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ABSTRACT OF DISSERTATION

Empirical Likelihood Confidence Band

The confidence band represents an important measure of uncertainty associated with a
functional estimator and empirical likelihood method has been proved to be a viable ap-
proach to constructing confidence bands in many cases. Using the empirical likelihood
ratio principle, this dissertation developed simultaneous confidence bands for many func-
tions of fundamental importance in survival analysis, including the survival function, the
difference and ratio of survival functions, the hazards ratio function, and other parameters
involving residual lifetimes. Covariate adjustment was incorporated under the proportional
hazards assumption. The proposed method can be very useful when, for example, an in-
dividualized survival function is desired or a non-proportional hazards ratio is present in
treatment effect assessment. Its large sample property was theoretically verified and the
competitive finite sample performance was demonstrated by extensive numerical simula-
tion studies.
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Chapter 1 Introduction

1.1 Proportional Hazards Model

Cox’s proportional hazards (PH) model (Cox, 1972) is unarguably the most popular regres-

sion tool in time-to-event analysis. It is very easy to fit and allows the regression coefficient

to be readily interpreted as the log-hazard-ratio. This dissertation addresses a few impor-

tant questions arising from practical applications of the PH model.

It is assumed that there exists a non-negative event time X , denoting the time until the

occurrence of some event or failure, together with a vector of covariates Z of dimension

p. Research interest lies in uncovering the quantitative relationship between X and Z. In

practice, one can not fully observe X . Instead, there is an underlying non-negative cen-

soring time C such that one can only observe a censored time T = min(X,C), and a

censoring indicator δ = I{X ≤ C}, valued at 1 if death is observed and 0 otherwise. This

type of censoring is called right censoring and represents the most common censoring type.

Other types of censoring include, but not limited to, left censoring, interval censoring, and

a mix of multiple censoring types. This dissertation is focused on right-censored data only.

The hazard function plays a fundamental role in survival analysis. It describes the instan-

taneous rate of failure per time unit. Mathematically, the hazard function of the random

variable X is defined as

λ(t) = lim
∆t→0

Pr(X < t+ ∆t|X ≥ t)

∆t
,

assuming the existence of the limit. Integrating λ(·) over time will lead to the cumulative

hazard function Λ(t) =
∫ t

0
λ(s)ds. For discrete distributions where λ(t) is not well-defined,

the cumulative hazard function can be defined by the following connection to the cumula-
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tive distribution function Λ(t) =
∫ t

0
1
/
{1− F (s−)}dF (s).

The semi-parametric PH model relates the hazard function of X to the covariates vector Z

by assuming

λ(t|Z) = λ0(t) exp(β>0 Z),

where β0 is the unknown p-dimensional vector of regression coefficients and λ0(t) is the

unspecified baseline hazard function that can be theoretically interpreted as the hazard

function of subjects with covariates vector Z = 0. Under the assumption that C be in-

dependent of X given Z (non-informative censoring), the PH model can be fitted via the

partial likelihood methodology (Cox, 1975).

One defining characteristic of the PH model is its proportional hazards assumption — the

ratio of hazards between two subjects with different covariates is a constant in time. Valid

use of the Cox model requires careful examination of the appropriateness of this assump-

tion. A popular visual examination diagnostic tool is the deviance residual plot. Caution

should be used when applying this tool since other model mis-specification, including out-

liers and non-linear relationship, could also lead to a rejection of the null hypothesis. When

evidence against this assumption is deemed sufficient, many alternatives in the literature

can be investigated. The standard approach is adding an interaction term of time and the

covariate that does not support proportional hazards. Typically, the functional form of the

interaction is parametrically specified, at the risk of model misspecification. While this

also applies to the categorical covariate case, for categorical covariate, especially when the

level of covariates is not too large, the more frequently used alternative is the stratified Cox

model, which uses that particular categorical variable as a stratification variable and allows

each stratum to have its own baseline. Specifically, if a categorical variable has m levels
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distinguished by the group indicator g, the stratified PH model postulates

λ(t|Z, g = i) = λi0(t) exp(β>0 Z), i = 1, 2, · · · ,m. (1.1)

The stratified PH model allows non-proportional hazards across the m groups by allowing

the baseline hazards to be group dependent. Meanwhile it maintains reasonable model

parsimony by postulating a shared β across the groups. This model enables one to study

the effect of covariates other than the stratification variable, without explicitly investigating

the effect of the stratification variable, since the baseline hazards {λ0i(·)}ni=1 are profiled

out as nuisance parameters in the model fitting stage.

1.2 Empirical Likelihood

EL Confidence Interval

Empirical Likelihood (EL) is a non-parametric inference tool based on likelihood ratio

principle to conduct hypothesis test and construct confidence intervals. It allows us to use

likelihood method without having to assume a known parametric family of distributions.

Its origination is credited to the seminal work by Owen (see Owen 1988; Owen 1990),

who firstly applied it to obtain a non-parametric confidence interval for the population

mean, and rigorously justified such use. For completeness, here we briefly introduce the

framework of Owen’s work. Suppose we are interested in the mean of the distribution

F , denoted by µ0, and what we have is an identically and independently observed sample

(x1, x2, · · · , xn) following F . The EL method starts with a non-parametric likelihood ra-

tio test ofH0 : µ0 = µ versusHa : µ0 6= µ, based on the following likelihood ratio statistic:

<(µ) =
supp1,··· ,pn

{∏n
i=1 pi|

∑n
i=1 pi = 1, pi ≥ 0,

∑n
i=1 pixi = µ

}
supp1,··· ,pn

{∏n
i=1 pi|

∑n
i=1 pi = 1, pi ≥ 0

} .

The product
∏n

i=1 pi is the likelihood of the observed data when the distribution is multi-

nominal with weight pi assigned to xi, therefore the denominator functions as the full

3



model maximum likelihood while the numerator functions as the reduced model maxi-

mum likelihood. The constraint
∑n

i=1 pixi = µ is added to reflect the null hypothesis

µ0 =
∫∞
−∞ t dF (t) = µ. Assuming that F allow a finite variance, Owen showed that

−2 log<(µ0) converges in distribution to a chi-square distribution with one degree of free-

dom, a result parallel to the parametric Wilks’s theorem (Wilks, 1938). By inverting this

likelihood ratio, Owen obtained the so-called EL confidence interval for µ0, which is the

collection of µ for which we fail to reject the null hypothesis.

Owen’s work sparked a huge interest among the researchers. Influential works following

and extending his work, among others, include Qin and Lawless (1994) who established the

general methodology of EL inference with estimating equations, and DiCiccio et al. (1991)

who showed that EL confidence intervals are Bartlett-correctable. See Owen (2001) for a

general review on the EL method.

While early development of the EL method is focused on complete data, collective effort

soon generalizes this method to incorporate censored data. Let (Ti, δi), i = 1, 2, · · · , n, be

the observed right-censored sample. Li (1995) studied the EL confidence interval for the

survival probability with right censored data. The author applied the empirical likelihood

formulation based on discrete distribution functions defined by

EL1(F ) =
n∏
i=1

{
dF (Ti)

}δi{
1− F (Ti)

}1−δi
,

where dF (t) = F (t+)−F (t−). Maximizing this likelihood over all distribution functions

leads to the well-known Kaplan-Meier estimator. In addition to this formulation, Murphy

(1995) also studied the so-called Possion extension formulation based on discrete cumula-

tive hazard functions:

EL2(Λ) =
n∏
i=1

{
dΛ(Ti)

}δi
exp

{
− Λ(Ti)

}
,
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where dΛ(t) = Λ(t+) − Λ(t−). Maximizing the above likelihood over all cumulative

hazard functions leads to the Nelson-Aalen hazard estimator. Murphy (1995) showed that

both formulations lead to meaningful confidence intervals for survival probabilities. Pan

and Zhou (2002) took the second formulation and showed that this version is able to grace-

fully handle general and multiple constraints involving linear functionals of the cumulative

hazard function. Multiple general constraints involving linear functionals of the cumulative

distribution functions under either formulation are also possible but more challenging, both

theoretically and computationally. Alternatively, Wang and Jing (2001) took the estimating

equation approach to study linear functionals of the distribution function, but the limiting

distribution of the resulting likelihood rato is no-longer pivotal. See Li et al. (2005) for a

review of recent developments of EL method in survival analysis.

Numerous studies have endorsed the EL method as a powerful way to establish confidence

intervals, by demonstrating the possession of some or all of the following features by EL

confidence intervals:

• It is range preserving and transformation respecting due to its likelihood ratio based

nature.

• adapting to skewed sampling distribution and producing confidence intervals that

have data-driven shapes.

• not requiring a variance estimator since the likelihood ratio is a pivotal statistics.

This self-studentizing ability is rather appealing when a stable variance estimator is

hard to get.

• incorporating auxiliary information seamlessly by simply adding more constraints to

the reduced model likelihood.
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EL Confidence Band

For functional parameters, such as a survival function over a given time interval, a simulta-

neous confidence band may be more relevant in some cases, since we may want to monitor

the global uncertainty in an estimate of the survival function in that particular time interval

while holding the global coverage rate controlled. Compared to the vast EL confidence

intervals literature, fewer research on EL confidence bands has been done. One fact is that

a functional parameter is targeted in less cases than a scalar (or vector) parameter. The

other fact that may have also contributed to this phenomenon is that the transition from a

confidence interval to a confidence band is generally technically non-trivial. An asymptotic

confidence band necessitates uniform convergence results and therefore a finer asymptotic

analysis. Moreover the limiting process may have a complex structure such that merely

computing the critical value of the process becomes challenging.

Li et al. (1996) constructed the EL confidence band for the quantile function of a single

population. Hollander and McKeague (1997) derived the EL confidence band associated

with the Kaplan-Meier estimator. Using kernel smoothing and an weighted empirical like-

lihood, Li and Van Keilegom (2002) obtained the EL confidence band for the conditional

survival function. Wang and Qin (2010) studied the EL confidence band for the distribution

function with missing response. EL confidence bands have also been established for the

ratio of two survival functions (McKeague and Zhao, 2002), the difference of two survival

functions (Shen and He, 2006), and the ratio of two distribution functions (McKeague and

Zhao, 2006).

1.3 Overview of the Dissertation

The work in this dissertation consists of three parts that are inter-related but each has its

own challenge.
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In Chapter 2, based on the hazard type EL formulation in Murphy (1995) and Pan and Zhou

(2002), we construct the EL confidence interval and confidence band for the individualized

survival function S(t|Z) under the PH model. The hazard type likelihood formulation is

a more natural choice than the distribution type formulation, since the PH model itself is

formulated in terms of hazard functions.

The traditional normal approximation based interval suffers from poor finite sample cov-

erage performance, and as a partial remedy, lots of transformations are proposed by many

people. The possible transformations include, but not limited to, log, log-minus-log, arcsine-

root, and logit transformation. Most Statistical softwares only provide pointwise confi-

dence interval for the predicted survival curve but offer multiple transformations for users

to choose from. For example, both SAS (lifetest procedure) and R (survival package) pro-

vide all transformations mentioned above but the former defaults log-minus-log transfor-

mation while the latter defaults the log transformation. The lack of an “optimal” transfor-

mation makes it unclear, for a particular application, which one should be used. Therefore

it is of interest to derive a transformation respecting confidence interval that persistently

produces reliable coverage accuracy. Moreover, the proposed method can be readily ex-

tended to construct confidence intervals for other parameters including residual survival

functions and quantiles of the lifetime.

Also included in Chapter 2 are the large sample properties of the proposed method, some

numeric studies, and a brief discussion on related computational issues.

In Chapter 3, we extend the study in Chapter 2 to make EL based inference on the dif-

ference of two individualized survival functions. More specifically we consider inference

on S(t|Z0, g = 1) − S(t|Z0, g = 2) under the stratified PH model. What motivates this

study is the frequently encountered non-proportional hazards in observational studies be-

7



tween two treatments that we want to compare. The difference allows us to examine when

the two treatments differ at the patient level, and which patient subgroup is likely to benefit

the most. This is particularly important when one treatment has a higher early survival but

lower long term survival. Zhang and Klein (2001) applied this measure to compare the

survival prospects of patients treated with the conventional chemotherapy against patients

treated by an allogeneic bone marrow transplants. Parzen et al. (1997) also studied this

measure assuming no covariates. Both papers used the normal approximation method that

may produce inferior confidence intervals and bands. In their paper, Parzen et al. (1997)

explicitly expressed such concern!

Technically, the extension of EL inference from one survival function to the difference

of two survival functions is difficult, basically because the constraints in the reduced model

likelihood would be otherwise non-linear in the hazard increments. For EL inference, di-

rectly working with non-linear constraints is not impossible (Wood et al., 1996) but almost

non-existent in the literature due to the accompanying theoretical and computational diffi-

culty. To overcome the difficulty we adopt a linearization technique that has been seen in

the literature. The linearization technique introduces an intermediate variable over which

we need an additional maximization procedure. This makes the theoretical proof challeng-

ing. In order to alleviate the added complexity of numerical computation, we have used a

plug-in EL formulation, in the cost of losing a pivotal statistic. We derive the large sample

properties of the proposed likelihood ratio and evaluate the finite sample performance of

the associated confidence bands and intervals by simulations. Evidently, the simulation

studies favor our EL intervals and bands over the normal approximation alternative.

In Chapter 4, we apply the idea in Chapter 3 to study the ratio of cumulative hazards under

model (1.1) with two strata. Specifically, we consider the EL inference on Λ10(t)/Λ20(t).

Wei and Schaubel (2008) applied this as a measure of cumulative treatment effect when the

8



treatment groups do not support proportional hazards, and outlined a few of its advantages

as compared to other treatment effect measures handling non-proportional hazards.

Dong and Matthews (2012) considered the EL inference on this measure. However, their

methodology is flawed and the resulting confidence interval is under-covering. Moreover,

their simultaneous confidence band requires a Bootstrap calibration and is therefore rather

numerically burdensome. Using essentially the same formulation as they did, we prove a

stronger result that enables us to efficiently construct both of the confidence intervals and

bands. The success of the proposed method is evidenced by simulations.

Finally, possible directions for future research are discussed in Chapter 5.

9



Chapter 2 Individualized Survival Function under Cox Model

2.1 Introduction

In medical studies, Cox’s model is mostly employed as an explanatory tool to assess the

association between the risk factors and the survival time, since the regression coefficient

can be readily interpreted as the log-hazard ratio. Estimation and inference on the regres-

sion coefficient can be accessed through the partial likelihood methodology (Cox, 1975).

More often than not, it is also of interest to investigate the survival prospect of a certain

subject and then the Cox model comes in as a predictive tool. For example, the Cox model

is an important mathematical tool to predict survival in the patient with end-stage primary

biliary cirrhosis (PBC) who has not undergone transplantation (Dickson et al., 1989). Such

a model based objective survival prediction would be valuable for improving selection of

patients for and the timing of the liver transplantation.

After fitting the Cox model, an estimator of the survival function is obtainable through

the partial likelihood estimator of β0 and the Breslow estimator for the baseline cumulative

hazard. Suppose the observations consist of n independent replicates of (T, δ,Z), denoted

by (Ti, δi,Zi), i = 1, 2, · · · , n. Let Ni(t) = I[Ti < t, δi = 1] be the counting process of Ti

and define

S(k)(β, t) = n−1

n∑
i=1

I[Ti ≥ t]Z⊗ki exp(β>Zi), k = 0, 1, 2.

HereZ⊗0 = 1,Z⊗1 = Z, andZ⊗2 = ZZ>. The conditional survival function S0(t|Z0) =

Pr(X ≥ t|Z0) could then be consistently estimated by

Ŝ0(t|Z0) = exp
{
− Λ̂0(t) exp(β̂>Z0)

}
,

10



where

Λ̂0(t) = n−1

n∑
i=1

∫ t

0

dNi(s)/S
(0)(β̂, s)

is the Breslow hazard estimator and β̂, the partial likelihood estimator, solves the following

score equation

U(β) =
n∑
i=1

∫ ∞
0

{
Zi − S(1)(β, t)/S(0)(β, t)

}
dNi(t) = 0.

When the scientific interest is on a specific time spot, a confidence interval accompany-

ing the estimated survival is desirable to calibrate the uncertainty of the estimation. When

the interest is on the survival function over the entire time horizon, a simultaneous con-

fidence band is of more relevance. Using different techniques, both Tsiatis (1981) and

Lin et al. (1994) obtained the pointwise and simultaneous confidence bands by showing

that
√
n
{
Ŝ0(t|Z0) − S0(t|Z0)

}
converges weakly to a mean zero Gaussian process with

a rather complex covariance function. Since the survival probability is confined in [0, 1],

when the sample size is small, the approximation by a Gaussian distribution might not

be ideal (Nair, 1984). To achieve better finite sample approximation, many transforma-

tions were suggested, including the log, log-log, logit, and arcsine-root transformations

(Kalbfleisch and Prentice, 1980), but selecting the optimal transformation may be challeng-

ing since the optimal transformation, if exists, may vary from case to case and is generally

unknown in practice. In addition, when dealing with such parameters as the difference of

two survival functions or the ratio of two survival functions, it is unclear whether there is

any simple transformation to improve the finite sample normal approximation. Motivated

by these facts, we contribute in this manuscript to the toolbox an EL based method to con-

struct the confidence band that is transformation respecting.

The remainder of this chapter is organized as follows: Section 2.2 investigates how the

empirical likelihood method could be applied to address the current problem. Also pre-

sented are the asymptotic property of the likelihood ratio test statistic. Section 2.3 provides
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a re-sampling scheme to construct the simultaneous confidence band. Section 2.4 devotes

to a simulation study to compare the newly proposed method with its existing competitors

in terms of the finite sample coverage probability and average length. An application to the

Mayo Clinic PBC dataset is also included, followed by a brief discussion in Section 2.5.

Finally we prove the theorem in Section 2.6.

2.2 Empirical Likelihood Confidence Band

Empirical likelihood and Cox’s partial likelihood methodology has close relationship, as

illustrated by Johansen (1983) that the profile empirical likelihood of the regression coef-

ficients is equivalent to the partial likelihood. This fact makes inference within the Cox

model employing the empirical likelihood method very natural.

There are several papers adopting the empirical likelihood method to obtain confidence

regions of the regression coefficients. In particular, Qin and Jing (2001) derived an empir-

ical likelihood confidence region of the regression coefficients assuming a known baseline

hazard. To avoid the assumption of a known baseline hazard, Zhao and Jinnah (2012) ap-

plied a plug-in type empirical likelihood where the baseline hazard is semi-parametrically

estimated. Ren and Zhou (2011) defined the full empirical likelihood function through

the baseline survival function and also obtained such a confidence region. Zhou (2006)

showed that the empirical likelihood could be employed to obtain an enhanced estimator

of the regression coefficients when there is a certain form of side information on the base-

line hazard. However, all of these works were focused on the regression coefficients and

thus could not be directly used to draw inference on the infinitely dimensional baseline

hazard or the associated survival function.

12



Empirical Likelihood Ratio

We consider the EL inference on the survival function S0(t|Z0) for t in a prespecified in-

terval. For notation simplicity and ease of presentation, we may assume Z0 = 0 and study

the baseline survival S0(t) = exp{−Λ0(t)}; otherwise, we shift the original covariates to

Z̃i = Zi − Z0, and proceed as if Z̃i were the observed covariates. The consequence of

this shift is that the new baseline survival will refer to the survival of subjects with original

vector of covariates Z0. This enables us to get rid of Z0 and focus on the baseline survival.

Furthermore, due to the transformation respecting property of the EL confidence interval,

we could firstly obtain the EL confidence interval of Λ0(t), and then transform the obtained

interval back to one for S0(t).

In terms of the hazard function, the likelihood of the observed data is given by

EL(β,Λ) =
n∏
i=1

{
dΛ(Ti) exp(β>Zi)

}δi
exp

{
− exp(β>Zi)Λ(Ti)

}
,

where dΛ(t) = Λ(t) − Λ(t−) denotes the increment of Λ(t) at time t. The empirical

likelihood methodology seeks to maximize the above likelihood function in the family of

discrete hazards Λ(t) that only has nonnegative increments on the observed time spots. To

that end, let w = (w1, · · · , wn) be the vector of nonnegative increments of Λ(t) and write

the likelihood function as

EL(β,w) =
n∏
i=1

{
wi exp

(
β>Zi

)}δi
exp

{
− exp

(
β>Zi

) n∑
j=1

I[Tj ≥ Ti]wj

}
. (2.1)

It’s a well known result (Johansen, 1983) that the above likelihood attains its maximum at

β = β̂ and w0
i = dΛ̂0(Ti). In addition to this unconstrained maximum likelihood, the EL

13



ratio also requires a constrained likelihood that takes into consideration the hypothesis we

want to test. Since a discrete hazard function is simply the cumulative summation of its

increments, we define the constrained maximum empirical likelihood at Λ(t) as

ELc{Λ(t)} = sup
β,w

EL(β,w) subject to
n∑
i=1

I[Ti ≤ t]wi = Λ(t). (2.2)

The empirical likelihood ratio statistic at Λ(t) is then defined as

<{Λ(t), t} = ELc{Λ(t)}/EL(β̂,w0). (2.3)

In order to solve the constrained optimization problem (2.2), we resort to the Lagrangian

Multiplier method and write the target function as

G = log EL(β,w)− nλ

{
n∑
i=1

gi(t)wi − Λ(t)

}
,

where gi(t) = I[Ti ≤ t] and λ is the Lagrange Multiplier. Differentiate G with respect to

wi, set the resulting derivative to zero, we then obtain

wi =
1

n

δi
S0(β, Ti) + λgi(t)

, 1 ≤ i ≤ n. (2.4)

Equating ∂G/∂β and ∂G/∂λwith zero and making use of (2.4), we reduce the constrained

optimization problem to the following set of equations of β and λ

1

n

n∑
i=1

δigi(t)

S(0)(β, Ti) + λgi(t)
− Λ(t) = 0,

n∑
i=1

δi

{
Zi −

S(1)(β, Ti)

S(0)(β, Ti) + λgi(t)

}
= 0.

(2.5)

(2.6)

Note that (2.5) simply says the constraint should be satisfied while (2.6) is a variant of the

partial likelihood score equation in the presence of constraint. Numerical methods such

as Newton’s method is required to solve these two equations for β and λ. Generally, the

solution will depend on t and Λ(t), but for notation simplicity, we simply denote the solu-

tion by (β∗, λn). Once we obtain (β∗, λn), we could calculate the constrained maximum
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likelihood by plugging the expression for wi into (2.1), which leads to the following log-

likelihood ratio statistic:

log<{Λ(t), t} =
n∑
i=1

δi

{
(β∗ − β̂>)Zi − log

S(0)(β∗, Ti) + λngi(t)

S(0)(β̂, Ti)

}
+ nλnΛ(t).

Asymptotic Properties

Let s(k)(β, t) be the expected value of S(k)(β, t), k = 0, 1, 2. We define

σ2(t) =

∫ t

0

{
s(0)(β0, u)

}−1 dΛ0(u),

h(t) =

∫ t

0

s(1)(β0, u)
/
s(0)(β0, u) dΛ0(u),

Σ =

∫ ∞
0

{
s(2)(β0, u)

s(0)(β0, u)
− s

(1)2(β0, u)

s(0)2(β0, u)

}
dΛ0(u),

v(t, s) = σ2(t ∧ s) + h(t)>Σ−1h(s). (2.7)

Notice that Σ is the information matrix and σ2 is the variance of the Breslow cumulative

hazard estimator when β0 is known a priori.

To derive the asymptotic distribution of the EL ratio <{Λ0(t), t}, we impose the following

regularity conditions:

(C1) The triplet {(Ti, δi,Zi)}ni=1 are independent and identically distributed and Z1

has bounded support.

(C2) The information matrix Σ at β0 is positive definite.

(C3) Pr(δi = 1) > 0. In words, the probability of observing an event is positive.

These conditions are commonly seen in the literature studying large sample behavior of

the PH model. It might be possible to relax condition (C1) following Andersen and Gill
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(1982), but the identical distribution and bounded covariate assumptions significantly sim-

plify our subsequent technical proof. Condition (C2) is essential for asymptotic normality

of the partial likelihood estimator. Condition (C3) rules out the possibility that all obser-

vations are censored when the sample size is large enough. Finally, these four conditions,

combined together, are stronger than the assumptions made by Andersen and Gill (1982)

and thus ensure the asymptotic properties of β̂ and Λ̂0(t) given in that paper. We now

summarize the main result in the following theorem and defer the proof to Section 2.6.

Theorem 2.1. Let τ0 < τ be positive numbers such that 0 < Λ0(τ0) < Λ0(τ) <∞. Under

conditions (C1)-(C3), −2 log<{Λ0(t), t} converges weakly to U2(t)/v(t, t) in D[τ0, τ ],

where U(t) is a mean-zero Gaussian process with covariance function v(t, s) defined in

(2.7).

Corollary 2.1.1. For a given t0 such that 0 < Λ0(t0) < ∞, under the conditions (C1)-

(C3), −2 log<{Λ0(t0), t0}
D−→ χ2(1), as the sample size goes to infinity. Therefore, an

asymptotic level α confidence interval for Λ0(t0) is given by {θ|− 2 log<(θ, t0) ≤ χ2
α(1)},

where χ2
α(1) denotes the upper α percentile of χ2(1).

Due to the transformation respecting property, the EL confidence interval for the survival

function S0(t0) is given by{
θ
∣∣∣− 2 log<{− log θ, t0} ≤ χ2

α(1)
}
,

or equivalently, the one for Λ0(t0) transformed by the map: x → exp(−x). Unlike the

normal approximation based confidence interval, this EL ratio based confidence interval is

transformation respecting. In addition, it does not require estimating the variance of Ŝ0(t0),

always contained in [0, 1], almost surely asymmetric about Ŝ0(t0).
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Corollary 2.1.2. LetC = Cα(τ0, τ) be the upper α percentile of supτ0≤t≤τ |U(t)|/
√
v(t, t).

The following gives a level α EL simultaneous confidence band for S0(t) on [τ0, τ ]:

Bα(τ0, τ) =
{(
S(t), t

)∣∣∣ sup
τ0≤t≤τ

−2 log<
{
− logS(t), t

}
≤ C2, t ∈ [τ0, τ ]

}
.

2.3 Monte-Carlo Simulation for Confidence Bands

In order to put into Corollary 2.1.2 into application, the very first thing one needs to do

is to calculate the critical value C. It is unclear if it can be obtained analytically or by a

simple Monte-Carlo simulation, since the limiting process U(t) dose not have independent

increments, as indicated by the fact that v(t, s) 6= v(t, t) when 0 < t < s.

To overcome this difficulty, we observe that U(t) could be decomposed into two inde-

pendent components each of which can be easily simulated. Specifically, let G be a mul-

tivariate normal random variable with mean zero and covariance matrix Σ−1, and V (t) be

a Brownian motion with variance σ2(t) and independent of G. Then one can easily show

that W (t) = h(t)>G + V (t) has the same distribution with U(t). Due to its independent

increment property, V (t) can be easily simulated by sequentially generating its indepen-

dent increments, so is W (t).

Since we do not know the parameters σ2(t), h(t), Σ, and v(t, t), we need to use their

estimates obtained by replacing in their definitions the unknown quantities with the cor-

responding empirical counterparts. For example, we could estimate σ2(t) by σ̂2(t) =∫ t
0

1/S(0)(β̂, u) dΛ̂0(u) and define ĥ(t), Σ̂, and v̂(t, t) similarly. According to Andersen

and Gill (1982), σ̂2(t), ĥ(t), and v̂(t, t) are uniformly consistent estimators of σ2(t), h(t),

and v(t, t), respectively. We observe that v̂(t, t) and σ̂2(t) are piecewise constant and only

jump at the event times, therefore we only need to sample W (t) at those distinct event

times. This amounts to simulating the sample path of W̃ (t) by treating the observed data

17



as fixed, where

W̃ (t) = ĥ(t)>G+
1√
n

n∑
i=1

δigi(t)Gi

S(0)(β̂, Ti)
, (2.8)

andG1, · · · , Gn are i.i.d. standard normal random variables independent ofGwhich is a p-

dimensional multivariate normal with covariance matrix Σ̂−1. So we could obtain, say N ,

sample paths of W̃ (t), denoted by {W̃i(t)}Ni=1, calculateCi = max1≤i≤n |W̃ (Ti)|/
√
v(Ti, Ti),

and approximate C by the α percentile of {Ci}Ni=1.

Algorithm 1 Estimating C for Survival Functions
for each i ∈ {1, 2, · · · , N} do

GenerateGi ← MVN(0, Σ̂−1)

for j ∈ {1, 2, · · · , n} do

Generate Gij ← N(0, 1)

end for

Set W̃i(t)← ĥ(t)>Gi + (
√
n)−1

∑n
i=1 δigi(t)Gij

/
S(0)(β̂, Ti)

Set Ci ← supτ0≤t≤τ |W̃ (t)|/
√
v̂(t, t)

end for

return C ← upper α percentile of {C1, C2, · · · , CN}

Note that the supremum in the algorithm can be only attained on some of the observed

Tis since both W̃ and v̂ are piece-wise constant functions. In practice, it is important to

montior how the estimated C changes with N . N needs to be large enough to stabilize the

estimate. It needs to be even larger if higher confidence level is desired, because the more

extreme percentile is always harder to estimate.

This simulation strategy turns out to be quite similar to the one proposed by Lin et al. (1994)
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with the only difference in the way we treat the multivariate normal random variable G.

Instead of directly sampling G from the normal distribution with covariance matrix Σ̂−1,

Lin et al. (1994) approximates it by another summation of n independent random variables

involving the partial likelihood score function. Specifically, they replaceG in (2.8) by

n−1/2

n∑
i=1

Σ̂−1δi

{
Zi − S(1)(β̂, Ti)/S

(0)(β̂, Ti)
}
Gi

based on a modification to the martingale representation of the Breslow cumulative hazard

estimator.

Compared to the approach in Lin, our derivation of the simulation method is more intu-

itively justifiable and features a simpler form. Regarding the sampling ofG, we only need

to deal with a p−vector, but they have to deal with a n−vector, this slight difference may

be magnified when n is large and a very large N is needed (for example when we want

99% confidence bands). Despite all these differences, simulation studies show that both

methods are pretty fast and produce results consistent with each other.

2.4 Numerical Study and Real Data Example

Coverage of Confidence Intervals

We compare by simulation studies the proposed EL confidence interval with its normal

approximation based counterparts in terms of the empirical coverage accuracy and average

length. We present the results of two numerical experiments.

In the first experiment, the underlying survival time X follows a Weibull distribution with

shape parameter 3 and scale parameter exp(0.1Z), Z being evenly spaced between [−1, 1].

The censoring time C follows an Exponential distribution with rate parameter α that will
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be adjusted to achieve several prespecified levels of censoring. The parameter of interest

is assumed to be S0(0.9|Z = 0.1) whose true value is approximating 0.9, representing

an early life stage. The second design differs the first one only in that the survival time

follows an Exponential distribution with rate exp(0.5Z) and the parameter of interest is

S0(1.5|Z0 = 0.8) whose true value is about 0.1, indicating a late life stage.

Under each scenario, 5000 simulation replicates were obtained and the observed cover-

age probabilities together with the average lengths are summarized in Table 2.1 and Table

2.2, based on which we make a few observations:

• As expected, the average length of all methods decreases when the sample size grows

or when the censoring rate decreases. Meanwhile, the coverage probability gets

closer to the nominal 95% level.

• In both cases, the plain confidence interval has noticeably lower than nominal cov-

erage probabilities, even when the sample size is up to 100 and the censoring rate

as low as 10%, which justifies the need for an appropriate transformation. While the

log transformation improves the coverage probabilities in the second case, it does not

help much in the first case. It is also found that the Arcsine-root transformation does

improve the coverage probability but not as impressively as the Log-log and Logit

transformations. Although the Arcsine-root transformation yields a shorter average

length, but it is more of a reflection of its smaller coverage probabilities.

• We proceed to compare the EL method with the Log-log and Logit transformations.

We can see that all three methods yield comparable coverage probabilities. How-

ever, in the first case, EL clearly has the shortest average length; in the second case,

Log-log has the shortest length, but its advantage over the EL method is negligible

compared with the advantage of EL over the Logit transformation. This fact indicates
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a certain “robustness” property of the EL method in the sense that it always offers

competitive performance when compared with the best performing transformation.

The conclusion is that certain transformation may drastically improve the performance of

the plain confidence interval, but it seems that the optimal transformation may vary from

case to case. For a particular application, when systematic studies on which transforma-

tion produces the best result is unavailable, the application of the EL method should be

emphasized, due to its “robustness” explained in the third observation we made above.

Primary Biliary Cirrhosis Data Analysis

The dataset is from the Mayo Clinic trial in primary biliary cirrhosis of the liver conducted

between 1974 and 1984. A total of 424 PBC patients, referred to Mayo Clinic during that

ten-year interval, met eligibility criteria for the randomized placebo controlled trial of the

drug D-penicillamine. The first 312 cases in the data set participated in the randomized

trial and contain largely complete data. The additional 112 cases did not participate in the

clinical trial, but consented to have basic measurements recorded and to be followed for

survival. Six of those cases were lost to follow-up shortly after diagnosis, so the data here

are on an additional 106 cases as well as the 312 randomized participants.

The PBC data were used by Dickson et al. (1989) to build a Cox model (Mayo PBC

model) to predict survival for individual patients. The Mayo PBC model is extremely

useful in medical management by aiding in the selection of patients for and timing of ortho-

topic liver transplantation. The model includes five covariates, log(bilirubin), log(protime),

log(albumin), age and edema. The estimated model parameters and the corresponding stan-

dard errors in Table 2.3 are from Lin et al. (1994). Using this model, we demonstrate our

pointwise and simultaneous EL confidence bands of the predicted survival function over

the interval of the first and the last observed deaths.
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Table 2.3: Parameter estimates and standard errors in the Mayo PBC model.

Variable Estimate Error Est/SE

Age 0.0394 0.0077 5.1508
log (Albumin) -2.5328 0.6482 -3.9074
log (Bilirubin) 0.8707 0.0826 10.5372
Oedema 0.8592 0.2711 3.1688
log (Prothrombin) 2.3797 0.7666 3.1043

Following Lin et al. (1994), we consider a hypothetical patient with 51 years of age, 3.4

gm/dl serum albumin, 1.8 mg/pl serum bilirubin, 10.74 seconds of prothrombin time and

no oedema. All simultaneous confidence bands are constructed using the same critical

value 3.074 based on 10000 simulation replicates. Figure 2.1 displays the pointwise and

simultaneous 95% EL confidence bands, as well as the plain normal simultaneous confi-

dence bands. We can see that the long term survival estimate for this hypothetical patient is

subject to substantial uncertainty, as shown by the wide confidence bands at the right end.

It is also found that the simultaneous EL band is very consistent with, but slightly narrower

than, the plain normal band. Figure 2.2 contrasts the simultaneous EL band with the Log,

Log-log transformed normal bands. While the EL band is also similar to the Log-log trans-

formed band, it is quite different from the Log transformed band. These observations seem

to support the role of the EL confidence band as a very attractive alternative to its normal

approximation counterparts and give us confidence in its applications.
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Figure 2.1: 95% EL pointwise and simultaneous confidence bands.
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Figure 2.2: 95% EL, Log, and Log-Log transformed simultaneous confidence bands.
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2.5 Summary

In this paper, by inverting the empirical likelihood ratio test on the hazard function, we de-

rived both the pointwise and simultaneous confidence bands of the survival function for any
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prespecified vector of covariates under the Proportional Hazards Model. The proposed EL

band features several appealing properties, including transformation respecting and range

respecting. Especially, the pointwise confidence interval does not require variance estima-

tion. The performance of the pointwise confidence interval is compared with its normal

approximation alternatives through a simulation study. It is found that the EL confidence

interval has very competitive empirical coverage probabilities and average lengths. The

simultaneous EL band is illustrated using the Mayo PBC dataset where the EL band is

found to be very consistent with the normal approximation band with or without “log-log”

transformation.

The proposed method is flexible enough to study other parameters of fundamental im-

portance in survival analysis, including but not limited to

• residual survival function S(t|Z, X ≥ τ). It describes the conditional survival

prospect given that the subject under consideration has survived up to some time

instant, and therefore is more appropriate for existing patients.

• lifetime quantiles. It is the inverse of the cumulative distribution function and pro-

vides another perspective towards the survival prospect.

In many applications, the covariate may be longitudinally collected, resulting in time-

dependent covariate. While the EL inference procedure in this chapter is able to handle

time-dependent covariate with little effort, caution should be exercised regarding the inter-

pretation of the predicted curve and its confidence limits (Fisher and Lin, 1999).

The proposed EL confidence band could also carry a weight function to adjust the rel-

ative width of the band at different time spots. Specifically, let gn(t) ≥ 0 be a weight

function that converges in probability to a nonnegative bounded function g(t) uniformly in

t ∈ [τ0, τ ], then a weighted EL confidence band will be given by
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{(
S(t), t

)∣∣∣− 2gn(t) log<
[
− logS(t), t

]
≤ C2

α(g)
}
,

where Pr
{

supτ0≤t≤τ gn(t)W̃ 2(t)/v̂(t, t) ≤ C2
α(g)

}
= α, the probability being evaluated

by simulation.

Clearly, the weighted EL band will be narrower (wider) than the unweighted band where

gn(t) is larger (smaller). However, it is impossible to connect the weighted EL band with,

for example, the well-known equi-precision normal approximation band described in Nair

(1984), which is because the EL band does not have an explicit formula to allow examina-

tion of proportionality between the length of the pointwise interval and that of the simulta-

neous band.

A well-known weakness of the EL method is its computational intensity. The EL method

we proposed in this paper is no exception. In order to calculate the confidence limits, we

need to repeatedly calculate the likelihood ratio statistic for various hypothesized hazard

values, which involves repeatedly solving (2.5) and (2.6) by an iterative method. Therefore,

the EL method is substantially more computationally demanding than the normal approx-

imation method. When the sample size is large, it could take a very long time to draw the

entire simultaneous confidence band. The bottleneck is solving the set of equations (2.5)

and (2.6). Although the Newton’s method using (β = β̂, λ = 0) as the starting point

succeeds in most cases, it does fail when the hypothetical value Λ(t) is far away from the

observed value Λ̂(t). To overcome this problem, we could start by solving the following
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equation using starting value (β = β̂, λ = 0):

1

n

n∑
i=1

δigi(t)

S(0)(β, Ti) + λgi(t)
− Λ̃(t) = 0,

n∑
i=1

δi

{
Zi −

S(1)(β, Ti)

S(0)(β, Ti) + λgi(t)

}
= 0.

Here Λ̃(t) = 0.5{Λ̂(t) + Λ(t)}. Note that, compared to Λ(t), Λ̃(t) is closer to Λ̂(t), which

is why we make this adjustment. Once we obtain the solution to the above equations we

could use this solution as the starting value for the original equations (2.5) and (2.6). We

may need to repeat this procedure until convergence. This detour is pretty robust in our

numerical study but could be time consuming.
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2.6 Proof

One of the challenges is showing the uniform consistence of β∗ as an estimator of β0, or

λn as an estimator of 0. One of these two convergence results implies the other, so we start

with β∗. This is done by showing that β∗ should be uniformly “close” to β̂. Provided that

β̂ is consistent, we know β∗ is also consistent. Once we obtain the consistence of both β∗

and λn, we can then use Taylor expansion to the Lagrange multiplier equations, carefully

controlling the remainder terms. This leads to asymptotic expressions for β∗ and λn. Using

a second Taylor expansion to the likelihood ratio statistic, one can then prove the theorem.

For notation simplicity, let Si(β) = S(0)(β, Ti), i = 1, 2, · · · , n. Define `(β, λ) =

G(β,w) with wi = n−1δi/{Si(β) + λgi(t)}, where G(β, λ) = log EL(β, λ). The un-

constrained log-empirical likelihood G(β̂,w0) could be therefore denoted by `(β̂, 0) and

the constrained log-empirical likelihood log ELc{Λ0(t)} by `(β∗, λn). For every t ∈ [τ0, τ ],

define

r(t) = `(β̂, 0)− sup
w

{
G(β̂,w)

∣∣∣ n∑
i=1

wigi(t) = Λ0(t)
}
.

r(t) is simply the profile log-empirical likelihood ratio at Λ0(t) with β fixed at β̂ in the

constrained likelihood.

We will need the uniform boundedness of r(t), namely, supτ0≤t≤τ r(t) = Op(1). The

proof of this result will be given at the end. Keeping this result in mind, we will prove the

main theorem in several steps.

Step 1: The uniform consistency of β∗.
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Proof: On the one hand, it follows from the definition of the constrained likelihood that

`(β∗, λn) = sup
β

{
sup
w
G(β,w)

∣∣∣ n∑
i=1

gi(t)wi = Λ0(t)
}
,

≥ sup
w

{
G(β̂,w)

∣∣∣ n∑
i=1

gi(t)wi = Λ0(t)
}
,

therefore 0 ≤ `(β̂, 0)− `(β∗, λn) ≤ r(t), hence supτ0≤t≤τ
{
`(β̂, 0)− `(β∗, λn)

}
= Op(1).

On the other hand, `(β∗, 0) = supwG(β∗,w) while

`(β∗, λn) = sup
w

{
G(β∗,w)

∣∣∣ n∑
i=1

gi(t)wi = Λ0(t)
}
.

Because the constrained maximum will never exceed the unconstrained maximum, so

`(β∗, λn) ≤ `(β∗, 0). By definition of β̂, we have `(β̂, 0) ≥ `(β0, 0), therefore

`(β0, 0)− `(β∗, 0) ≤ `(β̂, 0)− `(β∗, λn),

which then implies

sup
τ0≤t≤τ

{
`(β0, 0)− `(β∗, 0)

}
≤ sup

τ0≤t≤τ

{
`(β̂, 0)− `(β∗, λn)

}
= Op(1). (2.9)

Let Xn(β) = n−1
{
`(β0, 0) − `(β, 0)

}
. Then by the uniform boud we have just derived,

we have supτ0≤t≤τ Xn(β∗) ≤ Op(n
−1). Andersen and Gill (1982) showed that Xn(β)

converges in probability uniformly in any compact set to a nonrandom convex function

X(β) which has a unique minimum 0 at β0. It is now a standard argument using the

convexity of Xn(β) to conclude that β∗ converges to β0 in probability uniformly in t.

Step 2: λn converges in probability to zero uniformly in t ∈ [τ0, τ ].

Proof: For each t ∈ [τ0, τ ], λn satisfies n−1
∑n

i=1 δigi(t)/
(
bi + λn

)
= Λ0(t) with bi =

Si(β
∗). Without loss of generality, we assume Ti has been ordered in increasing order, thus
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b1 ≥ b2 ≥ · · · ≥ bn > 0. Let Λ̂∗(t) =
∑n

i=1 n
−1δigi(t)/bi, which is merely a variant of

the Breslow baseline hazard estimator with β̂ replaced by β∗. A similar argument to those

in Theorem 3.4 of Andersen and Gill (1982) shows that Λ̂∗(t) is also a uniform consistent

estimator of Λ0(t). If λn < 0, we have

Λ0(t) =
1

n

n∑
i=1

δigi(t)

bi

bi
bi − |λn|

≥ b1

b1 − |λn|
1

n

n∑
i=1

δigi(t)

bi

=
b1

b1 − |λn|
Λ̂∗(t).

Similarly, when λn > 0 we have

Λ0(t) =
1

n

n∑
i=1

δigi(t)

bi

bi
bi + |λn|

≤ b1

b1 + |λn|
1

n

n∑
i=1

δigi(t)

bi

=
b1

b1 + |λn|
Λ̂∗(t).

These two inequalities forces |λn| ≤ Λ−1
0 (t)

∣∣Λ0(t) − Λ̂∗(t)
∣∣b1. Boundedness of Zi and

uniform consistency of β∗ imply that b1 is uniformly bounded in probability. Therefore λn

converges in probability to zero uniformly in t ∈ [τ0, τ ].

Step 3: Asymptotic representation of λn and β∗ as shown in (2.16) and (2.17), respec-

tively.

Proof: We start with a Taylor expansion to equation (3.5) and (3.6). To that end, define

mn(β, λ) =
1

n

n∑
i=1

δigi(t)

Si(β) + λgi(t)
− Λ0(t),

ln(β, λ) =
1

n

n∑
i=1

δi

{
Zi −

S(1)(β, Ti)

Si(β) + λgi(t)

}
.

Since β∗ and λn converges to β0 and 0, we may apply a Taylor expansion to mn(β, λ) and

obtain

0 = mn(β∗, λn) = mn(β̂, 0) +

(
∂mn

∂β
,
∂mn

∂λ

)> ∣∣∣
(βm,λm)

(β∗ − β̂, λn),
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where (βm, λm) lies on the line segment connecting (β̂, 0) and (β∗, λn). Using the uniform

consistency of β∗ and λn, together with the boundedness on s(k)(β, t) for β in any compact

neigborhood of β0 and t ∈ [τ0, τ ], we can show

sup
τ0≤t≤τ

∣∣∣∣∂mn(βm, λm)

∂β
+ h(t)

∣∣∣∣ p−→ 0 (2.10)

and

sup
τ0≤t≤τ

∣∣∣∣∂mn(βm, λm)

∂λ
+ σ2(t)

∣∣∣∣ p−→ 0. (2.11)

Since the proof of these two conclusions are similar, we only provide the details for the

second conclusion. Note that

∂mn(βm, λm)

∂λ
= − 1

n

n∑
i=1

δigi(t)

S2
i (βm)

{
Si(βm)

Si(βm) + λm

}2

.

Since gi(t) is zero-one valued, we only need to see the property of Si(βm)/
{
Si(βm) +

λm
}

in the case of gi(t) = 1. However, when gi(t) = 1, Ti ≤ t ≤ τ , therefore

Si(βm) ≥ S(0)(βm, τ), which converges in probability to s(0)(β0, τ) > 0 uniformly in

t ∈ [τ0, τ ] due to the boundedness of Zi and the uniform consistency of βm. Therefore,

Si(βm)/
{
Si(βm) + λm

}
converges uniformly to 1.

It remains to show

sup
τ0≤t≤τ

∣∣∣∣∣ 1n
n∑
i=1

δigi(t)

S2
i (βm)

− σ2(t)

∣∣∣∣∣ p−→ 0.

The above convergence can be established by an application of the Lenglart Inequality and

the procedures to show the consistency of the observed information matrix in Theorem 3.2

of Andersen and Gill (1982). The only place that needs attention is that βm depends on t

while the proof in Theorem 3.2 of Andersen and Gill (1982) deals with a time independent

intermediate variable “β∗”, but the key ingredient that

sup
τ0≤t≤τ

∣∣∣S(k)(βm, t)− s(k)(β0, t)
∣∣∣→ 0
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still holds for k = 0, 1, 2.

To conclude, we have

h(t)>(β∗ − β̂) + σ2(t)λn = mn(β̂, 0) + op(||β∗ − β̂||+ |λn|). (2.12)

Using the same technique, we can also show that, for any sequence of random point (βl, λl)

lying on the line segment connecting (β0, 0) and (β∗, λn),

sup
τ0≤t≤τ

∣∣∣∣∂ln(βl, λl)

∂β
+ Σ

∣∣∣∣ p−→ 0 (2.13)

and

sup
τ0≤t≤τ

∣∣∣∣∂ln(βl, λl)

∂λ
− h(t)

∣∣∣∣ p−→ 0. (2.14)

Since the above properties are still true along each dimmension of ln(β, λ), we could apply

Taylor expansion to the vectored-valued function ln(β, λ) and obtain ( using ln(β∗, λn) =

ln(β̂, 0) = 0)

Σ(β∗ − β̂)− h(t)λn = op(||β∗ − β̂||+ |λn|). (2.15)

Using martingale central limit theorem, Andersen and Gill (1982) showed that
√
nmn(β̂, 0)

converges weakly to a mean-zero Gaussian process in D[τ0, τ ] with covariance

v(t, s) = σ2(t ∧ s) + h(t)>Σ−1h(s).

Therefore, mn(β̂, 0) is uniformly of order Op(n
−1/2), which, combined with (2.12) and

(2.15), yields the following representation

λn =
1

v(t, t)
mn(β̂, 0) + op(n

−1/2), (2.16)

β∗ − β̂ =
Σ−1h(t)

v(t, t)
mn(β̂, 0) + op(n

−1/2). (2.17)
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Step 4: Asymptotic representation of the likelihood ratio test statistic, as shown in (2.19).

Proof: The idea is to express the EL ratio into a quadratic form of mn(β0, 0) plus a negli-

gible residual term. It’s straightforward to see

log<{Λ0(t), t} =
n∑
i=1

δiZ
>
i (β∗ − β̂) + nλnΛ0(t)− Jn,

where

Jn =
n∑
i=1

δi log

{
1 +

Si(β
∗)− Si(β̂) + λngi(t)

Si(β̂)

}
.

Note that

Si(β
∗)− Si(β̂) + λngi(t)

Si(β̂)
=
Si(β

∗)− Si(β̂)

Si(β̂)
+

gi(t)

Si(β̂)
λn. (2.18)

By the mean value theorem, there exists β̃i on the line segement between β∗ and β̂

such that the first term is bounded by ||S(1)
i (β̃i)||/Si(β̂)||β∗ − β̂||. The boundedness

of {Zj}, j = 1, 2, · · · , n, the consistency of β∗ and β̂ imply that ||S(1)
i (β̃i)||/Si(β0) is

bounded by a constant K that is independent of i, n, t, therefore the first term on the r.h.s.

of (2.18) is of the order Op(n
−1/2). The second term is also of the order Op(n

−1/2), since

when gi(t) > 0, Si(β̂) ≥ S(0)(β̂, τ) which converges in probability to s(0)(β0, τ) uni-

formly in t ∈ [τ0, τ ].

Therefore we may apply Taylor expansion to Jn and obtain

Jn =
n∑
i=1

δi

[
Si(β

∗)− Si(β̂)

Si(β̂)
+
gi(t)λn

Si(β̂)
−
{
Si(β

∗)− Si(β̂) + λngi(t)
}2

2S2
i (β̂)

]

+ Op(n
−1/2).
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With a similar analysis to the residual term, we can easily show that

Si(β
∗)− Si(β̂)

Si(β̂)
=

(β∗ − β̂)>S(1)(β̂, Ti) + 2−1(β∗ − β̂)>S(2)(β̂, Ti)(β
∗ − β̂)

Si(β̂)

+ rni.

Here the residual term is of the order Op(n
−3/2) uniformly in i and t. This result, (2.10),

(2.11), (2.13), (2.14), (2.17), and (2.16), simplify the EL ratio statistic into

−2 log<{Λ0(t), t} = n
m2
n(β̂, 0)

v(t, t)
+ op(1). (2.19)

Proof of the theorem: Given the representation in (2.19), the asymptotic distribution of

−2 log<{Λ0(t), t} follows from that of
√
nmn(β̂, 0), which is, as previousely mentioned,

a zero-mean Gaussian process with covariance v(t, s).

Step 5: Boundedness of supτ0≤t≤τ r(t).

Proof: We will show that r(t) converges to the square of a mean-zero Gaussian process.

In order to obtain r(t), we apply the Lagrangian multiplier method to solve the constrained

likelihood where β is fixed at β̂. For notational simplicity, let di = Si(β̂). It can be shown

that r(t) is equal to

r(t) =
n∑
i=1

δi log

{
1 +

gi(t)

di
λn

}
− nλnΛ0(t),

where the lagrangian multiplier (still denoted by λn) satisfies the following equation:

n∑
i=1

δigi(t)

di + λn
= nΛ0(t).

It is easy to find that the above equation has a unique solution in a neighborhood of 0 as

long as
∑n

i=1 Ni(t) > 0. The argument in step 2 can be applied here to show

|λn| ≤
∣∣mn(β̂, 0)

∣∣Λ−1
0 (t)d1.
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It follows from the boundedness on d1 and the weak convergence of
√
nmn(β̂, 0) that

λn = Op(n
−1/2) uniformly in t ∈ [τ0, τ ].

Next we derive an asymptotic representation for λn. This is done by observing that

mn(β̂, 0) = λn
1

n

n∑
i=1

δigi(t)

di(di + λn)

= λn
1

n

n∑
i=1

δigi(t)

d2
i

× di
di + λn

= λn
1

n

n∑
i=1

δigi(t)

d2
i

− λ2
n

1

n

n∑
i=1

δigi(t)

d2
i

1

di + λn
.

Using the bound on gi(t)/di, one can easily see that the second term on the r.h.s. of the

above eqation is of the order Op(n
−1).

We also recall from (2.10) and (2.11) that

sup
τ0≤t≤τ

∣∣∣∣∣ 1n
n∑
i=1

δigi(t)

d2
i

− σ2(t)

∣∣∣∣∣ p−→ 0,

therefore

λn = mn(β̂, 0)

{
1

n

n∑
i=1

δigi(t)

d2
i

}−1

+ op(n
−1/2).

A Taylor expansion to r(t) yields

2r(t) = 2
n∑
i=1

δi

{
gi(t)

di
λn −

1

2

gi(t)

d2
i

λ2
n +

1

3

1

(1 + ξi)3

gi(t)

d3
i

λ3
n

}

= 2nλnmn(β̂, 0)− 1

n

n∑
i=1

δigi(t)

d2
i

λ2
n

+
2

3

n∑
i=1

1

(1 + ξi)3

δigi(t)

d3
i

λ3
n, (2.20)
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where ξi is between 0 and λngi(t)/di. We have shown that gi(t)/di is t-uniformly bounded

in probability and therefore the last term in (2.20) is of orderOp(n
−1/2). The representation

of λn then leads to

2r(t) = nm2
n(β̂, 0)

{
1

n

n∑
i=1

δigi(t)

d2
i

}−1

+Op(n
−1/2).

The proof is completed by the the weak convergence of
√
nmn(β̂, 0). We comment that

this result shows 2r(t) and −2 log<{Λ0(t), t} is asymptotically equal to each other up to

a multiplicative function of t.
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Chapter 3 Difference of Survival Functions with Covariate Adjustment

3.1 Introduction

In biomedical studies, it is of great importance to compare two treatments that give rise to

censored time-to-event data. The conventional approach relies on the popular Cox Propor-

tional Hazards Model to estimate a constant hazard ratio as the treatment effect measure.

However, the proportional hazards assumption is often violated in practice and accordingly

many alternative treatment effect measures have been proposed. Dabrowska et al. (1989)

introduced a relative change function involving the survival functions for tow populations

and constructed pointwise confidence intervals for this function. Schemper (1992) sug-

gested the estimation of average hazard ratio of two populations through a weighted Cox

model. Xu and O’Quigley (2000) estimated the average regression effect through weighted

score equation, under a non-proportional hazards model with time dependent coefficients.

Particularly, Zhang and Klein (2001) extended the work of Parzen et al. (1997) and ob-

tained a Wald-type confidence band for the difference of two individualized survival func-

tions with covariates adjusted by a stratified Cox model. The major advantage of this

measure is that it is easy to interpret. It directly compares the survival prospect at the pa-

tient level. Moreover, it does not make any parametric assumption on the hazards ratio

between the two treatments. However, as pointed out by Bie et al. (1987), normal ap-

proximation based confidence intervals and bands for hazard or survival functions related

parameters may have unsatisfactory small sample performance and may include values

outside the natural range of the parameters. Motivated by the many desirable properties of

the EL method, in particular, its transformation respecting property that renders transfor-

mations unnecessary, under the same framework of Zhang and Klein (2001), we provide in

this chapter an EL based confidence band for the difference of two individualized survival
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functions.

As an appealing nonparametric method, EL has been widely used in the literature to com-

pare two censored samples. EL inference on the difference of mean and median survival

times has been studied in Wang and Wang (2001); EL simultaneous confidence bands have

been obtained for Q-Q plots (Einmahl and McKeague, 1999), ratio of survival functions

(McKeague and Zhao, 2002), difference of survival functions (Shen and He, 2006), and

ratio of instant hazard functions (Zhao and Zhao, 2011). However, these works all focus

on nonparametric comparisons without covariate adjustment. In many applications, it is

crucial to make adjustment for covariates to account for imbalanced baseline risk factors

which are almost ubiquitous in observational studies.

Asymptotic properties of the proposed EL ratio statistic and a resampling scheme used

to construct the EL confidence band are given in Section 3.2. A simulation study com-

paring the EL and normal approximation methods, together with a real data example, is

presented in Section 3.3 followed by the technical proof in Section 3.4.

3.2 Plug-in Empirical Likelihood Confidence Band

Suppose that there are two strata and denote by ni the sample size of the ith stratum and

n = n1 + n2 the total sample size. For i = 1, 2; j = 1, 2, · · · , ni, Xij and Cij are the

underlying survival and censoring times, respectively. They are assumed to be independent

conditional on the vector of covariates Zij . In the presence of right censoring, we observe

Tij = min(Xij, Cij) and the censoring indicator δij = I[Xij ≤ Cij]. The stratified Cox

model relates the survival time Xij to the vector of covariates Zij through its conditional

cumulative hazard function by assuming

Λij(t|Zij) = Λi(t) exp(Z>ijβ0),
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where β0 is the unknown vector of regression coefficients, and Λi(t) is the unspecified

cumulative baseline hazard function of stratum i. Note that the two strata share the same

regression coefficients but each has its own baseline hazard. Let Z0 be a given vector

of covariates and Si(t|Z0) be the survival function of a subject with covariate Z0 in the

ith stratum (i = 1, 2). We are interested in the conditional survival difference function

θ0(t|Z0) = S1(t|Z0)− S2(t|Z0).

Similar to Chapter 2, we will focus on the case of Z0 = 0 such that θ0(t|Z0) is merely

the difference of the baseline survival function. WhenZ0 6= 0, we may use the shifted vec-

tor Zij − Z0 as if it were originally observed. Due to this shift, the difference of the new

baseline survival functions will be equal to the difference of the original survival functions

with covariate Z0. Therefore in what follows Z0 is assumed to be 0 and we simply write

θ0(t), instead of θ0(t|0). Define

S
(k)
i (β, t) = n−1

ni∑
j=1

I[Tij ≥ t]Z⊗kij exp(Z>ijβ), i = 1, 2; k = 0, 1, 2.

Clearly, θ0(t) could be consistently estimated by

θ̂0(t) = exp
{
−Λ̂2(t)

}
− exp

{
−Λ̂1(t)

}
.

Here

Λ̂i(t) = n−1

ni∑
j=1

δijYij(t)/S
(0)
i (β̂, t)

is the Breslow baseline hazard estimator. β̂ the partial likelihood estimator of β0 and is the

root of the following partial likelihood score function

U(β) =
2∑
i=1

ni∑
j=1

∫ ∞
0

{
Zij − S(1)

i (β, t)
/
S

(0)
i (β, t)

}
dI[Tij ≤ t, δij = 1].

Using a simple martingale convergence result, Zhang and Klein (2001) showed that under

certain regularity conditions
√
n
{
θ̂0(t)−θ0(t)

}
converges weakly to a mean-zero Gaussian
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process with covariance function

v(t, s) =
2∑
i=1

Si(t)Si(s)

∫ t∧s

0

{
s

(0)
i (β0, u)

}−1

dΛi(u)

+
{
S1(t)h1(t)− S2(t)h2(t)

}>
Σ−1

{
S1(s)h1(s)− S2(s)h2(s)

}
. (3.1)

In the above we have used the following notations:

hi(t) =

∫ t

0

s
(1)
i (β0, u)

/
s

(0)
i (β0, u)dΛi(u), i = 1, 2;

s
(k)
i (β, u) = piE

{
nS

(k)
i (β, u)/ni

}
, i = 1, 2; k = 0, 1, 2;

Σ =
2∑
i=1

∫ ∞
0

[
s

(2)
i (β0, t)−

{
s

(1)
i (β0, t)

}⊗2/
s

(0)
i (β0, t)

]
dΛi(t). (3.2)

Here pi = limn→∞ ni/n, which is assumed to exist and be positive for i = 1, 2.

Based on this result, Zhang and Klein (2001) constructed a Wald-type confidence band

for θ0(t) using a resampling technique originally proposed by Lin et al. (1994). In the

following, we give an EL based alternative confidence band for θ0(t).

Empirical Likelihood Ratio

Let P1 and P2 be two cumulative hazard functions defined on [0,∞), the EL function of

the observed data is given by

L(P1, P2,β) =
2∏
i=1

ni∏
j=1

{
pij exp(Z>ijβ)

}δij
exp

{
− exp(Z>ijβ)Pi(Tij)

}
,

where pij = Pi(Tij) − Pi(Tij−) denotes the increment of Pi at time Tij . For a fixed t, let

θ ∈ [−1, 1] be a hypothesized value of θ0(t) and η a hypothesized value of S1(t). Follow-

ing the idea in Chapter 2, we may define the following likelihood ratio
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<1(θ, t) =
supP1,P2,β

{
L(P1, P2,β)

∣∣ exp(−P1)− exp(−P2) = θ
}

supβ,P1,P2
L(P1, P2,β)

.

However, the constraint in the numerator is non-linear in P1 and P2, making it difficult,

if not impossible, to profile out these two quantities. In order to avoid this difficulty, we

need to adapt a linearization technique that basically breaks this single constraint into two

constraints linked by an intermediate variable which will be profiled out eventually. Earlier

use of this linearization technique can be found in Naik-Nimbalkar and Rajarshi (1997)

and Shen and He (2006), among others. Comes with this linearization technique is the

increased computation complexity, given that the computation in Chapter 2 is already chal-

lenging and we need another round of maximization to profile out the intermediate variable.

To address this difficulty, we further apply a plug-in technique, which fixes β in the nu-

merator by its partial likelihood estimator β̂. By doing so, we do not need to maximize the

numerator over the possibly multi-dimensional regression coefficients. The consequence is

that, as will be seen later, the constrained optimization problem is reduced to solving two

univariate equations. Similar plug-in strategy of using an estimated parameter has been

widely used in the literature (Dong and Matthews, 2012; Hjort et al., 2009) when the true

profile empirical likelihood is difficult to obtain.

Combining these two techniques, we define the following profile EL ratio at θ = θ(t)

and η = η(t):

<(θ, η, t) =
supP1,P2

{
L(P1, P2, β̂)

∣∣P1(t) = − log η, P2(t) = − log(η − θ)
}

supβ,P1,P2
L(P1, P2,β)

. (3.3)

Note that when we are only interested in inference on θ0(t) at a single instant t, we may sim-

ply use θ and η for θ(t) and η(t), respectively. But when we want simultaneous inference,
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we need to consider likelihood ratio test at each instant, and therefore, it is more appro-

priate to recognize that both θ and η are functions of t. Also note that the two constraints

are now linear in P1 and P2. The restriction that η ∈ Θ ≡ (max(0, θ),min(1, 1 + θ)) is

imposed such that both η and η− θ fall in (0, 1), the natural range of a survival probability.

A straightforward argument using Lagrange Multiplier method yields

log<(θ, η, t) = −
2∑
i=1

ni∑
j=1

δij log

{
1 +

I[Tij ≤ t]

S
(0)
i (β̂, Tij)

λi

}

− n

{
λ1 log η + λ2 log

(
η − θ

)}
, (3.4)

where the Lagrange multipliers λ1 and λ2 are implicit functions of η, θ, and t, described by

the following equations:

1

n

n1∑
j=1

δ1jI[T1j ≤ t]

S
(0)
1 (β̂, T1j) + λ1

+ log η = 0,

1

n

n2∑
j=1

δ2jI[T2j ≤ t]

S
(0)
2 (β̂, T2j) + λ2

+ log
(
η − θ

)
= 0.

(3.5)

(3.6)

For any η ∈ Θ, as long as
∑

j δ1jI[T1j ≤ t] > 0, using a monotonicity and continu-

ity argument, we can show that there is a unique smooth solution λ1 to (3.5) such that

S
(0)
1 (β̂, T1j) + λ1 > 0 for all j ∈ {1, 2, · · · , n1}. Similar claim regarding equation (3.6)

can be also made. Therefore, for given (θ, η), the log-likelihood ratio log<(θ, η, t) in (3.4)

can be easily calculated and. In order to find its maximum over η, we equate with 0 its

derivative with respect to η:

∂<
∂η

= −
2∑
i=1

ni∑
j=1

δij
I[Tij ≤ t]

S
(0)
i (β̂, Tij)

/{
1 +

I[Tij ≤ t]

S
(0)
i (β̂, Tij)

}
∂λi
∂η

− n

{
λ1

η
+
∂λ1

∂η
log η +

λ2

η − θ
+ log(η − θ)∂λ2

∂η

}
.
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If we take derivative with respect to η on both sides of (3.5) and (3.6), we can find

n1∑
j=1

δ1jI[Tj ≤ t]{
S

(0)
1 (β̂, T1j) + λ1

}2

∂λ1

∂η
=
n

η
and

n2∑
j=1

δ2jI[T2j ≤ t]{
S

(0)
2 (β̂, T2j) + λ2

}2

∂λ2

∂η
=

n

η − θ
.

Using the above result, we simplify the equation ∂</∂η = 0 to the following equation.

λ1

η
+

λ2

η − θ
= 0. (3.7)

One can claim via a continuity argument that under very general condition, (3.7) has at

least one solution. Although we are unable to show that it has a unique solution, lots of

numerical experiments we have done indicate that the solution is unique. See Figure 3.1

for a plot of ∂</∂η as a function of η.

To study the asymptotic properties of the EL ratio, we impose the following regularity

conditions that are standard in the literature on proportional hazards models:

C1) The triplet {Tij, δij,Zij}ni
j=1 are independent and identically distributed within

each group and the covariate vector Zij has bounded support.

C2) The information matrix Σ defined in (3.2) is positive-definite and Pr(δi1 = 1) >

0, i = 1, 2.

C3) As n approaches infinity, ni/n→ pi > 0, i = 1, 2.

Theorem 3.1. Assume conditions C1-C3 and let τ0 and τ be pre-specified numbers such

that 0 < Si(τ) < Si(τ0) < 1. When θ(t) = θ0(t), (3.7) has a solution ηn(t) = ηn{θ0(t), t}

that converges uniformly in probability to S1(t), and

−2σ2(t) log<
{
θ0(t), ηn(t), t

} D−→ U2(t),
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where U(t) is a mean-zero Gaussian process with covariance function v(t, s) defined in

(3.1) and σ2(t) is given by

σ2(t) =
2∑
i=1

S2
i (t)

∫ t

0

{
s

(0)
i (β0, u)

}−1

dΛi(u). (3.8)

It is worthwhile to note that v(t, t) is the asymptotic variance of θ̂0(t) while σ2(t) can be

viewed as the variance of θ̂0(t) when β0 is known. According to Zhang and Klein (2001),

they can be consistently estimated by v̂(t, t) and σ̂2(t) obtained by replacing the unknown

s(k)(β0, t) and Λi in (3.1) (3.8) with their empirical counterparts S(k)(β̂, t) and Λ̂i respec-

tively.

An immediate consequence of the above theorem is that for a fixed t ∈ [τ0, τ ], as n ap-

proaches infinity,

−2 log<
{
θ0(t), ηn(t), t

} D−→ v(t, t)

σ2(t)
χ2

1,

a scaled chi-square distribution with one degree of freedom. This result is different from

what we obtained in Chapter 2 where the limiting distribution is a chi-squared distribution

without scaling factor. Let χ2
1(α) be the upper α percentile of χ2

1, then the level α EL

confidence interval for θ0(t) is given by

{
θ
∣∣∣− 2σ̂2(t) log<

{
θ, ηn(θ, t), t

}
≤ v̂(t, t)χ2

1(α)
}
.

Confidence Band

Similar to what we have seen in Chapter 2, the theorem provides us the basis of construct-

ing the simultaneous EL confidence band for θ0(t). Let C = Cα(τ0, τ1) be the upper α

percentile of supτ0≤t≤τ |U(t)|/
√
v(t, t), then a level α EL simultaneous confidence band

for θ0(t) on [τ0, τ ] is given by
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{(
θ(t), t

)∣∣∣ sup
τ0≤t≤τ

−2σ̂2(t) log<
[
θ(t), ηn{θ(t), t}, t

]
≤ v̂(t, t)C2, t ∈ [τ0, τ ]

}
.

Now we face the same task of estimating the critical value C. The resampling technique

presented in Chapter 2 is still applicable after some modifications. Here we omit the math-

ematical details but present the procedure in Algorithm 2. Again, it is important to choose

a sufficiently large N to stabilize the estimate. In our simulation study, N = 5000 appears

to work very well. This is consistent with Lin et al. (1994) and Zhang and Klein (2001)

who reported in their respective studies that N of about a few thousand was enough for a

95% confidence band.

Algorithm 2 Estimating C for Difference of Survival Functions
for each k ∈ {1, 2, · · · , N} do

GenerateGk ← MVN(0, Σ̂−1)

for i ∈ {1, 2} and j ∈ {1, 2, · · · , ni} do
Generate Gij ← N(0, 1)

end for

Set W̃k(t)←
{
ĥ1(t)Ŝ1(t)− ĥ2(t)Ŝ2(t)

}>
Gk

+ n−1/2
∑2

i=1

∑ni

j=1 Ŝi(t)δijI[Tij ≤ t]Gij

/
S

(0)
i (β̂, Tij)

Set Ck ← supτ0≤t≤τ |W̃k(t)|/
√
v̂(t, t)

end for
return C ← upper α percentile of {C1, C2, · · · , CN}

Remark: When there’s no covariate, the problem reduces to non-parametric two sam-

ple comparison. In that case, the variance-covariance function of the limiting distribution

U(t) will reduce to the variance-covariance function found in (Shen and He, 2006). One

consquence is that the pointwise limiting distribution will be a chi-square with one degree
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of freedom, but not a scaled chi-square. The other consequence is that U(t) will have inde-

pendent increments, rendering estimation of the critical value much easier. However, the

Possion extension EL formulation in our work is different from the one used by (Shen and

He, 2006), therefore, the resulting confidence bands and intervals will be different. (Mur-

phy, 1995) studied both types of formulation for the EL inference on survival probabilities

and demonstrated that both of them lead to meaningful confidence intervals, and in many

cases, the have very similar performance. We believe such similarities can be also expected

in the case of survival differences.

3.3 Numerical Study and Real Data Example

Simulation

We assume the underlying survival time Xij have a Weibull distribution with cumulative

hazard function

Λij(t|Zij) = αit
γi exp(Z>ijβ0), i = 1, 2; j = 1, 2, · · · , ni.

In this setup, the proportional hazards assumption holds within each stratum but not across

the strata if γ1 6= γ2. The parameter γi controls the shape of the distribution of Xij and

αi adjusts its scale. The censoring times C1j and C2j are assumed to be exponentially dis-

tributed with mean θ1 and θ2, respectively. The univariate covariate Zij is drawn from the

uniform distribution on [0, 1]. In our simulation study, γ1 = 1.1, γ2 = 1, α1 = 0.5, α2 = 1,

and β0 = 0.1. Finally, θ1 and θ2 are adjusted to incorporate various censoring rates in both

groups. We apply both the EL and normal approximation confidence bands for θ0(t) on

the interval [τ0, τ ], where τ0 is the first observed death in either stratum 1 or 2, whichever

comes later; τ is chosen such that the risk set in each group contains at least 10 percent of

the observations in the corresponding group. Cα(τ0, τ) is estimated based on 5000 repli-

cates.
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We also considered the normal approximation method with two transformations that simply

mimic the log-minus-log and arcsine-square-root transformations in Bie et al. (1987). That

is, we considered applying f1(x) = log
[
−log

{
(x+1)/2

}]
and f2(x) = arcsin

√
(x+ 1)/2

on θ̂0(t). Observed coverage percentages of the confidence bands using 1000 simulation

replicates are summarized in Table 3.1. The coverage percentages of confidence intervals

for θ0(3) and θ0(2) using 5000 replicates are given in Table 3.2 and Table 3.4, respectively.

The corresponding average lengths are given in Table 3.3 and Table 3.5. In these tables, C

denotes the overall censoring rate and n is the sample size per group.

One can see that the EL intervals and bands have accurate coverage while the normal ap-

proximation intervals and bands are perceivably undercovering, especially when the sam-

ple size is less than 100 per group. The arcsine-square-root transformation moderately

improves the performance of confidence band when the sample size is small, but it does

not seem to improve the performance of the confidence interval. The use of the log-minus-

log transformation does not yield any improvement. The smaller average length achieved

by the normal confidence interval is not surprising given the smaller coverage probability.

Additional plots not shown here indicate that, when the sample size is small, the sampling

distribution of θ̂0(t) is clearly skewed, which might explain why the normal confidence

interval fails to achieve the nominal coverage level, but it is less of a problem for the EL

confidence interval, because one well-known advantage of the EL method is its ability to

adapt to skewed sampling distribution and generate confidence intervals that have a data-

driven shape.
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Table 3.1: Coverage of EL and normal confidence bands for survival difference functions.

α β C n Log-Log Arcsine Normal Empirical

16 9 10% 25 91.4 92.7 91.5 95.8
30 91.3 92.9 91.6 95.1
50 92.2 93.3 93.5 95.8
100 93.7 94.2 94.0 95.4

7.1 4 20% 25 90.6 92.6 91.8 95.5
30 91.9 92.7 92.2 95.1
50 92.8 93.1 92.5 94.7
100 93.2 93.7 93.5 95.6

4.3 2.2 30% 25 90.6 92.4 91.1 95.1
30 91.3 92.3 90.8 94.4
50 92.5 92.9 92.3 94.8
100 92.9 93.4 93.5 95.6

Table 3.2: Coverage percentages of EL and normal CIs for survival differences at t = 3.

α β C n Log-Log Arcsine Normal Empirical

16 9 10% 25 91.26 91.14 91.14 95.28
30 91.62 91.40 91.30 94.54
50 93.44 93.44 93.08 95.10
100 94.10 94.22 94.20 95.30

7.1 4 20% 25 90.54 90.74 90.62 95.32
30 91.20 91.76 91.84 95.26
50 92.20 92.02 92.52 94.76
100 93.76 93.82 93.96 95.24

4.3 2.2 30% 25 90.06 91.02 91.10 94.68
30 90.36 91.00 91.12 94.54
50 92.30 92.92 92.36 94.50
100 93.50 93.76 93.30 95.44
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Table 3.3: Average lengths of EL and normal CIs for survival differences at t = 3.

α β C n Log-Log Arcsine Normal Empirical

16 9 10% 25 0.448 0.447 0.427 0.448
30 0.410 0.409 0.389 0.409
50 0.319 0.319 0.302 0.313
100 0.224 0.224 0.210 0.214

7.1 4 20% 25 0.459 0.459 0.462 0.489
30 0.421 0.420 0.426 0.447
50 0.328 0.327 0.329 0.341
100 0.232 0.232 0.233 0.238

4.3 2.2 30% 25 0.514 0.513 0.514 0.537
30 0.475 0.474 0.475 0.495
50 0.371 0.371 0.372 0.384
100 0.263 0.263 0.262 0.268

Table 3.4: Coverage of EL and normal CIs for survival differences at t = 2.

α β C n Log-Log Arcsine Normal Empirical

16 9 10% 25 93.52 93.56 93.14 95.00
30 93.90 94.04 93.68 94.84
50 94.58 94.52 94.16 94.90
100 94.76 94.90 94.80 95.10

7.1 4 20% 25 93.28 93.56 93.28 94.74
30 94.04 94.06 93.70 95.02
50 94.34 94.38 94.22 95.08
100 94.78 94.76 94.66 94.86

4.3 2.2 30% 25 93.14 93.36 92.90 94.68
30 93.38 93.56 93.22 94.94
50 94.58 94.36 94.24 95.04
100 94.44 94.60 94.56 95.02
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Table 3.5: Average lengths EL and normal CIs for survival differences at t = 2.

α β C n Log-Log Arcsine Normal Empirical

16 9 10% 25 0.483 0.481 0.487 0.490
30 0.444 0.443 0.447 0.449
50 0.346 0.346 0.348 0.349
100 0.245 0.245 0.245 0.246

7.1 4 20% 25 0.514 0.512 0.518 0.521
30 0.472 0.471 0.475 0.477
50 0.368 0.367 0.370 0.371
100 0.262 0.262 0.263 0.263

4.3 2.2 30% 25 0.557 0.554 0.562 0.564
30 0.511 0.509 0.515 0.517
50 0.405 0.404 0.407 0.407
100 0.287 0.287 0.288 0.288

Out of many cases we examined, we present here an exemplary plot of ∂</∂η over η,

with varying values t and θ = θ0(t). We used the first set of parameters in the above

simulations to generate the data where sample size per group is 50. It can be seen in these

three examples the solution is unique.

An Example

The dataset we use to illustrate our proposal is available in Appendix 1 of Kalbfleisch and

Prentice (1980). It is a subset of the data from a randomized trial comparing chemotherapy

followed by radiation therapy versus radiation therapy alone in patients with carcinoma of

the mouth or throat. The dataset comprises 195 patients and includes follow-up times in

days, status at the end of follow-up (dead or censored), and six additional covariates: sex,

age at diagnosis, general condition of the patient on a functional rating scale, tumor site,

T stage (size of tumor), and N stage (extent of nodal metastases). See Zucker (1998) for

more details on the dataset and the fitted Cox model stratified by the treatments.
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Figure 3.1: Plot of ∂</∂η.

For a male subject aged 60.4 (average age across treatment groups) with a tumor site at

faucial arch, having Grade category 1, Condition category 2, T staging category 4, and N

stage category 0, we plot in Figure 3.2 the predicted survival difference and the associated

simultaneous confidence band on the interval (81, 1100). This interval is chosen because

there’s at least one death in each group beginning from day 81 and the risk set on day

1100 contains around 10% of subjects in the corresponding group. The critical value Cα

was estimated to be 8.53 based on 10000 simulations. For this subject, the estimated sur-

vival difference is subject to substantial variability as shown by the wide confidence band.

The EL confidence band is pretty consistent with the normal confidence band, with only

moderate distinction in the early and late ends of the time span.
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Figure 3.2: EL and normal approximation confidence bands for the individualized survival
difference (Radiation vs. Chemotherapy + Radiation).

3.4 Proof

In what follows, “Op(·)” and “O(·)” are to be understood uniformly in t ∈ [τ0, τ ]. We

introduce the notations: Sij = S
(0)
i (β̂, Tij), η0 = S1(t), and gij = I[Tij ≤ t]. The major

difficulty is showing the consistency of ηn(t). However, it is intuitively clear that if η is far

away from η0, the constraints are “unlikely” to be true, and therefore, the log-likelihood

ratio is unlikely to be maximized. Therefore, in the following proof, we directly compare

likelihood ratio at two values of η, one being close to η0, one being away from η0.

Lemma 3.1.1. Let M > 0 be an arbitrarily fixed constant. If θ(t) = θ0(t) and |η − η0| ≤

Mn−1/2, then the Lagrange Multiplier λi defined in equations (3.5) and (3.6) are of the

order Op(n
−1/2).

Proof: Without loss of generality, we assume that Tij has been ordered such that Ti1 ≤

Ti2 ≤ · · · ≤ Tini
. It is then clear that Si1 ≥ Si2 ≥ · · · ≥ Sini

.
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When λ1 > 0, we have

− log η =
1

n

n1∑
j=1

δ1jg1j

S1j + λ1

=
1

n

n1∑
j=1

δ1jg1j

S1j

S1j

S1j + |λ1|

≤ 1

n

n1∑
j=1

δ1jg1j

S1j

S11

S11 + |λ1|

= − S11

S11 + |λ1|
log Ŝ1.

Similarly, when λ1 < 0, we have

log η ≤ S11/(S11 − |λ1|) log Ŝ1.

Therefore,

|λ1| ≤ S11| log Ŝ1 − log η|/| log η|.

The uniform root-n consistency of Ŝ1, uniform boundedness of S11 implied by the consis-

tency of β̂ and boundedness ofZij , and the assumption that |η0−η| ≤Mn−1/2 then imply

λ1 = Op(n
−1/2).

Moreover, we can rewrite equation (3.5) into

log Ŝ1 − log η = −λ1

n

n1∑
j=1

δ1jg1j

S2
1j

+
λ2

1

n

n1∑
j=1

g1j

S2
1j(S1j + λ1)

.

Note that the first term on the r.h.s. is simply −λ1σ̂
2
1 . When g1j = I[T1j ≤ t] = 1, we

have T1j ≤ t ≤ τ , therefore S1j ≥ S
(0)
i (β̂, τ) which converges in probability uniformly to

s
(0)
i (β0, τ) > 0 by a simple argument using SLLN. This shows that the second term is of
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the order Op(n
−1). To conclude,

log η − log Ŝ1 = λ1σ̂
2
1 +Op(n

−1). (3.9)

When |η − η0| ≤ Mn−1/2, there holds |(η − θ0) − S2| ≤ Mn−1/2, so similarly we have

λ2 = Op(n
−1/2) and

log(η − θ0)− log Ŝ2 = λ2σ̂
2
2 +Op(n

−1). (3.10)

Lemma 3.1.2. With probability approaching one, the likelihood ratio <
{
θ0(t), η, t

}
, as a

function of η, allows a local maximizer ηn
{
θ0(t), t

}
that converges uniformly to η0.

Proof: For any η such that |η−η0| ≤Mn−1/2, using Taylor expansion to (3.4) and Lemma

3.1.1, we obtain

− log<
{
θ0(t), η, t

}
=

2∑
i=1

ni∑
j=1

δijgij

(
λi
Sij
− λ2

i

2S2
ij

)
+ nλ1 log η + nλ2 log(η − θ0) +Op(n

−1/2)

= nλ1

(
log η − log Ŝ1

)
+ nλ2

{
log(η − θ0)− log Ŝ2

}
− n

2

2∑
i=1

λ2
i σ̂

2
i +Op(n

−1/2). (3.11)

Due to (3.9), (3.10) and log(1 +Mn−1/2/S1) = O(n−1/2), we have

− log<(θ0, η0 +Mn−1/2, t) =
2∑
i=1

n
{

log(Si +Mn−1/2)− log Ŝi
}2

2σ̂2
i

+Op(n
−1/2),

− log<(θ0, η0, t) =
2∑
i=1

n
(

logSi − log Ŝi
)2

2σ̂2
i

+Op(n
−1/2).

Note that for i = 1, 2, there holds

log(Si +Mn−1/2)− log Ŝi =
(

logSi − log Ŝi

)
+ log

(
1 +Mn−1/2/Si

)
.
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The first term on the right hand side is of the order Op(n
−1/2) while the second term is of

the order M · O(n−1/2), hence by choosing a sufficiently large M , the probability that the

second term eventually dominates the first term can be made as high as desired. When the

second term dominates the first term, we have

<(θ0, η0 +Mn−1/2, t) < <(θ0, η0, t).

Similar conclusion can be made when we replace Mn−1/2 by −Mn−1/2. This completes

the proof.

Proof of the Theorem: Using Taylor expansion to the l.h.s. of (3.5) and (3.6) at (η, λ1, λ2) =

(η0, 0, 0), one can find

λi =
(−1)i−1Si
S2

1 σ̂
2
1 + S2

2 σ̂
2
2

(
S1 log

S1

Ŝ1

− S2 log
S2

Ŝ2

)
+Op(n

−1). (3.12)

Using (3.9)-(3.11) we obtain

−2 log<{θ0, ηn(t), t} = 2nλ1

{
λ1σ̂

2
1 +Op

(
n−1
)}

+ 2nλ2

{
λ1σ̂

2
1 +Op

(
n−1
)}

− n

2

2∑
i=1

λ2
i σ̂

2
i +Op

(
n−1/2

)
= nλ2

1σ̂
2
1 + nλ2

2σ̂
2
2 +Op(n

−1/2).

Plugging the expression for λi in (3.12) into the above equality, we have

−2 log<{θ0, ηn(t), t} =
n

S2
1 σ̂

2
1 + S2

2 σ̂
2
2

(
S1 log

S1

Ŝ1

− S2 log
S2

Ŝ2

)2

+ op(1).

It suffices to recall that
√
n
(
S1 logS1/Ŝ1 − S2 logS2/Ŝ2

)
→ U(t) in distribution (Zhang

and Klein, 2001).
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Chapter 4 Hazard Ratio Function with Covariate Adjustment

4.1 Introduction

In the presence of non-proportional hazards, Wei and Schaubel (2008) considered the ratio

of baseline cumulative hazard functions under stratified Cox model. By using the cumula-

tive hazards, this measure describes the cumulative treatment effect, instead of an instan-

taneous one. The authors outlined a few advantages of this measure and derived both the

pointwise and simultaneous confidence bands associated with the estimated ratio using nor-

mal approximations. Recently, Dong and Matthews (2012) (henceforth, DM) studied the

EL inference of this hazard ratio and obtained an EL ratio test based pointwise confidence

interval. However, their asymptotic result on the EL ratio statistic is generally invalid and

the resulting confidence interval is asymptotically undercovering. This motivated us to in-

vestigate the correct EL inference. Using the idea in Chapter 3, we establish in this chapter

a stronger result, which allows us to obtain the correct EL pointwise confidence intervals

and construct simultaneous confidence bands without the computationally extensive Boot-

strap calibration.

The remainder of this chapter is organized as follows. In Section 4.2, we provide a short

introduction to the EL method and present the details on its applicability to our study. The

theoretical justification of the proposed method is also given. In Section 4.3, we summa-

rize the result of a numerical study to validate our method. A brief discussion about the

proposed method is given in Section 4.4.
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4.2 Plug-in Empirical Likelihood Confidence Band

Assuming the same data setup and notations as those in Chapter 3, we provide the details

on how we could obtain the EL inference on θ0(t) = Λ10(t)/Λ20(t).

Empirical Likelihood Ratio

For i ∈ {1, 2}, let Pi(t) be a hazard function defined on [0,∞) that has non-negative incre-

ment pij at the observed survival time Tij . The EL function takes the form of

L(P1, P2,β) =
2∏
i=1

ni∏
j=1

{
pij exp(Z>ijβ)

}δij
exp

{
− exp(Z>ijβ)

ni∑
k=1

I[Tik ≤ Tij]pik

}
.

(4.1)

It follows from Johansen (1983) that the above likelihood is maximized at β = β̂, and

Pi = Λ̂i. Moreover, the achieved maximum, denoted by L0, is equal to the maximum

partial likelihood up to a multiplicative constant that involves only the number of censored

observations. In addition to this full model maximum likelihood, the EL ratio also requires

a constrained likelihood to reflect the plausibility of our hypothesis. Let θ(t) > 0 be a hy-

pothetical value for θ0(t). We formulate the following constrained maximum EL at θ(t) :

Lc{θ(t), t} = sup
P1,P2

L(P1, P2, β̂) subject to
n1∑
j=1

p1jg1j(t) = θ(t)

n2∑
j=1

p2jg2j(t).

(4.2)

Here gij(t) = I[Tij ≤ t]. The supremum is only taken over the baseline hazards while β is

fixed at its partial likelihood estimator β̂. Similar plug-in strategies of using an estimated

quantity in the EL ratio have been discussed in Li and Wang (2003), and Hjort et al. (2009).

As commented by DM, we could alternatively follow Zhou (2006) to update both β and

the baseline hazards P1 and P2. However, the need to maximize over both β and the base-

line hazards will substantially increase the computational burden. It is worthwhile to note
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that the formulation of the constraint in (4.2) is mathematically equivalent to that in DM,

although the latter takes a different form that could potentially complicates the subsequent

numerical computation and theoretical development.

Using Lagrange multiplier method, we can show that the solution to (4.2) is given by

pij =
δij

nS
(0)
i (β̂, Tij) + nλn{−θ(t)}i−1gij(t)

. (4.3)

Here the Lagrange multiplier λn = λn{θ(t), t} solves the following equation

n1∑
j=1

δ1jg1j(t)

S
(0)
1 (β̂, T1j) + λn

− θ(t)
n2∑
j=1

δ2jg2j(t)

S
(0)
2 (β̂, T2j)− λnθ(t)

= 0. (4.4)

Under very general conditions, the left hand side of (4.4) is monotonic in λn and allows

a unique solution in a neighborhood of 0. This nice property greatly facilitates robust nu-

merical search for λn. We could plug (4.3) and β = β̂ into (4.1) to get the constrained

maximum likelihood, which finally leads to the following likelihood ratio

<{θ(t), t} ≡ Lc{θ(t), t}
L0

=
∏
δij=1

[
1 +
{−θ(t)}i−1gij(t)

S
(0)
i (β̂, Tij)

λn

]−1

. (4.5)

Asymptotic Distribution

In order to study the large sample behavior of the likelihood ratio statistic, we assume that

as n goes to infinity, ni/n converges to αi ∈ (0, 1). We also require the following regularity

conditions:
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(C1) The triplet (Tij, δij,Zij) are independent and identically distributed within each stra-

tum; Zij is bounded.

(C2) The information matrix Σ at β0 is positive definite, where

Σ =
2∑
i=1

∫ ∞
0

[
s

(2)
i (β0, t)−

{
s

(1)
i (β0, t)

}⊗2/
s

(0)
i (β0, t)

]
dΛi(t),

s
(k)
i (β, t) = αiE

{
Yi1(t)Z⊗ki1 exp(Z>i1β)

}
.

(C3) Pr(δij = 1) > 0 for i = 1, 2. In words, the probability of observing an event in each

group is positive.

To state the main theorem, we introduce the following notations:

hi(t) =

∫ t

0

s
(1)
i (β0, u)

/
s

(0)
i (β0, u)dΛi(u), i = 1, 2, (4.6)

σ2(t) =

∫ t

0

dΛ1(u)
/
s

(0)
1 (β0, u) + θ2

0(t)

∫ t

0

dΛ2(u)
/
s

(0)
2 (β0, u), (4.7)

v(t, s) = σ2(t ∧ s) +
{
h1(s)− θ0(s)h2(s)

}>
Σ−1

{
h1(t)− θ0(t)h2(t)

}
. (4.8)

Under conditions (C1)-(C3), we could follow the proof of Theorem 3.2 in Andersen and

Gill (1982) to show that the parameters defined in (4.6)–(4.8) could be consistently es-

timated by ĥi(t), σ̂2(t), and v̂(t, s), obtained by replacing in (4.6)–(4.8) the unknown

s(k)(β0, t), Λi(t), and θ0(t) with their corresponding empirical counterparts S(k)(β̂, t),

Λ̂i(t) and θ̂0(t).
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Theorem 4.1. Let 0 < τ0 < τ be such that 0 < θ0(τ0), θ0(τ) < ∞. Under conditions

(C1)-(C3),

−2 log<{θ0(t), t} → U2(t)/σ2(t) in D[τ0, τ ],

where U(t) is a Gaussian process with mean zero and variance covariance function v(t, s)

given by (4.8).

The proof is deferred to Section 4.5. For a particular t ∈ [τ0, τ ], it follows from Theorem

4.1 that

−2 log<
{
θ0(t), t

} D−→ v(t, t)/σ2(t)χ2
1.

Thus, an asymptotic level α EL confidence interval for θ0(t) is given by

{
θ| − 2 log<(θ, t) ≤ v̂(t, t)/σ̂2(t)χ2

1(α)
}
.

Remark 1: DM stated that, for a fixed t ∈ [τ0, τ ], the likelihood ratio −2 log<{θ0(t), t}

converges in distribution to χ2
1, which is incorrect in general. This is only valid when

σ2(t) = v(t, t), or equivalently, h1(t) = θ0(t)h2(t). In the general case, we will have

σ2(t) < v(t, t), therefore treating the limiting distribution as a chi-square distribution will

result in asymptotically undercovering confidence intervals. An example is given in Sec-

tion 4.3 to illustrate this point.

Remark 2: According to Theorem 4.1, an asymptotic level α simultaneous confidence

band for θ0(t) on the interval [τ0, τ ] is given by

B(α, τ0, τ) =

{(
η(t), t

)∣∣∣ sup
τ0≤t≤τ

[
− 2σ̂2(t)/v̂(t, t) log<{η(t), t}

]
≤ C(α), t ∈ [τ0, τ ]

}
,
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where C(α) satisfies Pr
{

supt∈[τ0,τ ] U
2(t)/v(t, t) ≥ C(α)

}
= α. However, just like the

situation in Chapter 3, it is difficult to estimate C(α) analytically or by directly simulating

samples of U(t). We adapt the resampling method in Chapter 3 to the current problem and

outline the procedure in Algorithm 3. Clearly, this re-sampling technique is computation-

Algorithm 3 Estimating C for Hazards Ratiol Functions
for each k ∈ {1, 2, · · · , N} do

GenerateGk ← MVN(0, Σ̂−1)

for i ∈ {1, 2} and j ∈ {1, 2, · · · , ni} do
Generate Gij ← N(0, 1)

end for

Set W̃k(t)←
{
ĥ1(t)− θ̂0(t)ĥ2(t)

}>
Gk

+ n−1/2
∑2

i=1

∑ni

j=1[θ̂0(t)]i=2δijgij(t)Gij

/
S

(0)
i (β̂, Tij)

Set Ck ← supτ0≤t≤τ |W̃k(t)|/
√
v̂(t, t)

end for
return C ← upper α percentile of {C1, C2, · · · , CN}

ally less burdensome compared to the Bootstrap approach in DM. To see the computational

burden of the Bootstrap approach, assume that B Bootstrap samples are desired. We will

need to solve the nonlinear equation (4.4) approximatelyB times at each failure time falling

in the interval (τ0, τ), which is rather time consuming even if there are only a few hundred

observations.

4.3 Numerical Study

The purpose of the simulation study is to demonstrate that the unadjusted EL (UEL) con-

fidence interval of DM is asymptotically undercovering while our adjusted EL interval

(AEL) has an accurate coverage probability. For convenience of comparison, we use the

same simulation design as DM did. Let the underlying lifetime Xij follow a Weibull dis-

tribution with hazard function

λij(t|Zij) = αiγit
γi−1 exp(β0Zij), i = 1, 2.
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In this setup, the proportional hazards assumption holds within each stratum but not be-

tween strata if we choose γ1 6= γ2. We can adjust αi to control the level of censoring and

check how the censoring rate affects the finite sample performance. Besides, we generate

the underlying censoring time Cij from Uniform(2.5, 5).

In DM, the univariate covariate Zij follows a Binomial distribution with probability pa-

rameter 0.5 for i = 1, 2. We modify this such that Z1j follows Binomial with parameter

0.25 while Z2j follows Binomial with parameter 0.75. We make this modification to re-

flect the covariate imbalance that is usually encountered in observational studies, and more

importantly, to yield a larger value of v(t, t)/σ2(t) such that the discrepancy between the

asymptotic distribution of the unadjusted likelihood ratio statistic and the χ2
1 distribution

is easily discernible. See Figure 4.1 for a plot of the true value of v(t, t)/σ2(t) when the

Binomial parameters are 0.25 and 0.75, where γi and αi are assigned the first set of values

in Table 4.1. We find that when both Binomial parameters are 0.5, the adjusting coeffi-

cient v(t, t)/σ2(t) is not exactly one, but close to one, which makes it hard to detect the

undercoverage in simulation studies.
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Figure 4.1: True value of v(t, t)/σ2(t) when there is no censoring.

Following their design, we consider the empirical likelihood confidence interval of θ0(t0.75),

where t0.75 is the 75th percentile of the combined survival times from the two groups. The

observed coverage percentages of both the UEL and AEL methods using 50, 000 replicates

are summarized in Table 4.1, where C denotes the overall censoring rate and n the sample

size per group.

As expected, Table 4.1 shows that the UEL interval is considerably undercovering with

the coverage probability clearly falling short of the nominal level even when the sample

size per group reaches 400. The AEL method, however, yields very accurate coverage

probability even when the sample size per group drops to 30 in the presence of 40% cen-

soring.
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Table 4.1: Coverage percentages of the adjusted and un-adjusted EL CIs for hazards ratios.

1− α = 0.90 1− α = 0.95
γ1 γ2 α1 α2 t0.75 C n

UEL AEL UEL AEL

1.4 1.2 0.4 0.35 2.273 0% 30 84.498 89.822 90.788 94.504
50 85.118 89.884 91.358 94.744
100 85.898 90.200 92.040 94.986
400 86.058 89.984 92.096 94.936

1.4 1.2 0.4 0.35 2.273 10% 30 84.060 89.662 90.416 94.316
50 84.638 89.638 91.016 94.452
100 85.400 89.952 91.516 94.802
400 85.836 90.094 91.986 95.022

1.0 1.5 0.2 0.10 3.503 40% 30 83.590 89.434 90.038 94.220
50 84.572 89.856 90.946 94.704
100 85.368 90.012 91.702 94.886
400 85.612 90.048 91.794 94.966

4.4 Summary

We can also extend our method to the group-specific covariate adjustment model that in-

volves fitting a separate Cox proportional hazards model in each of the treatment groups.

Λij(t|Zij) = Λi(t) exp(Z>ijβi) (4.9)

Clearly this model has greater flexibility than the stratified Cox model because it allows

each group to have its own baseline hazard and regression coefficients. Under this model,

DM studied the EL inference on the ratio of the two baseline cumulative hazards. In

their simulation study, the reported coverage probabilities were substantially lower than

the nominal levels, which was hypothesized to be the consequence of efficiency loss as-

sociated with a more complex model. As a result they considered employing Bootstrap to

improve the coverage accuracy. However, we find that the EL ratio statistic should also be
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adjusted by a multiplicative coefficient in a fashion similar to that in Section 4.2. Using the

same simulation setup as DM did (DM, page 413), we summarize in Table 4.2 the observed

coverage percentage of the adjusted EL method. Percentages for the UEL and Bootstrap

methods were directly taken from Tables 2 and 3 in DM. One can see that the adjusted

EL method drastically improves the coverage probabilities over the unadjusted EL and is

better than the Bootstrap method in some cases.

Table 4.2: Coverage percentages of EL CIs for hazards ratios in the case of group-specific

covariate adjustment.

γ1 γ2 α1 α2 c n UEL AEL Bootstrap

1.4 1.2 0.4 0.35 0% 25 88.6 93.9 94.7
50 89.1 94.6 94.5
100 89.1 94.3 94.6
250 89.4 95.2 94.6

1.4 1.2 0.4 0.35 10% 25 87.6 93.7 94.6
50 90.2 94.9 94.7
100 89.6 94.4 94.6
250 90.3 95.1 94.8

1 1.5 0.115 0.1 40% 25 81.0 92.5 92.0
50 82.2 93.4 92.2
100 81.3 94.5 92.6
250 82.4 94.7 92.7

One important feature of the EL confidence interval is that it typically does not require

estimating the variance of the statistic, which is mostly appreciated in survival analysis

where stable variance estimates could be very hard to obtain. However, the EL method

in this paper does not have this feature, since we have to explicitly adjust the statistic by

a quantity that involves the variance of the baseline hazards estimator. The need for the

adjustment is due to the use of the plug-in type constraint which fixes β at its partial like-

lihood estimator. Additional analysis not shown here suggests that if we update in (4.2)
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both the baseline hazards and β, similar to what we did in Chapter 2, the resulting likeli-

hood ratio statistic will have a limiting chi-square distribution with one degree of freedom.

Apparently, that approach entails optimizing the constrained likelihood with respect to β

and is therefore more computationally demanding. On the contrary, the plug-in type EL

method used by DM is rather computationally friendly. The major computational effort is

to calculate the likelihood ratio statistic, which only requires solving a univariate equation

of the Lagrange multiplier. Monotonicity of the equation makes possible a fairly efficient

numerical solution.

Without material modifications, the method we have proposed can be used to obtain an

EL confidence band for the ratio of survival functions of two subjects in different strata

with the same diagnostic covariates: S1(t|Z)/S2(t|Z). This parameter compares the treat-

ment on a relative scale, which might be more appropriate than the difference when both

probabilities are small (McKeague and Zhao, 2006). Unlike the difference we studied in

Chapter 3, the ratio allows a linear constraint and can be easily handled just like the ratio

of cumulative hazards.
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4.5 Proof

We start with three lemmas.

Lemma 4.1.1. λn uniquely exists with probability approaching 1 uniformly in t ∈ [τ0, τ ].

proof: Note that when t ∈ [τ0, τ ], the following term approaches 1 uniformly in t:

Pr

[{ n1∑
j=1

δ1jg1j(t) > 0
}
∩
{ n2∑

j=1

δ2jg2j(t) > 0
}]

Therefore, we may assume
∑n1

j=1 δ1jg1j(t) > 0 and
∑n2

j=1 δ2jg2j(t) > 0. Without loss of

generality we may assume that Tij has been rearranged in increasing order within each

group. Let mi = max{j|Nij(t) > 0} and bij = S
(0)
i (β̂, Tij). We observe that the l.h.s.

of equation (4.4) is montonically decreasing in λn; it approaches +∞ and −∞ as λn

approaches −b1m1 from the right and b2m2/θ0(t) from the left, respectively. Therefore,

equation (4.4) has a unique solution in (−b1m1 , b2m2/θ0(t)).

Lemma 4.1.2. λn = Op(n
−1/2) uniformly in t ∈ [τ0, τ ].

proof: The order of Tij implies that bi1 ≥ bi2 ≥ · · · ≥ bini
, i = 1, 2, thus when λn > 0, we

have

sup
1≤j≤n1

b1j

b1j + λn
≤ b11

b11 + λn
,

sup
j:N2j(t)>0

b2j

b2j − λnθ0(t)
≥ b21

b21 − λnθ0(t)
.

It follows from equation (4.4) that

Λ̂1(t)
b11

b11 + λn
≥ 1

n

n1∑
j=1

δ1jg1j(t)

b1j

b1j

b1j + λn

= θ0(t)
1

n

n2∑
j=1

δ2jg2j(t)

b2j

b2j

b2j − λnθ0(t)

≥ θ0(t)Λ̂2(t)
b21

b21 − λnθ0(t)
.
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Similarly, when λn ≤ 0, we have

Λ̂1(t)
b11

b11 − |λn|
≤ θ0(t)Λ̂2(t)

b21

b21 + |λn|θ0(t)
.

Therefore, we always have

|λn| ≤
b11b21

θ0(t){b11θ̂0(t) + b21}

∣∣∣θ̂0(t)− θ0(t)
∣∣∣

≤ b11

θ0(t)

∣∣∣θ0(t)− θ̂0(t)
∣∣∣,

where θ̂0(t) = Λ̂1(t)/Λ̂2(t). According to Wei and Schaubel (2008), θ̂0(t) − θ0(t) =

Op(n
−1/2) uniformly in t ∈ [τ0, τ ]; furthermore, consistency of β̂, boundedness of Zij

and a Central Limit Theorem (CLT) applied to S(0)
1 (β0, T11) imply that b11 is bounded in

probability, which implies the lemma.

Lemma 4.1.3. λn =
{

Λ̂1(t)− θ0(t)Λ̂2(t)
}
/σ̂2(t) +Op(n

−1) uniformly in t ∈ [τ0, τ ].

proof: Equation (4.4) implies

1

n

n1∑
j=1

δ1jg1j(t)

b1j

(
1− λn

b1j + λn

)
=
θ0(t)

n

n2∑
j=1

δ2jg2j(t)

b2j

{
1 +

λnθ0(t)

b2j − λnθ0(t)

}
,

therefore

Λ̂1(t)− λn
n

n1∑
j=1

δ1jg1j(t)

b2
1j

(
1− λn

b1j + λn

)

= θ0(t)Λ̂2(t) +
λnθ

2
0(t)

n

n2∑
j=1

δ2jg2j(t)

b2
2j

{
1 +

λnθ0(t)

b2j − λnθ0(t)

}
.

Recalling the definiton of σ̂2(t), we can rewrite the above equality into

Λ̂1(t)− θ0(t)Λ̂2(t) = λnσ̂
2(t)− λ2

n

1

n

n1∑
j=1

δ1jg1j(t)

b2
1j

1

b1j + λn

+ λ2
n

θ3
0(t)

n

n2∑
j=1

δ2jg2j(t)

b2
2j

1

b2j − λnθ0(t)
.
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When gij(t) = I[Tij ≤ t] > 0, we know Tij ≤ t ≤ τ , therefore gij(t) > 0 implies

bij ≥ S
(0)
i (β̂, τ) which converges in probability to s(0)

i (β0, τ) > 0 by the consistence of

β̂, boundedness of Zij and the CLT. Combined with the uniform consistency of σ̂2(t), the

uniform Op(n
−1/2) bound of λn implies that both of the last two terms on the r.h.s. of the

above equation are of the order Op(n
−1) uniformly in t ∈ [τ0, τ ]. This gives

Λ̂1(t)− θ0(t)Λ̂2(t) = λnσ̂
2(t) +Op(n

−1).

Therefore,

λn =
{

Λ̂1(t)− θ0(t)Λ̂2(t)
}
/σ̂2(t) +Op(n

−1).

Proof of the Theorem: We have demonstrated that gij(t)/bij is bounded in probability

uniformly in i, j and t ∈ [τ0, τ ], therefore, we may apply Taylor expansion to the right

hand side of (4.5) (justified by Lemma 4.1.2) and use the expression for λn in Lemma 4.1.3

to obtain

− log<
{
θ0(t), t

}
=

2∑
i=1

ni∑
j=1

δij

[
{−θ0(t)}i−1gij(t)

bij
λn −

1

2

{θ0(t)}2i−2gij(t)

b2
ij

λ2
n

]

+
2∑
i=1

ni∑
j=1

δij
1

3

{−θ0(t)}3i−3gij(t)

b3
ij

λ∗3n

=

{
Λ̂1(t)− θ0(t)Λ̂2(t)

}2

2σ̂2(t)
+

2∑
i=1

ni∑
j=1

δij
1

3

{−θ0(t)}3i−3gij(t)

b3
ij

λ∗3n ,

where λ∗n is between 0 and λn and is therefore Op(n
−1/2), which then implies that the

residual term is of the order Op(n
−1/2). In summary,

−2 log<
{
θ0(t), t

}
=
{

Λ̂1(t)− θ0(t)Λ̂2(t)
}2

/σ̂2(t) +Op(n
−1/2).

Since we have

√
n
{

Λ̂1(t)− θ0(t)Λ̂2(t)
}

=
√
n
[{

Λ̂1(t)− Λ1(t)
}
− θ0(t)

{
Λ̂2(t)− Λ2(t)

}]
,
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the weak convergence of
√
n
{

Λ̂1(t)− θ0(t)Λ̂2(t)
}

to U(t) as described in the theorem is a

simple application of the martingale central limit theorem (Andersen and Gill, 1982).
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Chapter 5 Future Work

Firstly, the difference of two individualized survival functions studied in Chapter 3 exam-

ins the treatment effect on the patient level, which is not appropriate when an aggregated

difference is desired. One may consider the difference of two average survival functions

defined as (Kim, 2001; Zucker, 1998)

θ∗0(t) =

∫
Z

{
S1(t|Z)− S2(t|Z)

}
f(Z)dZ,

where f(·) is the density function of Z. The example in Kim (2001) shows that this pa-

rameter may be comparable with θ0(·|Z0) in practice, where Z0 is the average vector of

covariates. It is interesting to compare the EL confidence intervals and bands with the nor-

mal approximation competitors.

For the purpose of EL inference on θ∗0(t), we can fix β at β̂ and f(·) at its empirical

estimator that puts equal weight on each observation, and formulate the following EL ratio

at a hypothetical value θ∗:

<(θ∗, t) =
supη,P1,P2

{
L(P1, P2, β̂)

∣∣P1(t) = − log η, P2(t) = − log φ
}

supβ,P1,P2
L(P1, P2,β)

,

where φ = φ(η, θ∗) is given by the equation

n−1

2∑
i=1

ni∑
j=1

{
ηexp(Z>

ij β̂) − φexp(Z>
ij β̂)
}

= θ∗.

Note that the left hand side of the above equation is monotonic in η for a given φ, therefore,

the computational technique in Chapter 3 is still applicable here. The asymptotic property

of the likelihood ratio may be more subtle than that in Chapter 3 due to the presence of

f(Z), but should be accessible, given that we know β̂ and f̂(·) very well.

Secondly, the short-term and long-term hazards model proposed by Yang and Prentice

72



(2005) is an extension to the PH model. It incorporates short-term and long-term covariate

effects by assuming the following hazard

λ(t|Z) =
exp

{
(β + γ)>Z

}
exp(β>Z)F (t) + exp(γ>Z)S(t)

λ(t),

where λ(t) is the unspecified baseline hazard function, S(t) = exp{−
∫ t

0
λ(s)ds} is the

baseline survival function, and F (t) = 1 − S(t) is the baseline cumulative distribution

function. It can be seen that

lim
t→0

λ(t|Z1)

λ(t|Z2)
= exp

{
β>(Z1 −Z2)

}
, lim

t→∞

λ(t|Z1)

λ(t|Z2)
= exp

{
γ>(Z1 −Z2)

}
.

Therefore, exp(β) and exp(γ) can be interpreted as the short-term and long-term hazards

ratios, respectively. This features allows crossing hazards and crossing survivals that very

happen in biomedical studies. Estimation and inference procedures for this model can be

found in Diao et al. (2013).

With the increasing popularity of this model, it is of great interest to derive, under this

model, confidence intervals and bands associated with the predicted survival function or

hazard function for a given set of covariates. Unlike the PH model, there is no simple “par-

tial likelihood” for this model, but it is still possible to profile out the baseline hazard λ(t)

using an iterative algorithm. This very possibility makes it very promising to derive EL

confidence intervals and bands for the survival function using the methodology we have

presented in Chapter 2.
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Appendix

Computer Codes for Chapter 2

# the following code computes the empirical likelihood confidence interval for S(t0)
# Time: survival time; delta: censoring indicator (1 for death)
# eps: step length. use a smaller value if fail to converge

library(nleqslv)
library(survival)
ci.surv <- function(Time, delta, Z, t0, eps = 0.1){

# order the data by time
ord <- order(Time); Time <- Time[ord]
delta <- delta[ord]; Z <- Z[order,]
fit <- coxph(Surv(time,delta)˜Z); cox.beta <- fit$coef
# unconstrained likelihood #
old.eps <- eps; tol <- 1e-8; sum.dz <- apply(Z*delta,2,sum)
tmp <- as.vector(exp(Z%*%cox.beta)); tmp <- rev(cumsum(rev(tmp)))
w <- delta/tmp; lkhd0 <- sum(log(w[delta==1]+1e-13))+sum(cox.beta*sum.dz)-sum(delta)

gvec <- as.numeric(Time<=t0); theta0 <- sum(gvec*w)
up.theta1 <- theta0 + eps; up.theta0 <- theta0
ind <- 1; beta <- cox.beta; lmda <- 0

# upper boundary of the CI #
while(ind){
fit <- ratio.surv(Time,delta,Z, up.theta1,beta,lmda,cox.beta,lkhd0,t0)
if(fit$lkhd.ratio<3.841459){

if(fit$lkhd.ratio>3) eps = 0.5*old.eps
beta <- fit$para[-1]; lmda <- fit$para[1]
up.theta0 <- up.theta1; up.theta1 <- up.theta1 + eps

}else{
up.theta1 <- up.theta1 - 0.5*(up.theta1-up.theta0)

}
if((abs(up.theta1-up.theta0)<tol)||(abs(fit$lkhd.ratio-3.841459)<tol))

ind <- 0
}

ind <- 1; beta <- cox.beta; lmda <- 0
low.theta0 <- theta0; eps <- min(eps,0.1*theta0)
low.theta1 <- theta0 - eps; old.eps <- eps

# lower boundary of the CI #
while(ind){

# low.theta1=theta0; beta=cox.beta; lmda=0;
fit <- ratio.surv(Time,delta,Z, low.theta1,beta,lmda,cox.beta,lkhd0,t0)
if(fit$lkhd.ratio<3.841459){

if(fit$lkhd.ratio > 3) eps = 0.5*old.eps
beta <- fit$para[-1]; lmda <- fit$para[1]
low.theta0 <- low.theta1; low.theta1 <- low.theta1 - eps
}else{
low.theta1 <- low.theta1 + (low.theta0-low.theta1)/2

}
if((abs(low.theta1-low.theta0)<tol)||(abs(fit$lkhd.ratio-3.841459)<tol))

ind <- 0
}
return(exp(-c(low.theta0,up.theta0)))

}

# el ratio test needed
ratio.surv <- function(Time, delta, Z, theta, init.beta, init.lmda, cox.beta,
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lkhd0, t0){

# theta=theta0; init.beta=cox.beta; init.lmda=0
gvec <- as.numeric(Time<=t0); n <- length(delta)
n.cov <- dim(Z)[2]; sum.dz <- apply(Z*delta,2,sum)

# joint equation of lambda and beta, and the jacobian
nlefn <- function(para){

beta <- para[-1]; lmda <- para[1]
gam <- as.vector(exp(Z%*%beta)); gweight <- rev(cumsum(rev(gam)))
z.gam <- Z*gam; gweight2 <- z.gam
for(i in 1:n.cov)
gweight2[,i] = rev(cumsum(rev(z.gam[,i])))

Hw <- delta/(gweight+nˆ3*lmda*gvec); Hw2 <- Hw*gweight2
func <- rep(0,n.cov+1); func[1] <- sum(Hw*gvec)-theta
func[-1] = sum.dz-apply(Hw2,2,sum)
return(func)

}

### solve for beta and lmda using nleqslv
cur.par <- nleqslv(x=c(init.lmda,init.beta),nlefn,

global="dbldog",control=list(xtol=1e-6,ftol=1e-8))$x
beta <- cur.par[-1]; lmda <- cur.par[1]
tmp <- as.vector(exp(Z%*%beta)); tmp <- rev(cumsum(rev(tmp)))
w <- delta/(tmp+nˆ3*lmda*gvec)
lkhd <- sum(log(w[delta==1]+1e-13))+sum(beta*sum.dz)-sum(w*tmp)

return(list(lkhd.ratio=2*(lkhd0-lkhd),para=cur.par))
}

Computer Codes for Chapter 3

# codes for the empirical likelihood ratio test of
# S1(t0) - S2(t0) = theta
# strata can be either 1 or 2; Z should be univariate

library(survival)
ratio.diff <- function(Time, delta, Z, strata, theta, t0){

n1 <- sum(strata==1); n2 <- sum(strata==2);
n <- n1 + n2; tol <- 1e-9

# order the data in strata and then time
Mat <- cbind(Time, Z, delta, strata)
Mat <- Mat[order(Mat[,4],Mat[,1]),]
Time <- Mat[,1]; Z <- Mat[,2]; delta <- Mat[,3]

gvec <- as.numeric(Time <= t0); d.gvec <- delta*gvec
events <- which(d.gvec==1)
if(length(events)==0) stop("t0 too small")
if(abs(theta)>=1) stop("theta out of range")

# fit cox model
fit <- coxph(Surv(Time,delta)˜Z+strata(strata))
cox.beta <- fit$coef; names(cox.beta) <- NULL
var.beta <- fit$var; names(var.beta) <- NULL

# calculate adjusting coefficients
gam <- exp(Z*cox.beta)
S0 <- c(rev(cumsum(rev(gam[1:n1]))),

rev(cumsum(rev(gam[(n1+1):n]))))/n
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S1 <- c(rev(cumsum(rev(Z[1:n1]*gam[1:n1]))),
rev(cumsum(rev((Z[(n1+1):n]*gam[(n1+1):n])))))/n

# death in each group
ind1 <- events[which(events <= n1)]
ind2 <- events[which(events > n1)]
j1 <- max(which((d.gvec)[1:n1]>0))
j2 <- n1 + max(which((d.gvec)[(n1+1):n]>0))

# function of eta to solve
f.eta1 <- function(eta){

f.lmda1 <- function(x)
sum(1/(S0[ind1]+x))/n + log(eta)

f.lmda2 <- function(x)
sum(1/(S0[ind2]+x))/n +
log(eta-theta)

# solve for lmda_i
f10 <- f.lmda1(0)
if(abs(f10)<tol) x1 = 0
if(f10>tol){
a <- 0; b <- 1; tmp = f10
while(tmp > 0){
b <- 2*b
tmp <- f.lmda1(b)

}
x1 = uniroot(f.lmda1,c(a,b),tol=tol)$root

}
if(f10< -tol){

a <- 0; b <- a
while(f10 < 0){
b <- 0.5*(b - S0[j1])
f10 <- f.lmda1(b)

}
x1 = uniroot(f.lmda1,c(b,a),tol=tol)$root

}

f20 <- f.lmda2(0)
if(abs(f20)<tol) x2 = 0
if(f20>tol){
a <- 0; b <- 1; tmp = f20
while(tmp > 0){
b <- 2*b
tmp <- f.lmda2(b)

}
x2 = uniroot(f.lmda2, c(a,b),tol=tol)$root

}
if(f20< -tol){

a <- 0; b <- a
while(f20 < 0){
b <- 0.5*(b - S0[j2])
f20 <- f.lmda2(b)

}
x2 = uniroot(f.lmda2,c(b,a),tol=tol)$root

}
return(c(x1, x2, x1*theta-(x1+x2)*eta))

}

# solve for eta.n
f.eta <- function(eta) f.eta1(eta)[3]
a = max(0,theta)+1e-9 ; b=min(1,1+theta)-1e-9
eta.n = uniroot(f.eta, lower=a, upper=b, tol=tol)$root
lmda <- f.eta1(eta.n)[1:2]

# adjusting coefficient
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tmp1 = d.gvec/S0
hat.S1 = exp(-sum(tmp1[1:n1])/n)
hat.S2 = exp(-sum(tmp1[(n1+1):n])/n)
hat.theta = hat.S1 - hat.S2

tmp2 = tmp1*S1/S0
h1 <- sum(tmp2[1:n1])/n
h2 <- sum(tmp2[(n1+1):n])/n
h1_h2 <- hat.S1*h1 - hat.S2*h2

tmp3 = tmp1/S0
v11 <- sum(tmp3[1:n1])/n
v22 <- sum(tmp3[(n1+1):n])/n
v2 <- (hat.S1ˆ2*v11 + hat.S2ˆ2*v22)
epstt <- v2 + (h1_h2)ˆ2*n*var.beta

# -2log-likelihood ratio
lrt <- 2*(sum(log(1+1/S0[ind1]*lmda[1]))+

sum(log(1+1/S0[ind2]*lmda[2])))+
(2*n)*(lmda[1]*log(eta.n)+log(eta.n-theta)*lmda[2])

lrt <- v2/epstt*lrt
return(list(lrt=lrt, p=pchisq(lrt, 1, lower.tail=FALSE)))

}

# calculate the critical value for confidence bands
# (t0, t1): the interval over which CB is constructed
# alpha: confidence level; m: number of replicates

c.diff = function(Time, delta, Z, strata, t0, t1, alpha=0.95, m=5000){

# order the data by strata & time
Mat <- cbind(Time, Z, delta, strata)
Mat <- Mat[order(Mat[,4],Mat[,1]),]
Time <- Mat[,1]; Z <- Mat[,2]; delta <- Mat[,3]

fit <- coxph(Surv(Time,delta)˜Z+strata(strata))
cox.beta <- fit$coef; var.beta <- fit$var

# calculate adjusting coefficients
n1 <- sum(strata==1); n2 <- sum(strata==2)
n <- n1 + n2
gam <- exp(Z*cox.beta)
S0 <- c(rev(cumsum(rev(gam[1:n1]))),

rev(cumsum(rev(gam[(n1+1):n]))))/n
S1 <- c(rev(cumsum(rev(Z[1:n1]*gam[1:n1]))),

rev(cumsum(rev((Z[(n1+1):n]*gam[(n1+1):n])))))/n

# death ids when time is ordered across groups
ord <- order(Time); Time1 <- Time[ord]; delta1 <- delta[ord]
S01 <- S0[ord]; S11 <- S1[ord]; strata1 <- strata[ord]
ind1 = which((delta1==1)&id1); ind2 = which((delta1==1)&(1-id1))
id1 <- as.numeric(strata1==1)

# quantities involved in the M-C simulation
a = max(ind1[1],ind2[1]); b = min(ind1[length(ind1)],ind2[length(ind2)])
ind <- sort(c(ind1,ind2)); ind <- ind[which((ind >=a)&(ind <= b))]
ind <- ind[which((Time1[ind] <= t1)&(Time1[ind] >= t0)]
k <- length(ind)

tmp <- delta1/S01; tmp1 <- tmp/S01; tmp2 <- tmp1*S11
hat.S1 = exp(-(cumsum(id1*tmp)[ind])/n)
hat.S2 = exp(-(cumsum((1-id1)*tmp)[ind])/n)
hat.theta = hat.S1 - hat.S2
h1 <- (cumsum(id1*tmp2)[ind])/n
h2 <- (cumsum((1-id1)*tmp2)[ind])/n
h1_h2 <- hat.S1*h1 - hat.S2*h2
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v11 <- cumsum(id1*tmp1)[ind]; v22 <- cumsum((1-id1)*tmp1)[ind]
v2 <- (hat.S1ˆ2*v11+hat.S2ˆ2*v22)/n
epstt <- v2 + (h1_h2)ˆ2*n*var.beta

# calculate the critical value by simulation
c_alpha = rep(0,m)
for(j in 1:m){
G <- rnorm(1); G0 <- rnorm(n)*tmp
W <- (h1_h2)*G*sqrt(n*var.beta)+

(hat.S1*cumsum(id1*G0)[ind]+
hat.S2*cumsum((1-id1)*G0)[ind])/sqrt(n)

c_alpha[j] <- max(abs(W)/sqrt(epstt))
}
return(quantile(c_alpha, alpha))

}
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