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ABSTRACT OF THESIS 

USE OF LIDAR-DERIVED TERRAIN AND VEGETATION  
INFORMATION IN A DECIDUOUS FOREST IN KENTUCKY 

The use of Light Detection and Ranging (LiDAR) information is gaining popularity, 
however its use has been limited in deciduous forests. This thesis describes two studies 
using LiDAR data in an Eastern Kentucky deciduous forest. The first study quantifies 
vertical error of LiDAR derived digital elevation models (DEMs) which describe the 
forests terrain. The study uses a new method which eliminates Global Positioning 
System (GPS) error. The study found that slope and slope variability both significantly 
affect DEM error and should be taken in to account when using LiDAR derived DEMs. 
The second study uses LiDAR derived forest vegetation and terrain metrics to predict 
terrestrial Plethodontid salamander abundance across the forest. This study used night 
time visual encounter surveys coupled with zero-inflation modeling to predict 
salamander abundance based on environmental covariates. We focused on two 
salamander species, Plethodon glutinosus and Plethodon kentucki. Our methods 
produced two different best fit models for the two species. Plethodon glutinosus
included vegetation height standard deviation and water flow accumulation covariates,
while Plethodon kentucki included only canopy cover as a covariate. These methods are 
applicable to many different species and can be very useful for focusing management 
efforts and understanding species distributions across the landscape. 

KEYWORDS: Light Detection and Ranging, Digital Elevation Model, Salamander, Zero-
inflated model, Visual Encounter Survey 
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Chapter 1: Background on Light Detection and Ranging and its Use in Forestry 

and Natural Resource Conservation 

Light detection and ranging (LiDAR) technology 

Light detection and ranging (LiDAR) technology has been used since the 1970’s, 

originally developed for terrestrial military purposes and atmospheric particle mapping (Carter 

et al., 2012). However, in the past 15 years, LiDAR has made great advancements and gained 

popularity in the commercial sector (Reutebuch et al., 2005). LiDAR information is collected by 

using a laser range finder to scan surfaces’ position in space. The system is made up of a laser 

emitter, laser receiver, highly accurate timing device and an onboard computer. The LiDAR 

system is able to measure the distance to an object by illuminating a surface with a laser beam 

pulse of near-infrared light. The receiver intercepts reflected photons and a computer 

calculates the distance to the surface based on the time it takes the light to travel there and 

back. Then, given a known position of the LiDAR system, an accurate position of the surface can 

be calculated. The LiDAR system pulses the laser beam at a rate of 10,000 -100,000 pulses per 

second in order to quickly collect many position readings for an object or surface.  The diameter 

of the beam is often between 0.2 m and 1m which allows for some photons to pass behind 

smaller objects and reflect off of further objects. In this way, LiDAR can measure up to 5 point 

positions per beam pulse. The data collected from a LiDAR system can be received either in 

discrete point positions of  surfaces or in a wave form that displays the frequency of photons 

collected by the receiver for the entire duration of time that the beam is moving. It is possible 

to extract more instances of the beam contacting a surface from wave form data because even 
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small fluctuations in photon returns are recorded that might not be interpreted as a discrete 

point position (Reutebuch et al., 2005). 

Airborne LiDAR systems are able to quickly gather information over large areas. To 

maintain accurate measurements in an airborne LiDAR system, dual frequency 2 Hz GPS 

receivers coupled with an inertial measurement unit are used to track the exact location of the 

plane. A laser scanner system capable of 10,000 to 100,000 pulses second-1 is used to calculate 

the distances to measured surfaces (ASPRS LiDAR Committee, 2004). All discrete points 

measured from a single beam pulse are assigned a location based on the single average 

trajectory of the beam. Therefore wider beams will result in less accurate measurements, while 

beam width is larger the further the plane is from the ground (Reutebuch et al., 2005). Typically 

Airborne LiDAR can yield vertical root mean squared errors of 10-15 cm and 15-100 horizontal 

root mean squared errors (Reutebuch et al. 2003).  

The usefulness of LiDAR data is also dependent on the density and evenness of spacing 

of the point data. The density of points is affected by the height of the plain above the ground 

and the frequency of beam pulses the LiDAR system emits. For a given system pulse frequency, 

point density can be increased by flying lower to the ground. However, the lower the plane flies 

to the ground, a plane will have to make a greater number of passes over an area to cover it 

entirely because the reach of the beam will be reduced (Reutebuch et al., 2005). There may 

also be legal restrictions on how low an airplane can fly in an area. There are different scanning 

systems that can pulse their beams at different frequencies and in different patterns, higher 
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frequency systems generally costing more. Thus there is a trade off in cost between flying 

height affecting the cost of collecting the data and the initial cost of selecting a transmitter. 

The different types of beam patterns have different costs and benefits associated with 

them as well. The ideal beam pattern would be evenly homogeneously spaced points and 

beams aimed perpendicular to the ground. However this is practically impossible to achieve. 

The most common system uses a single emitter that adjusts the angle of its beam to cause a 

zig-zag pattern across the ground. This pattern is not homogenous, points will be closer to each 

other at the edge of the reach of the scanner and the edge beam pulses will have a large scan 

angle. The scan angle is the deviation from a true perpendicular line to the ground, meaning the 

larger the scan angle the further the beam has to travel to hit the ground. This could lead to 

more error by allowing the beam width to expand and allowing the beam a greater chance to 

be intercepted by objects before it reaches the ground.  To counter this, pilots will fly the plane 

so that the flight paths overlap by approximately 20% (Reutebuch et al., 2005). Then a portion 

of the points in those overlapping edges are removed to create a more homogeneous pattern. 

(Lefsky et al, 2002). There are also oscillating beam scanners that scan a circular beam pattern, 

so the points are more evenly spaced than a zig-zag pattern but the scan angle is still an issue. 

There are also sensors that shoot multiple beams at the same time, which are parallel to one 

another. This type of scanner can have high pulse frequencies and avoids the high scan angle 

problem, but the flight path does not have a wide reach so a plane needs to make more passes 

to cover the same area and the initial cost of having more scanners is higher than the other 

options. In general a more dense LiDAR data distribution will cost much more than less dense 

data (Lefsky et al, 2002). 
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LiDAR data and primary processing 

LiDAR systems typically record many different attributes for each LiDAR point datum. 

They include: XYZ coordinates, point ID, intensity, return number, number of returns per pulse, 

classification code, GPS time, scan angle, scan direction flags, and whether the point is on the 

edge of the flight line. Some more recent scanners can even record RGB color reflectance. 

Originally the data was stored in the ASCII text format, however now with higher point density 

and larger operations the industry has moved to the Log ASCII Standard (LAS) file format which 

can store the same information in a smaller file (ESRI, 2014). An LAS file is a binary file that 

contains header information followed by individual point information which can also be 

compressed in an even smaller LAZ file format. The most commonly used attributes are the XYZ 

coordinates, intensity, and return number (the order that the points were assigned from a 

single beam pulse). In the wave form data the first peak of photons returned in a single beam 

pulse would be considered the first return. This would be the highest object that a beam hit and 

would be the first photons to return to the receiver. The number of returns per beam can be 

affected by the width of the beam and the size of the objects the photons are hitting. The scan 

angle can be used in the point filtering process to improve the overall accuracy and 

homogeneity of the data collected (Sangster, 2002). 

After the initial information is collected the data is processed by filtering out redundant 

point from overlapping flight paths, and points considered to be noise. Noise points can be 

caused by ambient reflected photons or photons reflected off of unintended objects such as 

flying birds, insects, or low dense clouds. Noise points are often either located lower than 

previously known terrain or much higher than other points. It is important to note that higher 
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density LiDAR data needs much more computing space and power to store, and more 

processing than low density data, so the filtering step is very important to make all other 

processing easier (Sangster, 2002). The data is further processed by classifying each point by 

surface type. The most basic surface types are ground points and non-ground points. However, 

common point classifications include ground, low vegetation, medium vegetation, high 

vegetation, building, water, and noise. 

The points are classified by using either commercial software, e.g, TerraScan, or using 

one’s own software or algorithms. There are a few different traits that ground points are 

assumed to have that aid software developers in identifying ground points. Ground points are 

usually located lowest in the data, so it is common to start by selecting the lowest points in a 

neighborhood window. It is also assumed that the slope between ground points on a surface 

are lower than the slope between other objects. So surfaces that have high slopes compared to 

the general known terrain will often be removed. It is also assumed that bare ground generally 

has few sharp differences in elevation, so those points that deviate greatly in elevation from the 

rest will be removed (Meng et al., 2010). 

There are several procedures that are commonly practiced, often in combination, to 

identify ground points based on the aforementioned traits. The first most basic and most 

common process is to remove outliers, which are points that are either extremely high or 

extremely low. They can come from birds, insects, other airplanes or ambient noise. This is 

done by examining elevation distributions and removing points that deviate greatly from the 

mean (Meng et al., 2010). Another very popular procedure developed by Kraus and Pfeifer 
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(1998) is linear prediction. This method also uses statistical processes to assign weights to 

points based on their position to a rough estimate of the surface between ground and no 

ground points. This process is repeated using points with negative residuals by moving the 

estimated surface closer and closer to the true ground (Liu, 2008). This method is not very 

accurate in areas with steep slopes and high terrain variability because it assumes a relatively 

smooth, flat ground surface. Another method developed by Vosselman, (2000) is based on the 

assumption that ground points will have a relatively low slope in relation to each other. This 

method is most successful at differentiating between ground points and other objects such as 

trees and buildings. This is done by setting a threshold of acceptable slopes within a given 

circular window. The threshold is adjusted based on known terrain slopes, and becomes less 

accurate as terrain slopes increase (Liu, 2008). This method can be improved by adjusting the 

threshold with previously known rough slope and terrain information (Sithole, 2001). Finally a 

progressive morphological filter can be used by converting the LiDAR points to a greyscale 

raster image based on elevation and removing non ground objects based on the difference in 

grey tone in a certain window (Liu, 2008). The progressive aspect comes from modifying the 

procedure using fixed window sizes to use variable window sizes that gradually get larger to 

remove both small objects such as trees and large objects such as building roofs from the 

ground points (Zhang et al., 2003). This method is performed assuming a flat slope, however 

Chen et al. (2007) proposed a similar method that adjusts for terrain slope assuming that 

changes in elevation between the ground and objects will be abrupt but changes in elevation 

due to terrain will be gradual. Once ground points are identified the remaining points can be 



7 

further classified in to groups including low, medium, and high vegetation, buildings, water, and 

noise (ESRI, 2014). 

After points are classified, digital elevation models (DEM), or three–dimensional 

representations of terrain, can be created. The three most common ways to represent a DEM 

are to assign a constant elevation value to pixels in a square grid, use a triangular irregular 

network (TIN) to represent elevation, and displaying changes in elevation with contour lines 

(Liu, 2008). The simplest and most common form is the square grid and we will be referring to 

this form henceforth when discussing DEMs. The value of each cell is assigned by interpolating 

values between neighboring LiDAR points. 

There are several different interpolation methods for creating such a model. The inverse 

distance weighting method assigns a value to a cell by weighting each LiDAR point based on its 

distance to the center of the cell. Therefore points located closer to the center of the cell will be 

more influential on the cell’s value (Anderson et al., 2005). This method assumes even 

distribution of LiDAR points and does not produce accurate results when data is sparse or 

uneven (Childs, 2004). This method also cannot produce values outside the minimum and 

maximum sample point values and is less useful when representing ridges or valleys (Lee, 

2004). The spline method uses a mathematical equation, like a regression, that represents a 

sheet draped over the ground points, passing directly though the points. This method produces 

a smooth portrayal of the surface and is able to produce values outside the minimum and 

maximum point values. This method is best for terrain with valleys and ridges that aren’t 

represented well in the point data (Childs, 2004). The kriging method fits a function to points 
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within a search window based on a spatial correlation of those points. This method can also 

exceed the range of sample values but the surface generated does not necessarily have to pass 

directly through the point data. High density data provides best results for this model, 

producing a less smooth model than spline, and can also be more accurate in rough terrain (Liu, 

2008). Natural Neighbor is another weighted average method similar to IDM but works well 

with clustered and uneven points and very large datasets (Childs, 2004). There is software 

available such as ArcMap that can easily create the different types of DEMs using these varied 

methods. 

DEMs created from LiDAR data are used in city planning, flight planning, transportation, 

agriculture, natural resource conservation and forestry. DEMs can be further manipulated using 

common geographic information system (GIS) software such as ArcMap to estimate slope, 

aspect, shaded relief (hillshade), curvature, water flow accumulation, watershed delineation, 

and many other parameters (ESRI, 2014). There are also many other uses for LiDAR data 

outside of creating DEMS.  LiDAR non-ground vegetation point data are a very useful in the 

forestry and natural resource fields. The data can be used to estimate tree locations, tree 

density, diameter at breast height (DBH), tree heights, crown widths, canopy cover, individual 

tree species (Kim, 2008), light transmittance, volume, and biomass. The Majority of these 

parameters can be estimated based on a digital surface model (DSM). This model is similar to a 

DEM however while a DEM is a representation of the lowest LiDAR points, a DSM is a 

representation of the highest LiDAR points. In a forested area the tops of trees are usually the 

highest points in a landscape and therefor the DSM represents the elevation of treetops. A DSM 

can be made with similar processes to DEMs while just using either the maximum points in a 
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window or an interpolation of the first returned points. The DSM raster can then be subtracted 

from a DEM raster and the yielding vegetation height model (VHM). The VHM is processed 

further to produce many of the parameters mentioned above (Goerndt, 2011). 

LiDAR-derived individual tree detection 

The majority of individual tree based methods for estimating individual tree locations 

use an algorithm called variable window filtering which uses variable sized search windows to 

find local maximum point clusters. These clusters are assumed to be the peak of the tree crown 

and the width of the search window is assumed to be the crown width. The methods usually 

also use a DEM to calculate tree height ,then use algometric equations based on tree species 

and height to estimate the diameter at breast height, volume, or biomass. This method usually 

requires a very uniform forest structure with coniferous species and a fairly high density LiDAR 

Data. The conical shape of conifer crowns make the local maxima searches more accurate 

(Wannasiri et al, 2013; Popescu, 2007). Koch et al. (2006) uses a crown delineation process that 

starts with a smoothed VHM to avoid over estimating tree density, locating peaks in a similar 

fashion as mentioned above, then from those peeks expands the crown width until slope 

reverses or the crown meets another tree’s crown. Once crowns are delineated crown width 

can easily be extracted and tree height can be estimated by extracting the maximum height 

value within the crown. Then DBH and volume can be estimated using algometric equations 

based on species, with tree height and crown width as variables (Heurich, 2008; Dalponte et al., 

2011). 
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While it is much easier to estimate DBH and volume in uniform coniferous stands a 

study by Wannasiri et al (2013) used two methods to estimate individual tree biomass 

parameters for mangrove trees. The first method was a variable window filter method while 

the second method was an inverse watershed method to find tree peek locations. The inverse 

watershed method is performed similarly to how hydrologists delineate watersheds and locate 

flow outputs. A DSM of the canopy is made and inverted so that the tops of the trees would be 

the lowest points. Then the watersheds are delineated by creating a flow accumulation raster 

where the top of the tree would have the highest flow accumulation and the edges of the 

crown would have the lowest flow accumulation. Then tree height and crown width were used 

to calculate DBH and biomass from algometric equations specific to mangrove trees. This study 

is notable because mangrove trees have round shaped crowns rather than conical shaped 

crown found in conifers, and could be used in other hardwood forests. They found that the 

variable window filter was slightly more accurate when compared with ground measurements. 

Another similar forest measurements study was done by Rahman and Gorte (2008) attempted 

to locate trees without a uniform shape.  They used a combination of inverse watershed 

method and point densities to locate tree centers, assuming that the center of a tree would 

contain the most points in a vertical column. This method is more promising than the variable 

width filter method because it doesn’t base its window size on tree height therefor can be done 

for trees with different crown to tree height relationships and is promising for use in hardwood 

forests. 
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LiDAR-derived stand level information 

Currently assessments of individual trees through use of LiDAR data is most accurately 

performed for homogenous coniferous forests with high density LiDAR data (Koch et, al., 2006). 

However if the data is sparse or the structure of the individual trees are not uniform, then a 

stand level approach that generalizes the data over a larger area is more practical and more 

precise (Popescu, 2007). Bater et al (2009) assessed using LiDAR to quantify standing dead tree 

class distributions in a hemlock forest.  They used a stand based approach with a high 

resolution (0.5m) VHM to calculate point vegetation height mean, maximum standard deviation 

and coefficient of variation for each cell and regressed them to data collected in the field. They 

found that the coefficient of variation was the best predictor variable for vegetation structure 

and used that to extrapolate to the rest of the forest. Vogeler et al (2013) performed a similar 

study quantifying vegetation in another western conifer forest in order to predict a forest 

health indicating bird species’ (Certhia americana) presence. They found that the density of the 

upper canopy was the most predictive variable and were able to adequately predict the 

presence of the brown creeper at monitored sites. 

Other LiDAR applications in natural resources 

LiDAR data is very versatile and has many uses in natural resource fields. LiDAR derived 

DEMs are particularly useful because of their high vertical accuracy in forested areas (Liu, 

2008). DEMs are are also used widely in hydrological studies. Because DEMs are a 3D 

representation of the ground, they can easily be used to predict water movement. Hydrologists 

often need to estimate catchment size and delineate watersheds when managing water 

resources. This previously required going out to the field and using surveying equipment which 
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is time intensive and expensive. Now there are common programs such as ArcGIS that can 

delineate watersheds quickly and accurate solely from a DEM. 

There have been many studies that show that fine resolution of DEM aren’t necessary 

for accurate watershed parameters (Charrier and Li, 2012; Yang et al, 2014). Thus, less 

expensive lower density LiDAR derived DEMs can be used to estimate water parameters and 

have become more cost effective than field measurements. One study showed that low 

vegetation interference in LiDAR ground data caused inaccuracy when delineating watershed 

boundaries with a high resolution DEM (Goulden et al, 2014). Another study demonstrated how 

a DEM can be used to calculate stream outflow points to delineate watersheds when previously 

field hydrometric stations were used to locate outflow points (Lindsay et al, 2008). 

The algorithms behind delineating watershed boundaries involve using a DEM to 

calculate slope and aspect of cells of a raster which are then used to calculate the direction 

water would flow. The result is a raster called a flow accumulation which estimates for each cell 

how many cells above it would theoretically drain water into that cell (Matsunaga at al, 2009). 

This information is useful in hydrology calculations such as calculating stream locations and 

lengths because the cells with the highest flow accumulation value should be located in a 

stream. There have also been studies that show that DEM resolution doesn’t need to be high in 

order to estimate accurate stream locations and lengths. High resolution DEMs have been 

shown to increase then estimated length of the streams (Goulden et al, 2014). This is more 

evidence that less expensive LiDAR data can be adequate in some situations. 
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Information from DEMs can also be used to estimate relative soil moisture and forest 

productivity in an area. Because soil moisture is largely dependent on terrain information such 

as slope, aspect, and curvature, DEMs can be used to model an integrated soil moisture index 

which has many forestry and natural resource applications. Iverson et al (1997) used a 

combination of flow accumulation, curvature and hillshade (an estimation of direct sunlight 

reaching a slope) derived from a DEM combined with USDA soil water holing capacity data to 

estimate an integrated moisture index for their study area.  Then they compare it with known 

site indices of species in the area to make a predictive map of site index and species 

composition. 
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Chapter 2: Quantifying Error in Variously Interpolated DEMs from a Complex 

Deciduous Forest with Varying Slopes and Terrain Features 

Introduction 

Airborne light detection and ranging (LiDAR) data are invaluable for natural resource 

applications due to its quick and accurate data collection over large landscapes. The data 

measure coordinate point positions of objects and terrain by using high frequency laser 

rangefinder technology. LiDAR data are often used to model surface terrain features to create a 

Digital Elevation Model (DEM). LiDAR derived DEMs require vastly less time and effort than 

traditional ground surveying of large landscapes. Another alternative to ground surveying is 

photogrammetry which uses multiple aerial images of a landscape to calculate depth and 

topographic relief. LiDAR is more accurate and cost effective than photogrammetry in areas 

with vegetation cover such and forests, and areas that have low relief and low texture such as 

wetlands and costal dunes (Lefsky et al, 2002). While low density LiDAR data contain accurate 

point data the resulting DEM would also be of low resolution. The use of high point density 

LiDAR data is becoming more popular, as it allows for interpolating higher resolution DEMs. 

Studies have shown that the resolution of a DEM is a very important factor when calculating 

terrain derivatives such as slope and curvature (Kienzle, 2004) and using higher resolution 

DEMs when delineating flood boundaries result in more accurate predictions of flooding 

hazards (Alho et al., 2009). Understanding how LiDAR derived DEM accuracy is affected by 

different landscape conditions is an important area of research. 

There are many different factors to take in to account when evaluating the accuracy of 

LiDAR derived DEMS. The characteristics of the measuring instruments and flight path of the 
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plane can affect the accuracy of the raw data points (Liu, 2008; Stereńczak, and Kozak, 2011) 

while the point filtering (Sangster, 2002) and interpolation methods (Kraus and Pfeifer, 1998; 

Liu, 2008; Meng et al., 2010; Sithole, 2001) need to be chosen according the quality of LiDAR 

data and characteristics of the landscape it is describing. It is commonly recognized that 

vegetation low to ground decreases LiDAR accuracy by increasing the uncertainty that light 

reflecting from the ground actually hits the ground (Stereńczak, and Kozak, 2011). However, 

canopy cover and forest structure can also affect the density and distribution of points 

representing the ground. Hyyppa et al. (2005) agree that accuracy of DEMs vary as a function of 

slope, undergrowth and forest cover. They also found that error increases as measurements 

become closer to the trunk of a tree due to fewer LiDAR data points reaching the ground. DEM 

accuracy has shown to be very high in coniferous forest, while slightly decreasing as forest 

cover increases (Reutebuch et al., 2003) and accuracy of DEMs is highest under flat open 

canopy areas with smooth surfaces (Clark et al., 2004). While many studies quantify error in 

either coniferous or low vegetation or leaf off conditions (Gould et al., 2013; Hodgson and 

Bresnahan,2004; Spaete et al.,2011) or low to gently sloped areas (Hodgson et al., 2005; Su and 

Bork, 2006; Spaete et al.,2011; ) studies that quantify error in both densely vegetated and 

highly sloped areas are rare. 

Deciduous forest often have dense, complex canopy structures made up of multiple 

species leading to less LiDAR penetration, less accurate DEMs, and slower adoption of LiDAR 

derived DEMs. There has been a lack of research evaluating DEM accuracy in dense forests with 

a complex forest structure and many species (Stereńczak, and Kozak, 2011) specifically with 

respect to differences in slope and slope variability or ruggedness. The Appalachian Mountains 
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of the United States provide an ideal setting to evaluate LiDAR derived DEM accuracy under 

such conditions. This area is not only similar in vegetation structure and topography to a large 

portion of the Eastern United States but also to other understudied areas such as South 

America and East Asia, which could benefit immensely from LiDAR adoption. Quantifying DEM 

accuracy in mountainous deciduous forest is especially important in North America because of 

LiDAR’s increase in commercial use (Lefsky et al., 2002) and the interest in the availability of 

large scale state wide and nationwide LiDAR datasets. (Stoker, J., et al., 2007; Farrell, 2012) In 

the Appalachian Mountains, high resolution DEMs could have many important uses in forest 

operations, mining operations, and wildlife conservation. Understanding how error varies 

across different topography in already error prone landscapes is essential before wide scale 

DEM adoption. 

The objectives of this study were 1) quantify DEM error based on slope and ruggedness 

in a complex deciduous forest, 2) determine whether LiDAR dataset density or interpolation 

method have an effect on error , and 3) evaluate a new method for quantifying DEM error in 

areas where global positioning system (GPS) accessibility is limited. We hypothesize that DEM 

error will increase with increasing slope and ruggedness, and that that high density LiDAR will 

provide the least error. Traditional methods for quantifying DEM vertical accuracy involves 

finding the difference between check points measured by an assumed higher accuracy method 

such as a differential GPS (Aguilar and Mills, 2008). We constructed a study designed to remove 

the vertical error associated with GPS devices that could be used in areas that provide poor GPS 

signal, which also provides error values for a whole topographic surface rather than point error 

measurements. The plot centers are identified within the LiDAR data by their relation to known 
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nearby terrain features to compare the information for the exact same location in the DEM. 

Then field data was collected for differences between elevations measurements from the 

center point to points taken around the plot center and compared to DEM values to provide an 

error associated with that whole surface. This eliminates the error of GPSs having uncertain 

vertical accuracy and provides a more useful metric than single point comparisons in ruggedly 

sloped areas. The setting for this study is University of Kentucky’s Robinson Forest, a mixed 

mesophytic deciduous forest with variable slopes from 2-80 percent located in the Cumberland 

Plateau region of Kentucky on the southern extent of the Appalachian Mountains. This forest is 

very representative of the complex forest structure and topography of the rest of the 

Cumberland Plateau and recent high-density and low-density LiDAR data has been collected for 

this area presenting a unique opportunity to improve the understanding of DEM accuracy in an 

understudied landscape. 

Methods 

Study Area 

Research was conducted at The University of Kentucky’s Robinson Forest (Lat. 37.4611, 

Long. -83.1555), located in the rugged eastern section of the Cumberland Plateau region of 

southeastern Kentucky in Breathitt, Perry and Knott counties (Figure 1).  Due to access 

limitations, we restricted the study area to the Clemons Fork and Lewis Fork watersheds within 

Robinson Forest.  Terrain across the study area and the entire Robinson Forest is characterized 

by a branching drainage pattern, creating narrow ridges with sandstone and siltstone rock 

formations, curving valleys and benched slopes.  The slopes are dissected with many 

intermittent streams (Carpenter and Rumsey, 1976) and are moderately steep ranging from 10 



18 

to over 100%, predominately northwest and southeast aspects, and elevation ranging from 252 

to 503 meters above sea level.  The bedrock transitions from sandstone to siltstone, shale and 

coal heading downslope (Smalley, 1986), with predominant soil types being Cloverlick-Shelocta-

Kimper, Matewan-Marrowbone-Latham, Shelocta-Gilpin-Hazleton which are all deep well 

drained rocky soils silt-loams (Hayes, 1998).  The climate of this area is temperate humid-

continental with warm summers and cool winters (Overstreet, 1984), with average annual 

temperature of 12.8 °C, average annual precipitation is 117.5 cm, and average monthly 

precipitation is 9.76 cm (Cherry 2006).  Vegetation is comprised of a diverse contiguous mixed 

mesophytic forest made up of approximately 80 tree species with northern red oak (Quercus 

rubra), white oak (Quercus alba), yellow-poplar (Liriodendron tulipifera), American beech 

(Fagus grandifolia), eastern hemlock (Tsuga canadensis) and sugar maple (Acer saccharum) as 

dominant and codominant species, while understory species include eastern redbud (Cercis 

canadensis), flowering dogwood (Cornus florida), spicebush (Lindera benzoin), pawpaw 

(Asimina triloba), umbrella magnolia (Magnolia tripetala), and bigleaf magnolia (Magnolia 

macrophylla) (Carpenter and Rumsey, 1976 ; Overstreet, 1984).  Average canopy cover across 

Robinson Forest is about 93% with small openings scattered throughout.  Most areas exceed 

97% canopy cover but recently harvested areas have an average cover as low as 63%.  After 

being extensively logged in the 1920’s, most of Robinson Forest is considered second growth 

forest ranging from 80-100 years old, and is protected from commercial logging and mining 

activities that are typical land uses in the region (Overstreet, 1984). 
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LiDAR Datasets 

We used two LiDAR datasets covering the study area, collected with the same LiDAR 

system by the same vendor.  One dataset was low density (~ 1 pt m-2) collected in the spring of 

2013 during leaf-off season for the purpose of acquiring terrain information, as a part of a 

state-wide elevation data acquiring program from the Kentucky Division of Geographic 

Information (KDGI).  The second dataset was high density (~ 40 pt m-2) collected in the summer 

of 2013 during leaf-on season for the purpose of collecting detailed vegetation information and 

ordered by the University of Kentucky’ Department of Forestry (UKDF).  The parameters of the 

LiDAR system and flight for both datasets are presented in Table 2.1.  The vendor processed 

both raw LiDAR datasets using the TerraScan software (Terrasolid Ltd., 2012) to classify LiDAR 

points into ground and non-ground points.  A third dataset was also created by combining both 

low-density and high-density points.  For each of the three LiDAR datasets (low-density, high-

density, and combined), the “Create LAS Dataset” tool in ArcMap 10.2 was used to create a Log 

ASCII Standard (LAS) dataset file.  The LAS dataset was then filtered to include ground points 

only, and the “LAS dataset to Raster” tool in ArcMap was used to create a 1-meter resolution 

DEM using the natural neighbor as a fill void method.  Four DEMs for each dataset were created 

considering different interpolation methods: average, inverse distance weighted, minimum, 

and nearest neighbor. As a result, a total of 12 DEMs covering the study area were created; 

three LiDAR datasets and four interpolation methods. 

Sampling Design 

We expected that LiDAR-derived DEM errors will vary with terrain steepness and 

ruggedness.  As these terrain features are typically calculated for each cell using the elevation 
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values from the eight adjacent cells, the 1-m resolution of the LiDAR-derived DEM is too fine 

and will likely capture micro-terrain variations.  For the purpose of identifying different levels of 

terrain steepness and ruggedness, we calculated the slope raster and resampled it to a coarser 

resolution of 36.6 m (120 ft.) using the average value.  This resolution was selected to provide a 

more meaningful scale for the study area and to match the size of field plots used to collect 

terrain surface information.  The coarse resolution slope raster was used to identify terrain 

steepness across the study area and to create three slope classes (low, medium, and high) 

containing the same relative area (Figure 2.2a, Table 2.2).  Terrain ruggedness at the same 

coarse 36.6 m resolution was calculated as the slope variability of the 1-m slope raster, as used 

by Ruszkiczay-Rudiger et al. (2009) to determine slope heterogeneity, thus ruggedness.  Slope 

variability for each cell in the coarse resolution raster was defined as the range (max slope – 

min slope) of slope values in the 1-m resolution slope raster (Figure 2.2b).  The study area was 

then divided into three slope variability classes (low, medium, and high) with the same relative 

area (Table 2.2).  The slope and slope variability raster layers were then overlaid to identify the 

nine combined slope/ruggedness classes.  Five field plots were randomly located in each 

combined classes resulting in a total of 45 field plots (Figure 2.3). 

Field Plot Data Collection 

The general location of the 45 field plots were determined using a hand-help GPS unit. 

Triangulation from easily identifiable features in both the LiDAR-derived raster layers and on 

the field were used to refine field plot locations with sub-meter accuracy.  These features 

consisted of trees, rock formations, road intersection, and other road features (i.e., cut and fill 

slope areas, ditch relief culverts, and bends). Once the location of a given plot was identified, 



21 

eight transects extending 18.3 m (60 ft.) from plot center were established covering 360° at 45° 

intervals (four cardinal and four ordinal directions).  At six points along each transect, every 

3.05 m (10 ft) of horizontal distance from plot center, we measured elevation change (vertical 

distance) between the points and the plot center (Figure 2.4).  Transect directions and elevation 

change of points along transects were measured using an electronic compass (MapStar 

Compass Module II, Laser Technology Inc.) and a sighted laser range finder (Impulse 200 LR, , 

Laser Technology Inc.).  Elevation change for the 48 points (8 transect × 6 points) were 

measured by mounting the electronic compass and laser range finder on a tripod at the plot 

center, and moving a target mounted on a pole at the same height above the ground as the 

range finder to each points.  A given point location was deemed acceptable when horizontal 

distance from the laser range finder and the target was within 0.06 m and azimuth within 1⁰ 

Data Analysis 

The x- and y-coordinates of the 2,160 points (45 plots × 48 points) were obtained based 

on the coordinates of the corresponding plot center, and the horizontal distance from plot 

center and azimuth of the corresponding transect.  For a given point, the LiDAR-derived DEM 

elevation change was obtained from the elevation values of the DEM cells containing the point 

location and the plot center location.  Elevation changes from the field plots were considered 

true values and LiDAR-derived elevation errors were obtained by calculating the absolute 

difference between field plot elevation changes from DEM-derived elevation changes.  The 

total 2,160 elevation errors were arranged by plot number, and combination of slope and 

ruggedness class.  Elevation changes were obtained from the 12 different DEMs and mean 
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elevation errors were calculated by slope and ruggedness class to examine the effect of the 

LiDAR dataset and interpolation method. 

Additionally, we expected that elevation errors would increase with horizontal distance 

from plot center due to field difficulties to correctly measure distances (horizontal and vertical) 

using laser range finder caused by abundant understory vegetation.  Therefore, we formally 

tested for significant differences in the mean elevation error among slope and ruggedness 

categories as well as distance from plot center using a 3-way ANOVA in SAS 9.3 (Statistical 

Analysis Software, SAS Institute, Cary, NC, USA).  

Results 

When combining DEM-derived elevation changes from all three LiDAR datasets and four 

interpolation methods, the resulting mean elevation error was about 73.6 cm (Table 2.3).  

Mean elevation errors among LiDAR datasets were similar within 1.5 cm, while the high-density 

and combined datasets providing the lowest and highest errors, 72.7 cm and 74.1 cm 

respectively.  No significant differences were found among LiDAR datasets, as evidence by 95% 

confidence intervals (Figure 2.5).  When comparing interpolation methods, mean elevation 

errors were even more similar with values ranging from 73.4 – 73.8 cm (Figure 2.5). 

As expected mean elevation errors increased with slope and ruggedness level (Figure 

2.6).  Mean elevation errors ranged between 42.0 – 101.2 cm from low to high slope classes, 

and between 63.2 – 92.7 cm from low to high ruggedness classes.  Although mean elevation 

errors among slope and ruggedness classes are significantly different, due to non-overlapping 

95% confidence intervals, slope seems to have a larger effect as evidenced by the larger 

variation.  Even more variability in mean elevation errors can be observed when considering 
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individual combinations of slope and ruggedness, ranging from 23.2 – 145.5 cm for the low 

slope and low ruggedness and high slope and high ruggedness, respectively (Figure 2.7).  Within 

the high ruggedness class, there is a clear increase in mean elevation error with increasing slope 

with all classes being significantly different.  Although in the other two ruggedness classes the 

mean elevation errors generally increases with slope, there is a less clear pattern.  Within the 

medium ruggedness class, the high slope class has the highest error which is significantly 

different that the medium and low slope classes.  Within the low ruggedness class, the low 

slope class has a significantly different and lowest mean elevation error. 

When averaging elevation errors by distance from the plot center, there was a clear 

increase in error as distance from the plot center increased. The lowest mean elevation error of 

34 cm was found for the points 3.0 m from the plot center and increased almost linearly to the 

highest of 111.6 cm for measurements taken at points 18.3 m from plot center (Figure 2.8).  A 

three-way ANOVA that combined elevation errors from all LiDAR datasets and interpolation 

methods corroborate previous results.  Differences of mean elevation errors among slope 

classes (Pr F<0.0001), ruggedness classes (Pr F < 0.0001), and distance from plot center (Pr F 

<0.0001) were all significantly different.  We also found a significant interaction between slope 

and ruggedness (Pr F <0.0001).  There was no significant interactions between ruggedness and 

distance, slope and distance, or ruggedness and slope and distance (Pr F >0.05).  In addition, 

slope classes had the highest F-Value of three effects tested, which is further evidence that 

slope has a greater impact on elevation error.  Ruggedness and distance had similar effects, but 

the effect of ruggedness was slightly larger. 
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Seeing as error increased as distance from the plot center increased we ran the analysis 

again considering only the 3.0 m from the plot center field measurements. The overall mean 

elevation error decreased to 34.1 cm, which is about 46% of the mean using all measurements. 

Again, there were no significant differences between LiDAR dataset and interpolation method 

(Figure 2.9).  The same increasing mean elevation error with slope level was observed, with 

averages by slope class being significantly different and ranging from 19.3 to 44.5 cm (Figure 

2.10).  Although the same pattern can be observed for ruggedness level, the mean elevation 

errors of the medium and high classes are 3.0 cm apart and significantly different, and the 

mean elevations error for the low ruggedness class is significantly lower than the medium and 

high classes (Figure 10).  When examining mean elevation errors by slope and ruggedness 

combinations we also observed larger variations of 14.5 cm for the low ruggedness /low slope 

class to 56.2 cm for the high ruggedness /medium slope class (Figure 2.11).  Within the high 

ruggedness class, the mean elevation error for the high slope class was slightly smaller than 

that for the medium slope class (50.6 and 52.6 cm) but they were statistically similar, as 

evidenced by the overlapping 95% confidence intervals there were no significant differences. 

The mean elevation error for the low slope class was much smaller, 17.7 cm and statistically 

different.  Mean elevation error also increased with increasing slope level within the medium 

ruggedness class, with values ranging from 25.6 – 56.2 cm.  Within the low ruggedness class, 

the mean elevation error is lowest for the low slope class, which significantly different than the 

medium and high classes.  Results from a two-way ANOVA using only measurements taken 3.0 

m from plot center also showed significant slope (p<0.0001) and ruggedness effects (p<0.0001) 

on the mean elevation error (Table 2.5).  There is also a significant interaction between slope 
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and ruggedness (p<0.0001) and F-values also show that slope is the most significant source of 

error. 

Discussion 

In this study, we used a different approach to quantify elevation error of LiDAR-derived 

DEMs in areas where GPS readings are not reliable due to limited signals from terrain steepness 

and a dense forest canopy.  Thus, instead of determining the elevation ground points using GPS 

units, we determined plot center locations from reference features within LiDAR data and 

quantified relative elevation changes from plot center ground points to multiple adjacent points 

within 18.3 m horizontal distance.  This approach was more appropriate to assess the ability of 

LiDAR-derived DEMs to accurately represent terrain surfaces.  The overall mean elevation error 

from the surface terrain represented by the LiDAR-derived DEMs was about 74 cm, which is 

much higher than the standard 15 cm accuracy quoted for most LiDAR systems (Baltsavias, 

1999).  This is likely because standard accuracies are reported for ideal conditions with flat 

ground and no vegetation cover. 

Although our overall mean elevation error is within values reported in the literature, 0.1 

– 2.7 m (Edson and Wing, 2015), it is higher than errors provided by several studies.  A likely

reason is the concentric design of points within each field plot used to collect elevation change. 

The horizontal threshold used to establish point locations (± °1 azimuth and ± 0.06 m of 

horizontal distance) inherently increases horizontal error with distance from plot center, and in 

steep terrain a slight horizontal error can create a significant elevation error (Flood, 2004).  This 

elevation error is increased in rugged terrain with numerous rock formations.  What is more, 

the further away from plot center the more likely the laser range finder is to intercept small 
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vegetation (i.e., stray branches, twigs, leaves, or vines) which could interfere with the reported 

vertical distances.  However, when considering measurement taken 3.0 m from plot center, 

mean elevation errors are comparable with those reported by other studies(Edson and Wing, 

2015).  

Our results showed that both slope and ruggedness had a significant effect on the mean 

elevation error.  This is likely due to the misclassification of LiDAR points into ground and non-

ground (vegetation) points.  Classification algorithms assume that the lowest elevation LiDAR 

point in a given window (1×1 m) is a ground point and that slope between adjacent ground 

points is lower than slope between ground points and adjacent non-ground.  In steep and 

rugged terrain, these assumptions typically result in ground points with higher elevations than 

the lowest elevation point within the given window being misclassified as low vegetation (Meng 

et al., 2010).  This misclassification of LiDAR points are likely numerous in areas with small rock 

formations (i.e., outcrops and cliffs) and slopes steep enough that tree crowns are in close 

proximity to the ground, such as that of our study area.  An example of such misclassification 

can be seen in figure 2.12, which results in underestimation of DEM elevation values and thus 

increased elevation errors. 

Although large differences in point density of our LiDAR datasets are present, there 

were no statistical differences in mean elevation error among LiDAR datasets.  A possible 

reason is that the high-density dataset was collected during the leaf-on season and only a small 

proportion of points were able to penetrate the canopy and reach the ground level.  This is 

especially true for areas under large, dense tree crowns.  In the case of the low-density dataset, 

as it was collected during the leaf-off season, more points were able to reach the ground and 
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thus point spacing was more even.  Figure 2.13 illustrates the spatial distribution of ground 

points of the three LiDAR datasets where only a small amount of additional ground points can 

be observed in the high-density dataset.  In addition gaps caused by dense tree crown can be 

clearly identified.  The similar quality of surface elevations observed between the low- and 

high-density datasets is an important result from our study because it indicates no need to 

invest additional resources into more expensive denser datasets if the data can be collected 

during leaf off.  Therefore, managers and practitioner interested in using LiDAR-derived DEMs 

to accurately represent terrain surfaces and elevations can acquire low-density dataset unless 

also interested in obtaining vegetation metrics. 

Our results showed no significant differences among interpolation methods with 

variation in mean elevation error of 1 cm.  The main reason is the relatively fine resolution of 

the LiDAR-derived DEM.  Other studies evaluating different interpolation methods have found 

significant differences for larger resolution and similar result for fine resolutions (Arun, 2013; 

Setiyoko and Kumar, 2012).  As aforementioned, these four interpolation method are 

commonly used by LiDAR data vendors to create DEMs and based on our results the selection 

of interpolation does not affect elevation quality.  Lastly, future research should focus 

evaluating the elevation accuracy of LiDAR derived DEM, specifically in complex terrain and 

vegetation condition of mountainous deciduous forests of the central Appalachia. 

Research evaluating classification algorithms to separate ground points from non-

ground points is needed to identify appropriate methods that reduce the misclassification of 

ground points on rugged terrain as low vegetation and vice versa, thus improving elevation 

accuracy.  Moreover, Li et al. (2011) showed an example of smoothing efforts in a prairie region 
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of Canada.  Similar efforts could be used to smooth over depressions caused by LiDAR point 

voids near dense deciduous tree. Lastly, additional efforts can focus on optimizing raster cell 

size in order to minimize effects ground point voids. 

Conclusion 

Our method for evaluating DEM accuracy proved useful and was most successful at 

quantifying elevation error when limiting field measurements to 3m from plot center, providing 

errors in the lowest slope and ruggedness classes, similar to other studies.  Under the dense 

vegetation and steep topographic conditions of our study site we found that DEM accuracy is 

dependent on both slope and ruggedness, as expected, with slope having a greater effect on 

error. The direct causes of the error are most likely due to misclassification of ground points as 

vegetation, which is worsened as slope increases. We encourage researches and managers to 

try and account for this increased DEM error for practices such as stream delineation and 

wetland identification where elevation accuracy is crucial. DEMS are often the starting point of 

many analyses and require several transformations to derive useful information, therefor any 

DEM error would be magnified in the final result. Our main suggestion to ensure accurate DEMs 

is to research LiDAR data providers to find one with experience in forested areas so that their 

algorithms are more accurate at quantifying ground points when dense vegetation is present. It 

is also best to collect your LiDAR data in the winter when the absence of leaves will create 

fewer voids in the data. As we found no difference in DEM errors between high and low density 

LiDAR datasets it might be more financially optimal to purchase a lower density dataset that 

uses a more advanced sensor that could provide more accurate values for each point.  Our 

suggestions will improve DEM accuracy but not eliminate all of the error caused by high slope 
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and ruggedness. In order to achieve this, more research needs to be conducted to find more 

effective was to classify ground points and interpolate data with large voids. 
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Figure 2.1. Topography of the study area (1,797 ha) within Robinson Forest (4,250 ha) located in 

Breathitt, Knott, and Perry counties in southeastern Kentucky (Lat. 37.4611, Long. -83.1555). 
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Figure 2.2. Coarse, 36.6 m resolution raster layers showing percent slope (a) and variability of 

percent slope variability, terrain ruggedness (b) across the study area used to create the nine 

combinations of slope/ruggedness categories. 
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Figure 2.3. Location of field plots within the study area. First letter in the abbreviated plot 

categories indicates level of ruggedness (second letter) and third letter indicates level of slope 

(fourth letter).  
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Figure 2.4. Diagram of the eight transects and six locations along transects used to collect 

elevation change information on each field plot. 
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Figure 2.5. Mean elevation error averaged by LiDAR dataset and interpolation method with 

their respective 95% confidence intervals. 
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Figure 2.6. Mean elevation error by slope and ruggedness classes averaged from all LiDAR 

datasets and interpolation methods with 95% confidence intervals. 
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Figure 2.7. Mean elevation error by combination of slope and ruggedness classes averaged 

from all LiDAR datasets and interpolation methods with 95% confidence intervals. 

145.5 101.6 40.8 92.4 58.7 63.7 63.2 73.4 23.2
0

20

40

60

80

100

120

140

160

High Med Low High Med Low High Med Low

High Med Low

A
ve

ra
ge

 e
le

va
ti

o
n

 e
rr

o
r 

(c
m

)

Ruggedness

Slope



37 

Figure 2.8. Mean elevation error by distance from plot center averaged from all LiDAR datasets 

and interpolation method with 95 % confidence interval. 
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Figure 2.9. Mean elevation error averaged by LiDAR dataset and interpolation method with 

their respective 95% confidence intervals considering only measurements taken from points 3.0 

m horizontal distance from plot center. 
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Figure 2.10. Mean elevation error by slope and ruggedness classes averaged from all LiDAR 

datasets and interpolation methods with 95% confidence intervals considering only 

measurements taken from points 3.0 m horizontal distance from plot center. 
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Figure 2.11. Mean elevation error by combination of slope and ruggedness classes averaged 

from all LiDAR datasets and interpolation methods with 95% confidence intervals considering 

only measurements taken from points 3.0 m horizontal distance from plot center. 
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Figure 2.12. An example where LiDAR points were misclassified by the data provider. The area 

under the red line is classified as high vegetation and medium vegetation where it should be 

classified as ground points because that area is a rock ledge. 
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Figure 2.13. Shown is the LiDAR ground point pattern and distribution across a landscape for 

the high-density (a) low-density (b) and combined (c) LiDAR datasets. 
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Leaf-off dataset Leaf-on dataset 

Date of acquisition April 23, 2013 May 28- 30, 2013 

LiDAR system Leica ALS60 Leica ALS60 

Average flight elevation above ground 3,096 m 1,305 m 

Average flight speed 105 knots 105 knots 

Scan frequency 200 kHz 200 kHz 

Scan angle < 40⁰ < 40⁰ 

Overlap between adjacent strips 50% 50% 

Average swath width 701 m 183 m 

Maximum number of returns captured 3 5 

Average footprint diameter 0.25 m 0.1 m 

Nominal pulse spacing < 1.0 m < 0.2 m 

Table 2.1. LiDAR data acquisition parameters used for both datasets collected over Robinson 

Forest. 
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Slope 

Low Medium High Total 

(0 – 39 %) (40 – 50 %) (50 – 103%) 

Ruggedness 

Low (0 – 28 %) 81.7 257.4 205.4 544.5 

Medium (28 – 45 %) 207.4 201.1 219.8 628.2 

High (46 – 103 %) 301.7 157.7 164.5 624.0 

Total 590.8 616.2 589.7 1796.7 

Table 2.2. Area (ha) under each combination of slope and ruggedness category considered to 

randomly select field plots to collect surface terrain information. 
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Ruggedness Slope 
Leaf-off, low-density (1 pt m-2) Leaf-on, high-density (40 pt m-2) Combined 

AVG IDW MIN NN AVG IDW MIN NN AVG IDW MIN NN 

High 

High 145.7 145.7 146.1 145.7 144.9 145.0 144.1 145.9 145.5 145.6 146.1 145.5 

Med 103.8 103.9 103.7 104.3 92.0 92.0 92.8 92.2 108.5 108.4 108.8 108.7 

Low 40.6 40.7 40.6 41.5 41.1 41.3 39.8 41.8 40.6 40.6 40.5 40.3 

Med 

High 91.2 91.2 91.9 91.9 94.1 94.2 95.3 95.1 89.5 89.9 93.0 91.8 

Med 64.1 64.2 64.9 64.6 54.4 54.4 55.2 54.6 56.5 56.6 57.6 57.1 

Low 63.9 63.8 64.3 63.8 63.0 63.1 64.4 63.5 63.0 63.1 64.9 63.6 

Low 

High 63.6 63.7 64.3 64.0 64.6 64.1 65.1 63.1 61.6 61.2 61.8 60.7 

Med 68.3 68.2 67.8 68.3 77.3 77.3 74.3 77.1 76.5 76.7 71.7 77.2 

Low 22.9 23.0 22.9 23.2 21.9 21.9 23.8 22.4 23.7 23.7 24.0 24.4 

Averages 

73.8 73.8 74.1 74.1 72.6 72.6 72.8 72.9 73.9 74.0 74.3 74.4 

74.0 72.7 74.1 

Table 2.3. Average elevation errors (cm) associated with the nine combinations of ruggedness and slope category obtained from the 

twelve DEMs created using the three LiDAR dataset and four interpolation methods.
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ANOVA SS Mean Square F Value PR > F 

Ruggedness 89.00 44.50 30.59 <0.0001 

Slope 164.55 82.28 56.55 <0.0001 

Ruggedness × Slope 80.90 20.22 13.9 <0.0001 

Distance 202.92 40.58 27.89 <0.0001 

Ruggedness × Distance 13.47 1.35 0.93 0.5103 

Slope × Distance 20.14 2.01 1.38 0.1889 

Ruggedness × Slope × Distance 31.13 1.56 1.07 0.3832 

Table 2.4. Three-way ANOVA using slope, ruggedness, and horizontal distance from plot center. 
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ANOVA SS Mean Square F Value PR > F 

Ruggedness 22.37 11.19 13.51 <.0001 

Slope 63.33 31.67 38.26 <.0001 

Ruggedness × Slope 27.83 6.96 8.41 <.0001 

Table 2.5. Two way ANOVA using slope and ruggedness considering only measurements taken 

from points 3.0 horizontal distance from plot center. 
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Chapter 3: Applications of LiDAR technology on predicting Plethodontid 

Salamander Abundance 

Introduction 

Woodland salamanders in the family Plethodontidae, are important components of 

Appalachian forests (Hairston, 1949) with biomass capable of surpassing all birds and small 

mammals combined (Burton and  Likens, 1975a). Their exceptional biomass make them a key 

part of ecosystem function, influencing food webs by predating on insects and providing food 

for a variety of predators including fish, reptiles, small mammals and birds (Davic & Welsh, 

2004). Hairston (1987) suggested woodland salamanders in the Appalachia are the dominant 

predators based on their predatory status and high caloric content. Woodland salamanders also 

have a large influence on soil decomposition by providing huge nutrient pools (Burton and 

Likens 1975b) while also consuming litter fragmenting insects (Wyman, 1998). 

With such a large impact on forest ecosystems woodland salamanders should be taken 

in to consideration when managing forested lands. Woodland salamanders are known for their 

cutaneous breathing, which leaves them very sensitive to desiccation (Peterman and  Semlitsch, 

2014), changes in temperature effecting metabolic rates (Homyack et al., 2011), and soil 

acidification (Wyman and  Jancola, 1992). Their environmental sensitivity, small home range, 

and low vagility (Welsh, and  Droege, 2001) means their distributions are dependent on 

microhabitats and are often uneven across a landscape. Studies show that woodland 

salamander numbers drastically decline immediately following clearcut practices and could take 

up to 60 years to fully recover (Petranka, 1999; Ash, 1997) while their abundance is highest in 
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mature forests (Petranka et, al., 1993). Woodland salamanders in the Northern Appalachian 

Mountains are also experiencing declines due to leaf litter loss from non-native earthworm 

invasions, exacerbated by the creations of forest openings (Maerz, et al., 2009). 

In order to properly account for woodland salamanders when managing land one would 

need to know their distribution across the landscape. Habitat modeling is often used to 

estimate organisms’ distribution across landscapes although developing accurate landscape 

level habitat models for sensitive species can be difficult. Many of the models researchers 

develop are on a small scale and require fine scale inputs that are unavailable to land managers 

(Stauffer, 2002) while many landscape level models are based on generic remotely sensed 

variables such as vegetation type, climate, and topographic variables which are less useful for 

distinguishing fine scale habitat (Fleishman et al. 2001). Light Detection and Ranging (LiDAR) has 

advanced rapidly in the past decades and can provide much more specific fine scale 

information. The data provided through LiDAR are discrete point coordinate measurements of 

all surfaces in a landscape, achieved by flying an aircraft with a highly accurate GPS and laser 

range finder system over a landscape. The new technology provides high accuracy and high 

resolution data for both topographic and vegetation surfaces (Reutebuch et al., 2005) which 

allows for interpolating very fine scale topographic and vegetation metrics. 

While LiDAR has been used in many natural resource applications to obtain biomass 

measurements (Popescu, 2007; Srinivasan et al., 2014), individual tree positions (Rahman and 

Gorte, 2008), tree heights, quadratic mean diameter, basal area (Goerndt et al., 2011) and 

other crown dimensions (Kim, 2008), there are many limitations to its use. The majority of work 

with LiDAR has been limited to homogenous stands of coniferous trees on terrain that is not 
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drastically sloped. Individual tree metrics are mostly based on delineating tree crowns which is 

much simpler for conifers’ uniform conically shaped crowns with obvious apexes opposed to 

deciduous trees’ irregularly rounded crowns with less obvious apexes. Deciduous forests such 

as the southern Appalachian Mountains contain many different species with varying crown 

shapes making it even harder to obtain accurate forest metrics for individual trees, which is 

why researchers haven’t been able to develop as useful LiDAR techniques for vegetation based 

habitat variables in this area. 

This study uses a method of using area based techniques for interpolating LiDAR data in 

a complex deciduous forest of the Southern Appalachian Mountains to describe fine scale 

vegetation and topography metrics such as canopy cover vegetation height and vegetation 

height standard deviation, slope’s exposure to light, and water flow accumulation; all of which 

might affect the local abundance of salamanders. We focused on two similar species of 

woodland salamander, the Slimy Salamander (Plethodon glutinosus) and the Cumberland 

Plateau salamander (Plethodon kentucki). We hypothesize that individuals will be more 

abundant in moist lower slopes with fully closed canopies and less direct topographic exposure 

to the sun based on their sensitivity to desiccation (Peterman and Semlitsch, 2014) and 

previous finding by Peterman and Semlitsch, (2013). The study methods are meant to be 

replicable for other deciduous forests in the United States and for other amphibian species. The 

results could be used to identify ideal habitat for different species, and to locate areas to focus 

management practices. 
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Methods 

Study area 

Research was conducted at The University of Kentucky’s Robinson Forest, located in the 

Cumberland Plateau region of southeastern Kentucky (Lat. 37.4611, Long. -83.1555).  Due to 

access restriction and to reduce travel time between field plots, the study area was limited to 

the 1550 ha Clemons Fork watershed (Figure 3.1).  The study area and the entire Robinson 

Forest is comprised of a diverse contiguous mixed mesophytic forest made up of over 80 tree 

species (Carpenter et al., 1976) with oak and maple being the dominant overstory trees.  After 

being extensively logged in the 1920’s, Robinson Forest is considered second growth forest 

ranging from 80-100 years old, and is now protected from commercial logging and mining 

activities, typical of the area (Overstreet, 1984).  The topography is steep with short benched 

and dissected slopes, elevation ranges from 250 to 503 meters above sea level, slopes range 

from 0 to 100 percent, and aspects facing all directions (Overstreet, 1984).  Average canopy 

cover across Robinson Forest is about 93% with small opening scattered throughout.  Most 

areas exceed 97% canopy cover but recently harvested areas have an average cover as low as 

63%.  The forest is home to 17 species of salamander, most of which belong to the family 

Plethodontidae. (Schneider, 2011; Petranka, 1998). The most abundant terrestrial salamanders 

from our field sampling are Plethodon glutinosus and Plethodon kentucki, which are the focus of 

this study.  Both of these salamanders’ are lungless salamanders (they breathe cutaneously) 

and thus prefer cool moist habitats and are most active on the surface of the ground, at night, 

after rain events (Petranka, 1998) 
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Sampling design 

To quantify the abundance of salamanders, 45 field transects were surveyed across 

varying soil moisture and canopy cover conditions throughout the study area (Figure 3.2).  A 

geographic information systems (GIS) based integrated soil moisture index (Iverson et al., 1997) 

was developed to determine soil moisture, which takes into account hillslope, direct sun 

exposure (hillshade), ground curvature, and soil water holding capacity data from the United 

States Geological Survey (USGS).  The GIS layer was a 10 m cell size raster expressing relative 

soil moisture across Robinson Forest.  The raster was resampled into coarser 30.5 m (100 ft) 

cells using the average of the smaller cells to match the size of transects and encompass them 

into single cells.  The raster was classified in to high, medium, and low soil moisture classes 

selecting threshold values resulting in an equal amount of area in each class (516.7 ha).  Canopy 

cover was determined using a high-density (~ 40 pt m-2) LiDAR dataset acquired in the summer 

of 2013 during leaf-on season for the purpose of collecting detailed vegetation information.  

The parameters of the LiDAR system and flight are presented in Table 3.1.  The raw 3D LiDAR 

point cloud was used to calculate canopy cover as the percentage of vegetation points above 5 

m from ground level to the total points for each 0.6 m (2ft) cells throughout the Robinson 

Forest.  If this percentage was greater than 50 %, then the cell was considered covered and 

given a value of 1, if the percentage was below 50%, the cell was considered not covered given 

a value of zero. This 0.6 m (2ft) raster layer was then aggregated into 30.5 m (100 ft) by 

averaging to cover the intended field plot sampling area.  The canopy cover raster was then 

classified in to three classes where 0 to 50 percent covered was considered low, 50 to 75 

medium, and 75 to 100 high canopy cover.  Lastly, five transects were randomly placed in each 
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combination of soil moisture and canopy cover using the center point of the raster cells as the 

transect locations.  Transect locations avoided areas 5m from existing roads, skid trails and 

streams to limit their effects on observed salamanders. 

In field Data collection 

The location of transects was established using a Trimble Juno SB GPS handheld unit 

with a precision of 6 m (20ft) from given coordinates (center of raster cells).  Plot locations 

were used as the mid-point of 30.5m (100ft) transects layout along the contour line.  Flagged 

were installed at the ends and mid-point of transects to establish a clear line of sight along the 

transect length.  Transects were surveyed at night time using a visual encounter survey (Flint 

and Harris,2005; Grover, 2006) on days following rain events during May – June of 2014. 

Transects were surveyed using a neutral white Zebralight H600w Mk II headlamp searching the 

transects over a 1m (3.3 ft) swath along either side of its length.  Encountered salamanders 

were captured, placed in Ziploc bags, and left at the same place they were found along the 

transects to minimize disturbance to the site.  After the full transect was searched, limiting 

search time to 30 minutes, captured salamanders were then examined and species was 

recorded. 

All sites were sampled three times, as multiple visits are required for presence and 

abundance modeling (Royle 2004; Mackenzie et al., 2002) to account for detection 

probabilities.  Transect locations were grouped where several could be accessed in one night, 

then groups were randomly surveyed with no transects being revisited within three days of the 

last survey.  Site specific variable that could affect desiccation rates and salamander detection 

(Peterman and  Semlitsch, 2014). were also recorded such as wind speed, barometric pressure 
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(mmHg), air temperature (°C) using a Kestrel 2500 weather meter, soil moisture (%) using an 

Extech MO750 soil moisture probe, litter depth (cm), and Julian date. Other detection variables 

obtained from a permanent weather station at the study site include days since last rain event, 

last rain amount (cm), and average humidity (%). 

Lidar derived data 

For the purpose of predicting and mapping salamander abundance across Robinson 

Forest, a set of LiDAR-derived predictive variables were obtained.  First, a DEM was created 

using the LAS dataset tool in ArcMap 10.2 and filtering the LiDAR points to include only points 

representing the ground.  Within ArcMap, the “LAS dataset to Raster” tool was used to create a 

0.6 m resolution DEM using average as the cell assignment method and natural neighbor as the 

void fill method.  Predictive variables based on the LiDAR-derived DEM included five raster 

layers representing: hillshade, flow accumulation (FA), vegetation height (VH), vegetation 

height standard deviation (VHSD), and the previously mentioned canopy cover (CC) layer.  As 

aforementioned, the hillshade layer is a proxy for the amount of direct sun exposure and was 

created using the known sun position (175° azimuth and 70° altitude) for the time field data 

was collected.  The flow accumulation represents the number of upslope cells theoretically 

flowing onto a given cell and is an indication of relative humidity.  Vegetation height was 

calculated by subtracting the DEM from the digital surface model (DSM) to represent elevation 

above ground level.  The DSM represents elevation of the top of the canopy above sea level and 

it was created similarly to the DEM using the LASTools extension but by filtering LiDAR points to 

include only first return points.  The vegetation height standard deviation layer was calculated 

as the standard deviation of the vegetation height of 0.6m (2ft) cells within coarser 30.5 m (100 
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ft) cells.  It was created to represent the variability of heights which would tend to be higher in 

areas that recently underwent timber harvesting and would be lower in areas with fully closed 

canopies.  As aforementioned, all raster layers were resampled to a coarser resolution of 30.5 

m (100 ft) to unify their resolution and to consider a cell size more appropriate to meaningfully 

capture site variations across the study site. 

Data analysis 

To maintain consistency with the resolution of raster layers representing the predictive 

variables, a 15.2m (50 ft) buffer was placed around each transect covering 0.17ha.  This buffer 

area was then used to extract a single value for each of the predictive variables representing 

each transect.  Predictive models were then developed to estimate salamander abundance 

based on the set of predictive variables previously mentioned.  Due to the large amount of 

transect surveys yielding no salamander observations, we used the statistical function RunZIA 

(Wenger, 2007; Wenger, and Freeman, 2008) in R version 3.1.1 (R Development Core Team, 

2008) to run zero inflated models to obtain multiple linear regression model parameter 

estimates. The RunZIA function was designed based on Royle’s n-mixture model (Royle 2004, 

Royle et al. 2005) which predicts abundance based on multiple visits to sites.  RunZIA also 

incorporates a model by Mackenzie et al. (2002) which uses detection variables to account for 

differences in detection probability during each site visit to determine occupancy. RunZIA’s 

combination of these two approaches calculates abundance given that a site is first occupied, 

and estimates abundance at the site based on a Poisson distribution. The RunZIA function also 

uses detection probabilities based on sampling covariates when predicting whetehr the site is 

occupied. The full predictive model can be explained by the equation below where Ni is the 
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realized abundance at site i given presence, presi is a binary value expressing whether 

salamanders are present at site I, ψ is the probability that the species is present at the site and 

ki is the predicted abundance at site i.  

Ni = pres(ψi) x ki 

The model outputs can be used to predict salamander abundance across the landscape, 

assuming constant detection probability by using the equations below to transform the model 

output parameter estimates and applying them to the equation above. 

presi = BIN( EXPIT(βo + β1X1 … + βiXi)) 

ki = EXP (βo + β1X1 … + βiXi) 

All models for this study were run using the original variable units instead of using a Z-

score standardization in order to apply the parameter estimates to values for the entire 

Robinson Forest to make a predictive map of abundance.  Additionally, all models included both 

the Julian date and the squared days since last precipitation date as sampling covariates for 

detection probability because seasonal and weather variables greatly influence desiccation 

rates of salamanders and have been shown to affect their surface activity and detection 

probability (Petranka, 1998; Peterman and Semlitsch, 2014).  These two variables have been 

shown to explain most of the variability within our recorded observations compared with the 

other sampling covariates measured in the field.  The same variables were run as both 

abundance predictors and presence (occupancy) predictors for each model and included either 

a topographic variable (soil moisture index, flow accumulation, hillshade) or vegetation variable 

(canopy cover, vegetation height, vegetation height standard deviation) or combination of 
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both. Values for FA were restricted from 0 to 149 m2 where 0 value cells occur on ridgetops 

and 149 m2 occur close to a stream while values greater than 149 m2 indicate a presence of a 

stream. Values of VHSD range of 0 to 9 m where 0 could be an area with no vegetation and 9 

would be an area with highly variable tree heights. The same models were run separately for 

both Plethedon glutinosus and Plethedon kentucki to determine if there were differences in site 

preference between species.  Models were ranked based on the small sample size Akaike 

information criterion (AICc) and the evidence ratio (ER), and the weighted Akiake criterion (W 

AICc) was used to determine the relative performance of the best model (Symonds and 

Moussalli, 2011). 

Results 

Plethodon glutinosus and Plethodon kentucki were the most observed species, with a 

total of 63 and 99 observations respectively out of a total of 184 salamander observations from 

3 visits to each transect.  There were no salamanders observed in 85 visits out of the total 135 

visits, which justified the use of a zero-inflated model to describe salamander abundance. 

Before models were tested, a Pearson’s correlation matrix was run to examine the relationship 

among LiDAR-derived predictive variables (Table 3.1).  Results indicate a relatively high 

correlation between canopy cover and vegetation height (r = 0.89) as well as between soil 

moisture index and hillshade (r =-0.81), so those variable were not combined within any of the 

models. 

We ran several models with different combinations of LiDAR-derived covariates to 

predict Plethodon glutinosus abundance (Table 3.2).  Results show that the best fit model 

contained VHSD and FA. Based on the evidence ratios, the selected model has evidence to 
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perform better over 26 times stronger than the next highest ranked model.  This model is also 

over 95% more likely to perform better than the next highest ranked model based on the 

weighted Akiake criterion.  VHSD and FA are also present in most of the other highest ranked 

models and are therefore very likely to influence Plethodon glutinosus abundance. When 

examining the parameter estimates and their 95% confidence intervals for the complete best fit 

model (Table 3.3), none of the intervals of the abundance parameter estimate overlap zero, 

which indicates that the respective variables are likely to be important in the model.  The 

negative estimate for VHSD indicates an inverse affect on abundance while FA has a direct 

affect, but for the presence portion of the model the both covariates have a direct effect. 

Figure 3.3 shows the best fit model for Plethodon gultinosus applied to real world values for 

Robinson Forest. The values ranges from 0 to 1.64 individuals per m2 with a mean value of 0.12. 

This model predicts a high concentration of individuals located close to ephemeral streams in 

the head waters while sparsely distributed elsewhere, and shows that the FA variable has a 

greater visible effect than VHSD. 

Models run with different combinations of LiDAR-derived variables to predict the 

abundance of Plethodon kentucki (Table 3.4) show a less clear best fit model, however six of the 

top seven models contain canopy cover and the top model with only canopy cover as the 

abundance presence variable is 48 percent more likely than the rest to be the most accurate. In 

the best fit model the canopy cover’s parameter estimate (Table 3.5.) for abundance was 

positive, indicating a direct relationship to abundance. The 95% confidence interval does not 

overlap zero, which additionally indicates that it is an important variable for this species. 

Canopy cover’s parameter estimate for abundance was also positive but has a confidence 
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interval greatly overlapping zero which indicates that this variable may not be important for 

predicting presence. When the model is applied to CC information for Robinson forest (Figure 

3.4) abundances range from 0.04 to 0.82 individuals per m2 with an average of 0.58 individuals 

per m2. This model did not predict that any areas were unoccupied for Plethodon kentucki, only 

a reduced abundance with low CC while their abundance is more evenly spread across the 

forest. This is likely why the average is so much higher than Plethodon glutinosus (0.58 vs 0.12 

individuals per m2). 

When comparing these two species, results show that different LiDAR-derived 

covariates have a significant effect on their abundance.  For example, VHSD is retained in 

almost all high ranked models (AICc < 218)  for Plethodon glutinous abundance, while CC is 

retained in most low ranked models (AICc > 218) (Tables 2 and 4).  The opposite case can be 

observed for Plethodon kentucki where CC and VHSD are retained in high (AICc < 279.1) and 

low-ranked (AICc > 279.1) models respectively.  When applying the best abundance / presence 

model to the map abundance across the study area, it can be observed that Plethodon 

glutinosus is predicted to be present in high numbers closer to streams while not occupying 

ridgetops, which makes it clear that flow accumulation is affecting abundance most in this 

model (Figure 3.3). However, Plethodon kentucki is predicted to have high abundances 

throughout except for roads surfaces and recently harvested areas with low canopy cover 

(Figure 3.4). The abundance map for the Plethodon kentucki is extremely similar to the map of 

canopy cover for the study site because canopy cover is the only variable represented in that 

model. 
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Discussion 

This study is a good starting point for quantifying salamander abundance using fine scale 

vegetation and topography information derived from LiDAR in a deciduous forest. These 

methods could be replicated by land and wildlife managers for different species of terrestrial 

Plethodontid salamanders or slightly modified for other amphibians to determine what factors 

most effect their distribution across the landscape and to model their relative abundance. Our 

two models reasonably predict salamander abundance when compared to the field 

observations and the output of two different best fit abundance models for the two similar 

Plethodontid species is further evidence that the vegetation and soil characteristics extracted 

from the LiDAR data are of high enough accuracy and resolution to describe minute differences 

in habitat preference between the two species. In figure 3.3 and 3.4 we can see that the two 

species are distributed differently across the landscape and have different ranges of 

abundance. Our models are also likely representative because they output similar abundances 

to studies such Marvin’s (1996) study which found <0.2 Plethodon kentucki per m2 compared to 

our average predicted 0.58 Plethodon kentucki per m2. Semlitch (1980) found 0.52- 0.81 

Plethodon glutinosus compared to our average predicted .12 Plethodon glutinosus. 

While the best fit models were fairly accurate, they are oversimplified and include only 

one or two main variables to predict abundance and presence. Peterman and Semlitsch, (2013) 

conducted a similar study for another terrestrial salamander, Plethodon albagula and found 

importance for factors such as canopy cover, ravine habitat, solar exposure, and topographic 

wetness in there best model. It is likely that many of these factors also have an effect on our 

species. In addition, our models were solely based on the known phenomena of desiccation 
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effecting salamander activity and abundance (Peterman and Semlitsch, 2014), however it is also 

well understood that salamanders’ abundance and presence are also affected by forest age 

(Petranka, 1998; Petranka, 1999), which would likely be beneficial in this modeling. While it is 

difficult to quantify forest age over large landscapes, basal area or the diameter at breast height 

(DBH) of trees could be used as surrogate predictive variables for age and have been calculated 

over large landscapes using LiDAR data in coniferous forests. These were not included in our 

study because this information is much harder to estimate in deciduous forests due to the 

trees’ irregularly rounded crowns (Popescu, 2007). 

Our best model for Plethodon kentucki predicted an almost constant high abundance 

throughout the forest (figure 3.4), which we believe is not a true representation of the species. 

Even though many more of our field sites had observations for Plethodon kentucki vs Plethodon 

glutinosus there were still many zero count plots for Plethodon kentucki. While canopy cover 

has shown to have a strong effects on terrestrial salamander abundance (Peterman and 

Semlitsch, 2014) we believe there are further topographic components effecting these 

salamanders’ abundance (Peterman and Semlitsch, 2013, Peterman and Semlitsch, 2014). Thus, 

it is likely that either we have not fully represented the variables effecting salamander 

distribution in our study site. 

Unaccounted for biotic factors could also be influencing our species abundances. 

Species interactions are important in species distributions across environmental gradients 

(Gifford and Kozak, 2012) and could likely make narrowing down optimal ranges of 

environmental conditions for sympatric species difficult. While both of these species were 

present together at many of the same plots Plethodon glutinosus has been known to 
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aggressively defend its territory (Thurow, 1976) and competitive interactions are likely to occur 

between the two species (Marvin, 1998). Other territorial species such as the green salamander 

(Aneides aeneus) (Cupp, 1980) are also present in the area and could be further confounding 

the effort to quantify the abiotic environmental effects. The lack of other terrestrial 

Plethodontid salamanders in Peterman and Semlitsch’s (2013) study could have allowed them 

to develop more complex models. 

Some of the inaccuracy of this study could be due to how the field sites were selected 

and how the data was collected. The study was based on quantifying desiccating effects and 

therefore we needed to represent areas with lower canopy cover, but because the study site is 

almost entirely second growth continuous forest there weren’t many areas with low canopy 

cover. Recently harvested areas were the only option to sample when representing medium 

and low canopy cover and therefore most of the field plots occurred in recent timber harvests. 

Both species’ best fit models contained some form of a vegetation variable, which predicted 

lower abundance in those areas, however while that could be due increased desiccation from 

more direct sunlight via canopy openings, it could also be due to recent disturbances from 

logging lowering the populations or other indirect effects from logging. In retrospect randomly 

placing field plots across the landscape, ignoring canopy cover, may have produced better 

models because the field observations wouldn’t have contained as many zero count plots. The 

field data collection could have also been improved by adding more plots and further limiting 

the data collection days to occur closer to rain events to ensure more salamander surface 

activity. 
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Conclusion 

This study describes a useful method for predicting salamander abundance across a 

landscape that requires minimal field work paired with fine scale landscape wide habitat 

information to predict relative salamander abundance in a way useful for managers. This study 

also demonstrates the usefulness of high density LiDAR data in an area where LiDAR’s use is 

currently limited. While these method aren’t refined enough to estimate population size, they 

are adequate to describe relative abundance across a landscape. This could be very useful for 

land managers to identify important abundance predictor variables for different species, to 

identify areas highly abundant in salamanders to avoid disturbing, or to identifying areas for 

restoration. While our best models may not describe all variables affecting salamander 

abundance they do elucidate some of the patterns of variability our study species experience. 

These methods could be improved by assessing other variables besides those that might affect 

desiccation rates however it would require more development of LiDAR data derivation 

techniques to estimate other fine scale habitat information such as basal area and DBH. Future 

work could also focus on better ways of accounting for biotic interactions across the landscape. 
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Figure 3.1. Topography of the study area (1,400 ha) within Robinson Forest (4,250 ha) located in 

Breathitt, Knott, and Perry counties in southeastern Kentucky (Lat. 37.4611, Long. -83.1555). 
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Figure 3.2. Location of field plots within the study area. First two letters in the abbreviated plot 

categories indicates level of canopy cover and the second two letters indicates level of soil 

moisture. 
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Figure 3.3. Predicted abundance of Plethodon glutinosus (right) expressed as individuals per m2 and topography (left) for Robinson 

Forest. 
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Figure 3.4. Predicted abundance of Plethodon kentucki (right) expressed as individuals per m2 and percent canopy cover (left) for 

Robinson Forest. 
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Canopy 

cover 

Vegetation 

height 

Vegetation 

height STD 

Flow 

accumulation 

Hill shade Soil moisture index 

Canopy cover 1 0.892436 0.099068 -0.01243 -0.0612 0.067231 

Vegetation 

height 

0.892436 1 0.253177 0.084228 -0.04654 0.106393 

Vegetation 

height STD 

0.099068 0.253177 1 0.105634 -0.27378 0.264318 

Flow 

accumulation 

-0.01243 0.084228 0.105634 1 -0.21542 0.415764 

Hill shade -0.0612 -0.04654 -0.27378 -0.21542 1 -0.81169 

Soil moisture 

index 

0.067231 0.106393 0.264318 0.415764 -0.81169 1 

Table 3.1. Pearson’s correlation matrix for variables used in model building for both salamander species. 
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Abundance/ presence variables AICc ER W AICc 

Vegetation height standard deviation , Flow accumulation 199.7776 1 0.957597 

Vegetation height standard deviation , Hillshade , Flow 

accumulation 

206.3103 26.2155 0.036528 

Flow accumulation  211.2727 313.422 0.003055 

Vegetation height standard deviation , Hillshade , Flow 

accumulation 

214.1272 1306.1 0.000733 

Vegetation height standard deviation  214.3194 1437.84 0.000666 

Canopy cover , Vegetation height , Hillshade  215.6666 2820.02 0.00034 

Canopy cover , Vegetation height , Flow accumulation  215.7841 2990.66 0.00032 

Vegetation height standard deviation , Vegetation height  216.133 3560.66 0.000269 

Vegetation height  216.2227 3723.99 0.000257 

Soil moisture index  218.2624 10325.8 9.27E-05 

Canopy cover , Hillshade , Flow accumulation  219.5593 19748.8 4.85E-05 

Hillshade , Flow accumulation  220.6609 34257.1 2.8E-05 

Canopy cover , Vegetation height  220.901 38626.7 2.48E-05 

Hillshade  221.194 44721.1 2.14E-05 

Canopy cover  221.9623 65666.9 1.46E-05 

Canopy cover , Flow accumulation  225.1503 323305 2.96E-06 

Canopy cover , Hillshade  226.1265 526733 1.82E-06 

Table 3.2. Model ranking for Plethodon glutinonsus, showing variables used, Akaike’s 

information criterion (AICc), evidence ratio (ER), and weighted AICc (W AICc) 
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Variable/ intercept estimates -95% CI +95% CI 

Abundance intercept 4.186 2.675 5.697 

Vegetation height standard deviation -0.117 -0.171 -0.063 

Flow accumulation 0.006 0.003 0.009 

Presence intercept -19.72 -37.619 -1.821 

Vegetation height standard deviation 0.831 0.022 1.640 

Flow accumulation 0.026 -0.003 0.055 

Detection intercept 10.392 3.31 17.474 

Julian date -0.09 -0.141 -0.039 

Days since last precipitation squared -0.138 -0.247 -0.029 

Table 3.3. Parameter estimates standard error and 95% confidence interval for the best model 

for Plethodon glutinosus. 
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Abundance/ presence variables AICc ER W AICc 

Canopy cover  269.8783 1 0.476514 

Canopy cover , Vegetation height  270.5098 1.37129 0.347494 

Canopy cover , Vegetation height , Hillshade  272.885 4.49673 0.105969 

Canopy cover , Hillshade  275.5739 17.2498 0.027624 

Vegetation height standard deviation  276.5952 28.7446 0.016578 

Canopy cover , Vegetation height , Flow accumulation  278.0678 60.0243 0.007939 

Canopy cover , Hillshade , Flow accumulation  279.1098 101.064 0.004715 

Vegetation height standard deviation , Flow accumulation 279.2361 107.652 0.004426 

Vegetation height  279.272 109.601 0.004348 

Vegetation height standard deviation , Vegetation height  280.8964 246.916 0.00193 

Soil moisture index  282.0065 430.135 0.001108 

Vegetation height standard deviation , Hillshade , Flow 

accumulation 

282.0213 433.33 0.0011 

Vegetation height standard deviation , Hillshade , Flow 

accumulation 

285.7946 2858.78 0.000167 

Flow accumulation  287.6515 7234.38 6.59E-05 

Hillshade  289.9006 22273.4 2.14E-05 

Hillshade , Flow accumulation  294.2767 198630 2.4E-06 

Table 3.4. Model ranking for Plethodon kentucki, showing variables used, Akaike’s information 

criterion (AICc), evidence ratio (ER), and weighted AICc (W AICc). 
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Variable/ intercept estimates - 95% CI + 95% CI 

Abundance intercept 0.873 -0.775 2.522 

Canopy cover 2.886 1.280 4.493 

Presence intercept 0.341 -3.414 4.096 

Canopy cover 0.530 -3.932 4.992 

Detection intercept 3.527 -2.025 9.079 

Julian date -0.044 -0.084 -0.005 

Days since last precipitation squared -0.691 -1.003 -0.379 

Table 3.5. Parameter estimates standard error and 95% confidence interval for the best model 

for Plethodon kentucki. 
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