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ABSTRACT OF DISSERTATION

STATISTICS IN THE BILLERA-HOLMES-VOGTMANN TREESPACE

This dissertation is an effort to adapt two classical non-parametric statistical techniques, kernel den-
sity estimation (KDE) and principal components analysis (PCA), to the Billera-Holmes-Vogtmann
(BHV) metric space for phylogenetic trees. This adaption gives a more general framework for de-
veloping and testing various hypotheses about apparent differences or similarities between sets of
phylogenetic trees than currently exists.

For example, while the majority of gene histories found in a clade of organisms are expected to be
generated by a common evolutionary process, numerous other coexisting processes (e.g. horizontal
gene transfers, gene duplication and subsequent neofunctionalization) will cause some genes to ex-
hibit a history quite distinct from the histories of the majority of genes. Such “outlying” gene trees
are considered to be biologically interesting and identifying these genes has become an important
problem in phylogenetics.

The R sofware package kdetrees, developed in Chapter 2, contains an implementation of the
kernel density estimation method. The primary theoretical difficulty involved in this adaptation
concerns the normalizion of the kernel functions in the BHV metric space. This problem is addressed
in Chapter 3. In both chapters, the software package is applied to both simulated and empirical
datasets to demonstrate the properties of the method.

A few first theoretical steps in adaption of principal components analysis to the BHV space are
presented in Chapter 4. It becomes necessary to generalize the notion of a set of perpendicular
vectors in Euclidean space to the BHV metric space, but there some ambiguity about how to best
proceed. We show that convex hulls are one reasonable approach to the problem. The Nye-PCA-
algorithm provides a method of projecting onto arbitrary convex hulls in BHV space, providing
the core of a modified PCA-type method.

KEYWORDS: Phylogenetic trees, Non-parametric statistics, Outlier Detection, Kernel Density
Estimation, Principal Components Analysis
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Chapter 1

Introduction

Portions of this chapter have been published as Weyenberg and Yoshida [177] and [173].

Abstract

Phylogenetic trees are mathematical objects which summarize the most recent common ancestor
relationships between a given set of organisms. There is often a need to quantify the degree of
similarity or discordance between two proposed trees. For instance, a person may be interested in
knowing whether the phylogenetic trees reconstructed from two distinct sequence alignments are
truly different, or if the differences are so minor as to be attributable only to statistical variation. In
this chapter we introduce a number of important concepts relating to phylogenetic trees and their
reconstruction, and survey the literature of statistical methods designed for use with trees. The
most common models of sequence evolution are presented first, followed by a brief description of the
process of tree reconstruction. Next, a few methods for defining distances between phylogenetic trees
are discussed, culminating in a discussion of the Billera-Holmes-Vogtmann metric space for trees,
which is the main subject of study in this dissertation. Finally some existing statistical methods for
testing tree congruence, and the reasons for their inadequacy are discussed.

1.1 Phylogenetic Trees

Extensive evidence of interrelatedness between all life on Earth is one of the central findings of the
modern biological sciences. Although the origins of the theory of evolution predate the work of
Darwin and Wallace, The Origin of Species is the first publication which presented a compelling
natural mechanism for evolution: descent with modification, guided by the forces of natural selection
[33]. The descent with modification theory posits that every pair of organisms share, somewhere
in their extended genealogies, a most recent common ancestor (MRCA). Thus, a genealogy of any
collection of individual organisms and their MRCAs should be organized in a tree-like structure,
called a phylogeny. An early sketch of such a structure is shown in Figure 1.1.

A phylogenetic tree is a specific type of mathematical graph, where the vertices are used to rep-
resent individual organisms, species, or possibly larger populations of contemporaneous individuals,
called operational taxonomic units (OTUs), or simply taxa. Edges connect those OTUs which are
most closely related through a direct line of descent. Typically, some of the taxa found in a phylogeny
are species which are directly observed in the present, and some of the taxa represent hypothetical
ancestor populations. When drawn as a tree, the vertices corresponding to contemporary OTUs
appear at the tips of the tree, and are therefore called leaf vertices, or simply leaves. The other
vertices, which correspond to (unobserved) MRCAs appear within the tree, and are called internal.

Edge weights (also called branch lengths) if they are provided, are typically used to describe how
closely or distantly related the taxa they connect are to each other. The most common units used
for an edge weight are time (or the number of generations) separating the taxa, or the expected
number of times that a nucleotide in an ancestor sequence will be substituted for a different base
as the population evolves into the descendent sequence. A pair of trees equipped with edge lengths
are shown in Figure 1.2. Note that the internal vertices, representing MRCA taxa, have not been
explicitly labeled.

Often, phylogenies are assumed to have the additional structure of a binary tree. A tree is a
graph in which the edges do not form any closed cycles, and a tree is binary if each vertex has degree
at most three, i.e., each vertex has edges connected to at most one ancestor and two child taxa. For
example, the tree in Figure 1.1 is not binary, whereas the trees in Figure 1.2 are binary. While a
binary tree might at first seem to be a necessary consequence of the canonical framework of descent
with modification, we shall see that this is not actually the case and that there are good reasons to

1



Figure 1.1: An early sketch of a phylogenetic tree, found in Darwin’s early notebooks [34].

a

b

e

c

d

1.2

1.4

2.3 1.5

2.21.3

1.1

T1

a

b

c

e

d

1.5

2.1

2.01.6

2.2 1.7

1.1

T2

Figure 1.2: Example phylogenetic trees: T1 and T2. The trees represent proposed most recent
common ancestor relationships between 5 taxa, labeled a through e. These trees have branch lengths
specified, but not all trees need have such information.
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question the binary tree assumptions. Despite this, binary trees remain well established within the
scientific community as a reasonable simplifying approximation in most cases.

1.2 Modeling Evolution

Generally, the first step in reconstructing a phylogenetic tree is to obtain a sample of representative
individuals from each taxon to be included in the phylogeny, and then observe and quantify in
them a number of morphological traits. The traits measured could range from simple physiological
observations, e.g. skull volume, or they may detail the differences between the biological sequences,
which comprise the chemistry of life.

Although it is possible to use a variety of data to form phylogenies, the majority of contemporary
phylogenetic analysis is carried out on data obtained from either nucleic acid sequences (DNA or
RNA) or amino acid sequences (polypeptides or proteins). In either case, the data consist of a string of
characters from a fixed alphabet. In the case of nucleic acids, the alphabet consists of four characters,
most commonly denoted A, C, G, and T . The encoded protein alphabet is larger, consisting of 20
amino acids. In subsequent discussion, we will discuss nucleic acid sequences exclusively, as the
models are much more concise. However, the reader should keep in mind that a similar analysis can
be carried out on polypeptide sequences as well, once the characteristics of the amino acid alphabet
is taken into account.

When an organism reproduces, the DNA sequences found in the parents’ germ-line cells are
copied. These sequences may be preserved without change, or they may undergo a mutation. At
any given position in the sequence, a number of things may occur during a mutation. A character
may be substituted for another character, for example an A may change to become a C. A character
may be deleted, shortening the sequence overall. Or, finally, one or more characters may be inserted,
lengthening the sequence. A pair of characters in two sequences are orthologous if both are descended
from the same ancestral character.

The possibility of the latter two types of mutation means that any time we wish to compare
multiple sequences we may be first required to align them. Sequence alignments are an attempt to
impute the unknown orthology relationships in a set of sequences. Aligning multiple sequences is
known to be a very difficult problem; a NP-hard problem, to be precise [84]. However, despite the
difficulty of the alignment problem, there are numerous heuristic methods which appear to produce
reasonable results, and it is generally assumed that sequences used for phylogenetic reconstruction
are aligned correctly. At the time of this writing, MUSCLE [44] and MAFFT [85] are among the most
commonly used tools to obtain sequence alignments.

Once we have a sequence alignment in hand, a natural next question is how one might measure
the (dis)similarity between the observed sequences. When observing data that take the form of real
numbers, there is usually an obvious way to quantify the distance between two values, and most
often the method is subtraction. However, sequences present a much more complicated problem,
and there have been numerous ways proposed to quantify the differences between them.

The most common approach to modeling molecular evolution probabilistically is to treat the
evolution of each character as an independent continuous-time Markov process. A Markov process
is a stochastic process that has the ‘memoryless’ property: The future evolution of the process is
conditional only on the current state of the system. In particular, it is independent of any behavior
in the past, given the current state.

This model is motivated by the assumption that when a sequence is duplicated, the character in
the new sequence is randomly selected from a distribution that depends only on the current state
of the character. The character most likely remains unchanged, but substitutions are a possibility,
and the probabilities of various substitutions depend only on the chemical dynamics of sequence
replication. These two assumptions, at least, seem quite reasonable: the biochemistry underlying
biological sequence replication is believed to be inherently stochastic in nature; and there is no known
mechanism by which the state of a genetic sequence in the past could influence the duplication of
genetic material in the present time.

Since evolution is assumed to take place slowly over a very large number of generations, and
because it simplifies the calculations, it is customary to model time as a continuous variable, rather
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than by counting discrete generations. The dynamic behavior of such a system is determined by a
transition rate matrix, typically denoted Q, which describes the rates at which the different types
of substitution occur, and the initial character state. The rate matrix may change over time, or it
may be constant, with the latter being a common simplifying assumption. Although we will, for the
sake of brevity, make this assumption when discussing the following models, it can be relaxed at the
expense of increased computational difficulty and model complexity.

One further important simplifying assumption is that the entire relevant period of evolution under
study is understood to be stochastic fluctuation about the Markov Chain’s equilibrium distribution
(a concept we will introduce shortly). The biological implication of this assumption is that we are
modeling only what is called neutral evolution, those mutations in the genome which become fixed
in the population purely by chance, and do not confer any selective [dis]advantages. In particular,
we are not modeling the directed processes collectively known as natural selection, that are often
implied by the term ‘evolution’.

A final limitation worth mentioning, which applies to all of the models we will discuss, is that
in practice these models cannot be used to simultaneously estimate both the overall rate of base
substitution and the amount of time that the Markov process has been evolving. Much of what
we would like do with these models involves attempting to estimate the amount of time that a
Markov process has evolved, given only observations of the beginning and ending states. However,
the overall rate of substitution and the passage of time are intertwined in such a way that without
imposing additional assumptions, it is only possible to estimate their product, which measures the
mean number of substitution events expected to occur per site. Nevertheless, this quantity is often
referenced simply as “time”. Additional assumptions, such as a molecular clock, can allow one to
estimate the passage of time directly, but it turns out that such measures are rarely necessary, and
the assumptions needed are highly suspicious.

1.2.1 Introduction to Markov Processes

The behavior of a continuous-time Markov process on a state space with n elements, is governed by
a n× n transition rate matrix, Q. The off-diagonal elements of Q represent the rates governing the
exponentially distributed variables that are used to describe the amount of time that elapses before
a particular type of base substitution occurs. The ij-th element of Q represents the rate at which
characters in the i-th state are replaced with the j-th state. The rates are typically expressed with
respect to a dimensionless “time” variable, usually denoted t. The diagonal elements of the rate
matrix must be set such that every row in the matrix sums to zero.

The Q matrix can be used to compute a transition probability matrix, P (t). This probability
matrix, gives the probability that a character in the i-th state at the present time will be in state j
after the passage of time t. If we use X(t) to denote the state of a character time t in the future,
then P[X(t) = j|X(0) = i] = Pij(t). The transition probability matrix is related to the rate matrix
by the matrix exponential,

P (t) = exp(tQ).

An interesting property of these types of stochastic processes is that for certain classes of rate
matrices, P (t) converges to a fixed matrix as t → ∞, and furthermore the rows of the limiting
matrix may all be identical to a single vector, which we will denote π. When this occurs, it implies
that behavior of the process at large distances is independent of the starting state of the system; for
every possible starting state, in the far future the distribution governing the character state has the
probability masses specified by the vector π. This limiting distribution is called the stationary-state
(or equilibrium) distribution.

An interesting and useful property arises if a Markov process has a stationary distribution π
satisfying the following relationship with the rate matrix Q,

πiQij = πjQji,∀i, j. (1.1)

This is known as the detailed balance equation, and when it holds the process is reversible. If a
process is reversible, it means that once it has converged to the equilibrium distribution, the “arrow
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of time” disappears: there is no way to determine if a character’s process X(t) is indexed in the
‘proper’ direction, or if the time index has been reversed.

Reversibility turns out to be a desirable property if we want to study molecular evolution.
Consider a most-recent common ancestor, with two daughter lineages. If the processes describing
sequence evolution are reversible, then we do not need to consider the two lineages separately. The
reversibility means that we can treat the daughters as endpoints of one long Markov chain that goes
‘up’ one lineage to the MRCA, and back ‘down’ the other lineage. If the model was not reversible,
then this would not be a valid simplification. We would need to model each lineage discretely, in the
‘correct’ orientation from ancestor to descendant. All of the commonly used models are reversible,
greatly reducing the complexity of many calculations.

1.2.2 The Jukes-Cantor Model

The simplest model of DNA evolution is the Jukes-Cantor (JC or JC69) model. In addition to the
Markov process assumptions, it also assumes that there is a single transition rate that governs all
types of substitution [83]. This assumption implies a transition matrix of the form,

Q =


−1 1/3 1/3 1/3
1/3 −1 1/3 1/3
1/3 1/3 −1 1/3
1/3 1/3 1/3 −1

 .

We index the rows and columns of matrices for nucleotide models in the following order: adenine,
guanine, cytosine, and thymine/uracil. In this case it does not matter, but in subsequent models
this becomes important.

It turns out that if one takes the matrix exponential of tQ under the limit t→∞, one finds that
a stationary distribution for the JC model exists, and is uniform on all possible character states,
π = (1/4, 1/4, 1/4, 1/4).

Recall that Pij(t) = exp(tQ)ij represents the probability of transitioning to state j when be-
ginning in state i, if the time separating the sequences is t. Since the model is reversible, we can
use this matrix to look up the likelihood of observing a particular pair of characters in a sequence
alignment, assuming the sequences are separated by a time t. If the sites in the alignment are in-
dependent (as the JC model assumes), then the likelihood of the entire alignment is the product of
the individual site likelihoods. That is, if the character pair i, j occurs in the alignment nij times,
then the likelihood of the entire alignment is given by,

L(t) =
∏
∀i,j

Pij(t)nij .

For a variety of reasons, both theoretical and relating to numerical stability, it is more common to
work with the log-likelihood,

l(t) = logL(t) =
∑
∀i,j

nij logPij(t).

We are now in a position to use a sequence alignment to estimate the evolutionary time separating
the two sequences. We will do this by attempting to find the time t which maximizes the likelihood,
given the observed alignment data. It turns out that it is fairly easy to obtain a closed-form solution
for the JC problem. This solution is presented in many places (see, e.g., Pachter and Sturmfels
[125]), and we will not discuss it at length here, except to note the expression used to estimate the
JC distance between two sequences is

t = −3
4 ln

(
1− 4

3p
)
.

In this expression, the sufficient statistic p is the proportion of sites within the alignment which have
different characters.
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Although simple to understand and analyze, the Jukes-Cantor model, makes assumptions about
the nature of DNA evolution that are considered to be unreasonable by many biologists. As a
result, an increasingly complicated series of models has been developed which attempt to better
accommodate the properties of empirical sequences.

1.2.3 The Kimura 2-parameter Model

Kimura’s two-parameter model (K80) relaxes the JC assumptions by allowing for two different
substitution rates. The motivation for this generalization is based in the fact that nucleic acid
residues can be divided into two classes based on their chemical structure and properties, the purines
(adenine and guanine) and the pyrimidines (cytosine and thymine/uracil). Empirical results suggest
that it is significantly more likely for a replication error to result in a substitution with a nucleotide
from the same class as the original nucleotide (A↔ G or C ↔ T ). These types of substitutions are
called transitions, whereas substitutions with a nucleotide from the other class (all other types of
substitutions) are called transversions. For the K80 model, the matrix Q takes the form [184],

Q = 1
κ+ 2


− κ 1 1
κ − 1 1
1 1 − κ
1 1 κ −

 ,

where κ is a parameter controlling the ratio of the rate of the transition to that of transversion. It is
fairly common to suppress the diagonal elements of transition matrices, because they are completely
determined by the off-diagonal elements (so that the rows sum to zero), and are often complicated
expressions which do not serve to convey any important information about the system to a human
reader.

Like the JC model, the K80 model is reversible and has a stationary distribution that is uniform
on all possible nucleotides. It also is relatively easy to obtain a closed-form solution to the maximum
likelihood problem. If we let p be the proportion of sites showing a transition substitution and q be
the proportion showing a transversion, then a closed form estimate of the K80 distance between two
sequences is estimating using the following expression [183],

t = −1
2 ln(1− 2p− q)− 1

4 ln(1− 2q).

1.2.4 The Hasegawa, Kishino, and Yano 1985 Model

The Hasegawa, Kishino, and Yano (HKY) model is a further generalization of the K80 model. It
introduces additional parameters (the vector π) which allow the stationary distribution of charac-
ter frequencies to depart from uniform. This is an important degree of flexibility, because base
frequencies are known to vary significantly in nature, both between organisms as well as within a
single genome. For example, in the complete 12 million character genome of common baker’s yeast
(Saccharomyces cerevisiae) the base frequencies vary from 19% each for cytosine and guanine, to
31% each for adenine and thymine [10]. Such a significant variation from a uniform distribution
cannot reasonably be attributed to chance, and needs to be accommodated for by the model.

The rate matrix for the HKY model is

Q = β


− κπg πc πt
κπa − πc πt
πa πg − κπt
πa πg κπc −

 .

In this expression, κ is again a parameter describing the ratio of the rate of transitions to that
of transversions, πi are the equilibrium base frequencies for i ∈ {A,C,G, T}, and β is a constant
which normalizes the rate to one overall. Although we could try to simultaneously optimize the log-
likelihood over t, κ, and π, it is more common to estimate the base frequency distribution separately,
and optimize only the parameters t and κ. The reason for this is that we often want to compute
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pairwise distances between all sequences in a multiple sequence alignment, and in this case the
equilibrium frequencies must be shared by all sequences. Thus, it makes more sense to estimate the
base frequencies once, using all of the available sequence data. This leads to more precise estimates
of the base frequencies, as well as enforcing a common equilibrium distribution for the entire multiple
alignment.

For models which allow base frequencies to depart from the uniform distribution, the rate nor-
malizing constant for the rate matrix, β, is more complicated than in previous models. As before,
it must be chosen so that the average rate of substitution is 1, but it must take into account the
non-uniform base frequency distribution found in the alignment. For any reversible Q matrix, the
normalizing constant is given by the following equation [98],

β = −1/
∑
i

πiQii.

1.2.5 The Tamura-Nei 1993 Model

The Tamura-Nei 1993 (TN93) model expands slightly on the HKY model by adding a third substi-
tution rate category. The three rate classes in the TN93 model are: A ↔ G substitutions, C ↔ T
substitutions, and transversion substitutions. Thus, the TN93 rate matrix has the form,

Q = β


− κ1πg πc πt
κ1πa − πc πt
πa πg − κ2πt
πa πg κ2πc −

 ,

where κ1 and κ2 are parameters for two different types of transition and πi is the base frequency of
the state i.

1.2.6 The General Time Reversible Model

The General Time Reversible Model (GTR) model is the most flexible model of nucleotide substi-
tution which preserves the time-reversibility of the Markov process [168]. It allows for all types
of character substitution to occur at a distinct rate, as well as allowing for arbitrary equilibrium
frequencies. See Tavaré [168] for the details.

1.2.7 Common Model Extensions

There are a few extensions that are sometimes added to any of the previously mentioned substitution
models. These extensions are motivated by features commonly observed in empirical sequences that
are not well fitted by any of the probabilistic models discussed thus far.

The first model extension allows for certain character sites to be classified as invariant. An
invariant site is one where all substitutions are forbidden. This is motivated by the assumption
that certain positions in a sequence are more important to the sequence function than others, and
thus these sites experience strong purifying selection. A simple example of such a site is the region
of a sequence which initiates or terminates protein translation. If these regions are disturbed by a
mutation, there is little chance that the biological function of the sequence will be preserved in any
meaningful way. Thus, mutations at these sites are assumed to be almost totally forbidden.

The second important possible model extension, Γ rate categories, is intended to account for the
fact that different sites in a sequence might evolve at different rates overall. For example, DNA
sequences are translated into amino acid sequences in in groups of three characters at a time. (e.g.,
the DNA sequence ATG translates into the amino acid methionine.) These sets of DNA base triplets
are called codons. There are 43 = 64 possible codons, but only 20 amino acids and a translation
termination signal need to be encoded. The encoding is therefore redundant, with each amino acid
encoded by an average of 3 different codons. (However, the redundancy varies from only a single
encoding for the cases of methionine or tryptophan, to six encodings each for arginine, leucine, and
serine.)
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An interesting fact about the encoding is that the codons are not assigned to the amino acids
in a random manner. When multiple codons encode a single amino acid, it is quite likely that the
redundant encodings share common first and second characters, only varying in the third position.
Conversely, changes at the second position are almost certain to result in a change in the translated
sequence. For example, consider the codon CTT, which encodes the amino acid leucine. The third
character can be freely substituted and the new codon will still translate to leucine. However, a
substitution at the second position always changes the encoded amino acid.

Thus, substitutions at the second position in a codon should be subject to greater selective
pressures than changes at the third position. These differences in selective pressure between the
three codon positions should logically lead to differences in the overall substitution rate at each
position. In the Γ model extension, a mixture of several scaled rate processes is used to model these
disparities in substitution rate.

When calculating substitution probabilities, each category is allowed to scale the substitution rate
matrix, Q, by a different constant, with the constraint that the combined total rate of substitution
across all sites must remain equal to 1. The name of the extension is a reference to the fact that the
scaling constants are obtained from quantiles of a mean-1 Gamma distribution. The user typically
must specify both the number of categories as well as a constant (often named α, or the “shape
parameter”) which governs the variance of the mean-one Γ distribution used.

The use of these model extensions is typically indicated by the presence of “+I” or “+G” after
a model code. For example, HKY+I+G means the HKY model was used with both the invariant
sites and the Γ categories extensions. For more information, see Pachter and Sturmfels [125].

1.3 Reconstructing the Tree

Systematists often make inferences about the phylogenetic tree relating a set of organisms using a
sequence alignment as input data. Many algorithms have been proposed for accomplishing this task,
some are based explicitly in statistical methodology, whereas others are justified in other ways. In
this section we briefly introduce several classes of methods for reconstructing a phylogenetic tree
from a sequence alignment.

1.3.1 Distance-Based Methods

The distance-based methods of tree reconstruction work by first computing a pairwise distance matrix
for the sequences in an alignment. The tree is then produced by a second algorithm, using only the
distance matrix as input. This is in contrast to the other methods we shall discuss, which involve
sequence alignment directly in the tree reconstruction algorithms.

A distance matrix is a non-negative, square, symmetric matrix with elements corresponding to
estimates of some pairwise distance between the sequences in a set. The simplest definition distance
uses the proportion of homologous sites in an alignment with differing characters, and is called the
p-distance, or Hamming distance. Although the p-distance is simple to calculate and understand, it
is more common to use one of the probabilistic definitions of evolutionary distance discussed in the
previous section when producing the distance matrix.

Neighbor Joining.— The neighbor joining (NJ) method of tree reconstruction begins with a com-
pletely unresolved (star) tree and attempts at each step to further resolve the tree by adding a node
which joins the most closely related nodes in the tree, as determined by a distance matrix. A new
distance matrix is then computed where the rows and columns associated with the two newly joined
taxa are replaced with new entries relating to to the new interior node, and the process is repeated
until the tree is fully resolved.

The NJ method was developed by Saitou and Nei [149], and has been discussed extensively in
other publications. We will not present details of the algorithm here, but rather refer interested
readers to Haws et al. [64] for a fuller discussion. The related BIONJ algorithm of Gascuel [56]
claims to offer improved performance when used on highly divergent alignments, as well as being
capable of handling distance matrices with missing elements.
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The NJ algorithm is among the fastest available methods of tree reconstruction. However, it does
suffer from some drawbacks; particularly problematic is a lack of statistical consistency in certain
situations. (A method is statistically consistent if it is almost certain to converge on the correct
tree as the alignment length grows to infinity.) For these reasons, NJ is most often used to quickly
obtain reasonable trees which can be used as starting locations for more computationally intensive
tree reconstruction algorithms, such as the Maximum Likelihood or Bayesian methods.

Balanced Minimum Evolution.— Balanced minimum evolution is a tree reconstruction method which
is roughly analogous to the least-squares method of fitting curves to observed data points [39]. As
the name suggests, candidate trees produced by the BME computations are compared using the sum
of their branch lengths (a measure of the total amount of evolution required to produce the tree),
with smaller trees being considered superior. The principle of Occam’s razor is typically cited as a
rationale for this method of comparison.

The BME method describes a method of assigning lengths to the branches of an arbitrary tree
topology in a way most compatible with a given (fixed) distance matrix, and which takes into account
the fact that the variance of the pairwise distance estimates is smaller for closely related sequences
than for highly divergent ones. Finding the optimal tree then involves finding the tree topology
on which the total sum of the branch lengths is minimized. Fortunately, there is a simple and fast
method of computing the total length of the branches on any given topology (actually computing
all branch lengths is not required), known as Pauplin’s Formula.

Unfortunately, unless the number of taxa in the tree is very small, a complete census of the possi-
ble topologies is infeasible. Not only is a complete search of the space of topologies computationally
intractable, but there is no known way to reduce the computational complexity of the BME search
to a reasonable level while also guaranteeing that the optimal solution is found [36]. Despite this,
several fast heuristic algorithms have been developed that provide fairly good solutions to the BME
problems, but without the guarantee that the globally optimal topology has been found. Desper
and Gascuel [39] is an example of one such algorithm.

1.3.2 Maximum Parsimony

The maximum parsimony (MP) method, like BME, is a method that attempts to select a tree
topology by minimizing the amount of evolution required to explain the inferred alignment. As
such, it shares the drawbacks associated with the need to search the entire space of possible tree
topologies. (Namely, there is no known method of easily obtaining a definitive solution.) However,
unlike BME, it is not a distance-based method, but rather uses the entire sequence alignment in the
calculation.

The principle underlying the MP tree is simple: For any given topology we assign sequences to
the internal nodes of the tree in a way that minimizes the total number of base substitutions that are
required to occur on the entire tree. This total number of base substitutions is used as the criterion
by which a tree topology is selected. It should be noted that the MP method has the additional
advantage of producing an estimate of the ancestral sequences as a byproduct of the computation,
something that the distance-based methods do not do.

1.3.3 Methods explicitly based on probability models

The tree reconstruction methods discussed up to this point are not explicitly based on any prob-
abilistic models of sequence evolution, although they may do so implicitly through the pairwise
distance matrix. Conversely, the methods in this section are explicitly based on probability models,
and the techniques used to obtain phylogenies are similarly grounded in statistical theory.

Maximum Likelihood.— The maximum likelihood (ML) methods of tree estimation share much of the
theoretical machinery introduced in Section 1.2. However, instead of attempting to model a single
Markov process connecting a pair of homologous characters, the ML methods posit a collection of
Markov processes, one for each branch on a tree. Given a tree topology and an alignment, the ML
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methods attempt to assign branch lengths to the tree in such a way that the overall likelihood of
the collection of Markov processes is maximized.

The calculation of the likelihood over an entire tree is significantly more complicated than in the
case of a single pair of sequences, since the effect on the likelihood of branch lengths and internal
character states are all highly interdependent. Fortunately, Felsenstein [50] developed an efficient
pruning algorithm which greatly simplifies the calculation of the likelihoods.

Like the BME and MP algorithms, a ML tree is produced by searching for the combination of
topology and branch lengths that maximize the likelihood value. Although no fast algorithm is
known which is guaranteed to locate the global maximum value, several heuristic search methods
are commonly used to explore the space of possible trees.

Bayesian Methods.— The primary alternative statistical approach to tree reconstruction is the
Bayesian method. Like all Bayesian methods, the basic premise is to make inferences based on
a posterior distribution of the relevant model parameters. In this case, the tree topology and branch
lengths. The posterior distribution is computed from a model of substitution and a prior distribu-
tion π on the model parameters, using Bayes formula for reversing a conditional probability. Within
the Bayesian framework, the prior distribution encodes the user’s prior beliefs about what form the
correct tree might take. However, in practice, little progress has been made in allowing biologists
to reasonably specify priors on the space of trees. This lack of ability to specify priors has resulted
in most papers utilizing one of a few basic prior distributions. The most common is probably a
uniform distribution on the topology combined with exponential distributions for the edge lengths.

Although direct computation of the posterior distribution is usually impossible, due to the pres-
ence of a thoroughly intractable integral over the entire space of tree topologies, there is a fairly
good method of obtaining a sample from the posterior known as the Metropolis-Hasting algorithm.
The Metropolis-Hasting algorithm describes a method of implementing a discrete time Markov chain
which generates (correlated) samples from arbitrary density functions, even if the normalizing con-
stant for the density function is unknown [98]. This algorithm is one of the main workhorses in the
class of methods known as Markov Chain Monte Carlo (MCMC).

The MCMC methods generate a sample of trees from the posterior distribution, and then use
this sample as the basis of inferences about the true tree [78]. For example, a common Bayesian
method of inferring the topology of a tree is to select the topology which occurs most commonly in
the posterior sample, i.e., the posterior mode. The programs BEAST [16] and Mr. Bayes [78] are
the most commonly used implementations of Bayesian tree reconstruction at the present time [43].

1.4 Model Selection

In Section 1.2, I presented a number of possible probability models of sequence evolution. The choice
of probability model has the potential to change radically, not only the branch lengths, but also the
topologies of any reconstructed trees. This naturally leads to the question: Which substitution
model should one use when reconstructing a tree?

The question of model selection is a problem that has a rich history in statistical literature.
Although one can always improve the fit to observed data by adding degrees of freedom to the
model, such flexibility comes at a cost: a decrease in the precision of the model parameter estimates,
and an increase in the amount of computational effort required to obtain them. Although a model
which is too simple will typically result in biased inferences, a model which is too complex also
often fails to be useful. In such “overfitted” models, the behavior of the parameter estimates is
dominated by the statistical noise present in the data, making it difficult to observe any systematic
patterns that may be present. In addition, models with many parameters are difficult for a human to
meaningfully interpret, and usually perform quite poorly when used for predictive purposes, greatly
limiting their utility.

Two popular methods of model selection, both of which have long histories in statistics are the
Likelihood Ratio Test (LRT, also known as a χ2 test, due to the asymptotic distribution of the
test statistic) [119], and the Akaike Information Criterion (AIC) [3]. A third popular method, the
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Bayesian Information Criterion (BIC), is sufficiently similar to AIC, both in calculation and use,
that we will omit any further discussion of it in the interest of brevity [26].

The Hierarchical LRT is essentially a forward-selection method. Beginning with the simplest
JC model, a sequence of increasingly complicated models is proposed, and a test is performed to
indicate if the resultant improvement in the fit of the model, as determined by the log-likelihood, is
sufficient to justify the increase in the number of parameters. One drawback of the LRT method is
that the series of models to be tested must nest into each other in some way, with each model in the
sequence being a generalization of the previous one.

The use of the AIC in model selection is simpler, because the requirement that the models nest
within each other is not needed. Any model for which we can obtain a likelihood can be tested
against any other, and the model with the smallest AIC value is deemed the best.

1.5 Distances between trees

As in the case of sequence analysis, there is no obvious answer to the question of how to quantify
the differences between a pair of phylogenetic trees. A tree distance is a function, d : Tn×Tn → R+
that has, at a minimum, the properties d(T, T ′) = d(T ′, T ) and d(T, T ) = 0, for all T, T ′ ∈ Tn.
There are numerous ways to define distances on the space of possible phylogenetic trees; some of
these methods have convenient analytic or computational properties, while others have more natural
biological interpretations.

Figure 1.2 depicts a pair of unrooted trees on five taxa. These trees T1 and T2 will be used
as examples to demonstrate the calculations for the methods presented subsequently. If a distance
measure does not require branch length information, then they may be ignored.

In the subsequent descriptions, we use n to denote the number of terminal taxa (or leaves) in the
tree. The space of all possible trees on n taxa is called Tn. This space may or may not incorporate
branch length information, and the trees may or may not be rooted, depending on the context. We
use || · || to represent the usual Euclidean length of a vector, and | · | to indicate the cardinality of
a set. The symmetric difference between two sets is defined as A 	 B := (A\B) ∪ (B\A). Many
methods also require a vectorization function, v : Tn → Rp, for some p, mapping phylogenetic trees
into Euclidean space.

Splits.— A split is a bipartition of the set of leaves of a tree. A tree T is said to contain split s, if
it is possible to remove an edge from T and form two sub-trees with leaves matching the bipartition
specified by s. For example, s = {abc|de} (sometimes shortened to simply abc when the context is
clear), is one possible split of the leaves from the example trees. If we consider the example trees
introduced in Figure 1.2, we find that split s is contained in T1, since by removing the branch with
length 2.2, two trees with the correct partitioning of leaves are formed. Conversely, s is not found
in T2; there is no way to remove a branch and obtain the desired bipartition.

Quartets.— Given any tree with more than 4 leaves, it is possible to form subtrees by pruning the
tree down in various ways until it contains only 4 leaves. Such a subtree is called a quartet of
the original tree. Each quartet contains a single non-trivial split, obtained by removing the single
interior branch. Since there are three possible unrooted topologies for each quartet, the splits which
they define carry information about the topology of the complete tree.

We say that a tree T contains the quartet {ab|cd} if the quartet comprising the listed nodes
contains the given split. For example, T1 contains the quartets {ab|de} and {ab|cd}, but not the
quartet {cd|be}. T2, on the other hand, contains all three of these quartets.

1.5.1 Squared Euclidean Distances

A tree distance d(·, ·) is squared Euclidean if there is a vectorization function v and a positive constant
c, such that for all T, T ′ ∈ Tn the following relationship holds,

d(T, T ′) = c · ||v(T )− v(T ′)||2. (1.2)
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Several popular tree distances are squared Euclidean distances as will be demonstrated below.

Robinson–Foulds distance.— Let S(T ) denote the set of splits found in tree T . The normalized
Robinson-Foulds (RF) distance is defined as half of the size of the symmetric difference between the
sets of splits for the trees,

dRF (T, T ′) := 1
2 |S(T )	 S(T ′)|.

The RF distance is a squared Euclidean distance, since we may define a vectorization function
vRF : Tn → R2n−1−1 where the components of vRF form an enumeration of the indicator functions
on all possible tree splits. In other words, for each possible split of the leaves, A|Ac, there is an
element of vRF (T ) which is 1 if A|Ac ∈ S(T ), and zero otherwise. Thus, subtracting v(T ) − v(T ′)
gives a vector where each element is non-zero if, and only if, the the corresponding split is contained
in one tree, but not the other. It should be clear that the squared magnitude of this vector satisfies
is equivalent to the number of such splits, and is thus equivalent to the Robinson–Foulds distance.

Revisiting the example trees, if the coordinates of vRF are associated with the possible splits in
the following way,

(a, b, c, d, e, ab, bc, ac, cd, bd, ad, de, cd, bd, ae),

then the trees T1 and T2 from Figure 1.2 are vectorized

vRF (T1) = (1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1),
vRF (T2) = (1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0).

With these vectors, it is simple to calculate the normalized RF distance by applying Equation 1.2
and we find dRF (T1, T2) = 1.

Note that it is somewhat common for authors or programs (e.g., PHYLIP) to define the RF
distance as the size of the symmetric difference without the normalizing constant 1

2 . When comparing
RF values from different sources it is important to determine if the conventions used are compatible.

Quartet distance.— Let Q(T ) be the set of quartets in a tree T . The quartet distance [48] is defined
as a half of the size of the symmetric difference of quartets,

dQ(T, T ′) := 1
2 |Q(T )	Q(T ′)|.

As in the case of the RF distance, dQ can be written as a squared euclidean distance such that
using a vectorization function vQ : Tn → R3(n4). This function maps tree T to the 0/1 vector
vQ(T ) whose entries are indicator functions of all possible quartet splits in T . For example, if the
coordinates of vQ are ordered in the following way,

(ab|cd, ac|bd, ad|bc, bc|de, bd|ce, be|cd, ab|ce, ac|be, ae|bc, ac|de, ad|ce, ae|cd, ab|de, ad|be, ae|bd),

then our example trees T1 and T2 from Figure 1.2 are vectorized as,

vQ(T1) = (1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0),
vQ(T2) = (1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0).

The distance between T1 and T2 is easily computed to be

dQ(T1, T2) = 1
2 ||vQ(T1)− vQ(T2)||2 = 2.

Dissimilarity map distance.— Given any tree T of n leaves with branch length information, one may
produce a corresponding distance matrix, D(T ). The distance matrix is a n×n symmetric matrix of
non-negative real numbers, with elements corresponding to the sum of the branch lengths between
pairs of leaves in the tree. To calculate D(ij)(T ), one simply determines which edges of the tree form
the path from leaf i to leaf j, and then sums the lengths of these branches.
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SinceD(T ) is symmetric and has zeros on the diagonal, the upper-triangular portion of the matrix
contains all of the unique information found in the matrix. We can vectorize T by enumerating this
unique portion of the distance matrix,

vD(T ) := (D12(T ), D13(T ), . . . , D23(T ), . . . , Dn−1,n(T )).

The squared dissimilarity map distance is defined to be

dD(T ′, T ) := ||vD(T )− vD(T ′)||2.

A discussion of the dissimilarity map distance can be found in Buneman [25].
If we order the columns and rows of the distance matrix alphabetically, then the example trees

are vectorized as
vD(T1) = (2.6, 5.0, 7.0, 6.8, 5.2, 7.2, 7.0, 5.0, 4.8, 2.4),
vD(T2) = (3.6, 5.1, 7.4, 6.8, 5.7, 8.0, 7.4, 5.5, 4.9, 2.8).

From this point, computing the distance between the trees is simple,

dD(T1, T2) = ||vD(T1)− vD(T2)||2 ≈ 2.64.

Path difference.— The RF and Quartet distances are completely determined by the topologies of
the trees, ignoring any edge lengths that may be present. Conversely, the dissimilarity map distance
requires that the edge lengths be defined. The path difference distance dP is a distance analogous
to the dissimilarity map, but which does not require edge length information.

The calculation of the path difference is identical to the dissimilarity map, except that elements
in the distance matrix D(T ) are determined by counting the number of edges between the leaves,
rather than summing the edge lengths. (This is equivalent to the dissimilarity map distance with
all edge lengths in the tree set equal to 1.) The path difference is studied and compared with the
RF distances by Steel and Penny [161].

Using the same vector ordering as in the dissimilarity map example, we find that the path
difference vectorizations of our example trees are

vp(T1) = (2, 3, 4, 4, 3, 4, 4, 3, 3, 2),
vp(T2) = (2, 4, 4, 3, 4, 4, 3, 2, 3, 3).

The path difference is therefore, dp(T1, T2) = ||vp(T1)− vp(T2)||2 = 6.

1.5.2 Tree rearrangement distances

All of the tree distances discussed so far can be understood in terms of vector magnitudes in some
Euclidean space. The distances discussed in this section are defined in a different way: Given
a certain class of tree rearrangement operations, the distance between two trees is the minimum
number of steps needed to transform one tree into another. These distances are all topological
distances; they ignore any edge length information the trees may contain.

Nearest-Neighbor-Interchange distance.— For each internal branch in a tree, there are three possible
configurations for the connected subtrees, as shown in Figure 1.3. A NNI operation operation (also
known as a tree rotation) makes a small change to the topology of the tree by exchanging two
adjacent subtrees, forming one of the alternative topologies [144]. The NNI distance between two
trees is the minimum number of such moves required to transform one tree into the other. Although
conceptually simple, computing the NNI distance is a NP-hard problem [35].

For instance, each of the example trees can each be rotated about the length 2.2 branch, ex-
changing the leaves c and e, to form the other tree. Thus, the trees are separated by a NNI distance
of 1.
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Figure 1.3: A nearest-neighbor interchange (NNI) move begins by selecting an internal branch from
the tree. The selected internal branch defines four subtrees, which are represented in simplified form
by different shapes. These four subtrees may be arranged in one of three possible topologies. The
NNI move is completed by exchanging two of the subtrees, forming one of the alternative topologies.

Figure 1.4: A subtree-prune-and-regraft (SPR) move: [Left] A subtree is selected and pruned from
the main tree. [Middle] A branch is chosen from the main tree to receive the subtree. [Right] The
subtree is regrafted onto the main tree.

Subtree-Prune-and-Regraft distance.— Like the NNI distance, the Subtree-Prune-and-Regraft (SPR)
distance is defined by a minimum number of operations required to transform one tree into another.
The steps of a SPR move are depicted in Figure 1.4. Succinctly, a subtree is pruned from the main
tree, and then reattached to the middle of an edge elsewhere in the tree. An NNI move is a special
case of an SPR move, where the detached subtree can only be moved to one of two possible locations.

Unfortunately, computing the SPR distance also is a NP-hard problem [71]. However, since a
NNI move is also a SPR move, we know that that the example trees are also separated by SPR
distance 1.

Tree-Bisection-and-Regrafting distance.— A further generalization of SPR, tree bisection and regraft-
ing (TBR) operations on trees can also be used to define tree distances [155]. In a TBR operation
the pruned subtree can be reattached to the main tree in a more general fashion than in a SPR
move. An example of a TBR move is depicted in Figure 1.5. Like the other distances in this section,
the TBR distance is defined as the minimum number of such moves required to transform one tree
into another. Computation of the TBR distance is also NP-hard [4]. However, in the case of our
example trees, the distance is also 1, since TBR is a generalization of both SPR and NNI.
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Figure 1.5: A tree-bisection-and-regraft (TBR) move: [Left] The tree is bisected by removing an
internal branch. [Middle] Two branches are chosen from the resulting subtrees. [Right] The two
branches are regrafted together in one of the three possible topologies.

Disagree distance.— Steel and Penny [161] also describe a quantity they name the disagree distance.
This distance is defined by the minimum number of taxa that must be removed from the phylogeny
before the trees become congruent. For example, for our example trees are separated by a disagree
distance of 1, because removing any one of the taxa c, d, or e, results in the trees being topologically
congruent. Puigbó, Garcia-Vallvé, and McInerney [138] present an algorithm for computing the
disagree distance.

1.5.3 Other tree distances

This section contains a few other notable tree distances which do not fall into any of the previous
categories.

Matching splits distance.— A recently introduced distance is the matching splits distance, developed
by Bogdanowicz and Giaro [14]. Roughly speaking, the matching splits distance refines the RF
distance by allowing splits to partially match each other when a portion of the split is shared by
both trees.

Maximum Parsimony distance.— Fischer and Kelk [52] introduced a notion of the Maximum Par-
simony (MP) distance between phylogenetic trees. The MP distance between trees is simply the
difference between the MP scores of the given trees.

1.6 Billera-Holmes-Vogtmann Treespace

Billera et al. [13] introduced a continuous metric space which can be used to model the set of
phylogenetic trees with edge lengths on a fixed set of leaves. The Billera-Holmes-Vogtmann (BHV)
tree space is not Euclidean, but it is non-positively curved. Such a space is known as a CAT(0), or
Hadamard, space, and such spaces have the property that any two points are connected by a unique
shortest path through the space, called a geodesic. The distance between two trees is defined as the
length of the geodesic connecting them.

Consider a rooted tree with n leaves. Such a tree has at most 2n− 2 edges; there are n terminal
edges, which connect are connected to leaves, and as many as n− 2 internal edges. The maximum
number of edges is achieved when the tree is binary, but the number of edges can be lower if the
tree contains any polytomies (vertices with degree greater than 3). With each distinct tree topology,
we associate a Euclidean orthant, of dimension equal to the number of edges that the topology
possesses. (Here, we may regard an orthant to be the subset of Euclidean space with all coordinates
non-negative.) For each topology, the orthant coordinates correspond to edge lengths in the tree.

Before continuing, we should note that all tree topologies have the same set of n terminal leaves,
and each of these leaves is associated with a single terminal edge. A consequence of these facts is that
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the portion of the BHV space which corresponds with the leaf edges is equivalent to the Euclidean
orthant Rn+, and furthermore the entire BHV space is the cartesian product of that Euclidean orthant
with a non-Euclidean space representing the internal structure of the tree.

Since the information contained in the terminal edge lengths is, in a sense, orthogonal to the part
of the space encoding the topological structure of the trees, we will often simplify our discussion by
ignoring the terminal edge lengths, and concern ourselves primarily with the portion of each orthant
which describes the internal edges. (Recall that this space has at most n − 2 dimensions.) Even
though we will often make this simplification, we should keep in mind that we could reincorporate
the leaf edges without any serious complication.

With this simplification, each of the coordinates in our simplified orthant corresponds to the
length of one of the internal edges in the tree. The orthant boundaries (where at least one coordinate
is zero) thus represent trees with collapsed internal edges, or in other words, trees with polytomies.
These points can be thought of as as corresponding to trees with slightly different (but closely
related) topologies. The BHV space is constructed by noting that the boundary trees from two
different orthants may describe the same topology. With this insight, we may set about constructing
the space by grafting orthant boundaries together when the topologies of the trees they represent
coincide.

Figure 1.6 depicts a portion of the BHV space on rooted trees with 4 leaves, which we denote
T4. The depicted portion of the space includes five orthants (topologies) and the structure of the
connections between them. Since rooted binary trees on four leaves have two internal nodes, the
space consists of two dimensional orthants. Each point within an orthant corresponds to the tree
with its associated topology and given internal edge lengths. The origin of each orthant corresponds
to the tree with no internal edges (the star tree), and the boundary rays correspond to trees where
one edge is collapsed, forming a single internal node with three children.

While it is not possible to depict the entire space T4 in a two dimensional space in the manner of
Figure 1.6, it is possible to represent the complete structure of the grafting, as is done in Figure 1.7.
In this graph, each edge represents a continuous path through a single orthant, from one boundary
ray to the other. Conceptually, this path is formed by exchanging length between the internal
edges of the tree. If two edges are joined by a node, then there are trees along the boundaries of
the orthants which share a common (polytomic) topology. These boundaries are grafted together,
making it possible to form a continuous path between the two orthants.

If two trees are within the same orthant, then we define the distance between them using the
Euclidean distance between the corresponding points. However, if the trees have different topologies,
then things become more difficult. In Figure 1.8 we have plotted the example trees (by arbitrarily
designating node e as the root) onto the portion of the space from Figure 1.6. One possible continuous
path between any two trees can be formed by shrinking the internal nodes of one tree down to zero
(forming the star tree), and then expanding the tree again in the correct topology. This path is
called the cone path and is depicted by the dotted line.

However, there is a shorter path connecting the trees, in which only one internal edge is collapsed
and the resulting polytomy can be resolved directly into the topology of the other tree. This path
is depicted by the solid line. Considering only these two options, it is clear that cone path is longer.
However, we have yet to establish that we have, in fact, found the shortest among all possible paths.

Since each orthant is locally a Euclidean space, the shortest path between two points within a
a single orthant is a straight line. The difficulty comes in establishing which sequence of orthants
joining the two topologies will contain the geodesic. In the case of four leaves, we could do this
through a brute-force search, but we cannot hope to do so with larger trees. Owen and Provan [124]
present a quartic-time algorithm (in the number of leaves) for finding the geodesic path between any
two points in the space. Once the geodesic is known, computing its length—and thus the distance
between the trees—is a simple matter.

1.7 Statistical methods for testing congruency between trees

Another fundamental problem within systematics is how to characterize differences between phylo-
genetic trees. For example, conflicting phylogenies arise when different phylogenetic reconstruction
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Figure 1.6: A portion of the space of rooted trees with 4 leaves. The space is formed by grafting
together orthants, each corresponding to a particular topology. The full space contains several
additional orthants, and is depicted schematically in Figure 1.7.
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Figure 1.7: A schematic representation of the full space of trees on four leaves, forming a Petersen
graph. Each edge represents a rooted binary tree topology, and each node represents the grafting
together of orthant boundaries from the connected topologies. The portion of the graph depicted in
Figure 1.6 is bolded.
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Figure 1.8: If we relabel leaf e as the root, then we can plot our example trees in the reduced
tree-space. (The orthants shown correspond to the same topologies as in Figure 1.6.) The cone path
between the trees is shown as the dotted line. The shortest path connecting the trees is called a
geodesic, and is plotted as the solid black path.
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methods are applied to the same data set, or even with one reconstruction method applied to mul-
tiple different genes. Gene trees may be considered to be codivergent by virtue of exact congruence
or simply because they are insignificantly incongruent. Conversely, one may conclude that a set of
trees displays a significant incongruence [110]. All of these outcomes are fundamentally interesting.
Congruence of gene trees (or subtrees) is often considered the most desirable outcome of phyloge-
netic analysis, because such a result indicates that all sequences in the clade are orthologs (homologs
derived from the same ancestral sequence without a history of gene duplication or lateral transfer),
and that discrete monophyletic clades can be unambiguously identified. In contrast, gene trees that
are incongruent are often considered problematic because the precise resolution of speciation events
is apparently unclear. This suggests that the ability to identify significant incongruence within sets
of gene trees would be useful and interesting, since these events represent non-canonical evolutionary
processes [111, 46, 107, 106].

The most common pattern of gene trees in genome evolution is one of codivergence, the parallel
divergence of ecologically associated lineages [128, 130, 162, 32, 93]. However, deviations from
codivergence are known to exist and can include gene duplications; lateral interspecific gene transfers;
retention of ancestral sequence polymorphisms through speciation events through the action of
balancing selection; loss of a particular gene within some populations; or accelerated evolution by
neofunctionalization, i.e., the gain of novel gene function through sequence divergence by a duplicate
copy of a progenitor gene. These six commonly recognized types of evolutionary events all represent
different biologically interesting phenomena which may be interesting to study in a variety of contexts
[126].

In addition to these six scenarios, there is another phenomenon known to systematists which
tends to cause incongruence within a set of trees known as long-branch attraction (LBA). LBA is
an erroneous grouping of two or more long branches as sister groups due to methodological artifacts
[11]. It was shown in Page and Holmes [131] that the problem of LBA may be severe in the case of
trees for four sequences but it may not be as problematic in the case of trees with larger numbers
of taxa.

However, recently Fares et al. [49] showed that positive selection for increased expression and
consequent rapid cell growth after a whole-genome duplication event, subsequent rearrangements,
and later gene loss might be the cause of LBA artifacts in phylogenetic trees discussed in the yeast
literature. These artifacts could be the cause of conflicting topologies among neighbor-joining (NJ)
trees reconstructed from alignments at different loci. In addition, Kück et al. [95] showed that the
LBA affects the maximum likelihood estimation of a phylogenetic tree, even in the event the correct
model is used. Differences in selection pressure across the genome has also been suggested as a cause
for gene tree incongruence [145, 30].

Deviations from strict phylogenetic codivergence of genes within a genome generally elicit con-
siderable interest in the scientific community and even in the public. The notion of lateral (or
horizontal) gene transfer (LGT) is an excellent example. Claims of LGT between very distantly
related organisms (e.g., taxonomic domains or kingdoms) regularly appear in high profile publica-
tions, and the possibility also underlies many public concerns about genetically modified organisms
[86], or the potential emergence of new pathogenic “superbugs” that defy many types of antibiotics
[120]. Given these important concerns for medicine, agriculture and the environment, additional
methodology which assesses possible cases of evolutionary processes such as LGT are sorely needed.

Much of the evidence for LGT so far has been controversial, especially for eukaryotes [150, 160].
Such claims generally involve first an assessment to check whether the sequence in question is grouped
within a clade dominated by homologs from another kingdom. Subsequent statistical tests typically
compare alternative tree topologies [141, 89], but the underlying assumption remains untested;
that is, it remains unclear whether the tree is actually indicative of LGT rather than some other
evolutionary process that would also cause deviation from the species tree. For example, paralogy
and gene loss are not tested statistically even though such processes are consistently evident in gene
trees touted as evidence of LGT. In prokaryotes, LGT of plasmids and mobile genomic islands (e.g.,
pathogenicity islands) evident from phylogenetics have been experimentally substantiated [105],
but even in these cases a variety of other evolutionary processes undoubtedly operate on these
elements. Thus, it would be highly beneficial to move beyond the identification of disparities between
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phylogenies of genes and genomes or hosts and parasites, and to elucidate the most likely causes of
those disparities by means of explicit statistical tests for different processes underlying gene/genome
coevolution and host/parasite coevolution.

While there has been a well-established understanding of the discordant phylogenetic relation-
ships that can exist among independent gene trees drawn from a common species tree [133, 166, 110,
15], phylogenetic studies have only recently begun to shift away from single gene or concatenated
gene estimates of phylogeny towards these multi-locus approaches [28, 181, 12, 68, 169]. These newer
approaches focus on the effect of genetic drift in producing patterns of incomplete lineage sorting and
gene tree/species tree discordance, largely using coalescent theory [146, 147, 38, 108, 91, 180, 170].
These theoretical developments have been used to reconstruct species trees from distributions of
estimated gene trees [111, 29, 46, 115, 148, 92, 179, 2, 75].

In statistics, one possible relationship between gene and species trees is well-understood in terms
of the coalescent processes [87, 67]. However coalescent models usually assume that genes cannot be
transferred between members of different species. Just as host switching can cause parasite trees to
disagree with host trees, LGT can cause gene trees to disagree with species trees. Combinatorially,
these mechanisms correspond to subtree prune and regraft (SPR) operations [155]. Many techniques
have been developed to compare gene trees [106, 46, 5, 57, 172, 88, 171, 100], and host and parasite
trees [42, 153, 76, 61].

The increased use of multi-locus data sets for phylogenetic reconstruction has increased the need
to determine whether a set of gene trees significantly deviates from the phylogenetic patterns of other
genes. Motivated by this problem, there has been significant work devoted to the development of sta-
tistical methods for testing hypotheses of discordance between the trees in a collection. For example,
the Bayesian estimation methods [106, 46, 5], the Templeton test implemented in paup* [165, 57],
the partition-homogeneity test (PHT) also implemented with paup* [172], Kishino-Hasegawa test
[88], and the likelihood ratio test (LRT) [171] are statistical methods to see if there is a “significant”
level of incongruence between the trees (these methods are also called partition likelihood support
(PLS) [100]).

On the other hand, the methods which are used in the host-parasite analysis aim to test whether
there is a “significant” level of congruence between the trees. Since Henning [69] (see also a nice
summary of works in Dowling et al. [42] and the references within), there have been many studies
analyzing host-parasite cospeciation. For example, the LRT of Huelsenbeck et al. [77], applying the
Markov chain Monte Carlo (MCMC) techniques for estimating lateral transfers as in Huelsenbeck
et al. [76], methods that compare trees’ pairwise distance matrices, (e.g., by the Mantel test [61],
ParaFit [101], and [152]), Brooks parsimony analysis (PSA) [20, 21, 22, 24, 23], and PSA [41],
implemented in the software TreeMap [127, 129], are statistical methods to test if there is codivergence
between trees.

1.8 Organization of this dissertation

The remainder of this dissertation is a series of manuscripts which attempt to address some of these
problems by developing novel methods for the analysis of sets of phylogenetic trees. Chapter 2
develops a technique applicable to the BHV tree space which allows us to quickly screen a set of
phylogenetic trees for potential outliers. This method is modeled on the kernel density techniques
of nonparametric statistics. Chapter 3 presents a refinement of this method, where we address an
issue arising in BHV space which does not occur in the Euclidean spaces where kernel methods are
typically carried out: the volume of a kernel in BHV space depends not only on the bandwidth
of the kernel, but also on the location of the kernel within the space. Chapter 4 presents a wholly
different approach to the problem of analyzing sets of trees which is modeled on the ideas of principal
component analysis. Finally, Chapter 5 presents a few possibilities for further projects based on the
techniques already presented. A glossary of symbols used in this manuscript may be found in an
appendix.

c© Grady Weyenberg 2015
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Chapter 2

kdetrees: Nonparametric Density Estimation for Phylogenetic Trees

This chapter consists of a manuscript that has been published as Weyenberg et al. [174].

Abstract

While the majority of gene histories found in a clade of organisms are expected to be generated by
a common process (e.g. the coalescent process), it is well-known that numerous other coexisting
processes (e.g. horizontal gene transfers, gene duplication and subsequent neofunctionalization) will
cause some genes to exhibit a history quite distinct from those of the majority of genes. Such
“outlying” gene trees are considered to be biologically interesting and identifying these genes has
become an important problem in phylogenetics.

We propose and implement kdetrees, a nonparametric method of estimating distributions of
phylogenetic trees, with the goal of identifying trees which are significantly different from the rest of
the trees in the sample. Our method compares favorably with a similar recently-published method,
featuring an improvement of one polynomial order of computational complexity (to quadratic in the
number of trees analyzed), with simulation studies suggesting only a small penalty to classification
accuracy. Application of kdetrees to a set of Apicomplexa genes identified several unreliable
sequence alignments which had escaped previous detection, as well as a gene independently reported
as a possible case of horizontal gene transfer. We also analyze a set of Epichloë genes, fungi symbiotic
with grasses, successfully identifying a contrived instance of paralogy.

Our method for estimating tree distributions and identifying outlying trees is implemented as
the R package kdetrees, and is available for download from CRAN.

2.1 Introduction

A central problem in systematic biology is the reconstruction of the evolutionary history of popu-
lations and species from numerous gene trees with varying levels of discordance [19, 45]. Although
there is a well-established understanding that discordant phylogenetic relationships will exist among
independent gene trees drawn from a common species tree [133, 166, 110], phylogenetic studies have
only recently begun to shift away from single-gene and concatenated-gene estimates of phylogeny
in favor of multi-locus methods [28]. These newer approaches focus on the role of genetic drift in
producing patterns of incomplete lineage sorting and gene tree/species tree discordance, largely us-
ing coalescent theory [146, 147, 38]. These theoretical developments have been used to reconstruct
species trees from samples of estimated gene trees [111, 29, 46, 116, 148].

Detecting concordance among gene trees is also a topic of interest. For example, Ané et al. [6]
developed a Bayesian method to estimate concordance among gene trees using molecular sequence
data from multiple loci. The method can produce estimated gene trees as well as an estimate of the
proportion of the genome that support a particular clade. However, a priori assumptions must be
made about the degree and structure of concordance present in the gene trees.

Although there is a tremendous amount of ongoing effort to develop better parametric models
for gene tree distributions, the parametric framework has inherent limitations. While a parametric
method typically makes the most efficient use of a given data set when the model is specified correctly,
they achieve this efficiency by assuming that the true distribution of gene trees is one of a relatively
small class of distributions. This can lead to erroneous inferences when the the true distribution
does not resemble any of the models in the proposed class. Given that many questions remain
about the proper way to incorporate a number of important processes into a parametric model (e.g.
geographic barriers to migration, or a population bottleneck), the problem of model mis-specification
is very real. Nonparametric methods avoid the majority of these modeling issues, enabling unbiased
estimation for a much larger class of true tree distributions at a cost of statistical efficiency.
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Numerous processes can reduce the correlation among gene trees. Negative or balancing selection
on a particular locus is expected to increase the probability that ancestral gene copies are main-
tained through speciation events [167]. Horizontal transfer introduces divergent gene copies into a
different species through a vector, or shuffles gene copies among species via hybridization [110]. The
correlation may also be reduced by naive sampling of loci for analysis. For example, paralogous gene
copies will result in a gene tree that conflates gene duplication with speciation. Similarly, sampled
sequence data that span one or more recombination events will yield “gene trees” that are hybrids
of two or more genealogical histories [137]. These non-coalescent processes can strongly influence
phylogenetic inference [137, 112, 45]. In addition, Rivera et al. [142] showed that an analysis of com-
plete genomes indicated a massive prokaryotic gene transfer (or transfers) preceding the formation
of the eukaryotic cell, arguing that there is significant genomic evidence for more than one distinct
class of genes. These examples suggest that the distribution of eukaryotic gene trees may be more
accurately modeled as a mixture of a number of more fundamental distributions.

In this paper, we focus on the problem of identifying significant discordance among gene trees,
as well as estimating the distribution of gene trees as a whole. This set of gene trees is assumed
to consist mostly of “typical” (or “non-outlier”) gene trees, which are assumed to be independently
sampled from some distribution f . For example, gene trees have evolved neutrally under a coalescent
process. In addition, there are a smaller number of “outlier” gene trees which are sampled from a
very different distribution f ′. These genes are assumed to arise from less common evolutionary
processes; for example, paralogy, neofunctionalization, horizontal gene transfer, or periods of rapid
molecular evolution. In addition, more mundane errors—such as incorrect sequencing, alignment,
tree reconstruction, or annotation—can also produce outlier trees in a data set [74]. Our method
produces a nonparametric estimate of the distribution f and also attempts to identify potential
outlier gene trees which are probably not generated by f . Trees identified as outliers can then be
inspected more closely for biologically interesting properties. In particular, identifying and removing
outliers that violate model assumptions can improve the accuracy of inferences made from a collection
of gene trees (e.g. Disotell and Raaum [40], Martin and Burg [112], Edwards [45], Posada and
Crandall [137]).

2.1.1 Related Work

The method presented in this paper is not, at its present state of development, a statistical method
for hypothesis testing, but rather for discovering possible outliers present in a given collection of
orthologous genes. However, there has been significant work devoted to the development of statis-
tical methods for testing hypotheses of discordance between the trees in a collection. The reviewed
methods in Poptsova [136] are the following: (i) likelihood-based tests of tree topologies, such as the
Kishino-Hasegawa [88], Shimodaira-Hasegawa [158] test, and Approximately Unbiased [157] tests;
(ii) tree distance methods, such as Robinson and Foulds [143] and subtree pruning and regrafting
distances [58]; and (iii) genome spectral approaches, such as bipartition [109] and quartet decompo-
sition analyses [135].

The likelihood-based tests of tree topologies and tree distance methods are statistical hypothesis
tests that detect significant incongruence between trees, i.e., they are testing the following hypothe-
ses:

H0: Given trees are topologically congruent.
H1: Given trees are topologically incongruent.

The distinction between likelihood and distance based methods is in how they calculate the p-value
of these hypotheses. The likelihood-based tests compare each gene tree with a species/reference
tree using a likelihood value, to see if the incongruence is “statistically significant.” These methods
are also known as partition likelihood support (PLS) [100]. Tree distance methods estimate the p-
value of the hypotheses above by computing a distance between a reference tree and each gene tree.
Holmes [73] describes a framework for statistical hypothesis testing on trees based on tree distances
using distributions of phylogenetic trees (e.g. a posterior distribution or bootstrap resampling).
Holmes also presents a statistical method to compare two sets of bootstrap sampling distributions,
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using the mean and variance of each distribution [73, Section 4.4.1]. A nonparametric method for
detecting significant discordance between two sets of trees via supporting vector machines (SVMs)
was introduced by Haws et al. [63]. This is a nonparametric method for statistical testing of the
hypotheses:

H0 : Two sets of trees are drawn from the same distribution.
H1 : Two sets of trees are not drawn from the same distribution.

While likelihood-based tests assume that the species tree is known, genome spectral approaches
do not use such a reference tree. Genome spectral methods summarize a set of gene trees with
phylogenetic spectra (frequencies), such as splits or quartets. These frequencies can be used to
approximate the distribution of gene trees, instead of producing a summarizing tree. Outlier trees
can be identified by looking for trees whose highly supported features disagree with prevalent features
in the spectra [118].

A non-statistical approach for summarizing collections of gene trees is presented by Nye [121].
Treating each gene tree as a leaf node, a “meta-tree” is constructed where nodes correspond to phylo-
genetic trees; distances between nodes of the meta-tree correspond to distances between phylogenetic
trees, and internal nodes correspond to gene trees with various branches collapsed. When using the
Robinson–Foulds distance, the nonparametric method proposed in this paper can be viewed as a
numerical summarization of the meta-tree in [121].

Recently, de Vienne et al. [37] developed a statistical nonparametric method to detect outlier trees
from the set of gene trees. They first convert gene trees into vectors in a multi-dimensional Euclidean
space and then apply Multiple Co-Inertia Analysis—an extension of Principal Coordinate Analysis
(PCO)—directly to these vectorized gene trees. Their method, Phylo-MCOA, also detects outlier
species, those whose position varies widely from tree to tree. Included in our results are simulation
studies comparing our nonparametric method with Phylo-MCOA.

2.2 Methods

2.2.1 Algorithm

Let Tn denote the set of all tree topologies (including multifurcating trees) on n taxa (which we call
tree space). We consider trees to be unrooted, but rooted trees can be treated similarly. Our main
object of study is a sample, {Ti}Ni=1, of N trees (gene trees) mostly drawn from a distribution f
on Tn. If n is large enough that |Tn| � N then many tree topologies in the sample may have low
empirical frequency. In this case, f cannot be estimated well by assigning f̂(T ) to be the empirical
frequency of T in the sample. On the other hand, if f corresponds to a model such as the coalescent,
it is reasonable to expect that topologies “close” to many observed trees will have a higher likelihood
than topologies “far away” from the observed trees.

Kernel density estimation is a nonparametric technique to estimate a distribution that generated
a sample, by leveraging the fact that points close to sample points tend to have higher likelihood than
distant outlier points (under adequate assumptions on the distribution, namely, the distribution is
square-integrable [114]). Kernel density estimation can be viewed as a refined version of histogram-
based estimation of a density. As the term density suggests, kernel density estimation is typically
formulated for continuous variables over Rd. However, similar methods can also be devised to
estimate distributions over a finite set such as tree space.

A key ingredient is the ability to measure similarity between trees. Fortunately, research in
phylogenetics has produced several classical distances on tree space, such as the dissimilarity map
distance [25], the topological dissimilarity distance measure [161], the Robinson–Foulds distance
[143], and the quartet distance [48]. More recently Billera et al. [13] introduced the notion of
geodesic distances. [124] showed that there is an efficient algorithm for computing this distance in
O(n3), where n is the number of taxa.

Our method uses existing tree distances to estimate a tree distribution by mimicking kernel
density estimation. Our main goal is to identify regions of Tn which have high probability, as well as
observed trees with markedly low estimated probability. These low-probability trees are potentially
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outlier trees; i.e., trees having evolutionary histories unlikely to have arisen from the same model
that generated the non-outlier trees. Our approach is nonparametric, which makes it quite general,
and avoids problematic issues such as model design and selection that one encounters when using a
parametric model (such as the coalescent). Unfortunately, using a small sample to learn an arbitrary
distribution on tree space is inherently difficult, especially as the dimension of Tn grows, and we
do not expect to learn the tree distribution with high accuracy for every tree topology. However,
estimates of the density in regions where the probability is high can be quite good.

Our method identifies potential outliers in a set of trees by comparing the values of the non-
normalized density estimates (which we call “tree scores”) of the trees. An unusually low score
indicates that a tree is relatively distant from the other trees in the sample. We implement a simple
classification scheme which is based on the interquartile range (IQR) of the density estimates, as is
commonly done when creating box-and-whisker plots.

Given an independent and identically distributed sample of trees T1, . . . , TN , we propose a non-
parametric estimator of the distribution that generated the sample with the form

f̂(T ) ∝ 1
N

N∑
i=1

k(T, Ti).

Here k(·), the kernel function, is a non-negative function defined on pairs of trees which measures
how “similar” two trees are. For our approach, we do not require k(·) to be a kernel in a strict
statistical sense.

In kdetrees we have implemented a kernel of the form

k(T, Ti) ∝
1
hi

exp
(
−
(
d(T, Ti)
hi

)δ)
.

A distance function on the space of trees, d(T, T ′), is used to define a univariate projection Tn → R+
in the natural way for each fixed T ∈ Tn, mapping T ′ 7→ d(T, T ′). The “shape” parameter δ > 0, and
the “bandwidth” parameters hi > 0 control how tightly each contribution k(T, Ti) will be centered
on Ti. Allowing the bandwidth to vary with the sample points, Ti, is called an adaptive bandwidth
method. Alternatively the bandwidth can be set to a constant value for all Ti.

In general, we can remove the symmetry and triangle inequality requirements for d, and it is
possible that the sum over tree space,

∑
T∈T k(T, T ′), will vary with T ′. Ideally, we would remedy

this issue by normalizing k(·, T ′) so that
∑
T∈T k(T, T ′) = 1. (This is the case most analogous to

kernel density estimation.) However, for the d implemented by kdetrees, Monte Carlo estimates
of this sum do not appear to vary significantly across T ′, and so the current version of the software
assumes that it is constant. (Additional information about these estimates is presented in Figure
B.1.)

Since the ultimate goal is to detect outlier trees, Tj , which are not actually drawn from the true
distribution f , we are most concerned with estimating the density at the observed sample points.
In this context, it makes sense to use a “leave-one-out” estimator which excludes the contribution
of the point in question from the tree score,

ĝ(Tj) = 1
N − 1

∑
i 6=j

k(Tj , Ti).

This estimator simply transforms probability estimates via A(x) = N(x − c)/(N − 1) for some c.
Assuming the sample is drawn i.i.d. from a distribution f , for fixed d and δ, both ĝ(T ) and f̂(T )
(once normalized) will converge to f as N → ∞, so long as the hi(N) → 0. This result follows
immediately from the finiteness of tree space.

Once we have computed the scores, {ĝ(Ti)}, we classify tree Tj as an outlier if ĝ(Tj) is less than
Q1−κ · IQR. Where Q1 and IQR are the first quartile and the interquartile range of the set of tree
scores, respectively; and κ is a classification tuning parameter. The choice of κ affects the sensitivity
and specificity of the classifier, and is set to 1.5 by default, although the user may supply their own
value.
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This idea can be extended to also exclude the contribution of a number of trees which are
determined to be outliers. Since the magnitude of ĝ(Tj) can be used as a measure of evidence for
Tj being an outlier, kdetrees can iteratively remove from the calculation the contribution of the
tree which minimizes ĝ(Tj), and recompute the estimator ĝ with the reduced sample. This process
can be iterated to remove multiple putative outliers.

Choice of tree distance.— In our approach, trees can be incorporated into a statistical framework by
converting them into a numerical vector format based on a distance matrix or map, and several such
vectorization schemes were introduced in Chapter 1. These vectorized trees can then be analyzed
as points in a multi-dimensional space where the distance between trees increases as they become
more dissimilar [72, 156, 60].

For the choice of d, we propose distances derived from three different distances on trees: dissim-
ilarity map dd, topological dissimilarity map dt, and geodesic distance dgeo. The dissimilarity map
distance measure between two trees is the Euclidean distance,

dd(T ′, T ) = ||vd(T )− vd(T ′)||2,

where vd(T ) is a vectorization of trees, Tn → R(n2), based on an enumeration of the pairwise distances
between the tips [25]. The topological dissimilarity map distance measure between two trees is
defined similarly,

dt(T ′, T ) = ||vt(T )− vt(T ′)||2,

but uses a vectorization vt(T ) that counts the number of edges between the tips [161]. An example
calculation of both vd and vt is shown in Figure B.2.

Billera et al. [13] showed that the space of rooted trees with a fixed number of taxa is the union of
positive cones in R(n2). Thus, the space of trees is the set of all metrics derived from valid trees, and
is a subspace of the space of all distance matrices. The geodesic distance dg is the shortest distance
between two valid trees when the connecting path is constrained within this tree space (note that
this subspace of valid trees is not itself Euclidean). Owen and Provan [124] developed an O(n4)
algorithm to compute the geodesic distance dg(T, T ′) between any two valid trees.

Missing taxa.— It is desirable for phylogenetic analyses to be able to deal with situations with
incomplete data. In this case, the most relevant type of missing data is when some gene trees are
missing a tip which is present in other trees in the data set. Our method is capable of handling such
a situation if the dissimilarity or topological distance maps are used. In this situation we impute
missing tip-to-tip distances in the tree vectors with the median value found in trees containing the
missing tip. Unfortunately, the geodesic distance algorithm we employed does not currently allow us
to perform such an imputation, and so kdetrees cannot handle missing tips if the geodesic distance
map is selected.

If the trees have node labels which correspond to support for the given split (obtained, for
example, by a bootstrap analysis), then the software can accommodate this information by collapsing
nodes with support less than a given value. This behavior is disabled by default.

Kernel bandwidth.— The estimator ĝ depends crucially on the choice of the bandwidth parameter h.
We employ a nearest-neighbor approach to estimate an adaptive bandwidth for each sample point.
To estimate the bandwidth for a point Tj , we use the distance to the m-th closest sample point.
This approach has the effect of causing the kernels to be concentrated in areas where there is a lot of
data, and diffuse in the tails of the distribution. In the current version of kdetrees m is defaulted
to be 20% of the sample size, a heuristic value chosen based on simulation results.

Alternatively, the bandwidth can be set to a constant value for all Ti. In order to do this we
must find a way to choose an optimal value for the bandwidth h. We experimented with a constant
bandwidth chosen by estimating the partition function Zh =

∑
T ĝh(T ) using a random sample of

trees. However, it seems that we tend to under-estimate the bandwidth h and the results are not as
robust as in the case of the adaptive bandwidth.
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S is a set of sets of gene trees.
g is the number of non-outlier trees in each simulation.
r is the number of outlier trees.
κ is the classifier tuning parameter.
for all iterations in simulation do

Generate non-outlier trees (Sample g/|S| coalescent trees from each s ∈ S.)
Generate r random outlier gene trees. (Each within a new random species tree.)
Analyze data with both kdetrees and Phylo-MCOA
Tally true and false outlier identifications for each method

end for

Figure 2.1: Summary of the simulation comparing kdetrees and Phylo-MCOA. (See Figure B.3
for a plot of the species tree used.) For the “single” simulations, S contains a single tree (top left of
Figure B.3), while for the “mixed” simulations it contained 5 trees (remainder of Figure B.3). For
our simulations, r = 1 and g = 100.

Tuning parameters.— The outlier classifier’s sensitivity depends on the choice of a tuning parameter,
κ. The default value, 1.5, is chosen for historical reasons. In our simulations smaller values of κ,
around 0.75 to 1, often resulted in false positive rates close to 5%. Creating plots of the tree scores
may be helpful in choosing an appropriate value for a given data set.

Computational complexity.— The running time of kdetrees is dominated by the step where pairwise
tree distances are calculated. For N trees, each with n taxa, this step takes O(n2N2) operations
when using the dissimilarity or topological distances, or O(n4N2) if using the geodesic distance.

2.2.2 Simulations

We conducted a series of simulations comparing the performance of kdetrees and Phylo-MCOA.
(Code and documentation for the simulations is included in a package vignette with kdetrees.)
(Phylo-MCOA is a R package and one of the functions in the software is to identify putative
outlying genes in a data set.) The simulated data consisted of coalescent trees generated by the
Python library DendroPy [164]. Six species trees (see Figure B.3) were used to contain coalescent
gene trees. A data set consisted of a small number of “outlier” gene trees, together with a larger
number of “non-outlier” gene trees. In the “single” coalescent simulations, the non-outlier trees are
all contained within the top left tree in Figure B.3. In the “mixed” coalescent simulations, an equal
number of non-outlier genes were sampled from each of the other 5 trees. Pseudocode in Algorithm
2.1 summarizes the simulation processes.

Our first simulation investigated the classification characteristics of the methods, producing re-
ceiver operating characteristic (ROC) curves comparing kdetrees and Phylo-MCOA, by varying
the classification tuning parameter of each method. (A ROC curve is a graphical plot of the fraction
of true positive rate vs. the fraction of false positive rate at various threshold settings [62].) In this
simulation we set the effective population size of the coalescent process generating the trees to 2000,
a value which produced a moderate amount of variance in the generated coalescent trees.

A second simulation compares the true positive rates of the methods as the variance of the
coalescent trees increases. (Variance of the random trees is controlled by the coalescent population
parameter.) This simulation was carried out both with the default classification tuning values, as
well as values chosen based on the ROC simulation results to limit the false positive rate (FPR) to
around 5%.

A third simulation compared the distribution of outlier tree scores to the distribution of non-
outlier tree scores. The simulation process is summarized in the pseudocode in Algorithm 2.2.
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Generate g coalescent trees within a fixed species tree.
Use kdetrees to obtain scores for non-outlier trees.
for all iterations in simulation do

Generate a single outlier tree within a new species tree.
Append outlier tree to set of non-outlier trees.
Obtain and record outlier tree score.

end for
Plot kernel density estimates of both score distributions.

Figure 2.2: Summary of the simulation design for the simulation comparing the tree score distribu-
tions for outlier trees and non-outlier trees. For our simulations both g and R are set to 500, and
the coalescent parameter is 2000.

2.2.3 Biological datasets

Apicomplexa.— The Apicomplexa data set presented by Kuo et al. [96] consists of trees reconstructed
from 268 single-copy genes from the following species: Babesia bovis (Bb) [17], Cryptosporidium
parvum (Cp) [1] from CryptoDB.org [66], Eimeria tenella (Et) from GeneDB.org [70], Plasmodium
falciparum (Pf) [55] and Plasmodium vivax (Pv) from PlasmoDB.org [8], Theileria annulata (Ta)
[132] from GeneDB.org [70], and Toxoplasma gondii (Tg) from Toxo-DB.org [54]. A free-living ciliate,
Tetrahymena thermophila (Tt) [47], was used as the outgroup. To this set of sequences, we appended
the Set8 gene, which has been identified by Kishore et al. [90] as a probable case of horizontal gene
transfer from a higher eukaryote to an ancestor of the Apicomplexa.

Epichloë.— Another set of biological sequences to use as a test case was generated from house-
keeping genes and a known pair of paralogs in Epichloë species and related plant symbionts and
parasites in the fungal family Clavicipitaceae. We previously reported sequencing, annotation, and
the identification of orthologs in genome of Epichloë amarillans strain E57, E. brachyelytri E4804,
E. festucae strains E2368 and Fl1, E. glyceriae E277, E. poae E5819, E. typhina E8, Aciculospo-
rium take MAFF-241224, Claviceps fusiformis PRL 1980, C. paspali RRC-1481, C. purpurea 20.1,
Neotyphodium gansuense e7080, and Periglandula ipomoeae IasaF13 [154]. We compiled the inferred
protein sequences for ten housekeeping proteins, namely, γ-actin (ActG), DNA lyase (ApnB), a
calmodulin-dependent protein kinase (CpkA), the largest and second largest subunits of RNA poly-
merase II (rpbA and rpbB), translation elongation factor 1-α (TefA), α-tubulin (paralogs TubB and
TubC), and β-tubulin (paralogs TubB and TubP). As the expected phylogenetic outlier, we compiled
two known paralogous proteins, namely, LolC (which catalyzes synthesis of a loline alkaloid interme-
diate), and the very closely related O-acetylhomoserine(thiol)-lyase (CysD, which scavenges H2S for
synthesis of a methionine intermediate) [159]. Of the 13 fungal strains, three had lolC genes but not
cysD, nine had cysD but not lolC, and one (E. glyceriae E277) had both genes. Both LolC/CysD
datasets had one sequence from each strain, but they differed in containing either LolC or CysD
from E. glyceriae.

2.3 Results

We present the software package kdetrees for nonparametric estimation of tree distributions and
detection of outlier trees. The software takes as input a sample of trees in Newick format, and
estimates for each tree a “score” based on a nonparametric estimator of the tree density. It can then
use these scores to identify putative outlying trees in the sample. The trees scores and summary
plots are produced as output.

The kdetrees package is written in R [139], and depends on packages distory [31], ggplot2
[178], and ape [134]. The software is available for download from CRAN and is compatible with all
systems supported by R.
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Figure 2.3: ROC curves comparing kdetrees and Phylo-MCOA as the classification tuning
parameter is varied. (In general higher is better, a very effective classifier will pass close to the
upper left corner.) The effective population size is 2000 for the coalescent trees. At left are the
“single” contained coalescent simulations, with the non-outlier trees all contained within a single
species tree. At right are results from a “mixed” simulation, with the non-outlier trees generated
from a mixture of 5 species trees.

2.3.1 Simulation Results

Our first simulation, presented in Figure 2.3, produced ROC curves comparing the various methods
of outlier identification. We find that the performance of kdetrees and Phylo-MCOA is similar,
with Phylo-MCOA having a slightly better curve in the single simulations, and kdetrees in the
mixed scenarios. Interestingly, the geodesic distance worked better for the “single” data than the
dissimilarity map, while the relationship is reversed for the “mixed” simulation. These results were
almost completely unaffected by changes in the proportion of outliers in the sample (proportions
between 1 to 10% were tested).

The variability of the coalescent trees is determined by the effective population size, the parameter
studied in our second simulation. The proportion of the simulated data sets where each method
correctly identified an added outlier tree is illustrated in Figure 2.4. This simulation was run
both with default tuning parameters and ones chosen based on the ROC curve simulation results.
If optimal tuning parameters are selected, Phylo-MCOA can outperform kdetrees, however,
selecting these correctly can be difficult.

We ran a third simulation studying the difference between the score distributions of outlier trees
and non-outlier trees, as the ability of our method to reliably detect outlying trees depends on a
tendency by outlier trees to produce scores significantly lower than the scores of non-outlier trees.
The results are presented in Figure 2.5. We found that while there is some overlap between the score
distributions, the distribution of scores for outlier trees lies significantly below that of non-outlier
trees.

Finally, Figure 2.6 summarizes the running times of the algorithms as the number of trees in the
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Figure 2.4: Summary of simulation results comparing performance of kdetrees and Phylo-MCOA
for various values of the effective population size. Shown is the proportion of simulated data sets in
which the methods identified the outlier tree. The top two plots use use tuning parameters chosen
based on results of the ROC simulation, while the bottom plots use default values. For kdetrees
the optimal tuning parameter was κ = 0.7, while for Phylo-MCOA it was κ = 0.25. The default
values are both κ = 1.5.
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Figure 2.6: The running time (in hours) of kdetrees and Phylo-MCOA as the number of trees
in the data set increases. The trees used here have 50 tips each.

data set is increased. Here kdetrees vastly outperforms Phylo-MCOA. For a data set consisting
of 5000 trees, each with 50 tips, kdetrees completed in about 7.5 minutes, while Phylo-MCOA
required slightly over 4 hours. For smaller data sets, of a few hundred trees, kdetrees runs in less
than a second, while Phylo-MCOA requires a few minutes.
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Table 2.1: Apicomplexa gene sets identified as outliers by kdetrees. All annotations except 728
are putative.

No.a GeneIDb Functional Annotation
488 PF08_0086 RNA-binding protein
497 PF13_0228 40S ribosomal subunit protein S6
515 PFA0390w DNA repair exonuclease
546 PFF0285c DNA repair protein RAD50
547 PFL1345c Radical SAM protein
641 PFE0750c hypothetical protein, conserved
660 PF10_0043 ribosomal protein L13
662 PF11_0463 coat protein, gamma subunit
728 MAL13P1.22 DNA ligase 1
747 PFB0550w Peptide chain release factor subunit 1
773 PFF0120w geranylgeranyltransferase
780 PFD0420c flap exonuclease

aBased on geneset designations in Kuo et al. [96].
bGeneset represented by GeneID for Plasmodium falciparum.

2.3.2 Biological data results

Apicomplexa.— The list of putative outlier genes identified by kdetrees in the Apicomplexa data
is presented in Table 2.1, with additional discussion in Table B.1. When employing either the
dissimilarity maps or geodesic distance, our method identified the same set of putative outlier trees.
(The first four trees identified as putative outliers are also plotted in Figures B.4-B.7, and the entire
set of estimated scores are summarized in Figure B.8.) These trees all contain a branch with a length
that is far too long in proportion to the other branches, leading to their identification as outliers.
Closer inspection of these trees suggested that they correspond to questionable sequence alignments
which likely non-homologues included due to poor annotation, many involving Eimeria tenella (Et)
sequences.

Since there appeared to be pervasive problems with the Et sequence data, we removed this species
from the data set and recreated the phylogenetic analysis as in Kuo et al. [96]. With the reduced
set of gene trees, kdetrees identified a different set of outlier trees, and in this case the Set8 gene
was selected as the furthest outlying tree.

Epichloë.— The fungal datasets included alignments with known paralogs, LolC and CysD. Because
E. glyceriae E277 had both lolC and cysD, we ran the analysis on alternative data sets with either
LolC or CysD eliminated for that strain. In both analyses, the LolC/CysD tree was identified as one
of two outlier genes, the other being the DNA lyase protein ApnB. Topologically, the LolC/CysD
gene tree differed markedly from the others, which is as expected because CysD sequences grouped
together in a clade apart from LolC. However, the topology of the ApnB tree was similar to that of
other housekeeping genes, suggesting that it had significantly different relative branch lengths.

2.3.3 Running Time

A significant advantage of kdetrees over Phylo-MCOA is a significant improvement in compu-
tational speed, especially with larger data sets. Actual kdetrees running times are well fitted by
a O(N2) curve, as suggested by the complexity of the algorithm discussed previously, while the
Phylo-MCOA times are O(N3).
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2.4 Discussion

2.4.1 Simulations

The simulation results were generally positive for kdetrees. Although Phylo-MCOA was often
able to slightly outperform kdetrees in classification accuracy, the difference was often relatively
small. However, in terms of computational time, kdetrees vastly outperforms Phylo-MCOA,
especially as the number of trees in the data set increases.

In all cases studied, methods incorporating branch length information outperformed the topology
only methods. The performance of the geodesic distance was better in the “single” simulations than
the “mixed” simulations, although the reason for this is unclear. All of the methods were able
to correctly identify the outlier tree when the effective population size (and thus tree variance)
was low, provided that a suitable tuning parameter was chosen. As the variance of the coalescent
trees increased, the performance of Phylo-MCOA tended to degrade at a slightly slower rate than
kdetrees.

It should be noted that choosing a suitable tuning parameter can be quite difficult, as the
optimal value depends on not only the details of the data set, but also one’s subjective opinions on
the relative merits of the sensitivity and specificity of the classifier. As such, we also studied the
behavior of the algorithms when using their default tuning parameters. This information is relevant,
since many users will not change the parameters from their default values. With these values we
found that kdetrees is slightly superior to Phylo-MCOA in the single-distribution simulations.
In the mixed-distribution simulations the default values for Phylo-MCOA resulted in very poor
performance, while kdetrees’s rate of outlier identification was much higher.

The third simulation set compared the distribution of scores for outlier trees to the scores of
non-outlier trees. Although the distributions are not completely distinct, it is clear that the outlier
trees tend to have scores smaller than the majority of non-outlier trees. Since the outlier trees were
generated as completely random coalescent trees, there will inevitably be trees generated which have
structure similar to the non-outlier trees, simply by chance, and this accounts for some of the overlap
between the distributions. With real data, such trees would correspond to genes which have some
exotic history, but nonetheless appear to have a phylogeny substantially similar to the rest of the
genes in the genome. In this case, it is ambiguous whether or not such a gene should be legitimately
classified as an outlier.

The main advantage of kdetrees over Phylo-MCOA lies in the vast improvement in running
time on data sets with larger numbers of gene trees. For small data sets the difference is not material,
however for data sets with several thousand trees, Phylo-MCOA requires many hours to complete,
while kdetrees will finish within a few minutes on contemporary commodity hardware.

2.4.2 Biological datasets

Apicomplexa.— The phylum Apicomplexa contains many important protozoan pathogens [102],
including the mosquito-transmitted Plasmodium spp., the causative agents of malaria; T. gondii,
which is one of the most prevalent zoonotic pathogens worldwide; and the water-born pathogen
Cryptosporidium spp. Several members of the Apicomplexa also cause significant morbidity and
mortality in both wildlife and domestic animals. Due to their medical and veterinary importance,
whole genome sequencing projects have been completed for multiple prominent members of the
Apicomplexa.

The data set presented in Kuo et al. [96] consists of 268 orthologous genes from seven species of
Apicomplexa and one outgroup ciliate, Tetrahymena thermophelia. To this set of genes we appended
sequences from the Set8 gene, which has been identified by Kishore et al. [90] as a probable case of
horizontal gene transfer from a higher eukaryote to an ancestor of the Apicomplexa.

Of the trees identified as outliers by our method with the dissimilarity map, it appears that
most suffer from incorrect annotation or the inclusion of non-orthologous genes. (The most common
culprits were sequences from Eimeria tenella (Et). See Table 2.1 and Table B.1 for more details.)
The interpretation of results from the topological dissimilarity map was less decisive. In most of
these cases there were no clearly identifiable problems with the outlying trees or sequences. This
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result is similar to that found in the simulation studies, suggesting that the incorporation of the
branch length information by the dissimilarity map provides superior results.

While the Set8 gene was not identified initially by kdetrees as an outlier gene, its score was
very close to the classification threshold, and is the next gene to be classified as an outlier if the
tuning parameter is lowered slightly, from 1.5 to 1.3. Since many of the outliers in the analysis seem
to be caused by questionable annotation in the Et sequences, we removed this species from the data
set and generated new gene trees. In the new analysis, the Set8 gene was identified as the furthest
outlier tree.

These results demonstrate the potential applicability of the kdetrees method to the curation
of genetic data sets by providing a simple tool for highlighting sequences or alignments that may be
of further interest. The successful identification of the Set8 outlier indicates that our method is able
to highlight interesting cases which warrant further attention from investigators.

Epichloë.— The application of kdetrees to the set of fungal protein alignments successfully iden-
tified the contrived paralogous alignment of LolC and CysD as an outlier. This is a scenario that
could easily arise in phylogenomic analysis, where OrthoMCL [103] identified the genes as orthologs,
though the group was subsequently broken into separate ortholog sets by application of COCO-CL
[82] to the OrthoMCL output. It seems likely that the lolC gene was evolutionarily derived from
cysD [159]. Inspection of synteny relationships, and identification by BLAST of remnants of cysD
that were not identified as genes by FGeneSH, indicated that LolC and CysD were indeed paralogous.
This result was expected and is indicative of the utility of this program to identify outliers arising
from paralogy.

2.5 Conclusion

The ongoing development of ever-cheaper sequencing methods is producing a plethora of data suit-
able for phylogenomic analysis. One of the great promises of modern genomics is that phylogenetics
applied at the genomic scale (phylogenomics) should be especially powerful for elucidating gene
and genome evolution, relationships among species and populations, and processes of speciation
and molecular evolution. However, genomic data that can now be generated relatively cheaply and
quickly, but for which computationally efficient analytical tools are lacking. There is a major need
to explore new approaches to undertake comparative genomic and phylogenomic studies much more
rapidly and robustly than existing tools allow.

In simulations and applications to biological data, we address particular challenges posed by
bioinformatic artifacts, as well as interesting biological phenomena such as gene duplications and
horizontal gene transfer. As we observed in the Apicomplexa and fungal data sets, our approach
also serves as a means of identifying “interesting” gene trees which may arise from horizontal gene
transfer, paralogy, or experimental artifacts such as misannotations or misalignments.

A further advantage of our method is that it may be applied in a straightforward way to phy-
logenetic reconstruction methods which produce a a sample of many trees as output, rather than a
single “best fit” tree. Indeed, methods that produce only a point estimate does not represent the
full set of possible phylogenies compatible with the gene sequences. We can circumvent this issue by
building a kernel for each gene based on a collection or sample of reconstructed topologies (via the
estimated posterior distribution of each gene, for example), rather than using only a point estimate
of each gene tree.

In future work we intend to extend our method to clustering trees based on similarity, in addition
to identifying outliers. The identification and exclusion of outlier points is an important preliminary
step in many clustering methods. The removal of outlier points facilitates better inference at the
clustering stage [27, 80, 79].

A long-term goal for this project is to develop a phylogenomic pipeline that is convenient and
accessible, as well as robust. To accomplish this aim, important problems that need attention are
(1) refinement of gene calls based on comparison among orthologs from multiple genomes and (2)
comparing thousands of gene phylogenies across whole genomes. Therefore, our approach is focused
on the efficiency of the algorithm in terms of computational complexity and memory requirements,
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with less emphasis on achieving the highest classification accuracy possible. Such a tradeoff makes
our approach more attractive candidate for inclusion in a pipeline for genome-wide phylogenetics as
an annotation supplement or as a discovery aid for instances where evolutionary processes deviate
significantly from normal.

c© Grady Weyenberg 2015
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Chapter 3

Normalizing kernels in BHV treespace

At the time of the publication of this dissertation, material in this chapter currently is in review for
publication, with preprints available on the arXiv [175]. This chapter represents further progress in
refining the methods pioneered in the previous chapter.

Abstract

As costs of genome sequencing have dropped precipitously, development of efficient bioinformatic
methods to analyze genome structure and evolution have become ever more urgent. For example,
most published phylogenomic studies involve either massive concatenation of sequences, or informal
comparisons of phylogenies inferred on a small subset of orthologous genes, neither of which pro-
vides a comprehensive overview of evolution or systematic identification of genes with unusual and
interesting evolution (e.g. horizontal gene transfers, gene duplication and subsequent neofunction-
alization). We are interested in identifying such “outlying” gene trees from the set of gene trees and
estimating the distribution of the tree over the “space of phylogenetic trees.”

This paper describes an improvement to the kdetrees algorithm, an adaptation of classi-
cal kernel density estimation to the metric space of phylogenetic trees (Billera-Holmes-Vogtmann
treespace), whereby the kernel normalizing constants, are estimated through the use of the novel
holonomic gradient methods. As the original kdetrees paper, we have applied kdetrees to a set
of Apicomplexa genes and it identified several unreliable sequence alignments which had escaped
previous detection, as well as a gene independently reported as a possible case of horizontal gene
transfer.

The updated version of the kdetrees software package is available both from CRAN, as well
as from the development repository on Github [176].

3.1 Introduction

One of the great opportunities offered by modern genomics is that phylogenetics applied on a genomic
scale (phylogenomics) should be especially powerful for elucidating gene and genome evolution,
relationships among species and populations, and processes of speciation and molecular evolution.
However, a well-recognized hurdle is the sheer volume of genomic data that can now be generated
relatively cheaply and quickly, but for which analytical tools are lagging. There is a major need to
explore new approaches to undertake comparative genomic and phylogenomic studies much more
rapidly and robustly than existing tools allow. Here, we focus on the problem of efficiently identifying
significant discordance among a set of gene trees, as well as estimating the distribution of gene trees
from the given set of trees.

The kdetrees algorithm introduced in Weyenberg et al. [174] (Chapter 2) is an adaptation
of classical kernel density estimation to the metric space of phylogenetic trees defined by Billera
et al. [13]. It is a computationally efficient method of estimating the density of the trees over the
Billera-Holmes-Vogtmann (BHV) treespace, and relies on a fast implementation of the BHV geodesic
distance function provided by Owen and Provan [124]. The method then uses the density estimates to
identify putative outlier observations. This paper describes an improvement to kdetrees, whereby
the kernel normalizing constants, are estimated through the use of the novel holonomic gradient
methods [94, 113].

In our original paper describing the kdetrees method, we propose a nonparametric estimator
of the form,

f̂(T ) ∝ 1
N

N∑
i=1

k(T, Ti, hi).
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In the kdetrees software, the kernel function implemented is a spherically symmetric gaussian
kernel, i.e.,

k(T, T ′, h) ∝ exp
(
−
(
d(T, T ′)

h

)2
)
. (3.1)

Since we are, for the moment, interested primarily in using the estimator f̂ for outlier detection,
knowledge of the overall proportionality constant for f̂ is not of significant importance. However,
it is important to know how the normalizing constant associated with k(T, T ′, h) varies with the
selected bandwidth and with the location of the kernel’s center. In our original paper we argued
that, in practice, estimates of the normalizing constant do not appear to have significant systematic
variation, and that assuming a constant value was a reasonable first approximation. This paper
presents basic results and techniques for obtaining better approximate values for these normalizing
constants.

In the case case of Euclidean k-space with the usual metric, the kernel (3.1) corresponds to a
spherically symmetric multivariate normal distribution centered on the point T ′, and the kernel
normalization constant is given by

c(T ′, hi) = (2πhi)−k/2. (3.2)

Note that not only is there a simple closed form solution for the constant, but the constant is
invariant under changes to the central point T ′. However, when applied to the BHV treespace with
the geodesic metric, not only is such a closed form solution apparently unavailable, but it is also
clear that the constant will depend on the location of the central point.

For example, consider the case where T ′ = 0, i.e., the star tree, located at the origin of BHV
space. In this case, the kernel integral,

c(T ′, h) =
∫
T
k(T, T ′, h) dT, (3.3)

is symmetric over each orthant comprising BHV treespace. Within each orthant, the integral is
equivalent to the normalizing constant of a zero-mean multivariate normal truncated to R+

n . Thus,
expression (3.3) is equivalent to the number of orthants in the space, nO, multiplied by the corre-
sponding truncated normal constant.

On the other extreme, consider a central tree T ′ such that every edge is large compared to
the bandwidth h, i.e., the tree is relatively far away from any orthant boundary. In this case, the
kernel integral will be very close to the value given in expression (3.2). If the central point is placed
arbitrarily far away from any orthant boundary, then the integral over any orthant other than the
one containing T ′ can be made arbitrarily small. Thus, the integral over the orthant containing T ′
itself will be an increasingly good estimate of the entire normalizing constant as the central point is
moved further away from orthant boundaries.

The updated version of kdetrees presented in this paper improves on the first generation
algorithm by estimating the kernel normalizing constants c(T ′, h). This is accomplished by finding
bounding functions in each orthant which can be more easily integrated than the true kernel function.
While some analytic simplification is possible, certain expressions cannot be evaluated other than
through numerical methods.

3.1.1 Holonomic Gradient Method

The holonomic gradient method (HGM) is a non-stochastic numerical method for calculating certain
types of integrals. The HGM is a variation on the gradient descent method of function optimization,
and is suitable for application to holonomic functions [117, 94]. Roughly, a holonomic function is a
solution to a homogenous ordinary differential equation with polynomial coefficients [182]. Several
integrals of interest to statisticians turn out to be expressible as solutions to an optimization problem
within a holonomic system.

For our present problem two cases are of particular use. Marumo et al. [113] demonstrates the
use of HGM to calculate the normalizing constant for a multivariate normal distribution truncated
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to the positive orthant, i.e., Rn+. In addition, Hayakawa and Takemura [65] provides the constants
for the so-called exponential-polynomial family of probability densities,

f(x|θ1, . . . , θk) ∝ exp
(
xθ1 + . . .+ xkθk

)
.

As was briefly discussed in the introductory section, BHV treespace is a simplical complex of
positive Euclidean orthants, and the normalizing constant for a truncated multivariate normal dis-
tribution is an ingredient for a scheme to approximate the kernel constants in BHV treespace. In
section 3.3 we show that it is possible to use the normalizing constants for the truncated multivariate
normal and the exponential-polynomial family, computed either by HGM or some other method, to
construct approximations to the kernel normalizing constants for BHV space.

3.2 Methods

3.2.1 Normalizing Constants

In this paper we use k to denote the unnormalized kernel function, i.e., with unit constant of
proportionality in (3.1). If we are given a fixed tree T0 and bandwidth h, our objective is to
compute bounds for the integral

∫
k(T, T0, h) dT over the entire BHV treespace, so that we may

normalize the kernel function.
One suitable lower bound function is based on the use of the triangle inequality.

Lemma 3.1. For any pair of trees, k(T, T ′, h) ≥ k(T, T ′, h), where,

k(T, T ′, h) := exp
(
− (d(T, 0) + d(0, T ′))2

h2

)
.

Proof. This is an immediate consequence of the fact that the geodesic path between any two trees
is the shortest path connecting the trees. In particular, it is shorter than the cone path, d(T, T ′) ≤
d(T, 0) + d(0, T ′).

However, k does better than simply providing a global lower bound for k. In fact, the bound is
sharp, as k is equivalent to k whenever the geodesic between T and T ′ passes through the origin.
This turns out to be a quite common occurrence, as geodesics between trees which are not separated
by a small number of NNI interchanges are likely to pass through the origin. As a result for much
of the space, integrating over k will be equivalent to integrating over k itself. Happily, integrating k
over a single orthant affords an opportunity for analytical simplification.

Theorem 3.1. Let O be an arbitrary fixed orthant in BHV treespace, and let p denote its dimension.
Then, the integral of k(T, T ′, h) over that orthant is given by the expression

CO(T ′, h) :=
∫
O

k(T, T ′, h) dT = πp/2e−d(0,T ′)2/h2

2p−1Γ(p/2) A(T ′, h), (3.4)

where, if we let θ1 = −2d(0, T ′)/h2 and θ2 = −h−2, then

A(T ′, h) =
∫ ∞

0
ρp−1 exp

(
θ1ρ+ θ2ρ

2) dρ. (3.5)

Proof. The distance d(T, 0) is the usual l2-norm of the vector of edge lengths for the tree T , and O
is the positive orthant Rp+. Thus, if we express the integral over O in an angular coordinate system,

CO(T ′, h) = e−
d(0,T ′)2

h2

∫
O

e−
(d(T,0)2+2d(0,T ′)d(T,0))

h2 dT = e−
−d(0,T ′)2

h2

∫ ∞
0

∫
Θ
eθ1ρ+θ2ρ

2
dV (ρ,Θ).
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Now the volume element in Rp in an angular coordinate system is

dV (ρ,Θ) = ρp−1dρ

p−1∏
k=1

sinp−k−1(θk) dθk,

and it so happens that one of the definitions of the Beta function yields∫ π/2

0
sina−b−1(θ) dθ = 1

2B((a− b)/2, 1/2).

Integrating in all the radial coordinates yields a product of beta functions which telescopes down
to the constant appearing in (3.4). This reduces the problem to a single integral in the radial
coordinate, which is equivalent to A(T ′, h).

Unfortunately, the function A(T ′, h) has no general closed form solution. However, there are
several methods that we can use to obtain a numerical estimate of this value. The HGM method
developed in Hayakawa and Takemura [65] is one such method for obtaining this value. It is also
reasonable to calculate this particular integral using classical quadrature methods.

Lemma 3.2. Following the notation of Hayakawa and Takemura [65],

A(T ′, h) = ∂p−1
1 A2(θ1, θ2).

Here, A2(θ1, θ2) is the normalizing constant for the exponential-polynomial distribution of order 2,
the θ are defined as in Theorem 3.1, and ∂m1 means the m-th partial derivative with respect to θ1.
Furthermore, Hayakawa gives the following equivalence for the first partial derivative

∂1A2(θ1, θ2) = − 1
2θ2
{1 + θ1A2(θ1, θ2)} ,

and for the the higher derivatives, m ≥ 2, the partials can be expressed recursively in terms of lower
order derivatives,

∂m1 A2(θ1, θ2) = − 1
2θ2
{(m− 1)∂m−2

1 A2(θ1, θ2) + θ1∂
m−1
1 A2(θ1, θ2)}.

Proof. See Hayakawa and Takemura [65], Section 2, equations (4) and (7). The latter expression
can be easily obtained by differentiation of the expression for the first partial.

These results are sufficient to use the hgm package described in Koyama et al. [94] to implement
the lower bound for the orthant integral, CO(T ′, h). The desired normalization constant for function
(3.1) can be decomposed as the sum of integrals over each orthant in BHV space. Thus, if nO is the
number of orthants in the BHV space, then nO · CO(T ′, h) is a crude lower bound for the overall
normalizing constant. Although this is a poor bound, it can be improved by obtaining better bounds
for the contribution from various orthants and adjusting accordingly.

The most obvious orthant to begin with is the orthant containing the “central” tree T ′, which
we shall call OT ′ . This is the orthant where the difference between k and k will be the greatest, and
thus the largest improvement to the bounding constant is to be found here. Note that in this case,
the integral over OT ′ is given by,

COT ′ (T
′, h) =

∫
OT ′

exp
(
d(T ′, T )2/h2) dT =

∫
Rp+

exp
(
−||x− xT ′ ||/h2) dx.

This is simply the integral of a radially-symmetric multivariate gaussian kernel centered at the point
T over the positive orthant. Such a normalizing constant can also be calculated using HGM, and
an implementation is included in the hgm R package [94].

Further improvements to the integral for orthants which adjoin directly to OT ′ can be made by
noting that a relationship similar to that of Lemma 3.1 will hold, but with the third point in the
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triangle inequality being somewhere on the orthant boundary, instead of the origin. However, in
practice the improvements to the bounds obtained in this way are quite small, given the typical values
of the bandwidths which occur in practice and the small number of orthants to which the calculations
apply. For this reason, and in the interests of controlling the overall numerical complexity of the
kdetrees algorithm, these “second-order” improvements are not implemented at at this time, but
may appear in future updates.

3.2.2 Outlier Test

In Chapter 2, we chose to implement a outlier test of the form, f̂(Ti) < c∗, where the critical value
c∗ is selected using Tukey’s quartile method,

c∗ = Q1 − k(Q3 −Q1).

Here, f̂(T ) denotes our density estimate for tree T , and the quartiles, Q1, Q3,are calculated using
all observed tree density estimates.

Further experimentation with the method has suggested that better performance is obtained if
the tree density scores are transformed to the log-scale before the classification step takes place,
log f(Ti) < c∗. This transformation was chosen because the raw scores, f(Ti), are themselves
bounded below by zero, and the log transformation removes this bound. The quantiles used to
compute the critical value are also obtained using the log-transformed scores. Due to the better
performance characteristics of this method, the default classifier algorithm for kdetrees has been
changed to operate on the log-density scale.

3.2.3 Leaf Edges

The dimension of the orthants comprising tree space is determined by the number of taxa in the
trees, with each edge in the fully-resolved tree contributing a dimension to each of the orthants
comprising the space. However, the n leaf edges are represented in the space in such a way that the
space can be decomposed into a Cartesian product S×Rn+. The portion of the space S is associated
with the internal edges of the trees, while the positive Euclidean orthant Rn+ is associated with the
leaf edges [13]. Because of this decomposition, there is not a large amount of topological information
contained in the portion of the space corresponding to the leaf edge lengths.

If we remove the leaf edges from the calculation, the dimension of treespace can be reduced by
approximately half, while retaining the important topological information. This has the benefit of
simplifying the overall density estimation problem, as well as the computation of the normalizing
constant estimates by the HGM methods. While the original kdetrees algorithm included the leaf
edges in the geodesic calculations, the updated version omits them from consideration.

3.3 Results

The updated version of the kdetrees software package is available both from CRAN (the official
R package system), as well as from the official development repository on Github [176].

3.3.1 Simulations

A set of simulated datasets were constructed and analyzed, using a similar design as the first simu-
lation described in Chapter 2. The simulations measure the true and false positive rates for identi-
fication of known outlier trees within a set of trees drawn from a common distribution. Results of
the simulation are summarized as ROC curves, and are presented in Figure 3.1.

3.3.2 Apicomplexa

The Apicomplexa data set presented by [96] consists of trees reconstructed from 268 single-copy
genes from the following species: Babesia bovis (Bb) [17], Cryptosporidium parvum (Cp) [1] from
CryptoDB.org [66], Eimeria tenella (Et) from GeneDB.org [70], Plasmodium falciparum (Pf) [55] and
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Figure 3.1: Receiver operating characteristic (ROC) plots comparing the updated kdetrees algo-
rithm with Phylo-MCOA. ROC plots summarize the true and false positive rates (TPR and FPR,
respectively) for a binary classifier as the tuning parameters are changed. A perfect classifier would
be represented as a single point at the upper left corner of the plot, while a completely random
scheme would follow the dotted diagonal lines. Curves are shown from simulated coalescent data,
using a variety of effective population sizes (Ne). Larger values for Ne correspond to more variability
in the generated trees, and thus a more difficult classification problem.
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Plasmodium vivax (Pv) from PlasmoDB.org [8], Theileria annulata (Ta) [132] from GeneDB.org [70],
and Toxoplasma gondii (Tg) from Toxo-DB.org [54]. A free-living ciliate, Tetrahymena thermophila
(Tt) [47], was used as the outgroup. To this set of sequences, we appended the Set8 gene, which
has been identified by [90] as a probable case of horizontal gene transfer from a higher eukaryote
to an ancestor of the Apicomplexa. This is the same data set analyzed as part of the original
kdetrees paper, which was analyzed again with the updated algorithm. The new set of outlier
trees is presented in Table 3.1. The newly identified set of outlier trees are presented in a series
of supplementary figures which appear in Appendix C. The figures are in ascending order by the
kdetrees tree score, i.e., the first tree depicted is the furthest outlying tree.

Table 3.1: Apicomplexa gene sets identified as outliers by the updated kde-
trees. Genes which were not identified as outliers by the original algorithm
are marked with a ∗. aBased on geneset designations in [96]. bGeneset repre-
sented by GeneID for Plasmodium falciparum. (Pf = Plasmodium falciparum,
Pv = Plasmodium vivax, Bb = Babesia bovis, Ta = Theileria annulata, Et =
Eimeria tenella, Tg = Toxoplasma gondii, Cp = Cryptosporidium parvum, and
Tt = Tetrahymena thermophila (outgroup).)

No.a GeneIDb Functional
Annotation

Analysis

∗ 472 PF14_0059 hypothetical
protein

Tree topology inconsistent with phylogeny.
Bb and Cp on same branch, with Ta distant
from sister species Bb. Sequence alignment
looks good in some regions, but with
numerous gaps and other regions with poor
alignment. Multiple homopolymer stretches
in Pv and Pf.

∗ 478 PF14_0326 hypothetical
protein

Tree topology not consistent with phylogeny
of the species. Bb branches with the
outgroup Tt instead of itâĂŹs
closely-related sister species Ta. Poor
alignment with numerous gaps, numerous
homopolymer stretches, particularly in Et.

488 PF08_0086 RNA-binding
protein, putative

Significant sequence length disparity (164
a.a. for Ta vs 1075a.a. for Pf). Generally
good sequence alignment in one region of
100 residues; otherwise, alignment is poor.

∗ 505 PF14_0143 protein kinase,
putative

Ta/Bb and Pf/Pv not monophyletic; split
by outgroup Tt. Good sequence alignment
in multiple blocks, but significant sequence
length differences. Pf/Pv have multiple
insertions and Et and Cp sequences are
truncated.

515 PFA0390w DNA repair
exonuclease,
putative

Short sequences for Et and Cp. Several
homopolymer stretches in Et. Modest to
good alignment in multiple blocks, Et being
an exception in several regions. Possible
incorrect annotation of Et sequence.

∗ 553 PFC0730w conserved protein,
putative

Tree topology inconsistent with phylogeny.
Bb and Ta are distant not monophyletic
with Pv/Pf. Short regions exhibiting good
sequence alignment. Et sequence is
truncated.

Continued on next page. . .
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Table 3.1 – continued from previous page
No.a GeneIDb Functional

Annotation
Analysis

∗ 578 PF14_0042 U3 small nucleolar
ribonucleoprotein,
U3 snoRNP
putative

Tree topology very inconsistent with
phylogeny; Tg branch with outgroup Tt, Et
branch with Bb and Ta. Poor alignment.
Significant sequence length differences; Tg
sequence is 4126 residues in length, Cp and
Tt 2000 residues, Pf and Pv are 450
residues.

∗ 585 PF10_0054 hypothetical
protein

Cp exhibits anomalous placement in tree.
Significant sequence length differences; Pf,
Pv, Tg about 1100 residues, Et only 349
residues, so numerous gaps in alignment.
Some regions show good alignment.

∗ 588 PFI1020c Inosine-5’-
monophosphate
dehydrogenase

Sequence alignment looks reasonably good.
Tree shows Cp branching with outgroup Tt
and distant from other Api species. Bb split
from Ta.

∗ 630 PFL2120w hypothetical
protein, conserved

Tree topology inconsistent with phylogeny.
Cp branching with Pv/Pf. Ta/Bb not
monophyletic with Pv/Pf. Several blocks of
sequence showing good alignment, but
numerous gaps, due mostly to Ta insertions.

641 PFE0750c hypothetical
protein, conserved

Et on a very long branch with other species
tightly clustered. Large difference in
sequence lengths; 269 residues for Et vs. 848
for Pf. Central region with modest to good
alignment; Et exhibited poor sequence
identity.

∗ 645 PF14_0635 RNA binding
protein, putative

Tree topology looks proper, although Pv
and Pf are on a somewhat long branch.
Modest to good alignment.

∗ 662 PF11_0463 coat protein,
gamma subunit,
putative

Multiple homopolymer stretches in Et
sequence. Generally good alignment for all
but Et; sequence might not be homologous.

∗ 725 PF14_0428 histidine – tRNA
ligase

Tree topology appears proper, but Pf/Pv on
long branch. Good alignment in two large
blocks, but significant gaps and poor
alignment in other regions. Et sequence
truncated (339 vs. 1000 residues for others).
Ta sequence also truncated (583 residues).

∗ 745 PF11_0049 hypothetical
protein, conserved

Ta and Bb branch is distant from other Api
species, which cluster tightly. Regions of
good sequence alignment by with several
large gaps. Sequence length differences; Pf
and Pv = 3300 residues, Tg and Cp = 2600,
Et only 347.

∗ 750 PFE1050w adenosylhomo-
cysteinase
(S-adenosyl-L-
homocystein e
hydrolase)

Ta and Bb somewhat distant from other Api
species. Relatively good sequence
alignment, although Et sequence truncated
(291 vs. 480 for others).
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Figure 3.2: An outlier tree from the Lungfish dataset, featuring a unusual topology.

3.3.3 Lungfish

We also analyzed a dataset of 1290 sequences presented by Liang et al. [104]. The sequences were
aligned using MUSCLE [44], and trees were reconstructed using the neighbor-joining method [149].
This dataset features 10 taxa, representing tetrapods (Homo, Gallus, Xenopus), cartilaginous fish
(Leucoraja, Scyliorhin, Callorhinchidae), bony fish (Takifugu, Danio), and transitional fishes (La-
timeria, Lungfish). The paper presenting the dataset suggests that the reconstructed trees generally
fall into one of the three unrooted topologies which one can defined using the four overarching clades
described above, with a few instances of trees where these clades are not reconstructed as expected.

Table 3.2 contains a description of the outlier trees identified in the Lungfish dataset. Figure 3.2
depicts an example of one of the outlying trees which features a clearly unusual topology.

3.4 Discussion

3.4.1 Apicomplexa

The outliers identified by kdetrees in the Apicomplexa dataset are substantially different than
those reported in our original paper. In the original paper, many of the outliers were trees containing
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Table 3.2: Outliers identified by kdetrees in the Lungfish dataset.
score tree notes
-21.08 ENSG00000109762 Disproportionate internal branch.
-19.61 ENSG00000124279 Disproportionate internal branch.
-17.97 ENSG00000115970 Disproportionate internal branch.
-16.69 ENSG00000000457 Disproportionate internal branch, Leucoraja placed with

bony fish.
-11.40 ENSG00000142798 Disproportionate internal branch, Callorhinchidae placed

with bony fish.
-6.86 ENSG00000180694 Disproportionate internal branch.
-6.53 ENSG00000159733 Lungfish and Callorhinchidae placed with bony fish.
-3.76 ENSG00000185917 Callorhinchidae placed with bony fish.
-2.33 ENSG00000015479 Disproportionate internal branch.
-1.99 ENSG00000165124 Cartilaginous fish do not form clade.
-1.01 ENSG00000189079 Disproportionate internal branch.
2.14 ENSG00000112200 Disproportionate internal branch.
2.74 ENSG00000163512 Disproportionate internal branch.
3.98 ENSG00000164252 Highly disproportionate external edge length.
4.21 ENSG00000134759 Scyliorhinidae placed with bony fish.
4.43 ENSG00000159267 Highly unusual tree topology.
4.71 ENSG00000119431
4.72 ENSG00000092470 Highly unusual tree topology.
5.15 ENSG00000140263 Xenopus not placed with tetrapods.
5.37 ENSG00000109775
5.38 ENSG00000145901
5.97 ENSG00000132952
6.03 ENSG00000152223
6.11 ENSG00000128708
6.11 ENSG00000214367 Xenopus not placed with tetrapods.
6.12 ENSG00000103932
6.37 ENSG00000099991 Scyliorhinidae placed with bony fish.
6.62 ENSG00000134900
6.63 ENSG00000165309 Xenopus not placed with tetrapods.
6.87 ENSG00000189306 Disproportionate internal branch.
6.92 ENSG00000151023 Xenopus not placed with tetrapods.
6.98 ENSG00000116863 Disproportionate internal branch.
7.02 ENSG00000196290
7.43 ENSG00000066136 Disproportionate internal branch.
7.50 ENSG00000106144
7.54 ENSG00000126777 Disproportionate internal branch.
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a single edge much longer than any other edge. This was largely attributable to one or more poorly
aligned sequences within the larger multiple sequence alignment. Thus, the disproportionate edges
were often leaf edges, and as a result of the changes in the algorithm, the leaf edges are no longer taken
into consideration by the default settings. As a result, many of the trees identified as outliers in the
original paper are no longer identified as outliers by the default parameter settings of the improved
version. However, the software retains the “dissimilarity mode” from the original implementation,
which always uses the terminal branch length information.

The cumulative result of the changes in the algorithm is an increased focus on differences in
topology in the dataset. The new set of 16 outlying trees differ from the non-outliers primarily
in the placement of the Bb, Cp, Ta, and Tt genes within the trees. In the non-outlier trees, Cp
generally forms a clade with Tt, while Ta forms a clade with Bb. In the outlier trees, however, these
taxa are placed in widely varying locations within the trees, as demonstrated by the drawings of the
outlier trees appearing in the series of figures in Appendix C.

Together, these results demonstrate that the updated kdetrees algorithm is more sensitive to
topological differences in the trees than the previous version, at the expense of the loss of informa-
tion from the terminal edge lengths. However, the original functionality using the terminal edge
information is still available for use, by setting the appropriate flags.

3.4.2 Simulations

The performance of the classifier with the simulated datasets is substantially better than the original
version of the algorithm. Although there is a modest performance penalty associated with the
estimation of the normalizing constants, kdetrees remains significantly faster than the competitor
Phylo-MCOA algorithm [37].

When the non-outlier trees are drawn from a single coalescent distribution, the performance of
the classifier is nearly perfect, identifying the correct outlier in every simulation iteration, even when
the variance of the coalescent distributions (controlled by the effective population size parameter Ne)
was quite large. (Of course, due to the nature of the classifier, false positives are inevitable if the
tuning parameter is chosen poorly.) In the more difficult cases where the non-outliers were drawn
from a mixture of coalescent distributions, the updated algorithm remained superior to the Phylo-
MCOA algorithm, showing greater area under the ROC curve for all cases except for the case of the
most highly variable 5-part mixture distribution for the non-outlier trees.

3.5 Conclusion

Our proposed method is motivated by the fact that existing methods of phylogenetic analysis and
tree comparisons are not adequate for genomic scale phylogenetic analysis, particularly in cases
of certain non-canonical evolutionary phenomena. Furthermore, the scenario in our mixed coales-
cent distribution simulation—where the non-outlier trees are sampled from an unknown mixture of
distributions—cannot be handled by parametric methods, with the possible exception of the genome
spectral methods. However, even the genome spectral methods ignore possible statistical dependen-
cies between different feature spectra. In contrast, we propose analyzing a collection of gene trees
without reducing gene trees to summarizing information. Our kdetrees approach also possesses a
considerable advantage in speed over other methods, which is of paramount importance for a tool
used in whole-genome phylogenetic analysis.

In addition, one of the applications of our method is an inference on the species tree or a tree
that reflects the evolution of most genes in the genome. We can use our method to identify genes
which produce discordant trees (outlying trees) and then we can remove them from phylogenetic
analysis. By doing this we can use the genes that share the same evolutionary history and we can
build a tree that reflects the evolution of the species or that of most of the genome.

We have been interested in developing a phylogenomic pipeline that is convenient and accessible,
as well as robust. To accomplish this aim, an important problem that needs attention is to comparing
thousands of gene phylogenies across whole genomes. Thus, our approach is focused on the efficiency
of the algorithm in terms of computational complexity and memory requirements, with less emphasis
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on achieving the highest classification accuracy possible. Thus, it is very important for us to improve
the accuracy of the method while we maintain the speed of the algorithm. Compared with the original
kdetrees and the Phylo-MCOA algorithm, in this paper, we have demonstrated the significant
improvement in the accuracy of the method without a corresponding impact on computational
speed, as shown by the simulation results in Figure 3.1.

In future work we intend to apply kdetrees to clustering trees based on similarity. Unsupervised
clustering is an important method to learn the structure of unlabeled data. The aim of clustering
methods is to group patterns on the basis of a similarity (or dissimilarity) criteria where groups (or
clusters) are set of similar patterns.

Many traditional clustering algorithms (e.g., K-Means, Fuzzy c-Means, SOM and Neural Gas)
take the form of kernel-based algorithms [79, 80, 27]. The use of kernels allows us to implicitly map
data into an high dimensional space, called feature space; computing a linear partitioning in this
feature space results in a nonlinear separation between clusters in the input space. We intend to
further expand on these results by using the kernels to develop similar clustering methods for trees
in BHV space.

Acknowledgement

We would like to extend our thanks to Nobuki Takayama and Tomonari Sei for their help in adapting
the HGM software for use in our software package.

c© Grady Weyenberg 2015

47



Chapter 4

Principal Components in BHV treespace

This chapter represents the progress so far in an ongoing project with Dr. Tom Nye at Newcastle
University. The software algorithms described here are currently under development, and when
completed this will be developed into a more complete methods paper, analyzing sets of trees similar
those studied in the previous chapters.

4.1 Introduction

Principal Components Analysis (PCA) is a classical dimension reduction technique which can be
applied to multivariate data which takes values in some Euclidean space Rs. The goal is to attempt
to find a set of r < s orthogonal vectors which, if the data points are projected onto the subspace
spanned by the vectors, minimizes the differences between the original data and the projected points.
The coordinate values in the lower-dimensional projected space are intended to be a good approx-
imation of the position in the high-dimensional space. The component vectors are understood as
somehow being a more natural representation of the major kinds of variability present in the dataset,
which may not correspond well with the units in which the data was originally collected [81].

In this chapter we develop a technique analogous to PCA, but which may be applied to the
space of phylogenetic trees described by Billera, Holmes, and Vogtmann [13] (BHV treespeace). The
space is constructed as complex of Euclidean orthants, but it is itself not Euclidean, and so certain
properties which are assumed for the PCA algorithms to work do not hold in treespace. Fortunately,
although not Euclidean, the BHV space is well behaved enough in the sense that it is a CAT(0)
space (it is non-positively curved everywhere). This property ensures the existence of geodesic paths,
which allows us to formulate definitions for objects in the BHV space which we believe are most
analogous to the principal component vectors of classical PCA.

There have been many previous generalizations of the PCA techniques. Some of these tech-
niques retain the assumption that the observations are points in a Euclidean space, while allowing
the the space being projected onto to deviate from a linear subspace of the higher dimensional
space. Sammon [151] (Sammon Mapping) and Gorban and Zinovyev [59] (Elastic Maps) provide
two important examples of these types of generalizations. More recently development has begun
on techniques which relax the Euclidean space assumption. Fletcher et al. [53], for example, aims
to conduct a PCA-like analysis of the shapes of physical objects (specifically oddly-shaped glands
found in the Human anatomy) using so-called “medial axis parameters”, which are not elements of
any Euclidean space. This work is most similar in spirit to that of Fletcher, but rather than using
their set of “principal directions”, we develop a distinct object which we believe is better applicable
to the BHV treespace.

4.1.1 GeoPhytter

GeoPhytter is a software package and algorithm for constructing “principal geodesics” in the
BHV treespace. A geodesic between two trees, T, T ′, is the shortest continuous path connecting the
trees within the metric space, and we use the notation ΓTT ′ to describe the entire geodesic, and
ΓTT ′(t) to refer to a particular tree on the geodesic, at proportion t ∈ [0, 1] of the way along the
geodesic from T to T ′. A principal geodesic is defined by a pair of endpoint trees which are chosen
so that the total square-distance from the observed trees to the principal geodesic is minimized.
The principal geodesic “summarizes the most variable features of a sample of trees ... and can be
visualized as an animation of smoothly changing trees.” [123]

The algorithm works by performing a stochastic search of the space of possible principal geodesics.
After being initialized with some initial pair of points (possibly random), GeoPhytter attempts
to improve the fit of the principal geodesic by randomly perturbing the endpoints in a variety of
ways. It should be noted that the algorithm is not guaranteed to find the optimal solution to the
principal geodesic problem, as it may become trapped within a local optimum.
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The algorithm we describe in this chapter is essentially a generalization of GeoPhytter. Using a
collection of “vertex” points, we define a principal object. Then, the vertices are perturbed, utilizing
the same methods as GeoPhytter, in an attempt to minimize the total square-distance from the
observed data to the principal object so constructed. While GeoPhytter limits the number of
vertices to two, this algorithm is limited only by the dimension of the underlying treespace and the
computational feasibility of the optimization problem.

4.1.2 Convex Hulls

The principal geodesic appears to be a fairly natural object in BHV treespace, since it can be
interpreted in similar ways to the first principal component in classical PCA [123]. As a principal
geodesic is defined by a pair of endpoints, a set in treespace defined by a collection of three (or
more) points seems to be a natural candidate for a generalization to third (or higher) order principal
objects.

An immediately attractive object defined by a collection of points is the convex hull. The convex
hull of a collection of points is the smallest geodesically closed set which contains the given points.
The hull is an attractive object for several reasons. First, as a convex object, the projection from
an arbitrary point in treespace onto the hull is well-defined and unique. Secondly, the hull can be
defined by any number of vertex points. Furthermore, the definition degenerates to the principal
geodesic in the case of two vertices , and to the Fréchet mean in the case of a single vertex.

Unfortunately, the convex hull has a critical drawback which significantly weakens its claim to
be the natural higher-order generalization of the principal geodesic. In Euclidean space the convex
hull formed from r points has dimension at most r − 1. In other words, increasing the number of
points used to specify the hull has a very well-understood effect on the dimensions of the object
constructed. However, in BHV space, it turns out that the dimension of a convex hull can grow
faster than the number of points used to define it. The following example demonstrates that the
convex hull of 3 points in the BHV space of unrooted trees on six leaves can fill a 3-dimensional
region of space, rather than the two dimensional surface one might hope to obtain.
Example 4.1. Consider three unrooted trees in T6 with the topologies shown in Figure 4.1, and
the internal branches labeled as shown. Tree 1 is separated from both Trees 2 and 3 by a single NNI
move, while Trees 2 and 3 are separated from each other by two NNI moves. Suppose we assign to
Tree 1 the internal lengths (x, y, z) = (1, 1, 2), to Tree 2 the lengths (w, y, z) = (2, 1, 1), and to Tree
3 the lengths (v, x, z) = (2, 1, 1). Figure 4.2 depicts the geodesics connecting the three trees within
the BHV treespace. Shown is the portion of the space corresponding to the internal branches of the
trees which is orthogonal to the length of the z-edge.

Consider the surface formed by the point representing Tree 1 and the points where the geodesics
Γ12 and Γ13 intersect the orthant boundary, with coordinates (x, y, z) = (0, 1, 1 2

3 ) and (x, y, z) =
(1, 0, 1 2

3 ), respectively. If we restrict our attention to only this particular orthant, then the hull of
the three points defines a two dimensional surface.

Now, note that Γ23 also intersects the orthant containing Tree 1. Although the intersection is
only at a single point, with coordinates (x, y, z) = (0, 0, 1), the convex hull must also contain all
geodesics from this new point to the surface we just defined. However, the new point is not co-planar
with the three points defining the surface, and since within the orthant we are simply dealing with
Euclidean space, the four non-planar points form a hull which is 3-dimensional. This 3-dimensional
object must, by definition, be contained within the convex hull of the three trees, as defined in the
full BHV space.

Thus, we have shown that it is possible for the convex hull to contain a region of higher dimen-
sion than expected, given the number of vertices used in the definition. In fact, the trees used in
this example are not particularly special. The dimension escalation problem described is possible
whenever a geodesic connecting two vertices passes through an orthant containing another vertex,
a situation which is by no means uncommon for arbitrary sets of vertex trees.

One consequence of the possible explosion of the convex hull dimension is that it is quite difficult
to explicitly decide if a particular point in BHV space is within a given convex hull or not. The diffi-
culty in actually constructing and defining the convex hull gives rise to difficulty in the development
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Figure 4.1: Three trees used in the space-filling convex hull example.

y

w

v

x

Tree 3
(2,1)

Tree 2
(1,2)

(1,1)
Tree 1

Figure 4.2: Plot showing the geodesics connecting the three trees. The x-dimension of the orthants
has been suppressed in this illustration, although it may be understood to be extending orthogonally
out of the page.
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function WeightedMean(~v, ~w, ε)
y ← v1 . Initialize at first vertex.
n← 1 . Iteration counter.
repeat

y′ ← y . Store old value.
n← n+ 1
λ← 1/n
for i in 1: length(~v) do . For each vertex,

t← 2λwi
1+2λwi

y ← Γyvi(t) . Move proportion t along geodesic to vertex.
end for

until d(y, y′) < ε . Convergence check.
return y

end function

Figure 4.3: A deterministic algorithm for approximating a weighted Fréchet mean.

of algorithms for projecting onto it, and thus with obtaining a “principal hull” via the stochastic
optimization process described in Nye [123]. Furthermore, even if a oracle existed which was able
to construct a principal hull, any interpretation of the hull would remain extremely challenging.
Without having a good way to construct the hull, any effort to visualize the hull itself, or what sort
of variation it represents, would seem virtually impossible.

4.1.3 Fréchet Means

The weighted Fréchet mean (also known as a barycenter of a distribution F ) is a generalization of
the notion of the usual arithmetic mean to a metric space, defined by,

m(F ) := arg min
x∈T

∫
T
d(x, t)2 dF (t).

It is clear that this definition coincides with the familiar arithmetic mean in the Euclidean case.
However, this definition can be used with any metric space, and in particular it is compatible with
the BHV treespace Tn.

For the purposes of this chapter we shall concern ourselves only with the special case of a weighted
mean of a finite set of r vertices, ~v := (v1, . . . , vr), in a fixed treespace Tn,

m(~v, ~w) := arg min
x∈Tn

r∑
i=1

wi d(x, vi)2. (4.1)

The weights vector ~w encodes the probability mass assigned to each vertex by the probability
distribution. If the space is CAT(0), as is the case with BHV space, then such a minimizer exists
and is unique [9, Theorem 2.4].

The algorithm described in Figure 4.3 approximates the weighted Fréchet mean defined in (4.1).
The sequence of intermediate values of the algorithm is shown to converge to the minimizer m(~v, ~w)
by Bačák [9, Theorem 3.4].

4.2 Methods

Consider the locus of Fréchet means (LFM) for a fixed vertex set of size r,

M(~v) := {m(~v, ~w) : ~w is a set of probability weights} .

We claim that the LFM is a more natural way to generalize a principal object in the BHV space
from a set of specified vertices, given that the convex hull exhibits the dimension explosion problem
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discussed in the introduction. The LFM has the basic properties one might assume that a principal
object should have: The vertices themselves are contained in the LFM, ~v ⊂M(~v), since placing all
of the probability mass on a single vertex implies that the mean lies on that vertex. Furthermore,
the geodesics connecting the vertices are contained in the LFM, Γvivj ⊂ M(~v), since the weighted
Fréchet mean of two points lies on the geodesic connecting them. However, the most desirable
property of the set M(~v), which sets it apart from the convex hull, is that the dimension is limited
by the number of vertices used to define it, minus one.

Unfortunately, the locus of Fréchet means is not a perfectly ideal object to serve as a generaliza-
tion of a principal component. The locus of Fréchet means is not, in general, convex. If such were
the case, then hull(~v) ⊂M , and we have already shown cannot be the case, as the dimension of the
convex hull in the example exceeds r − 1. However, not all is lost, as the locus of means is closed
and bounded, and this guarantees that a projection onto M(~v) does exist, in the sense that there
exists a (possibly non-unique) point in M(~v) which minimizes the distance to the projected point.

Theorem 4.1. The weighted Fréchet mean m(~v, ~w) is a jointly continuous function of the weights
and the vertices.

Proof. This proof uses the fact that the Bačák [9] algorithm for obtaining the mean or median is
continuous.

Consider the map used by the to update the estimate: y 7→ Γyv(t). The new point is obtained
by moving some distance along the geodesic from the current point to one of the vertices. This
updating step is jointly continuous in the starting point, the vertex, and the proportion t.

First, note that the complement of the movement proportion is

1− ti = (1 + 2λwi)−1.

This is clearly continuous for wi ∈ [0, 1], and thus so are ti and Γyvi(ti). Next, consider moving
both the starting location and the target vertex up to distance ε from their original positions. An
application of Sturm [163, Corollary 2.5] (see Figure 4.4) yields

d(Γyv(t),Γy′v′(t)) ≤ (1− t)d(y, y′) + td(v, v′) ≤ ε.

Next, we note that by the triangle inequality,

d(Γyv(t),Γy′v′(t′)) ≤ d(Γyv(t),Γy′v′(t)) + d(Γy′v′(t),Γy′v′(t′)).

Since we have shown that both of the distances in the right hand term are continuous, we may
conclude that y 7→ Γyv(t) is jointly continuous in all of the arguments.

The composition of continuous maps are continuous, so this also shows that the ending point
after a finite number of iterations of the Bačák algorithm is jointly continuous in the weights and
the vertices.

Now using the algorithm we construct a pair of sequences, {yi} → m(~v, ~w) and {y′i} → m(~v′, ~w′).
Since both sequences converge to their respective Fréchet means, there exists a Nε such that
d(yi,m(~v, ~w)) < ε and d(y′i,m(~v′, ~w′)) < ε for any ε > 0 and i ≥ Nε. Finally, we note that

d(m(~v, ~w),m(~v′, ~w′)) ≤ d(m(~v, ~w), yNε) + d(yNε , y′Nε) + d(y′Nε ,m(~v′, ~w′))
≤ 2ε+ d(yNε , y′Nε).

Since we have proven that the map consisting of finite number of iterations of the algorithm is
continuous, we may conclude that m(~v, ~w) is continuous.

4.2.1 Projecting onto the locus of weighted means

The continuity result above gives us some hope of using numerical methods to attack the problem
of projection onto the LFM. Given a fixed vertex set of size r, and an algorithm for computing a
weighted Fréchet mean, the problem becomes a fairly straightforward, although non-convex, con-
strained optimization problem.
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Figure 4.4: Illustration of Sturm [163, Corollary 2.5].

The objective function which must be optimized in the projection of a point x onto a LFM
may be expressed as a function of the weight vector, Ωx(~w) = d(x,m(~v, ~w)). The constraints
placed on ~w for it to be a valid weight vector are fairly straightforward linear constraints, and so
the problem can be attacked using existing techniques. For example, the R package provides the
function constrOptim, which is designed to handle this type of problem [97].

We should note at this point that the non-convexity of the LFM allows for the possibility of a
non-unique global optimum for Ωx, and thus for the value of the projection itself. However, this does
not actually interfere with our goal of finding a principal LFM, as the criterion used to definition
of that object depends only on the optimal value of Ωx. If there are multiple distinct points in the
LFM which all optimize Ωx, then it is immaterial to which of these points is actually found by the
projection operation.

The potential for local optima thus presents the major difficulty in the the projection problem.
However, in the course of practical use of our technique we do not expect the problem to be partic-
ularly severe. Although it is possible in theory to define a principal LFM using an arbitrary number
of vertex points, it seems unlikely that there will be much practical use in trying to fit a LFM with
more than perhaps four or five vertices. One reason for this is that the vertex optimization technique
described in the subsequent section becomes very difficult as the number of vertices increases. A
second important consideration which limits the number of vertices is the difficulty with both visu-
alization and interpretation of LFMs defined using large vertex sets. Given these considerations, we
will assume that practical applications of the technique deal exclusively with very modestly numbers
of vertices.

One heuristic which is commonly used with non-convex optimization problems is to start the
optimizer at a variety of points in the space. Hopefully, the optimizer will converge to the same
solution in every case, but if not, the best solution found may still be used. It should be noted that
if the number of vertices to be used in the LFM definition is kept small, then the dimension of the
space of possible weight vectors over which Ωx must be optimized is similarly limited. For vertex
sets on the scale described above, the dimension of the space is not large enough to make a relatively
dense exploration of starting positions computationally infeasible. By employing this heuristic, we
may may be reasonably confident the projection algorithm will obtain a good estimate of the true
distance from x to M(~v).
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4.2.2 Searching for optimal vertices

The search for a set of optimal vertices for the principal LFM may be carried out in the same manner
as in GeoPhytter, once a projection algorithm is available. Four perturbation methods are used
to propose changes to the set of LFM vertices:

• Gaussian Random Walk

• Nearest Neighbor Interchange

• Random Jump

• End-point move

See Nye [123], for a detailed description of these perturbation operations.
The algorithm operates by iteratively proposing a new vertex set, projecting the observed data

onto the new LFM, and then checking to see if the new vertex set improves or degrades the fit. If
the fit is improved, the new vertex set is retained, otherwise it is discarded. The process may be
repeated until the user is satisfied that the algorithm has converged.

It should be noted that this method of perturbing the vertex set may allow us to make a significant
optimization of the projection algorithm discussed in the previous section. If a single vertex within
~v is perturbed slightly, then the continuity of the Fréchet mean implies that for a fixed ~w, m(~v, ~w)
will shift in a continuous manner, and that the entire LFM as a whole will not move discontinuously.
While this does not guarantee that the projection of a point x is continuous in ~v, it does suggest
that the vector of weights associated with the projection of x onto M(~v) is a good starting location
heuristic for the projection algorithm when calculating the new projection of x onto the proposed
LFM.

4.2.3 Visualization of the LFM

Although perhaps not as baffling as the convex hull, the LFM in treespace is still a somewhat exotic
construction. For the principle geodesic Nye [123] suggests visualizing the principle geodesic in the
form of a smooth animation displaying all of the points on the geodesic between the two endpoint
trees. It is argued that this allows the viewer to visually interpret the main type of variability present
within the data.

This technique suggests a similar approach for a higher order principal LFM. Since the points on
the LFM are parameterized by the weight vector, ~w, we may allow the user to explore the space by
continuously varying the weight vector, while viewing an animation of the corresponding trees on the
LFM. If the number of vertices used to define the LFM is kept modest, then a manual exploration of
this space is reasonable for the same reasons that it is feasible to use the multiple starting location
heuristic in the projection algorithm. While the user interface to required to achieve this cannot be
as straightforward as in case of the principal geodesic, this method of interpretation should allow
the viewer to get a sense for what types of variability are represented by the LFM.

4.2.4 Datasets

When the coding is complete, the method will tested by application to three empirical datasets.
The first empirical dataset was originally presented by Archibald and Roger [7], and consists of
chaperonin genes sequenced in archea. There are 12 sequences observed in six species: Pyrodictium
occultum, Aeropyrum pernix and Pyrobaculum aerophilum, together with 3 closely related Sulfolobus
species. This data has been analyzed by several similar techniques, including the previous versions
of GeoPhytter [122, 123, 51]. This example is chosen primarily to facilitate comparisons with
previous methods.

The second dataset to be analyzed was first presented by Liang et al. [104], and concerns the
relationship between tetrapods (Homo, Gallus, Xenopus), bony fishes (Takifugu, Danio), cartilagi-
nous fishes (Leucoraja, Scyliorhin, Callorhinchidae), and two transitional fishes (Latimeria and the
Lungfish). The dataset contains 1290 trees and the original study suggests that the trees generally
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cluster into three distinct topologies. This dataset has also been analyzed by the methods of Chapter
3, which has identified 37 putative outliers observations in the data. Analyses are to be performed
both with and without these putative outliers in the dataset, to investigate the sensitivity of the
method to outlier observations.

The third dataset is presented in Nye [122] and reanalyzed in [123]. It consists of a parametric
bootstrap sample obtained from a source tree with 41 taxa representing important eukaryotes, along
with an archean outgroup. The tree contains two long branches, and is analyzed in order to better
understand the effect of the long branches on the new algorithm. The source tree was originally
presented by Brinkmann et al. [18] and the set of new trees was simulated by first generating amino
acid alignments within the base tree using seq-gen [140]. Each generated alignment contains 300
base pairs and was simulated using the WAG+4Γ model of evolution. The results were then fed into
the phyML software to obtain an ML estimate tree for each sequence.

4.3 Results

We have named the software implementing the principal LFM GeoPhytter+, and at the time
of the publication of this dissertation it is in the early stage of code development, and is not yet
suitable for distribution.

c© Grady Weyenberg 2015
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Chapter 5

Future Directions

This chapter briefly describes possible programs for future improvement on the techniques introduced
in this dissertation.

5.1 Improved LFM projection algorithms

While the LFM is continuous, it is not, in general, built out of convex segments within each orthant, it
is instead “curved”, as demonstrated by an argument outlined in a personal communication from TM
Nye (June 2015). However, it appears that it is possible to construct a local tangent approximation
to the LFM at points within orthant interiors.

First, we note that the geodesic connecting a tree x with the vertex vi is characterized by a set
of splits A(1)

xvi , · · · , A
(ri)
xvi in the tree x and B(1)

xvi , · · · , B
(ri)
xvi in the tree vi. Furthermore, suppose we

restrict our attention to an open set Ri, such that all x ∈ Ri form geodesics Γxvi which traverse
the same common sequence of orthants, and thus possess a common set of splits. (Recall that Γxy
is the geodesic connecting trees x and y.) Within such a set, the distance d(x, vi) may be written
in the following form, which is a generalization of the expression given by Owen and Provan [124],
obtained by dropping the assumption that the geodesic endpoints have no splits in common:

d(x, vi)2 = ||Axvi + Bxvi ||2 + ||Cxvi −Dxvi ||2.

Here, Axvi and Bxvi are ri-dimensional vectors defined as, e.g., Axvi =
(
||A(1)

xvi ||, · · · , ||A
(ri)
xvi ||

)
, with

||A(l)
xvi || =

( ∑
e∈A(l)

xvi

e2
) 1

2
,

which is the norm of the vector of edge lengths found in A(l)
xvi . The vectors Cxvi and Dxvi are defined

similarly, using the edge lengths in the splits shared by both x and vi, respectively.
If we let ||x|| denote the norm of all (non-leaf) edges in the tree x, then we can rewrite the

previous distance expression as,

d(x, vi)2 = ||x||2 + ||vi||2 + 2〈Axvi |Bxvi〉 − 2〈Cxvi |Dxvi〉.

This leads to the following form for the objective function which is minimized in the definition of
the Fréchet mean,

Ω(x) =
r∑
i=1

wi d(x, vi)2 = ||x||2 +
r∑
i=1

wi (||vi||2 + 2〈Axvi |Bxvi〉 − 2〈Cxvi |Dxvi〉). (5.1)

Now suppose we wish to project the point x onto M(~v) and that we are able to construct a starting
point x ∈

⋂r
i=1Ri, which is near to the true projected point, arg min

m∈M(~v)
d(x,m).

Consider the gradient of the objective function ∇Ω(x). It would appear that it may be possible
to use (5.1) to construct a linear approximation to the gradient, which in turn defines a local tangent
plane, which we can use to approximate the LFM near x. If so, points on this tangent plane can be
described by a weighting vector ~w and a set of vectors ~α, and the pair can be chosen such that the
weight vector corresponds locally to the weights in the Fréchet mean. This approximation suggests
the algorithm described in Figure 5.1, which exploits the local linearity to iteratively improve an
initial guess for the weights associated with the projection of x onto M(~v).
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function ProjectLFM(x,~v) . Project a point x onto M(~v).
Initialize ~w somehow. . Possibly randomly, or using a previous guess.
repeat

z ← m(~v, ~w) . Find the point on the LFM associated with ~w.
Use analytical form of Ω to obtain tangent vectors to LFM at z.
Update weights ~w by optimizing distance to x on the tangent plane.
z∗ ← z . Store old value.
z ← m(~v, ~w) . Use new weights to find new point on LFM.

until d(z, z∗) < ε . Converge if the projected point does not move.
return z, ~w . The weights may be useful in subsequent steps.

end function

Figure 5.1: An algorithm which attempts to locate the projection of a tree x onto the LFM of the
vertices ~v by constructing an approximating tangent plane.

5.2 kdetrees for big data

A significant portion of the computational effort in the kdetrees method is expended in the calcu-
lation of the pairwise distance matrix. The size of this distance matrix grows with the square of the
number of trees in the dataset, and the difficulty of calculating the individual elements grows with
the cube of the number of tips in the trees.

While we have demonstrated that the technique is computationally feasible for datasets on the
scale of 20,000 trees each containing 13 tips, beyond this size the computational time begins to
become prohibitive when using contemporary commodity hardware. Two avenues for addressing
this problem are immediately apparent. The first is simply to parallelize the computation of the
pairwise distance matrix. As currently implemented, R, and therefore kdetrees utilizes a single
processor thread for all computations. However, the elements of the distance matrix are essentially
independent of each other (for the purposes of direct computation), and this naturally suggests an
opportunity for significant improvement in speed through parallel evaluation of the matrix elements.

A second, and perhaps more fruitful, avenue of approach may be found in the framework devel-
oped by Lawson and Adams [99]. This framework provides a systematic approach to the question of
how to extract information from a partially computed distance/similarity matrix, by focusing com-
putational effort on obtaining exact values for those elements which carry the most non-redundant
information, and providing an emulator which is able to quickly compute estimates for the missing
entries.

The kdetrees method with large numbers of trees in the input appears to be a prime candidate
for the application of the framework. If the trees in the dataset are clustered, then we may expect
that the entries in the distance matrix to be dependent, as all trees in a cluster are close to each
other and far from trees in other clusters. Simulations conducted by [99] suggest that the framework
is particularly effective for efficient reconstruction of the distance matrix in this type of situation.

The extension of kdetrees to incorporate the Lawson Framework will require exploration of the
space of options available for both the choice function, which selects the next unobserved element
to be evaluated, and for the emulator which quickly imputes missing values. While Lawson makes
several possible suggestions for each component, it is not clear which of these, if any, will be well
adapted for use with kdetrees.

c© Grady Weyenberg 2015
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Appendix A

Symbol Glossary

Symbols are grouped by the chapter in which they first appear. A small number of symbols may be
redefined in later chapters when it is deemed unlikely that confusion will occur.

Chapter 1

|| · || Vector norm

| · | Set cardinality

	 Set symmetric difference

{abc . . . |xyz . . .} a split (or quartet) of tip taxa in a phylogenetic tree

β Rate matrix normalizing constant

d(·, ·) Distance function

D(T ) Tip-to-tip pairwise distance matrix for tree T .

κ transition/transversion rate ratio

L(· · · ) Likelihood function.

l(· · · ) Log-likelihood function

n The number of states available to a Markov process, or the number of tips in a phylogenetic tree.

nij Number of loci in a sequence alignment at where the the first sequence expresses character i
and the second sequence expresses character j.

P (t) Markov process transition probability matrix

π Character stationary distribution

Q Markov process transition rate matrix

Q(T ) The set of quartets found in tree T

Rd The Euclidean space with dimension d

Rd+ The orthant in Rd with all non-negative coordinates

S(T ) The set of splits found in tree T

t evolutionary “time” separating two sequences, actually the expected number of character substi-
tutions per site in the alignment

T a tree in Tn

Tn The space of trees on n leaves

v(T ) A tree vectorization function
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Chapter 2

δ kernel shape parameter

f(T ) probability density at tree T

f̂ , ĝ estimates of the probability density, including all observations, and the leave-one-out estimator,
respectively

h kernel bandwidth

k(T, T ′) kernel function centered at T ′, evaluated at T

κ classification tuning parameter

N number of trees in sample

n number of tips in trees

neff effective population size for the coalescent process

Q1, Q3 quartile values

Z a partition function

Chapter 3

0 the star tree

Ak Normalizing constant for degree k exponential-polynomial distribution

B(·, ·) the Beta function

c(T, h) volume of unnormalized kernel with bandwidth h centered on tree T .

F a distribution

CO(T ′, h) lower bound for the integral of k(T, T ′, h) over the orthant O.

k A lower bound function for the kernel k.

ρ radial coordinate

S portion of the BHV space corresponding to the internal edges

θ exponential-polynomial family parameters

Θ angular coordinate vector

dV volume element of a polar coordinate system

Chapters 4–5

Axy,Bxy, Cxy,Dxy vectors containing the sequence of splits corresponding to the geodesic connecting
x to y.

ΓTT ′ the entire geodesic connecting T to T ′

ΓTT ′(t) a single point on the geodesic, parameterized by t ∈ [0, 1]

hull(~v) the convex hull of a vertex set

m(~v, ~w) a weighted Fréchet mean
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M(~v) the locus of Fréchet means for all valid weightings

r total number of vertices in vertex set

Ri an open set for where every tree x ∈ Ri defines a geodesic Γxvi which passes through the same
sequence of orthants

~v a set of vertices

~w a probability weight vector
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Appendix B

Supplementary Material for Chapter 2

Table B.1: Analysis of Apicomplexa gene-sets identified as outliers. Pf = Plas-
modium falciparum, Pv = Plasmodium vivax, Bb = Babesia bovis, Ta = Thei-
leria annulata, Et = Eimeria tenella, Tg = Toxoplasma gondii, Cp = Cryp-
tosporidium parvum, and Tt = Tetrahymena thermophila (outgroup).

Gene ID Functional Annotation Analysis
PF08_0086 RNA-binding protein,

putative
Significant sequence length disparity (164 a.a. for
Ta vs 1075a.a. for Pf). Generally good sequence
alignment in one region of 100 residues;
otherwise, alignment is poor.

PF13_0228 40S ribosomal subunit
protein S6, putative

Tt sequence much longer than all others; long
N-terminal and C-terminal extensions. Very
good alignment in blocks, but with lengthy
insertions for outgroup Tt. Possible incorrect
annotation of Tg sequence.

PFA0390w DNA repair exonuclease,
putative

Short sequences for Et and Cp. Several
homopolymer stretches in Et. Modest to good
alignment in multiple blocks, Et being an
exception in several regions. Possible incorrect
annotation of Et sequence.

PFF0285c DNA repair protein
RAD50, putative

Poor alignment in general. Three modest blocks
(50-100 aa) of reasonable sequence alignment. Et
sequence contains long homopolymeric stretches.
Pf and Pv have long insertions that might be
translated introns.

PFL1345c Radical SAM protein,
putative

Relatively short sequence for Et. Homopolymeric
stretch at N-terminus of Tg. Modest to good
alignment in blocks.

PFE0750c hypothetical protein,
conserved

Large difference in sequence lengths; 269 residues
for Et vs. 848 for Pf. Central region with modest
to good alignment; Et exhibited poor sequence
identity suggestion it might not be a homologue.

PF10_0043 ribosomal protein L13,
putative

80 residue N-terminal extension in Tg. Good
sequence alignment, with Tt (outgroup) being an
exception. Tt sequence might not be a
homologue.

PF11_0463 coat protein, gamma
subunit, putative

Multiple homopolymer stretches in Et sequence.
Generally good alignment for all but Et;
sequence might not be homologous.

MAL13P1.22 DNA ligase 1 Homopolymer stretches in Et sequence with poor
alignment to other sequences. Et sequence might
be incorrectly annotated and/or might not be
homologous.

Continued on next page. . .
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Table B.1 – continued from previous page
Gene ID Functional Annotation Analysis
PFB0550w Peptide chain release

factor subunit 1,
putative

Short sequence for Et (132 residues), with long
homopolymer stretch. Other sequences are
approximately 425 a.a. in length. Generally good
alignment, even for Et over a short region ( 50
residues). Possible incorrect annotation of Et
sequence.

PFF0120w putative geranylgeranyl-
transferase

Two homopolymer stretches (serine) in Et
sequence. Moderately good alignment. Possible
incorrect annotation of Et sequence.

PFD0420c flap exonuclease,
putative

Very discrepant sequence lengths; 179 a.a. for Et
vs. 2213 a.a. for Tt. All other sequences
500− 600 residues in length. Good alignment
over several regions, although sequence for Et is
absent in portions of these regions. Very long
N-terminal extensions and insertions in Tt
sequence. Possible incorrect annotations for Et
and Tt.
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Figure B.1: Monte Carlo estimates of
∑
T∈T k(T, T ′) are plotted against the unnormalized tree score

for each tree T ′ in the Apicomplexa data. There is no significant evidence that the sum is related
to the tree score (p = 0.72).
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Figure B.2: Schematic of how trees are converted to vectors. Numbers on branches in the unrooted
tree are branch lengths. In this example, the tree is first converted to either a branch length-based
dissimilarity map (matrix of distances between tips) or topological dissimilarity maps (matrix of
number of edges between tips). Moving from left to right across rows in one half of a matrix, values
are placed into a single column to yield a vector of distances between tips in the tree.
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Figure B.3: The species trees used to generate gene trees under the coalescent model for the simu-
lation experiments. At top-left is the tree used for the “single” coalescent distribution simulations,
while the other trees are used in the “mixed” simulations.
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Score: 0.353554471525154

Figure B.4: Plot of the first Apicomplexa gene tree identified as an outlier. The extremely long
branches lead to the identification as an outlier, and are likely the result of incorrect annotations of
the original sequences.
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Figure B.5: Plot of the second Apicomplexa gene tree identified as an outlier.
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Figure B.6: Plot of the third Apicomplexa gene tree identified as an outlier.
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Figure B.7: Plot of the fourth Apicomplexa gene tree identified as an outlier.
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Figure B.8: Summary of tree scores for the Apicomplexa data set. In the top row the scores of
individual trees are shown. “Tree Index” refers to the ordering of the trees in the input files. In the
bottom row, the scores are summarized as a histogram. In the left column are the results computed
with branch-length information, while the topology-only results are shown at right.
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Appendix C

Supplementary Material for Chapter 3
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Figure C.1: A newly identified outlier from the Apicomplexa dataset.
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Figure C.2: A newly identified outlier from the Apicomplexa dataset.
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Figure C.3: A newly identified outlier from the Apicomplexa dataset.
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Figure C.4: A newly identified outlier from the Apicomplexa dataset.
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Figure C.5: A newly identified outlier from the Apicomplexa dataset.
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Figure C.6: A newly identified outlier from the Apicomplexa dataset.
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Figure C.7: A newly identified outlier from the Apicomplexa dataset.
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Figure C.8: A newly identified outlier from the Apicomplexa dataset.
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Figure C.9: A newly identified outlier from the Apicomplexa dataset.
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Figure C.10: A newly identified outlier from the Apicomplexa dataset.
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Figure C.11: A newly identified outlier from the Apicomplexa dataset.
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Figure C.12: A newly identified outlier from the Apicomplexa dataset.
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Figure C.13: A newly identified outlier from the Apicomplexa dataset.
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Figure C.14: A newly identified outlier from the Apicomplexa dataset.
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Figure C.15: A newly identified outlier from the Apicomplexa dataset.
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Figure C.16: A newly identified outlier from the Apicomplexa dataset.
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