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ABSTRACT OF THESIS

Experimental Investigation of Wall Shear Stress Modifications due to Turbulent
Flow over an Ablative Thermal Protection System Analog Surface

Modifications were made to the turbulent channel flow facility to allow for fully
developed rough quasi-2D Poiseuille flow with flow injection through one surface and
flow suction through the opposing surface. The combination of roughness and flow
injection is designed to be analogous to the flow field over a thermal protection sys-
tem which produces ablative pyrolysis gases during ablation. It was found that the
additional momentum through the surface acted to reduce skin friction to a point
below smooth-wall behavior. This effect was less significant with increasing Reynolds
number. It was also found that the momentum injection modified the wake region of
the flow.
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Chapter 1 Introduction

1.1 Introduction

In the realm of fluid mechanics, turbulence has always been an incomplete area of

research in that there is currently no physical model or theory which fully explains

turbulent behavior. The seemingly random fluctuations inherent to turbulent flow

have been a continuing source of difficulty to defying even proper description. The

Navier-Stokes equations hold the key to predicting the physics behind turbulence,

however the models used to solve these non-linear equations are still in their infancy.

This is due to the vast computing power required to fully resolve from the largest to

the smallest physical and temporal scales of the turbulent structures. While there is

currently no complete definition of turbulence, we can describe some of its charac-

teristics in that it is: disorganized, chaotic, sensitive to initial conditions, 3-D, and

consists of a wide range of length and time scales. By expanding upon the current

knowledge base through experimental turbulence research, it is possible to improve

our understanding of turbulence and apply this knowledge to current industrial in-

terests.

The objective of the work in this thesis is the characterization of a rough surface

with flow injection and flow suction boundary conditions applied to a turbulent flow.

The rough surface being investigated is similar to that of a thermal protection system

(TPS), which is used as a heat-shield to prevent a spacecraft from burning up upon

entering an atmosphere. An ablative TPS is designed to ablate, or burn away, when

exposed to aerodynamic heating which causes pyrolysis gases to be expelled from
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the TPS surface. These gases modify the boundary layer near the surface by reduc-

ing the heat flux (also known as “film cooling”) through thickening of the thermal

layer, blowing a relatively cooler gas into the flow field, and by changing the gas com-

position near the wall. As the TPS ablates, the carbon phenolic material becomes

charred and a characteristic rough surface develops. These roughness features can

cause transition to turbulence which greatly increases mass, momentum, and energy

transport between the surface and the flow field. These effects must be accounted

for in modeling atmospheric entry of spacecraft but cannot be done through direct

numerical simulation due to immense cost of computing in resolving the small scale

surface features. Thus, the effect of these surface features on the flow field must be

modeled. However, for any given surface roughness topology, there is currently no

universal model which is able to predict the turbulent behavior. Due to the wide

range of roughness geometries and certain discrepancies in properly defining surface

roughness, current approaches use heating augmentation factors which have been

empirically derived as opposed to predicting TPS performance based upon a known

roughness geometry. By properly characterizing a rough surface through its effects

on wall shear stress, it is possible to gain a better understanding of how to model

that surface roughness which can be applied to future heat shield designs.

In the work described here, the wall shear stress of a fibrous roughness with mass

injection through the surface was measured. To do so, a turbulent channel flow

apparatus was designed and constructed which could produce fully-developed, one-

dimensional flow. These flow conditions were required to allow the wall-shear stress

to be determined from the velocity field characteristics as the combination of rough-

ness and blowing boundary conditions made other available approaches to measure

wall shear stress either impossible or impractical. It is the goal of this research to

provide validation data for turbulence models as well as helping to better understand

modification of wall shear stress on a rough surface due to momentum injection.

2



Chapter 2 Background

2.1 Basic Turbulence Theory

As previously mentioned, turbulence can be thought of as fluid flow that is dis-

organized, chaotic, and seemingly random. It consists of large scale motions that

contain the bulk of turbulent kinetic energy. These large structures then diffuse and

dissipate by the action of viscous forces into smaller-scale structures. This process

continues until the kinetic energy is converted into thermal energy at the smallest

scales of turbulence. Pioneering work on the transition to turbulence was conducted

by Osbourne Reynolds [6] who observed the transition to turbulent flow by inject-

ing streaks of dye into a smooth-walled transparent pipe. This lead him to define a

dimensionless parameter, now known as the Reynolds number

Re =
UL

ν
(2.1)

where U is the streamwise velocity, L is the characteristic length, and ν is the kine-

matic viscosity. This ratio expresses the relationship between inertial and viscous

forces of a given fluid flow. Expanding upon these ideas in a later paper [7], he

developed what is now called Reynolds decomposition whereby

~U = ~U + ~u′. (2.2)

In Cartesian coordinates, ~U is the velocity vector which contains components U, V,W

and depends upon all three spatial coordinates x, y, z and time, t. ~U represents the

3



time-independent mean velocity vector which contains components U, V ,W and ~u′

represents the fluctuating, time-dependent, components u′, v′, w′. This decomposition

was a fundamental part in the development of various analytical approaches to turbu-

lence and more specifically, the Reynolds Averaged Navier-Stokes (RANS) equations.

The Navier-Stokes equation for incompressible, Newtonian flow is given by

~Ut + ~U · ∇~U = −∇~P + ν∆~U + ~FB (2.3)

where the subscript t denotes time differentiation, ∂/∂t. ~P is the pressure vector

which has been divided by constant density. ~FB represents the body forces that have

also been divided by constant density. The differential operators ∇ and ∆ are the

gradient and Laplace operators, respectively. The kinematic viscosity is denoted by ν.

Equation 2.2 is then implemented by substituting it into equation 2.3. The resulting

equation is then simplified through applying time-averaging, which reduces ~u′ to zero.

Ultimately, the equation is reduced to the RANS equation

∇ · ~U
2

+∇ · ~u′2 = −∇~P + ν∆~U (2.4)

In this thesis, the RANS equation is used to show how direct measurement of the

wall shear stress can be obtained through certain assumptions of the flow geometry.

2.2 Turbulent Wall-Bounded Flow

Another aspect to turbulence which was advanced soon after the work of Reynolds,

was that of boundary layer theory. Ludwig Prandtl [8] first described wall-bounded

shear flow, as well as other topics such as drag development, flow separation and

aircraft stall. In his paper [8], he developed the idea of separating wall-bounded flow

into two distinct regions called the inner and outer layers. In the inner layer, which is

a region very close to the wall, the flow is dominated by viscous effects. The velocity

4



profile in this region varies linearly perpendicular to the wall in the turbulent case.

In a later work by Prandtl [9] he studied the flow behavior at high Reynolds numbers

and determined that the inner layer depends only on kinematic viscosity, ν, and the

wall shear stress, τω. Using these parameters, a velocity scale can be defined called

the friction velocity

Uτ =

√
τw
ρ

(2.5)

where ρ is the fluid density. From this definition, a length scale can also be developed

called the viscous length.

δν =
ν

Uτ
(2.6)

In the outer layer the velocity profile from the wall remains nearly constant. In this

region, the flow depends less on viscous effects and more on inertial effects. In addition

to Uτ , the relevant scales here are the characteristic length, such as the channel

half-height h, and area-averaged streamwise velocity Ub (or, alternatively, centerline

velocity Ucl or the velocity external to the boundary layer, Ue). At intermediate

distances there exists an overlap region where both inner and outer scalings are valid.

This range can be defined where the distance from the wall, y, satisfies the conditions

yUτ
ν

>> 1 and
y

h
<< 1 (2.7)

Prandtl also argued that within this region, the inner and outer layers must be

related in that the velocity gradient depended upon the ratio of friction velocity and

the distance from the wall, multiplied by a function of wall distance normalized by

δν [9]. This can be expressed by

dU+

dy+
=

1

κy+
(2.8)

where the + superscript denotes scaling with the viscous units, Uτ and δν . κ ≈ 0.4 is

5



the von Kármán constant which was initially believed to be universal. However, its

universality is still under debate [14], spurred in part by ambiguity in the definition

of the location of the overlap layer (sometimes considered to be y+ > 50, y
h
< 0.1

although the exact range is still an active area of research). Theodore von Kármán

then took these ideas and developed what is widely known as the logarithmic law on

the wall [10] in which equation 2.8 is integrated to form

U+ =
1

κ
ln y+ +B (2.9)

where B is a constant of integration and represents a shift in the mean flow due to

the flow geometry.

2.3 Channel Flows With Smooth Walls

Channel flow, also known as duct flow, has been extensively studied due to its ap-

plicability in many industrial operations as well as its simplicity for experimental and

computational investigation into near-wall effects. Nikuradse [11] and Reichardt [12]

were first credited with investigating fully-developed turbulent channel flow. Niku-

radse was interested in the mean flow whereas Reichardt focused on the velocity

fluctuations in the streamwise and wall-normal directions (u′, v′). A key distinction

between duct and channel flow is that the geometry of channel flow is such that

the aspect ratio ( b
H

) is large enough that the flow is statistically independent in the

spanwise direction, where b is the width of the channel and H is the height of the

channel,

Channel flows can be classified alongside pipe flows as “internal” flows. This is

in contrast to“external” flows where the boundary layer is free to grow due to no

wall restriction. Hence, fully-developed channel flows and pipe flows are statistically

independent of the streamwise direction whereas there is weak streamwise dependence

6



in external boundary layers. The outer length scales for internal flows is the half-

height, h, for channel flows and the radius, R, for pipe flows. Since the outer length

scale is fixed, δν becomes increasingly small with increasing Reynolds number [13]. A

descriptive Reynolds number for wall-bounded flows is the friction Reynolds number

that represents the ratio of outer to inner length scales, which for channel flows is

Reτ =
hUτ
ν
. (2.10)

In order for there to be enough separation between the large and small scale turbulent

motions, Reτ needs to be relatively high. This allows for the formation of the log-law

(equation 2.9) in the overlap region between in the inner and outer layers. Note that

the Reτ at which this occurs depends on the range of y selected for definition of the

overlap region.

At the wall, the velocity profile must satisfy the no-slip condition (U, V,W = 0).

This leads to τw being dependent only upon the viscous stresses which can be shown

by

τw = ρν

[
d〈U〉
dy

]
w

. (2.11)

where 〈U〉 is the average streamwise velocity. This can then be normalized using a ref-

erence velocity such as the bulk streamwise velocity, Ub. The skin-friction coefficient

can then be defined by

cf =
τw

1
2
ρUb

(2.12)

Dean [14] investigated the Reynolds number dependence of skin-friction as well

as other bulk flow parameters such as centerline velocity, Ucl, in two-dimensional

channel flow. Dean also verified that there was no dependence on the aspect ratio of

the channel for b
h
> 7. Figure 2.1 shows both the laminar and turbulent correlations of

experimental data compiled by Dean [14]. He also investigated the Reynolds number

dependence of the log-law (equation 2.9) constants κ and B. These constants should

7



Figure 2.1: Skin-friction coefficient cf = τw
1
2
ρ(Ucl)2

vs. Reynolds number Re = 2Ucl
δ
ν

for channel flow. Dashed line, laminar friction
law; solid line, turbulent friction law. Plot taken from Pope [1]

remain invariant, but his results showed a slight increase with increasing Reynolds

number. These results were also seen in experiments by Skinner [15] and Hussain and

Reynolds [16]. Dean concluded that more experimental investigation was needed,

but that the values of B = 2.12 and κ = 0.41 were sufficient to be representative of

two-dimensional, high aspect ratio channel flow.

2.4 Rough-Walled Turbulence

To further complicate wall-bounded flows, surface roughness can also have an im-

pact on the turbulence. Rough-walled turbulence is often encountered in real world

flows such as around turbine blades, automobiles, aircraft wings, and over the sur-

face of the earth. This roughness affects the near-wall viscous region and promotes

an increase in skin-friction, and subsequently, drag and heat transfer. In its simplest

form, roughness elements are often described by their individual height, k. While this

is sufficient for uniform roughness geometries, there is a need for a more specialized

classification when the geometry becomes more complex. This section will outline
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some of the different methods in quantifying surface roughness as well as outlining

how it modifies the mean flow.

One of the most notable early investigations into surface roughness is by the work

of Nikuradse [17]. He experimented with various types of uniform surface roughness

in which he sifted sand grains of a known size to produce a roughness pattern on the

inside of pipes. He measured the friction factor, f which is defined by

f =
∆pD

1
2
ρU2

bL
(2.13)

where D is the pipe diameter, and ∆p is the pressure drop over the axial distance

r in pipe flow. Nikuradse varied the ratio of pipe radius to roughness height of the

sand grains, R/k and looked at the dependency with increasing Reynolds number

which is seen in figure 2.2. It can be seen that at low Reynolds number, the flow

Figure 2.2: Nikuradse’s measurements of friction factor f vs Reynolds number for
various sand grain sizes in pipe flow. Plot taken from Pope [1], adapted from [2]

is unaffected by the roughness in the laminar regime and the behavior is similar to

smooth-walled flow. There is also little effect as the flow transitions to turbulence.

At higher Reynolds number, each of the different grain size cases follow Prandtl’s
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smooth wall correlation until each of the trends asymptotes and loses dependence on

Reynolds number. It is at this point that the flow in the presence of wall roughness

is considered to be fully-rough. Figure 2.2 is used as an example to characterize the

rough surface utilized in this thesis and will be discussed later.

The observed behavior in fig. 2.2 can be explained through a modification to eq. 2.9

to account for roughness effects. There are extensive review papers by Raupach [18]

and Jiménez [19] in which they describe these effects in detail. It is known that

roughness affects the mean flow by displacing it upwards away from the wall by some

amount yo, called the zero-plane displacement which depends upon both the flow and

roughness geometry. While the exact definition of this value is still up for debate,

as there are multiple methods for determining yo as described in [18], it follows that

0 < yo < k. This can then be used to define the displaced distance away from the

wall given by

Y = y − yo. (2.14)

As follows in [18] there is an asymptotic matching analysis for U(Y ) to account for

mean flow effects due to roughness. In the outer layer, where U(Y ) depends on the

outer length scale h for channel flow, the velocity dependency can be defined by the

defect law given by

U(Y )− Ucl
Uτ

= G(Y/h) (2.15)

where R is utilized as the length scale for pipes, and external velocity Ue and boundary

layer thickness δ are utilized as the velocity and length scale for boundary layers.

In the inner layer, where U(Y ) depends on viscous scaled terms, another velocity

dependency can be defined given by

U(Y )

Uτ
= F (Y +, k+, h+

i ) (2.16)

where hi a set of length scales used to fully characterize more complex roughness

10



geometries. In the overlap region of wall-bounded flow (y+ > 50), the inner and

outer velocity laws must be valid, the leads to a gradient matching given by

Y

Uτ

dU

dY
= Y + dF

dY +
=
Y

h

dG

d(Y/h)
= κ−1 (2.17)

by integrating 2.17 it is possible to recover a form of equation 2.9 which is modified

to account for rough-walled flow given by

U+ = κ−1 lnY + + C(k+, h+
i ) (2.18)

where the integration term, C is a function of the roughness length scales. For smooth

walls, this term would become a constant value. Equation 2.18 can be re-written to

a more commonly used form given by

U+ = κ−1 lnY +B +W (Y/h)−∆U+(k+, h+
i ) (2.19)

where the first three terms represent standard smooth wall flow. W (Y/h) is called

the wake function and represents the modification of the mean flow due to outer layer

effects and describes the difference between the velocity profile and the logarithmic

law. The ∆U+ term is called the roughness function and represents the modification of

the mean flow due to roughness and is zero for a smooth wall. It can be understood as

the difference between the smooth and rough wall inner-scaled mean velocity profiles.

One of the fundamental ideas that also came from Nikuradse’s initial work was that

of the roughness height parameter, ks known as the equivalent sand-grain roughness.

This height forms a baseline of comparison to other types of roughness geometries.

While there is still some argument over the validity of this parameter to describe
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more complex roughness, according to Schlichting [20], it can defined by

ks = 32.6
ν

Uτ
e−κ(B−∆U+) (2.20)

which leads to the definition of a Reynolds number to characterize the effects of

sand-grain roughness given by

k+
s =

ksUτ
ν

(2.21)

It is worth noting that the determination of k+
s requires that ∆U+ is known, which

depends on the Reynolds number based on k. Knowing the sand-grain roughness

Reynolds number allows a given rough-walled flow to be classified into one of three

flow regimes based on the value of k+
s :

1. k+
s < 5 The flow is considered to by dynamically smooth with no observable

effects of roughness seen in the flow statistics.

2. 5 < k+
s < 50 The flow is transitionally rough.

3. k+
s > 50 The flow is fully rough where a considerable shift can be seen in ∆U+.

Another main idea dealing with roughness effects on the mean flow is the wall-

similarity hypothesis of Townsend [21]. This states that outside of the roughness

sublayer, the turbulent motions are independent of the surface roughness at the wall

and also that the interaction between the inner and outer layers are weak at a suffi-

ciently high Reynolds number [22]. In other words, the roughness only acts to change

the surface stress leaving the turbulence statistics unaffected. This assumes that the

roughness features are significantly smaller than the outer length scale, i.e. k/h << 1

for channel flows. While Townsend’s hypothesis is generally accepted, there were

recent investigations that produced results which contradicted it. Krogstad and An-

tonia [23] found that the Reynolds stress profiles in the outer layer increased with the

addition of surface roughness. Direct numerical simulation (DNS) results from Lee
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and Sung [24] also showed significant modification to the turbulence statistics in the

outer layer.

A major source of discrepancy for the validity of Townsend’s hypothesis is the type

of roughness geometry that is under investigation. While k can be used as a simple

characterization to roughness, other length scales are required when the geometry

becomes two-dimensional or three-dimensional. Volino et al [25] discussed in detail

the turbulence structure in boundary layers over periodic 2-D and 3-D roughness. In

this case, 2-D spanwise square bars were found to affect the outer layer which is was

seen as an increase in the Reynolds stresses, particularly in the wall-normal profile

of −u′v′. This was explained by the growth of flow structures that were much larger

than k caused by the width of the square bars which grew into the outer layer and

affected the turbulent stresses. This effect was not seen in the 3-D case in which the

roughness geometry consisted of transverse rows of staggered cubes. These results

suggest that wall-similarity is influenced by dimensional differences between 2-D and

3-D roughness [22].

There is also literature that classifies surface roughness into either d-type or k-

type. As laid out in [19], the distinction between d-type and k-type roughness was

first made by Perry et al. [26]. For k-type roughness, ks should be proportional to

the roughness dimensions themselves. To be more specific, ∆U+ at high Reynolds

numbers is determined by k. This not the case for d-type roughness where ∆U+ is

independent of k. Instead, turbulence in d-type roughness is dependent upon the

thickness of the wall layer, i.e. h, R, or δ. Raupach [18] goes on to further explain

some of the difficulties with dividing roughness into these two classes. Namely, that

the division implies that ∆U+ is determined by a single length scale. It has already

been discussed how more complex roughness geometry requires a multitude of length

scales for its description. Another issue with this division is that d-type roughness

invalidates the asymptotic matching analysis which leads to equation 2.9 as explained
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in [26]. For δ to truly be an inner layer length scale, a new derivation of the log law

must be found.

2.5 Turbulence with Flow Injection

To further expand upon the experimental modeling of an ablative TPS, it is neces-

sary to investigate the turbulent effects due to flow injection, or blowing, through the

surface of wall-bounded flow. As with the turbulence effects due to surface roughness,

there have been numerous studies into the turbulence effects due to blowing because

of its applications in film cooling for turbine blades as well as through laminar flow

control on the wings of aircraft to reduce drag. Initial investigations into blowing ef-

fects were focused on zero pressure gradient boundary layers over a porous flat plate.

It was shown that the addition of blowing reduced skin friction by decreasing the

shear stress at the surface [27–30]. Park and Choi [31] described this effect as the

streamwise vortices above the wall being lifted up due to blowing which caused the

shear interactions between the wall and the vortices to lessen.

The turbulent boundary layer under the influence of blowing can be represented

as a modification of the log law (eq. 2.9). Kornilov [32] presents a model for this

modification in which the mean flow is given by

U+ =
1

κ
ln(y+) +B +KU+

inj (2.22)

where U+
inj is the inner-scaled injection velocity and K is a constant with weak func-

tional dependence on U+
inj which has the recommended value of 9.6. This added term

is analogous to the roughness function, ∆U+, in that it acts as a modifier to shift

the mean flow. In this case, blowing acts on the mean flow by adding momentum

and causing a positive shift whereas ∆U+ acts by removing momentum and causing

a negative shift.
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There is also evidence that the method of flow injection has a significant effect on

the mean flow statistics. Haddad et al [33] conducted an experiment in which a sin-

gle porous strip was placed upstream in fully-developed channel flow. It was shown

that localized blowing did cause modification to the Reynolds stresses, but the effect

decreased with increasing distance downstream from the strip. DNS results in which

a uniform blowing through a spanwise slot was simulated showed that the stream-

wise turbulence intensity recovered quickly while the other components of turbulence

intensity and Reynolds stresses took longer to recover downstream of the flow [31].

A large study on the transpiration effects on a smooth wall turbulent boundary

layer was conducted by Moffat [34] and Kays [35]. This produced a number of obser-

vations in which it was seen that for low blowing ratios, there is a near wall region

where Couette flow assumptions are valid. It was also seen that in the near wall

region (y/δ < 0.1) the mixing-length, which is defined as the distance over which a

hypothesized turbulent eddy retains its identity [1], is related by

l = κy (2.23)

as is the case with flows without transpiration. Moffat also observed that as the tran-

spiration rate increased, that the streamwise velocity profiles become more “rough-

like” until they resemble the unblown rough wall profile [34]. These effects were seen

in the shrinking of what is called the “knee” in the profile curve. This knee occurs

in the buffer zone of the velocity profile at the boundary of the viscous sublayer.

With increased flow injection, this knee flattens out and occurs at smaller y/δ. It was

concluded that the sublayer thickness decreases with increasing blowing rate. These

effects were also alluded to in a work by Reynolds [37]. He mentions that for a high

enough blowing rate, that the distribution of pores used for flow injection on an given

surface will have some effect on the boundary layer. The pores will result in an array
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of jets which, depending on the flow conditions, will have the effect of acting as a solid

perturbance to the mean flow. This results in the smooth wall behaving as though it

were roughened.

2.6 Turbulence with Surface Roughness and Flow Injection

As previously mentioned, the combination of roughness and blowing effects on

turbulent wall-bounded flow presents a field of study which has seen little attention

in terms of the quantity of research. This is especially true when compared to studies

that focus on roughness and blowing as separate effects. A few studies have been

conducted on the combined effects which only focused on the mean flow properties

[5, 28, 38, 39]. It was only the work by Schetz and Nerney [39], and more recently

Miller [3] that also included analysis on turbulence statistics.

Due to the limited data available as well as the wide range of experimental con-

figurations with regards to flow conditions and geometry, there is little consensus on

what the combined effects of roughness and blowing are. It is known that roughness

acts to shift the mean profile which is seen in ∆U+. Voisinet [5] found that the intro-

duction of blowing caused an additional shift in ∆U+. This result however, was not

seen in the work of Schetz and Nerney. Their work did show that blowing increased

the turbulence intensity near the wall which is in agreement with the observations

discussed in the previous section with blowing over a smooth porous surface.

There is also some confusion with regards to the roughness effects and more specif-

ically, the types of roughness geometries used in each investigation. Roughness ge-

ometry is inherently difficult to properly characterize and as a result, a variety of

different geometries have been investigated. The work of Healzer [28] dealt with ar-

rays of copper balls which used the ball diameter to represent the roughness height.

Voisinet’s work [5] used a series of wire meshes which are geometrically very different

than that of spherical arrays. Recent work by Miller [3] used a two-dimensional sinu-
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soidally varying roughness pattern. In this work it was found that the combination of

roughness and blowing caused an increase in skin friction and τw which differs from

other findings. Ignoring the type of geometry used in each investigation, the overall

trend is that roughness acts to remove momentum from the flow whereas blowing

acts to add momentum. These effects are represented by the ∆U+ and KUinj terms

in equation 2.22.

The limited knowledge available in this area means there is an interest in collecting

empirical data to aid in understanding of roughness and blowing effects. This interest

is fueled in part, by the applications in the aerospace industry with regards to TPS

technology. Computational Fluid Dynamics (CFD) modelers can also make use of

this data to validate their code and refine turbulence models. This thesis can expand

upon the knowledge base by producing valid data on the combination of these effects.

2.7 Measurement of Wall Shear Stress

A key objective of the work in this thesis is focused on the measurement of τw.

Furthermore, this measurement allows determination of cf which is used to scale re-

sults for use in engineering systems. By plotting this value across a range of Reynolds

numbers it is possible to predict the drag effects on the flow induced by the surface

geometry under investigation. However, the combination of roughness and blowing

effects makes the measurement of this quantity experimentally very challenging. An

in depth discussion of wall shear stress measurement techniques can be found in [40].

This section gives a brief overview of the basic techniques and also the difficulties

encountered with measuring τw for flows having roughness and blowing.

Many of the methods involve obtaining measurements directly on the surface. One

such method is called oil-film interferometry (OFI). This technique makes use of the

fringe pattern that is produced when light is reflected off a thin layer of oil on the

surface of wall-bounded flow. First utilized by Tanner and Blows [41], OFI requires the
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measurement of the oil film thickness which is directly related to the shear stress that

the flow imparts to the oil. The difference in film thickness, ∆s between successive

fringes is given by

∆s =
λ

2(n2 − sin2 α)1/2
(2.24)

where λ is the wavelength of light, α is the observer viewing angle, and n is the

refractive index of the oil. Collecting this measurement over a time period allows for

calculation of the thinning rate. For a sufficiently thin film under two-dimensional

flow, the thinning rate is related to τw by

∂s

∂t
= − 1

2µ

∂(τwh
2)

∂x
. (2.25)

This method requires a smooth surface to allow the relationship between fringe pat-

terns and wall shear stress.

Another surface technique for measuring τw in internal geometries is through the

measurement of the mean pressure gradient. Through a control volume analysis on

fully-developed pipe or channel flow with a constant cross sectional area Ac, the

average τw can be determined by a relationship between the pressure drop over a

length of duct which is given by

∆PAc =

∫
A

τwdA (2.26)

which for fully-developed flow, τw per unit length of channel is constant. This leads

to

τw =
∆P

2L
h (2.27)

In order to obtain fully-developed flow conditions for blowing cases, the mass flux

through the channel must remain constant and hence there must be suction on the

opposite surface. However, the pressure gradient is related to the average of the
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wall shear stress over all surfaces and if there is both suction and blowing, it is not

possible to separate the contribution of blowing and suction surfaces from the shear

stress determined from the pressure gradient.

A method that also involves a pressure difference measurement is through the use

of Preston tubes. These tubes were first developed and utilized by Preston [42] and

are essentially Pitot tubes that are placed near but not directly on the wall. The

tubes are situated within the logarithmic region of the law-of-the-wall and capture

the stagnation pressure produced by the mean velocity. Through dimensional analysis

of the region, an expression can be found correlating τw and ∆P given by

∆P

τw
= f(

d2τw
ρν2

) (2.28)

where ∆P is the mean pressure difference between the Preston tube and the static

pressure from a nearby wall tap, and d is the outer diameter of the Preston tube. This

technique requires calibration against a well defined flow field such as fully-developed

pipe flow in which τw can be independently determined. Channel flow geometry with

the combination of roughness, blowing, and suction effects have not shown that the

law-of-the-wall exists which is a prerequisite for the use of Preston tubes.

Another technique that requires the existence of the log-law is the Clauser method.

Clauser [43] first observed that τw could be estimated in turbulent boundary layers

through correlation with the law-of-the-wall. In order to use this correlation, equilib-

rium flow conditions must be met in which the statistical profiles can be represented in

a self-preserving form using locally determined integral parameters [40]. The Clauser

method is a graphical method in which τw is found by matching the inner-scaled

streamwise velocity profile to the log-law (eq. 2.9). A benefit to this approach is that

flow information in the viscous sublayer near the wall which is often difficult to obtain

is not needed. As previously stated however, the flow conditions and geometry used
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in this work have not shown that the logarithmic law exits which limits the use of

this method. It should be noted that Miller [3] did use this approach, but found that

their trends in τw with increasing blowing were counter to those previously observed.

Wall-mounted sensors such as hot-wire and hot-film probes have also been com-

monly used to measure τw. These instruments have the ability to be mounted directly

near the wall under investigation. The problem for utilizing them in this work is that

they require a calibration against a known shear stress and precise knowledge of their

distance from the wall. While this would have been feasible, there would have needed

to have been greater modification to the wind tunnel used in this experiment that

could support a mount for such instrumentation inside of the test section. These

instruments are typically reserved for smooth-wall measurements due to the difficulty

in measuring near the surface of rough geometry.

One of the simplest methods to acquiring τw is by direct measurement through the

use of floating element sensors such as drag plates and force balances. These devices

are placed on the wall and work by measuring the shear force that is imparted on

the floating element portion when exposed to the flow. This is accomplished by

either measuring the amount of force needed to keep the floating element in place

or by measuring the displacement and correlating it with the applied shear force. A

major advantage to using these devices is that the direct shear measurement does

not require any assumptions about the flow field or fluid properties in order to be

valid [40]. They also do not require a correlating function (i.e. calibration) with a

known flow field. This removes some of the errors associated with calibration which

can be seen in the use of other direct methods such as with hot-film probes. These

sensors are not without disadvantages, some of which are outlined by Winter [44].

For one, there is a balance that needs to be maintained where the floating element is

large enough that a force of sufficient magnitude can be measured while also being

small enough that the element can measure the local flow conditions. Problems can
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also arise with the edges around the sensor introducing adverse effects into the flow

that are uncharacteristic of the flow under investigation. These issues along with the

technical challenges involved in maintaining uniform blowing and roughness through

the surface balance resulted in the decision to find an alternative approach to measure

τw.

2.8 Measurement of Wall Shear Stress through the use of the RANS Equa-

tion

Given the lack of suitable direct techniques to measure τw for flows with combined

roughness and blowing, an alternative approach was required. The work in this thesis

uses certain assumptions about the flow geometry along with the Reynolds Averaged

Navier-Stokes (RANS) equations to relate τw to measurable flow quantities.

To begin the derivation, a diagram of the channel flow geometry is shown in fig.

2.3. The basic configuration consists of a standard channel flow setup in which the

Figure 2.3: Diagram of the channel at the test section with a rough top surface along
with blowing and suction boundary conditions for the top and bottom walls.

aspect ratio (b/h) is large enough such that the flow is statistically independent in

the spanwise, z-direction. This allows a crucial assumption to be made in which the

spanwise terms can be ignored making the flow two dimensional. Beginning with the
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mean continuity equation, where the angle brackets indicate an ensemble average,

d〈U〉
dx

+
d〈V 〉
dy

+
d〈W 〉
dz

= 0 (2.29)

and applying the 2-D assumption, eq. 2.29 can be reduced to

d〈U〉
dx

+
d〈V 〉
dy

= 0 (2.30)

it is also possible to apply the assumption that the flow is fully developed, which

removes streamwise dependence. This simplifies eq. 2.30 to

d〈V 〉
dy

= 0 (2.31)

integrating eq. 2.31 yields

〈V 〉 = V0 (2.32)

where V0 is the flow injection/suction velocity, which remains constant.

Moving on, the incompressible RANS equation for 2-D flow is given by

ρ

(
∂〈Ui〉
∂t

+
∂〈UiUj〉
∂xj

+
∂〈u′iu′j〉
∂xj

)
= −∂〈p〉

∂xi
+ µ

∂2〈Ui〉
∂xj2

(2.33)

where i = 1, 2 and j = 1, 2 which correspond to the streamwise and wall-normal

components x, y respectively. Assuming steady flow, the first time-varying term can

be removed giving

ρ

(
∂〈UiUj〉
∂xj

+
∂〈u′iu′j〉
∂xj

)
= −∂〈p〉

∂xi
+ µ

∂2〈Ui〉
∂xj2

(2.34)
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Looking at the case where i = 1

U
∂〈U〉
∂x

+ V0
〈U〉
∂y

+
∂〈u′2〉
∂x

+
∂〈u′v′〉
∂y

= −1

ρ

∂〈p〉
∂x

+ ν

[
∂2〈U〉
∂x2

+
∂2〈U〉
∂y2

]
(2.35)

which can be simplified further by applying the fully-developed assumption to the

x-dependent velocity terms, this yields

V0
〈U〉
∂y

+
∂〈u′v′〉
∂y

= −1

ρ

∂〈p〉
∂x

+ ν
∂2〈U〉
∂y2

(2.36)

Looking at the case where i = 2

U
∂〈V0〉
∂x

+ V0
〈V0〉
∂y

+
∂〈v′2〉
∂y

+
∂〈v′u′〉
∂x

= −1

ρ

∂〈p〉
∂y

+ ν

[
∂2〈V0〉
∂x2

+
∂2〈V0〉
∂y2

]
(2.37)

which can also be simplified by applying the fully-developed assumption to the x-

dependent velocity terms as well as removing the V0 terms which do not vary spatially

giving

∂〈v′2〉
∂y

= −1

ρ

∂〈p〉
∂y

. (2.38)

The boundary condition 〈v′2〉 = 0 at the rough wall is then applied to eq. 2.38 and

integrated to produce

〈v′2〉+
〈p〉
ρ

=
pw
ρ

(2.39)

where pw = 〈p(x, 0, 0)〉 is the pressure at the rough wall. Since the pressure gradient

is uniform across the across the top and bottom walls of the channel, it can be said

that

∂〈p〉
∂x

=
∂pw
∂x

. (2.40)

Eq. 2.36 can be rearranged and solved for ∂〈p〉/∂x giving

∂〈p〉
∂x

=
∂pw
∂x

= ρν
∂2〈U〉
∂y2

− ρ∂〈u
′v′〉
∂y

− ρV0
〈U〉
∂y

(2.41)

23



Now let the shear stress at any point in the flow be given by

τ = ρν
∂〈U〉
∂y
− ρ〈u′v′〉 − ρV0〈U〉 (2.42)

From equation 2.41 we get

∂τ

∂y
=
∂pw
∂x

. (2.43)

Integrating eq. 2.43 with respect to y produces an equation which allows the deter-

mination of the vertical shear stress profile given by

τ(y) =
∂pw
∂x

y + τw. (2.44)

It is worth noting that for the standard smooth wall channel flow geometry, the shear

stress profile is asymmetric about the half-height, h. This allows the application of

the boundary condition to eq. 2.44 that τ(h) = 0. This yields

0 =
∂pw
∂x

h+ τw (2.45)

which upon simplifying gives

∂pw
∂x

= −τw
h
. (2.46)

Substituting eq. 2.46 into eq. 2.44 gives

τ(y) = τw

(
1− y

h

)
(2.47)

which is valid for the smooth-walled case. For the rough-walled case with blowing and

suction, it cannot be assumed that the shear stress will be zero at the half-height.

The value of τw on the top rough wall will be different from that on the bottom

smooth wall. This will cause a shift in the zero crossing in the profile away from h.

In this case, it can be assumed that at some point in the profile, the shear stress will
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be zero. This can be defined as τ(yτ0) = 0 which leads to a new expression for the

vertical shear stress profile given by

τ(y) = τw

(
1− y

yτ0

)
. (2.48)

This equation is linear and does not require a pressure gradient measurement. In

order to determine τw on the rough wall, all that is needed is to measure each of the

terms given in eq. 2.42 at enough points to produce a vertical profile which can be

linearly extrapolated to the rough wall. However, in order to do so one must have

fully-developed channel flow. The next chapter will outline the experimental setup

developed to achieve these conditions.
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Chapter 3 Experiment Design

The previous chapter discussed a method that would allow the measurement of

τw on a surface within a channel which required knowledge of certain parameters

in the flow itself. This meant that an experiment had to be developed to allow

those parameters to be known. The experiment consisted of a turbulent channel flow

facility to generate the desired flow, and a particle image velocimetry (PIV) system

to measure the flow statistics. The TCFF had to meet certain criteria to match

the assumptions (namely, fully developed flow, uniform blowing, a certain range of

blowing rates and Reynolds numbers, etc.). Details of the facility and measurement

system are provided in sections 3.1 to 3.6

3.1 Facility Description

The experiments for this thesis were conducted in the turbulent channel flow wind

tunnel located in the Experimental Fluid Dynamics Lab (EFDL) at the University of

Kentucky. The development of this facility is described in detail in Estejab [45] and

was designed to produce turbulent plane Poiseuille flow as well as be large enough

to maximize the Reynolds number given the available lab space. To accomplish

this, the channel flow wind tunnel was built with a channel half height of h = 50.8

mm and an aspect ratio of 9:1 to ensure that the 2-D flow conditions were met

[46]. It was also necessary to ensure that there were no streamwise velocity and

Reynolds stress gradients in the flow at the test section. This was accomplished by

building the channel long enough to produce fully developed turbulent flow. This

26



length was determined to be 246h from the channel inlet to the test section [47].

In addition to the 24h test section, there is a 12h section at the exit which ensures

that the pressure gradient remains constant throughout the measurement section.

The turbulent channel flow facility is powered by a 5.2 kW centrifugal blower used

to drive the flow through conditioning, contraction, and development sections. This

blower allows for bulk flow velocities, Ub, up to 30 m/s and consequently, Reynolds

numbers up to 102,000. A strip of 50 mm wide, 120 grit sand paper followed by

another 100 mm wide, 60 grit strip was placed at the development section inlet to

act as a fixed turbulent transition point. A schematic of the wind tunnel with the

smooth wall configuration can be seen in fig. 3.1.

Figure 3.1: Schematic of the turbulent channel flow facility with the smooth-wall
configuration before current modifications.

The smooth-walled channel configuration was then modified to support the work of

Miller [3]. He investigated the roughness and flow injection effects on the turbulent
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boundary layer through analysis of the turbulence statistics on an idealized, quasi-two

dimensional rough surface. The changes that were made was the addition of a flow

injection rig which was capable of producing blowing ratios given by the equation

BR =
V0

Um
(3.1)

of up to 0.729 % [3] for low Reynolds number cases where V0 represents the injection

velocity normal to the rough surface and Um represents the maximum measured

velocity in the channel. This blowing rig was designed to simulate the ablation process

by producing a backplane pressure on the 2-D sinusoidal rough surface. The pressure

then forces the flow through the micro-cracked pores that are uniformly distributed

on the surface. To effectively vary the injection velocity, a reliable method of flow

control and velocity measurement was needed. In Miller’s blowing rig, the injected

flow was supplied by a centrifugal blower (McMater-Carr part number 1963K15).

This blower is capable of producing flow rates up to 200 CFM at a static pressure of

350 Pa and was over-sized to allow for the large range of BR previously mentioned.

From the blower exit, a reducing section was attached which reduced the square down

to a three inch diameter tube. The tube was connected to a 1 meter flexible hose of

the same diameter which helped to prevent the blower vibrations from reaching the

blowing rig. This was then connected to a section of Schedule 40 black steel threaded

three inch diameter pipe. To measure the flow rate, a venturi meter was connected

to the steel pipe. After the venturi meter, the flow traveled through an elbow which

directed the air into a fixed pattern diffuser (McMaster-Carr part number 1837K21)

connected at the top of the blowing rig.

The actual blowing rig consisted of three main sections. Each section was separated

by flow conditioning screens used to help remove any adverse flow effects and allowed

for uniform flow injection at the rough surface. The entire blowing rig was constructed
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from 1 mm thick 3003 Aluminum sheet metal which was desirable due to it’s light

weight and ease of machining. A schematic of Miller’s blowing rig can be seen in

fig. 3.2. The geometry of the rig was such that inner dimensions were 0.4572 m in

height, 0.889 m in width, and 1.143 m long. The upper section was 152.4 mm in

height and was originally designed to house the fans which supplied the injected flow.

Certain difficulties were encountered which required the redesign of the upper section

to be completely enclosed with the injected flow supplied by an external blower. In

between the upper and middle sections was a flow conditioning screen with a mesh

size of 3.4 mm (McMaster-Carr part number 9275T38). The middle section was 203.2

mm after which was placed a finer flow conditioning screen with a mesh size of 1.25

mm (McMaster-Carr part number 87655K132) between it and the lower section. It

was determined that the middle section be large enough that the spacing between

the mesh screens be at least sixty times the mesh size [48]. The final lower section

was built with a height of 101.6 mm. An aluminum honeycomb (Bellcomb Industries

part number BSP245C) was placed in the middle section on top of the 1.25 mm

mesh screen for additional flow conditioning. The rough surface used in Miller’s

work was mounted to a 3.81 cm lip around the edge of the box. This lip was also

used to situate the blowing rig on top of the channel. While these modifications

were sufficient for Miller’s work, several problems were encountered which required

additional modifications to be made. The next section will discuss these changes and

their implications on the work in this thesis.

3.2 Current Modifications

Several conclusions were made from [3] regarding the blowing design based on the

results gathered. As mentioned in the previous chapter, it was found that the effects

of flow injection acted to increase rather than decrease τw which was counter to

previous investigations. It was hypothesized that the flow may not have been fully-
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Figure 3.2: Schematic of Miller’s blowing rig as described in [3].

developed or that the small BR that were tested may not have been large enough to

have a significant adverse effect on the flow. These hypotheses, among other design

considerations, motivated the current blowing rig to be designed with the following

modifications:

1. Modify the channel to allow for fully-developed flow and preventing injected

mass flux from increasing the net mass flux through the channel.

2. Increase the maximum allowable BR to at least 1% to correspond with expected

species emission rates experienced by an ablative TPS.

3. Allow optical access at the test section to allow the use of a PIV system to

measure flow velocities.

In order create fully-developed flow, the rough surface needed to be extended further

upstream in the channel to allow the roughness effects to permeate throughout the

channel half-height. This required an additional 60h of rough surface with flow in-
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jection on top of the 24h length in Miller’s blowing rig. To accomplish this, a larger

blowing rig frame had to be constructed. This frame was largely similar to Miller’s

rig but designed to allow for an extended rough flow development section. It was also

constructed out of 1 mm thick 3003 Aluminum sheet metal that was then cut into

strips that were then bent into C-shaped channels. The current blowing rig features

the same three sections as described in section 3.1 with the same dimensions of height.

The lengths of each of the sections had to be increased to accommodate the larger

rough surface area. Due to the larger length, the streamwise side sections had to be

split up into two pieces which were then fastened together by an external aluminum

brace that was pop-riveted to each piece. The streamwise and spanwise pieces of each

section were pop-riveted together to form a complete rectangular frame with inner

dimensions of 4.191 m by 0.914 m. The frames of each section once completed, were

relatively flimsy due to the thin sheet metal that was used. It was determined that

a series of spanwise support structures would be used keep the frames rigid. These

supports were formed out of the same aluminum stock and were placed at 1.047 m

intervals along the length of the frame. The supports were also pop-riveted to the

inside of the frame. Once each of the sections were mounted together, the supports

aligned and formed a divider between each of the four blowing sections in the rig.

The lower supports were modified further to act as a mounting piece for the rough

surface. Each support was cut in half and a 38.1 mm slot was milled into the lower

halves. This slot functioned as a fine adjustment for the rough surface in order to

properly align it with the inside of the channel. The actual rough surface, which will

be discussed more in detail in section 3.4, was mounted to a 6.35 mm thick perforated

PVC sheet (McMaster-Carr part number 92985T59). This PVC sheet provided sup-

port for the rough surface and featured and array of 12.7 mm diameter holes which

allowed the injected flow to reach the inside of the channel. An exploded technical

drawing of the blowing rig frame is shown in fig. 3.3.
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Figure 3.3: Schematic of the current blowing rig frame.

The next issue that needed to be addressed was developing a way to increase the

maximum BR to at least 1%. This was a sizing problem to ensure that the blower

used would produce the needed mass flow rate. The first step was to measure the

system resistance constant, K, for Miller’s original blowing rig with the new rough

surface added in. This was accomplished by using a handheld anemometer which

was placed inside of the channel near the rough surface to capture the injected flow.

Using the inner area of the blowing rig of 1.0 m2 and multiplying by the average

velocity of the injected flow at the surface it was possible to determine the volumetric

flow rate, Q. For Miller’s configuration using the new rough surface, a Q of 45.7

CFM was calculated. This value was plotted on the blower performance curve shown

in figure 3.4 to find the static pressure output. For 45.7 CFM, this correlated to a

static pressure output of about 361.3 Pa. The next step was to determine the system

constant, K, which represented the resistance of the entire blowing rig system to

prevent flow from passing through it. For this experiment, the system curve used is

given by equation 3.2.

P =
1

2
KQ2 (3.2)
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Figure 3.4: Blower performance curve, taken from www.mcmaster.com

Solving eq. 3.2 for K resulted in a system constant of 0.0014 inH2O/cfm2. Plotting

the resulting system curve represented by equation 3.2 onto the blower fan curve,

as shown in figure 3.4 made it possible to determine the required P to produce the

needed Q for a 1% BR. For this experiment, the design point was to produce a

1% BR for a Ub of 10 m/s which was the bulk velocity determined by PIV at the

test section. For a BR of 1%, the required Q was found to be 215 CFM. Inputting

that value into the current system curve resulted in a P of 32.36 inH2O, or about

8 kPa. From that result, it was obvious that the current blower and/or blowing rig

configuration was insufficient in producing the needed flow injection. To overcome

this obstacle, it was determined that the easiest step was to modify the blowing rig

to reduce the system resistance. These modifications consisted of removing current

ductwork connecting the blower outlet to the top of the blowing rig and replacing it

with a shorter length, larger diameter duct. The new duct hose was a highly flexible,
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PVC coated fiberglass material with a 15.24 cm inner diameter (McMaster-Carr part

number 5501K65). This new hose was connected to a larger blower reducer which

could fit with the 15.24 cm diameter. Since the hose was highly flexible, there needed

to be a fixed joint at the other end of the hose to feed into the top of the blowing rig.

A 15.24 cm inner diameter PVC coupling was chosen to connect the other end of the

hose (Charlotte Pipe model number PVC 00100 1600). The hose was connected to

the coupling by applying duct tape to the inside of it and the edge of the hose. The

coupling also served as a mount for Pitot tubes that were used to measure the flow

rate which will be discussed in section 3.5. To connect the coupling to the top of the

blowing rig, the current hole at the top of the diffuser had to be widened enough so

the that coupling could fit. This fitting proved to be a sufficient seal which meant no

further connections had to be made to hold the coupling in place. After determining

the new system curve with the updated blowing rig, it was found that current blower

could produce the required 1% BR. Applying this configuration to the new extended

blowing rig allowed for a slight increase in BR due to the smaller inner injected area of

0.96 m2 per section. This meant that an additional three blowers had to be purchased

so that each section could have a dedicated blower.

To maintain fully developed conditions, it was then necessary to prevent the injected

mass flux from increasing the net mass flux through the channel. This meant that

as the flow was being injected into the channel, it also needed to be suctioned out at

the same rate. The approach taken was to change the bottom surface of the channel

which was smooth and impermeable, to one that was smooth and porous. The same

perforated PVC material used to mount the rough surface was again used to act as

the suction surface. To make the surface smooth, a thin sheet of fabric was glued to

the channel facing side. The fabric was carefully applied to ensure that no wrinkles

and other non-uniformities could disturb the flow. To suction the flow through the

surface, the intake of each of the blowers were utilized. This meant that all of the

34



blowers had to be contained within a sealed volume of air that covered the full length

of the suctioned surface. This would allow the blowers to pull air from inside the

channel. The method to accomplish this was to seal each of the blowers within an

enclosure that would be durable enough to withstand the pressures of the channel at

high speeds. The enclosure itself was made from 3.5 mil clear polyethylene sheets.

The sheets were then wrapped around a PVC structure made from 1 inch diameter

pipes which served as a skeleton to support the enclosure. This PVC structure covered

a volume equal to the full suctioned area of the channel extended down to the floor.

Duct tape was used to secure the edges of the bag to the walls of the channel and

create an airtight seal. The duct hose connecting each blower exit to the top of the

diffuser was allowed to come out of the enclosure and wrap up around the side of the

blowing rig. The openings in the bag made from the hoses were sealed up around

each hose using duct tape.

The final modification that needed to be made was to allow optical access at the

test section for the PIV system. This meant that the vertical walls of the channel

at the test section needed to be transparent to allow the PIV cameras to observe

the flow. It was determined that clear, polycarbonate panels with dimensions of

0.5× 4.0× 72.0 cubic inches would be used (McMaster-Carr part number 1749K649).

These panels were drilled, tapped, and then fastened to the perforated PVC using

1/4-20 bolts. A schematic of the final section of the wind tunnel is provided in fig.

3.5
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Figure 3.5: Schematic of the final blowing rig design used in the experiment.
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3.3 Particle Image Velocimetry

In this experiment, all quantities needed to measure τw as in equation 2.42, other

than V0, were found using PIV. This measurement technique consists of seeding a

given flow field using small particulates such as aerosols. These particulates are then

illuminated in a plane using a laser, at which time images are recorded in quick

succession. A analysis of the images are conducted to find locally-averaged par-

ticle displacements between two images separated by short time displacement and

hence, a velocity vector field. PIV offered several advantages for this research as it

is non-intrusive, is able to measure spatially distributed flow fields, and can measure

multiple components of velocity simultaneously. Here, a high speed PIV system man-

ufactured by LaVision GmbH was used. The basic system consists of a high speed

digital camera, laser, optics, timing hardware and image analysis software. In these

measurements an optical arrangement was used which captured the streamwise and

wall-normal components of velocity.

Particle images were captured using a single Phantom Miro M310 high-speed digital

camera. Images were digitized using a CMOS sensor. The camera featured a 1280×

800 maximum resolution with a 20 µm pixel size and 12-bit pixel depth. It also

featured a throughput of 3.2 Gigapixels/second which translated to a frame rate of

3200 fps. This frame rate could be increased to 650,000 for reduced resolutions.

Attached to the camera was an AF Micro-Nikkor lens. This lens had a focal length

of 200 mm with a minimum f# of 6.25 and maximum of 50. The camera was aligned

and focused to capture the images within the laser sheet near the centerline of the

channel.

The laser used in this experiment was a Litron LDY302 model. This laser was

specifically designed for use in PIV experiments and featured two continuous wave

Q-switched Nd:YLF DPSS laser resonators that produced infrared light at 1053 nm
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wavelength. This light is converted to visible green light at 527 nm by an intra-

cavity Harmonic Generation Assembly (HGA). Output energies up to 30 mJ at a

1 kHz repetition rate and 5 mm beam diameter were possible. The two lasers are

independently controlled and pulsed which allowed for a double pulse output with

inter-pulse separation times of < 10 ns. This gave the dual laser system an advantage

over a single laser system in it’s ability to achieve the ultra-short pulse separation.

This advantage was utilized in the experiment to capture PIV images at high frame

rates for flow conditions that were too large for the single-pulsed setting to resolve

the velocity components. The laser was powered by an external 50 Hz single-phase

220 VAC supply which contained a water-to-air chiller unit used to cool the laser

diodes and rods during operation.

The optics set used in this experiment was a LaVision model 1108405. The diver-

gence lens used had a focal length of 20 mm and produced a sheet thickness that

could be adjusted from 0.5 mm - 2.5 mm. There was some initial difficulty in de-

termining the optimal location to position the optics. It was originally planned to

position the optics directly underneath of the channel. Due to the presence of the

suction surface enclosure and the constant need to ensure that the sheet was properly

focused, keeping the optics underneath would have required significant modification

to the blowing and suction apparatus. It would have also been necessary introduce

a slit within the perforated PVC to allow for the light sheet to pass through into

the channel. This could have possibly introduced instabilities within the flow at the

test section. Instead, the light sheet was introduced through the outlet of the wind

tunnel using optics mounted to a small optical table which was situated on top of

the exit section of the channel. Using two Thor Labs BB1-E02 broadband dielectric

mirrors, the laser could be reflected and directed into the lens. One of the mirrors was

mounted to an adjustable rail and placed on the floor, the other was mounted directly

to the optics system via a Thor Labs thread adapter. A diagram of the optical setup
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and PIV laser orientation can be seen in figure 3.6.

Figure 3.6: Diagram of optical setup and laser orientation.

To seed the flow with particles, a LaVision model 1108926 aerosol generator was

used. The seeding fluid was Di-Ethyl-Hexyl-Sebacat (DEHS) which is commonly used

to generate steady aerosols. The DEHS was loaded into the reservoir connected to

the generator body. The generator itself operated at a maximum working pressure

600 kPa. This pressure was provided by a compressed air source located within the

lab which was connected via hose to the generator inlet. The seeding amount that was

injected into the flow could be varied using a pressure reducer that was controlled by

knob located on the top of the generator. The 19 mm diameter outlet of the generator

was connected to another hose which was fed into the inlet of the channel blower.

The generator was originally placed at the beginning of the flow injection section of

the channel. This location proved to be ineffective in evenly distributing the aerosol

particles which was seen in preliminary images at the test section.

The entire PIV system was controlled by a LaVision model 1108075 High Speed

Controller (HSC). The HSC was capable of producing complex patterns of pulses with

accurate timing between multiple outputs for up to 16 different channels. The HSC

was designed to work with LaVision’s image acquisition and processing software called
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DaVis. The user defined pulse widths and intervals between pulses were automatically

programmed by DaVis.

All images in this experiment were taken using the double-frame/double-exposure

mode. In this mode, two images were recorded from two different exposures that were

separated by a time dt. This dt was determined to be of optimal length such that an

average particle shift of 5 pixels was seen between images [49]. Due to the wide range

of tunnel speeds investigated, the dt had to be adjusted and was optimized before

each run.

3.4 Rough Surface Characterization

This experiment focused on the modification of τw over an ablative TPS analog

surface. Ideally, an actual TPS surface such as the Phnenolic Impregnated Carbon

Abalator (PICA) would be used. Due to ITAR restrictions however, a surface geo-

metrically similar to PICA had to be used instead. It was originally planned to use

a material called FiberformTM for the rough surface which forms the carbon matrix

for PICA. This surface was discussed in the work by Lachaud and Mansour [50].

The Fiberform was used in preliminary investigations for the work in this thesis to

determine its ability to be subjected to flow injection. While the surface was porous

enough to allow for flow injection, it proved to be insufficient to achieve the required

blowing rates. Furthermore, the roughness height was relatively small, so that the

Reynolds numbers required to achieve fully rough conditions in the existing wind

tunnel were significantly higher than could be expected during re-entry. This, on top

of it’s relative high cost and fragile nature meant that an alternative surface had to

be found. It was determined that a scaled TPS analog surface similar to heavy duty

scouring pads would provide sufficient geometric similarity, with much higher rough-

ness heights. The actual material used in this experiment was made from synthetic

fiber woven into mesh tiles with dimensions of 22.86× 15.24× 1.27 cm3. These tiles
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were mounted onto the perforated PVC inside of the blowing rig and arranged so that

the edge of the surface would be flush with the top of the inner channel wall.

It was then necessary to characterize the surface so that a quantitative comparison

with the FiberformTM surface could be made. Due to the complex geometries found

in surface roughness as discussed in the previous chapter, various methods have been

employed by researchers to characterize it. A common method is through measuring

roughness height distributions. In a recent work by Wilder and Reda [4], rough-

ness height distributions were measured for sphere cone ballistic models that were

inspired by actual re-entry vehicles. These models were grit-blasted with aluminum

oxide particles to produce the roughened surface. Using a technique called confocal

microscopy, it was possible to produce 3D surface elevation maps of selected regions

of the models. A topographical analysis was then performed on the maps to identify

the individual roughness elements [51]. An example of the roughness elevation maps

can be seen in fig. 3.7.

Figure 3.7: Roughness elevation maps from the nose and frustum of sphere cone
models used in [4].

Due to the large variation in roughness heights in the TPS analog, a slightly different

41



approach had to be taken to characterize the TPS analog surface. It was determined

that roughness heights could be measured by optically capturing profiles of the tiles

and analyzing them through the use of image processing software. This process did

not produce 3D surface maps which meant that the actual peak-to-valley element

heights could not be calculated. Instead, a statistical approach was used analyze the

surface. Using a Nikon D500 digital camera and a 200 mm macro lens, a series of

images of 20 different tiles were taken at 3 distances of 12.7, 25.4, and 38.1 cm away

from the surface. These images were uploaded into Matlab and were first converted

to a grayscale image. They were then converted to a binary image which showed

the roughness elements that could be measured. A side-by-side comparison of the

original and binary images can be seen in fig. 3.8. From the binary images, it was

Figure 3.8: Comparison of original and binary images at the 5 inch distance.

possible to extract roughness heights by determining the number of pixels in each

element. By referencing the number against a zero and using a scaled image for

each distance, the number could be converted to a physical dimension. The scaled

image consisted of a ruler focused on the plane of the tile edge. Compiling the

roughness heights and non-dimensionalizing them by the root mean square, it was

possible to calculate normal probability density functions shown in fig. 3.9 using the
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mean of the non-dimensional heights, k/krms. To form a basis of comparison, stylus

Figure 3.9: Probaility density functions for the analog surface at each measurement
length and FiberformTM .

surface profilometry data taken from FiberformTM samples were used. This data

was also used to calculate a probability density function and was plotted alongside

the other results in figure 3.9. Overall, each of the roughness distributions are nearly

uniform with a slight skewness. This differs from other roughness investigations

where the sample distributions were found to be non-uniform [52], [53]. The 12.7 cm

and 25.4 cm distributions were negatively skewed having a skewness of -0.473 and

-0.301 respectively whereas the 38.1 cm distance resulted in a skewness of 0.067. The

FiberformTM had a skewness of -0.745. These results show that the analog surface is

comparable to the FiberformTM . More specifically, this meant that the two surfaces

are similar enough that the krms value can be used to scale the Reynolds number to

compare current results with future FiberformTM measurements.
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3.5 Flow Injection Measurement

The bulk of this experiment was heavily dependent on accurately measuring the

BR in order to show the modification to τw due to blowing. This meant that there

needed to be a reliable method to measure V0 for the injected flow out of the rough

surface and into the channel. It was initially assumed that V0 would be measured

directly via the PIV system. In this case, V0 would come from the measured value

of 〈V 〉 at the test section. According to theory, this value should remain constant

across the channel. After processing the images taken by the high-speed cameras at

the test section, it was found that the magnitude of 〈V 〉 could not be resolved with

sufficient accuracy as it was within the expected uncertainty of the PIV measurement

approach. Another issue with this approach was that the BR had to be set before

each test run. This required that images had to be taken and processed before the

actual test data could be gathered. This would have proved to be a time consuming

and inefficient method if the BR was incorrect with first set of images. This meant

that another method was needed to measure V0.

The next approach taken was to apply a control volume analysis to the blowing rig

section from the 15.24 cm diameter PVC inlet to the section of rough surface at the

exit of the blowing rig. A diagram of this volume is seen in fig. 3.10. By utilizing

conservation of mass, and measuring the velocity of the flow at the PVC inlet using

a Pitot tube, V0 can be found indirectly through the change in surface area assuming

constant density. This is represented by

V0 =
U1A1

A2

(3.3)

where U1 and A1 is velocity of the flow and area respectively at the PVC inlet. A2

represents the area of the section of rough surface at the exit of the blowing rig. The

areas of both surfaces are well defined with A1 = 0.0182m2 being the area of a circle
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Figure 3.10: Diagram of the volume used to determine V0.

with diameter of 15.24 cm and A2 = 0.9581 m2. The difficulty with this approach was

the accurate measurement of U1. In this analysis, U1 represents the area-averaged

velocity of the flow through the cylindrical PVC coupling. The area-averaged velocity

is given by

U1 =
1

πR2

∫ 2π

0

∫ R

0

U(r)rdrdθ (3.4)

where R is the coupling radius of 0.762 m, and U(r) represents the measured velocity

at the radial distance r from the center. It was assumed that given the shape of

the duct hose as it bent around to the top of blowing rig, that the flow would be

symmetric inside of the coupling about the axis parallel to the plane of the bend.

The area-averaged velocity was then found by measuring the velocity profile along

that axis and integrating along the asymmetric halves. This can be represented as a

modified form of eq. 3.4

U1 ≈
1

πR2

[
π

∫ R

0

U(r)rdr
half1

+ π

∫ R

0

U(r)rdr
half2

]
(3.5)
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The velocity profile inside of the coupling was measured using a Dwyer Instruments

Pitot-static tube with a 0.318 cm diameter and 30.48 cm insertion length. The tube

was mounted on the coupling by drilling and tapping into the PVC to allow for the

0.318 cm MNPT fitting. With the tube mounted into the coupling, it was possible to

manually traverse the tube across the diameter to obtain the velocity profile. It was

determined that since similar materials and dimensions were used for each section

in the blowing rig, that the velocity profile of only one section had to be measured

which could then be applied to the other sections.

The experimental procedure to measure the velocity profile involved dividing up the

Pitot-static tube into 1.27 cm increments. These increments were marked onto the

tube using a ruler and permanent marker. To acquire the pressure measurement at

each increment, an Omega 0.5 in.H2O pressure transducer (model #: PX653-05D5V)

was used. The actual voltage output was read using a multimeter and an average

reading was recorded at each increment. Across the 15.24 cm diameter coupling, a

series of 13 average voltages were recorded to make up the complete profile. These

voltages were first converted to pressures and then to velocities using Bernoulli’s

equation. The complete velocity profile can be seen in fig. 3.11 which has been

referenced from the center of the coupling. This resulted in U1 = 6.94 m/s. To

remove the need to measure profiles during every test run, it was determined that

a single measurement at the center would be used. This center measurement would

then be corrected to account for the difference in velocities between the center and

area-averaged velocity. This correction factor, c, was found using

c =
U1

Ucenter
= 0.9929. (3.6)

This factor was then used to determine the needed measured velocities for a given

BR which will be discussed in the next section.
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Figure 3.11: Velocity profile across the inside of the PVC coupling.

3.6 Measurement Procedures

The objective of this thesis was to examine the modification of τw of a TPS analog

surface due to the effects of suction and blowing. This meant that in order to obtain

a clear enough picture of these effects, a wide range of channel speeds and BR had

to be tested. This resulted in utilizing the channel and blowing rig’s performance

capabilities to the greatest extent possible. From preliminary test runs, it was found

that the entire blowing rig’s structural integrity began to fail at the wind tunnel

motor controller’s frequency of 55 Hz. It was also observed through analysis of the

pressure gradient throughout the channel that the flow was not fully developed at a

frequency of 5 Hz. As a result, it was decided that the test range would be between

10 Hz and 50 Hz which corresponded to Ub of 2.834 m/s and 13.134 m/s respectively

.

The test runs were split up into two groups consisting of runs where there was no

flow injection (non-blowing) and runs with flow injection (blowing). The non-blowing

cases were collected first followed by the blowing cases. For the blowing cases, each
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BR was tested at that particular tunnel frequency before the frequency was changed.

Table 3.1 gives the full range of flow conditions that were tested. The sample times

shown in table 3.1 were determined based on the premise that ∼1000 statistically

independent samples were needed of the largest eddies in the flow. This quantity

provided a statistically converged average of the flow effects due to these eddies.

From previous studies on channel flow, it has been shown that the largest eddies are

about 20h [54–56]. For the channel used in this experiment with h = 50.8 mm, this

meant that the largest eddies encountered would be ∼ 0.1 m. In order to capture 1000

independent samples, around 100 m of flow had to be measured. This 100 m guideline

was multiplied by Ub, which was found through the pressure difference encountered

at the contraction section of the channel, to determine the sample time needed for

each run. The sample time was used to adjust the camera’s image rate so that the

1000 samples could be evenly distributed about the 100 m of flow. The camera’s

memory was capable of storing a little over 4000 images. This meant that in the

vector calculations, a single statistically independent sample was contained within

every 4 images.

The measurement procedure for the non-blowing cases was fairly straightforward.

To begin, the channel was set to the desired blower frequency and the aerosol gen-

erator was turned on. At this point, it was necessary to ensure that the flow had a

proper seeding density and pixel shift. This was accomplished by capturing a pre-

liminary series of images. The amount of seeding was then adjusted if needed along

with the dt between images if the pixel shift was undesirable as mentioned in section

3.3. Once the flow was allowed to stabilize, the data set was captured and stored to

the computer’s hard drive for future analysis.

The procedure for the blowing cases was more complicated. After ensuring proper

flow seeding and pixel shift, it was necessary to set the desired BR. Using Ub, which

was calculated from the PIV images for the non-blowing cases, a spreadsheet was
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created to determine the needed V0. This process consisted of working backwards

starting with Ub and calculating V0 using the BR for the desired case as in equation

3.1. From V0, U1 could then be found using equation 3.3. U1 was then corrected

using c to obtain Ucenter which was the velocity that would need to be measured by

the mounted Pitot-static tubes in the PVC couplings. This would then be used with

∆E =
ρU2

center

2S
(3.7)

where ∆E is the voltage difference needed to obtain the correct BR and S is the span

of the pressure transducer in Pa/V. The same Omega 0.5in.H2O pressure transducer

was used to measure ∆E as in the preliminary BR investigations discussed in section

3.5. This transducer was connected to a digital monitor which allowed for a real-time

display of the voltage measured. This was needed in order to tune the blowers to the

proper output. To tune each blower, a 15 A VenTech variable speed controller was

connected in line with wall power supply. Since there was only one pressure transducer

available, each blower had to be tuned independently before the data collection could

begin. To tune each blower, the dial on the speed controller was adjusted until the

digital readout consistently stayed within ±0.005 V of the desired ∆E for a period

of 10 seconds. After each blower had been tuned, the flow was allowed to stabilize to

account for the added injected flow within the blowing rig upon which time the data

was then collected and stored.

The first step in calculating the velocity vectors was to pre-process each of the

images. This consisted of first masking out both the suction and rough surfaces from

the images in order to prevent the software from taking these features into account

in the analysis. Next, an image inversion was conducted which improved the contrast

between the particle and background intensities. A calibration image also had to be

taken. This was accomplished by taking an image of a meter stick along the same
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plane as the light sheet. An example of one of the calibration images used can be seen

in fig. 3.12. The images were scaled by selecting two horizontal points as seen by 1

and 2 in fig. 3.12. By inputting the corresponding length associated with the selected

points, the images could then be converted to physical dimensions. The resulting

velocity components were in units of m/s for this experiment.

Figure 3.12: PIV calibration image.

The velocity components were calculated using a cross-correlation method in which

two images were subdivided into square 64 x 64 pixel2 interrogation windows. Each

window was then shifted between the images by varying distances to identify the most

likely particle-image pair displacement. This was represented by the highest peak in

the cross-correlation function. A more in depth discussion can be found in [57–59].

Neighboring interrogation windows were offset with a 75% overlap which meant that

the 1280 x 800 pixel2 resulted in a grid of 26 x 16 interrogation windows and 416

vectors for each image pair. The vector field was calculated using a constant size

multi-pass option of 5 iterations. In the initial pass, a vector for each interrogation

window was processed. This vector was then used as a reference for the next pass

after the interrogation window according to the determined particle image shift. This

technique helped to improve the signal-to-noise ratio and resulted in more accurate

vectors.
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Table 3.1: All test conditions

Case Ucl (m/s) Re = Ubh/ν BR (%) Sample Time (s) Image Rate (kHz)

1 3.36 20000 0 29.8 0.165
2 3.36 20000 0.25 29.8 0.165
3 3.36 20000 0.5 29.8 0.165
4 3.36 20000 0.75 29.8 0.165
5 3.36 20000 0.98 29.8 0.165
6 5.52 31000 0 18.1 0.2
7 7.86 41000 0 12.7 0.4
8 7.86 41000 0.25 12.7 0.4
9 7.86 41000 0.5 12.7 0.4
10 7.86 41000 0.75 12.7 0.4
11 7.86 41000 0.98 12.7 0.4
12 10.09 49000 0 9.9 0.41
13 12.32 57000 0 8.1 0.5
14 12.32 57000 0.25 8.1 0.5
15 12.32 57000 0.5 8.1 0.5
16 12.32 57000 0.75 8.1 0.5
17 12.32 57000 0.98 8.1 0.5
18 14.6 67000 0 6.8 0.6
19 16.86 75000 0 5.9 0.66
20 16.86 75000 0.25 5.9 0.66
21 16.86 75000 0.5 5.9 0.66
22 16.86 75000 0.75 5.9 0.66
23 16.86 75000 0.98 5.9 0.66
24 18.93 83000 0 5.3 0.75
25 21.31 92000 0 4.7 0.85
26 21.31 92000 0.25 4.7 0.85
27 21.31 92000 0.5 4.7 0.85
28 21.31 92000 0.75 4.7 0.85
29 21.31 92000 0.98 4.7 0.85
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Chapter 4 Results and Discussion

The primary objective of the analysis in this thesis was to determine τw. The DaVis

software was capable of calculating the wall-normal, V, and streamwise, U , compo-

nents of velocity along with the relevant turbulence statistics needed to determine

τw. These values were averaged across the entire range of PIV images for each case

and further averaged in x in order to produce wall-normal profiles for each of the val-

ues. The results are organized into four different sections. Section 4.1 focuses on the

each of the statistics that were involved in calculating τw including the mean velocity

profiles and mean Reynolds stress profiles. Section 4.2 focuses on the shear stress

measurements at each point across the height of the channel. Section 4.3 discusses

the modification of τw due to roughness and blowing effects. Finally, section 4.4 deals

with the validation of the τw measurements.

4.1 Overview of Mean Statistics

The statistics required to determine τw included the streamwise velocity gradient

d〈U〉
dy

which depended upon the mean streamwise velocity component 〈U〉. The mean

wall-normal velocity component 〈V 〉 was of interest to use as a cross-reference for the

measurement of V0 which was assumed to remain constant in the y-direction across

the channel (see derivation of eq. 2.32). The mean components of the Reynolds stress

tensor 〈u′v′〉, 〈v′2〉, and 〈u′2〉 were needed not only to calculate τw but to also gain

insight into the turbulence structure and generation.

The vector field images calculated by the PIV software produced an x, y field of
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different statistics of interest. For an arbitrary time averaged statistic φ(x, y), 〈φ〉(y)

was found through

〈φ〉(y) =
1

n

n∑
i=1

φi(x, y) (4.1)

where n is the number of samples in each x-direction row of the time-averaged statistic

field φi(x, y). The region used to calculate 〈φ〉 could be tailored for each image to

account for errors introduced at the edges of the fields caused by particles entering

and leaving the images between the acquisition of image pairs.

The 〈U〉 and 〈V 〉 profiles were non-dimensionalized by the bulk streamwise velocity

Ub which here is defined by

Ub =
1

2h

∫ 2h

0

〈U〉(y)dy. (4.2)

This bulk velocity is able to account to for any slight asymmetry in the mean velocity

profile which was induced by the roughness and/or blowing effects. The wall-normal

position y was also non-dimensionalized by h with the zero position referring to the

location of the rough wall. For the Reynolds stress profiles, the 〈u′v′〉, 〈v′2〉, and 〈u′2〉

components were non-dimensionalized by U2
b .

4.1.1 Non-Blowing Cases

The full-range of mean velocity profiles of 〈U〉 and 〈V 〉 for the non-blowing cases

can be seen in fig. 4.1 and 4.2. The full-range of profiles for the mean components

of the Reynolds stress tensor 〈u′v′〉, 〈v′2〉, and 〈u′2〉 for all non-blowing can be seen

in fig. 4.4, 4.5, and 4.3 respectively. Each of the curves represent a single test case

at the specified Reynolds number. The corresponding flow parameters can be seen in

table 3.1.

Looking at fig. 4.1, it is evident at the lower Re that the flow shows signs of not

being fully developed due to the slight asymmetry in the shape of the profile. As

53



Figure 4.1: Full range of mean streamwise velocity profiles for all non-blowing cases.

Re is increased however, the profiles begin to collapse. The location of maximum

velocity shifts from about 1.3h near the smooth wall for lower tunnel speeds, to near

the centerline at around 1.1h for the higher speeds.

According to eq. 2.32, 〈V 〉 should remain constant at V0 across the height of the

channel and, for the non-blowing cases, should remain zero. It can be seen in fig.

4.2 that there exists a slight 〈V 〉 equal to approximately 0.015Ub in the case of non-

blowing. It was concluded that this slight velocity was within the expected level

of experimental error. This error could have come from a slight coordinate system

rotation relative to the wall due to camera misalignment. A rotation of less than 1

degree would result in a 1.5% shift of the streamwise velocity component into the

wall-normal component. In each of the cases, the velocity measured remains constant

across the height of the channel with maximum fluctuations of around ±0.005Ub.
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Figure 4.2: Full range of mean wall-normal velocity profiles for all non-blowing cases.

Figure 4.3: Full range of 〈u′2〉 profiles for all non-blowing cases.

The full range of 〈u′2〉 profiles for all non-blowing cases is shown in fig. 4.3. The

variance of the streamwise velocity fluctuations gives insight into where the majority
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of the turbulence is being generated. As expected, the increase in Reynolds number

causes an increase in turbulent kinetic energy. This effect is greater near the walls

where the flow is bounded and the shear stress acts to generate the turbulence. The

point of minimum 〈u′2〉 also shifts from 1.3h for the lower Reynolds numbers to near

the centerline for greater cases.

Looking at fig. 4.4, as expected, as Re is increased, the magnitude of 〈u′v′〉 increases

as well. An interesting feature to note is that each of the profiles appear to pivot

at about the 0.7h location near the rough wall. This could possibly be due to the

asymmetry of the channel geometry with the rough and smooth walls. While there

was a relatively large amount of data scatter near each of the walls, the smooth wall

appears to have little effect on 〈u′v′〉 in contrast to the rough wall in which the profiles

differ at that location with each Reynolds number. The linearity seen in the profiles

was predicted by eq. 2.42 where the Reynolds shear stress (ρ〈u′v′〉) term contributes

the most to the overall τ in the outer layer compared to the viscous shear stress(
ρν d〈U〉

dy

)
term which only becomes relevant near the walls.

The full range of 〈v′2〉 profiles for all non-blowing cases is shown in fig. 4.5. The

profiles show magnitudes of 〈v′2〉 with rms values at around 6% of Ub for lower Re

cases up to around 10% of Ub for the higher cases. It is expected that 〈v′2〉 will be

much higher than 〈V 〉 in wall-bounded flow due to the anisotropic shear generation at

the larger scales of turbulence. Compared to the 〈u′2〉 profiles, the 〈v′2〉 profiles show

a similar trend in that the there is greater velocity shear near the walls with a larger

shear near the rough wall as expected. Near the centerline, both profiles decrease in

magnitude. The profiles differ in that the magnitudes of 〈v′2〉 are less than 〈u′2〉 due

to v′ being damped by the presence of the wall.
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Figure 4.4: Full range of 〈u′v′〉 profiles for all non-blowing cases.

Figure 4.5: Full range of 〈v′2〉 profiles for all non-blowing cases.
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4.1.2 Blowing Cases

The streamwise velocity profiles for each of the blowing cases and Reynolds numbers

can be seen in fig. 4.6. For each Reynolds number, all of the blowing cases are

plotted along with the non-blowing case. Overall, the addition of blowing acts to

shift the profiles from a nearly symmetric profile without blowing, to an asymmetric

one. The shift causes the maximum velocity to be located at around 1.6h, which

is near the smooth wall. The addition of blowing also decreases the velocity near

the rough wall. This can be explained by the blowers suctioning the air and pulling

it through the porous surface. With increasing Reynolds number, the difference

between the blowing and non-blowing profiles becomes more apparent. Also, at the

higher Reynolds numbers, the change in BR begins to have a decreasing effect on

the mean flow. This effect is more apparent near the walls where the profiles nearly

collapse as the BR changes.

The wall-normal velocity profiles for each of the blowing cases and Reynolds num-

bers can be seen in fig. 4.7. As with the non-blowing cases, the uncertainty in the

PIV measurements was greater than the actual velocity in the channel. As expected,

the profiles remain relatively constant across the height of the channel. The only ex-

ception occurs in the lowest Reynolds number blowing cases seen in fig. 4.7. For the

.75% and .98% BR cases, the profiles appear to vary linearly with a slight negative

velocity near the rough wall to a positive one near the smooth wall. In this frame of

reference, the negative velocity indicates that the flow was moving in the direction of

the rough wall. This does not make sense, since the injected flow would be moving

away from the rough wall. This is a non-physical result, so this can be ignored. While

the change in direction of the flow is significant in those cases, the overall magnitude

was within ± 3% of Ub. For the .98% BR case at Re = 20000, the measured V0, which

was the injected flow velocity, was 0.0345 m/s. With a bulk velocity of 1.84 m/s for

that case, this meant that near the rough wall a 〈V 〉/b of 0.019 would be expected.
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Based on the plot, the velocity is around 0.023 that of Ub. This lends credit to the

possibility that the PIV was unable to resolve the lower magnitudes of 〈V 〉. The

Re = 92000 case seen in fig. 4.7 is also worth mentioning due to the apparent scatter

near the walls. This can be seen as the large sporadic magnitudes of V
Ub

. This scatter

was caused by the limitations of the PIV system in it’s inability to capture particle

pairs at the edges of the field of view.

The Reynolds normal stress profiles of 〈u′2〉 for all blowing cases is shown in fig.

4.8. The shape of the profiles differ greatly between the blowing and non-blowing

cases. The addition of blowing nearly linearizes the profiles with the majority of the

turbulence being generated near the rough wall. The exceptions are the Re = 92000

blowing cases where the profiles appear to have a similar shape but shifted compared

to the non-blowing case. This can be attributed to the data scatter associated with

the higher Re.

The Reynolds shear stress profiles of 〈u′v′〉 for all blowing cases is shown in fig.

4.9. It is apparent that addition of blowing acts to shift the slope of the profiles.

This can be explained by the addition of the injected flow in which V now becomes

significant in the channel. The increase of BR also appears to increase the magnitude

of 〈u′v′〉. This effect diminishes at higher tunnel speeds which can be seen by the

blowing profiles collapsing.

Significant change in the shape of the blowing and non-blowing profiles of the

Reynolds stress 〈v′2〉 component can be seen in fig. 4.10. For the no-blowing cases, the

profiles are bimodal and associated with turbulence generation at each wall. However,

with the addition of blowing, the profiles begin to take a more linear shape with

increasing BR and Re.
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Figure 4.6: Streamwise velocity profiles for all blowing cases. Symbols for each BR
shown in the plot.
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Figure 4.7: Wall-normal velocity profiles for all blowing cases. Symbols for each BR
shown in the plot.
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Figure 4.8: Reynolds stress profiles of 〈u′2〉 for all blowing cases. Symbols for each
BR shown in the plot.
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Figure 4.9: Reynolds stress profiles of 〈u′v′〉 for all blowing cases. Symbols for each
BR shown in the plot.
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Figure 4.10: Reynolds stress profiles of 〈v′2〉 for all blowing cases. Symbols for each
BR shown in the plot.
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4.2 Shear Stress Profiles

Referring back to eq. 2.42 in section 2.8, the determination of τ required the

measurement of ∂〈U〉/∂y, 〈u′v′〉, 〈U〉, and V0. These were then used to calculate

τ at each point in the profile. A line could then be fit to each of the profiles and

extrapolated to the rough wall in order to determine τw. This line was fit near the

centerline where the data was relatively scatter free (0.6 < y/h < 1.4). Again, this

section is split up with the non-blowing cases shown first followed by the blowing

cases. In each of the profiles, τw is represented by cf which depends upon τw.

4.2.1 Non-Blowing Cases

The full range of shear stress profiles for all non-blowing cases are shown in fig. 4.11

and 4.12. In each of the cases the location in the channel where cτ = τ/(0.5ρU2
b ) = 0

corresponding to τ = 0 occurs at around .06 m from the rough wall, or about

.01 m from the centerline towards the smooth wall. In channel flow with smooth

walls, this zero crossing would be located at the centerline with equal values of

cτ = cf = τw/(0.5ρU
2
b ) at the walls. The profile behavior is linear as expected near

the centerline however the linearity disappears near the walls. As noted previously,

according theory, the profiles should remain linear across the entire channel. These

differences in behavior are attributed to the inaccuracy of the PIV near the walls in-

troduced by reflection of the light sheet and high velocity gradients causing inaccurate

averaging within the interrogation volume. Also, the smooth wall conditions might

not have been fully developed since the suction will stabilize the turbulence and slow

down the mixing. It is also worth noting that the rough wall caused an increase in

magnitude of cτ with the increase in cf appearing as a shift in the profile towards the

smooth wall. The increasing Reynolds number also causes an increase in magnitude

of cτ which is also expected due to the increased magnitude of the Reynolds shear
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stress.

Figure 4.11: cτ profiles. Associated Reynolds numbers shown in each profile. Red
line shows determined fit used to find τw.
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Figure 4.12: cτ profiles. Associated Reynolds number shown in each profile. Red line
shows determined fit used to find τw.

4.2.2 Blowing Cases

The full range of shear stress profiles for all blowing cases are shown in fig. 4.13

- 4.17. Each figure contains all BR cases at the specified Re. It is apparent that

the addition of blowing acts to decrease cf and shift the zero crossing of the cτ

profiles towards the rough wall. This effect increases with increasing BR. This

behavior is comparable with that of Voisinet [5] which also showed a decrease in τw

and consequently, cf with increasing flow injection.
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Figure 4.13: cτ profiles atRe = 20000 for all blowing cases. Red line shows determined
fit used to find τw.

Figure 4.14: cτ profiles atRe = 41000 for all blowing cases. Red line shows determined
fit used to find τw.
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Figure 4.15: cτ profiles atRe = 57000 for all blowing cases. Red line shows determined
fit used to find τw.

Figure 4.16: cτ profiles atRe = 75000 for all blowing cases. Red line shows determined
fit used to find τw.
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Figure 4.17: cτ profiles atRe = 92000 for all blowing cases. Red line shows determined
fit used to find τw.

The overall shear stress, τ at any given point in the profile is composed from three

different contributions in the presence of blowing. These contributions can be seen

in each term of eq. 2.42 in section 2.8. The first term is known as the viscous shear

stress represented by

ρν
∂〈U〉
∂y

. (4.3)

The next term is known as the Reynolds shear stress given by

−ρ〈u′v′〉. (4.4)

Finally, the last term is the shear stress due to blowing given by

−ρV0〈U〉. (4.5)
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Each of these stresses contribute by varying degrees to τ , depending on y. To in-

vestigate the individual contributions to τ , profiles of each contribution was plotted

alongside τ in fig. 4.18 and 4.19.

Figure 4.18: Shear stress contributions for Re = 57000. BR = 0.25% (left), BR =
0.98% (right)

Figure 4.19: Shear stress contributions for Re = 75000. BR = 0.25% (left), BR =
0.98% (right)

Due to the inability to measure near the walls where the viscous stresses dominate,

the viscous stresses measured in this experiment remain a relatively insignificant

contribution to the overall shear stress. This meant that the analysis to determine τw

weighed heavily on the interactions between the Reynolds stress and blowing shear

stress contributions. Looking at the lower BR for each Reynolds number shown, the

Reynolds stress follows closely in shape and magnitude to the overall shear stress.
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The addition of blowing appears to shift the overall shear stress vertically to a degree

depending on the BR. This shift increases with increasing BR.

4.3 Wall Shear Stress Modification

It was also of interest and the primary objective of this thesis to quantify the effect

of blowing on the measurement of τw. These effects are shown in fig. 4.20 in which the

ratio of τw with blowing to τw without blowing are shown as a function of the %BR.

The Reynolds numbers shown in 4.20 represent each of the 5 Reynolds numbers that

were subjected to flow injection and were calculated using the bulk velocity Ub, and

the height of the channel H. With increasing %BR, the overall effect of blowing on

τw appears as a linear decrease with the .98% BR cases having approximately 20% of

the τw measured without blowing. Although difficult to discern due to scatter in the

results, which can be seen by the large error at the highest Re, the decrease in wall

shear stress due to increase in blowing rate also appears to be independent of Re.

Figure 4.20: τw augmentation due to blowing.
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Figure 4.21: Skin friction coefficient as a function of Reynolds number.

The modification of τw and resulting cf due to roughness and blowing can be

compiled into a figure similar to the Moody diagram as shown in fig. 4.21. Here, the

curves are compared to smooth wall data compiled from Dean [14] as well as rough

wall data from Voisinet [5]. There is clear indication that the addition of blowing

acts to reduce cf with increasing BR. This effect allows cf to be reduced to below

smooth wall results for the higher BR cases. Overall, the curves remain fairly constant

indicating the flow has reached fully rough conditions with little change in cf with

increasing Reynolds number. However, there is a slight increase in cf for the higher

Reynolds number cases. While this may hint at the flow still being transitional, it

was concluded that this increase could be attributed to uncertainty and data scatter

which was more apparent in the higher Re cases as shown by the error bars.

The inner-scaled mean velocity plots, using the τw determined above, are shown

in fig. 4.22. It is apparent that the increase Reynolds number causes an increase in

∆U+. This is expected and corresponds to an increase in τw due to increasing k+.
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Figure 4.22: Inner-scaled mean velocity plots for all non-blowing cases. Rough wall
data from Voisinet from Ref. [5].

These results are compared to those from Voisinet [5] in which the selected data set

is of a rough surface with k = 0.1 mm at a k+ = 5.5. The rough surface used in this

experiment which was characterized in section 3.4 had an average krms = 0.36 mm

with k+ ranging from 6.6 for the Re = 20000 case to 38.6 for the Re = 92000 case.

The larger ∆U+ in the TPS analog surface plots compared to Voisinet’s surface is

also expected in that the roughness had a greater influence on the mean flow near

the wall due to the larger roughness elements.

The inner-scaled mean velocity plots for each of the blowing cases is shown in figure

4.23. These were plotted alongside the theoretical log-law for the smooth wall case

for comparison (κ = 0.4, B = 5.5). Voisnet’s work [5] examined a rough surface which

was subjected to mass flow rates up to 0.146 kg
m2sec

. In Voisinet’s results, the addition

of blowing acted to increase the roughness effects and cause an additional downward

shift in U+. These results were also seen in Miller [3]. The results in this work show

different behavior, with the addition of blowing causing an upward shift. This shift
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becomes less apparent with increasing tunnel speed.

Figure 4.23: Inner-scaled mean velocity profiles for all blowing cases. Rough wall
data from Voisinet from Ref. [5]

.
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4.4 Measurement Comparison to Clauser Method

Due to the unique approach in the measurement of τw in this thesis, there needed

to be some sort of basis of comparison of the results with some other known method.

The “Clauser chart” method has been used before in rough-walled turbulent boundary

layers [60–62]. However, this method has been shown to lack agreement with other

methods [63]. The basis of the Clauser method’s reliability is the assumption that

the velocity-defect law exists for a given wall-bounded flow. It involves utilizing the

streamwise Reynolds stress, 〈u2′〉 to find the correct zero-plane displacement, yo, as

discussed in eq. 2.14 in chapter 2. The slope of the inner-scaled mean velocity profile

is then modified by changing Uτ to match the slope of the smooth-walled case in order

to find the corrected Uτ .

For each Re and BR tested, the Clauser method was applied to estimate Uτ . The

Clauser fit and RANS-estimated Uτ values are shown in table 4.1 with the associated

flow conditions for each case shown in table 3.1. There is good agreement between

the two Uτ values for the non-blowing cases. The values begin to diverge however as

BR is increased. This warranted further investigation into the potential causes of the

divergence.

A potential cause of these differences was the significant modification of the wake

region due to blowing and suction effects. Alternatively, the most likely source of

error in the RANS-based method was error in the determination of V0. To investigate

this possibility, case numbers 8-11 were examined in more detail in which V0 was

artificially adjusted until Uτ matched the Clauser method result. This produced

percent differences of 29.84% between the RANS estimated and adjusted Clauser

method values of V0 for the BR = 0.25% case which increased up to 112.53% for

the BR = 0.98% case. It was then necessary to determine which of the values could

be trusted. This was accomplished by examining the shear stress profiles for the
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measured and Clauser method values. A side-by-side comparison of the two profiles

are shown in fig. 4.24. The difference in shape of the profiles is clear between the

two cases. The Clauser method profile loses more linearity in τ which disagrees with

theoretical expectations relative to the measured profile. This result indicates that

the Clauser method loses validity with the addition of blowing and suction effects.

Figure 4.24: Shear stress profiles for Clauser method and measured results for 0.98%
BR case.
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Table 4.1: Clauser Method Comparison

Case Re BR % uτ (RANS) uτ (Clauser)

1 20000 0 0.265 0.28
2 20000 0.25 0.195 0.21
3 20000 0.5 0.128 0.22
4 20000 0.75 0.152 0.23
5 20000 0.98 0.065 0.205
6 31000 0 0.423 0.43
7 41000 0 0.573 0.57
8 41000 0.25 0.526 0.5
9 41000 0.5 0.353 0.47
10 41000 0.75 0.340 0.5
11 41000 0.98 0.163 0.45
12 49000 0 0.739 0.75
13 57000 0 0.907 0.9
14 57000 0.25 0.777 0.75
15 57000 0.5 0.657 0.7
16 57000 0.75 0.525 0.69
17 57000 0.98 0.399 0.85
18 67000 0 1.042 1.08
19 75000 0 1.206 1.2
20 75000 0.25 1.041 1.03
21 75000 0.5 0.905 0.96
22 75000 0.75 0.711 0.8
23 75000 0.98 0.473 0.85
24 83000 0 1.362 1.39
25 92000 0 1.535 1.58
26 92000 0.25 1.438 1.38
27 92000 0.5 1.369 1.35
28 92000 0.75 1.083 1.5
29 92000 0.98 0.887 1.4
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Chapter 5 Conclusions

A turbulent channel flow wind tunnel was modified by addition of an apparatus to

introduce mass injection through a rough surface combined with surface suction off the

opposing surface. The apparatus was carefully designed to produce fully-developed

turbulent channel flow with mass flux through the side walls. This apparatus was

employed to characterize a surface roughness which was intended as an analog to

a thermal protection system surface. The surface was characterized through the

examination of wall shear stress, τω, while being subjected to blowing and suction ef-

fects. An approach based on the idealized Reynolds Averaged Navier-Stokes (RANS)

equations was used to determine τω through the use of particle image velocimetry

and knowledge of channel flow geometry. Time-averaged statistics were captured to

gain insight into the effects due to blowing on the mean flow and Reynolds stresses.

Through analysis of these statistics along with the modification to τω, several conclu-

sions can be drawn.

First, the rough surface used in this work acted to shift the zero crossing of the shear

stress profiles towards the smooth wall. This was caused by the roughness elements

introducing additional shear through τω near the well relative to smooth wall flows.

This is supported by the increase in Reynolds stresses near the rough wall compared

to the smooth wall. There was also a clear shift in the profiles of the mean flow and

Reynolds stresses between the blowing and non-blowing cases. The flow appeared to

reach fully rough conditions. This is supported by the constant values for cf with

increasing Reynolds number.
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Second, the addition of blowing acted to reduce τω and consequently, cf . This is

supported by the shift in the zero crossing of the shear stress profiles towards the

rough wall. This reduction is consistent with results seen in previous studies [5].

There is a decreasing effect due to blowing on the modification of τω at higher tunnel

speeds. This is supported by the decreasing ratio of τω with blowing to τω without

blowing. This was also seen in the collapse of profiles of the varying BR for the mean

velocities and Reynolds stresses.

The Clauser method to determine τω was also found to lose validity in the case of

flow injection and suction due to the significant modification of the wake region. This

is supported with a comparison between the measured and Clauser fit values of Uτ .

Looking at the shear stress profiles, the measured profiles followed expected linear

behavior closer than the Clauser fit profiles.

Overall, the work in this thesis provided several original contributions. First, sig-

nificant modifications to the channel flow facility had to be made to allow for fully

developed turbulent flow with roughness, flow injection and suction effects. Next, the

use of the RANS equations allowed for a novel approach to experimentally measure

τω. These measurements produced the first data set of turbulent channel flow with

roughness, flow injection and suction effects.

These results will require further computational investigations in order to be vali-

dated. Future experimental work will need to be focused on improving the measure-

ment of flow injection in order gain more insight in these effects on τω. The unique

rough surface used in this work will also allow for future comparisons to be made

with actual ablative thermal protection system materials.
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5.1 Appendix A: Uncertainty Analysis

Additional uncertainty analysis was needed in order to gain a sense of how accu-

rate the measurements of τω were. Referring back to eq. 2.42 in section 2.8, the

shear stress at any given point was determined through measurement of the average

streamwise velocity 〈U〉, and the average Reynolds stress 〈u′v′〉 component. As pre-

viously mentioned, these statistics were measured using PIV at the test section of the

channel. The PIV images consisted of a grid of 50 by 80 individual values for each

of the needed statistics. These values were then averaged in each row as described in

equation 4.1 in section 4.1. The uncertainty in the final averages used in the shear

stress analysis would thus come from the number of samples used in the row average

of the PIV images. To quantify the uncertainty, an investigation was conducted in

which sample size in the average for each row was varied in order to determine if the

averages converge. These sample sizes were also varied at three different wall-normal

positions in the channel (y = 6.7, 26.7, 53.5 mm). These plots can be seen in fig. 5.1.

It is evident that as the sample size increases, 〈U〉 tends to converge to a constant

average value. This is case for each measurement distance except at y = 26.7 mm

where the average still seems to be changing even at the maximum sample size of 47

which was used in the analysis. As with all of the cases, the difference in 〈U〉 between

the largest and smallest sample sizes are on the order of 10−3 m/s, which is relatively

insignificant. It is therefore safe to assume enough samples were used for the average

statistics in the shear stress calculations.

Another source of error was in the method employed to determine τω at the rough

wall. As discussed in section 2.8 the shear stress profiles were linearly fit and ex-

trapolated to the rough wall. This meant that there was an error associated with

the coefficients of the fit line that calculated for each Re and BR case. Using error

analysis tools in Matlab, the error in the coefficients was calculated. This allowed for
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Figure 5.1: Convergence plots for each of the measurement distances. Distance shown
in each plot.

an error estimate of τω, which is denoted ∆τω. This error then had to be propagated

to calculate cf in which the associated errors for each measurement can be seen in

figure 4.21 in section 4.3. This error was also propagated to determine the error in

τω augmentation due to blowing which is shown in fig. 4.20 also in section 4.3. A full

list of the associated ∆τω values for each case is shown in table 5.1.
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Table 5.1: Errors in τω based on coefficients of linear fit.

Case Re BR % ∆τω
(
N
m2

)
1 20000 0 0.001
2 20000 0.25 0.003
3 20000 0.5 0.002
4 20000 0.75 0.005
5 20000 0.98 0.003
6 31000 0 0.003
7 41000 0 0.008
8 41000 0.25 0.016
9 41000 0.5 0.026
10 41000 0.75 0.015
11 41000 0.98 0.014
12 49000 0 0.003
13 57000 0 0.012
14 57000 0.25 0.050
15 57000 0.5 0.024
16 57000 0.75 0.035
17 57000 0.98 0.031
18 67000 0 0.018
19 75000 0 0.028
20 75000 0.25 0.022
21 75000 0.5 0.031
22 75000 0.75 0.021
23 75000 0.98 0.030
24 83000 0 0.054
25 92000 0 0.067
26 92000 0.25 0.417
27 92000 0.5 0.557
28 92000 0.75 0.442
29 92000 0.98 0.144
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