.1 2, 16.8 

F/χ2 4.85 0.06 0.64 11.83 12.09 21.27 4.47 2.57 5.64 1.95 6.90 5.94 3.12 1.05 4.25 

p 0.09 0.94 0.54 0.001 < 0.001 < 0.001 0.02 0.09 0.007 0.16 0.008 0.015 0.06 0.37 0.032 

Pairwise 
comparisons (p) 

NC-MCI 0.03 0.003 < 0.001 0.05 0.08 0.12 0.23 0.14 0.04 0.02 0.78 0.14 

MCI-AD 0.004** 0.08 0.02* 0.30 0.69 0.05* 0.37 < 0.001** 0.13 0.13 0.68 0.24 

Correlation with 
WM 

(NC-MCI) 

ρ 0.104 0.116 -0.014 0.121 0.029 -0.060 0.008 -0.228 -0.154 -0.014 -0.009 0.046 

p 0.259 0.248 0.467 0.254 0.438 0.367 0.481 0.176 0.181 0.470 0.480 0.391 

Correlation with 
WM 

(MCI-AD) 

Ρ -0.091 0.039 -0.233 -0.081 0.118 -0.214 0.264 -0.017 -0.075 -0.069 -0.131 -0.025 

P 0.286 0.410 0.083 0.331 0.260 0.108 0.060 0.913 0.330 0.354 0.220 0.439 
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Measures and Procedures 

 

Figure 2.1: Experiment 1 Schematic. The schematic represents a typical empirical trial. The z-axis represents time. 

First, a sample image with a green border was shown to the participant. After a jittered delay, the participant 

indicated whether each of a series of images matched or did not match the sample. Individual images were tested 

2-3 times per trial. A new sample image was used in the each trial. 

 Participants performed a hybrid delayed-match-to-sample/repetition (DMS-R) task 

(Figure 2.1) that has been validated in human and nonhuman primate physiological studies 

(Guo, Lawson, Zhang, & Jiang, 2008; Jiang, Haxby, Martin, Ungerleider, & Parasuraman, 

2000; E. K. Miller, Erickson, & Desimone, 1996). Incorporating both WM and RP into a 

single paradigm, as in the hybrid paradigm used in the current study, facilitates the 

interpretation of any interaction effects observed (Kennedy, Rodrigue, Head, Gunning-

Dixon, & Raz, 2009; Voss & Paller, 2008, 2009). Participants memorized a sample cartoon 
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image at the beginning of each trial and then indicated whether or not each of 5 serially 

presented objects matched the sample image via response box with the left or right hand, 

counterbalanced between participants. One image matching the sample and one 

nonmatching image were each tested 2-3 times per trial with 5 total repetitions per trial 

(Howard, Howard, Dennis, & Kelly, 2008). The differential working memory retrieval status 

of a given stimulus (i.e., whether each stimulus was a match or a nonmatch) was used as a 

probe of WM while repetition of a given stimulus (i.e., novel or repeated) was a probe of RP. 

Each image was used in exactly one trial. 60 trials were performed altogether in two blocks 

of 30 trials each. Each block lasted 5 minutes and 30 seconds. Participants took a short, self-

paced break between blocks that typically lasted about 60 seconds. During this time research 

personnel confirmed the comfort of participants and provided encouragement to 

participants. 

 Pilot data suggested that persons with AD responded poorly to negative accuracy 

feedback during experimental protocols. Consequently, the protocol was modified so that 

participants would not receive accuracy feedback. As a result of this protocol modification, I 

expected RP effects to manifest as differences in reaction times (RTs) rather than as altered 

accuracy outcomes. 

 A 5-minute practice period preceded the entire experiment to ensure that 

participants were comfortable with the cognitive and motor components of the task. This 

practice period was also designed to reduce or eliminate the influence of motor learning 

confounds on any cognitive RP effects. During the practice period a research personnel 

remained in the experimental room with the participant and provided oral feedback related 
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to performance. As in the 2 blocks of formal experimentation, computerized feedback was 

not provided. 

Visual Stimuli 

 Stimuli were 230 two-dimensional, black-and-white 8.3 cm x 5.8 cm pictures of 

common objects presented with a black background (Snodgrass & Vanderwart, 1980). All 

stimuli were presented on a high-resolution color monitor using E-prime software.  Sample 

images were presented with a thick green outline for 3s, and each test stimulus was presented 

for 1.5s. Both individual images and individual trials were separated by a 1.1-1.4s jitter 

interval, which was employed to prevent bias in RT measures due to participants anticipating 

stimulus onset. Stimuli were presented at a 65 cm visual distance at a visual angle of 

approximately 7   Test images were normalized for image familiarity and complexity across 

retrieval status (Snodgrass & Vanderwart, 1980). 

Data Analysis 

 Data were aggregated into 4 nested categories for RT and accuracy with respect to 

WM and RP (i.e., such that the 4 categories were matching novel stimuli, matching repeated 

stimuli, nonmatching novel stimuli, and nonmatching repeated stimuli). Inaccurate responses 

were omitted from the RT aggregation. All aggregations showed Cronbach’s α values greater 

than 0.9, suggesting excellent reliability for all stimulus categories. This aggregation was 

performed to improve measurement reliability and to control for simple motor learning 

effects. By aggregating RP across all trials in the experiment, within-trial motor practice 

effects become negligible. A motor training period also preceded data collection to further 
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mitigate the potential influence of motor learning effects. These steps ensured that image 

repetition effects result from cognitive RP rather than motor learning. 

 To account for the possibility that differences in baseline performance could 

produce spurious interaction terms, the aggregated RT and accuracy values were z-

transformed (Faust, Balota, Spieler, & Ferraro, 1999). References to “RT” and “accuracy” 

after this point refer to the z-transformed variables, but please note that untransformed data 

has been plotted in Figure 2.2 for ease of visual interpretation. 

 After z-transformation, both RT and accuracy aggregates showed near-normal skew 

and kurtosis. Hence, these data were analyzed by a parametric approach. For the RT analysis, 

2 x 2 x 3 mixed-model repeated measures analyses of variance (ANOVA) on WM (i.e., 

whether a stimulus was a match or a nonmatch), repetition (i.e., whether a stimulus was 

novel or repeated), and clinical group (NC, MCI, or AD) were used. Simple-effects models 

were used to interpret interaction effects, and Type I error inflation was controlled by the 

Holm-Bonferroni method. I have provided ηp
2 as an estimate of effect size; please note the 

rule of thumb that ηp
2 values greater than 0.01, 0.06, and 0.14 indicate small, moderate, and 

large effects, respectively (Cohen, 1988). 

 To ensure the novelty of potential WM or RP cognitive indicators identified during 

analysis, differences between WM and RP conditions were compared to neuropsychological 

measures collected from research participants using Spearman’s ρ to confirm whether 

existing standard neuropsychological tools duplicated the effects implicated in any WM or 

RP effects identified. The Trailmaking test difference (i.e., Trailmaking B – Trailmaking A) 

was used to compare the executive function components of the Trailmaking test to the 

effects of WM and RP (Corrigan & Hinkeldey, 1987; Giovagnoli et al., 1996). 
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 All significance values listed are based on the one-tailed p values. For the sake of 

brevity, results failing to reach one-tailed significance have been omitted from the report. 

Statistical tests were performed with JMP 10. 

Results 

 

Figure 2.2: Reaction Time and Accuracy in Experiment 1. I have depicted the untransformed RT and accuracy values 

for the normal older control (NC), amnestic mild cognitive impairment (MCI), and Alzheimer disease (AD) 

groups (Table 2.1). The MCI group showed characteristic, slow RTs for nonmatching stimuli (1st row, 2nd 

column), and the AD group showed greater quickening with repetition (1st row, 3rd column). The AD group also 

showed uniformly poorer accuracy (2nd row). # indicates the between-group difference between the AD group 

and both other groups for accuracy, and * indicates the within-group contrasts that drove significant mixed 

interactions with clinical group for RT. 

 First, I tested our hypotheses, specifically that a) the MCI and AD groups would 

show slower nonmatching stimuli than the NC group and that b) the MCI and AD groups 

would show stronger RP than NC. 2 x 2 x 3 ANOVAS on retrieval status, repetition, and 

clinical group for RTs revealed a large WM X Group interaction, F (2, 42) = 4.95, MSE = 

0.179, p = 0.006, ηp
2 = 0.19, and a moderate RP X Group interaction, F (2, 42) = 2.923, 
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MSE = 0.183, p = 0.036, ηp
2 = 0.12. For the WM X Group interaction, simple effects testing 

found moderate main effects of WM for the NC group, F (1, 42) = 4.38, p = 0.02, ηp
2 = 0.10, 

and the MCI group, F (1, 42) = 5.46, p = 0.01, ηp
2 = 0.12. For NC, the effect was due to 

disproportionately fast RTs for nonmatching stimuli, but for MCI, the effect was due to 

disproportionately slow RTs for nonmatching stimuli (Figure 2.2). For the RP X Group 

interaction, simple effects testing found a moderate effect of RP for AD such that repetition 

was associated with faster RTs, F (1, 42) = 3.94, p = 0.025, ηp
2 = 0.09. Other effects were 

non-significant. 

 Next, to identify whether the WM or RP effects identified above that distinguished 

participants were distinguishable from information collected from standard 

neuropsychological tests conducted with this clinical population, I conducted a series of 

correlations between the WM and RP effects (i.e., the difference in RT between the levels of 

each factor) and each of the neuropsychological tests that had been collected with the 

research participants at the time of clinical evaluation. Because neuropsychological tests 

values tended to be skewed and kurtotic, Spearman’s ρ was used to evaluate each correlation. 

To control for potential motor and processing speed confounds implicit in the Trailmaking 

test (TMT), the Trailmaking test (TMT) difference (i.e., TMTB – TMTA) was used rather than 

the raw TMTA and TMTB values (Corrigan & Hinkeldey, 1987; Giovagnoli et al., 1996). All 

non-parametric correlations were non-significant (Table 2.1). 

 Finally, I conducted an analysis of the accuracy data to identify any potential 

speed/accuracy trade-off effects (Downing, 2000). 2 x 2 x 3 ANOVAs revealed a main effect 

of clinical group, F (2, 42) = 10.35, MSE = 2.284, p < 0.001, ηp
2 = 0.33, such that NC and 

MCI showed comparable accuracy, but AD was significantly less accurate than both other 
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groups, FNC-AD (1, 42) = 20.34, p < 0.001, ηp
2 = 0.33, FMCI-AD (1, 42) = 11.29 p = 0.001, ηp

2 = 

0.18. Other effects were non-significant. 

Discussion 

Working memory retrieval status differentiated all clinical groups 

 I found that NC, MCI, and AD groups each showed a unique working memory 

(WM) retrieval status signature for RT. This effect was driven by two main phenomena: 

disproportionate RT impairment for nonmatching stimuli in persons with MCI, and 

relatively uniform RT impairment for both matching and nonmatching stimuli in persons 

with AD. As noted in the introduction, reports of context-specific cognitive dysfunction in 

AD are not new, but such findings have rarely been reported in persons with MCI 

(Economou, Papageorgiou, & Karageorgiou, 2006; Pignatti et al., 2005). Moreover, the 

particular context-specific dysfunction identified in the research participants with MCI was 

not found to covary with the measures of the standard neuropsychological tools routinely 

used during annual clinical assessment. I believe this novel finding in MCI reflects nascent 

WM dysfunction, consistent with the tendency of these individuals to present with WM 

complaints (Belleville, Chertkow, & Gauthier, 2007; Kramer et al., 2006; Winblad et al., 

2004). It may relate to recent reports of category-specific encoding deficits in persons with 

MCI (Hudon, Villeneuve, & Belleville, 2011). 

 The finding in MCI also extends and validates previous reports that healthy older 

adults show greater impairment with nonmatch stimuli relative to younger adults (Lawson et 

al., 2007). These findings suggest that the WM aging effect observed in pathological aging in 

this study may represent an extreme variant of normative cognitive aging in that processing 

of nonmatch stimuli is disproportionately dysfunctional. The findings also corroborate a 
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pilot report that frontal ERPs related to nonmatch stimuli are disrupted in MCI (Broster et 

al., 2011). 

 I had anticipated observing disproportionate nonmatch impairment in persons with 

MCI and persons with AD, but persons with AD instead showed a uniform deficit 

regardless of WM retrieval status. I propose that individuals with advanced neuropathology 

show impairment with match stimuli secondary to their primary impairment with nonmatch 

stimuli. Thus, individuals with AD show both match and nonmatch impairment, but persons 

with MCI show only nonmatch impairment. Consistently, older adults who have experienced 

cognitive aging show small-magnitude context-dependent attention impairments, but 

persons with AD show uniform deficits such that involuntary attention-shifting is also 

affected (Ballesteros, Reales, Mayas, & Heller, 2008; Greenwood, Parasuraman, & Alexander, 

1997; Greenwood, Parasuraman, & Haxby, 1993). 

Individuals with AD showed greater repetition priming 

 I found that persons with AD showed the largest benefit from repetition. This 

finding contributes to the ongoing scientific and clinical effort to characterize the status of 

nondeclarative memory in AD (Budson, 2009). Similar to the effect of WM, the effect of RP 

was not associated with performance on standard neuropsychological measures. Reports of 

increased, stable, and decreased RP in AD have been reported elsewhere in the literature 

(Chertkow et al., 1994; Klimkowicz-Mrowiec et al., 2008). I propose that the presence of 

enhanced RP effects in AD in the current study arose from two main sources. First, the RP 

in our study occurred with very short lag (i.e., 6-10s). Nondeclarative impairment in AD is 

implicated mainly with longer-lag RP, perhaps due to medial temporal cortical involvement 

in such effects (Wang, Lazzara, Ranganath, Knight, & Yonelinas, 2010). Second, because the 
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current task had been made less difficult during protocol development to ensure that 

persons with AD could complete the task without experiencing undue stress and frustration, 

relatively few WM cognitive resources were needed to complete the current task. Persons 

with AD have been reported to show relatively enhanced nondeclarative memory effects 

when concurrent declarative tasks are minimized (Stark, Gordon, & Stark, 2008). I believe 

that our results suggest that rapid, short-term repetition has promise for producing positive 

effects, even in individuals who have already converted to AD. This finding is important 

because neurocognitive training in AD is normatively limited to persons with MCI based in 

part on the belief that they are most likely to benefit, and it is rarely prescribed even among 

such persons (Faucounau, Wu, Boulay, De Rotrou, & Rigaud, 2010; Gates, Sachdev, 

Fiatarone Singh, & Valenzuela, 2011; Hopper, 2003; Jean et al., 2010; H. Li et al., 2011; 

Lubinsky, Rich, & Anderson, 2009; Martin et al., 2011; Spector, Woods, & Orrell, 2008; 

Zanetti et al., 1997). Our result suggests that individuals with AD may also benefit from 

appropriately-tailored neurocognitive training protocols. The results of the current study, 

which indicate maintained or enhanced capacity to improve behavioral responses with 

repetition priming even in persons with AD, may provide the empirical justification for 

testing priming-based cognitive rehabilitation as a behavioral intervention in persons with 

MCI or AD. 

 I feel it necessary to emphasize at this point that I did not observe accuracy changes 

concurrent with the RT changes resulting from the RP manipulations. Instead, so far as 

accuracy is concerned, I observed only an overall trend that persons with AD performed 

more poorly than other participants. In our opinion, the non-significant RP effect on 

accuracy resulted mainly from a lack of accuracy feedback in the protocol design. I found 

this protocol design element to be necessary to prevent participants with AD from becoming 
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frustrated and terminating participation. An important follow-up test will be to devise a non-

stressful accuracy feedback mechanism so that the viability of leveraging the RP effect to 

improve accuracy outcomes in persons with AD may be evaluated. In persons with severe 

AD, enhanced RP effects have been linked to improved accuracy (Klimkowicz-Mrowiec et 

al., 2008). 

Limitations 

 The current study contained more women in the AD group, reflective of the 

epidemiology of AD (Gao, Hendrie, Hall, & Hui, 1998). In our opinion, true gender effects 

on our data were probably small or absent. Women and men with mild AD do differ in the 

course of cognitive impairment, but the differences are small and most salient for verbal 

tasks (Henderson & Buckwalter, 1994; Irvine, Laws, Gale, & Kondel, 2012). Because the 

current study was a visual memory task rather than a verbal or verbal memory task, these 

small effects probably had little or no effect on the current findings. Additionally, including 

gender as a categorical covariate in the statistical analysis did not change the significance of 

any effects described in this manuscript. Demographic confounds such as age and education 

produce larger effects, but these effects were matched across groups in the current study 

(Stern, 2006). 

 The current study was powered only to detect effects of moderate effect size or 

greater. In our opinion, effects of smaller than moderate size are unlikely to be of significant 

clinical interest; however, the current study may have failed to detect smaller effects of 

theoretical interest. In our opinion, this concern is mitigated by the extremely large RT and 

accuracy effects observed empirically for individuals with AD. Still, future studies could 

repeat the current protocol with larger samples to identify small effects of theoretical interest. 
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 The current study used a research participant recruitment technique somewhat 

different from that which is typical in the neuropsychological literature. For example, rather 

than the control group coming from the community or from a simple older adult volunteer 

group, the control participants, like the other participants, were recruited from the Sanders-

Brown Memory Clinic, and were part of a group that was evaluated annually for signs of 

cognitive change. In our opinion, recruiting directly from the memory clinic population in 

this way may result in a control group that better-resembles the normal older adult control 

population that presents at memory clinics ecologically relative to traditional recruitment 

practices; however, the contrast between the control groups should be considered when the 

results of the current study are compared to those of other studies. 

Future directions 

 An important future direction will be longitudinal follow-up to confirm that the WM 

retrieval status effect is related to the clinical course of MCI and AD (Collie & Maruff, 2002; 

Collie, Maruff, & Currie, 2002). Deficits in executive function have been linked to AD 

conversion from MCI (Rainville, Lepage, Gauthier, Kergoat, & Belleville, 2012). I will also 

analyze electrophysiological data collected during experimentation to determine the neural 

mechanisms of the effects presented. Pilot analysis has linked the WM retrieval status effect 

to frontal cortex, perhaps reflecting compensation for the special difficulty of nonmatch 

stimuli for MCI (Broster et al., 2011). Pilot quantitative EEG (qEEG) analysis performed 

with a subset of this cohort has highlighted the potential role of these methods in further 

differentiating the NC and MCI cohorts (De Bock et al., 2011). 

Conclusions 
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 In sum, I have reported that healthy older adults, persons with MCI, and persons 

with AD show distinct WM performance profiles. Specifically, persons with MCI showed a 

unique signature where WM retrieval status nonmatch stimuli produced slower RTs, and 

persons with AD were uniformly slow. This novel effect was consistent with the hypothesis 

that such stimuli would differentiate persons with MCI from older adults without 

impairment. Additionally, individuals with AD benefitted disproportionately from RP, 

perhaps in part due to the short-lags used in the study and to the task’s relative simplicity. 

This effect was consistent with our interpretation that disparate reports of the status of 

nondeclarative memory effects in AD may be unified by an appreciation that time-latency of 

repetition manipulation and the influence of complex, concurrent explicit task elements can 

affect how the nondeclarative memory capacity manifests. These two findings inform efforts 

for early diagnosis of AD and cognitive interventions for AD, respectively, both of which 

are crucial for delaying functional AD impairment (Amieva, Letenneur, et al., 2004; Amieva, 

Rouch-Leroyer, Letenneur, Dartigues, & Fabrigoule, 2004). 
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Chapter 3: Spared Repetition Effects Linked to an Altered Visual Cortical  
Mechanism 

Adapted from Broster et al., (2015). Altered Neural Repetition Mechanisms during Working 

Memory Retrieval in Alzheimer’s Disease. Submitted. 

EXECUTIVE SUMMARY 

Individuals with dementia of the Alzheimer type (AD) classically show disproportionate 

impairment in measures of working memory, but repetition learning effects are relatively 

preserved. As AD affects brain regions implicated in both working memory and repetition 

effects, the neural basis of this discrepancy is lacking. Participants with AD, amnestic mild 

cognitive impairment (MCI), and healthy controls performed a working memory task with 

superimposed repetition effects during retrieval of memory targets and distractors. 

Participants with AD showed a unique repetition effect at a posteriorly-oriented component. 

Our results of altered neural repetitions in AD suggest that repetition mechanisms are 

relatively robust to the course of cognitive aging, but that the repetition effect mechanism 

manifest at posterior cortex is altered in persons with AD. 
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Introduction 

Repetition Effects and Alzheimer’s Disease Pathophysiology 

 Alzheimer’s disease (AD) is associated with deficits in a range of cognitive faculties 

including explicit memory, language, attention, executive function, and orientation, but some 

faculties are relatively spared (Baars et al., 2009; Hodges et al., 2006; Wiggs et al., 2006). 

Among the cognitive capacities relatively spared by Alzheimer’s disease are implicit effects 

such as repetition learning effects, the tendency for the repetition of a stimulus to be 

associated with altered encoding, processing, and recollection of the subsequent presentation 

of that stimulus, typically such that the processing becomes more efficient or accurate 

(Kessels et al., 2011). For example, a repeated stimulus may be processed with more 

cognitive resources, fewer cognitive resources, different latency of access of cognitive 

resources, different qualities of cognitive resources, or different behavioral outcomes than 

upon initial presentation (Gotts, Chow, & Martin, 2012a; Schacter, 1987; Weiner & Grill-

Spector, 2012). Distinct types of repetition effects appear differentially sensitive or robust to 

the progression of AD. 

 Some types of repetition effects have been reported to be enhanced in AD 

(Fleischman, Wilson, et al., 2005). Individuals with moderate to severe AD have been 

reported to have enhanced implicit learning relative to healthy controls in the weather 

prediction task, where certain apparently-irrelevant symbols with slight correlation to a 

participant-predicted “weather” outcome unconsciously facilitate participants’ subsequent 

predictions, and their response time (RT) in the delayed-match-to-sample task has been 

reported to decrease at rates greater than individuals without impairment (Klimkowicz-

Mrowiec et al., 2008). Cognitive interventions motivated by purported spared or enhanced 



36 
 

implicit effects in AD have been devised and appear efficacious (Broster et al., 2013; Jean et 

al., 2010; Mimura & Komatsu, 2010; van Halteren-van Tilborg et al., 2007; Zanetti et al., 

1997). 

 The separability of repetition effects into those that are sensitive to AD and those 

that are robust to it has been linked to a distinction between anterior and posterior repetition 

effects, which are believed to process conceptual and perceptual priming capacities, 

respectively (Fleischman, Wilson, et al., 2005). Conceptual and perceptual priming are 

impaired relatively early and late, respectively, in the process of AD, consistent with 

corresponding early and late damage to the cortices believed to implement them (Keane, 

Gabrieli, Fennema, Growdon, & Corkin, 1991). Understanding the potential mechanism for 

such sparing may be relevant to developing a neural theory of effective cognitive 

compensation in AD (Vinogradov, Fisher, & de Villers-Sidani, 2012). 

 One neural mechanism that may account for such findings is neuroplasticity, the 

capacity for the function of particular brain regions to change over time, often as a response 

to damage to a particular region or network. The capacity for this plasticity at the synaptic 

and neuroanatomical level is intact in persons with MCI or AD (Becker et al., 1996; Belleville 

et al., 2011; Buckner, 2004). Individuals with a typical presentation of AD or its prodromal 

clinical state, amnestic mild cognitive impairment (MCI), experience diffuse brain damage 

beginning at medial temporal cortex before affecting anterior structures and proceeding 

posteriorly (Lehmann et al., 2011; Scheff et al., 2013). Repetition effects are associated with 

idiosyncratic modulations in processing throughout cortex both in regions affected early in 

AD and in regions spared until late in AD pathophysiology. Identifying functional 

neuroplasticity in regions spared until late in AD pathophysiology relevant to maintained 
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repetition effects would provide a mechanism for evaluating the extent to which 

interventions use plasticity to produce a clinical effect. 

Characteristics of Neural Repetition Effects  

 Traditionally, repetition effects were associated with reductions in brain activity or 

processing speed upon secondary stimulus presentation. However, contemporary models of 

repetition effects acknowledge that such effects are accompanied by alterations in brain 

activity that may increase in magnitude, decrease in magnitude, show altered latency, or 

display some combination of these effects (Gotts et al., 2012a; Gotts, Milleville, & Martin, 

2014; Grill-Spector, Henson, & Martin, 2006; Henson, 2012a; Henson & Rugg, 2003; 

Henson, Rylands, Ross, Vuilleumeir, & Rugg, 2004). The multimodal nature of repetition 

effects improves the utility of techniques with sufficient resolution in multiple dimensions. 

Namely, event-related potentials (ERPs) capture temporal and qualitative aspects of 

repetition effects while maintaining sufficient spatial sensitivity for gross spatial distinctions 

(e.g., anterior vs. posterior) (Guo et al., 2007; Lawson et al., 2007; Q. Li, Guo, & Jiang, 2008; 

Race, Badre, & Wagner, 2010).  

 I assessed repetition effects associated with a delayed-match-to-sample task in 

healthy controls, individuals with MCI, and individuals with AD. This task has previously 

been shown to be associated with maintained or enhanced repetition effects in the context 

of AD (Broster et al., 2013). Because posterior cortex experiences damages relatively late in 

the clinical course of AD, I hypothesized that the repetition effect manifest in posterior 

cortex would exhibit neural plasticity in persons with AD such that it would resemble the 

form of the frontal and temporal repetition effects. 
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Methods 

Participants, Measures and Procedures, and Visual Stimuli 

 The cohort and procedural methodology in this experiment were equivalent to those 

previously described in Chapter 2. However, some additional methodological discussion is 

needed to clarify the processing of the EEG data. 

Electrophysiological Data Preprocessing 

 Electrophysiological data used in this experiment had been partially processed using 

SCAN 4.5 for reasons unrelated to the current manuscript. This preprocessing consisted of 

manual artifact rejection, ocular artifact reduction using the NeuroScan regression algorithm, 

a finite impulse response filter with a band-pass of 0.05 to 40 Hz at 12 dB/octave, epoching 

at -100 to 1000 ms relative to participant exposure to each stimulus, baseline-correcting to 

the time-window from -100 to 0 ms relative to stimulus onset, and re-referencing from a 

midline online reference electrode to an averaged mastoid reference. Then, epochs 

associated with accurate behavioral responses and electrophysiological activity within ± 75 

μV of baseline were averaged for each of the 6 experimental conditions (i.e., the 1st, 2nd, and 

3rd presentation of matching or non-matching stimuli). 

 Those files then underwent bad channel imputation using the ERP PCA Toolkit (EP 

Toolkit) to prepare the data for temporal PCA (Dien, 2010a). Promax and Infomax rotations 

were used for the temporal and spatial elements of the procedure, respectively, to permit 

limited correlation between temporal components, following the recommendation of 

methodologists (Dien, 2010b). To determine the appropriate number of temporal 

components to retain, the averaged data was compared to a random dataset, and 
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components that explained both greater variance than the random dataset and at least 0.5% 

of variance in the data were retained. Principle components reflecting classical ERP 

signatures were identified using topographical maps of each component, each component’s 

temporal course, and the effect of the experimental manipulations on each component. 

Data Analysis 

 Behavioral data analysis has been published separately and found that participants 

with MCI showed greater reaction time (RT) differences between matching and non-

matching stimuli and that participants with AD showed a greater difference in RT between 

initial and repeated stimuli than the other groups (Broster et al., 2013). 

 For the analysis of the PCA data, the a priori hypothesis was first evaluated. 

Temporal components were assessed using 2 × 2 × 3 robust ANOVAs on retrieval status 

(match or non-match), repetition (initial or repeated), and group (NC, MCI, or AD) using 

the EP Toolkit to identify a posteriorly-oriented component showing a Group × Repetition 

interaction distinguished by its manifestation in the AD group. Subsequently, post-hoc 

robust ANOVAs were performed for all principle components using similarly-structured 

robust ANOVAs. To limit the effect of multiple comparisons on these tests, each ANOVA 

was conducted only at the peak electrode of the corresponding component, and these tests 

were supplemented with Bonferroni correction on the number of components tested, where 

the components to be tested were the components retained as described in Data Processing. 

Uncorrected p value thresholds for each of these analyses are listed in the corresponding 

section of the online supplemental materials. Simple-effects models were used to interpret 

interaction effects. All significance values listed are based on two-tailed p values. For the sake 
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of brevity, results failing to reach one-tailed significance (i.e., p > 0.1) have been omitted 

from the report. 

Results 

Conventionally-Averaged Waveforms 

 After processing, the ERP waveforms showed normative characteristics including 

visual P1, N1, P2, N2, and P3 peaks (Figure 3.1). Upon quick visual gloss, repetition 

appeared to be associated most clearly with greater P3 mean amplitude (i.e., greater mean 

amplitude for the positive-going waveform beginning around 300 ms after stimulus onset). 

Temporal principal components analysis 

 To disentangle the effects of visually-overlapping ERP components, I applied 

temporal PCA to the data to increase the chance that statistical analysis would be conducted 

on discrete phenomena. Temporal PCA identified 27 temporal components that explained 

more variance than a random ERP dataset, of which 21 explained at least 0.5% of variance. 

Of these, the first component to be associated with latency unlikely to be modulated by the 

experimental manipulations was TF8, which had a latency of earlier than 100 ms. Effects 

associated with TF8 or lower-order factors were not included in the current analysis, but 

their temporal peaks have been recorded in Table A1 of the Appendix. The grand averages 

of the first seven temporal factors at a frontal and posterior electrode have been shown in 

Figure 3.2. 
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Figure 3.1: Conventional ERPs in Experiment 1. This figure depicts the grand average waveforms in each clinical 

group for the initial and repeated instances of visual stimuli at 6 standardized electrodes (i.e., F5, Fz, F6, P5, Pz, 

and P6). Each set of 6 graphs depicts 6 electrodes: the first row in each set depicts electrodes from the left, middle, 

and right side of the scalp at frontal sites, and the second row in each set similarly depicts electrodes at posterior 

sites. The waves show normative features including classical components such as a posterior P1, N1, P2, N2, P3, 

and LPC; however, some components appear to overlap temporally, suggesting that a temporal principal 

components analysis approach might be helpful in deconvoluting independent components. 
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Figure 3.2: Summary of ERP PCA Solution for Experiment 1. This figure shows the grand average of the first 

seven temporal factors (TF) at Fz (top) and Pz (bottom) across all groups and conditions. Individual factors are 

color-coded along a warm-cool axis in accordance with their ordinal factor number. In particular, please note the 

uniquely posterior orientation of the second temporal component (TF2). This component reaches its maximum 

amplitude of only 0.4 µV at Fz; consequently, it is inscrutable among the noise associated with other temporal 

factors at the frontal electrode. 

A Priori Analysis 

 First, I assessed the a priori hypothesis that a posterior repetition mechanism would 

manifest uniquely in the AD group. Statistically, this was assessed by identifying an ERP 

component estimated as a PCA factor that evidenced a significant interaction between the 

clinical group and repetition robust ANOVA factors. 

 Of the first seven temporal factors (i.e., the factors associated with a temporal course 

plausibly linked to the experimental manipulations), only TF2 was associated with a 

significant interaction between clinical group and repetition, TWJt/c (2.0, 28.4) = 2.78, p = 

0.04. This was a positive-going, posteriorly-oriented component peaking at 272 ms and 

maximal at PO6 at which individuals without impairment or with MCI showed repetition  
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Figure 3.3: Summary of distinguishing Alzheimer’s disease repetition effect. This graph summarizes the unique 

posterior effect in the AD group. The separate event-related potentials to the initial and subsequent presentation 

of stimuli are graphed for the NC, MCI, and AD groups, and the difference waves between those conditions 

(subsequent – initial) are shown together in the bottom-right quadrant. Individuals with AD showed a larger 

subsequent potential. 

 

Figure 3.4: Box-plot of distinguishing Alzheimer’s disease repetition effect. This box-and-whiskers graph shows 

the five-point summary of the unique posterior effect. Positive values indicate that the secondary presentations of 

an image were associated with a larger amplitude than the initial presentation (i.e., 2nd > 1st). The boxes depict 

the first quartile, median, and third quartile for the NC, MCI, and AD groups, respectively, while the error bars 

depict the minimum and maximum value for each group. Individuals with AD showed a more positive mean 

amplitude difference than the other groups. 
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decrement of about 0.4 - 0.5 µV, but individuals with AD showed repetition enhancement of 

about 0.7 µV, F (1,43) = 4.37, p = 0.02, ηp
2 = 0.09 (Figures 3.3 and 3.4). This interaction was 

non-significant for other factors (ps > 0.1). 

Post-Hoc Analysis 

 In addition to testing the a priori hypothesis, atheoretical post-hoc tests were 

performed by evaluating robust ANOVAs at the peak electrode of each temporal 

component of higher order than the first component likely to be associated with spurious 

effects as previously described (i.e., for temporal factors 1 through 7). For these analyses, 

Bonferroni correction was applied on the number of components evaluated, resulting in a 

significance threshold of 0.007 for post-hoc tests. Uncorrected p values have been recorded 

below. 

 TF1, a positive-going waveform peaking at 458 ms, was associated with main effects 

of retrieval status, TWJt/c (1.0, 29.1) = 11.47, p = 0.0027, and repetition, TWJt/c (1.0, 33.3) = 

40.50, p = 0.00002, such that non-match stimuli and repeated stimuli were associated with a 

more positive-going waveform. TF2, a positive-going waveform peaking at 272 ms, was not 

associated with significant effects other than the effect described in the a priori analysis 

section. TF3, a positive-going waveform peaking at 162 ms, was associated with a main 

effect of repetition, TWJt/c (1.0, 28.4) = 13.53, p = 0.001, such that repetition was associated 

with a more positive-going waveform. TF4, a positive-going waveform peaking at 672 ms, 

was associated with a main effect of retrieval status, TWJt/c (1.0, 42.1) = 35.05, p < 

0.00000001, such that distractor stimuli were associated with a more positive-going 

waveform. TF5, a positive-going waveform peaking at 354 ms, was associated with main 

effects of retrieval status, TWJt/c (1.0, 29.2) = 18.16, p = 0.00034, and repetition, TWJt/c (1.0, 
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37.4) = 13.53, p = 0.00062, such that match stimuli and repeated stimuli were associated with 

a more positive-going waveform. TF6, a positive-going waveform peaking at 208 ms, was 

associated with a main effect of retrieval status, TWJt/c (1.0, 38.7) = 15.78, p = 0.00064, 

qualified by a significant retrieval status Χ repetition interaction, TWJt/c (1.0, 27.9) = 10.39, p 

= 0.0048, such that upon initial presentation distracter stimuli were associated with a more 

positive-going waveform, TWJt/c (1.0, 40.2) = 26.67, p < 0.00000001, but upon subsequent 

presentation this difference was non-significant, TWJt/c (1.0, 31.4) = 2.25, p = 0.14. TF7, a 

positive-going waveform peaking at 594 ms, was associated with a main effect of retrieval 

status, TWJt/c (1.0, 37.2) = 9.33, p = 0.0048, such that distracter stimuli were associated with a 

more positive-going waveform. 

 Other main effects and interactions were non-significant after Bonferroni correction. 

Integrated Data Analyses 

 The repetition effect identified at temporal factor 2 was correlated with the 

neuropsychological scores and behavioral repetition effects previous presented in Chapter 2 

(Table 2.1). All such correlations were non-significant (ps > 0.1). 

Discussion 

 Our results implicate an AD-related difference in an early, posterior repetition effect 

mechanism – whereas repetition was associated with a reduced effect at this site in 

participants without AD, it was associated with an enhanced effect in participants with AD. 

The repetition enhancement in AD was consistent with the manifestation of this effect for 

frontally and temporally-oriented components (e.g., TF1, TF3, TF5). The sensitivity of the 

posterior mechanism to pathological cognitive aging departs somewhat from previous 
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findings that the posterior repetition effect mechanism is robust to cognitive aging. 

Consistent with classical descriptions of the posterior mechanism, it was amodal with respect 

to stimulus retrieval status; that is, whether a stimulus was a working memory match or 

nonmatch did not significantly modulate the repetition effect waveform (Guo et al., 2007). 

 This finding mirrors some reports that individuals with AD show unique behavioral 

capabilities when handling short-lag repetition effects, even relative to individuals with 

milder impairment. Individuals with AD have been shown to disproportionately improve RT 

with repetition in this paradigm, and they have similarly been reported to benefit most from 

implicit learning in a weather prediction paradigm (Broster, Blonder, & Jiang, 2012; Broster 

et al., 2013; Klimkowicz-Mrowiec et al., 2008). However, to the best of our knowledge, the 

maintenance or enhancement of these behavioral phenomena had not previously been linked 

to any particular neural mechanism. 

 In our opinion, the current finding suggests a solution for this issue. Even though 

persons with a clinical AD diagnosis have experienced widespread cortical damage, the 

relative sparing of the posterior cortex in general and the posterior repetition effect in 

particular during the course of the pathophysiology of AD may have allowed for a plastic 

response at that mechanism that accounts for behavioral sparing or enhancement of such 

effects. In other words, enhancement of the posterior repetition effect occurs due to damage 

to other repetition effects at parts of cortex damaged earlier in the course of AD, and this 

plasticity accounts for the relative sparing of repetition effects in AD. 

 To our knowledge, the current report of occipital plasticity in mild AD has not been 

previously reported in the literature. Instead, to the extent that particular patterns of neural 

compensation are proposed, prefrontal compensation tends to be linked to maintained 
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behavioral performance in MCI and mild AD, though the interpretation that this activity 

reflects compensation is not without controversy (De Vogelaere, Santens, Achten, Boon, & 

Vingerhoets, 2012; Frantzidis et al., 2014; Jacobs et al., 2015; Liang, Wang, Yang, Jia, & Li, 

2011; Qi et al., 2010). The novelty of the current effect in the literature may be due to the 

uniqueness of the current cohort and experimental design. Most studies that have identified 

the potential frontal compensatory response have observed it in the context of normal aging 

or MCI, and studies that have purported to see it in individuals with dementia have been 

relatively inconsistent. Individuals with mild AD may show secondary cortical damage in 

frontal cortex relative to individuals with normal aging or MCI, which could account for 

secondary compensatory mechanisms at occipital cortex, which is relatively spared until 

individuals have moderate to severe dementia. Further, studies targeting repetition effects in 

the context of a concurrent memory task have been rare in such groups. The current 

repetition effect compensatory pattern may be evoked by the need to manage neural 

resources given concurrent working memory processing demands on frontal resources. 

 Not all studies have reported that individuals with AD have intact or enhanced 

repetition effects. In fact, many studies have reported that persons with AD have impaired 

repetition effects. A major variable differentiating many of the studies of repetition effects in 

AD is the amount of time-lag between repetitions in the paradigm. In addition to other 

sources of variation including modality and differences in the EEG topography of interest, 

studies that have shown repetition effect impairment in AD have tended to involve 

somewhat longer-lag repetition effects than the 10-12 second repetitions used in the current 

study, or the implicit task is correlated with an explicit one (Broster et al., 2013; Olichney et 

al., 2006; Olichney et al., 2002; Olichney et al., 2013; Olichney et al., 2008). In such cases, 

impairment seen in persons with AD may reflect explicit memory encoding deficits or 
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primary explicit deficits, respectively, rather than a deficit in repetition effects per se, and 

those deficits may serve as useful diagnostic tools (Fleischman, Wilson, et al., 2005; Olichney 

et al., 2008). 

 In addition to the finding in the posterior repetition effect mechanism, the post-hoc 

analysis identified multiple independent temporal components capturing variance classically 

linked to the P2, N2, P3, and LPC that showed unique types of repetition effects depending 

upon the temporal course of the component. For example, most components were 

associated with repetition enhancement (i.e., a more positive-going wave following 

repetition), but TF6 showed a retrieval status-dependent repetition suppression. These 

findings support the theory that the memory context of a repeated stimulus and the 

temporal and spatial location of a repetition effect mechanism can produce qualitatively-

distinct signatures, as in the difference between models such as Bayesian explaining away, 

sharpening, or scaling models of repetition effects (Gotts et al., 2012a). Further, the 

posterior repetition effect mechanism indicates that the cognitive status of an individual can 

also influence the quality of repetition effects within a given mechanism and stimulus type. 

 The current results are consistent with the clinical perspective that persons with AD 

may retain sufficient plasticity and brain function to benefit from appropriately-tailored 

interventions targeting the relatively intact posterior repetition effect mechanism. 

Interventions with these characteristics exist and have apparent efficacy, but are not 

routinely prescribed (Hopper, 2003). This reality has been linked to the early history of failed 

cognitive interventions in AD that focused on explicit interventions on the theory that the 

intervention should directly strengthen the impaired memory capacity. The current results 
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provide a way to understand a potential mechanism for repetition effect-oriented cognitive 

interventions in AD. 

 The current cohort included a disproportionate number of women in the AD group. 

As a result, gender is a potential confound for differences related to the AD group in 

particular. I are unaware of any theoretical or empirical basis for attributing the current 

posterior repetition effect finding to gender; most gender differences in the 

pathophysiological of cognitive aging have been related to verbal capacities not relevant to 

the current paradigm (Broster et al., 2013). However, replication of the current finding with 

a gender-balanced cohort will be necessary to help rule-out this potential confound. 

 In sum, I report that an “amodal” posterior repetition effect mechanism manifests in 

a qualitatively different fashion in persons with AD, perhaps reflecting plasticity secondary 

to cortical damage. I suggest that this phenomenon may account for the behavioral sparing 

or enhancement of repetition effects in the clinical course of AD for many empirical 

paradigms, including the paradigm used in the current study. I hope that the current results 

will contribute to a theoretical basis for believing that persons with AD retain a meaningful 

capacity to benefit from cognitive intervention (Vinogradov et al., 2012). 
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Chapter 4: Working Memory Restores Emotional Repetition Effects in Persons 

with Mild Cognitive Impairment 

Adapted from a manuscript in preparation 

EXECUTIVE SUMMARY 

 While previous chapters of this dissertation have identified spared repetition effects 

in MCI and AD along with related cognitive plasticity, other researchers have emphasized 

that an absence of neural repetition effects is a hallmark of AD that manifests early in its 

pathophysiological course. I hypothesized that this disconnect might result from 

manifestation of the neural repetition effect capacity in MCI only in the context of a 

concurrent working memory task. Participants with and without amnestic mild cognitive 

impairment performed two emotionally-valenced tasks: one with a working memory task, 

and one with a distracter content-identification task. Results indicated that the experiments 

evoked similar neural components, but that repetition effects for the MCI group were 

present only for the P600 component, which was uniquely evoked by the emotional working 

memory task. I suggest that cognitive challenge can expose neural capabilities of individuals 

with MCI that might have appeared extinct. 

Keywords: cognitive challenge, event-related potential, Alzheimer’s disease, mild cognitive 

impairment, IAPS, repetition effect, working memory  
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Introduction 

 Repetition effects, which encompass unconscious alterations in behavior, memory, 

or cognitive processing of a phenomenon upon repeated exposure, have been purported to 

have myriad statuses in the context of dementia due to Alzheimer’s disease (AD) and its 

clinical prodrome, amnestic mild cognitive impairment (MCI) (Fleischman, 2007; Fleischman 

& Gabrieli, 1998). In the weather prediction task, where individuals unconsciously learn 

associations between symbols and a “weather” outcome by repetition, people with moderate 

to severe AD show enhanced implicit effects relative to older adults without impairment, 

and related implicit effects are spared across a range of domains relative to explicit memory 

capacities such as working memory, especially for short-term implicit effects (Kessels et al., 

2011; Klimkowicz-Mrowiec et al., 2008; Mitchell & Schmitt, 2006). Individuals with AD also 

appear to show enhanced or spared repetition effects in the context of word-choice, short-

term priming, and visual delayed-match-to-sample working memory tasks (Broster et al., 

2013; Kazmerski & Friedman, 1997; Schnyer, Allen, Kaszniak, & Forster, 1999), and this 

sparing has been linked to apparent cognitive plasticity at posterior cortex (Broster et al., 

2015). 

 Sparing of repetition effects or other aspects of implicit memory in AD has been 

linked to cognitive rehabilitation interventions that proffer benefits to individuals with AD 

(Jean et al., 2010; Kessels & de Haan, 2003a, 2003b; Lubinsky et al., 2009; Mimura & 

Komatsu, 2010; van Halteren-van Tilborg et al., 2007; White, Ford, Brown, Peel, & Triebel, 

2014; Zanetti et al., 1997). For example, implicit memory-based paradigms such as errorless 

learning and procedural memory stimulation have shown special promise in clinical contexts, 

and they have performed better than similar interventions such as effortful learning that 

included additional concurrent explicit elements (Mimura & Komatsu, 2010). These findings 
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indicate that the question of the status of repetition effects and implicit effects is more 

generally relevant to potential untapped clinical impact in persons with AD (Hopper, 2003). 

 Simultaneous with the considerable evidence of spared behavioral, cognitive, or 

clinical effects of repetition in AD, an absence of late electrophysiological repetition effects 

has been proposed as a biomarker of AD (Olichney et al., 2006; Olichney et al., 2002); its 

preceding clinical stage, MCI (Olichney et al., 2008); and even its preceding clinical state, 

sometimes called pre-Alzheimer’s disease (pre-AD) (Olichney et al., 2013). In these studies, 

individuals without impairment show a marked voltage difference in late event-related 

potentials (ERPs) evoked by repeated and initially-presented stimuli, but individuals with 

various stages of AD showed an absent or disrupted difference between ERPs to such 

stimuli. In these experiments, word stimuli were displayed to participants, participants made 

a judgment about the content of each word, and individual stimuli were re-tested after a 

delay ranging from several seconds to about 2 minutes. The effect has proven to be reliable 

through multiple experiments and cohorts and has been reported to discriminate between 

pre-AD and individuals without impairment with 84% accuracy (Olichney et al., 2013). 

 The status of repetition effects in AD and their reliability as a biomarker is an 

important clinical and experimental question. If these effects are reliably intact to an 

interesting extent in early AD, they represent an unappreciated clinical opportunity (Hopper, 

2003). On the other hand, if the reports of spared or enhanced effects are unreliable for 

whatever reason (e.g., being apparent only in cohorts with idiosyncratic characteristics), 

characterizing the source of the sparing to identify the scope of the effect would be valuable 

from a clinical perspective and direct future experimentation probing the effect. 

 One potential theme that may account for the discrepancy is that the word repetition 

paradigms that have found a lack of late repetition effects during AD were concurrent with a 
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task that required participants to make fact-based content judgments about the current 

stimulus (Fleischman, 2007). By contrast, the repetition effects implicit in the weather 

prediction and delayed-match-to-sample tasks were concurrent with explicit tasks requiring 

participants to speculate about an outcome or recall items held in working memory, 

respectively (Broster et al., 2011; Broster et al., 2013; Klimkowicz-Mrowiec et al., 2008). In 

other words, cognitive challenge appears to evoke a neural capacity for which repetition 

effects are spared.  

 In evaluating this possibility, it is helpful for the reader to be briefly acquainted with 

the somewhat complicated nature of “repetition effects” as I are describing them in slightly 

more detail. While often described as if a monolithic capacity, repetition effects are 

instantiated through multiple neural mechanisms that may or may not correlate with a 

traditional “repetition priming” behavioral output (Gotts et al., 2012a; Gotts, Chow, & 

Martin, 2012b; Grill-Spector et al., 2006; Henson, 2012b). For example, when speaking of 

how repetition effects manifest in cognitive processing, individual such effects may manifest 

as increased measurements, decreased measurements, quickened effects, or some 

combination of these, and, even within a certain individual, multiple discrete repetition 

effects may be measured depending upon the time and space of the measurement (Grill-

Spector et al., 2006). Therefore, even among neural repetition effects, it is necessary to clarify 

which such effect is meant. Further, even if a particular neural repetition effect occurs in one 

fashion (e.g., via increased measurements), it does not entail that all neural repetition effects 

show the same such effect. 

 These observations are helpful for a few reasons. First, they clarify that I anticipate 

seeing multiple neural mechanisms be responsive to repetition effects. Second, they clarify I 

do not anticipate that individual effects will be similar in manifestation (e.g., some may 
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become larger with repetition while others become smaller with repetition). Finally, to the 

extent that all neural mechanisms are task-dependent, I do not necessarily anticipate that the 

same neural mechanisms will be prominent in every experiment that incidentally includes a 

repetition effect manipulation (Grill-Spector et al., 2006). 

 In the current experiment, participants performed 2 experiments that incorporated 

implicit repetition effects: one where participants performed a content-judgment task, and 

one where participants performed a delayed-match-to-sample working memory task. To 

assess the possibility that differences in levels of emotional content might interfere with the 

manifestation of repetition effects in the context of AD (Borg et al., 2011; Kazui et al., 2003; 

May, Manning, Einstein, Becker, & Owens, 2015), both tasks used stimuli that were 

differentially emotionally-valenced to further interrogate proposed moderators of differential 

manifestation of repetition effects in AD (Zhang, Lawson, Guo, & Jiang, 2006). 

Methods 

Participants  

 32 older adult participants – 16 with amnestic mild cognitive impairment (MCI), 16 

with normal cognitive status (NC) – participated in experimental protocols. All NC 

participants were the spouse or long-term partner of an individual with amnestic mild 

cognitive impairment; hence, individual MCI participants were matched with their 

unaffected spouse for purposes of analysis. Of the participants, 22 were members of the 

University of Kentucky Alzheimer’s Disease Center (UK-ADC) longitudinal clinical cohort 

while 10 were recruited from the Kentucky Neuroscience Institute (KNI) at the University 

of Kentucky. Recruiting directly from tertiary care memory clinics reduces the risk that 

cognitive effects observed result from non-AD memory impairment conditions such as 
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thyroid or vitamin B12 deficiency (Jicha et al., 2008; Luck et al., 2007). Individuals in the UK-

ADC cohort are assessed every year (prior to clinical change) or every 6 months (subsequent 

to clinical change) with a battery of neuropsychological tests including the Uniform Data Set 

(UDS) and Geriatric Depression Scale, Short Form (GDS15). For participants who were 

part of the UK-ADC cohort, the UDS scores collected most proximal in time to research 

participation were consulted as descriptors of the cognitive status of participants; for 

participants who were recruited directly from KNI, research personnel trained in the 

administration of the UDS collected the UDS and GDS15 data on-site. One spousal dyad 

elected not to perform the on-site neuropsychological testing, so those two participants have 

been omitted from related analyses in this manuscript. Because other missing data were 

sparse, missing neuropsychological data was handled using the expectation-maximization 

(EM) algorithm. Summarized neuropsychological findings and associations are included as 

part of Table 4.1. 

 In keeping with contemporary clinical criteria (Albert et al., 2011; Arsenault-Lapierre 

et al., 2011; Lekeu et al., 2010; Reid & Maclullich, 2006), MCI was indicated by A) absence of 

dementia, B) absence of cognitive, clinical, or behavioral symptoms consistent with sources 

of non-amnestic cognitive impairment, and C) objective memory impairment evidenced by 

performance more than 1.5 standard deviations below age-standardized normal values on at 

least one of several memory measures including Wechsler Memory Scale Logical Memory 

(WMS-R), the California Verbal Learning Test (CVLT-II), and the Benton Visual Retention 

Test (BVRT-5, Forms C & D). AD was diagnosed using Alzheimer's Disease Dementia 

Workgroup criteria, which hold, briefly, that insidious-onset dementia is present in the 

absence of another psychiatric or neurological condition (McKhann et al., 2011). All 

participants were recruited directly from the tertiary care setting and had received 
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comprehensive work-up to rule-out other psychiatric or neurological causes of cognitive 

impairment. Individuals with MCI had been diagnosed within 12 months of data collection, 

all research participants had been evaluated clinically within 12 months of data collection, 

and all research participants were evaluated clinically on an annual basis to check for 

conversion to MCI. In other words, all participants were clinically evaluated both prior to 

and subsequent to research participation to confirm their clinical status. All participants were 

between age 65 and 92 with visual acuity better than 20/50 with corrective lenses in at least 

one eye. Exclusion criteria included history of stroke; epilepsy; head trauma; CNS infection, 

chronic infectious disease; psychiatric illness including substance abuse, major depression, or 

other mood disorder; or other neurological disease (Robert et al., 2006). Participants taking 

medications known to affect cognitive function, such as sedatives or opiates, were similarly 

excluded. 

 During initial screening for recruitment, individuals who reported themselves to be 

left-handed were excluded to reduce the risk that associated hemispheric ERP effects might 

be interpreted. However, during subsequent on-site re-screening, it was determined that two 

participants were actually initially left-handed, but had been forced to learn to write right-

handed early in life. Because these individuals were balanced in terms of their cognitive 

status (i.e., one NC, one MCI), I decided not to exclude their data from the analyses. 



57 
 

Table 4.1: Neuropsychological summary and associated correlations for effects in Chapter 4. NC = normal control, MCI = amnestic mild cognitive impairment, AD = Alzheimer’s disease; N = number 

of participants, Females = number of female participants, Age = age of participant in years, Education = formal education of participants in years; MMSE = mini-mental status examination, 

LOGIMEMI = Logical Memory Story A, Immediate Recall, LOGIMEMII = Logical Memory Story A, Delayed Recall, DIGIF = Digit Span Forward, DIGIFLEN = Digit Span Forward 

Length, DIGIB = Digit Span Backward, DIGIBLEN = Digit Span Backward Length, ANIMALS = Category Fluency (Animals), VEG = Category Fluency (Vegetables), TRAILA = 

Trailmaking A, TRAILB = Trailmaking B, DSYM = Digit Symbol, BOSTON = Boston Naming Task, GDS15 = Geriatric Depression Scale, short-form; df, F/χ2, p, and ρ indicate statistical 

summaries for the omnibus tests of group differences for each column. Welch’s robust test of means was used for measures showing heterogeneity of variance. Variance displayed is the standard error of the 

mean (SEM) for each group. Because behavioral and electrophysiological repetition effects were empirically associated with interactions of clinical group, correlations depicted compare within-dyad differences in 

neuropsychological test scores with within-dyad differences in individual repetition effects. To reduce the impact of differential violations of normality assumptions, Spearman’s ρ was used to assess correlations of 

each neuropsychological test with the behavioral and primary electrophysiological repetition effect in each experiment. For all neuropsychological tests except for TRAILA, TRAILB, and the GDS15, a 

larger score indicates better performance, whereas the opposite is true for TRIALA/B and the GDS15. Hence, the signs of correlations of TRAILA/B and GDS15 have been reversed in this chart for 

ease of interpretation. Positive ρ values indicate that large differences in the neuropsychological status of individuals in a dyad were related to large differences in the size of the relevant repetition effect; negative 

ρ values indicate that large differences in the neuropsychological status of individuals in a dyad were related to small differences in the size of the relevant repetition effect. Because missingness was relatively rare 

in this dataset, the expectation-maximization (EM) algorithm was used to impute missing variables using existing behavioral and neuropsychological data where actionable. Two individuals (one MCI, one 

NC) did not participate in neuropsychological testing, so they were excluded from that process and from these analyses. For the analogous correlations with the main behavioral and electrophysiological 

repetition effect in Experiment 3, all correlations were non-significant (ps > 0.1) apart from a spurious association with GDS15 scores due to zero-inflation in that sample; consequently, for the sake of 

readability, those correlations have been omitted from this table. 

 N Females Age Education MMSE LOGIMEMI LOGIMEMII DIGIF DIGIFLEN DIGIB DIGIBLEN ANIMALS VEG TRAILA TRAILB DSYM BOSTON 
GDS 

15 

NC 16 9 76.7 ± 1.4 16.7 ± 0.7 
28.8 ± 

0.3 
14.1 ± 1.0 12.7 ± 1.1 

8.0 ± 
0.7 

6.3 ± 0.3 
6.1 ± 
0.6 

4.7 ± 0.3 19.6 ± 1.2 14.8 ± 0.9 37.5 ± 3.0 82.3 ± 5.5 
40.9 ± 

2.6 
27.0 ± 1.6 

1.0 ± 
0.4 

MCI 16 7 77.2 ± 1.5 17.1 ± 0.9 
26.2 ± 

0.7 
7.4 ± 0.8 6.4 ± 1.0 

8.7 ± 
0.5 

6.9 ± 0.2 
5.9 ± 
0.5 

4.6 ± 0.2 13.6 ± 1.5 9.1 ± 0.8 54.4 ± 6.5 181.2 ± 21.9 
32.9 ± 

4.1 
23.6 ± 1.1 

2.0 ± 
0.9 

df 1 1, 30 1, 30 1, 18.3 1, 28 1, 28 1, 28 1, 28 1, 28 1, 28 1, 28 1, 28 1, 20.6 1, 17.0 1, 28 1, 28 1, 28 

F/χ2 0.5 0.06 0.14 7.76 20.98 20.75 0.94 2.39 0.03 0.10 8.75 18.53 3.45 11.80 0.0003 5.94 2.66 

p 0.72 0.81 0.71 0.01 < 0.001 < 0.001 0.34 0.13 0.87 0.76 0.006 < 0.001 0.08 0.003 0.99 0.02 0.11 

Correlation: 

Behavioral Repetition Group 
Difference Experiment 2 

ρ .591 .507 .560 .052 .113 .063 -.030 .735 .405 .580 .658 .576 .764 -.004 

p .016* .045* .024* .849 .677 .816 .913 .001** .120 .019* .006** .019* .001** .987 

Correlation: 

LPP Repetition Effect Group 
Difference 

ρ .454 .611 .523 .254 .278 .396 .266 .257 -.065 .424 .497 .371 .359 .121 

p .077 .012* .038* .343 .297 .128 .319 .337 .810 .102 .050* .158 .172 .656 
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Measures and Procedures 

 All participants performed two tasks: an affective repetition task, and a working 

memory task. Additionally, all but two participants either made the neuropsychological data 

from their most proximal UK-ADC visits available to research personnel or agreed to 

undergo equivalent neuropsychological testing on-site, as actionable. 

 

Figure 4.1: Experiment 2 Schematic. This schematic summarizes the typical course of the affective repetition 

paradigm. Participants indicate whether the content of each image includes humans or human parts, and 

individual images are all repeated exactly twice after variable lag. Individual images differed in their hedonic 

valence and arousal levels (i.e., low arousal positive, LAP, or high arousal negative, HAN). 

 For the first task, participants performed an affective repetition task while 

electroencephalography was performed. Participants observed images from the International 
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Affective Picture System (IAPS) and performed a distractor task of judging whether images 

contained human or human parts (hereafter, “HHP”), and individuals emotional images 

were tested multiple times with variable image lag (Figure 4.1). Participants pressed the “A” 

and “L” keys on a keyboard to indicate each response. To reduce the difficulty of the task 

for participants less familiar with use of keyboards, all other keys on the keyboard had been 

removed. Incorporating multiple memory faculties into a single paradigm, as in the 

emotional enhancement effect-repetition paradigm used in the current study, facilitates the 

interpretation of any interaction effects observed (Kennedy et al., 2009; Voss & Paller, 2008, 

2009). 

 360 trials were performed altogether in 3 blocks of 120 trials each. Each block lasted 

approximately 7 minutes and included periodic “rest” periods of approximately 10s. Each 

trial consisted of the presentation of a single image, and each image in the study was tested 

exactly 3 times. Images were presented with a pseudorandom presentation sequence with 

respect to stimulus type. The hand used to indicate each HHP response was balanced 

within-participants, within-dyads, and between-dyads. That is, the hand that participants 

would use to indicate whether HHP were included in each image were switched between 

blocks (e.g., if it was “A” during block 1, it would become “L” during block 2); for each 

dyad of participants, the initial key used to indicate HHP being present was counterbalanced 

(e.g., if the participant with MCI used “A” during block 1, his or her spouse sued “L” during 

block 1); and for each alternating dyad of participants, the initial key used by the MCI 

participant in the dyad was counterbalanced (e.g., if the participant with MCI in the first 

dyad used “A” during block 1, the participant with MCI in the second dyad used “L” during 

block 1). Participants took a short, self-paced break between blocks that typically lasted 

about 60 seconds. During this time research personnel confirmed the comfort of 
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participants and provided encouragement to participants that included reassurance about the 

ambiguity and difficulty of the task for some of the stimuli. In this experiment, the ongoing 

task was intended primarily to ensure that participants remained focused on the content of 

the images to ensure their affective impact, and the ongoing task was not correlated with the 

implicit emotional manipulation employed (cf., Visual Stimuli). Hence, participants did not 

receive accuracy feedback. 

 Because of the relative simplicity of the task and in the interest of participants’ time, 

participants were not required to perform a practice session before participating in this task 

unless they elected to. No participants elected to participate in a practice session for this task. 

 For the second task, participants performed an affective delayed-match-to-sample 

task with repetition while electroencephalography was performed (Figure 4.2). During each 

trial, participants were first shown two sample images surrounded by a green border and 

were subsequently directed to indicate whether sequentially-presented images matched a 

sample image. Participants pressed the “A” and “L” keys on a keyboard to indicate matching 

or non-matching responses. To reduce the difficulty of the task for participants less familiar 

with use of keyboards, all other keys on the keyboard had been removed. Incorporating 

multiple memory faculties into a single paradigm, as in the emotional enhancement effect-

repetition paradigm used in the current study, facilitates the interpretation of any interaction 

effects observed (Kennedy et al., 2009; Voss & Paller, 2008, 2009). 
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Figure 4.2: Experiment 3 Schematic. This figure summarizes a typical trial in the current experiment. First, two 

sample images are displayed with a green border, and participants are directed to commit these images to 

memory. Then, text images are displayed one-by-one, and participants indicate whether each image was among 

the sample images from that trial by keyboard press. 

 For the second task, participants performed an affective delayed-match-to-sample 

task with repetition while electroencephalography was performed (Figure 4.2). During each 

trial, participants were first shown two sample images surrounded by a green border and 

were subsequently directed to indicate whether sequentially-presented images matched a 

sample image. Participants pressed the “A” and “L” keys on a keyboard to indicate matching 

or non-matching responses. To reduce the difficulty of the task for participants less familiar 
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with use of keyboards, all other keys on the keyboard had been removed. Incorporating 

multiple memory faculties into a single paradigm, as in the emotional enhancement effect-

repetition paradigm used in the current study, facilitates the interpretation of any interaction 

effects observed (Kennedy et al., 2009; Voss & Paller, 2008, 2009). 

 384 trials were performed altogether in 4 blocks of 96 trials each. Each block lasted 

approximately 5.5 minutes and included periodic “rest” periods of approximately 10s. Each 

image in the study was tested 2-4 times, and images were presented with a pseudorandom 

presentation sequence. The hand used to indicate a “match” response was balanced within-

participants, within-dyads, and between-dyads. That is, the hand that participants would use 

to indicate a match was switched between blocks (e.g., if it was “A” during block 1, it would 

become “L” during block 2); for each dyad of participants, the initial key used to indicate a 

match was counterbalanced (e.g., if the participant with MCI used “A” during block 1, his or 

her spouse sued “L” during block 1); and for each alternating dyad of participants, the initial 

key used by the MCI participant to indicate a match in the dyad was counterbalanced (e.g., if 

the participant with MCI in the first dyad used “A” during block 1, the participant with MCI 

in the second dyad used “L” during block 1). Participants took a short, self-paced break 

between blocks that typically lasted about 60 seconds. During this time research personnel 

confirmed the comfort of participants and provided encouragement to participants that 

included reassurance about the ambiguity and difficulty of the task for some of the stimuli. 

Because of previous experience suggesting that negative accuracy feedback was disruptive to 

individuals with MCI’s subsequent performance, participants did not receive accuracy 

feedback (Broster et al., 2013). 
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 A 5-minute practice period preceded the entire experiment to ensure that 

participants were comfortable with the cognitive and motor components of the task. This 

practice period was also designed to reduce or eliminate the influence of motor learning 

confounds on any repetition effects. During the practice period research personnel remained 

in the experimental chamber with the participant and provided oral feedback related to 

performance. As in the 2 blocks of formal experimentation, computerized feedback was not 

provided. 

 For all but one dyad, both the participant with MCI and the unaffected spouse or 

partner came to the laboratory at the same time. In such events, the participant with MCI 

participated in research protocols first, and the unaffected participant participated 

subsequently. While the spouse was participating in the task protocol, the participant was re-

screened for eligibility and known confounds, and the UDS battery was administered if 

applicable. One dyad preferred to come to the laboratory separately due to scheduling 

conflicts, and they were the only exception to this aspect of the protocol. 

Visual Stimuli 

 Stimuli were 120 re-sized two-dimensional 8.3 cm x 5.8 cm IAPS images. All stimuli 

were presented on a high-resolution color monitor using E-prime software. Sample images 

were presented with a thick green outline for 3s, and each test stimulus was presented for 

1.5s. Both individual images and individual trials were separated by a 1.1-1.4s jitter interval, 

which was employed to prevent bias in RT measures due to participants anticipating 

stimulus onset. Stimuli were presented at a 65 cm visual distance at a visual angle of 

approximately 7   
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 IAPS images have been extensively tested and validated for numerous features 

including hedonic valence and arousal ratings in younger adults (Lang, Bradley, & Cuthbert, 

1998; Libkuman, Otani, Kern, Viger, & Novak, 2007). However, the validation of IAPS 

images in older adults and adults with cognitive impairment is relatively limited (Gruhn & 

Scheibe, 2008). In particular, in older adults the hedonic valence and arousal dimensions of 

emotional judgments, which are largely independent in younger adults, become coupled such 

that high arousal is associated with negative hedonic valence and low arousal is associated 

with positive hedonic valence (Gruhn & Scheibe, 2008; Keil & Freund, 2009; Porto, 

Bertolucci, & Bueno, 2011). To account for this association, I used a multiple polynomial 

regression imputation algorithm to estimate the hedonic valence and arousal of IAPS images 

of older adults based on 4 unpublished rating sessions of various subsets of the IAPS images 

in older adults. Image rating was conducted according to the standards associated with the 

stimulus resource (Mikels, Fredrickson, et al., 2005). Younger adults’ ratings of images’ 

arousal and hedonic valence, the interaction between the two dimensions, and quadratic or 

cubic trends in the ratings of arousal and hedonic valence were used to predict older adults’ 

arousal and hedonic valence ratings of the IAPS images. Consistent with previous reports, 

empirical arousal and hedonic valence values were non-independent in older adults (Figure 

4.3). Hence, I interpolated new adjusted arousal and hedonic valence scores for all IAPS 

images using a regression imputation algorithm based on the prediction model described 

above to establish relatively appropriate arousal and hedonic valence scores for the entire set 

of IAPS images. 
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Figure 4.3: Scatterplot of distribution of hedonic valence and arousal scores of IAPS images. This graph depicts 

younger and older adults’ ratings of IAPS images hedonic valence and arousal. In younger adults (green circles), 

these dimensions are relatively uncorrelated, but the correlation between these dimensions is stronger in older 

adults (orange squares). The results of applying a polynomial ordinary least squares regression algorithm to 

generate estimated older adult hedonic valence and arousal ratings for all IAPS images (purple triangles) further 

clarifies this dependent relationship. This dependence led us to encode the emotional enhancement effect levels 

of the experimental stimuli unidimensionally. 

 Based on this finding and a desire for a parsimonious design, IAPS image content 

was interpreted in a unidimensional fashion to ensure validity with our older adult cohort. 

Initially, I had planned for 3 levels along this single dimension – low arousal positive (LAP), 

high arousal negative (HAN), and neutral. To identify images belonging to each group, I 

collected images that scored within 2 points of the most extreme relevant values for LAP or 

HAN (i.e., images scored 1-3 or 7-9, as applicable) or that scored within 2 points of the 

middle value on both dimensions for neutral images (i.e., images scoring 4-6). However, 

upon examination of the exemplars of each class, I determined subjectively that the neutral 

stimulus set showed poor face validity in terms of the types of content it encompassed, so I 

elected to use only 2 levels: LAP and HAN, as previously formalized. 
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 Having selected the LAP and HAN images via the empirical methodology previously 

described, I next worked to ensure that our distractor task was not confounded with the 

emotional enhancement effect categories. Initially, I had planned to use a classical “man-

made/not man-made” image content decision paradigm as the distractor task in this 

experiment. However, a Χ2 test suggested that such a task would be correlated with 

emotional enhancement effects for our LAP and HAN image sets. The HHP task was 

selected for its lack of association with the hedonic valence/arousal category of stimuli. 

Electrophysiological Data Preprocessing 

 First, electrophysiological data were averaged according to normative protocols. 

Specifically, electrophysiological data were partially preprocessed using SCAN 4.5. This 

preprocessing consisted of manual artifact rejection, a finite impulse response filter with a 

band-pass of 0.05 to 40 Hz at 12 dB/octave, and epoching at -200 to 1000 ms relative to 

participant exposure to each stimulus. These epoched data were subsequently processed 

further using the ERP PCA Toolkit (EP Toolkit), consisting of ocular artifact reduction 

using independent components analysis (ICA), motor artifact reduction, bad channel 

imputation, baseline-correction, and re-referencing to the average of the mastoid electrodes. 

Then, epochs associated with behavioral responses and electrophysiological activity within ± 

75 μV of baseline were averaged for each of the 4 experimental conditions (i.e., the initial or 

repeated presentation of LAP or HAN stimuli).  

 Then, temporospatial principal components analysis (PCA) was applied to the data 

to dissociate overlapping components present in the conventionally-averaged ERPs. In our 

opinion, this step was necessary in the current experiment and preferable to difference waves 

on the grounds that individual stimuli varied on more than only psychological conditions 



67 
 

(e.g., the LAP and HAN stimuli were not identical to one another). Promax and Infomax 

rotations were used for the temporal and spatial elements of the procedure, respectively, to 

permit limited correlation between temporal components, following the recommendation of 

methodologists (Dien, 2010b). To determine the appropriate number of temporal 

components to retain, the averaged data were compared to a random dataset, and 

components that explained both greater variance than the random dataset and at least 0.5% 

of variance in the data were retained. Principle components reflecting classical ERP 

signatures were identified using topographical maps of each component, each component’s 

temporal course, and the effect of the experimental manipulations on each component. 

Data Analysis 

 Data were analyzed as 2 × (2 × 2) mixed robust ANOVAs on cognitive status (NC 

or MCI), emotional enhancement effect stimulus type (LAP or HAN), or repetition effect 

stimulus type (initial or repeated) or as 2 × (2 × 2 × 2) mixed robust ANOVAs (i.e., 

including a factor for stimulus working memory status in the relevant experiment) using the 

EP Toolkit’s robust ANOVA plug-in. Effects relevant to a priori hypotheses were first 

evaluated, and then post-hoc robust ANOVAs were performed for all principle components 

using similarly-structured robust ANOVAs. To limit the effect of multiple comparisons on 

these tests, each ANOVA was conducted only at the peak electrode of the corresponding 

component, and these tests were supplemented with Bonferroni correction on the number 

of components tested, where the components to be tested were the components retained as 

described in Data Processing. Uncorrected p value thresholds for each of these analyses are 

listed in the corresponding section of the online supplemental materials. Simple-effects 

models were used to interpret interaction effects. All significance values listed are based on 
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two-tailed p values except for directional a priori hypotheses, for which one-tailed p values 

were used. For the sake of brevity, results failing to reach one-tailed significance (i.e., p > 

0.1) have been omitted from the report 

 Additionally, to improve power to detect lower-order effects involving clinical group, 

data were analyzed as 16 dyad pairs to take advantage of shared variance attributable to 

similarities correlated with spousehood. Hence, behavioral data and processed ERP data 

were analyzed as 2 × 2 × 2 within-dyad robust ANOVAs on cognitive status (NC or MCI), 

emotional enhancement effect stimulus type (LAP or HAN), or repetition effect stimulus 

type (initial or repeated) or as 2 × 2 × 2 × 2 within-dyad robust ANOVAs (i.e., including a 

factor for stimulus working memory status in the relevant experiment) using the EP 

Toolkit’s robust ANOVA plug-in. Ultimately, while this analysis did increase the ability to 

detect certain effects, the analysis was not associated with any categorical changes in the 

significance of lower-order effects in these experiments, so the analysis will not be discussed 

further. 

Results 

Behavioral Analysis 

 For both Experiment 2 & 3, ANOVAs on reaction time (RT) identified significant 

Group × Repetition interactions, F (1, 28) = 7.70, p = 0.010, ηp
2 = 0.22, F (1, 28) = 5.79 p = 

0.023, ηp
2 = 0.17, respectively. For both experiments, this interaction resulted from a larger 

decrease in RT with repetition in NC than in persons with MCI (80 ms vs. 40 ms for 

Experiment 2, 120 ms vs. 80 ms for Experiment 3). Both clinical groups showed a change in 

RT in the same direction with repetition. 
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Table 4.2: Behavioral Results for Experiments 2 and 3. Group-averaged reaction time and performance accuracy and standard error values for each empirical condition 

have been summarized. Reaction time values are reaction times associated with accurate responses only. Accuracy values are the proportion of total trials of each type to 

which an accurate response was given. Both experiments were associated with group differences in the manifestation of repetition effects. NC = normal control; MCI = 

mild cognitive impairment; LAP = low arousal positive stimuli; HAN = high arousal negative stimuli; 1st = initial presentation; 2nd = subsequent presentations 

Clinical 
Group 

Presentation 

Emotional Repetition 

(Experiment 2) 

Emotional Repeated Retrieval 

(Experiment 3) 

Reaction Time (ms) 

Reaction Time (ms) Accuracy (%) 

Match Nonmatch Match Nonmatch 

LAP HAN LAP HAN LAP HAN LAP HAN LAP HAN 

NC 

1st 985 ± 21 1072 ± 19 829 ± 22 859 ± 23 839 ± 21 890 ± 20 88 ± 2 87 ± 2 92 ± 1 91 ± 2 

2nd 890 ± 19 960 ± 19 713 ± 19 746 ± 17 735 ± 19 760 ± 16 91 ± 2 92 ± 2 94 ± 1 91 ± 2 

MCI 

1st 993 ± 29 1074 ± 29 918 ± 45 918 ± 38 924 ± 35 963 ± 39  64 ± 6 60 ± 7 64 ± 7 66 ± 7 

2nd 917 ± 30 1000 ± 32 814 ± 35 848 ± 41 849 ± 39 881 ± 34 70 ± 5 65 ± 6 66 ± 7 65 ± 7 
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 Behavioral accuracy results for Experiment 2 were not interpreted as accuracy was 

near ceiling and inaccuracies tended to be associated with images with ambiguous human 

figures or human organs. Behavioral accuracy results for Experiment 3 were not associated 

with significant effects or interactions involving repetition. 

Conventionally-Averaged Waveforms 

 The conventionally-averaged waveforms showed classical components including a 

P3, frontal N400, posterior P2, and late positive component (LPC) (Figure 4.4). The 

experiments differed considerably in the apparent evoked potentials, particularly at the 

posterior P3 and frontal LPC. Respective components in the emotional delayed-match-to-

sample task were shifted somewhat earlier in time, perhaps owing to the greater stringent 

time-pressure in that task. Individuals with MCI appeared to have smaller-amplitude ERPs, 

especially at frontal electrodes. 

 Difference waves of repetition effects (2nd - 1st) indicated that the simple emotional 

repetition task (Experiment 2) was apparently associated mainly with a single repetition 

effect in the late time-window whereas the emotional task that involved repeated working 

memory retrieval was associated with both a later repetition effect and one earlier effect. 

However, even when observing difference waves, the independence of components was 

unclear. Further, neural repetition effects are theorized to be multiple and independent in 

style of manifestation, so overlapping components could produce a misleading impression of 

how individual components manifest. Consequently, to identify relatively independent 

electrophysiological components and to disentangle effects of temporally-adjacent 

components, temporal PCA was applied to the data. 
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Figure 4.4: Conventional ERPs separated by clinical group for Experiments 2 & 3. The grand average waveforms of all 
experimental conditions and participants by group have been displayed at 6 electrodes for each experiment. Waveforms 
relevant to Experiments 2 & 3 are depicted in sections A and B, respectively. Note that the latency of Experiment 3 is 
shifted 100 ms earlier than that of Experiment 2, consistent with the similarly increased performance time in that 
experiment (Table 4.2). 
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Figure 4.5: Repetition Effect Difference Waves separated by clinical group for Experiments 2 & 3. Difference waves 
suggested that the simple emotional repetition paradigm (A) was associated with a repetition effect in the late time-window 
whereas the emotional repeated retrieval paradigm (B) was potentially associated with discrete earlier and later effects. 

 

Temporal Principal Components Analysis 

 The primary principal components associated with the experiments corresponded to 

classical ERP components, including the P2, P3, frontal N400, P600, and late positive 

potential (LPP) (Figure 4.6A). One clear contrast between experiments was that the P600 

was severely attenuated in the pure emotional repetition paradigm, but it was the largest 
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temporal component in the emotional repeated retrieval paradigm. Further, the PCA 

solution suggested that the apparent monolithic late repetition effect apparent in both 

experiments was actually composed of discrete overlapping phenomena: one peaking near 

600 ms, and one peaking near the end of the epoched time-window. Because of the evidence 

that the late repetition effects might represent discrete effects rather than a monolith, 

statistical evaluation of the experimental data was restricted to analysis of the individual 

temporal components of the PCA solution. Refer to the Appendix for a detailed summary of 

the temporal factors of the PCA solution (Table A1). 

A Priori Analysis 

 For Experiment 2, the LPP was associated with a Group × Repetition interaction, 

TWJt/c (1.0,22.4) = 3.18, p = 0.10, resulting from a repetition effect being present for 

individuals without impairment, F (1,30) = 10.21, p = 0.003, but no such effect being present 

for individuals with MCI (Figure 4.6B, first column). For Experiment 3, the P600 was 

associated with a Group × Repetition interaction TWJt/c (1.0,26.2) = 5.78, p = 0.025, resulting 

from the repetition effect being larger in persons without impairment TWJt/c (1.0,15.0) = 

22.32, p = 0.0029, than in persons with MCI,  TWJt/c (1.0,15.0) = 7.47, p = 0.031, despite 

being present in both groups (Figure 4.6B, second column). 

Post-Hoc Electrophysiological Analyses 

  In this chapter, post-hoc analyses were focused on effects related to repetition 

effects (i.e., main effects of repetition or statistical interactions in which repetition was 

implicated), so other effects will not be discussed here. After Bonferroni correction, no such 

effects reached significance for either experiment. 
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Figure 4.6: Components in Experiments 2 & 3 and repetition effect difference waves. A) These graphs depict the temporal 
PCA solution of Experiment 2 (first column) and Experiment 3 (second column) at a frontal (first row) and posterior 
(second row) electrode. Notable is the stark contrast in the size of the P600 between experiments; the component is 
prominent for the working memory task, but almost negligible in the simple repetition task. Note that although the 
waveforms have been colored to highlight correspondence between experiments, the components’ differed in ordinal 
variance contribution between experiments. These discrepancies can be scrutinized in the Appendix. B) These graphs show 
difference waves between the 1st and 2nd presentations of stimuli (2nd minus 1st; positive values indicate larger amplitudes 
with repetition). Individuals with MCI did not show a repetition effect at the LPP (first column), but at the large P600 that 
was only apparent in the working memory study, persons with MCI showed a repetition effect, albeit an attenuated one 
(second column). The first and second rows show the effect at a frontal (Fz) and posterior (Pz) electrode, respectively. LPP 
= late positive potential 
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Integrated Analyses 

 The behavioral and electrophysiological repetition effects previously identified were 

compared to the Uniform Data Set (UDS) neuropsychological scores associated with each 

participant. Because each repetition effect expressed itself differently in each clinical groups 

(i.e., reflected in the significant Group × Repetition interactions), it would be necessary to 

perform correlations for each clinical group if the data were organized as monads. As a result, 

for these correlational analyses, the data were organized into spousal dyads. First, the 

difference between the 2nd and 1st instance of an RT or mean ERP component voltage value 

was computed for each participant (2nd - 1st). Then, the difference in those resultant values 

between the dyad member with MCI and the member without impairment was computed. 

These values were correlated with the difference in neuropsychological scores between dyad 

members. For the sake of ease of interpretation, individual difference scores were subtracted 

such that larger degrees of relative impairment were associated with larger difference values 

(e.g., for neuropsychological tests where low raw scores were associated with superior 

performance, scores of the spouse without impairment were subtracted from those of the 

spouse with MCI; the opposite was performed for neuropsychological tests where high raw 

scores indicated superior performance). For the sake of relative parsimony, only the largest 

component associated with a significant repetition effect for each experiment was tested in 

this way (i.e., the LPP for Experiment 2, and the P600 for Experiment 3). 

 Noteworthy results included that larger MMSE score differences within a dyad (i.e., 

caused mostly by the degree of impairment of the individual with MCI) indicated larger 

differences in behavioral RT repetition effects in the simple emotional repetition task 

(Experiment 2), but to smaller differences in behavioral RT repetition effects in the 
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emotional working memory task (Experiment 3) (Table 4.2). Additionally, the LPP repetition 

effect in the simple emotional repetition task was associated with many of the same 

neuropsychological scores as its associated behavioral RT repetition effects, but the P600 

repetition effect was not associated with any neuropsychological scores other than the 

geriatric depression scale, short-form, an effect which appeared to be driven by a small 

number of participants with non-floor scores on this test. For a complete correlational 

summary, please refer to Table 4.1. 

 Owing to the observation that the behavioral and electrophysiological repetition 

effects of the simple emotional repetition task appeared to uniquely have a similar 

correlational profile with regard to the neuropsychological scores of participants, the 

behavioral and primary electrophysiological repetition effects were similarly correlated. The 

respective scores for the simple emotional repetition task were correlated, Spearman’s ρ = 

0.68, p = 0.004, but the scores for the emotional working memory task were non-

significantly correlated, Spearman’s ρ = -0.32, p = 0.23. 

Discussion 

 I found that persons with MCI and persons without impairment showed a late 

positive potential (LPP) repetition effect difference that mirrored the findings of Olichney 

and colleagues for the task involving content evaluation (Olichney et al., 2006), but a 

repetition effect remained in a distinct but temporally-overlapping component (P600) for the 

task that required participants to use working memory. Interestingly, the relevant late neural 

component was of very small magnitude in the experiment that did not include a concurrent 

working memory task, and the two components were difficult to distinguish visually without 

the benefit of PCA. In our opinion, these findings indicate that a neural mechanism evoked 
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by working memory is sensitive to repetition effects and maintains relative normalcy in terms 

of how that effect manifests in MCI. This finding that a neural mechanism with spared 

electrophysiological repetition effects manifests only in a working memory context may help 

to explain why repetition effects in stages of AD have appeared to produce disparate stories 

in different experimental contexts. 

 Behaviorally, both tasks were actually associated with more improvement in RT for 

individuals without impairment. This departed from a previous study that showed that 

individuals with AD showed more RT improvement than persons with MCI or those 

without impairment in the context of a non-emotional delayed-match-to-sample working 

memory task (Broster et al., 2013). These two experiments differed methodologically in a 

few ways that may account for this discrepancy. First, the stimuli in the two experiments 

differed dramatically in complexity, luminance, coloration, and emotional content. 

Additional resources needed to process the characteristics of these stimuli may have revealed 

relative impairment in the MCI group that was not apparent in the previous experiment 

(Chakor, Bertone, McKerral, Faubert, & Lachapelle, 2005; Hansen, Johnson, & Ellemberg, 

2012). Second, the current experiments did not include a cohort that had received an AD 

diagnosis, so the clinical group that showed RT enhancement in the previous experiment 

was not present in the second experiment. Since behavioral enhancement has been linked to 

only individuals with more advanced disease, it may be that the current cohort was simply 

not sufficiently advanced pathophysiologically for repetition effects to manifest 

(Klimkowicz-Mrowiec et al., 2008). 

 Of note, in the current delayed-match-to-sample task, individuals with MCI did show 

a smaller repetition effect at the P600 than individuals without impairment, though both 

groups showed an effect that was larger than zero. This similarly departed from the previous 
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study, which did not show such a contrast. In that study, the magnitude of repetition effects 

in MCI was similar to those of persons without impairment. Similar to our discussion of the 

behavioral results, this discrepancy may have resulted in differences in the experimental 

stimuli or the patient population. In our opinion, the remaining presence of a repetition 

effect in persons with MCI in the presence of working memory, even if validly attenuated, 

should be appreciated as a leveragable cognitive rehabilitation target (B. Boller, Jennings, 

Dieudonne, Verny, & Ergis, 2012). 

 Additionally, I suggest that the current results emphasize the importance of 

ecological validity in psychological experiments, especially in the context of characterizing 

the cognitive capabilities of patient populations. In the current experiments, the residual late 

repetition effect capacity was visible only when evoked by cognitive challenge associated 

with working memory, and it was almost completely masked in the experiment with a 

simpler content-evaluation task. 

 The current experiments also included a replication and partial extension of Olichney 

and colleagues’ extensive work on the use of repetition effects of late ERP components, 

which I have identified with the LPP component in the current experiments, as biomarkers 

for AD, MCI, or pre-AD (Olichney et al., 2006; Olichney et al., 2002; Olichney et al., 2013; 

Olichney et al., 2008). In a repeated visual content-evaluation task similar to Olichney’s 

repeated word content-evaluation task, I found that the LPP repetition effect was attenuated 

to the point of extinction in persons with MCI, similar to his related findings. The current 

results extend Olichney’s observation to complex visual stimuli and to emotional stimuli. 

These findings suggest that Olichney’s candidate biomarker may be more robust than 

previously appreciated, which may reduce theoretical disruptive effects on the biomarker in a 

more complex clinical setting. Consistent with this possibility, a milder form of the late 
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repetition effect reduction observed in this study and in Olichney and colleagues’ work has 

been identified in comparing repetition effects linked to content evaluation in healthy older 

relative to younger adults, and passive viewing of images without evaluation has been linked 

to an absence of repetition effects at the LPP in younger adults (Schupp et al., 2006; Zhou, 

Li, Broster, Niu, & Wang, 2015). However, I would like to emphasize that the existence of a 

candidate repetition effect biomarker does not preclude functional maintenance of 

behavioral repetition effects in this context. 

 In these experiments, ERPs associated with emotional repeated retrieval were not 

correlated with neuropsychological or behavioral outcomes, but ERPs associated with simple 

emotional repetition were correlated with both neuropsychological and behavioral outcomes. 

This finding replicates previous findings that the traditional correlation between particular 

later ERP components and behavioral outcomes such as reaction time breaks down when 

coupled with cognitive tasks that engage multiple memory systems (Kutas, McCarthy, & 

Donchin, 1977; McCarthy & Donchin, 1981). 

 Owing to the limited spatial resolution of pure ERP/EEG methods, I did not 

attempt source localization using the current data. However, studies of working memory, 

emotion, and repetition have been employed in fMRI experiments (Bentley, Vuilleumier, 

Thiel, Driver, & Dolan, 2003; Migo et al., 2015; Narumoto, Okada, Sadato, Fukui, & 

Yonekura, 2001). The results generally support a spatial narrative characterized by complex 

interactions between cognitive-emotional systems that modulate one another’s behavior 

including regions such as temporal and intraparietal sulci, inferior frontal gyri, inferior 

occipital gyri, lateral fusiform gyri, cingulate cortex, and the amygdala (Pessoa, 2008). 

However, because the studies that have implicated various brain regions in methods similar 

to those of the current results tend to involve only individual subsets of the concepts 
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explored in this manuscript (e.g., repetition in the context of emotion, but not working 

memory; or repetition outside the context of Alzheimer’s disease), the connection between 

any individual region and a particular ERP component requires further investigation. In our 

opinion, the current results, which identify discrete repetition effects at latency differences 

unable to be discriminated with fMRI alone, indicate that simultaneous fMRI and 

ERP/EEG paradigms could be employed to link the phenomena in the current study to the 

neuroanatomic literature. 

 This experiment excluded individuals taking certain categories of psychoactive drugs, 

but individuals with mild cognitive impairment were uniformly taking donepezil or 

rivastigmine as part of their regular medical regimen as treatment for their cognitive change 

(Kumar, Singh, & Ekavali, 2015). These medications have known effects on ERP waveforms, 

so a subset of group differences identified in this study could be attributable to such 

differences (Guillem et al., 2006; Reeves, Struve, & Patrick, 2002). Because the differences in 

ERPs in this experiment were associated with interactions between experimental conditions 

and groups, the relevance of this issue to the main findings of this manuscript is limited. 

However, care should be exercised in the interpretation of apparent simple group differences 

in the conventionally-averaged data. 

 The current experiments identified discrete late repetition effects, one of which was 

only evoked to an appreciable degree by a concurrent working memory task. In the absence 

of a working memory task, I replicated Olichney’s candidate AD biomarker, which was an 

absence of repetition effects at a late ERP component in persons with MCI. In the presence 

of the task, another late repetition effect manifested that was present in both groups, though 

it was attenuated in persons with MCI. These results suggest that persons with MCI maintain 
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some typical repetition effects, but that they can only be observed in task-specific contexts 

(Grill-Spector et al., 2006).  
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Chapter 5: High Arousal Negative Emotional Stimuli Evoke Altered Working 

Memory Processing in Persons with Mild Cognitive Impairment 

Adapted from a manuscript in preparation 

EXECUTIVE SUMMARY 

 Emotional enhancement effects have been proposed to be robust to the 

pathophysiology of Alzheimer’s disease. Others have suggested that such effects are 

dysfunctional in this context, especially when other memory faculties are simultaneously 

engaged. Participants with and without amnestic mild cognitive impairment performed an 

emotionally-valenced delayed-match-to-sample repetition task while encephalography was 

performed to assess alterations in synaptic activity linked to discrete memory faculties in 

these groups. Results indicated that for persons with MCI, high arousal negative stimuli led 

to working memory processing patterns previously associated with AD, but this pattern did 

not exist for low arousal positive stimuli. I suggest that high arousal negative stimuli acutely 

exacerbate cognitive symptoms of MCI while low arousal positive stimuli may be protective. 

Keywords: event-related potentials, mild cognitive impairment, Alzheimer’s disease, 

emotional enhancement effects, working memory, affective cognition  
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Introduction 

 Alzheimer’s disease (AD) is associated with severe deficits in multiple memory 

capacities including working memory, but emotional enhancement effects, the ability for 

arousing, pleasant, or unsettling memories to improve encoding or subsequent retrieval of 

memories, appear spared in AD relative to other forms of dementia (Balconi et al., 2015; 

Bertoux et al., 2014; Fernandez-Duque & Black, 2005; Joshi et al., 2014; Kumfor, Irish, 

Hodges, & Piguet, 2014; Lavenu, Pasquier, Lebert, Petit, & Van der Linden, 1999; L. A. 

Miller et al., 2012) 

 Despite the apparent relative robustness of emotional enhancement effects in 

persons with AD, the emotional realm does change in AD. Anterior and medial temporal 

structures such as the amygdalae subserve emotional processing, and they experience 

pathophysiological change early in the course of AD (Braak, Alafuzoff, Arzberger, 

Kretzschmar, & Del Tredici, 2006; Braak & Braak, 1991). Further, the function of such 

limbic structures has been validated in functional imaging studies, which generally report 

lower-magnitude signals following emotional stimuli for individuals of advanced age or who 

are experiencing a stage of AD (Budson et al., 2006; E A Kensinger, 2008; E. A. Kensinger, 

Anderson, Growdon, & Corkin, 2004; E. A. Kensinger et al., 2002; Leclerc & Kensinger, 

2011; Waring, Seiger, Solomon, Budson, & Kensinger, 2014). Further, emotional effects 

have been linked to impaired inhibition of inappropriate responses due to prioritization of 

emotional phenomena, even when they are irrelevant to the task at-hand (S. Yang et al., 

2014). 

 Emotional effects have also been proposed to have idiosyncratic effects on working 

memory processing, including that its specific effects on working memory appeared spared 

in the process of healthy aging (Broster et al., 2012; Freeman et al., 2013; E. A. Kensinger & 
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Corkin, 2003a; Kerestes et al., 2012; Waring, Payne, Schacter, & Kensinger, 2010). In 

particular, while certain emotional enhancement effects are attenuated over the course of 

aging, the influence of emotional effects on working memory appear to be relatively spared 

(Mikels, Larkin, et al., 2005). In other words, emotional enhancement effects in the context 

of working memory in particular may have unique preservation patterns relative to 

emotional enhancement effects in general. 

 The clinical ramifications of this question merit investigation. The relevance of 

residual emotional enhancement effects in AD is of significant practical and clinical 

importance. If arousing, pleasant, or unsettling stimuli or environments ameliorate or 

harshen the symptoms of dementia related to AD, informing clinicians or caregivers about 

those circumstances could help patients to experience their illness in as unobtrusive a 

manner as possible. 

 One theory of emotional enhancement effects in AD holds that in aging and 

dementia, emotional enhancement effects retain their normative benefits to the extent that 

they do not co-occur with functions that subserve executive functions such as working 

memory and attention (Borg et al., 2011; Broster et al., 2012). For example, Borg and 

colleagues (2011) found that relative to young adult control participants, older individuals 

without dementia and older adults with dementia similarly benefited from emotional 

enhancement effects in a simple visual recognition task, but showed no benefit or 

impairment, respectively, when emotional enhancement effects co-occurred with a task that 

superimposed a visuospatial binding task on the visual recognition task. In other words, 

increased competition for domain-general neural resources led emotional enhancement 

effects to be replaced by emotional decrement effects (Broster et al., 2012). 
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 Given this theory, I suggest that stressful, arousing emotional circumstances are 

likely to exacerbate the AD cognitive phenotype whereas pleasant, calm circumstances are 

likely to ameliorate it. This theory is consistent with reports that aging, MCI, and AD are all 

associated with maintained benefits from stimuli of positive hedonic valence, but show 

disordered process of stimuli of negative hedonic valence (F. Boller et al., 2002; Hamann et 

al., 2002; Ikeda et al., 1998; Kazui et al., 2003; Kazui et al., 2000; LaBar et al., 2005; Sava et 

al., 2015). It may also help contextualize the mechanism for the well-demonstrated utility of 

implicit cognitive interventions such as errorless learning, a cognitive intervention strategy in 

persons with early AD that limits the stressful emotional consequences of negative feedback 

to maximize the benefit of the intervention (Jean et al., 2010; Kessels & de Haan, 2003b; Lee, 

Yip, Yu, & Man, 2013; White et al., 2014). 

  When assessing on-line forms of cognition such as working memory, 

electrophysiological methods including event-related potentials (ERP/EEG) can provide 

information directly based on neural activity to clarify whether differences in cognitive 

processing may occur even in the absence of differences in behavioral output (Guo et al., 

2008). Previous work has identified a reversal in processing differences between matching 

and nonmatching stimuli in the P300 to P600 range of ERPs evoked by the delayed-match-

to-sample task as a hallmark of AD (Broster et al., 2011; Broster et al., 2013). Further, while 

limited somewhat by the great variety in interpretations of what constitutes “emotional” 

stimuli, ERP/EEG research in the previous decades has characterized how ERPs are 

modulated by emotionally valenced or arousing stimuli (Feng et al., 2014; Foti, Hajcak, & 

Dien, 2009; Mendez-Bertolo, Pozo, & Hinojosa, 2011; Rozenkrants, Olofsson, & Polich, 

2008; Schupp, Junghofer, Weike, & Hamm, 2003; Schupp et al., 2006).  
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 In the current protocol, participants with and without MCI performed a delayed-

match-to-sample task with emotionally-valenced stimuli to test the status of emotional 

enhancement effects in the context of working memory. I hypothesized that individuals with 

MCI would show an AD-like working memory effect in the electrophysiological data, and 

that this effect would be exacerbated in stimuli at higher levels of emotional enhancement. 

Methods 

 Results discussed in this chapter are based on the protocols previously outlined in 

Chapter 4 and will not be reproduced here. Please refer to Chapter 4 for details on 

participant characteristics, protocol structure, stimuli characteristics, and electrophysiological 

processing techniques. For the sake of ease of reference, some of these data have been 

reproduced in Table 5.1 along with correlational results involving major behavioral and 

electrophysiological effects subsequently discussed in the Results section. 

Results 

Behavioral Analyses 

 Mixed ANOVAs on behavioral effects revealed an unqualified main effect of group, 

F (1, 28) = 5.34, p = 0.028, ηp
2 = 0.16, such that individuals with MCI were slower than 

individuals without impairment (Table 4.2). 

 Mixed ANOVAs on accuracy revealed a main effect of group, F (1, 28) = 16.38, p < 

0.001, ηp
2 = 0.37, such that individuals with MCI were less accurate than individuals without 

impairment, and an Emotion × Working Memory interaction, F (1, 28) = 4.41, p = 0.047, 

ηp
2 = 0.14, and. The interaction resulted from a larger accuracy difference between working 
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memory conditions for high arousal negative stimuli than for low arousal positive stimuli 

(2.5% vs. 0.1%). Other effects were non-significant. 
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Table 5.1: Neuropsychological summary for cohort of experiments discussed in Chapters 4 and 5. NC = normal older control, MCI = amnestic mild cognitive impairment, AD = Alzheimer’s 

disease; N = number of participants, Females = number of female participants, Age = age of participant in years, Education = formal education of participants in years; MMSE = mini-

mental status examination, LOGIMEMI = Logical Memory Story A, Immediate Recall, LOGIMEMII = Logical Memory Story A, Delayed Recall, DIGIF = Digit Span Forward, 

DIGIFLEN = Digit Span Forward Length, DIGIB = Digit Span Backward, DIGIBLEN = Digit Span Backward Length, ANIMALS = Category Fluency (Animals), VEG = 

Category Fluency (Vegetables), TRAILA = Trailmaking A, TRAILB = Trailmaking B, DSYM = Digit Symbol, BOSTON = Boston Naming Task, GDS15 = Geriatric Depression 

Scale, short-form; df, F/χ2, p, and ρ indicate statistical summaries for the omnibus tests of group differences for each column. Welch’s robust test of means was used for measures showing 

heterogeneity of variance. Variance displayed is the standard error of the mean (SEM) for each group. Because behavioral and electrophysiological repetition effects were empirically associated with 

interactions of clinical group, correlations depicted compare within-dyad differences in neuropsychological test scores with within-dyad differences in individual repetition effects. To reduce the impact 

of differential violations of normality assumptions, spearman’s ρ was used to assess correlations of each neuropsychological test with the behavioral and primary electrophysiological repetition effect 

in each experiment. For all neuropsychological tests except for TRAILA, TRAILB, and the GDS15, a larger score indicates better performance, whereas the opposite is true for TRIALA/B 

and the GDS15. Hence, the signs of correlations of TRAILA/B and GDS15 have been reversed in this chart for ease of interpretation. Positive ρ values indicate that large differences in the 

neuropsychological status of individuals in a dyad were related to large differences in the size of the relevant repetition effect; negative ρ values indicate that large differences in the neuropsychological 

status of individuals in a dyad were related to small differences in the size of the relevant repetition effect. Because missingness was relatively rare in this dataset, the expectation-maximization 

(EM) algorithm was used to impute missing variables using existing behavioral and neuropsychological data where actionable. Two individuals (one MCI, one NC) did not participate in 

neuropsychological testing, so they were excluded from that process and from these analyses. 

 N Females Age Education MMSE LOGIMEMI LOGIMEMII DIGIF DIGIFLEN DIGIB DIGIBLEN ANIMALS VEG TRAILA TRAILB DSYM BOSTON 
GDS 

15 

NC 16 9 76.7 ± 1.4 16.7 ± 0.7 
28.8 ± 

0.3 
14.1 ± 1.0 12.7 ± 1.1 

8.0 ± 

0.7 
6.3 ± 0.3 

6.1 ± 

0.6 
4.7 ± 0.3 19.6 ± 1.2 14.8 ± 0.9 37.5 ± 3.0 82.3 ± 5.5 

40.9 ± 

2.6 
27.0 ± 1.6 

1.0 ± 

0.4 

MCI 16 7 77.2 ± 1.5 17.1 ± 0.9 
26.2 ± 

0.7 
7.4 ± 0.8 6.4 ± 1.0 

8.7 ± 

0.5 
6.9 ± 0.2 

5.9 ± 

0.5 
4.6 ± 0.2 13.6 ± 1.5 9.1 ± 0.8 54.4 ± 6.5 181.2 ± 21.9 

32.9 ± 

4.1 
23.6 ± 1.1 

2.0 ± 

0.9 

df 1 1, 30 1, 30 1, 18.3 1, 28 1, 28 1, 28 1, 28 1, 28 1, 28 1, 28 1, 28 1, 20.6 1, 17.0 1, 28 1, 28 1, 28 

F/χ2 0.5 0.06 0.14 7.76 20.98 20.75 0.94 2.39 0.03 0.10 8.75 18.53 3.45 11.80 0.0003 5.94 2.66 

p 0.72 0.81 0.71 0.01 < 0.001 < 0.001 0.34 0.13 0.87 0.76 0.006 < 0.001 0.08 0.003 0.99 0.02 0.11 

Correlation: 

Behavioral Working Memory 

Group Difference 

ρ .209 -.018 -.302 -.040 -.003 .097 -.025 .326 .434 .269 .288 .621 .209 -.180 

p .436 .948 .256 .883 .991 .720 .926 .218 .093 .313 .279 .010** .437 .505 

Correlation: 

P600 Working Memory 

Group Difference 

ρ -.248 -.157 .085 .289 .225 .081 .249 .283 .405 .215 .074 -.053 .125 -.284 

p .355 .561 .753 .277 .403 .765 .353 .287 .120 .424 .787 .846 .644 .286 
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Figure 5.1: Working memory difference waves for LAP and HAN stimuli. Averaged ERPs for persons without impairment 
(NC) and persons with MCI (MCI) for low arousal positive stimuli (A) and high arousal negative stimuli (B). Differences 
between groups appeared most obvious for high arousal negative stimuli and appeared to be mostly confined to the later 
ERP time-window. 

Conventionally-Averaged Waveform and Temporal Principal Components Analysis Solution 

 In general, the experiment produced ERPs with normative characteristics, including 

prominent P3 and late positive components. Please refer to Chapter 4 for additional details 

about these materials (Figure 4.4). 

 To test the primary hypothesis that working memory and emotional enhancement 

effects would show an idiosyncratic signature in MCI, I also produced difference waves of 

working memory effects (Match - Nonmatch) for LAP and HAN stimuli for each clinical 
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group (Figure 5.1). For LAP stimuli, despite some potentially increased variability in late 

ERP effect onset in persons with MCI, overall differences between groups were relatively 

small, especially when taking into account the amount of noise present in the baseline. 

However, for HAN stimuli, working memory differences between groups were salient in the 

later ERP components. Because the individual components primarily responsible for this 

contrast were not clear, temporal principal components analysis (PCA) was performed to 

discriminate discrete components. Refer to the Appendix for details of the PCA solution 

(Table A1). 

A Priori Analysis 

 The P600 was associated with a significant Group × Emotion × Match three-way 

interaction, TWJt/c (1.0,23.3) = 8.95, p = 0.011, resulting from an Emotion × Match 

interaction for individuals with MCI,  TWJt/c (1.0,15.0) = 7.54, p = 0.027, but not for 

individuals without impairment. In individuals without impairment, matching stimuli were 

associated with a larger P600 than were nonmatching stimuli regardless of emotional content 

of stimuli, TWJt/c (1.0,15.0) = 18.39, p = 0.0032 , but in individuals with MCI, this pattern 

was present for positive stimuli, TWJt/c (1.0,15.0) = 10.41, p = 0.0079 , but it was absent for 

negative stimuli,  TWJt/c (1.0,15.0) = 1.26, p = 0.28, and the direction of this effect trended in 

the opposite direction for negative stimuli in this group (Figure 5.2). 

Post-Hoc Electrophysiological Analyses 

 The frontal N400 component was associated with a main effect of emotion, 

TWJt/c(1.0,30.0)=10.17, p=0.0059, such that the component was larger for negative stimuli, 

and a main effect of repetition, TWJt/c(1.0,22.3)=7.05, p=0.010, such that the component 
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was more negative upon repetition. Other effects were non-significant after Bonferroni 

correction. 

 

Figure 5.2: Summary of the group differences at the P600 as difference waves. Each line depicts the difference in P600 
activity between matching and non-matching stimuli for stimuli that were either positive (purple) or negative (tan). 
Individuals without impairment (A) and individuals with MCI (B) showed similar brain responses for positive stimuli, but 
very different responses for negative stimuli. Data have been graphed at a frontal (Fz) and posterior (Pz) electrode in the 
first and second rows, respectively, to provide a general sense of differences in this effect at frontal and posterior sites. 

Integrated Analyses 

 Individual neuropsychological data were not significantly correlated with behavioral 

working memory reaction time effects or with the electrophysiological working memory 

effects at the P600 after accounting for multiple comparisons (Table 5.1, bottom rows). 

Additionally, behavioral working memory effects were not significantly correlated with the 

corresponding electrophysiological P600 working memory effects. 
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Discussion 

 I found that persons with MCI showed AD-like ERPs when performing working 

memory with high arousal negative (HAN) emotional stimuli, but showed ERPs similar to 

persons without impairment for low arousal positive (LAP) stimuli. Persons with MCI were 

also slower and less accurate than persons without impairment. These findings suggest that 

HAN stimuli, and, by extension, HAN environments, exacerbate the effects of AD on 

working memory processing. 

 When exposed to LAP stimuli, participants with MCI showed working memory 

processing patterns similar to those of persons without impairment. While I did hypothesis 

that such images would evoke a processing profile more similar to those of younger adults, I 

would not anticipate that persons with MCI would show a profile more similar to that of 

persons with NC than even for simple line-drawing images without appreciable hedonic 

valence or arousal (Broster et al., 2011). This may suggest that, rather than merely being 

associated with a milder degree of dysregulation, LAP stimuli may normalize working 

memory processing in persons with MCI even for complex stimuli. 

 In other words, these findings support the theory that stressful circumstances disrupt 

the normal effects of emotional enhancement on working memory, but stop short of 

suggesting that emotional enhancement effects disrupt cognition in the context of MCI in 

general. Instead, based on the contrast of the current results with similar studies that used 

simpler stimuli that were non-emotional, the current results suggest that LAP environments 

maintain the ability to facilitate normal working memory processing in persons with MCI. By 

extension, LAP environments likely also maintain the ability to facilitate normal processing 

in aspects of cognition subserved by working memory. Future work should evaluate the 
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extent to which LAP environments or stimuli have beneficial effects in contexts beyond 

working memory to confirm this possibility. 

 The current results may support a neural basis for recent investigations of the impact 

of mindfulness training in persons with cognitive change due to AD (Larouche, Hudon, & 

Goulet, 2015; Quintana Hernandez et al., 2014; Quintana Hernandez et al., 2015; van Boxtel 

& Speckens, 2014; Wells et al., 2013). Specifically, therapeutic effects of mindfulness may be 

attributable in part to the generation of a mental status relatively similar to that evoked by 

the low arousal positive stimuli utilized in the current experiment. 

 In this study, stimuli were selected along a bimodal, unidimensional hedonic valence-

arousal axis due to data suggesting that these features became more and more closely 

correlated over the course of aging. Consequently, I cannot differentiate effects of negative 

hedonic valence and high arousal in the current study. Some have suggested that despite the 

apparent collinearity of hedonic valence and arousal judgments by older adults, physiological 

effects of these dimensions remain distinct (Gavazzeni, Wiens, & Fischer, 2008). 

Consequently, I suggest that follow-up research might attempt to disentangle the influence 

of the arousal and hedonic valence dimensions of stimuli on the presence of the AD-like 

cognitive signature replicated in the current study (Broster et al., 2011). In our opinion, given 

the effects of arousal on neural substrates subserving attention, the arousal dimension of the 

stimuli may have been the primary driver of the effect observed (Borg et al., 2011; Garcia-

Rodriguez, Vincent, Casares-Guillen, Ellgring, & Frank, 2012). However, because the 

physiological or cognitive effects of differences in subjective hedonic valence relative to 

neutral stimuli are not necessarily rectilinear, empirical data are necessary to confirm this 

inference. 
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Some studies of ERPs evoked by emotional stimuli have reported emotional effects at 

latencies as early as the P1, which would be an earlier latency than the latencies found in the 

current study (Foti et al., 2009). However, such studies differed in design by the inclusion of 

neutral stimuli, and it was typically only in contrasts with non-emotional, neutral stimuli that 

the earliest latency emotional effects were observed, though some later latency effects were 

similarly constrained to contrasts between emotional and non-emotionally stimuli (Foti et al., 

2009; Schupp et al., 2003). In this experiment, such stimuli were excluded because of 

perceived poor face validity among stimuli rated neutrally on both hedonic valence and 

arousal, and hedonic valence and arousal were not treated dimensionally because of evidence 

that those factors were collinear in older adults and persons with MCI. However, since other 

physiological correlates of the dimensional independence of hedonic valence and arousal 

appear intact despite correlation in the self-reported ratings of emotional images, ERPs 

associated with hedonic valence and arousal may likewise remain independent. Future 

studies should test this possibility as a way to assess the neural mechanisms of apparent 

burgeoning collinearity between these factors (Porto et al., 2011). 

 In the current study, the working memory effects of interest manifested primarily at 

a later component called the P600, but in a similar study that used non-emotional effects, the 

effect occurred somewhat earlier, during the classical P300 (Broster et al., 2011). Multiple 

differences between the two studies could account for this discrepancy. First, the use of 

emotional stimuli classically evokes a prominent late component called the late positive 

potential (LPP), which is absent or subtle in experiments without emotional effects. 

Therefore, differences in stimulus characteristics could account for the discrepancy. Second, 

the current study used PCA to disentangle overlapping components, but the previous study 
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used a conventional analysis approach. The PCA approach may have identified the true 

source of the apparent variance in the working memory effect more accurately. 

 ERPs associated with working memory were not correlated with neuropsychological 

or behavioral outcomes in the current study. This finding replicates previous findings that 

the traditional correlation between particular later ERP components and behavioral 

outcomes such as reaction time breaks down when coupled with cognitive tasks that engage 

multiple memory systems (Kutas et al., 1977; McCarthy & Donchin, 1981). Consistent with 

this interpretation, a previous study using the current cohort that did not engage working 

memory systems evoked ERPs that were associated with significant correlations with both 

neuropsychological measures and behavioral outcomes (Chapter 4). 

 The post-hoc finding that the N400 was associated with more negative values for 

HAN stimuli replicates some similar findings in the affective priming literature (Zhang et al., 

2006). N400 effects are classically evoked by semantic violations in the context of language-

based semantic priming paradigms, but have also been linked to other cognitive domains 

that researchers have analogized to language semantics, especially processes that denote 

violation of systematic rules, including phenomena that evoke moral disgust (Featherstone, 

Morrison, Waterman, & MacGregor, 2013; James, Cereghetti, Roullet Tribes, & Oechslin, 

2015; Koelsch, Gunter, Wittfoth, & Sammler, 2005; Luo et al., 2013). As such, the larger 

N400 identified in the current study may represent a complex evaluation of inexcusable 

moral circumstances depicted in a HAN stimulus rather than a mere categorization of the 

stimulus on the dimensions of arousal and hedonic valence. This possibility may help 

contextualize why repetition was associated with larger N400 amplitudes rather than the 

smaller N400 amplitudes that generally accompany repetition of N400-relevant semantic 
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violations. Whereas repeating a semantic violation may normalize it, reducing the perceived 

magnitude of the violation and the accompanying N400 magnitude, the repetition of 

circumstances that promote moral outrage may rouse increased scrutiny. Future studies 

could attempt to modulate the sense of moral outrage evoked by some HAN stimuli while 

controlling for subjective arousal and hedonic valence to assess the true determinant of 

N400 magnitude in such stimuli. 

 Participants in this experiment were screened for depressive symptoms, and 

individuals with current depressive symptoms were not enrolled in the study. Because the 

rate of depression in the general population with cognitive change due to Alzheimer’s 

disease is high and some evidence suggests that individuals with depression or remitted 

depression show a visual attention bias toward negative stimuli, this may suggest that the 

current results may be limited in the extent to which they are externally valid to the patient 

population with cognitive change due to Alzheimer’s disease (Chi et al., 2015; Drijgers, 

Verhey, Leentjens, Kohler, & Aalten, 2011; Korczyn & Halperin, 2009). Future studies could 

investigate any moderating effects of individual depressive states on the current results. 

 This experiment excluded individuals taking certain categories of psychoactive drugs, 

but individuals with mild cognitive impairment were uniformly taking donepezil or 

rivastigmine as part of their regular medical regimen as treatment for the changes to their 

memory and thinking (Kumar et al., 2015). These medications have known effects on ERP 

waveforms, so a subset of group differences identified in this study could be attributable to 

such differences (Guillem et al., 2006; Reeves et al., 2002). Because the differences in ERPs 

in this experiment were associated with interactions between experimental conditions and 

groups, the relevance of this issue to the main findings of this manuscript is limited. 
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However, care should be exercised in the interpretation of apparent simple group differences 

in the conventionally-averaged data. 

 I report evidence that individuals with MCI show relatively normal working memory 

processing of low arousal positive stimuli, but they show disordered working memory 

processing of high arousal negative stimuli. I suggest that these findings are relevant to 

ongoing disputes in the literature regarding the status and viability of emotional 

enhancement effects in MCI and AD. Further, I suggest that endeavoring to reduce stressors 

and negative environmental factors may reduce the functional impact of the early stages of 

AD on patients’ lives. 
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Appendix 

 

Table A1: Principal Components Analysis Summary for Event-Related Potential Data. The approximate temporal peak of the temporal components in each 

experiment and, if applicable, the classical ERP component it most resembles have been listed for each experiment included in this dissertation. For each 

experiment, a vertical line separates the components that were retained for a priori or post-hoc analyses from those that were not. Exp 1 = Experiment 1; Exp 

2 = Experiment 2; Exp 3 = Experiment 3; TF = temporal factor; ms = milliseconds. 

 TF1 TF2 TF3 TF4 TF5 TF6 TF7 TF8 TF9 TF10 TF11 TF12 TF13 TF14 TF15 TF16 TF17 TF18 TF19 TF20 TF21 

Exp 1                      

Approximate 
Temporal 
Peak (ms) 

458 272 162 672 354 208 594 94 120 836 794 548 874 -70 138 502 564 736 924 696 242 

Classical 
Approximant 

P3 N2 P2 
LP
C 

P3 P2 P3               

Exp 2                      

Approximate 
Temporal 
Peak (ms) 

800 434 268 314 604 220 
100
0 

142 504 -12 -202           

Classical 
Approximant 

LPP 
N40

0 
P2 P3 

P60
0 

                

Exp 3                      

Approximate 
Temporal 
Peak (ms) 

550 998 328 226 174 440 714 116 142 276 382 980 38 198 -194 738 -90 -58 -62   

Classical 
Approximant 

P60
0 

LPP 
N4
00 

P3 P2                 
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