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ABSTRACT OF DISSERTATION 

 

 

KEY ROLES OF SUB-CELLULAR MEMBRANES AND CO-CHAPERONE IN 
TOMBUSVIRUS REPLICATION 

 
 

 Positive strand RNA viruses, inculding tombusviruses, are known to utilize 
cellular membranes to assemble their replicase complexes (VRCs). Two tombusviruses , 
Tomato bushy stunt virus (TBSV) and Carnation Italian ringspot virus (CIRV), replicate 
on different organellar membranes, peroxisomes or endoplasmic reticulum (ER)  for 
TBSV and mitochodria outer membranes in case of CIRV. I showed that both TBSV and 
CIRV replicase proteins could assemble VRCs and replicate viral RNA on purified 
microsomes (ER) and mitochondria. Different efficiencies of assembly was shown 
determined by multiple domains on TBSV or CIRV replication proteins. 
 
 To study why VRC assembly could occur on an alternative organellar 
membranes, I focused on the phospholipids, key lipid components in ER or mitochondria 
membranes. Phospholipids directly interact with viral replicases, however, their specific 
roles during (+)RNA virus replication are far less understood. I used TBSV as a model 
(+) RNA virus, and established a cell-free TBSV replication system using artificial 
membranes prepared from different phospholipids. I showed that 
phosphatidylethanolamine (PE) is required for full cycle replication of the viral 
RNA.Moreover, PE is enriched at the sites of TBSV replication in plant and yeast cells, 
and was up-regulated during TBSV replication. Furthermore, up-regulation of total 
cellular PE content in yeast due to deletion of CHO2 leads to dramatically stimulated 
TBSV replication. Overall, I identified PE as the key lipid component of membranes 
required for TBSV replication, and my data highlighted that PE, an abundant 
phospholipid in all eukaryotic cells, not only serves as a structural component of 
membrane bilayers, its interaction with the viral replication proteins also stimulates 
(+)RNA virus replication. Further experiments indicated both early secretory pathway 
and endocytic pathway are involved in PE re-distribution to site of replication. 
 
 In addition to lipids and subcellular membranes, certain host proteins are also 
involved in (+) RNA virus replication and VRC assembly. I identified Hop-like stress-
inducible protein 1 (Sti1p), which interacts with heat shock protein 70, is required for the



inhibition of CIRV replication. My findings indicate that Hop/Sti1 co-chaperone could 
act as a virus restriction factor in case of mitochondrial CIRV, but not against 
peroxisomal tombusvirus. 
 
KEY WORDS: Positive strand RNA virus, phospholipids, phosphatidylethanolamine, 
subcellular membrane, Sti1p 
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Chapter 1 

INTRODUCTION 

1.1 Tombusviruses 

 

The group of tombusvirus belongs to positive strand RNA virus that replicate their 

genomes in a wild range of plant hosts (1). Tomato bushy stunt virus (TBSV) is the 

prototypical species in the Tombusvirus genus and tombusviridae family. TBSV has a 

single-stranded positive-sense RNA genome of ~4800 nucleotides long(1). Its RNA 

genome is highly structured with 5' non-capped end, 3' non-polyadenylated end, as well 

as many internal RNA elements which functions in viral protein translation enhancement, 

viral replicase complex assembly and replication (1-4). 

 TBSV encodes five viral proteins (1), the replication proteins p33 and p92; a 

capside protein p42, movement protein p22 and a suppressor of gene silencing p19. p33 

and p92 are both required for viral replication (1). The sequence of p33 overlaps with N-

terminal part of p92, and functions as auxiliary replication cofactor (5, 6), which is 

involved in template RNA recruitment(3) and replicase complex assembly (4) with RNA 

chaperone function (7). The p92 protein is a read-through product of p33, and has RNA 

dependent RNA polymerase (RdRp) activity. Both p33 and p92 have two trans-

membrane domains(8, 9), which are predicted to be inserted into sub-cellular membranes 

and expose the N-terminal and C-terminal, including RdRp, regions of replication 

proteins to the cytosolic side of membranes. Besides association with the membrane, p33 

and p92 could interact with each other through S1 and S2 p33:p33/p92 interaction 
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domains. This interaction leads to multimerization of replication proteins which is 

important for TBSV replication (10, 11). 

 Tombusviruses have been developed as model viruses for studies of (+)RNA 

virus replication in yeast (5, 12, 13). The tombusvirus system is based on trans-

replication of a defective interfering (DI) RNAs in the presence of replication proteins 

p33/p92. DI RNAs are defective viral RNAs containing noncontiguous regions of the 

viral RNA genome due to recombination events (5, 14-17). In the yeast system, p33 and 

p92 are expressed from plasmids and support the replication of DI-72, the model replicon 

(13). 

 Carnation italian ringspot virus (CIRV) is another tombusvirus in the same genus 

and shows high sequence similarity with TBSV (14). Unlike TBSV, which use 

peroxisome membrane for replicase assembly(18), CIRV assembles its replicase complex 

on mitochondrial outer membrane (9, 19). Studies revealed that short motifs in TBSV and 

CIRV replication proteins p33/p92 (TBSV) or p36/p95 (CIRV) are required for replicase 

targeting to peroxisome (18) or mitochondria (19). 

 

1.2 Subcellular locations of positive strand RNA virus replication 

 

Positive strand RNA viruses are the largest group among the seven virus genetic classes 

(20). They cause many diseases in human history. Egyptian tombstone as early as 1500 

BC recorded a priest having typical poliovirus infection syndrome of poliomyelitis (21). 

Recent epidemic of hepatitis C virus (22-25), dengue virus (26), West Nile virus (27, 28), 

severe acute respiratory syndrome (SARS) virus (29, 30) and many economically 
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important animal and plant viruses highlight the importance of understanding the positive 

strand RNA virus life cycle, and urgency of the discovery of novel medicines for curing 

viral diseases. 

 Positive strand RNA viruses share some common features: i) single-stranded 

RNA genome harboring ORFs on the sense-polarity (20, 31); ii) RNA genome replication 

occurs within specific sub-cellular membrane compartments of their eukaryotic host cells 

(15, 18, 20, 31-33); iii) Virion assembly often couples with genome replication (34-36). 

iv) Use of (-)RNA only as a template for asymmetrical replication. (37) 

 Despite the common feature of membrane association of (+)RNA viruses, 

subcellular locations of (+)RNA virus replication vary drastically throughout the whole 

endomembrane systems, including endoplasmic reticulum (ER) or ER derived replication 

organelles for bromovirus (38), potyvirus (38), flavivirus (34, 39, 40), arterivirus (41) and 

coronavirus (35); ER-Golgi intermediate compartment (ERGIC) for enterovirus (33); 

endosome for alphavirus (42); vacuole for Alfamovirus (43, 44) and tobamovirus (45); 

peroxisome for tombusvirus (18); mitochondria for nodavirus (46), carmovirus (47) and 

tombusvirus (48). 

 Questions were raised for these many replication sites. Why do (+)RNA viruses 

need to explore so many different locations for replication? Are selection of these sites 

random events during evolution, or some specific protein or lipid factors are determinants 

of subcellular membrane selectivity of different (+)RNA viruses? Is there any common 

pathway connecting different replication sites of (+)RNA viruses? 
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 Tombusviruses are used as model viruses to address these questions. As two 

closely related viruses in genus of tombusvirus, TBSV and CIRV replicate in distinct 

subcellular locations (peroxisome and ER for TBSV, mitochondria for CIRV) (9).  

 In a host cell, due to post-translational targeting of viral replication proteins, 

TBSV replicase may already evolved to be peroxisome targeting and does not have a 

chance to meet other sub-cellular membrane, like mitochondria. However, in cell-free 

environment, viral protein and membrane may have a chance to interact, simply by 

diffusion of molecules. Could TBSV replicate on mitochondrial membranes in a cell-free 

environment? Or could CIRV replicate on ER or peroxisome membrane? To address 

these questions, an cell-free system was established for TBSV replication using yeast 

extract (49), which contains cytosolic proteins as well as total cellular membranes, 

including peroxisome, ER or mitochondria membranes. 

 In Chapter 2, a further modification of yeast cell-free extract will be used to 

explore sub-cellular membrane requirements of TBSV and CIRV replication. This study 

leads to a deeper understanding of (+)RNA virus replication sites. The method developed 

in chapter 2 was also used for identification and characterization of an inhibitory host 

factor, stress induced protein 1 (Sti1) co-chaperone, of CIRV replication. Results with 

Sti1 in tombusvirus replication will be discussed in Chapter 3. 

 

1.3 Requirements of specific lipids for positive strand RNA virus replication 

 

Although (+)RNA viruses adapted different subcellular locations for their replication, 

membranes of these organelles have one common feature: mainly composed of 
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phospholipids, among which glycerophospholipids are most abundant (50-53), while 

sphingolipids mostly occur in Golgi and the endosomal membranes count about 10% of 

total phospholipid content (51). Major glycerolphospholipids in eukaryotic cells include: 

phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), 

phosphatidylinositol (PI) and phosphatidylglycerol (PG). PC is the most abundant 

phospholipids in eukaryotic cells (54), and it has an almost cylindrical shape which 

favors the organization of stable planar bilayer (51, 55). While PE is usually the second 

most abundant phospholipid species (54), it possesses a conical molecular structure (51, 

55), which could introduce negative curvature when incorporated into stable bilayer and 

promotes membrane fusion (55-57). Other than PC and PE, which are neutral 

phosholipids, negatively charged phospholipids, such as PS, PG, PI or phosphorylated 

forms of PI, namely PIPs, bring negative charge to where they are enriched and could 

attract protein effectors specifically or non-specifically (58), like Rho GTPase (59), 

protein kinase C (60), SNARE protein vam7p (61) , which are involved in different 

cellular pathways. Since different phospholipids involve in regulating different cellular 

processes, they may regulate (+)RNA virus replication through their interactions with 

viral replication proteins. 

 Elevation of overall fatty acid synthesis was shown to facilitate many (+)RNA 

virus replication, including members of enterovirus, poliovirus (62) and coxsackievirus 

B3 (CVB3) (63), and members flavivirus, Dengue virus (64) and West Nile virus (65). 

Lipidomics analysis conducted with cells infected with Dengue virus and Hepatitis C 

virus (66, 67) suggest that viruses induce new lipids biosynthesis, and virus infection 

changes the global lipid profile of the host cell. These changes add a new level of 
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complexity of virus-host interaction. However, the question remains if specific lipid 

species or total lipids  are more important to viruses? 

 In the past decade, virologists made different approaches to reveal interactions 

between specific phospholipid species and (+)RNA viruses. Enterovirus is among the 

most intensively studied viruses in this area. Phosphatidylinositol-4-phosphate (PI4P) 

was shown to be enriched with CVB3 (enterovirus, picornaviridae) replication proteins. 

RNA polymerase 3Dpol  of poliovirus (PV, enterovirus, picornaviridae) selectively binds 

to PI4P (33), suggesting a PI4P-rich micro-environment is the site for enterovirus 

replication. Down-regulation of PI4P by Phosphatidylinositol-4-phosphate kinase (PI4K) 

inhibitor or knock-down of PI4K by PI4K specific siRNA reduced the cellular PI4P 

content as well as inhibited enterovirus replication. It was proposed that interaction of 

PI4P with enterovirus replication proteins is required for enterovirus replication. Recent 

findings (68, 69) showed that a mutant CVB3 with mutation in viral protein 3A could 

bypass the requirement of PI4P or PI4Ks without lost fitness and virulence (68), 

suggesting that PI4P is not required for the mutant CVB3 replication. It is interesting to 

note that RNA polymerase 3Dpol  was not mutated in the mutant CVB3 and still kept the 

ability to interact specifically with PI4P, but the mutant virus did not require PI4P for 

replication, suggesting other lipids, if any, may be responsible for enterovirus replication. 

Nchoutmboube, J. et al. pulse-labeled PV infected HeLa cells with fluorescent fatty acid 

(bodipy-FA) and found that bodipy-FA was mostly converted to newly synthesized lipids 

which co-localized with PV replication proteins. Among the newly synthesized lipids, PC 

was the most abundant, suggesting that bodipy-FA labeled PC enriched at the site of PV 
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replication (62). Whether PC was enriched due to its abundant nature in the cell or 

because PV replication specifically requires PC is current not clear. 

 Hepatitis C Virus, hepacivirus genus, a member of Flaviviridae family, has been 

shown to require PI4P-enriched micro-environment for efficient replication (33, 70). 

While West Nile virus (WNV), flavivirus genus, a member of Flaviviridae family, does 

not require PI4P for its replication (65).  

 Besides phospholipids which form lipid bilayers needed for viral replicase 

assembly, sterols could also be important. Sterols affect lipid bilayer fluidity and are 

enriched within  West Nile virus (71) and enterovirus (72) replication organelles and are 

required for efficient Dengue virus and enterovirus replication. Are phospholipids species 

less important for the virus than sterols? We don't know yet, but at least sterols cannot 

stably exist without being inserted into lipid bilayers. 

 In Chapter 4, a novel method of cell-free TBSV replication assay using artificial 

vesicles made from phospholipids will be shown to study phospholipids and TBSV-

specific interaction. Then the findings of my research will be added to the discussion of 

previously raised questions, and shed new lights on this unexplored virology area. In 

Chapter 5 and 6, cellular pathways and mechanism of viral utilization of 

phosphatidylethanolamine will be discussed. 

 

 

 

Copyright © Kai Xu 2014 
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Chapter 2 

AUTHENTIC IN VITRO REPLICATION OF TWO TOMBUSVIRUSES IN 

ISOLATED MITOCHONDRIAL AND ENDOPLASMIC RETICULUM 

MEMBRANES 

(This chapter was published on Journal of Virology, December 2012 vol. 86 no. 23 

12779-12794., Copyright © American Society for Microbiology) 

 

2.1 Introduction 

 

Replication of plus-stranded (+)RNA viruses takes place in membrane-bound viral 

replicase complexes (VRCs) in the cytoplasm of infected cells (13, 39, 73-79). Various 

(+)RNA viruses usurp different intracellular membranes, including ER, mitochondria, 

peroxisomes or endosomal membranes to aid the replication process. Other viruses induce 

the formation of “viral replication organelles” or “membranous web” made from various 

intracellular membranes (33, 39, 77, 79, 80). The recruited membranes are thought to 

facilitate virus replication by (i) providing surfaces to assemble the VRCs; (ii) 

sequestering and concentrating viral and host components; (iii) protecting the viral RNA 

and proteins from nucleases and proteases (81); and (iv) facilitating regulated RNA 

synthesis by harboring the (-)RNA template for production of abundant (+)RNA progeny.  

 The emerging picture with several (+)RNA viruses is that their replication proteins bind 

to different lipids and recruit a number of host proteins, which are involved in lipid 

synthesis, or modification, to the site of replication (33, 79, 82, 83). In addition, (+)RNA 
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virus replication is also dependent on bending intracellular membranes that form 

characteristic viral structures, such as spherules (vesicles with narrow openings) or 

vesicles (76). Therefore, (+)RNA viruses likely recruit host proteins affecting membrane 

curvature, as shown for ESCRT, reticulon and amphiphysin proteins in case of 

tombusviruses, Brome mosaic virus and Semliki Forest virus (81, 84-86). Lipids also 

affect membrane curvature and fluidity. Indeed, replication of several viruses has been 

shown to be affected by sterols, fatty acids and phospholipids (31, 71, 87-90). 

 Tomato bushy stunt virus (TBSV) is a small (+)RNA virus that has emerged as a 

model virus to study virus replication, recombination, and virus - host interactions due to 

the development of yeast (Saccharomyces cerevisiae) as a model host (1, 5, 79, 91, 92). 

Over 400 host genes/proteins that affected either TBSV replication or recombination have 

been identified via genome-wide screens of yeast genes or global proteomics approaches 

(12, 93-96). The highly purified tombusvirus replicase complex (VRC) is known to 

contain the two viral replication proteins (i.e., p33 and p92pol) and 6-10 host proteins (97-

99). These host proteins have different functions during TBSV replication. For example, 

heat shock protein 70 (Hsp70), eukaryotic elongation factor 1A (eEF1A) and the ESCRT 

(endosomal sorting complexes required for transport) family of host proteins are involved 

in the assembly of the VRC (75, 81, 86, 100-103). In addition, eEF1A and eEF1Bγ 

facilitate (-)strand synthesis (103, 104); glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) and Ded1 DEAD-box helicase have been shown to promote viral (+)RNA 

synthesis (37, 105, 106); while Pex19 shuttle protein is involved in targeting of the 

replication proteins to peroxisomes, the sites of replication (107).  
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 The auxiliary p33 replication protein, which has RNA chaperone function, is an 

abundant protein and is essential for replication of TBSV in both yeast and plants (3, 7, 

10, 32). The tombusvirus p33 is an integral membrane protein that has been shown to 

recruit the TBSV (+)RNA into replication. The current picture is that the p33 replication 

protein is the master regulator of TBSV replication by interacting with the viral RNA, 

p92pol and numerous host proteins and host membranes. The host also targets p33 or the 

viral RNA via nucleolin, cyclophilins or WW-domain proteins to limit tombusvirus 

infections (108-112). On the other hand, the viral p92pol, which is a translational 

readthrough product containing the p33 sequence at its N-terminus and a unique RdRp 

domain at the C-terminus, is present in a lesser amount (1). Interaction between p92pol and 

p33 replication proteins is required for assembling the functional VRC (2, 10, 49, 92). 

Interestingly, the activation of the RdRp function of p92pol protein requires not only p33, 

cis-acting sequences present in the viral (+)RNA and host factors, but also host 

membranes (2-4, 92). This complex VRC assembly process and the many factors needed 

for the RdRp activation opens the exciting questions whether tombusviruses could utilize 

different cellular membranes or if various heterologous combinations of tombusvirus 

replication proteins are functional.   

Most tombusviruses, including TBSV, Cucumber necrosis virus (CNV), and 

Cymbidium ringspot virus (CymRSV), show preference for peroxisomal membranes (10, 

18, 113). Interestingly, these viruses can also replicate efficiently on the ER membrane in 

the absence of peroxisomes, suggesting flexibility in intracellular membrane utilization 

(15, 32, 107). Another tombusvirus, Carnation Italian ringspot virus (CIRV), however, 

prefers to use mitochondrial membrane for replication (19, 48). Artificial retargeting of 
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the CIRV replication proteins to the peroxisomes or CymRSV to the mitochondria via 

chimeric constructs also supported CIRV and CymRSV replication (114), suggesting that 

these viruses could utilize more than one intracellular environment for their replication.    

To analyze if tombusviruses are indeed capable of utilizing various intracellular 

membranes for their replication, we used in vitro approaches with recombinant viral 

proteins and isolated intracellular organelles/membranes. Interestingly, we found that 

TBSV, which originally uses the peroxisomal membrane, could also utilize ER and 

mitochondrial membranes for replication in vitro. On the other hand, CIRV, which 

originally utilizes the mitochondrial membranes, replicated on the isolated mitochondrial 

membranes, while it could use the ER membrane less efficiently in vitro. Using 

heterologous combinations of replication proteins and chimeric constructs, we identified 

that multiple domains in the replication proteins are determinants of membrane 

preference for tombusvirus replication. Altogether, the current paper promotes the idea 

that TBSV is less restricted, while CIRV is more restricted in utilizing various 

intracellular membranes for replication. 

 

2.2 Materials And Methods 

 

Yeast strains and expression plasmids. Saccharomyces cerevisiae strain  

Saccharomyces cerevisiae strain BY4741 (MATa his3∆1 leu2∆0 met15∆0 ura3∆0) and 

single-gene deletion strains pex3∆ were obtained from Open Biosystems. Constructs 

pMAL-p33 and pMAL-p92, to express TBSV p33 (renamed here as T33) and p92 (re-
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named as T92) as fusion proteins to the C-terminus of MBP were described previously 

(102).  

To generate the E. coli expression constructs pMAL-p36, pMAL-p95, pMAL-

C36-T92, pMAL-T33-C95, pMAL-T33c, pMAL-T92c, pMAL-T33tc, and pMAL-T92tc, 

we used the following approaches: The CIRV p36 sequence was amplified from CIRV 

full-length cDNA (obtained from A. White, York University, Canada) with primers #642 

(5’-GTATTTGACACCGAGGG-3’) and #3230 

(CCGCTCGAGCTATTTGACACCGAGGGATT). The CIRV p95 sequence was 

obtained by blunt-end ligation of PCR product of C36 amplified by primer #642 and 

#643 (GGAGGCCTAGTGCGTCTAC) from CIRV cDNA and the C95 C-terminal 

sequence was amplified by PCR using primers # 644 

(GGAGCTCGAGCTATTTGACACCCAGGGAC) and #970 

(CCTAGGGAAAAACTGTCGGTA) and CIRV cDNA. C36-T92 chimeric sequence 

was obtained by blunt-end ligation of PCR product of C36 sequence PCR-amplified with 

primers #642 and #643 using CIRV full-length cDNA, and T92 C-terminal sequence was 

amplified by PCR with primers #6 (GGAGGCCTAGTACGTCTAC) and #826 

(GATTACATTGTCCCTCTATCT) using TBSV full-length cDNA. T33-C95 chimeric 

sequence was obtained by blunt-end ligation of PCR products of T33 [generated by PCR 

with primers #473 (GAGGAATTCGAGACCATCAAGAGAATG) and #3960 

(GTATTTGACACCCAGGGAC)] and C-terminal sequence of C95 (generated by PCR 

with primers #644 and #970). The T33c sequence was obtained by blunt-end ligation of 

PCR product using primers #642 and #4102 amplified from CIRV cDNA and PCR 

product using primers #4099 and #810 amplified from TBSV cDNA. The T92c sequence 
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was obtained by blunt-end ligation of T33c (generated by PCR with primers #642 and 

#3960) and T92 C-terminal sequence. The T33tc sequence was obtained by blunt-end 

ligation of PCR product using primers #642 and  #4090 

(ACGAGCCACACCCCGTTTAGC) and CIRV cDNA and the PCR-product generated 

by using primer #4087 (GATTACATTGTCCCTCTATCT) and #810 

(CCCGCTCGAGTCAAGCTACGGCGGAGTCGAGGA) and TBSV cDNA. The T92tc 

sequence was obtained by blunt-end ligation of T33tc (generated by PCR using primers 

#642 and #3960) and the PCR-amplified C-terminal sequence of T92. All the above PCR 

products were digested by EcoRI and XhoI restriction enzymes and inserted into pMAL-

c2X (New England BioLabs). 

To generate N-terminal GST-His6 fusion proteins, the C-terminal sequence of 

TBSV p33 was PCR-amplified using primers #633 

(GGAGGAATTCATGGAGGGTTTGAAGGC) and #1593 

(CGGCTCGAGCTATTTGACACCCAGGGACTCCTGT) and TBSV cDNA. The C-

terminal sequence of CIRV p36 was PCR-amplified using primers #633 

(GGAGGAATTCATGGAGGGTTTGAAGGC) and #3230 

(CCGCTCGAGCTATTTGACACCGAGGGATT) and CIRV cDNA. The PCR products 

were digested with BamHI and XhoI and cloned into BamHI/XhoI digested pGEX-His 

(111).  

To generate pGD-L-T33, pGD-L-T92, pGD-L-C36, pGD-L-95 constructs for 

agro-infiltration in plants, the PCR product of TBSV p33 sequence  [using primers: #788 

(GGAGCTCGAGTCAAGCTACGGCGGAGTC)/ #810 

(CCCGCTCGAGTCAAGCTACGGCGGAGTCGAGGA)] was digested with BamHI 
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and XhoI; the TBSV p92 sequence [obtained using primers: #4000 

(CCAGAGATCTATGGAGACCATCAAGAGAATG) / #826 

(GATTACATTGTCCCTCTATCT)] was digested with BglII and XhoI, the PCR product 

of CIRV p36 sequence [obtained using primers: #900 

(ACGAGCCACACCCCGTTTAGC) / #3230 

(CCGCTCGAGCTATTTGACACCGAGGGATT)] was digested with BamHI and XhoI, 

while the PRC product of CIRV p95 sequence [obtained using primers: #900 

(ACGAGCCACACCCCGTTTAGC) / #970 (CCTAGGGAAAAACTGTCGGTA)] was 

digested with BamHI and XhoI. Then, the above PCR products were separately inserted 

into pGD-L (81), which was digested with BamHI and XhoI, generating transient 

expression vectors for agro-infiltration. 

For the imaging experiments, we have constructed the following plasmids: pESC-

T33/DI72, pESC-C36/DI72, pYES-T92 and pYES-C95. For this, sequences of full-

length TBSV p33 (primers: #788/#810), CIRV p36 (primers: #900/#3230) and p95 

(primers: #900/#970) were PCR-amplified and digested with BamHI and XhoI, while the 

PCR-amplified sequence of TBSV p92 (primers: #4000/#826) were digested with BglII 

and XhoI. Digested PCR products were then inserted into pESC-HisCNVp33-DI72, or 

pYES-CNVp92 digested with BamHI/XhoI. 

To track viral protein localization in yeast cells, we cloned rsGFP (red-shifted) sequence 

upstream of the N-terminus of TBSV p33/p92, and CIRV p36/p95. The rsGFP sequence 

was PCR-amplified with primers #1262 

(CGGCGGATCCGGTAAAGGAGAAGAACTTTTCACT) and #1263 

(CGGCGGATCCGAGTCCGGACTTGTATAGTTCA) using pGDG vector as a template 
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[provided by Dr. M. Goodin (115)], followed by digestion with BamHI and inserted into 

pESC-C36/DI72 or pYES-C95 digested with BamHI, generating pESC-rsGFP-C36/DI72 

and pYES-rsGFP/C95. The cDNA sequence of TBSV p33 was PCR-amplified using 

primers #4000/#810, while the cDNA sequence of TBSV p92 was PCR-amplified with 

primers #4000/#826. The obtained PRC products were digested with BglII, followed by 

ligation with the PCR-amplified rsGFP sequence digested with BamHI, generating the 

cDNAs of rsGFP-T33 and rsGFP-T92. Then, the cDNAs of rsGFP-T33 and rsGFP-T92 

were digested with BamHI and XhoI, and inserted into pESC-C36/DI72 or pYES-C95 

digested with BamHI/XhoI, resulting in pESC-rsGFP-T33/DI72 and pYES-rsGFP-T92 

expression plasmids. 

 

Agroinfiltration and RNA extraction. N. benthamiana leaves were agroinfiltrated with 

A. tumefaciens cultures containing combinations of pGD-L-T33, pGD-L-T92, pGD-L-

C36 or pGD-L-C95 as well as pGD-DI72sat and pGD-p19 as described (81).  After 3.5 

days post infiltration, agro-infiltrated leaves were collected, total RNA was extracted and 

subjected for Northern blot analysis as described (81). 

 

Preparation of CFE and soluble fraction (S100). The yeast CFE from BY4741yeast 

strain was prepared as described (49). For production of S100 soluble fraction, yeast CFE 

was further centrifuged at 100,000 g for 1 hour, and the supernatant (S100) was carefully 

collected without disturbing the pellet, and then stored at –80°C. 

 

Purification of yeast microsomal membranes. Yeast microsomes were prepared as 



 

16 
 

previously described (116), except that yeast microsomes were washed in 30 mM 

HEPES-KOH, pH 7.4, 150 mM potassium acetate, 2 mM magnesium acetate, containing 

complete mini Protease Inhibitor Cocktail (Roche applied science). The protein 

concentration of obtained yeast microsomal membranes was 4 mg/ml. 

 

Purification of intact yeast mitochondria. Yeast intact mitochondria were purified 

according to REF.: (117). Briefly, yeast cells were made into spheroplasts by incubating 

with 5 mg/g (wet weight) Zymolyase-20T (Seikagaku, America), and then the 

spheroplasts were homogenized and lysed with glass Dounce homogenizer in ice-cold 

homogenization buffer (0.6 M sorbitol, 10 mM Tris-HCl, pH 7.4, 1 mM PMSF, 0.2% 

(w/v) BSA). Then, the homogenized spheroplasts were centrifuged at 3,000 g for 5 min at 

4°C and the supernatant was subjected to additional centrifugation at 12,000 g for 15 min 

to obtain the crude mitochondria preparation. To further remove contaminating 

membranes, the crude mitochondrial preparation was subjected to two sequential 

centrifugations at 134,000 g on a sucrose gradient (0.7 ml 60%, 1.5 ml 32%, 0.7 ml 23% 

and 0.7 ml 15% (w/v) sucrose with 1mM EDTA and 10 mM MOPS-KOH). The purified 

mitochondrial preparation was recovered between the 60% / 32% sucrose gradient 

interface and stored in SEM buffer [250 mM sucrose, 1 mM EDTA, 10 mM MOPS-

KOH, pH 7.2, containing complete mini Protease Inhibitor Cocktail (Roche applied 

science)] at -80°C. The protein concentration was about 3 mg/ml. 

 

Isolation of oleate-induced peroxisomes using sucrose gradients. The isolation of 

peroxisomes was according to REF.: (118). Yeast was grown in peroxisome induction 
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medium containing 0.12% (w/v) oleic acid, 0.2% Tween 40, 0.5% Bacto peptone and 

0.3% yeast extract till 1.0 OD600. Cell wall was digested with Zymolyase to generate 

spheroplasts in MES buffer (5 mM MES pH5.5, 1 mM EDTA, 1 mM KCl) with 1.2 M 

sorbitol, and homogenized by gradually adding MES buffer until sorbitol concentration 

reached to 0.65 M. Unlysed cells and cell debris were removed by centrifuging at 2,000 

g, and crude peroxisome preparations were collected via centrifugation at 20,000 g. The 

crude peroxisome preparations were applied to a linear sucrose gradient (10%-80%) 

using Beckman VTi 50 rotor at 34,500 g for 2.5 hours. Fractions were collected and 

stored at -80°C.  Before in vitro replicase assembly assay, each membrane fraction (100 

µl) was thawed on ice and diluted 5x with 30% sucrose/MES buffer, followed by 

centrifugation at 20,000 g for 30 min. Then, the pellets of each fraction were carefully 

suspended into 10 µl of 30% sucrose/MES buffer. The protein density in peroxisome 

fractions #11 to #16 was about 1 mg/ml. 

 

In vitro replication assay. The yeast CFE-based replication assay was modified from Ref: 

(54) to study TBSV and CIRV replication using the isolated organelle preparations. The 

yeast cell extract (2 µl) or purified membrane fractions (1 µl) together with S100 soluble 

fraction (1 µl) was incubated at 25°C water bath for 1 hour in 8 µl cell-free replication 

buffer A containing 30 mM HEPES-KOH, pH 7.4, 150 mM potassium acetate, 5 mM 

magnesium acetate, 0.6 M sorbitol, as well as 15 mM creatine phosphate; 1 mM ATP, 

CTP, GTP and 0.025 mM UTP; 0.1 µl of [32P]UTP, 0.1 mg/ml creatine kinase, 0.1 µl of 

RNase inhibitor, 10 mM dithiothreitol, 0.5 µg DI-72 RNA transcript and 0.5 μg 

recombinant MBP-fused viral proteins. Then the volume of reaction was adjusted by 
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adding 16 l cell-free replication buffer B containing 30 mM HEPES-KOH, pH 7.4, 150 

mM potassium acetate, 5 mM magnesium acetate, together with 15 mM creatine 

phosphate; 1 mM ATP, CTP, GTP and 0.025 mM UTP; 0.2 µl of [32P]UTP, 0.1 mg/ml 

creatine kinase, 0.2 µl of RNase inhibitor, 10 mM dithiothreitol, 0.05 mg/ml actinomycin 

D. The reaction mixture was incubated at 25°C for 3 h. The reaction was terminated by 

adding 110 µl stop buffer (1% sodium dodecyl sulfate [SDS] and 0.05 M EDTA, pH 8.0), 

followed by phenol-chloroform extraction, isopropanol-ammonium acetate precipitation, 

and a washing step with 70% ethanol. RNA samples were electrophoresed in denaturing 

gel (5% PAGE containing 8 M urea) and analyzed by phosphorimager(Typhoon; GE). 

To test the effect of sorbitol on in vitro tombusvirus replication, the purified membrane 

preparations (1 µl) together with S100 fraction (1 µl) was incubated at 25 °C water bath 

for 4 hour in 24 l of modified cell-free replication buffer A containing 0, 0.2 and 0.6 M 

sorbitol. 

 

Micrococcal nuclease treatment of the in vitro replication assay mixture. The The 

replication assay was conducted as described above, except that at different time points of 

the reaction, each sample was treated with 0.25 U/µl micrococcal nuclease and 1 mM 

CaCl2 at different time point after staring of the incubation in the replication buffer A as 

described previously (54). 2.5 mM EGTA was added to each sample after 15 min 

incubation of micrococcal nuclease to stop the nuclease digestion. 

 

Replication assay to determine viral (+)RNA/(−)RNA ratio. This assay was done as 

described in a previous publication (95). Briefly, 2 µg of in vitro transcripts of minus-
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strand and plus-strand DI-72 RNAs were separately dot blotted onto a Hybond XL 

membrane (Amersham) followed by UV cross-linking. In vitro replication products were 

hybridized to the blots in ULTRAhyb solution (Ambion) at 68°C and quantified after 

washing. 

 

Western blotting. Western blotting of yeast membrane proteins was done according to 

REF.: (100). The following antibodies were used: anti-porin, anti-ALP, anti-PGK and 

anti-dpm1 (purchased from Invitrogen, CA, USA). Sec61p antibody was provided by Dr. 

Tom Rapoport from Harvard Medical School. Fox3p antibody was provided by Dr. 

Daniel J. Klionsky from University of Michigan. 

 

In vitro membrane association assay. [35S]methionine-labeled TBSV p33 and CIRV 

p36 were obtained in nuclease-treated rabbit reticulocyte lysates (Promega) in the 

presence of 400 µCi/ml [35S]methionine. 1 l of translation mixture was incubated at 

25°C for 1 hour with 2 l purified yeast microsomes or purified yeast mitochondrial 

preparations and 2 l S100 fraction in 40 l reaction containing cell-free replication 

buffer A (30 mM HEPES-KOH, pH 7.4, 150 mM potassium acetate, 5 mM magnesium 

acetate, 0.6 M sorbitol) as well as 15 mM creatine phosphate; 1 mM rNTP; 0.1 mg/ml 

creatine kinase, 0.1 µl of RNase inhibitor, 10 mM dithiothreitol, 0.5 µg DI-72 RNA 

transcript. Each reaction mixture was diluted 3 times with the cell-free reaction buffer A, 

followed by incubation on ice for 30 min. The samples were centrifuged at 100,000 g for 

2 hours. Pellet was dissolved in SDS-PAGE sample buffer. Proteins from the supernatant 

fractions were precipitated in 10% trichloroacetic acid (TCA) and dissolved in SDS-
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PAGE sample buffer. Samples were separated by SDS-PAGE. 

 

In vitro MBP pulldown assay. MBP-tagged TBSV T33 (p33), T92 (p92), CIRV C36, 

C95 and GST- His6-tagged TBSV p33C and CIRV p36C were expressed in E. coli, 

transformed with one of the following plasmids: pMAL-T33, pMAL-T92, pMAL-C36, 

pMAL-C95, pGEX-his-T33C, pGEX-his-C36C. E. coli cultures were lysed by sonication, 

followed by affinity-purification via amylose columns and washed with cold column 

buffer with high salt (10 mM Tris-Cl, pH 7.4; 1 mM EDTA, 200 mM NaCl, 10 mM 2-

mercaptoethanol) as described (119). The GST-His6-tagged p33C, GST-His6-p36C or 

GST-His6 (negative control) were incubated with the MBP-tagged proteins for 1 hour at 

4 °C and washed by column buffer with high salt. The bound proteins were eluted with 

column buffer with high salt supplemented with 10 mM maltose (119). The presence of 

GST-tagged proteins was analyzed by SDS-PAGE and Western blotting using an anti-

GST antibody. 

 

Confocal laser microscopy. Visualization of Pho86-CFP ER marker protein and various 

combination of tagged viral proteins in live yeast cells were as described previously (32, 

107). To visualize yeast mitochondrial distribution of various viral proteins, we 

transformed yeast with combinations of plasmids: pESC-GFP-T33/DI72, pESC-GFP-

C36/DI72, pYES-GFP-T92 or pYES-GFP-C95 with pESC-T33/DI72, pESC-C36/DI72, 

pYES-T92 and pYES-C95 as described in the legend to Fig. 2.9. Transformed yeast were 

grown at 23°C in minimal media supplemented with 2% galactose, and then we used 

Rhodamine B (hexyl ester-perchlorate, a mitochondria-specific dye used in yeast, Catalog 
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# R-648MP, Invitrogen, CA, USA) to visualize yeast mitochondria (120-122) with an 

Olympus FV1000 microscope (Olympus America Inc., Melville, New York). 

 

2.3 Results 

CIRV replication proteins support RNA replication in yeast cell-free preparations in 

vitro. We have previously shown that TBSV can efficiently replicate in cell-free extracts 

(CFE) prepared from yeast (4, 49, 102). The CFE-based TBSV replication assay 

contained purified recombinant TBSV p33 and p92pol replication proteins and T7 

polymerase-made DI-72 (+)-stranded replicon (rep)RNA transcripts. The CFE supported 

one single cycle of replication, starting with (-)RNA synthesis on the added (+)repRNA 

transcripts, followed by robust synthesis of (+)repRNA progeny (4, 49, 102). The CFE-

based assay recapitulated the known features of TBSV replication, including the 

requirement of cis-acting viral RNA elements, dependence on viral and host factors and 

the need for both membranous and soluble fractions of CFE. Other features of the assay 

included asymmetrical replication, leading to 10-to-40-fold more (+) than (-)RNA; 

association of the VRCs with membranes that led to protection against ribonucleases and 

proteases after the assembly of VRCs; the release of (+)repRNA progeny to the soluble 

fraction during the reaction, while retaining the (-)repRNA in the VRCs (4, 49, 102).  

 To test if CIRV replication proteins, which are originally associated with 

mitochondrial membranes (19, 48), could support repRNA replication in the CFE-based 

assay, we added purified recombinant p36 and p95pol (called C36 and C95 in this paper to 

discriminate them form the homologous TBSV p33 and p92pol, named T33 and T92) in 

combination with the TBSV-derived DI-72(+) repRNA to yeast CFE. Interestingly, we 
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observed the replication of repRNA in samples containing both C36 and C95 (Fig. 2.1A, 

lane 7), which reached about 10% of that supported by T33/T92 (lane 1). No replication 

was observed when C95 protein was omitted from the CFE-based assay (Fig. 2.1A, lane 

8), confirming that both CIRV replication proteins are required for repRNA replication. 

The supernatant or membrane fractions of CFE alone or the Triton X100-treated CFE 

could not support repRNA replication in the presence of C36 and C95 (Fig. 2.1A, lanes 

10-12), similar to that observed with T33/T92 (lanes 4-6). Thus, these experiments 

showed that the CIRV C36/C95 replication proteins could support repRNA replication in 

CFE, albeit with reduced efficiency when compared with the TBSV T33/T92 replication 

proteins.  

 To further test the CIRV replication process in the yeast CFE, we estimated the 

ratio of newly made (+)-strand versus (-)-strand repRNA levels in the replication assay 

(Fig. 2.1C). This showed that, similar to the TBSV replication proteins, the CIRV 

replication proteins also performed asymmetrical viral RNA synthesis by producing ~10 

times more new (+)-strands than (-)-strands in the yeast CFE (Fig. 2.1C).    

 Since the repRNA was the TBSV-derived DI-72 in the above assays, it is possible 

that the reduced replication was due to the less efficient utilization of the heterologous 

repRNA by the CIRV replication proteins in comparison with repRNA replication 

supported by the homologous TBSV replication proteins. To test this possibility, we also 

used the CIRV-derived DI-1 repRNA (14) in the CFE-based assay. These experiments 

revealed that both repRNAs were used more efficiently by T33/T92 than C36/C95 in 

vitro (Fig. 2.1B, and D, lanes 1-2 versus 3-4). Thus, the viral replication proteins 

determine the efficiency of repRNA replication in this assay. 
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Heterologous combinations of replication proteins supports RNA replication in yeast 

cell-free preparations in vitro and in planta. To test if the heterologous combinations of 

tombusvirus replication proteins could support repRNA replication, we used the CFE-

based assay with the purified recombinant proteins. The CFE-based assay revealed that 

the heterologous combinations of replication proteins did support repRNA replication 

(Fig. 2.1B and D, lanes 5-8), albeit less efficiently than T33/T92 (Fig. 2.1B and D, lanes 

1-2). Moreover, we observed that the viral RdRp protein was the major factor controlling 

the efficiency of repRNA replication. Accordingly, the homologous combination of 

T33/T92 (Fig 2.1B and D, lanes 1-2) or the heterologous combination of C36/T92 (lanes 

5-6) supported more efficient replication than C36/C95 (lanes 3-4) or T33/C95 (lanes 7-

8). Thus, it seems that T92 RdRp protein is ~6-20-fold more active in the CFE-based 

assay than C95 RdRp. However, the small replication protein also affected the efficiency 

of replication since the combinations of replication proteins that included T33 supported 

up to ~3-fold more replication than C36 in a complex with the RdRp protein (compare 

T33/T92 versus C36/T92; Fig. 2.1B and D, lanes 1-2 versus 5-6). 

 To test if the tombusvirus replication proteins behave similarly in plant cells, we 

used an agro-infiltration-based approach to express the TBSV and CIRV replication 

proteins and DI-72 repRNA in Nicotiana benthamiana. These experiments also revealed 

that T33/T92 combination supported repRNA replication more efficiently (Fig. 2.2, lanes 

1-4) than C36/C95 (lanes 5-8). However, the use of heterologous combination of 

tombusvirus replication proteins revealed that T33 replication protein and not the T92 

replication protein is responsible for the enhanced level of replication in plants (Fig. 2.2). 
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This difference between in vitro and in planta data could be due to the ability of T33 or 

C36 to induce membrane proliferation in plant cells that promote more efficient 

replication (these features cannot manifest in the CFE). Nevertheless, the in planta 

experiments demonstrated that the heterologous combinations of tombusvirus replication 

proteins are functional in supporting repRNA replication.  

 Tombusvirus replication depends on the interaction between the S1/S2 

subdomains common in the T33/C36 RNA chaperone and T92/C95 RdRp proteins, 

which is needed for the assembly of the functional VRC (11). The above observations 

that the heterologous combinations of tombusvirus replication proteins support 

tombusvirus RNA replication in the CFE assay and in planta suggest that the 

heterologous replication proteins likely interact with one another. To test the 

heterologous interactions, we performed pull-down assay with immobilized MBP-tagged 

viral replication proteins and the GST-tagged T33C (the C-terminal half, p33C) or GST-

C36C (the C-terminal half, p36C). This assay confirmed interaction between the 

heterologous replication proteins that were comparable with the interaction between the 

homologous replication proteins (Fig. 2.2B). 

 

Tombusviruses can replicate in microsomal and mitochondrial preparations in vitro. 

To better understand the role of different subcellular membranes in tombusvirus 

replication and to test what subcellular membranes can be used for repRNA replication 

by TBSV and CIRV replication proteins in vitro, we isolated microsomal (representing 

the ER membrane), peroxisomal and mitochondrial fractions from yeast, followed by in 

vitro replication assay with purified recombinant tombusvirus replication proteins (Fig. 
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2.3A). Interestingly, we found that the microsomal preps, which lacked detectable 

peroxisomal and mitochondrial marker proteins (Fig. 2.3B, bottom panels), supported 

repRNA replication ~16-fold more efficiently in the presence of T33/T92 than C36/C95 

and the S100 fraction of CFE (the membrane-free supernatant that provides essential 

soluble host proteins) (Fig. 2.3B, lane 1 versus 2). These data suggest that the isolated ER 

membrane can support the assembly of both TBSV and CIRV VRCs, although the CIRV 

replication proteins show poor activity in this environment. 

 To test if viral RNA synthesis includes the full cycle of replication in the 

microsomal preparations, we estimated the ratio of newly made (+)-strand versus (-)-

strand repRNA levels in the in vitro replication assay (Fig. 2.3C). Interestingly, both 

TBSV and CIRV replication proteins supported asymmetrical viral RNA synthesis by 

producing ~11-14 times more new (+)-strands than (-)-strands in the microsomal 

preparations (Fig. 2.3C). Thus, even CIRV replication proteins are capable of supporting 

full replication, albeit less efficiently than the TBSV replication proteins, in the 

microsomal preparations.  

 Similar experiments with purified mitochondrial preparations revealed that both 

TBSV and CIRV replication proteins supported repRNA replication in vitro (Fig. 2.3D). 

Thus, unlike with the microsomal preparations, the CIRV replication proteins are fully 

active on the mitochondrial membrane, which is also used by CIRV in yeast and plants 

(19, 48). Both TBSV and CIRV replication proteins supported asymmetrical viral RNA 

synthesis by producing ~9-10 times more new (+)-strands than (-)-strands in the 

mitochondrial preparations (Fig. 2.3E). Thus, these data indicate that the mitochondrial 

membrane can support full TBSV and CIRV replication in vitro. 
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 Unfortunately, the isolated oleate-induced peroxisomal preparations did not 

support repRNA replication with TBSV and CIRV replication proteins (not shown). 

Therefore, we decided to test tombusvirus RNA replication using sucrose-gradient 

fractionated crude mitochondrial and peroxisomal preparations (Fig. 2.4). We found that 

fractions 12 to 16 of the crude peroxisomal preparation (obtained from yeast after 

induction with oleic acid), which had the highest concentration of Fox3 peroxisomal 

marker (Fig. 2.4A, lanes 12-16), while contained Sec61 ER marker or porin 

mitochondrial marker proteins in small amounts, did not support repRNA replication by 

C36/C95 and T33/T92. The only repRNA replication with C36/C95 and T33/T92 was 

seen with fractions 3-to-11, which contained the highest amount of contaminating ER and 

mitochondrial membranes (based on the presence of Sec61 ER and porin mitochondrial 

marker proteins in these fractions) (Fig. 2.4A, lanes 3-11). Based on these data, we 

conclude that the peroxisomal preparations obtained from yeast induced by oleic acid 

cannot support tombusvirus replication in vitro. This could be due to the fragile nature of 

the peroxisomes during the isolation procedure or other unknown factors. 

 In contrast, fractions 17 and 18 of the crude mitochondrial preparation (after high 

speed centrifugation in sucrose-gradient) supported repRNA replication by C36/C95 and 

T33/T92 at the highest efficiency (Fig. 2.4B, lanes 17-20). These fractions were enriched 

for mitochondria since they had the porin mitochondrial marker protein in the highest 

concentration, but contained Sec61 ER marker or peroxisomal, vauolar and cytosolic 

markers at low levels These data confirmed that the enriched mitochondrial membrane 

could provide suitable environment for tombusvirus VRC assembly and repRNA 

replication in vitro. 
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 Since the ER membrane has been shown to support efficient TBSV replication in 

yeast (32, 107), we decided to use both the purified microsomal and mitochondrial 

preparations for the follow up experiments. Accordingly, to further test if the microsomal 

and mitochondrial preparations could assemble authentic tombusvirus VRCs, we 

performed time-course experiments with micrococcal nuclease, which digests the 

unprotected viral RNA (Fig. 2.5A) (49, 102). Interestingly, similar to CFE (49, 102), both 

microsomal and mitochondrial preparations with C36/C95 and T33/T92 replication 

proteins protected ~15-24% of the newly made 32P-labeled repRNA (representing the 

minus- and plus-stranded replication products) if added 60 min after the start of the assay 

(Fig. 2.5B-C, lanes 5 and 15). The addition of micrococcal nuclease during the first 15 

min of the assay eliminated repRNA synthesis (Fig. 2.5B-C, lanes 2 and 12), likely due to 

the lack (or incomplete) of VRC assembly, which takes 30-60 min in vitro (49, 102). 

Altogether, we observed that the recruited repRNA becomes nuclease-protected after 30-

45 min in the microsome preparation in the presence of the viral replication proteins (Fig. 

2.5B, lanes 3 and 13), while it takes 45-60 min in the mitochondrial preparation to 

assemble VRC and protect the recruited repRNA from micrococcal nuclease (Fig. 2.5C, 

lanes 4-5 and 14-15). These data suggest that both microsomal and mitochondrial 

preparations with C36/C95 and T33/T92 replication proteins could assemble authentic 

VRCs that protect the VRC-bound viral RNA from nucleases. In addition, it seems that 

the VRC assembly with C36/C95 and T33/T92 replication proteins is faster in the 

microsomal than in the mitochondrial preparations. 

 Osmotic pressure is important during the isolation of pure and intact mitochondria 

(117). To test if the osmotic pressure is important during tombusvirus replication in vitro 
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in microsomal or mitochondrial membranes, we compared the effect of different 

concentrations of sorbitol in the assay buffer. We found that in the absence of sorbitol in 

the assay buffer, neither TBSV nor CIRV could replicate in microsomal or mitochondrial 

preparations (Fig. 2.5D, lanes 3 and 7). These data suggest that intact microsomal or 

mitochondrial membranes should be maintained to support viral VRC assembly or 

replication. On the other hand, the purified tombusvirus replicase does not require 

sorbitol for RNA synthesis in vitro (2, 92), excluding that the replicase depends on 

sorbitol for function. We propose that the sorbitol is needed in the assay buffer to keep 

the organellar membranes intact and functional during the assay. 

 

Multiple domains within the replication proteins are responsible for different level of 

tombusvirus replication in ER or mitochondrial membranes. To test what domain of the 

tombusvirus replication proteins is responsible for the observed differences between the 

TBSV and CIRV in utilizing microsomal and mitochondrial membranes, first we used 

heterologous combinations of CIRV and TBSV replication proteins to support RNA 

replication in vitro based on microsomal and mitochondrial preparations. Interestingly, 

the heterologous combination of C36/T92 supported repRNA replication almost as 

efficiently as the homologous combination of T33/T92 (Fig. 2.6A, lanes 5-6 versus 1-2) 

in the microsomal preparation, while combinations of C36/C95 and T33/C95 replication 

proteins supported repRNA replication only at ~10-15% level of T33/T92 (Fig. 2.6A, 

lanes 3-4, and 7-8 versus 1-2). Thus, we conclude that the T92 RdRp protein is far more 

active than the C95 RdRp protein and T92 is the major determinant of the efficient use of 

the ER membrane for in vitro repRNA replication. In addition, we note that T33 
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replication cofactor has a better stimulatory effect on the activity of the tombusvirus 

replicase than C36 replication cofactor in case of the ER membrane. 

 The picture was different with the mitochondrial preparation because of the 

improved stimulatory effect of the C36 replication cofactor on the activity of the 

tombusvirus replicase (Fig. 2.6B). Accordingly, high replication level was supported by 

C36/T92 and C36/C95 combinations (Fig. 2.6B). While the homologous combination of 

T33/T92 supported high level replication (Fig. 2.6B, lanes 1-2), the heterologous 

combination of T33 and C95 supported the lowest level of repRNA replication (Fig. 2.6B, 

lanes 7-8), suggesting that the T33 protein is less efficient than C36 in the mitochondrial 

membrane. The observed differences between T33 and C36 is unlikely due to differences 

in membrane associations, since we found that both T33 and C36 replication proteins 

associated with microsomal and mitochondrial membranes efficiently in vitro (Fig. 2.6C-

D).  

 Since the tombusvirus RdRp proteins have two major domains (Fig. 2.7A), we 

have made chimeric constructs between the TBSV T92 and CIRV C95 proteins as shown 

in Fig. 2.7B. The N-terminal domain of the TBSV T92 and CIRV C95 RdRp proteins is 

identical with the T33 or C36 co-factor proteins (Fig. 2.7A), while the C-terminal domain 

harbors the highly conserved RdRp functional motifs. Testing the chimeric RdRp 

proteins in microsomal preparations revealed that C36-T92 (in combination with C36 co-

factor), carrying the RdRp domain of the TBSV T92 and the N-terminal C36 domain, 

supported repRNA replication up to 40% level of combination of T33 co-factor and T92 

RdRp (Fig. 2.7C, lanes 7-8 versus 1-2). In contrast, the chimeric T33-C95 RdRp protein 

(in combination with T33 co-factor) supported repRNA replication poorly in microsomal 
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preparations (lanes 5-6). Thus, these experiments indicate that the C-terminal RdRp 

domain in T92 is responsible for the efficient utilization of the ER membrane, while the 

homologous RdRp domain of C95 is less efficient in this environment. The data also 

support that T33 over-lapping domain within the RdRp protein is more active in the ER 

than the C36 over-lapping domain. 

 Similar experiments with mitochondrial preparations revealed that the RdRp 

domain of the TBSV T92 is still ~3-fold more active than the corresponding domain of 

the CIRV C95 (compare the chimeric C36-T92 RdRp with C95 RdRp in combination 

with C36 co-factor, lanes 7-8 versus 3-4, Fig. 2.7D). However, we also observed a ~2-

fold stimulatory effect of C36 over-lapping domain when present in the RdRp protein 

(compare the chimeric C36-T92 RdRp with T92 RdRp, lanes 7-8 versus 1-2, Fig. 2.7D). 

In addition, T33 co-factor and T33-C95 RdRp combination supported low level of 

repRNA replication, demonstrating that the T33 over-lapping domain is poorly adapted to 

the mitochondrial membrane, as noted above with the heterologous combination of 

replication proteins (Fig. 2.6B, lanes 7-8). 

 Since it seems that the T33 protein and the T33 over-lapping domain when 

present in the RdRp protein is not well suited to support RNA replication in the 

mitochondrial membrane when compared with C36 cofactor, we made chimeras between 

T33 and C36 and their corresponding domains in the RdRp proteins as shown in Fig. 

2.8A, D. We have divided T33 and C36 sequences into three subdomains: the N-terminal 

subdomain known to be involved in intracellular localization of T33 and C36 cofactors 

(10, 18, 48); the central subdomain that includes the two trans-membrane sequences 

(TMD); and the C-terminal subdomain involved in protein-RNA and protein-protein 
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interactions (11, 119, 123).  

 Testing the chimeric constructs in the mitochondrial preps revealed that replacing 

the N and TMD subdomains of T33 with those of C36 in T33 cofactor and T92 RdRp 

resulted in a highly active chimera (T33c and T92c), which replicated the most efficiently 

(Fig. 2.8C, lanes 5-6 versus 1-2). This chimera, however, replicated the repRNA more 

efficiently even in the microsome preparations (Fig. 2.8B, lanes 5-6 versus 1-2), 

suggesting that chimeric tombusviruses might have increased potential to replicate in 

various intracellular membranes. These observations could be relevant for the evolution 

of tombusviruses (see Discussion). 

 

Combinations of heterologous replication proteins show both ER and mitochondrial 

localization in yeast. The in vitro data show that TBSV can efficiently replicate in both 

ER and mitochondrial membranes, while the CIRV replication proteins favor the 

mitochondrial membrane over the ER membrane to support viral repRNA replication. To 

test if the tombusvirus replication proteins can indeed utilize these membranes in cells, 

we performed localization studies with GFP-, YFP- and CFP-tagged proteins in yeast 

using homologous and heterologous combinations of the tombusvirus replication proteins.  

 As expected, the homologous combination of T33/T92 localized mostly in the ER 

membrane in yeast (in pex3∆ yeast to mimic the in vitro situation with isolated 

microsomal preparations by using yeast lacking peroxisomes) based on the Pho86 ER 

protein, while only a small fraction of C36 and C95 localized to the ER membrane, albeit 

these proteins were frequently located in the vicinity of the ER (Fig. 2.9A). On the 

contrary, the homologous combination of C36 and C95 localized mostly in the 
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mitochondrial membranes in yeast based on Rhodamine B-staining (a mitochondrial dye 

used in yeast) (120-122), while only a small fraction of T33 and T92 localized in the 

mitochondrial membranes (Fig. 2.9B). Indeed, most of T33 and T92 proteins did not co-

localize with MTS-CFP mitochondrial marker protein or with Rhodamine B 

mitochondrial dye (Fig. 2.9B). Altogether, these experiments established that the 

homologous combination of T33/T92 is mostly localized in the ER (in pex3∆ yeast) and a 

fraction in the mitochondria, while C36/C95 is located in the mitochondrial membrane as 

shown previously (32, 48, 107).   

 To test the membrane preference of the heterologous combinations of the 

tombusvirus replication proteins in pex3∆ yeast, first we performed co-localization 

studies. We found that the heterologous combinations of either T33/C95 or C36/T92 are 

co-localized in yeast cells (Fig. 2.9C). Second, we performed subcellular localization of 

YFP-C95 in pex3∆ yeast co-expressing T33, which showed partial co-localization with 

the CFP-Pho86 ER marker protein (Fig. 2.9D) and the mitochondrial dye (Fig. 2.9E). 

Similarly, YFP-T33 showed partial co-localization with the CFP-Pho86 ER marker 

protein (Fig. 2.9D) and the mitochondrial dye (Fig. 2.9E) in yeast co-expressing the 

heterologous C95. Thus, it seems that T33 and C95, albeit they are co-localized, they are 

present in both ER and mitochondria, with fractions of the T33 and C95 molecules 

divided between the two organelles.  

 Intriguingly, we observed similar split/divided distribution of C36 and T92 

between the ER and mitochondrial membranes (Fig. 2.9F-G) in heterologous co-

expression studies in pex3∆ yeast. Therefore, we suggest that the tombusviruses 

replication proteins can be localized to both ER and mitochondrial membranes in yeast 
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co-expressing the heterologous combinations (T33/C95 or C36/T92) of replication 

proteins. This distribution could be interesting during tombusvirus evolution by allowing 

less restricted use of subcellular membranes by putative interviral tombusvirus 

recombinants (see discussion). 

 

2.4 Discussion 

All known (+)RNA viruses of plants and animals depend on various subcellular 

membranes for their replication. Yet, we do not know why different (+)RNA viruses 

select different subcellular membranes/compartments for replication. Tombusviruses 

could be valuable for understanding the roles of various subcellular membranes in viral 

replication since they show different preferences. For example, TBSV, CNV and 

CymRSV preferably utilize the peroxisomal membranes, or in the absence of 

peroxisomes, the ER membranes (10, 18, 32, 107, 113). On the other hand, CIRV 

replicates in the mitochondrial membranes (19, 48). At a late stage of tombusvirus 

replication in plants, however, large multivesicular bodies form that frequently contain 

ER membranes and mitochondria as well (124). These observations suggest complex 

interactions between subcellular membranes and tombusvirus replication proteins.  

 In this paper, we have developed in vitro tombusvirus replication assays with 

isolated organelles (Fig. 2.3) or enriched organellar preparations (Fig. 2.4) to directly 

address the roles of the various subcellular membranes in tombusvirus replication. We 

have shown that (i) both (+) and (-)-strand RNA synthesis occurring in these assays; (ii) 

the process is asymmetrical leading to excess amount of (+) over (-)-strands; (iii) 

membrane-bound replicase complex forms; (iv) there is requirement of cellular factors; 
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(v) there is requirement of both p33 and p92 replication proteins for replication; (vi) the 

newly made (+) RNAs are released to the solution; (vii) while the (-) RNA is kept 

protected in the replicase bound to the membrane. All these pieces of evidence support 

that the tombusvirus replication in the isolated organelles is a complete cycle of authentic 

replication process, similar to that developed using the whole CFE (49, 102).  

 Interestingly, we find that TBSV replication proteins utilized the isolated ER 

membrane efficiently for repRNA replication, while the CIRV replication proteins did 

not (Fig. 2.3-2.4). These data are in agreement with the in vivo observations that TBSV 

uses the ER membranes (in the absence of the peroxisomes), while CIRV favors the 

mitochondria for replication in yeast and plant cells (10, 19, 32, 48, 107, 113). 

Surprisingly, however, TBSV was also able to utilize the isolated mitochondria for 

replication (Fig. 2.3-2.4), suggesting that this tombusvirus could be less restricted in its 

ability to utilize subcellular membranes. Indeed, we did see some co-localization of 

TBSV T33 and T92 replication proteins with mitochondrial markers (based on both 

MTS-CFP and a mitochondrial dye, Fig. 2.9B) in pex3∆ yeast, suggesting that 

mitochondria is likely used for TBSV replication at some extent, possibly at the late stage 

of replication when peroxisomal or ER membranes had already been fully exploited. 

Similarly, we observed some co-localization of CIRV C36 and C95 replication proteins 

with the ER marker protein (Fig. 2.9A), supporting that ER membranes might be targeted 

for CIRV replication. However, the activity of the CIRV replicases in the ER membranes 

is likely less robust than in the mitochondrial membranes, based on the in vitro 

experiments with the isolated microsomes (Fig. 2.3). Altogether, the in vitro and in vivo 

experiments suggest that TBSV show rather high flexibility in membrane utilization for 
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replication, while CIRV is somewhat more restricted, at least in vitro.  

 Unfortunately, we failed to obtain peroxisomal preparations supporting either 

TBSV or CIRV replication from yeast cultured in oleic acid media to induce peroxisome 

formation (Fig. 2.4). It is possible that peroxisomes are too fragile and damaged during 

the isolation procedure. It is also possible that the oleic-acid induced peroxisomes are not 

suitable to support TBSV replication. Indeed, addition of oleic acid to the culture media 

did not increase TBSV replication in yeast (Panavas and Nagy, unpublished). Therefore, 

it is highly likely that the CFEs obtained from yeast support TBSV replication occurring 

mainly in the ER-derived membranes (Fig. 2.1). Because ER is as suitable to support 

TBSV replication as the peroxisomes in yeast (32, 107), the obtained in vitro data are 

likely valuable in dissecting TBSV replication in vitro. We also propose that the CFE 

likely supports weak CIRV replication (when compared with TBSV) due to the limiting 

amount of mitochondria present in the CFE prepared from yeast cultured under the 

standard conditions. Indeed, comparison of CFE (Fig. 2.1) and microsomal and 

mitochondrial preps (Figs. 2.3-2.4) revealed similarity between CFE and microsomal 

preparations, suggesting that most of the in vitro repRNA replication in the CFE is likely 

supported by the ER membrane. This could be due to the growth conditions for yeast, 

which favors the presence of low number of mitochondria and peroxisomes, but abundant 

ER membranes (125). The isolated mitochondrial preparation, however, supported CIRV-

based repRNA replication efficiently, making this approach suitable for future 

mechanistic studies. 

Combinations of heterologous replication proteins reveal remarkable flexibility of 

membrane usage by tombusviruses. One of the surprising discoveries from the in vitro 
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tombusvirus replication assays with the combinations of heterologous replication proteins 

is the extended ability of tombusviruses to utilize subcellular membranes more efficiently 

than some homologous combinations. For example, CIRV C36 and C95 co-localized 

more efficiently with the ER membranes when present in heterologous than in 

homologous combinations (Fig. 2.9). Moreover, the CIRV C36 protein became part of a 

more efficient replicase in the ER membranes when associated with T92 RdRp protein 

than in homologous combination with C95 (Fig. 2.6A) without becoming less efficient in 

the mitochondrial membrane (Fig. 2.6B). Also, the TBSV T92 RdRp showed increased 

activity in the mitochondrial membrane when combined with C36 cofactor than in 

combination with TBSV T33 (Fig. 2.6B).  This suggests that tombusviruses might be able 

to utilize various subcellular membranes more efficiently during some co-infections with 

other tombusviruses when compared with single infections. 

 Even more interesting is the possibility of generation of chimeric tombusviruses 

due to RNA recombination between tombusviruses. RNA recombination is well 

documented for tombusviruses in vitro, in yeast, and in planta (16, 17, 93, 94, 126-130). 

The formation of chimeric tombusviruses could expand the efficiency of using various 

subcellular compartments by the tombusvirus replicase, based on the chimeric constructs 

tested in Figs. 2.7-2.8. Indeed, particular chimeric constructs replicated efficiently in both 

ER and mitochondrial preps (e.g., T33c/T92c, Fig. 2.8). We propose that the extra 

flexibility in membrane-usage by these chimeric tombusviruses could be useful for 

tombusviruses when infecting some plant species, thus expanding the wide range of 

plants supporting tombusvirus replication. Accordingly, recombinant CIRV strains were 

recently isolated that had similar N-terminal sequences to the TBSV p33 replication 
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protein and targeted the peroxisome for replication (131, 132). Thus, recombination 

involving the p33/p36 ORF can occur in nature creating new variants or strains. 

 

Adaptation to subcellular membranes for robust tombusvirus replication depends on 

multiple domains within the replication proteins. The heterologous combinations of 

tombusvirus replication proteins revealed that T92 and C95 are major determinants of 

repRNA replication in particular subcellular membranes. For example, the C95 RdRp 

was mostly functional in the mitochondrial preps, while the T92 RdRp was active in both 

microsomal and mitochondrial preps (Fig. 2.6C-D). Furthermore, the results with 

chimeric proteins suggest that the RdRp domain in T92 is very active in both microsomal 

and mitochondrial preps (Fig. 2.7C-D), while the origin of the N-terminal, overlapping 

domain in the tombusvirus RdRp was also important for the activity of VRC during 

replication. Therefore, we suggest that multiple domains within the replication proteins 

affect the ability and efficiency of the tombusvirus VRCs to support repRNA replication 

in particular subcellular membranes. It is also possible that C36 forms a single 'domain' 

that favors mitochondrial targeting as a whole, and swapping its C-terminal and/or trans-

membrane regions with corresponding regions of T33 disrupts the structure necessary for 

specific targeting to mitochondria.  

 Altogether, the developed in vitro tombusvirus replication assays based on CFE, 

isolated microsomes and mitochondrial preparations will be powerful to gain mechanistic 

insights into the roles of membranes in (+)RNA virus replication, virus-host interactions 

and possibly viral evolution. 

Copyright © American Society for Microbiology  
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Fig. 2.1 In vitro reconstitution of the CIRV replicase in yeast cell extract.  

(A) Purified recombinant p33 (named T33) and p92pol (named T92) replication proteins 
of TBSV or purified recombinant p36 (named C36) and p95pol (named C95) replication 
proteins of CIRV in combination with the TBSV-derived DI-72 (+)repRNA were added 
to the cell extract (lanes 1 and 7), to the membrane plus soluble fractions (lanes 3 and 9), 
to the soluble fraction (lanes 4 and 10), to the 1% Triton-treated membrane plus soluble 
fractions (lanes 5 and 11), and to the membrane fraction (lanes 6 and 12) of the yeast cell 
extract. The CFE-based replication assay mixture lacked T92 (lane 2) or C95 (lane 8) as a 
negative control. Denaturing PAGE analysis of the 32P-labeled repRNA products 
obtained is shown. The full-length repRNA is indicated by an arrowhead. The result of 
the CFE-based replication assay with T33 and T92 was chosen as 100% (lane 1). (B) The 
heterologous combinations of TBSV and CIRV replication proteins are functional in the 
CFE-based replication assay. The activity of the reconstituted tombusvirus replicases is 
estimated as for panel A. Denaturing PAGE analysis of the replicase products is as shown 
in panel A. (C) Detection of plus- and minus-stranded RNA products produced by the 
reconstituted TBSV and CIRV replicases in the CFE-based replication assay. The blot 
contains the same amounts of cold plus- and minus-strand DI-72 RNA, while the 32P-
labeled repRNA probes were generated in the CFE-based replication assay. Note that we 
used 5 times more CIRV replication products than TBSV to increase the signal. The ratio 
of plus- and minus-strand RNA products was estimated. (D) The heterologous 
combinations of TBSV and CIRV replication proteins with the CIRV-derived DI-1 
repRNA are functional in the CFE-based replication assay. See further details described 
for panel B. Each experiment was repeated. 
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Fig. 2.2 The heterologous combinations of TBSV and CIRV replication proteins are 
functional in N. benthamiana.  

The accumulation of DI-72 repRNA was measured by Northern blotting in N. 
benthamiana leaves. The expression of TBSV and CIRV replication proteins and the 
repRNA was launched from the 35S promoter in an Agrobacterium plasmid (introduced 
into the leaves via agroinfiltration). Samples were taken from the infiltrated leaves at 3.5 
days after infiltration. Note that coagroinfiltration of single protein-expressing constructs 
with the repRNA-expressing construct did not result in repRNA accumulation (lanes 17 
to 24). Each experiment was repeated. (B) Affinity binding (pulldown) assay to detect 
interaction between GST-His6-p33C (representing the C-terminal half of T33, involved 
in protein interaction) or GST-His6-p36C (representing the C-terminal half of C36) and 
the MBP-tagged TBSV and CIRV replication proteins. The MBP-tagged TBSV and 
CIRV replication proteins and the MBP produced in E. coli were immobilized on 
amylose-affinity columns. GST-His6-tagged p33C or GST-His6-p36C expressed in E. 
coli was then passed through the amylose affinity columns with immobilized MBP-
tagged proteins. The affinity-bound proteins were specifically eluted with maltose from 
the columns. The eluted proteins were analyzed by Western blotting with anti-6×His or 
anti-GST antibody to detect the amount of GST-His6, GST-His6-p33C, or GST-His6-
p36C specifically bound to MBP-tagged viral proteins. A similarly produced GST-His6 
protein preparation was used as a negative control. 
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Fig. 2.3 In vitro reconstitution of the TBSV and CIRV replicases in yeast microsome 
and mitochondrial preparations.  
 
(A) Scheme of the replication assays. The purified recombinant T33 and T92 as well as 
C36 and C95 replication proteins and the TBSV-derived (+)repRNA were used as 
described for Fig. 2.1. (B) Top panel, denaturing PAGE analysis of the 32P-labeled 
repRNA products obtained in the replication assays with the isolated yeast microsome 
preparation. The synthesized full-length repRNA is indicated by an arrowhead. The result 
from the replication assay with T33 and T92 was chosen as 100% (lane 1). Each 
experiment was repeated. Bottom panels, Western blot analysis of various marker 
proteins in the microsome preparation with the help of specific antibodies. The left lane 
represents the standard yeast proteins present in CFE as positive controls. (C) Detection 
of plus- and minus-strand RNA products produced by the reconstituted TBSV and CIRV 
replicases in the microsome-based replication assay. See further details described for Fig. 
2.1C. (D) The TBSV and CIRV replication proteins are functional in the mitochondrion-
based replication assay. Top panel, the activity of the reconstituted tombusvirus 
replicases is estimated as for panel B. Denaturing PAGE analysis of the replicase 
products is as shown for panel B. Note that we used the 2× purified mitochondria 
preparations for this assay. Bottom panels, Western blot analysis of various marker 
proteins in the microsome preparations with the help of specific antibodies. The left lane 
represents the standard yeast proteins from yeast induced with oleic acid as positive 
controls. The crude mitochondrial sample was prepared without sucrose density gradient 
centrifugation, while 1× and 2× indicate single and double sucrose density gradient-
purified mitochondrial preparations, respectively. (E) Detection of plus- and minus-strand 
RNA products produced by the reconstituted TBSV and CIRV replicases in the 
mitochondrion-based replication assay. See further details described for Fig. 2.1C. 
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Fig. 2.4 In vitro reconstitution of the TBSV and CIRV replicases in yeast membrane 
fractions.  
 
(A) Yeast was grown on oleate-rich medium to increase peroxisome numbers prior to 
isolation. The crude peroxisome sample was subjected to 10 to 70% sucrose density 
gradient centrifugation, and the fractions of the sucrose gradient were tested for the 
ability to support RNA replication by the CIRV or TBSV replicases assembled in vitro. 
The purified recombinant T33 and T92 as well as C36 and C95 replication proteins and 
the TBSV-derived (+)repRNA were used as described for Fig. 2.1. Top two panels, 
denaturing PAGE analysis of the 32P-labeled repRNA products obtained in the 
replication assays with various membrane fractions. The synthesized full-length repRNA 
is indicated by an arrow. The most active fraction in the replication assay was chosen as 
100%. The fractions most enriched for peroxisome are boxed with dotted lines. The 
samples on the left represent the top of the gradient (10%), while the samples on the right 
are from the bottom of the gradient (70%). Bottom panels, Western blot analysis of 
various marker proteins in the membrane fractions with the help of specific antibodies. (B) 
The crude mitochondrial sample was subjected to 10 to 70% sucrose density gradient 
centrifugation, and the fractions of the sucrose gradient were tested for the ability to 
support RNA replication by the CIRV or TBSV replicases assembled in vitro. The most 
active fraction in the replication assay was chosen as 100%. The fractions most enriched 
for mitochondria are boxed with dotted lines. See further details described for panel A. 
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Fig. 2.5 The in vitro-assembled TBSV or CIRV replicases form an RNase-resistant 
structure in microsomal or mitochondrial preparations.  
 
(A) Scheme of the in vitro assay. The in vitro reconstitution of the TBSV or CIRV 
replicases is started by the addition of purified recombinant T33 and T92 as well as C36 
and C95 replication proteins and the TBSV-derived (+)repRNA (zero time point) as 
described for Fig. 2.1. Note that we applied a 15-min treatment with micrococcal 
nuclease (which was inactivated by addition of EGTA at the end of the treatment) at 
various time points, followed by RNA synthesis up to 4 h (total length of incubation). (B 
and C) Denaturing PAGE analysis of the 32P-labeled repRNA products obtained. Note 
that only the VRC-bound (membrane-associated) repRNA is resistant to nuclease 
treatment and not the (+)repRNA released to the buffer from the VRCs. (B) Results with 
microsomal preparations; (C) results with mitochondrial preparations. (D) Intact 
organellar membranes are required for tombusvirus replication in vitro. Various amounts 
of sorbitol in the assay buffer were used to test TBSV and CIRV replication. 
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Fig. 2.6 In vitro reconstitution of heterologous combinations of tombusvirus replicases 
in yeast microsome and mitochondrial preparations.  
 
(A) Denaturing PAGE analysis of the 32P-labeled repRNA products obtained in 
replication assays with the isolated yeast microsome preparation. The synthesized full-
length repRNA is indicated by an arrow. The result from the replication assay with T33 
and T92 was chosen as 100% (lanes 1 and 2). (B) Denaturing PAGE analysis of the 32P-
labeled repRNA products obtained in the replication assays with the isolated yeast 
mitochondrial preparation. (C) SDS-PAGE analysis of microsome membrane association 
assay using [35S]methionine-labeled recombinant T33 or C36 and a microsome 
preparation in the presence of the soluble extract from yeast. The bottom panel (encircled) 
represents samples incubated in the absence of the microsome preparation. (D) 
Mitochondrial membrane association assay. [35S]methionine-labeled recombinant T33 or 
C36 was used with the mitochondrial preparation in the presence of the soluble extract 
from yeast. Asterisks represent 35S-labeled proteins. See further details described for 
panel C. 
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Fig. 2.7 In vitro reconstitution of chimeric tombusvirus replicases in yeast microsome 
and mitochondrial preparations.  
 
(A) The known functional domains in the TBSV p33 RNA chaperone and the p92pol 
RdRp protein. The N-terminal segment in p92pol contains the same sequence as in p33 
due to the strategy for overlapping expression of the TBSV genome, while the C-terminal 
region of p92pol carries the RdRp domain. mPTS, peroxisomal membrane targeting 
sequences; ub, monoubiquitinated region; TMD, transmembrane domains; late domain, 
sequence recognized by the ESCRT factors; P, phosphorylation sites; RPR, arginine-
proline-rich RNA binding domain; S1 and S2, subdomains of the p33:p33/p92 interaction 
domain. (B) Schematic representation of the chimeric RdRp proteins made between the 
corresponding TBSV and CIRV replication proteins as shown. (C) Denaturing PAGE 
analysis of the 32P-labeled repRNA products obtained in replication assays using the 
chimeric RdRp proteins based on the isolated yeast microsome preparation. The 
synthesized full-length repRNA is indicated by an arrow. The result from the replication 
assay with T33 and T92 was chosen as 100% (lanes 1 and 2). (D) Denaturing PAGE 
analysis of the 32P-labeled repRNA products obtained in the replication assays with the 
chimeric RdRp proteins using the isolated yeast mitochondrial preparation. See further 
details described for panel C. 
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Fig. 2.8 
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Fig. 2.8 In vitro reconstitution of additional chimeric tombusvirus replicases in yeast 
microsome and mitochondrial preparations.  
 
(A) Schematic representation of the chimeric replication proteins made between the 
corresponding TBSV and CIRV replication proteins as shown. The T33 and C36 
sequences were divided into three segments based on the known functions/roles (see Fig. 
2.7A). (B) Denaturing PAGE analysis of the 32P-labeled repRNA products obtained in 
replication assays using the chimeric tombusvirus replication proteins based on the 
isolated yeast microsome preparation. The synthesized full-length repRNA is indicated 
by an arrow. The result from the replication assay with T33 and T92 was chosen as 100% 
(lanes 1 and 2). (C) Denaturing PAGE analysis of the 32P-labeled repRNA products 
obtained in the replication assays with the chimeric tombusvirus replication proteins 
using the isolated yeast mitochondrial preparation. See further details described for panel 
B. (D) Coomassie blue-stained SDS-PAGE of the affinity-purified replication proteins 
expressed in E. coli as MBP fusion proteins. 
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Fig. 2.9 
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 Fig. 2.9 Distribution of TBSV and CIRV replication proteins when expressed in 
heterologous combinations.  
 
(A) Confocal laser microscopy images show the colocalization of Pho86p-CFP (ER 
marker protein) with YFP-T92, YFP-T33, YFP-C95, or YFP-C36 expressed from the 
GAL1 promoter in a pex3Δ yeast strain. The description on the left shows the 
combination of replication proteins expressed in yeast. The merged images show the 
colocalization of Pho86p-CFP with YFP-tagged replication proteins. Differential 
interference contrast (DIC) images are shown on the right. (B) Localization of YFP-T92 
or GFP-T92, YFP-T33 or GTP-T33, GFP-C95, or GFP-C36 expressed from the GAL1 
promoter to the mitochondria in a pex3Δ yeast strain. We used rhodamine B (RhodB, red) 
fluorescent dye to visualize the mitochondria. See further details described for panel A. 
(C) Colocalization of YFP- or CFP-tagged TBSV and CIRV replication proteins in a 
pex3Δ yeast strain. See further details described for panel A. (D) ER localization of YFP-
C95 or YFP-T33 in a pex3Δ yeast strain expressing heterologous combinations of 
tombusvirus replication proteins. See further details described for panel A. (E) 
Mitochondrial localization of GFP-C95 or GFP-T33 in a pex3Δ yeast strain expressing 
heterologous combinations of tombusvirus replication proteins. See further details 
described for panel A. (F) ER localization of YFP-T92 or YFP-C36 in a pex3Δ yeast 
strain expressing heterologous combinations of tombusvirus replication proteins. See 
further details described for panel A. (G) Mitochondrial localization of GFP-T92 or GFP-
C36 in a pex3Δ yeast strain expressing heterologous combinations of tombusvirus 
replication proteins. See further details described for panel A. Yeast was grown under 
similar conditions and images were taken as described for panel A. Each experiment was 
repeated. 
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Chapter 3 

THE HOP-LIKE STRESS INDUCED PROTEIN 1 CO-CHAPERONE IS A 

NOVEL RESTRICTION FACTOR FOR MITOCHONDRIAL TOMBUSVIRUS 

REPLICATION 

(This chapter was published on Journal of Virology ahead of print at 11 June 2014, 

doi:10.1128/JVI.00561-14, Copyright © American Society for Microbiology) 

3.1 Introduction 

 

Cells produce a yet unknown number of host restriction factors that limit replication of 

plus-stranded (+)RNA viruses. The cellular restriction factors could be virus-specific or 

components of the cell-intrinsic innate systems of the host through targeting diverse 

pathogens (133-139). Cellular factors are also recruited by (+)RNA viruses to aid viral 

replication, which takes place in membrane-bound viral replicase complexes (VRCs) in 

the cytoplasm of infected cells (13, 39, 40, 73-76, 78, 79). The diverse, often opposite 

roles of host factors, is reflected by the identification of stimulatory as well as inhibitory 

host proteins in genome-wide screens with various hosts and viruses, such as tomato 

bushy stunt virus (TBSV), West Nile virus, brome mosaic virus (BMV), hepatitis C virus 

(HCV), dengue virus and Drosophila virus C (12, 95, 140-146). However, the detailed 

functions of the majority of the identified host proteins in (+)RNA virus replication have 

not been fully revealed. 

  TBSV is a plant-infecting (+)RNA virus used extensively to study virus 

replication, recombination, and virus - host interactions based on yeast (Saccharomyces 
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cerevisiae) model (1, 5, 91, 92). We have performed several genome-wide screens of 

yeast genes and different global proteomics approaches that have led to the identification 

of over 500 host genes/proteins putatively involved in TBSV replication or 

recombination (12, 93-99, 110, 126, 147-149). The above systematic screens have also 

identified host stimulatory and restriction factors of TBSV replication. For example, the 

Cyp40-like Cpr7p cyclophilin and the Ttc4 oncogene-like Cns1p co-chaperone are strong 

inhibitors of TBSV replication in yeast and in vitro (109, 150). Additional cellular 

cyclophilins, such as the CypA, and the related Ess1p parvulin also decrease TBSV RNA 

accumulation in yeast and plants (109, 110, 151). Moreover, the cellular nucleolin, an 

RNA binding protein, inhibits TBSV replication by blocking the recruitment of the viral 

RNA into replication (112). Another group of cellular restriction factors is the WW-motif 

containing host proteins, such as Rsp5p Nedd4-like E3 ubiquitin ligase, which regulate 

the degradation of tombusviral p92pol in yeast cells and inhibit the activity of VRC in 

vitro (108, 111). Cellular kinases, such as Pkc1p, could also restrict TBSV replication in 

yeast (96). Altogether, studies on cellular restriction factors could help unraveling the full 

arsenal of the native cell-intrinsic innate immune system in the host cell. 

  Similar to other (+)RNA viruses, tombusviruses, such as TBSV, uses intracellular 

membranes for replication. Interestingly, TBSV utilizes the peroxisomal membrane, 

while the closely related Carnation Italian ringspot virus (CIRV) takes advantage of the 

outer mitochondrial membranes to build VRCs in infected plants and yeast (18, 19, 48). 

The two viral replication proteins (i.e., p33 and p92pol for TBSV and p36 and p95pol in 

case of CIRV) co-opt 8-10 host proteins to assemble the tombusvirus VRC (97-99, 152). 

The highly homologous p33 of TBSV and p36 of CIRV replication proteins are master 
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regulators of replication, playing multifunctional role in recruitment of the tombusviral 

(+)RNA to the site of replication, the assembly of the VRC and viral RNA synthesis by 

acting as RNA chaperones  (3, 7, 9, 10, 32, 152). The RdRp protein p92pol of TBSV and 

p95pol of CIRV are also components of the functional VRCs (2, 9, 10, 49, 92). The 

subverted host proteins have been shown to bind to the viral RNA and the viral 

replication proteins (13, 37, 98). Detailed studies showed that heat shock protein 70 

(Hsp70), eukaryotic elongation factor 1A (eEF1A) and several members of the ESCRT 

(endosomal sorting complexes required for transport) family of host proteins are required 

for the assembly of VRCs (81, 100, 101, 103). Additional subverted host proteins include 

the DDX3-like Ded1p and the human p68-like Dbp2 DEAD-box RNA helicases, 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), eEF1Bγ and eEF1A, all of which 

have been shown to affect viral RNA synthesis (37, 103, 104, 106, 153, 154). 

  Previous works with TBSV revealed the unexpected inhibitory function for 

several TPR domain (tetratricopeptide repeats)-containing proteins, such as the Cyp40-

like Cpr7p cyclophilin and Ttc4-like Cns1p co-chaperone in yeast and in vitro (109, 150). 

Mechanistic studies showed that the inhibitory effect of Cpr7p was due to its interaction 

with the RNA-binding domain of the tombusviral p33 replication protein that leads to 

inhibition of p33/p92pol -based recruitment of the TBSV (+)RNA for replication and 

decrease of the efficiency of the VRC assembly. Importantly, the key element in Cpr7p 

was not the cyclophilin domain, but its TPR domain consisting of three TPR modules in 

Cpr7p (109). Similarly, via its TPR-domain, Cns1p bound to the tombusviral p33 and 

p92pol replication proteins and inhibited VRC assembly and reduced TBSV replication in 

yeast and in vitro based on a yeast cell-free (CFE) assay (150). However, in case of 
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Cns1p, the interaction targeted the p33:p33/p92 interaction domain, suggesting that TPR-

containing cellular proteins might restrict TBSV replication via different mechanisms. 

  The TPR domains consists of repeats of 34 amino acid sequence adopting a right-

handed helical helix-loop-helix structure with an amphipathic channel, which are 

involved in many protein-protein interactions (155, 156). Although the TPR-domains are 

highly variable, which likely affect substrate specificity, the canonical TPR-domain 

contains a pattern of small and large hydrophobic amino acids. The TPR-domain proteins 

are abundant in all kingdoms of life, including 200 proteins in mammals, 80 in C. elegans 

and 29 in yeast (157). TPR-domain proteins function in protein trafficking, protein import 

to organelles, transposon silencing, apoptosis and synaptic vesicle fusion (158, 159). 

Various TPR-domain proteins are involved in numerous human diseases, such as cancer, 

amyloidosis, cystic fibrosis, prion protein propagation, and bacterial pathogenesis (160-

165). Several TPR-domain proteins have been shown to affect infections by viruses, such 

as Chikungunya virus, West Nile virus, Vesicular stomatitis virus, herpes simplex virus, 

poxvirus, and baculovirus (166-171). TPR-domain proteins are also important in 

interferon-induced antiviral responses, including the IFIT protein family (137, 171-174). 

  Our previous discoveries invited our attention to TPR-like sequences, including 

the well-studied stress-induced protein 1 (Sti1p in yeast, Hop protein in mammals and 

plants) co-chaperone. Sti1p, which is a conserved highly abundant protein lacking 

chaperone activity on its own, is a co-chaperone of Hsp70 and Hsp90 chaperones (175, 

176). Sti1p contains three TPR domains, which are involved in binding to Hsp90s and 

Hsp70s. Sti1p plays a role in client protein transfer from the Hsp70 complex to the Hsp90 

complex. Interestingly, Sti1p can simultaneously bind to Hsp70 and Hsp90 and by 
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inhibiting the ATPase activity of Hsp90, Sti1p stabilizes the ternary Hsp70 : Hsp90 : 

client protein intermediate complex (177, 178). 

  In this paper, we show that the yeast Sti1p co-chaperone has a strong inhibitory 

function during the mitochondrial CIRV replication but not in the peroxisomal 

tombusvirus replication. Detailed analysis of Sti1p revealed that it interacted with the 

RNA-binding domain of CIRV p36 replication protein and ultimately restricted VRC 

assembly in vitro and CIRV RNA accumulation in yeast and the orthologous Hop 

inhibited CIRV accumulation in plants. Thus, TPR-containing cellular co-chaperone 

proteins emerge as new cell-intrinsic restriction factors of a mitochondrial (+)RNA virus. 

 

3.2 Materials And Methods 

 

Yeast strains and expression plasmids. Yeast strains BY4741 (MAT a his3Δ1 leu2Δ0 

met15Δ0 ura3Δ0) and sti1Δ (single-gene deletion strain) were obtained from Open 

Biosystems (Huntsville, AL, USA). For tombusviral replication in yeast, pESC-

HisCNVp33-DI72, pYES-CNVp92, pESC-C36/DI72, pYES-C95 were described 

previously (9). To generate pESC-C36/DI1, CIRV DI-1 (14) (constructed by D. Barajas 

and Nagy, unpublished) was PCR-amplified using primers #4124 

(CCGGAATTCAGAAATATCTCAGGATTTGACCGTCC)/#1069(CCGGTCGAGCTC

TACCAGGTAATATACCACAACGTGTGT) and digested with EcoRI/SacI, then 

inserted into EcoRI/SacI-digested pESC-HisCNVp33-DI72, generating pESC-

HisCNVp33-DI1. Then, CNV p33 sequence was removed by BamHI/XhoI digestion, and 

replaced with BamHI/XhoI-digested CIRV p36 sequence, which was PCR-amplified from 
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pESC-C36/DI72 using primers #900 

(CGACGGATCCGAGGGTTTGAAGGCTGAGTCTACCA)/#3230 

(CCGCTCGAGCTATTT-GACACCGAGGGATT), generating pESC-C36/DI1. To 

generate Twin-Strep-tagged CIRV and CNV replication proteins, the following primer 

pairs: #5351 (CATCCACAATTCGAAAAATCTGCTGGTGGAGGTGG-

ATCCATGGATACCATCAAGAGGATG)/#952 (CCCGCTCGAGTCATGCTACGG-

CGGAGTCAAGGA), #5350 

(GTGGTTCTGGTGGTGGTTCTGGTGGTTCTGCTTGG-

TCTCATCCACAATTCGAAAAATCTG)/#952, #5349 (GGAAGATCTAAAAA-

TGTCTGCTTGGTCTCATCCACAATTCGAAAAAGGTGGTGGTTCTGGTGGTGGT

TCTGGTGG)/#952, were sequentially used for PCR using template pYES-CNVp92 to 

introduce Twin-Strep tag on CNV p92, generating Twin-Strep-tagged CNVp92  

sequence. The DNA was then digested with BglII/XhoI and inserted into pESC-DI72, 

generating pESC-StrepCNVp92/DI72. CIRV p36 sequence was PCR-amplified using 

primers #900/#3230 and digested with BamHI/XhoI, and then inserted into BamHI/XhoI-

digested pESC-StrepCNVp92/DI72, generating pESC-StrepC36/DI72. To generate 

pYES-StrepC95, pYES2-NTA (Invitrogen) was digested with HindIII/KpnI and then 

treated with T4 DNA polymerase, and subsequently self-ligated to remove 6xHis tag. The 

modified pYES2-NTA vector without 6xHis tag was digested with BamHI/XhoI and used 

with BglII/XhoI-digested PCR product of Twin-strep-tagged CNVp92 for ligation, 

generating pYES-StrepC92. CIRV p95 sequence was PCR-amplified using primers 

#900/#970 (CCCGCTCGAGTCAAGCTACGGCGGAGTCGAGGA) from pYES-C95 

and digested with BamHI/XhoI, and then inserted into BamHI/XhoI-digested pYES-
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StrepC92, generating pYES-StrepC95. To generate yeast vector expressing STI1 gene, 

pTEF1 promoter and tCYC1 terminator was PCR-amplified from yeast genomic DNA 

and pESC-C36/DI72 (9), respectively, using primer pair #2764 

(CCGCGAGCTCATAGCTTCAAAATGTTTCTAC)/#3726 

(CCGCGCGGCCGCGTAATTAAAACTTAGATTAGATTGC), or #3728 

(CCGCGTCGACGAGGGCCGCATCATGTAA) /#3730 

(CCGCGGGCCCAGCTTGCAAATTAAAGCCTTC), and digested with SacI/NotI or 

ApaI/SalI. Digested pTEF1 and tCYC1 were sequentially inserted into SacI/NotI or 

ApaI/SalI-digested pRS315 vector, generating pRS315-pTEF1 (Zhenghe Li and PD 

Nagy, unpublished data). pRS315-pTEF1 was digested with NotI/SalI and ligated with 

annealed primers of #5157 

GGCCGAAAATGAGATCTGGCACTAGTGACTACAAGGACGACGATGACAAGG

GTGGCGGTC /#5158 

CTAGGACCGCCACCCTTGTCATCGTCGTCCTTGTAGTCACTAGTGCCAGATCT

CATTTTC to introduce Flag-tag, generating pRS315-NFlag.  

 Plasmids expressing wt Sti1p or derivatives (C49Y, G325D; ∆TPR2; or ∆TPR1) 

were generated by using available STI1 mutants (179, 180) in PCR-amplifications using 

primer pairs #2863 CGCGGGATCCATGTCATTGACAGCCGATG /#2864 

CGCGCTCGAGTTAGCGGCCAGTCCGGATG or #5156 

CGCGGGATCCAACCCAAAAACTAGCGAAATGATG /#2864, and the obtained PCR 

products were treated with BamHI/SalI and then were inserted into BamHI/SalI-digested 

pRS315-NFlag. To visualize Sti1p in yeast, mRFP1 was PCR-amplified from pGAD-

PEX13-RFP (81) using primers #2630 



 

63 
 

CGCGGGATCCATGGCCTCCTCCGAGGACGTC /#5159 GGACTAGTGGCGCC-

GGTGGAGTGG, and the PCR product was digested with BamHI/PstI, and inserted into 

BglII/PstI-digested pRS315-Sti1 to generate pRS315-mRFP1-Sti1. 

 E. coli-based expression plasmids, pGEX-2T-Sti1 and mutated derivatives (C49Y, 

G325D, ∆TPR1, ∆TPR2) were generated by PCR using primers  #2863 

(CGCGGGATCCATGTCATTGACAGCCGATG) and #4860 

(CGCCGAATTCTTAGCGGCCAGTCCGGATGAT), followed by digestion with 

BamHI/EcoRI and then ligation into BamHI/EcoRI-digested pGEX-2T. 

 Arabidopsis thaliana STI1 ortholog AtHOP-1 (181) and the TPR1 deletion 

version (AtHOP1∆TPR1) were PCR -amplified from Arabidopsis cDNA using primers 

#5659 CGCTGATCAATGGCGGAAGAAGCAAAATCCAAAGG /#5661 

CCGCTCGAGTTACCGGACCT-GAACAATTCCGGCACTAACC and  #5660 

CGCTGATCAATGGATCCGGGGACTAGGGTTTATTTGGAG /#5661, respectively, 

followed by digestion with BclI/XhoI, and the PCR products were inserted into 

BamHI/SalI digested pRS315-NFlag, generating pRS315-AtHOP1 and pRS315-

AtHOP1∆TPR1, respectively. 

 

Analysis of CIRV repRNA replication in yeast. For measuring CIRV repRNA 

accumulation, yeast strains BY4741 and sti1∆ were transformed with plasmids pESC-

C36/DI72 and pYES-C95. For complementation and overexpression studies, we 

transformed yeast strains BY4741 and sti1∆ with pRS315-Sti1 (FLAG-Sti1 plasmid). 

Tombusvirus repRNA replication was induced by culturing in sc-ULH- with 2% 

galactose medium after overnight culture and then yeast was cultivated for 2 days at 
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23°C. Total RNA was isolated from yeast and used for detection of repRNA levels by 

Northern blot analysis as described previously (182). Replication was calculated by 

measuring the accumulation of CIRV DI1 repRNA or the TBSV DI-72(+) repRNA 

relative to the accumulation of 18S ribosomal RNA. The tombusvirus replication protein 

analysis was performed as described previously using an anti-His6 antibody as the 

primary antibody for the detection of His6-p36 and His6-p95. Detection of Flag-Sti1p and 

Sti1p was carried out using primary anti-Flag and anti-Sti1 antibody, respectively. The 

secondary antibody for both primary was alkaline phosphatase-conjugated anti-mouse 

immunoglobulin G (Sigma) (109). 

 

Analysis of protein-protein interaction by split-ubiquitin assay. The bait constructs, 

pGAD-BT2-N-His36 and pGAD-BT2-N-His33, expressing CIRV replication protein p36 

and p33 tombusvirus replication protein have been published before (99, 110). The PCR 

products of STI1 and its various truncation versions were digested with BamHI/XhoI and 

ligated into the pPRN-N-RE vector digested with BamHI/SalI enzymes. Yeast strain 

sti1∆/NMY51 was co-transformed with pGAD-BT2-N-His36 or pGAD-BT2-N-His33 

and pPR-N-RE (NubG) or one of the prey-constructs carrying STI1 and plated onto Trp-

/Leu- (TL-) synthetic minimal medium plates for plasmid selection (99, 110). Yeast 

colonies were re-suspended in 50 µl water and spotted onto Trp-/Leu-/His-/Ade-  (TLHA-

) plates for 2-4 days to detect bait–prey interactions.  Plasmid containing the yeast SSA1 

Hsp70 gene served as the positive control and empty vector (pPR-N-RE) as negative 

control in this assay (99, 110). 
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Protein purification from E. coli. pMAL-p33 (TBSV p33), pMAL-p92 (TBSV p92),  

pMAL-p36 (CIRV p36),  and pMAL-p95 (CIRV p35) (149) were transformed separately 

into E. coli strain BL21DE3CodonPlus. Protein expression was induced using isopropyl 

β-D-thiogalactopyranoside (IPTG) for 8 h at 16°C, and the cells were harvested by 

centrifugation at 5,000 rpm at 4°C for 5 min to remove the medium prior to -80°C 

storage.  Affinity columns containing amylose resin (NEB) were used to purify MBP-

tagged recombinant proteins. The frozen pellets were suspended and sonicated in MBP 

column buffer containing 20 mM Tris-Cl pH 8.0, 150 mM NaCl, 1 mM EDTA, 10 mM 

β-mercaptoethanol and 1 mM phenylmethylsulfonyl fluoride (PMSF).  The sonicated 

extract was centrifuged at 15,000 rpm for 5 min, and the supernatant was added to the 

pre-equilibrated amylose resin for 1 h rotating incubation at 4°C.  After washing the resin 

3 times with column buffer and once with a low salt column buffer (25 mM NaCl), the 

proteins were eluted with a low salt column buffer containing 0.18% (V/W) maltose and 

stored at -80°C in 6% (V/V) glycerol.  Protein fractions used for the replication assays 

were 95% pure, as determined by 12% SDS-PAGE and staining with Coomassie-Blue. 

  Expression of GST-tagged proteins Cpr7p, Cpr7-TPRp, Cns1p, Sti1p and its 

mutated versions (C49Y, G325D, ∆TPR1, and ∆TPR2) were induced using isopropyl β-D-

thiogalactopyranoside (IPTG) for 6 h at 23°C, and the cells were harvested by 

centrifugation at 5,000 rpm at 4°C for 5 min to remove the medium and stored at -80°C. 

Purification of GST-tagged proteins was carried out using glutathione resin and eluted 

with 10 mM glutathione, 10 mM ß-mercaptoethanol in the column buffer following the 

same protocol as MBP-proteins.   
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In vitro tombusvirus replication assay using yeast mitochondrial preparations. Yeast 

intact mitochondria were purified as described previously (149). The purified 

mitochondrial fraction (1 µl) and different dilutions of GST, Sti1p, Cpr7p, or Cns1p 

proteins (8, 16, 32 µM each) were incubated at 25°C for 1 hr in 8 µl buffer A (containing 

30 mM HEPES-KOH [pH 7.4], 150 mM potassium acetate, 5 mM magnesium acetate, 

and 0.6 M sorbitol) with 15 mM creatine phosphate, 1 mM ATP, and GTP, 0.1 mg/ml 

creatine kinase, 0.1 μl of RNase inhibitor, 10 mM dithiothreitol, 0.5 μg DI-72 RNA 

transcript, and affinity-purified 0.5 μg MBP-36 (CIRV p36) and MBP-p95 (CIRV p95). 

The volume of the reaction mixture was then adjusted by adding 16 μl buffer B 

(containing 30 mM HEPES-KOH [pH 7.4], 150 mM potassium acetate, and 5 mM 

magnesium acetate) with 15 mM creatine phosphate, 1 mM ATP, CTP, and GTP, 0.025 

mM UTP, 0.2 μl of [32P]UTP, 0.1 mg/ml creatine kinase, 0.2 μl of RNase inhibitor, 10 

mM dithiothreitol, and 0.05 mg/ml actinomycin D. The reaction mixture was incubated at 

25°C for 3 h and terminated by adding 100 µl stop buffer (1% sodium dodecyl sulfate 

and 0.05 M EDTA, pH 8.0) followed by 100 µl phenol-chloroform extraction, 

isopropanol-ammonium acetate precipitation overnight at -20°C and washing by 70% 

ethanol.  The newly synthesized 32P-labeled RNA products were incubated at 85°C for 5 

min and separated by electrophoresis in a 5% polyacrylamide gel containing 0.5× Tris-

borate-EDTA buffer with 8 M urea. Signals were detected using a Typhoon 9400 

imaging scanner (GE/Amersham) and quantified by imageQuant software. 

 

Co-purification of host proteins with Twin-Strep-tagged CIRV replication proteins 

from yeast. To purify the protein of interest, 200 mg BY4741 yeast cells transformed 
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with plasmids pESC-StrepC36/DI72 pYES-StrepC95 and pFLAG-Sti. Cultured yeasts 

were re-suspended and homogenized in Buffer B (50 mM Tris-HCl, pH 7.5; 15 mM 

MgCl2, 10 mM KCl, 10 mM β-mercaptoethanol, 1% [V/V] yeast protease inhibitor 

cocktail) by glass beads [modified from (92)]. Membrane fractions from cell 

homogenates were collected and solubilized with column buffer (50 mM Tris-HCl pH 

7.5, 15 mM MgCl2, 500 mM KCl, 1% Triton X-100, 5% SB3–10 [caprylyl sulfobetaine] 

(Sigma), 10 mM β-mercaptoethanol, 1% [V/V] yeast protease inhibitor cocktail), and 

incubated with 40 µl StrepTactin Superflow hi-capacity 50% resin (IBA Life Sciences) 

for 1 hour at 4°C in a column. StrepTactin resin was then washed two times with column 

buffer, two times with wash buffer (50m M Tris-HCl pH 7.5, 15 mM MgCl2, 10 mM 

KCl, 0.1% Triton X-100, 10 mM β-mercaptoethanol, 1% [V/V] yeast protease inhibitor 

cocktail), and eluted with SDS-PAGE loading buffer, then subjected to SDS-PAGE and 

Western blotting analysis with Strep-Tactin AP Conjugate (IBA Life Sciences), anti-Flag 

and anti-Hsp70 antibodies (Abcam). 

 

Confocal laser microscopy. Wild type BY4741 or sti1∆ yeast strains were transformed 

with the following expression plasmids: pESC-GFP-C36/DI72, pYES-C95, or pESC-

GFP-C33/DI72, pYES-C92 (9), as well as pRS315-RFP-Sti1p.  The yeast cultures were 

incubated in galactose medium overnight, sampled and imaged with Olympus FV1000 

confocal laser scanning microscope (Olympus America Inc., Melville, NY). The 

microscope settings were the following: excitation and emission for GFP and RFP were 

488nm laser/500-530nm filter and 543nm laser/560-660nm filter, respectively. 
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Virus induced gene silencing of Sti1/HOP ortholog gene. Virus induced gene silencing 

(VIGS) in Nicotiana benthamiana was performed as described in (183). The C-terminal 

fragment of N. benthamiana HOP gene (yeast STI1 ortholog, based on Arabidopsis 

AtHOP-1 gene) was PCR-amplified from total N. benthamiana cDNA using primers 

#5786 (CGCGGATCCAGGGCATACAGCAACAGGGC) /#5787 

(CCGCTCGAGTTATTTGACTTGAATAATTCCTGCACTAACCAAC). The obtained 

PCR product was digested with BamHI/XhoI and inserted into pTRV2 digested with 

BamHI/XhoI, generating pTRV2-NbHop. As a control for the VIGS experiments, the C-

terminal-half of GFP sequence was PCR-amplified by primers #5353 

CGCGGATCCGAAGGTGATACCCTTGTTAATAGAATCGAG /#3712 

CGGCCTCGAGTTACGCATAGTCAGGAACATCGTATGGGTAGAGTCCGGACTT

GTATAGTT from pESC-GFP-C36/DI72, digested with BamHI/XhoI and inserted into 

pTRV2 generating pTRV2-1/2GFP. VIGS-treated N. benthamiana plants were sap 

inoculated with CIRV or CNV inocula on the 14th day post silencing. Samples from the 

inoculated leaves were harvested and subjected to total RNA extraction and Northern blot 

analysis for viral RNA (81, 183). Efficiency of NbHOP silencing was evaluated by semi-

quantitative reverse transcription PCR using NbHOP and Actin gene-specific primer 

pairs: #5785 (CGCGGATCCAGAGCAGCAAGAGTATTTCGATCCAC) /#5787 and 

#3993 (GGAAGTAGCATAAGATGGCAGATGGAGAGG) /#3994 

(CCAGATCTTCTCCATATCATCCCAGTTGCTGAC), respectively. 

 

3.3 Results 
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Yeast-based studies reveal that Sti1p co-chaperone selectively inhibits mitochondrial 

CIRV replication, but not the peroxisomal TBSV replication. Based on our previous 

findings that two abundant cytosolic TPR-containing cellular proteins, namely Cpr7p 

cyclophilin and Cns1p co-chaperone, showed robust restriction activity against TBSV 

(109, 150), we also tested the abundant TPR-containing protein Sti1p co-chaperone for 

possible effect on the accumulation of TBSV and CIRV replicon (rep)RNAs in sti1∆ 

yeast versus wt yeast cells. Interestingly, sti1∆ yeast supported CIRV repRNA 

accumulation at a ~3-fold higher level than in wt yeast (Fig. 3.1A, lanes 5-6 versus 1-2). 

However, replication of the TBSV repRNA was comparable in sti1∆ and wt yeast (Fig. 

3.1B, lanes 4-6 versus 1-3), suggesting that Sti1p has a CIRV-specific inhibitory effect. 

To test if Sti1p-based inhibition targets the CIRV RNA, we also tested TBSV repRNA 

accumulation in the presence of CIRV p36 and p95pol replication proteins, which are 

capable of supporting the replication of the heterologous TBSV repRNA (9), in sti1∆ 

yeast versus wt yeast cells. The obtained data showed ~2-fold increased level of TBSV 

repRNA accumulation (Fig. 3.1C, lanes 4-6 versus 1-3), demonstrating that the inhibitory 

effect of Sti1p is targeted against the CIRV p36 and p95pol and not the viral RNA. 

Comparison of the accumulation of CIRV p36 and p95pol in sti1∆ yeast versus wt yeast 

cells revealed similar replication protein levels (Fig. 3.1C), arguing that Sti1p is unlikely 

to affect translation or stability of CIRV p36 and p95pol in yeast cells.  

To further test if Sti1p can inhibit CIRV replication in vivo, we over-expressed N-

terminally FLAG-tagged Sti1p in yeast supporting CIRV or TBSV accumulation. We 

found that over-expression of Sti1p reduced CIRV accumulation by ~3-fold in wt yeast 

(Fig. 3.2A, lanes 4-6 versus 1-3) and by ~5-fold in sti1∆ yeast (Fig. 3.2A, lanes 10-12 
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versus 7-9). The level of CIRV p36 and p95pol replication proteins was comparable in 

sti1∆ or wt yeasts over-expressing FLAG-Sti1p (Fig. 3.2A), suggesting that Sti1p is 

unlikely to affect the stability of these viral proteins in yeast. In contrast, replication of 

the TBSV repRNA was not affected by the over-expression of Sti1p in wt (Fig. 3.2B, 

lanes 13-16) or in sti1∆ or wt yeasts (lanes 17-24). Altogether, these data support that 

Sti1p is a strong inhibitor of the CIRV p36 and p95pol replication proteins, while Sti1p 

seems to be ineffective against the tombusviral p33 and p92pol replication proteins in 

yeast. 

 

The binding of Sti1p involves different regions in CIRV p36 and the TBSV p33 

replication proteins. Sti1p contains three TPR domains (Fig. 3.3A) that are predicted to 

interact with the tombusviral replication proteins. To test if Sti1p can interact with the 

CIRV p36 versus the TBSV p33 replication proteins, we first used the split-ubiquitin 

based two-hybrid assay in sti1∆ yeast (184, 185). We observed strong interaction 

between Sti1p and p36 (Fig. 3.3B) and Sti1p and p33 (Fig. 3.3C). We confirmed the 

interaction between Sti1p and p36 replication protein in sti1∆ yeast (Fig. 3.3D, lane 2) 

using a co-purification assay with recombinant Sti1p. The reciprocal co-purification 

assay with Strep-tagged p36 also resulted in co-purification of Flag-Sti1p from sti1∆ 

yeast (Fig. 3.3E, lane 1).   

To test what region(s) of Sti1p interacts with p36, we used well-characterized 

Sti1p mutants lacking particular functional domains (179, 180) as shown in Fig. 3.3A. 

The split-ubiquitin assay showed that the interaction with p36 was not eliminated by 

deletion (∆TPR1) or mutation (C49Y, and K73E) in the TPR1 region (Fig. 3.3B), which 
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binds to Hsp70 (175, 186). Similarly, deletion (∆TPR2) or mutations (G325D or T526I) in 

the TPR2 region (Fig. 3.3B), which binds to Hsp90, did not debilitate interaction with 

p36 replication protein. These findings were confirmed in the reciprocal co-purification 

experiments (Fig. 3.3D-E), demonstrating that Sti1p could use both the TPR1 and TPR2 

sequences to bind to the p36 replication protein. Interestingly, binding of Sti1p to the 

TBSV p33 replication protein showed similar features with p36 binding (Fig. 3.3C versus 

Fig. 3.3B). Thus, the binding characteristics of Sti1p to CIRV p36 versus TBSV p33 do 

not explain why Stip1 can selectively inhibit CIRV replication, but not TBSV replication 

in yeast cells.  

 To map the Sti1p binding site in CIRV p36 replication protein, we have used 

pull-down experiments with immobilized MBP-p36 truncation derivatives (Fig. 3.4A) 

and Sti1p present in either E. coli lysate (Fig. 3.4B) or yeast extract containing Flag-Sti1p 

(Fig. 3.4C). These experiments revealed that Sti1p binds to a region that includes the 

RPR motif of p36, which is involved in RNA binding (Fig. 3.4B-C, lane 6, construct 

p36C4 in Fig. 3.4A). The RPR-motif in replication proteins is required for specific viral 

(+)RNA recruitment and replicase assembly, and it also binds to Cpr7p Cyp40-like 

cyclophilin (4, 102, 109, 187). Interestingly, the same RPR-containing region in p36 

replication protein could bind to both the TPR1 and TPR2 sequences in Sti1p (Fig. 3.4D-

E, lane 6).  

To map the Sti1p binding site in the TBSV p33 replication protein, we have used 

similar pull-down experiments with immobilized MBP-p33 truncation derivatives (Fig. 

3.4F) in combination with yeast extract containing Flag-Sti1p or its truncation derivatives 

(Fig. 3.4G). We found that Sti1p binds to the C-terminal region of TBSV p33 containing 
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the p33:p33/p92 interaction sequences (Fig. 3.4F). Deletion of the RPR motif, involved in 

RNA binding, did not inhibit p33 binding to Sti1p (Fig. 3.4G, lane 13).  Thus, there is a 

major difference in Sti1p binding to CIRV (the RPR-containing sequence) and TBSV 

replication proteins (the C-terminal region in TBSV p33), suggesting that the mechanism 

of inhibition of CIRV replication by Sti1p could be based on blocking the RNA-binding 

function of CIRV p36 replication protein.  

 

Sti1p is co-localized with CIRV p36 in yeast cells. To study if the mostly cytosolic Sti1p 

is recruited to the mitochondrial membranes, where CIRV replication takes place (9, 48), 

by the CIRV p36 in yeast cells, we co-expressed GFP-p36 with RFP-Sti1p in wt or sti1∆ 

yeast cells. Confocal laser microscopy revealed the robust recruitment of RFP-Sti1p by 

CIRV p36 to punctate structures, likely representing the mitochondrial membranes as 

shown before (9, 18, 48) in both wt and sti1∆ yeast cells (Fig. 3.5A). In contrast, the 

GFP-tagged p33 did not efficiently recruit RFP-Sti1p to p33-containing punctate 

structures (Fig. 3.5B), which likely represent peroxisomal membranes (10, 107). RFP-

Sti1p showed diffused, mostly cytosolic distribution in yeast expressing p33 replication 

protein. Based on these data, we suggest that unlike p33, the CIRV p36 replication 

protein efficiently recruits Sti1p to the site of replication, leading to robust inhibition of 

CIRV replication. 

 

The TPR1 domain in Sti1p is required to inhibit CIRV replication in isolated 

mitochondria-based assay and in yeast cells. To test what domain of Sti1p is required to 

block CIRV replication, we expressed mutated versions of Sti1p in wt yeast. We 
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observed ~2-fold inhibition of CIRV repRNA accumulation by ∆TPR2 and G325D 

mutants, comparable to that obtained with the full-length Sti1p (Fig. 3.6A), while 

expression of ∆TPR1 or C49Y mutants had no detectable and lesser inhibitory effects, 

respectively (lanes 9-12 and 21-24 in Fig. 3.6A). All these mutated versions of Sti1p 

were expressed at comparable levels in wt yeast without substantially affecting CIRV p36 

or p95 levels (Fig. 3.6B-C). Altogether, based on these data, we suggest that the TPR1 

domain of Sti1p is required to inhibit CIRV replication in yeast. 

To further test the roles of the TPR sequences of Sti1p in CIRV replication, we 

applied an isolated mitochondria-based replication assay, which take advantage of 

purified recombinant CIRV p36, p95pol replication proteins and repRNA transcripts to 

support full CIRV replication in vitro (Fig. 3.7A) (9, 49, 102). Addition of the affinity-

purified full-length recombinant GST-Sti1p (Fig. 3.7B) decreased the production of 

repRNA by up to 3-fold (Fig. 3.7C, lanes 5-7 versus 2-4), confirming that Sti1p has an 

inhibitory effect on CIRV replication in vitro. Pre-incubation of Sti1p either with Ssa1p 

Hsp70 chaperone or p36 replication protein to facilitate protein complex formation did 

not alter the inhibitory effect of Sti1p (Fig. 3.7D), suggesting that Sti1p has robust effect 

on CIRV replication in vitro. The presence of recombinant Sti1p lacking functional TPR2 

domain (e.g., ∆TPR2 or mutant G325D) was also inhibitory, reducing CIRV replication by 

up to ~5-fold in the isolated mitochondria-based assay (Fig. 3.7C, lanes 11-16 and 7D, 

lanes 15-22). In contrast, inactivation of TPR1 (∆TPR1 or mutant C49Y) resulted in the 

loss of the inhibitory function of Sti1p (Fig. 3.7C, lanes 8-10, 17-19 and 7D, lanes 11-14) 

in the isolated mitochondria-based replication assay, thus emphasizing the critical role of 

the TPR1 sequence in Sti1p.  
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Comparison of the inhibitory effects of host proteins carrying TPR domains on CIRV 

replication in isolated mitochondria-based replication assay. Two other cellular proteins 

with TPR domains, namely Cpr7p cyclophilin and Cns1p co-chaperone, have been shown 

to inhibit TBSV replication (109, 150). Test if these host proteins have comparable 

activities to Sti1p in inhibition of CIRV replication, we used the isolated mitochondria-

based in vitro replication assay and purified recombinant cellular proteins and CIRV 

replication proteins (Fig. 3.8A-B). Interestingly, all these TPR-containing proteins 

inhibited CIRV replication in vitro with Sti1p and the TPR region of Cpr7p showing up 

to ~10-fold reduction in repRNA production in the isolated mitochondria-based 

replication assay (Fig. 3.8A, lanes 6-8 and 12-14 versus 3-5). Cns1p was the least 

effective in this assay (Fig. 3.8A, lanes 15-17), but this could be due to the lower amount 

of recombinant GST-Cns1p obtained from E. coli (Fig. 3.8B). However, the purified 

recombinant GST-Cns1p was the most effective inhibitor of TBSV replication by 

reducing TBSV replication by up to ~20-fold in total cell-free extract (CFE)-based 

replication assay (Fig. 3.8C) (150). Altogether, the TPR-containing Cpr7p seems to have 

strong inhibitory effect against both TBSV and CIRV replication, while Sti1p efficiently 

inhibits CIRV, but its effect is only moderate on TBSV replication in vitro.   

 

The plant Hop ortholog of the yeast Sti1p inhibits CIRV replication in yeast and plants. 

Arabidopsis thaliana has three orthologs of Sti1p co-chaperone, namely AtHop1-3, that 

carry TPR1 and TPR2 domains (181, 188). To test if AtHop-1 could inhibit CIRV 

replication, we expressed it in yeast. Similar to the yeast Sti1p, AtHop-1 inhibited CIRV 
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accumulation by ~5-fold in yeast (Fig. 3.9, lanes 4-6). Deletion of the TPR1 sequence 

made AtHop-1 less effective inhibitor of CIRV replication (Fig. 3.9, lanes 7-9), 

suggesting that the TPR1 sequence is important for the inhibitory function of AtHop-1. 

 To test the relevance of the plant Hop protein in tombusvirus replication, we 

tested the accumulation level of Hop mRNA in Nicotiana benthamiana host. The semi-

quantitative RT-PCR analysis revealed the induction of NbHop mRNA upon infection 

with CIRV (Fig. 3.10A). In addition, knockdown of NbHop level via VIGS in N. 

benthamiana led to ~3-fold increased CIRV genomic RNA accumulation (Fig. 3.10B). 

As expected, due to the high level CIRV accumulation, the Hop-knockdown in N. 

benthamiana plants died even more rapidly than control plants when infected with CIRV 

(Fig. 3.10C). In contrast, the accumulation of the genomic RNA of the related CNV (a 

peroxisomal replicating tombusvirus, closely related to TBSV) was not significantly 

affected by Hop-knockdown N. benthamiana plants (Fig. 3.10D). Also, the symptom 

severity of CNV-infected knockdown or control plants was comparable (Fig. 3.10E). 

Based on these in planta experiments, we suggest that the plant Hop ortholog plays a 

potent inhibitory role, similar to the yeast Sti1p, in the mitochondrial CIRV replication, 

but not in the peroxisomal CNV replication. 

 

3.4 Discussion 

 

Identification of the Hop-like Sti1p co-chaperone as a novel cell-intrinsic restriction 

factor against CIRV replication in mitochondria. Cellular protein chaperones are 

important for virus replication and during other steps of the infectious process (74, 189-
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195). For example, Hsp70 has been shown to affect the intracellular localization and 

membrane insertion of TBSV replication proteins and the assembly of the tombusviral 

VRCs (100-102). Although Hsp70 interacts directly with the tombusviral replication 

proteins, it is possible that other cellular factors could affect the subversion of Hsp70s by 

TBSV. Since co-chaperones facilitate selection and delivery of client proteins to the 

major Hsp70 and Hsp90 chaperones (196-198), some co-chaperones might also be 

involved in viral infections as demonstrated in this paper and earlier (74, 189-195).  

 Our finding that the conserved cellular Hop-like Sti1p co-chaperone is a restriction 

factor for CIRV replication in the mitochondria contributes to the emerging complex 

roles of cellular chaperones in virus replication (74). While deletion of Sti1p led to a 2-to-

4-fold increase in CIRV replication in yeast model host or knockdown of the orthologous 

Hop in N. benthamiana increased CIRV accumulation by ~3-fold, over-expression of 

Sti1p or AtHop-1 in yeast was inhibitory. In vitro CIRV replication experiments based on 

isolated mitochondria also confirmed the robust inhibitory effect of Sti1p on CIRV. 

Moreover, the expression of the Sti1 ortholog Hop is increased during CIRV replication 

in plant leaves. Thus, Sti1p is a new member of the growing family of cell-intrinsic 

restriction factors. 

 However, Sti1p did not have robust effect on replication of the closely related TBSV 

in yeast or on the replication of CNV in plants, both of which utilize the peroxisomal 

membranes for replication (10, 107). This contrasting finding with Sti1/Hop for different 

tombusviruses exploiting different subcellular locations could be due to the difference in 

accessibility of Sti1/Hop to replication proteins of tombusviruses in their respective 

cellular environments. For example, it has been shown in plants that Hop/Sti1 is involved 
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in transportation of freshly synthesized mitochondrial and chloroplast proteins from the 

cytosol into these organelles (199). Moreover, the delivery/import of mitochondrial 

preproteins from the cytosol to the mitochondria often depends on Hsp70/Hsp90 

chaperones and includes Hop/Sti1 and the TPR domain in Tom70 mitochondrial receptor 

(200, 201). Also, the CIRV p36 replication protein was shown to interact with various 

Tom receptor proteins, which might have roles in mitochondrial membrane insertion of 

p36 (19). Based on these studies, we propose that Sti1/Hop might be easily accessible and 

bind efficiently to the mitochondria-targeted CIRV replication proteins in cells, while the 

cellular Sti1/Hop co-chaperone has a lesser chance to bind to the peroxisome-targeted 

TBSV and CNV replication proteins. Accordingly, live cell imaging showed the re-

localization of Sti1p to the mitochondria in the presence of CIRV p36, while Sti1p 

showed mostly cytosolic localization in yeast cells expressing the CNV p33 replication 

protein (Fig. 3.5). Thus, the difference in accessibility of Sti1/Hop could be the major 

mechanism restricting CIRV but not TBSV or CNV replication.     

 

 Mechanisms of Sti1p co-chaperone-driven restriction of CIRV replication. 

Recruitment of the tombusvirus (+)RNA into replication requires selective binding by the 

tombusvirus replication proteins via recognition of a RNA recruitment element (named 

p33RE) within the polymerase gene sequence (3, 202). The same p33RE element is also 

required for the VRC assembly and activation of the polymerase function of the 

replication protein (4, 203). The specific recognition of p33RE is performed by arginines 

within the RPR motif in p33/p92pol (123, 204). Therefore, binding of cellular factors to 

the RPR motif containing region could block the ability of p33/p92pol to bind the viral 
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(+)RNA, thus inhibiting the essential viral processes of (+)RNA recruitment, VRC 

assembly and replicase activation (203, 205). Indeed, the TPR domain of Cpr7p binds to 

the RPR region in the tombusvirus replication proteins and blocks the above viral 

processes, thus acting as a restriction factor (109). We find that Sti1p also binds to the 

RPR region in the CIRV p36/p95pol replication proteins (Fig. 3.4) and this could explain 

the strong in vitro inhibitory effect of recombinant Sti1p on CIRV replication based on 

mitochondrial preparations (Fig. 3.7). The CIRV p36 interaction with Sti1p also leads to 

the recruitment of Sti1p to punctate structures (mitochondrial membranes) in yeast cells, 

suggesting robust p36:Sti1p interaction in cells. Thus, direct interaction between the 

Sti1p and CIRV p36 might block viral RNA recruitment (see Model 1, Fig. 3.11). 

 However, the picture on the mechanism of CIRV inhibition is likely more complex. 

This is because both the TPR1 and TPR2 regions of Sti1p bind to the RPR domain of 

CIRV p36, yet the expression of TPR1 is inhibitory, while TPR2 is less effective in 

reducing CIRV accumulation in yeast or CIRV replication in vitro with mitochondrial 

preparations (Figs. 3.6-3.7). Thus, the binding to the RPR domain in p36 is unlikely 

enough for Sti1p to effectively inhibit p36 functions. 

 Interestingly, Sti1p does not bind to the RPR region of the TBSV p33 replication 

protein. The binding between p33 and Sti1p involves the C-terminal region of p33 

containing the p33:p33/p92 interaction sequence (Fig. 3.4F-G). It is possible that this 

interaction is not robust/stable enough to interfere with p33 functions in cells. It is likely 

that p33 could readily interact with additional p33 molecules, while binding to Sti1p 

molecules by p33 might be less favored in cells. Indeed, Sti1p is not efficiently 

relocalized to punctate structures containing the p33 molecules in yeast cells (Fig. 3.5B). 
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A similar situation was observed with Cpr6p Cyp40-like cyclophilin, which also binds to 

p33 within the C-terminal domain and does not inhibit p33 functions (109). Yet, this rule 

is not general, since Cns1p co-chaperone binds to the p33:p33/p92 interaction sequence 

in TBSV p33 replication protein and effectively inhibits TBSV replication in yeast (150) 

and in vitro (Fig. 3.8C). It seems that the intracellular accessibility of these TPR-

containing host proteins might be a major factor in their ability to inhibit replication of 

different tombusviruses. 

 Although direct interaction between the RPR region of CIRV p36 and the TPR1 

sequence in Sti1p might explain the inhibitory effect on CIRV replication (Fig. 3.11, 

model 1), it is also possible that Sti1p limits the functions of subverted cellular factors, 

such as Hsp70, for its ontiviral activity. Cytosolic Hsp70s are co-opted by tombusviruses 

and they are permanent residents in the tombusviral VRCs (98). This model is supported 

by the observation that, in spite of the binding of both TPR1 and TPR2 sequences to the 

RPR region of CIRV p36 (Fig. 3.3), only the expression of the Hsp70-interacting TPR1 

region (175, 177) was able to robustly inhibit CIRV replication in yeast and in vitro 

(Figs. 3.6-3.7). Moreover, mutation within the TPR1 sequence (i.e., mutant C49Y) that 

debilitates the interaction with Hsp70, but not with p36 (Fig. 3.3) had lesser inhibitory 

effects on CIRV replication when expressed in yeast (Fig. 3.6). In contrast, a mutation 

(i.e., mutant G325D) that affects interaction with Hsp90 did not interfere with the 

inhibitory function of Sti1p in vivo or in vitro.  Based on these findings, we propose that 

the recruited Sti1p co-chaperone inhibits the proviral function of the co-opted cellular 

Hsp70 molecules during CIRV replication. For example, the predicted Sti1p:Hsp70 

interaction during the formation of VRC or within the assembled VRC might inhibit the 
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Hsp70-driven activation of the polymerase function of p95 or other steps/functions (Fig. 

3.11, model 2). 

 The major role of Sti1p co-chaperone in eukaryotic cells is to bring Hsp70:client 

protein complex together with Hsp90 chaperone to facilitate robust refolding/activation 

of client proteins by the powerful Hsp90 system (177, 206, 207). This is facilitated by the 

ability of Sti1p to bind simultaneously to Hsp70 (via the TPR1 sequence) and Hsp90 (via 

the TPR2A region). However, based on our data, it is unlikely that this function of Sti1p 

is critical to inhibit CIRV replication. This is because deletion of the entire TPR2 domain 

from Sti1p did not eliminate the inhibitory function of Sti1p in vitro or in yeast (Fig. 3.6-

3.7). Also, blocking the function of Hsp90 by applying geldanamycin inhibitor in yeast 

had no effect on tombusvirus replication (data not shown), arguing against the functional 

role of Hsp90 in tombusvirus replication. Therefore, the direct effect of Sti1p on CIRV 

p36/p95 and the co-opted Hsp70 is the best suited to explain the current experimental 

data (Fig. 3.11). 

 Sti1/Hop is the first cellular restriction factor specifically affecting one tombusvirus 

(i.e., the mitochondria replicating CIRV), but not other tombusviruses (TBSV and CNV, 

both replicating in peroxisomal membranes). The previously identified TPR domain-

containing cellular proteins, namely Cpr7p and Cns1p, could inhibit the replication of all 

these tombusviruses [this work and (109, 150)]. Interestingly, all three cellular factors are 

part of the Hsp70/Hsp90 chaperone system, suggesting that they, at least in part, inhibit 

tombusvirus replication via regulating chaperone functions. Because the Hsp70/Hsp90 

chaperone system is known to affect many viruses [reviewed in (74, 208)], it is possible 
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that the identified restriction factor activities of these TPR-containing cellular proteins 

might be functional against other viruses and pathogens.  

 Another use of Hop/Sti1 in host innate defense against pathogens is its role in 

maturation and transport of rice chitin receptor OsCERK1, which is a pattern recognition 

receptor (PRRs), against rice blast fungus (209). This function of Hop/Sti1 might link the 

functions of PRRs, small Rho-type GTPases and resistance against pathogens. Sti1p is 

also known to affect prion propagation in yeast (210) and its expression is increased in 

SV40-transformed MRC-5 fibroblasts and some tumor tissues (165, 211). Thus, Hop/Sti1 

is emerging as a possibly key component in propagations of several infectious agents and 

innate defense responses of host cells. 

 

Summary: The current and recent works (109) with tombusviruses indicate that some 

members of the large family of TPR-containing proteins might act as cell-intrinsic 

restriction factors of tombusviruses. The list includes the Hop-like Sti1p and Ttc4 

oncogene-like Cns1p co-chaperones and Cyp40-like Cpr7p cyclophilin. Yet, based on the 

yeast Cyp40-like Cpr6p cyclophilin (109), we already know that not all TPR-containing 

proteins are viral restriction factors in spite of their abilities to interact with tombusvirus 

replication proteins. Since many TPR-containing proteins are expressed in all eukaryotes, 

it will be important to identify all the members of these cellular protein family that act as 

restriction factors during tombusvirus and other (+)RNA virus replication. 

Copyright © American Society for Microbiology 
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Fig. 3.1 Increased CIRV replication in sti1∆ yeast.  
 
(A) Northern blot analysis of accumulation of CIRV DI-1 repRNA in sti1∆ or wt yeast 
strains at 23ºC. We launched CIRV repRNA replication by expressing CIRV His6-p36 
and His6-p95 from the galactose-inducible GAL1 promoter and DI-1 (+)repRNA from the 
galactose-inducible GAL10 promoter in sti1∆ and the parental (wt, BY4741) yeast 
strains. Note that the data were normalized based on 18S rRNA. Each experiment was 
repeated three times. (B) Northern blot analysis of accumulation of TBSV DI-72 repRNA 
in sti1∆ or wt yeast strains. TBSV repRNA replication was launched by expressing CNV 
His6-p33 and CNV His6-p92 from the GAL1 promoter and DI-72 (+)repRNA from the 
GAL10 promoter in sti1∆ and the parental (wt BY4741) yeast strains. See further details 
in panel A. Bottom images: Western blot analysis of CNV His6-p33, CNV His6-p92 
accumulation by anti-His antibody and Sti1p accumulation by anti-Sti1 antibody. (C) Top 
images: Northern blot analysis of the CIRV p36/p95-driven TBSV DI-72 RNA 
accumulation in sti1∆ or wt yeast strains. Same as panel A except DI-72 was used as a 
repRNA with CIRV His6-p36 and His6-p95, which support viral RNA replication on 
mitochondrial membrane surfaces. Bottom images: Western blot analysis of CIRV His6-
p36, CIRV His6-p95 accumulation by anti-His antibody and Sti1p accumulation by anti-
Sti1 antibody. 
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Fig 3.2 
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Fig. 3.2 Over-expression of Sti1p inhibits CIRV accumulation in yeast. 
 
(A) Top panel: Northern blot analysis of CIRV RNA accumulation in wt or sti1∆ yeasts 
overproducing the FLAG-tagged Sti1p. Second panel: Northern blot analysis to 
demonstrate the comparable level of ribosomal RNA loading in the yeast samples. 
Bottom panels: Western blot analysis of CIRV His6-p95 and CIRV His6-p36 
accumulation by anti-His antibody and Sti1p accumulation by anti-Sti1 antibody. (B) 
Northern blot analysis of TBSV DI-72 repRNA accumulation in wt or sti1∆ yeasts 
overproducing the FLAG-tagged Sti1p in the presence of peroxisomal CNV p33/p92 
replication proteins. See further details in panel A 
 
.  
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Fig 3.3 
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Fig. 3.3 Interaction between Sti1p and CIRV p36 replication protein in yeast and in 
vitro.  
 
(A) Domain structure of the yeast Sti1p. TPR1 (tetratricopeptide repeat) sequence 
interacts with Hsp70, while DP1 (dipeptide repeat of aspartic acid and proline) might 
stabilize the bound client protein. TPR2A and TPR2B bind to Hsp90 and together inhibit 
the ATPase activity of Hsp90. TPR2B also binds to Hsp70, but only in concert with 
Hsp90 binding to TPR2A. The debilitating mutations are marked with an asterisk and 
deletion constructs are shown schematically at the bottom of the panel. (B) Split ubiquitin 
MYTH assay was used to test intracellular interaction between CIRV p36 and the wt or 
mutated yeast Sti1p. The bait p36 was co-expressed with the prey Sti1p protein in sti1∆ 
yeast. SSA1 (HSP70 chaperone), and the empty prey vector (NubG) were used as positive 
and negative controls, respectively. (C) The same split ubiquitin MYTH assay as in panel 
B, except TBSV p33 was used as a bait protein. (D) Co-purification of CIRV p36 
replication protein with the yeast Sti1p from yeast cells. The membrane fraction of yeast 
co-expressing the wt or mutated FLAG-Sti1p and His6-p36 was solubilized and the Sti1p 
variants were purified using a FLAG-column. The eluted proteins were tested using 
Western blotting with anti-FLAG antibody (top image) and anti-His6 antibody (bottom 
image). (E) Reciprocal co-purification of the yeast Sti1p with CIRV p36 and p95 
replication proteins from yeast cells. The same as in panel D, except yeast co-expressed 
the twin-strep-tagged CIRV p36 and p95 and Flag-Sti1p. The purification was based on 
streptactin columns. The eluted proteins were tested using Western blotting with anti-
Strep-Tactin-AP conjugate (top image), anti-Flag antibody (middle image) and anti-
Hsp70 antibody (bottom image). 
 
 
Note: Experiments in Fig. 3.3B, C&D were in collaboration with Dr. Jing-Yi Lin. 
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Fig 3.4 
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Fig. 3.4 Defining the sequence within the tombusvirus replication proteins needed for 
binding to Sti1p in vitro.  
 
(A) Schematic representation of the CIRV p36 and its truncated derivatives used in the 
binding assay.  The various domains include: TMD, transmembrane domain; RPR, 
arginine-proline-rich RNA binding domain; P; phosphorylated serine and threonine; S1 
and S2 subdomains involved in p36:p36/p95 interaction. (B-E) Affinity binding (pull-
down) assay to detect interaction between Flag- or His6-Sti1p, ∆TPR1, ∆TPR2 and the 
MBP-tagged CIRV p36 protein derivatives. The MBP-tagged viral proteins produced in 
E. coli were immobilized on amylose-affinity columns. Then, the recombinant Sti1p and 
derivatives expressed in E. coli (panels B, D, E) or in yeast (panel C) was passed through 
the amylose-affinity columns with immobilized MBP-tagged p36 protein (its truncated 
versions). The affinity-bound proteins were eluted with maltose from the columns (shown 
in the bottom image). Top images in each panel: The eluted proteins were analyzed by 
Western blotting with anti-Flag or anti-His antibodies to detect the amount of Flag- or 
His6-Sti1p specifically bound to MBP-tagged viral proteins. Bottom image: SDS-PAGE 
analysis of the viral protein and its truncated derivatives after elution from the amylose-
affinity columns. Note that the MBP has a C-terminal extra tail sequence (not present in 
the fusion protein constructs) due to the sequence in the original cloning vector.  (F) 
Schematic representation of the TBSV p33 and its truncated derivatives used in the 
binding assay. (G) Affinity binding (pull-down) assay to detect interaction between 
FLAG-Sti1p and the MBP-tagged viral p33 protein (the soluble C-terminal portion). The 
MBP-tagged viral protein or MBP control produced in E. coli was immobilized on 
amylose-affinity columns. See further details in panel B above. The eluted proteins were 
analyzed by Western blotting with anti-FLAG antibody to detect the amount of FLAG-
Sti1p specifically bound to MBP-tagged viral protein. 
 
 
Note: Experiments in Fig. 3.4G were in collaboration with Dr. Jing-Yi Lin. 
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Fig 3.5 
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Fig. 3.5 Relocalization of yeast Sti1p co-chaperone when co-expressed with CIRV p36 
replication protein in yeast.  
 
(A) Confocal laser microscopy images show the partial co-localization of RFP-Sti1 with 
CIRV GFP-p36 in wt (top images), or in sti1∆ yeast strains. The merged images show the 
co-localization within punctate structures, likely representing mitochondria, which are the 
sites of CIRV replication. DIC (differential interference contrast) images are shown on 
the right. (B) Absence of co-localization of RFP-Sti1 and GFP-p33 in yeast. Note the 
cytosolic distribution of RFP-Sti1, while GFP-p33 is present in punctate structures 
representing the peroxisomes. Each experiment was repeated. 
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Fig 3.6 
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Fig. 3.6 Functional TPR1 domain of Sti1p is required for inhibition of CIRV 
replication in yeast. 
 
(A) Northern blot analysis of CIRV accumulation in wt yeast overproducing the FLAG-
tagged Sti1p or derivatives. Bottom panel: Northern blot analysis to demonstrate the 
comparable level of ribosomal RNA loading in the yeast samples. (B) Western blot 
analysis of CIRV His6-p36, and CIRV His6-p95 accumulation by anti-His antibody from 
yeast overproducing Sti1p or derivatives. (C) Detection of the overproduced FLAG-Sti1p 
or its derivatives in yeast by Western blot analysis using anti-FLAG antibody. 
 
Note: Experiments in Fig. 3.6 were in collaboration with Dr. Jing-Yi Lin. 
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Fig 3.7 
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Fig. 3.7 Functional TPR1 domain of Sti1p blocks CIRV replication in vitro.  
 
(A) Scheme of in vitro reconstitution of the CIRV replicase in yeast mitochondrial 
preparation. The purified GST-tagged Sti1p or derivatives, the purified recombinant 
CIRV MBP-p36 and MBP-p95 proteins and the TBSV-derived (+)repRNA were used in 
isolated mitochondrial preparations. (B) Coomassie Blue stained SDS-PAGE was used 
for analysis of affinity-purified GST-tagged Sti1 or derivatives. (C) Denaturing PAGE 
analysis of the 32P-labeled repRNA products obtained in the replication assays with the 
isolated yeast mitochondrial preparation and the soluble fraction of yeast CFE that 
provided soluble host factors. The synthesized full-length repRNA is pointed at by an 
arrow. The replication assay with CIRV p36 and p95 (without added Sti1) was chosen as 
100% (lane 1). The recombinant proteins were added in 8, 16 and 32 μM amounts. Each 
experiment was repeated. (D) CIRV mitochondrial replication assays were performed 
(see panel A) to test the effect of pre-incubation of various components. Lanes “a” show 
samples when the purified Ssa1p Hsp70 (from sti1∆ yeast strain) was pre-incubated for 
10 min with comparable amount of GST, GST-Sti1p or mutants (from E. coli), while in 
lanes “b”, the MBP-p36/MBP-p95 of CIRV (from E. coli) was pre-incubated with Ssa1p. 
In lanes “c”, the MBP-p36/MBP-p95 of CIRV was pre-incubated with GST, GST-Sti1p 
or mutants, while in lanes “-“ no pre-incubation was performed. In each experiment, we 
used comparable amounts of each component for pre-incubation that lasted for 10 min in 
the reaction buffer. After the pre-incubation step, we added the missing components and 
performed the CIRV replication assay (see panel A). Each experiment was repeated at 
least twice. 
 
 
Note: Experiments in Fig. 3.7 were in collaboration with Dr. Jing-Yi Lin. 
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Fig 3.8 
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Fig. 3.8 Comparison of the inhibitory effects of TPR-containing cellular proteins on 
CIRV replication in isolated mitochondria in vitro. 
 
(A) Denaturing PAGE analysis of the 32P-labeled repRNA products obtained in the 
replication assays with the isolated yeast mitochondrial preparations. The purified GST-
tagged Sti1p, the yeast Cpr7p Cyp40-like cyclophilin, the TPR domain of Cpr7p or 
Cns1p co-chaperone (8, 16 and 32 μM) was added in combination with purified 
recombinant CIRV MBP-p36 and MBP-p95 proteins and the TBSV-derived (+)repRNA 
to the isolated mitochondrial preparations to perform the in vitro replication assay. The 
synthesized full-length repRNA is marked by an arrow. See further details in Fig. 3.7. (B) 
Coomassie Blue stained SDS-PAGE was used for analysis of affinity-purified GST-
tagged Sti1p, Cpr7p and Cns1p. (C) The level of in vitro TBSV repRNA replication in 
total yeast cell-free extracts in the presence of purified TBSV p33 and p92 replication 
proteins and purified GST-tagged Sti1p, Cpr7p, the TPR domain of Cpr7p or Cns1p (16 
and 32 μM). 
 
 
 
Note: Experiments in Fig. 3.8 were in collaboration with Dr. Jing-Yi Lin. 
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Fig 3.9 
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Fig. 3.9 Inhibition of CIRV replication by expression of the orthologous AtHop-1 in 
yeast.  
 
(A) Northern blot analysis of CIRV RNA accumulation in wt yeast overproducing the 
FLAG-tagged AtHop-1 or its TPR1-deletion derivative. Second panel: Northern blot 
analysis to demonstrate the comparable level of ribosomal RNA loading in the yeast 
samples. Third and fourth panels: Western blot analysis of CIRV His6-p36, and CIRV 
His6-p95 accumulation by anti-His antibody. Bottom panels: Detection of the 
overproduced FLAG-AtHop-1 in yeast by Western blot analysis using anti-FLAG 
antibody and the Coomassie-stained SDS-PAGE as a loading control. 
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Fig 3.10 
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Fig. 3.10 Knockdown of Hop gene by VIGS increases CIRV accumulation in whole 
plants.  
 
(A) Semi-quantitative RT-PCR analysis of the accumulation of NbHOP mRNAs in 
CIRV-infected N. benthamiana plants (3 dpi, days post-inoculation) and in the control 
mock-inoculated plants. Semi-quantitative RT-PCR analysis of NbActin mRNA level 
served as a control. (B) Top image: Accumulation of CIRV genomic and subgenomic 
RNAs in the inoculated leaves of HOP knockdown N. benthamiana plants 2 dpi, based 
on Northern blot analysis. VIGS was performed via agroinfiltration of TRV vectors 
carrying NbHOP sequence or the TRV vector carrying the C-terminal half of GFP insert 
(as a control). Inoculation with CIRV gRNA was done 14 days after VIGS. Second 
image: Ribosomal RNA level in the samples used as loading control. Bottom images: 
Semi-quantitative RT-PCR analysis of the accumulation of NbHOP mRNA in the 
knockdown N. benthamiana plants and in the control plants 2 days after inoculation with 
CIRV. Semi-quantitative RT-PCR analysis of the NbActin mRNA from the same 
samples served as a control. (C) Accelerated CIRV-induced symptom development in the 
NbHOP knockdown plant (shown on the right) at 7 dpi when compared to the control 
plant infiltrated with the control TRV vector. Note the minor phenotypic effect in the 
uninfected NbHOP knockdown N. benthamiana plants when compared to the control 
plants, which were agroinfiltrated with the pTRV1/2GFP vector (the plants on the left 
side of the images).  (D) Accumulation of CNV gRNA in the inoculated leaves of HOP 
knockdown N. benthamiana plants 2 days post-inoculation, based on Northern blot 
analysis. See further details in Panel B. (E) Comparable CNV-induced symptom 
development in the HOP knockdown and control plants. See further details in Panel C. 
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Fig 3.11 
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Fig. 3.11 Models on the inhibitory role of Sti1p co-chaperone in CIRV replication. 
 
Model 1 predicts that direct interaction between Sti1p and the RPR region of CIRV p36 
replication protein blocks the viral (+)RNA recruitment function of p36, and thus blocks 
replication of CIRV. Model 2 emphasizes the additional role of Sti1p through the co-
opted Hsp70 chaperone. Binding of the TPR1 domain of Sti1p to Hsp70 within the CIRV 
replicase might inhibit the function of the subverted Hsp70 in VRC assembly, by possibly 
stabilizing the Hsp70-p95 complex. Note that both mechanisms might operate inside the 
cell. 
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Chapter 4 

RNA VIRUS REPLICATION DEPENDS ON ENRICHMENT OF 

PHOSPHATIDYLETHANOLAMINE AT REPLICATION SITES IN 

SUBCELLULAR MEMBRANES 

 

 

4.1 Introduction 

 

Many steps in the infection cycles of positive-strand RNA viruses, including entry into the 

cell, replication, virion assembly and egress, are associated with subcellular 

membranes(20). Therefore, viruses have to interact with different lipids, such as 

phospholipids and sterols, which affect the biophysical features of membranes, including 

the fluidity and curvature (57, 64, 70, 144). The subverted cellular membranes could 

protect the viral RNA from recognition by the host nucleic acid sensors or from destruction 

by the cellular innate system. In addition, membranes facilitate the sequestration of viral 

and co-opted host proteins to increase their local concentrations and promote 

macromolecular assembly, including formation of the replicase complex or virion 

assembly. To optimize viral processes, RNA viruses frequently manipulate lipid 

composition of various intracellular membranes. Overall, the interaction between cellular 

lipids and viral components is emerging as one of the possible targets for antiviral methods 

against a great number of viruses. 
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 Among the various lipids, the highly abundant phospholipids are especially 

targeted by RNA viruses (57). In general, phospholipids likely affect the replication of 

most RNA viruses, which takes place within membranous structures(31). Accordingly, 

lipidomics analyses of cells infected with Dengue virus and Hepatitis C virus (66, 67) 

revealed enhanced virus-induced lipids biosynthesis, resulting in changes in the global 

lipid profile of host cells. Phosphatidylinositol-4-phosphate (PI4P) was shown to be 

enriched at sites of enterovirus replication, and RNA polymerase of Poliovirus selectively 

binds to PI4P (33), suggesting that micro-environment enriched for PI4P facilitates 

enterovirus replication. However, our knowledge on the roles of various phospholipids in 

RNA virus replication is currently incomplete. By using tombusviruses, small model RNA 

viruses of plants that can replicate in yeast surrogate host (13), a major role for 

phospholipid and sterol biosynthesis has been revealed (89, 90). In this paper, development 

of artificial vesicle-based replication of tomato bushy stunt virus (TBSV) identified the 

essential role of phosphatidylethanolamine (PE) in RNA virus replication. It is also shown 

that TBSV could recruit and enrich PE to the sites of viral replication in yeast and plant 

cells. Moreover, genetic changes that increase PE levels in yeast greatly stimulated TBSV 

replication, confirming the key role of PE in the formation of TBSV replicase.  

 

4.2 Materials and Methods 

 

Yeast Strains and expression plasmids. Parental yeast strain BY4741 (MAT a his3Δ1 

leu2Δ0 met15Δ0 ura3Δ0) and single-gene deletion yeast strains (cho2∆, pex3∆) were from 

Open Biosystems.  E. coli protein expression plasmids for recombinant TBSV p33 and 
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p92, pMAL-p33 and pMAL-p92, were previously described (102). pESC-T33/DI72 and 

pYES-T92 used for yeast expression of viral components were described (9).  

 

Preparation of CFE, membrane fraction (P40) and soluble fraction (S40). The yeast 

cell-free extracts (CFE) from train BY4741 were prepared according to (49). CFE 

preparations were centrifuged at 40,000 x g for 1hr to separate the membrane fraction 

(P40) and the soluble fraction (S40). Collected P40 and S40 were immediately stored at -

80 °C until use. 

 

Artificial phospholipid vesicles preparation. Phospholipids were obtained from Avanti 

Polar lipids, Inc. Phospholipids (269 nmol/preparation) were dissolved in chloroform and 

transferred into glass vials, mixed, and subsequently dried under a small stream of nitrogen 

for 1 hour under fume hood. The phospholipids were further dried in a speed-vacuum for 

additional 2-3 hours to completely remove chloroform. To each glass vial, 400 µl HEPES 

buffer (30 mM, pH 7.4) was added, followed by sonication in a bath sonicator (Avanti 

Polar lipids, Inc.) filled with ice for 20 minutes. The mixtures became visually 

homogeneous. The concentrations of the obtained phospholipid vesicle preparations were 

672 µM. Phospholipids vesicles were prepared in the same day of in vitro replication 

assay. 

 

In vitro TBSV replication assay using artificial phospholipid vesicles. The procedure 

for in vitro replication assay using phospholipid vesicles was adapted from the previously 

published procedure using purified yeast organelles (9), except that 100,000 xg supernatant 
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(S100) was replaced with S40 fraction of CFE. Briefly, 2 µl of phospholipid vesicles and 1 

µl of S40 fraction were incubated at 25 °C for 1 hour in 8 µl buffer containing 30 mM 

HEPES-KOH (pH7.4), 150 mM potassium acetate, 5 mM magnesium acetate, 0.6 M 

sorbitol, 15 mM creatine phosphate, 1 mM ATP, CTP and GTP and 0.025 mM UTP, 0.1 µl 

of [32P]UTP, 0.1 mg/ml creatine kinase, 0.1 µl of RNase inhibitor (Thermo Scientific), 10 

mM dithiothreitol, 0.5 µg DI-72 RNA transcript, and 0.5  µg MBP-tagged recombinant 

TBSV p33 and p92 replication proteins. Then, the reaction mix was incubated for 3 hours 

in  16 µl cell-free replication buffer B (30 mM HEPES-KOH pH7.4, 150 mM potassium 

acetate, 5 mM magnesium acetate) with 15 mM creatine phosphate 1 mM ATP, CTP and 

GTP 0.025 mM UTP, 0.2 µl of [32P]UTP, 0.1 mg/ml creatine kinase, 0.2 µl of RNase 

inhibitor, 10 mM dithiothreitol and 0.05 mg/ml actinomycin D. After reaction, total RNA 

was extracted and analyzed in a denaturing gel. Determination of viral (+)RNA/(-)RNA 

ratio, as well as micrococcal nuclease treatment were described previously (9). 

 

Membrane flotation assay. [35S]methionine-labeled TBSV p33 (101) was incubated with 

different phospholipid vesicles as previously described using purified yeast organelles (9). 

The membrane flotation assay was performed as previous described (212) with minor 

modifications. Briefly, the reaction mixture (24 µl) were mixed with 126 µl 85% sucrose 

in HEPES buffer in a final concentration of 71.25%, then overlaid with 900 µl 65% 

sucrose and 150 µl 10% sucrose in HEPES  buffer (30 mM, pH 7.4). The gradient was 

centrifuged at 134,000 x g for 16 hours at 4 °C in a swing bucket rotor (Beckman TLS-55).  
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TBSV RNA recruitment assay. For the viral RNA recruitment assay, phospholipids 

vesicles were mixed with MBP-tagged recombinant TBSV p33 and p92 replication 

proteins (0.5µg each) as in vitro replication assay, except that UTP was omitted from the 

reaction mixture, and 1 µg/µl yeast tRNA was added as non-specific competitor and 1 µl 

radioactive [32P]UTP labeled DI-72 RNA transcripts were added. After incubation for 1 

hour at 25 °C, the reaction mixtures were subjected to membrane flotation assay in sucrose 

gradients as described above. Total RNA from the top fraction of each gradient was 

extracted and analyzed in a denaturing RNA gel (5% polyacrylamide gel containing 8M 

urea).  

 

Lipid extraction and mass-spectrometry for lipidomics analysis. For yeast 

phospholipid analysis, yeast carrying the TBSV expression plasmids were pre-cultured in 

glucose-containing media overnight, washed and diluted to 0.3 OD600 units/ml in 

galactose-containing media and cultured for approximately 24 h at 23 ºC until reaching ~2 

OD600 units/ml. Yeast cells (0.4 g) were placed into a 15 ml glass tube, containing 1.2 ml 

water, 2 ml chloroform, 4 ml methanol, 0.8 g glass beads, followed by mixing and 

vigorous vortexing. Then, 2 ml chloroform and 2 ml water were added into the tube and 

centrifuged at low speed. Then, the lower organic phase was collected. 2 ml chloroform 

was mixed with the remaining inorganic phase; lower organic phase was withdraw. The 

chloroform extraction step was repeated. All the organic phases from previous steps were 

combined and washed with 0.5 ml 1M KCl and then with water.  

To determine the phospholipids profile of TBSV-infected plants, 3 weeks old 

Nicotiana benthamiana plants were inoculated with TBSV genomic RNA transcripts or 
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mock-inoculated with buffer. Then, at 6 days post infection, the upper leaves showing the 

characteristic TBSV symptoms were harvested. Lipid extraction was as described 

previously (213). Briefly, about 0.15-0.2 grams of leaves from one plant were collected 

and incubated with 3 ml isopropanol containg 0.01% butylated hydroxytoluene (BHT) at 

75 °C for 15 min. Extraction of lipids with chloroform/methanol (2:1) incubated at room 

temperature was performed for 1 hour, in total five times. Organic phases from each 

extraction were combined and washed with 0.5 ml 1 M KCl and water, respectively.  

Washed organic phase was analyzed on a triple quadrupole MS/MS equipped for 

electrospray ionization (ESI). Di 10:0 PE/PC/PG (Avanti Polar Lipids, Inc) were mixed 

with yeast or plant samples before extraction as spiked lipids standards for PE/PC/anionic 

phospholipids during the extraction step. In addition, two internal lipid standards of each 

phospholipid class were mixed with each sample before ESI-MS/MS analysis for 

quantification of each lipid class (213). Data were obtained from 3 repeats.  

 

Purifiation of biotinylated duramycin. Biotinylation of duramycin (Sigma Cat. #: 

D3168), followed by purification, was performed as described for cinnamycin (214, 215). 

Briefly, 500 µM duramycin in 0.1 M NaHCO3 was mixed with equal volume of 8.7 mg/ml 

EZ-link NHS-LC-biotin dissolved in sterile water (Thermo Scientific, Product #: 21336) 

for 4 hours at room temperature and quenched by adding one-fifth volume of 0.1 M lysine. 

Biotinylated duramycin were purified by reverse-phase high-performance liquid 

chromatography using Waters Nova-Pak C18 Column (Model: WAT086344). The 

biotinylated duramycin was eluted with a linear gradient of 10 mM sodium acetate (pH 

4.2) starting from 5% to 60% for 50 min, at a flow rate of 0.5 ml/min. Biotinylated 
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duramycin was collected at 28 to 30 min after starting of elution. No peak was detected at 

the “32 min” time-point, when elution of nonbiotinylated duramycin was expected, 

suggesting that all duramycin molecules became biotinylated. 

 

Imaging of PE distribution and viral protein localization in yeasts and plant 

protoplasts. Yeast cultures were grown in glucose containing media overnight and 

switched to galactose containing media with initial 0.3 OD600. To prepare spheroplasts, 

overnight cultures were harvested and the yeast cells were fixed with 3.7% formaldehyde 

for 40 min at room temperature in dark, washed twice with 0.1 M potassium phosphate 

(pH 7.5), and then re-suspended in SPP (0.1 M potassium phosphate pH 7.5, 1.2 M 

sorbitol) with zymolase 20T (1 mg/ml). Cells were incubated at 30 °C for 1 hour, and then 

incubated with SPP with 50 mM NH4Cl for 15 min to quench free aldehyde groups. 

Spheroplasts were collected after washing twice with SPP, and then applied to poly-L-

lysine coated slides. Slides were immersed in methanol for 6 min and acetone for 30s, 

respectively, at -20 °C. Biotinylated-duramycin was added into phosphate-buffered saline 

(PBS, pH 7.4) containing 0.05% Nonidet P-40 and 1% BSA (15 µg/ml), and incubated 

overnight with the fixed cells at -4 °C. Slides were washed and incubated with Streptavidin 

conjugated with Alexa Fluor® 405 (Life Technologies, Cat. #: S-32351) for 1 hour before 

imaging. 

The distribution of PE was also monitored using fatty acid-labeled NBD-PE and 

NBD-PC internalization. M-C6-NBD-PE (1-myristoyl-2-(6-[(7-nitro-2-1,3-benzoxadiazol-

4-yl)amino]hexanoyl)-sn-glycero-3-phosphoethanolamine) and M-C6-NBD-PC (1-

myristoyl-2-(6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]hexanoyl)-sn-glycero-3-
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phosphocholine) (Avanti Polar lipids, Inc.) were dissolved in DMSO in 8 mM 

concentration (216) and stored at -20 °C. Wild type yeast transformed with pESC-mRFP-

T33 and pRS315-Pex13p-BFP was pre-grown in SC medium, then cultured in SC medium 

containing 2% galactose with 80 µM NBD-PE or NBD-PC at 0.5 OD600, and incubated at 

23 °C for 16 hours. Cells were washed with SCNaN3 medium (216) (SC medium with 2% 

sorbitol and 20 mM sodium azide) and subjected to confocal laser microscope analysis. 

N. benthamiana protoplasts were prepared and eletroporated with in vitro 

transcribed TBSV full length genomic RNA as described previously (204). Protoplasts 

were fixed with 3.7% formaldehyde in protoplast culture medium (204), applied to poly-L-

lysine coated slides, and processed using the above procedure for PE staining. For dual 

staining of p33 and PE, anti-p33 primary antibody (a gift from Dr. Herman B. Scholthof) 

was diluted (1:400) and incubated with fixed protoplasts in PBS containing 1% 

BSA/0.05% Nonidet P-40 overnight. After washing three times with PBS/1% BSA/0.05% 

Nonidet P-40, cells were incubated with anti-mouse secondary antibody conjugated to 

Alexa Fluor® 488 (Life Technologies, Cat. #: A-11001) for 1 hour before imaging. 

Confocal images were obtained with an Olympus FV1000 microscope (Olympus 

America, Melvie, NY). Alexa 405, GFP/Alexa 488, and RFP were excited using 405 nm, 

488 nm or 543 nm lasers, respectively. Images were obtained sequentially, and merged 

using Olympus FLUOVIEW 1.5 software. 

 

4.3 Results 

 

Efficient replication of TBSV RNA in artificial PE vesicles. To test what type of 
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phospholipids are required for tombusvirus replication, we developed an artificial 

vesicle- (liposome-) based replication assay involving purified recombinant tombusvirus 

p33 and p92pol replication proteins, TBSV (+) replicon (rep)RNA and cellular cytosolic 

proteins present in yeast cell-free extract (CFE, Fig. 1A). Interestingly, artificial vesicles 

prepared only from phosphatidylethanolamine (PE) supported TBSV repRNA 

replication, reaching about half of the level that takes place in the standard CFE obtained 

from wt yeast (Fig. 1A, lanes 3-4 versus 1-2). On the contrary, vesicles consisting of only 

phosphatidylcholine (PC, Fig. 1A, lanes 5-6), or lysoPE showed 5% viral RNA 

replication activity when compared with PE vesicles (Fig. 2A, lanes 3-4 and 13-14), 

while PG, PS, PI, CA, and lysoPC vesicles did not support TBSV RNA replication (Fig. 

2A). These data support a model that PE is the only phospholipid required for TBSV 

replication in vitro, while the other phospholipids are not sufficient by themselves. 

To examine the nature of TBSV replication in PE vesicles, we measured (-) 

versus (+)-strand RNA synthesis. These experiments revealed that TBSV replication led 

to the production of ~10-fold more (+)- than (-)-stranded RNAs, similar to the ratio seen 

in yeast CFE preparation containing yeast membranes (Fig. 1B) (102). Thus, the in vitro 

assembled TBSV replicase in PE vesicles can support a complete cycle of replication and 

asymmetrical RNA synthesis, which is hallmark of (+)-strand RNA viruses. We also 

tested if the PE vesicles are required for RNA synthesis by adding various concentrations 

of Triton X-100, which could disrupt lipid bilayer. Viral RNA synthesis was inhibited up 

to 90% in the presence of 0.01%, while it was completely blocked by the presence of 0.1 

or 1.0% Triton X-100 (Fig. 1C), suggesting that the membranous environment is needed 

for TBSV replication in vitro. To test if TBSV replicase could form a nuclease-resistant 
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compartment, as the case in cells and in the yeast CFE (49, 102), we performed the in 

vitro assays in the presence of micrococcal nuclease, which can destroy the unprotected 

viral RNAs. These studies revealed that TBSV replicase formed in the presence of PE 

vesicles was much less protective of the viral RNA against the nuclease than the replicase 

assembled in yeast CFE (Fig. 2B). This finding suggests that not only PE, but additional 

phospholipids, other types of lipids or membrane proteins in the yeast CFE also 

contribute to the assembly of the authentic TBSV replicase. 

To estimate optimal PE level for TBSV replication, we made artificial vesicles 

containing PE and increasing amounts of a mixture of other phospholipids (PC, PI, PS, 

PG, lysoPE and lysoPC, mixed as their molar ratio from TBSV infected N. benthamiana 

leaves as shown in Fig. 7) (Fig. 1D). The highest level of TBSV replication was observed 

with the vesicle containing 82-90% PE (Fig. 1D). On the other hand, vesicles containing 

less than 70% PE did not support efficient TBSV replication in vitro. We also tested PE 

and other phospholipids in pair-wise combinations. These in vitro assays revealed that the 

presence of only 10% of PC or lysoPE in PE vesicles enhanced TBSV replication by 

more than 50%, while these phospholipids were inhibitory when applied in higher than 

20% concentrations (Fig. 3A-B). In contrast, the presence of other phospholipids (PS, PI, 

CA, lysoPC) were inhibitory to TBV replication, except for 10% of PG (Fig. 3B). Thus, 

various phospholipids (other than PE) have inhibitory effects on TBSV replication when 

present in higher than 20% amounts. These results indicate that TBSV replication is 

greatly affected by different kind of phospholipids. 

To test whether phospholipids affect the membrane association of the viral 

replication proteins, we performed membrane flotation experiments with artificial 
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vesicles and 35S-labeled p33 replication protein. As expected, in the absence of 

membranes/vesicles, p33 stays at the bottom of the sucrose gradient (Fig. 4B), while 

~30% of p33 are present in the top fraction in the presence of either PE or PC vesicles 

(Fig. 7C-D). In addition, p33 can strongly associate with PG, PS and CA vesicles, while 

binding to PI vesicles is poor (Fig. 4). These data suggest that, except for PI, most of 

phospholipids does not inhibit p33 targeting to membrane. Similar studies with the viral 

(+)repRNA, which has to be recruited to the sites of replication in the membranes by 

replication proteins (3, 102, 202), revealed that the (+)repRNA bound to membrane 

associated p33/p92pol replication proteins with the highest efficiency in the presence of 

PE, PC and lysoPE vesicles, while PG, PS, PI, CA and lysoPC vesicles does not 

stimulate (+)repRNA recruitment (Fig. 5). Therefore, we suggest that binding of 

p33/p92pol replication proteins to PE, PC and lysoPE phospholipids facilitate the 

recruitment of the viral (+)repRNA to replicase complexes.  

 

PE is enriched at the sites of TBSV replication. Since TBSV requires membranes with 

high PE content to assemble the functional VRCs in vitro, we wondered if PE, which is 

among the most abundant phospholipids in yeast, is enriched at the sites of replication. We 

used Alexa405-labeled duromycin, which specifically binds to PE (217), to monitor the 

distribution of PE during TBSV replication. Interestingly, PE was highly enriched in the 

subcellular locations in yeast cells containing GFP-p33 expressed alone or with p92pol 

replicating the TBSV repRNA (Fig. 6A). These sites co-localized with both Pex13p-

mRFP/GFP peroxisomal marker and GFP/RFP-p33 (Fig. 6B), indicating that PE is 

enriched at the sites of TBSV replication in the peroxisomal membrane. On the contrary, 
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the peroxisomal membrane was not enriched with PE in the absence of TBSV replication 

proteins and PE was dispersed in many parts of the yeast cell (Fig. 6B, -TBSV treatment). 

We confirmed the above findings using fatty acid fluorescently-labeled PE (NBD-PE) 

added to the culture media. Accordingly, NBD-PE was enriched in the subcellular location 

also containing RFP-p33 and Pex13p-GFP (Fig. 6C). On the contrary, NBD-PE was not 

enriched in the peroxisomal membranes in the absence of TBSV p33 (Fig. 6C). Unlike 

NBD-PE, NBD-PC was not highly enriched at the sites of TBSV replication (Fig. 6C). 

Based on these data, we propose that PE molecules are efficiently re-localized to and 

enriched at the sites of viral replication in the peroxisomal membranes. To test if similar 

phenomena also occur in plant cells during TBSV replication, we stained TBSV infected 

plant cells (N. benthamiana protoplasts) with Alexa405-labeled duromycin and anti-

p33/p92 antibody. Importantly, confocal imaging showed high enrichment of PE in 

subcellular locations containing the p33/p92 replication proteins (Fig. 6D). The subcellular 

distribution of PE was dramatically different in uninfected plant cells. Based on all these 

data, the emerging picture is that PE, unlike PC, is efficiently redistributed to the 

peroxisomal membranes to facilitate TBSV replication. 

 

Increased PE level in yeast and plant cells supporting TBSV replication. To test if TBSV 

replication alters phospholipid metabolism to facilitate its replication, we performed 

lipidomics of yeast cells replicating TBSV repRNA or lacking all TBSV components. 

These experiments revealed that the relative PE percentage within 5 major phospholipids 

increased from 17.6% to 29.3% (~1.7 fold increase) in yeast replicating TBSV (Fig. 7A). 

On the contrary, PC and PI levels, which are two of the most abundant phospholipids, are 
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decreased by ~6% and 8.4%, respectively, when yeast supported TBSV replication (Fig. 

7A). These data suggest that TBSV selectively increases PE level in yeast. The overall 

phospholipid content of yeast cells after normalized by cell weight before lipid extraction 

increased by 38.4% (Fig. 8A), suggesting that yeast cells are induced by TBSV to produce 

new phospholipids. Considering overall phospholipids also increased in TBSV replicating 

cells, the PE content of yeast cells replicating TBSV increased by ~2.3-fold. This increased 

level of PE in yeast cells likely serves the virus’ need to build new membrane-bound 

replicase complexes (see below). Lipidomics analysis revealed no significant changes in 

the fatty acid length or saturation status of the PE in yeast replicating TBSV versus the 

control yeast (Fig. 8C&D). 

 The PE level was also increased in TBSV-infected plant leaves from 21.2% to 28.8%  

within 7 major phospholipids analyzed (Fig. 7B). In contrast to yeast, the PC level also 

increased in plants, which could be the results of overall elevated phospholipid synthesis 

(Fig. 8B). Nevertheless, the lipidomics data support the increased synthesis of PE in 

TBSV-infected plant cells, similar to the yeast counterpart.   

 

Increased PE level in cho2∆ yeast promotes TBSV replication. To examine if PE level 

can directly affect TBSV replication in cells, we deleted CHO2, which codes for 

phosphatidylethanolamine methyltransferase (PEMT), in yeast. Cho2p catalyzes the first 

step in the conversion of PE to PC, and in its absence, PE level is increased and PC level is 

decreased (218). We find that TBSV replication is increased by ~10-fold in cho2∆ yeast in 

comparison with wt yeast (Fig. 9A, lanes 5-8 versus 1-4). In addition, the amounts of p33 

and p92pol replication proteins were also increased (Fig. 9A). Lipidomics analysis of cho2∆ 
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yeast supporting TBSV replication showed that PE becomes the most abundant within 5 

major phospholipids by reaching up to ~42% level (Fig. 9B, upper panel). And within 

same amount of cell weight, PE increased ~2.5-fold comparing with wild type yeast 

replicating TBSV extraction (Fig. 9B, lower panel). 

We have also performed in vitro TBSV replicase assembly assay in isolated 

membrane fractions from wt or cho2∆ yeasts. The viral replicase assembled with 

membrane fractions from cho2∆ yeast showed ~3-fold higher activity in vitro than from wt 

yeast (Fig. 9C). Since we used the same amount of the recombinant viral proteins in the 

CFE preparations, the increased TBSV replicase activity from cho2∆ yeast suggests that 

the high accumulation level of TBSV repRNA in cho2∆ yeast is due to enhanced replicase 

activity in cho2∆ yeast (Fig. 9A). Confocal microscopy analysis of cho2∆ yeast showed 

robust re-distribution of PE to the sites of TBSV replication, containing the viral 

replication proteins and peroxisome membranes (Fig. 9D).  

To test if the high accumulation of PE in the peroxisome membranes is critical for 

TBSV replication, we deleted PEX3 peroxisome biogenesis gene in cho2∆ yeast. In the 

absence of PEX3 there is no peroxisome or peroxisome membrane remnants in yeast (ref) 

and TBSV switches to the ER for replication (32). ER can support as robust TBSV 

replication as the peroxisomes in yeast (32, 107). We find that TBSV replication is 

increased by ~13-fold in cho2∆pex3∆ yeast (Fig. 10), suggesting that TBSV can take 

advantage of increased PE level in the ER membrane in the absence of peroxisomes.  

To test if the pro-viral role of PE also extends to other viruses, we analyzed 

replication of the closely-related cucumber necrosis tombusvirus (CNV), which also 

replicates on peroxisomal membranes. Similar to TBSV, CNV replication was increased in 
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cho2∆ yeast (Fig. 11A-B) and the CNV p33 protein induced the re-localization of PE in 

yeast cells (Fig. 11C). To study if viruses replicating in other subcellular compartments 

could take advantage of the increased PE level in cho2∆ yeast, we used Carnation Italian 

ringspot virus (CIRV, a tombusvirus), which replicates in the outer mitochondrial 

membranes  (9, 19). CIRV accumulation is increased by ~5-fold in cho2∆ yeast (Fig. 

12A). Moreover, the p36 replication protein of CIRV induced the efficient enrichment of 

PE in the same subcellular locations that harbor p36 (Fig. 12B). Replication of another 

mitochondrial RNA virus, the unrelated Nodamura virus (NoV) insect RNA virus, also 

benefitted from the increased PE level in cho2∆ yeast (Fig. 12C). Interestingly, protein A 

replication protein of NoV is also localized at highly PE-enriched subcellular locations 

(Fig. 12C). Therefore, we conclude that tombusviruses and NoV could take advantage of 

the increased PE level in various subcompartments in cho2∆ yeast. Similar to TBSV, the 

replication proteins of these viruses can induce the efficient enrichment of PE at the sites 

of virus replication, suggesting that different (+)RNA viruses build PE enriched 

environment for replication. 

 

4.4 Discussion 

 

It is universally accepted that plant and animal RNA viruses require cellular 

membranes for their propagation in infected cells (20). These viruses replicate in various 

subcellular compartments that contain unique composition of lipids. However, it is 

currently poorly understood how different lipids could affect the viral replication process. 

By using the highly tractable tombusviruses, we show that PE plays an essential role in 
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viral replication. The supporting evidence includes: (i) in vitro data with artificial vesicles 

that facilitated TBSV replication only when PE was present above 70%, (ii) the relative 

increase of PE in yeast and plant cells replicating tombusvirus; (iii) PE enrichment in the 

replication sites of tombusviruses and Nov; and (iv) cell-based results showed increased 

tombusviruses and Nov replication in cho2∆ yeast that contain high level of PE at the 

expense of PC level.  

Essential role of PE in TBSV VRC assembly. Based on in vitro approaches, the 

major function of PE is during the assembly of the VRCs. We show that VRCs are only 

functional in the presence of artificial PE vesicles, while other phospholipids are 

insufficient to support efficient VRC assembly and they are inhibitory when present in 

20% or more in comparison with PE level in artificial vesicles. In addition, membrane 

fractions from cho2∆ yeast support enhanced TBSV replication in vitro, suggesting more 

efficient VRCs assembly when PE is abundant in membranes.  

 Interestingly, PE does not seem to be essential at the very early steps of replication 

(prior to the VRC assembly), because PE is not favored to bind to the TBSV p33 

replication protein when compared to other phospholipids. Also, PC is even more efficient 

than PE for facilitating the p33/p92-driven recruitment of the viral (+)repRNA in vitro. 

However, efficient viral replication requires high level of PE at the replication sites. It is 

likely that p33 induce PE enrichment at sites of replication after p33 associated with 

subcellular membrane at the very initial step of replication. Meanwhile, binding to PE 

might stabilize p33/p92, because we observed elevated levels of p33/p92 in cho2∆ yeast in 

comparison with wt yeast. We have previously shown that total phospholipids are 

important for p33/p92 stability in yeast (89).   
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Based on TBSV replication studies with artificial vesicles, TBSV requires high 

local concentration of PE at the sites of replication (above 70%, Fig. 1). However, PE is 

below that level in subcellular membranes (51), such as peroxisomes(219), 

mitochondria(220, 221) and ER(221). TBSV changes cell lipidome upon infection with 

increased PE level, as shown by lipidomics data from yeast and plant cells. Meanwhile, 

confocal microscopy images show the robust accumulation of PE at peroxisomal sites 

where TBSV p33 replication protein accumulates (to form VRCs). Interestingly, PEs 

(NBD-PE) provided in the yeast culture media found its way to the TBSV replication sites, 

suggesting that existing PE is efficiently re-distributed to the sites of TBSV replication. 

Overall, TBSV utilizes different pathways to increase the local concentrations of PE to 

serve the virus’ need during VRC assembly. 

The development of artificial vesicle-based TBSV replication clearly demonstrates 

that TBSV requires PE for VRC assembly. TBSV replicase assembled on the PE vesicles 

could support complete cycle of RNA replication, including (-)- and (+)-RNA synthesis in 

an asymmetrical manner, producing ~10-times more (+)-strands than (-)-strands. 

Asymmetrical replication of the RNA genome is one of the hallmarks of (+)-strand RNA 

viruses (222). However, optimal TBSV replication also requires additional phospholipids, 

because the highest TBSV RNA synthesis was observed with vesicles containing ~15% 

additional phospholipids and ~85% PE. PE possess a conical molecular structure and 

introduce negative curvature into lipid bilayer. Such negative curvature likely contribute to 

membrane invagination occurs upon formation of spherule structures build by TBSV at the 

sites of replication (81).  
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A wide-spread role of PE in (+)RNA virus replication? Many other (+)RNA viruses also 

induce membrane invagination during replication (79), including CNV (223), CIRV (114) 

and NoV (224). Indeed, PE enrichment at replication sites seems to be a common feature 

among these (+)RNA viruses. Using cho2Δ yeast lacking PEMT to convert PE to PC, we 

demonstrate that the TBSV-related CNV (peroxisomal replication) and CIRV 

(mitochondria) and the unrelated NoV (mitochondria) all supported enhanced replication 

when PE is abundant in membranes. Also “forcing” TBSV to switch to ER membranes in 

the absence of peroxisomes in cho2Δ yeast (due to pex3Δ background), still resulted in 

efficient TBSV replication, suggesting that these (+)RNA viruses could take advantage of 

abundant PE in various subcellular membranes. In summary, the emerging picture from 

our work is that various (+)RNA viruses might subvert PE in order to build VRCs and 

replicate efficiently in infected cells. 

 

(Copyright © Kai Xu 2014) 
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Fig. 4.1 
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Fig. 4.1. In vitro reconstitution of the TBSV replicase in artificial PE vesicles.  

(A) Scheme of the assay. Purified recombinant p33 and p92pol replication proteins of 
TBSV in combination with the TBSV-derived (+)repRNA were added to PE or PC 
vesicles or the P40 membrane-fraction of yeast CFE. The S40 fraction of CFE was also 
added to each sample to provide soluble host factors required for TBSV VRC assembly. 
The denaturing PAGE analysis of the 32P-labeled repRNA products obtained is shown. 
The full-length repRNA is pointed at by an arrow. The CFE-based replication assay with 
CFE was chosen as 100% (lanes 1-2). (B) Asymmetrical RNA synthesis by TBSV VRCs 
assembled in PE vesicles. The amounts of TBSV (+) and (-)-stranded RNA products 
produced by the reconstituted TBSV VRCs are measured by using the 32P-labeled 
repRNA probes generated in the in vitro assays. The blot contains the same amount of 
cold (+) and (-)-stranded DI-72 RNA. (C) TBSV RNA synthesis by the reconstituted 
VRCs in PE vesicles requires vesicles/membranes. The PE vesicles were disturbed by 
Triton-X100 treatment as shown. The denaturing PAGE analysis of the replicase products 
is as shown in Panel A. (D) Increased VRC activity in PE vesicles containing a fraction 
of other phospholipids. The PE vesicles contained the shown % of PE plus a mixture of 
other phospholipids (the ratio was: 54.5 of PC,  6.1 of PI, 1.2 of PS, 8.3 of PG, 0.9 of 
LPE, and 0.6 of LPC). The denaturing PAGE analysis of the replicase products is as 
shown in Panel A. 
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Fig. 4.2 
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Fig. 4.2. In vitro reconstitution of the TBSV replicase in artificial phospholipid vesicles.  

(A) Artificial vesicles were prepared from the shown phospholipids, followed by in vitro 

TBSV replication assay in the presence of purified recombinant TBSV p33 and p92pol 

replication proteins, TBSV repRNA in combination with the S40 fraction of yeast CFE to 

provide soluble host factors required for TBSV VRC assembly. The denaturing PAGE 

analysis of the 32P-labeled repRNA products obtained is shown. The full-length repRNA is 

pointed at by an arrow. The PE vesicle-based replication assay was chosen as 100% (lanes 

1-2). (B) High level nuclease-sensitivity of the tombusvirus replicase assembled in 

artificial vesicles. Scheme of the vesicle-based TBSV replication assay shows that 

micrococcal nuclease was added to the assay for 15 minutes at various time points as 

shown (after which it was inactivated by EGTA). The total length of the in vitro replication 

assay was 3 h. Denaturing PAGE analysis of in vitro replicase activity in comparison with 

the untreated preparation (that was chosen as 100%). Note that the repRNA is protected 

from micrococcal nuclease degradation by the proper formation of the membrane-bound 

viral replicase complex. 
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Fig. 4.3 
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Fig. 4.3. Effects of various phospholipids on the TBSV replicase activity in artificial PE 

vesicles.  

(A) Scheme of the assay. (B) Artificial vesicles were prepared from PE only (lane 1), or 

PE (always the same amount as in lane 1) + 10% (lane 2, ratio of PE versus other 

phospholipid is 10:1), 20% (lane 3, 5:1 ratio), 40% (lane 4, 5:2 ratio), 60% (lane 5, 5:3 

ratio) or 80% (lane 6, 5:4 ratio) of the shown phospholipids, followed by in vitro TBSV 

replication assay in the presence of purified recombinant TBSV p33 and p92pol replication 

proteins, TBSV repRNA in combination with the S40 fraction of yeast CFE. The 

denaturing PAGE analysis of the 32P-labeled repRNA products obtained is shown. The 

full-length repRNA is pointed at by an arrow. The PE vesicle-based replication assay was 

chosen as 100% (lane 1). Each experiment was done three times. 
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Fig. 4.4 
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Fig. 4.4. Binding of TBSV p33 to artificial vesicles containing different phospholipids. 

 

 (A) Scheme of the in vitro binding assay and membrane-flotation experiments. The 35S-
labeled p33 was incubated with artificial vesicles (in the presence of the in vitro 
translation system to provide soluble cellular factors, such as heat shock protein 70), 
followed by centrifugation in 10-to-70% sucrose density gradient. Eight fractions of the 
sucrose gradient were tested for the presence of 35S-p33. (B-J) SDS-PAGE analysis of the 
presence of 35S-p33 in the eight fractions with the 1st fraction representing the bottom 
fraction with the free (not membrane-bound) 35S-p33. The total amount of 35S-p33 
applied to the gradient was chosen as 100%. The graph shows the amount of 35S-p33 
present in the top fraction, representing the vesicle-bound 35S-p33. 
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Fig. 4.5 
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Fig. 4.5. TBSV p33/p92-mediated binding of TBSV RNA to artificial vesicles containing 

different phospholipids.  

(A) Scheme of the in vitro binding assay and membrane-flotation experiments. The 32P-

labeled TBSV (+)repRNA (DI-72) was incubated with artificial vesicles in the presence of 

purified recombinant TBSV p33 and p92 (in the presence of S40 fraction of yeast CFE to 

provide soluble cellular factors, such as heat shock protein 70), followed by centrifugation 

in 10-to-70% sucrose density gradient. The top fraction of the sucrose gradient was tested 

for the presence of 32P-labeled TBSV (+)repRNA. (B) Denaturing RNA gel analysis of the 

presence of 32P-labeled TBSV (+)repRNA in the top fraction. The amount of 32P-labeled 

TBSV (+)repRNA with the PE vesicles was chosen as 100%.  
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Fig. 4.6 
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Fig. 4.6. Enrichment of PE at TBSV replication sites in yeast and plant cells.  

 

(A) Confocal laser microscopy images show the enrichment of PE and its co-localization 
with the GFP-tagged TBSV p33 expressed from GAL1 promoter in the presence of TBSV 
repRNA replication (top two images) or only GFP-p33. DIC (differential interference 
contrast) images are shown on the right. Localization of PE is detected by using 
biotinylated duramycin peptide and streptavidin conjugated with Alexa Fluor 405. The 
bottom image shows the more even distribution of PE in the absence of viral components. 
(B) Peroxisomal enrichment of PE in the presence of TBSV replication proteins. 
Peroxisomal membranes are visualized with the help of mRFP-tagged (top images) or 
GFP-tagged (middle images) yeast Pex13 protein. The bottom image shows the lack of 
PE enrichment in peroxisomes in the absence of viral components. See further details in 
panel A. (C) Enrichment of exogenous PE in subcellular compartment containing the p33 
replication protein. NBD-PE was added to yeast cultures (D) Enrichment of PE in N. 
benthamiana protoplasts with viral proteins replicating TBSV genomic RNA. The TBSV 
p33/p92 replication proteins were detected with p33/p92-specific primary antibody and 
secondary antibody conjugated with Alexa Fluor488. The bottom images show the more 
even distribution of PE in the absence of viral components. See further details in panel A. 
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Fig. 4.7 
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Fig. 4.7. Increased level of PE in yeast and plant cells replicating TBSV.  

Relative levels of phospholipids in yeast (~24 h after induction of replication, panel A) and 

plants (from systemic leaves showing symptoms, 6 days after infection, panel B) 

replicating TBSV RNA or the TBSV-free control were determined using mass-spec 

analysis.  
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Fig. 4.8 
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Fig. 4.8 Lipidomics analyses of phospholipids in yeast and plant cells replicating 
TBSV.  

(A) The amounts of phospholipids in yeast (~24 hours after induction of replication) 
replicating TBSV (red columns) or TBSV-free control (blue columns) were determined 
using mass-spec analysis. Each experiment was repeated three times. (B) The amounts of 
phospholipids in N. benthamiana systemic leaves (6 days after infection) infected with 
TBSV (red columns) or TBSV-free control (blue columns) were determined using mass-
spec analysis. Each experiment was repeated three times. (C) Lack of changes in fatty-
acid composition of PE in yeast (~24 hours after induction of replication) replicating 
TBSV (red columns) or TBSV-free control (blue columns) based on mass-spec analysis. 
(D) Comparable analysis of fatty-acid composition of PE in N. benthamiana leaves (6 
day after inoculation) replicating TBSV (red columns) or TBSV-free control (blue 
columns). 
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Fig. 4.9 
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Fig. 4.9. Deletion of the CHO2 PEMT gene enhances TBSV repRNA accumulation in 
yeast.  

(A) Top panel: Replication of the TBSV repRNA in wt and cho2∆ yeast was measured 
by Northern blotting 24 h after initiation of TBSV replication. Yeast co-expressed the 
TBSV p33 and p92 replication proteins. The accumulation level of repRNA was 
normalized based on the ribosomal (r)RNA. Each sample is obtained from different yeast 
colonies. Middle and bottom panels: The accumulation levels of His6-p92 and His6-p33 
were tested by Western blotting. Note that in the absence of Cho2p, which catalyzes the 
first step in the conversion of PE to PC, the PE level is increased. Each experiment was 
repeated. (B) Relative and absolute levels of phospholipids in cho2∆ versus wt yeasts 
(~24 h after induction of replication) replicating TBSV RNA were determined using 
mass-spec analysis. (C) Enhanced TBSV repRNA replication in CFE prepared from 
cho2∆ yeast. The scheme of the CFE-based TBSV replication assay. Purified 
recombinant TBSV p33 (0.5 µg) and p92pol (0.5 µg) replication proteins, DI-72 
(+)repRNA (0.5 µg) in combination with the soluble fraction (S40 fraction from WT 
yeast) were added to the membranous fraction (P40) of cho2∆ or wt CFEs. Denaturing 
PAGE analysis of the 32P-labeled repRNA products obtained is shown. The full-length 
single-stranded repRNA is pointed at by an arrow. (D) Confocal laser microscopy images 
show the enrichment of PE at peroxisomal sites of TBSV p33 accumulation in cho2∆ 
yeast. See further details in Fig. 4.6. 
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Fig. 4.10 
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Fig. 4.10. Increased PE level facilitates TBSV RNA replication in the ER in 

pex3∆cho2∆ yeast.  

Top panel: Replication of TBSV repRNA in pex3∆cho2∆ versus pex3∆ yeast was 

measured by Northern blotting 24 h after initiation of TBSV replication. Yeast co-

expressed the TBSV p33 and p92 replication proteins. Middle and bottom panels: The 

accumulation levels of His6-p92 and His6-p33 were tested by Western blotting. Each 

experiment was repeated. Note that peroxisomal membranes are absent in pex3∆ or 

pex3cho2∆ yeast, “forcing” TBSV to switch to the ER membranes for replication.   
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Fig. 4.11 
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Fig. 4.11. Increased PE level facilitates CNV RNA accumulation in cho2∆ yeast.  

(A-B) Top panels: Replication of CNV in wt and cho2∆ yeast was measured by Northern 

blotting 24 h after initiation of CNV replication at 23 ºC (panel A) or at 29 ºC (panel B). 

Yeast co-expressed the CNV p33 and p92 replication proteins. Middle and bottom panels: 

The accumulation levels of CNV His6-p92 and His6-p33 were tested by Western blotting. 

Each experiment was repeated. (C) Confocal laser microscopy images show the 

enrichment of PE at peroxisomal sites of CNV p33 accumulation in cho2∆ yeast. See 

further details in Fig. 4.6.  

 

  



 

144 
 

 

 

 

 

Fig. 4.12 
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Fig. 4.12. Increased PE level facilitates CIRV and NoV RNA accumulation in cho2∆ 

yeast. 

 (A) Top panel: Replication of CIRV repRNA in wt and cho2∆ yeast was measured by 

Northern blotting 24 h after initiation of CIRV replication. Yeast co-expressed the CIRV 

p36 and p95 replication proteins. Middle and bottom panels: The accumulation levels of 

His6-p95 and His6-p36 were tested by Western blotting. Each experiment was repeated. (B) 

Confocal laser microscopy images show the enrichment of PE at mitochondrial sites of 

CIRV p36 accumulation in cho2∆ yeast. See further details in Fig. 4.6. (C) Replication of 

NoV RNA1 and RNA3 in wt and cho2∆ yeast was measured by Northern blotting 24 h 

after initiation of NoV replication. (D) Confocal laser microscopy images show the 

enrichment of PE at mitochondrial sites of NoV Flag-tagged protA replication protein 

accumulation in cho2∆ yeast. See further details in Fig. 4.6. 
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Chapter 5 

VACUOLE TARGETING PATHWAY IS REQUIRED FOR EFFICIENT TBSV 

REPLICATION AND MAYBE RELATED TO PE ENRICHMENT IN THE 

PEROXISOMAL MEMBRANES 

 

 

 

5.1 Introduction 

 

Recent studies revealed an emerging picture on involvement of cellular early secretory 

pathway in positive strand RNA viruses replication, including those viruses infecting 

human (33, 225), animals (226) or plant hosts (227, 228). 

 Poliovirus (PV) infected cells develop special organelle-like structures specialized 

for virus replication (229). This viral replication organelle is derived from rearrangement 

of cellular early secretory membrane systems into clusters of vesicles, which harbor viral 

replication proteins and viral RNAs (230). Formation of Poliovirus replication organelles 

were identified to be associated with COPII-dependent anterograde transportation 

pathway between ER and Golgi (230), as well as host factors involved in retrograde 

transportation pathway (33, 231), like small RAS-family GTPase ADP-ribosylation 

factor 1 (ARF1), GBF1 [a guanine nucleotide exchange factor (GEF) for ARF1] and 

phosphatidylinositol 4-kinase-β (PI4KIIIβ; also known as PI4Kβ) (33). It was proposed 

that initial PV replication happens in Golgi-TGN compartment. This initiated by 
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interaction between PV viral protein  3A (232) and GBF1 which recruits Arf1 to the site 

of replication (33). These events then bring various of effectors, including PI4Kβ, to 

build ERGIC (Endoplasmic reticulum–Golgi intermediate compartment) as site for 

replication (33). Recently, Dorobantu CM et al. (233) found that enterovirus recruitment 

of PI4Kβ to ERGIC is independent of GBF1 and Arf1, suggesting GBF1/Arf1 may have 

other roles in enterovirus replication. 

 Foot-and-mouth disease virus (FMDV) belongs to Aphthovirus genus, 

picornaviridae, induce replication complexes on membranes that are formed from 

endoplasmic reticulum (ER) exit sites (ERES) (226). RNAi mediated down-regulation of 

Sar1 GTPase or over-expression of  dominant negative Sar1a-GDP mutant inhibited 

FMDV replication. However over-expression of dominant active Sar1a-GTP mutant or 

dominant negative Arf1 mutant either have no effects or increased FMDV replication 

(226). Brefeldin A (BFA), a Arf GEF inhibitor, also increased FMDV replication. These 

data suggesting early secretory pathway is linked to FMDV replication. 

 A plant virus red clover necrotic mosaic virus (RCNMV), Dianthovirus genus, 

tombusviridae, was shown to replicate on ER membranes (234). RCNMV replication 

auxiliary protein p27 interacts with Arf1 directly (228). Arf1 was shown to be recruited 

from Golgi apparatus to ER by p27. RNAi-mediated down-regulation of Arf1 or 

expression of both dominant negative Arf1-GDP or dominant positive Arf1-GTP mutants 

inhibited RCNMV replication. Expression of dominant active Sar1-GTP mutant inhibited 

RCNMV replication. BFA treatment inhibited RCNMV replication and canceled ER 

localization of p27 replication protein. BFA treated cell expressing ER-GFP and p27-

mCherry showed dispersed pattern of both proteins, however interestingly BFA did not 
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change localization pattern of ER-GFP when it was expressed alone. Altogether, 

disruption of anterograde or retrograde transportation pathway could inhibit RCNMV 

replication, although the importance of these events for RCNMV is currently obscure. 

 A major question left unanswered from those studies on different (+)RNA 

viruses: does early secretory pathway play a common role for (+)RNA viruses? Studies 

showed different involvement of anterograde or retrograde transportation in different 

(+)RNA viruses, however the actual functions of secretory pathway in (+)RNA viruses 

replication remain far from understood. 

 In spite of variable involvement of anterograde or retrograde transportation 

pathways, and different replication sites, replication proteins of many (+)RNA viruses 

contain transmembrane domains (TMDs) which determine membrane association of viral 

replication complexes. Properties of TMDs have emerged as major determinants of 

protein fate in secretory pathways and endocytic pathways (235, 236). Bioinformatics 

analyses of eukaryotic-encoded integral membrane proteins revealed that TMDs from ER 

is different from post-ER organelles. TMDs of ER proteins is shorter than those in post-

ER organelles, and do not possess the asymmetric amino acid distribution along the 

membrane (236). Proteins with short TMDs are proposed to be secreted from ER to cis-

Golgi via COP-II-dependent secretion, and then bound by Rer1, a transmembrane protein 

that cycles between the Golgi apparatus and the ER (237), at cis-Golgi (238, 239), thus 

cycled back to ER via COP-I mediated retrograde transportation (235). In contrast, 

proteins with long TMDs could interact with Erv14 (240) at ERES and be transported 

along the secretory pathway to TGN and beyond (241). 
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 The physical properties of TMDs also determine localization of the given proteins 

within lipid micro-domains (235). Alternatively, due to different properties, TMDs were 

believed to attract and  sort specific lipids around them (235, 236). 

 Since PE is an obligate phospholipid for TBSV replication (Chapter 4) and could 

be enriched in peroxisomal membranes by TBSV p33 replication protein alone, it could 

be interesting to understand which cellular pathway leads to PE enrichment at the sites of 

TBSV replication. 

 Various cellular pathways affecting PE distribution are emerging. The source of 

PE in autophagy has been extensively studied, and might shed lights on our 

understanding of PE in TBSV replication. PE is a key molecule for phagophore 

membrane formation in early stage of macroautophagy, where PE conjugates with Atg8p 

(LC3-I) to form Atg8-PE (LC3-II), which usually used as a molecular marker of 

macroautophagy occurrence. Different sub-cellular sources of PE has been proposed by 

different groups, which includes ER (242), mitochondria (243) or ER-mitochondria 

contact site(244). Clathrin-coated vesicles from plasma membrane also were shown to 

contribute to early Atg16L1-positive autophagosome precursor formation via fusion with 

VAMP7/SNARE complex (245, 246). In addition, trans-golgi network (247-251), early 

endosomes (252), vesicles from early secretory pathway (253, 254) were demonstrated to 

contribute to the membrane source of autophagosomes. Despite of many microscope 

based experiments, an cell-free LC3 lipidation assay using fractionated sub-cellular 

membranes from mouse embryonic fibroblast (255) showed that ERGIC is the only 

membrane source to trigger LC3 lipidation, which requires conjugation of LC3 with PE, 

suggesting ERGIC provides the initial PE source for autophagosomes formation. 
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 In this chapter, I used varies of approaches to identify factors affecting PE 

enrichment at peroxisomal membranes by TBSV p33, and I will discuss possible sub-

cellular route that PE was redistributed by the virus.  

 In yeast or plants, there are two pathways of PE synthesis, CDP-DAG pathway 

and de-novo synthesis pathway (Fig. 5.1A). In CDP-DAG pathway, phosphatidylserine 

(PS) decarboxylases directly convert PS into PE. In yeast there are two PS decarboxylase 

genes, PSD1 (256) and PSD2 (257). Psd1 is localized in mitochondria (256, 258), while 

Psd2 is localized to TGN (259, 260), endosomes(260) and vacuole membrane (259) 

compartments (components of post-golgi organelles). In Arabidopsis, there are three PSD 

genes, namely PSD1, PSD2 and PSD3 (261). AtPSD1 is localized in mitochondria, 

AtPSD2 localized to vacuole membrane (Tonoplast), while AtPSD3 localized to ER 

(261). 

 In de-novo synthesis pathway, ethanolamine is converted to phosphoethanolamine 

by ethanolamine kinase (EKI), then converted to CDP-ethanolamine by 

CTP:phosphoethanolamine cytidylyltransferase (ECT), and converted to PE by 

aminoalcoholphosphotransferase (AAPT). AAPT has substrate specificity among 

ethanolamine and choline. In yeast, there are two AAPTs, EPT1 and CPT1. EPT1 has 

major activity using ethanolamine, while minor activity using choline. While CPT1 have 

predominant substrate activity using choline for PC synthesis (262). In plants (263-266), 

AAPTs were also been identified which show both ethanolamine or choline substrate 

activity. TaAAPT1 and TaAAPT2 from wheat were shown to be localized to ER and 

Golgi apparatus (264). A human CPT1 is localized to Golgi apparatus, while human 

CEPT1 (major substrate activity to choline, minor to ethanolamine) localized to ER and 
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nuclear membrane (267). However, the localization of EPT1 is not characterized yet in 

yeast. 

 In plants, the CDP-DAG pathway is not essential since psd1/psd2/psd3 mutant 

arabidopsis plants are viable and display no obvious growth or morphological defects 

(261). The total phospholipid composition was unchanged, while PE level in isolated 

mitochondria from mutant plant was decresed  (261). In yeast, deletion of any one of the 

three or two of the three PE synthesis genes, PSD1, PSD2 or EPT1, is not lethal. While 

deletion of all three of them is lethal in yeast (268). 

 

 

5.2 Materials and Methods 

 

Yeast strains and expression plasmids. Yeast strains BY4741 (MAT a his3Δ1 leu2Δ0 

met15Δ0 ura3Δ0) and pep4∆, tlg2∆, pep12∆, vam3∆ or vam7∆ (single-gene deletion 

strain) were obtained from Open Biosystems (Huntsville, AL, USA). For TBSV 

replication in yeast, pESC-T33/DI72 and pYES-T92 were described previously. Yeast 

double deletion strains of tlg2∆tlg1∆ or vam3∆vam7∆ were generated from tlg2∆ or 

vam7∆ using homologous recombination of a PCR fragment harboring a selection marker 

hygromycin B phosphotransferase amplified fragment from Euroscarf collection plasmid 

pFA6a-hphNT1(269) . 

 For yeast plasmid pRS315-CFlag, primer pairs #5100 

(AGCTTGGTGGTGACTACAAGGACGACGATGACAAGGGTGGTAGATCTGGCG

TCGACTAA)/#5101 
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(TCGATTAGTCGACGCCAGATCTACCACCCTTGTCATCGTCGTCCTTGTAGTCA

CCACCA) were annealed and inserted into pRS315-pTef1 (described in Chapter 3). To 

generate pCUP1 driven C-terminal Flag-tagged SAR1 or ARF1, pRS315-CFlag were 

digested with SacI/NotI and inserted with SacI/NotI digested PCR fragment of pCUP1 

promoter amplified from pEsc-His/Cup-FLAG/ssa1 with primer pair #3039 

(CGCGGAGCTCGACATTTGGGCGCTATACGTGCATATGT)/#5861 

(GCGGCGGCCGCTACAGTTTGTTTTTCTTAATATCTATTTCGA), resulting 

plasmid pRS315-pCUP1p-CFlag. SAR1 and ARF1 mutants were generated via site 

directed mutagenesis and amplified with primer pair #5865 

(CGCGGATCCATGGCTGGTTGGGATATTTTTGG)/#5866 

(GCCCTGCAGAATATATTGAGATAACCATTGGAACGCCTC), or #3132 

(gccggatccatgggtttgtttgcctctaagttgttc)/#5742 

(GCCCTGCAGAGTTGAGTTTTTCAAACTGTTACTTAACCATTC), digested with 

BamHI/PstI, and inserted into pRS315-pCUP1-CFlag.  

 To generate N-Terminal Flag-tagged Tlg2p, TLG2 was amplified from yeast 

genome using primer pair #5717 

(CGCGGATCCATGTTTAGAGATAGAACTAATTTATTTTTATCATACCGTAGG) 

and #5718 (GCGCTCGAGTCAAAGTAGGTCATCCAAAGCATCATTC), digested 

with BamHI/XhoI, and inserted into BamHI/SalI digested pRS315-NFlag (described in 

Chapter 3), generating pRS315-NFlag-Tlg2. 

 To generate pTef1 promoter driven no tagged COP1 expressing vector, PCR 

fragment of COP1 were amplified from yeast genome using primer pair #1858 

(GGCGGGATCCATGAAGATGTTAACTAAATTTG)/ #1859 
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(GGCGCTCGAGTTATACACGTATTCTTAATCCGGA), digested with BamHI/XhoI 

and inserted into BamHI/SalI digested pRS315-pTef1, generating pRS315-COP1. 

 

Confocal laser microscopy. Wild type BY4741 or sti1∆ yeast strains were transformed 

with the following expression plasmids: pESC-GFP-T33/DI72, pYES-T92 (9), as well as 

pRS315-Pex13-mRFP1 (described in Chapter 4). The yeast cultures were incubated in galactose 

medium overnight, sampled and imaged with Olympus FV1000 confocal laser scanning 

microscope (Olympus America Inc., Melville, NY). The microscope settings were the following: 

excitation and emission for GFP and RFP were 488nm laser/500-530nm filter and 543nm 

laser/560-660nm filter, respectively. PE staining with biotinylated duramycin and streptavidin 

conjugated with Alexa-405 was described in Chapter 4. 

 

Free GFP detection assay. pESC-GFP-T33 (described in Chapter 4) and pYES-GFP-T92 

(9) together with an empty plasmid or SAR1 mutants were transformed into wild type or 

mutant yeast strains. GFP-p33/p92 were induced for expression in SC media containing 

2% galactose for 24 hours. Total protein was extracted and subjected to western blot 

analysis using an anti-GFP antibody. 

 

5.3 Results 

 

TBSV replication in yeast mutants defective in PE synthesis pathways. Since PE is 

essential for TBSV replication in vitro, we then ask: could any specific pathway of PE 

synthesis be hijacked by TBSV to favor virus replication? Genes of PE synthesis were 
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systemically deleted from wild type yeast, generating: psd1∆, psd2∆, ept1∆cpt1∆, 

psd1∆ept1∆cpt1∆, psd2∆ept1∆cpt1∆ and psd1∆psd2∆. We tested TBSV replication in 

yeast grown in SD media without ethanolamine (Fig. 5.1 B) or with ethanolamine (Fig. 

5.1C). Since ethanolamine is the precursor of de-novo PE synthesis pathway, 

psd1∆psd2∆ of which PE synthesis is inhibited will not grow without ethanolamine. In 

SD media without ethanolamine, major PE synthesis come from PSD1 or PSD2 pathway. 

TBSV repRNA accumulation level increased ~2 fold in those mutants, psd1∆ or 

psd1∆ept1∆cpt1∆,  which lacked the PSD1 mediated PE synthesis pathway. In those 

mutants in which PSD2 pathway was deleted, TBSV repRNA accumulated to similar 

level as wild type (Fig. 5.1B, upper panel). While viral protein accumulated to a similar 

level among all the mutant strains (Fig. 5.1B lower level).  

 In a growth condition where ethanolamine was provided (Fig. 5.1C), all three PE 

synthesis pathways could contribute to the overall PE pool in the cell. In such condition, 

TBSV repRNA accumulation also increased by ~80% in psd1∆ept1∆cpt1∆ yeast, in 

which PSD2 mediated PE synthesis pathway is the only PE source. While when PSD2 

and de-novo PE synthesis pathways were deleted in psd2∆ept1∆cpt1∆ yeast, TBSV 

repRNA accumulation decreased to ~60% (Fig. 5.1C upper panel). p33 replication 

protein accumulation in psd2∆ept1∆cpt1∆ yeast also decreased comparing to wild type 

(Fig. 5.1C lower panel). In other mutant yeasts, TBSV replication and viral protein level 

are comparable to those in wild type yeast (Fig. 5.1C). 

 

TBSV p33 replication protein is partially localized within TGN. In addition to the 

characteristic punctuate structures, we also observed diffused pattern of GFP-p33 in 
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yeast, which did not co-localize with peroxisome marker protein (Fig. 5.2A). In Fig. 

5.2A, GFP-p33 was co-expressed with p92 and DI72 repRNA, as well as Pex13p-mRFP 

as a peroxisome marker for 10 hours after induction of protein expression. We observed 

some GFP- p33, which did not overlap with the peroxisome marker Pex13p-mRFP. Since 

we know that peroxisome in yeast under microscope is visible as round punctuate 

structure,  those diffused pattern with GFP-p33 suggested that TBSV p33 might be 

localized to other membrane structures during infection besides peroxisome. In chapter 4, 

we also observed that PE was also co-localized to these diffused structure with p33. It 

was interesting to identify which cellular compartment the diffused structures belong to. 

The answer may help us to understand PE enrichment at the site of TBSV replication. 

 Confocal microscopy was used to identify the localization of the diffused 

structure with many cellular marker proteins. Among those, TGN tSNARE protein Tlg2p 

(270) was identified to co-localize with the diffused structure of TBSV p33 (Fig. 5.2B).  

 

PE is enriched at both peroxisome and TGN locations in the presence of p33. To 

demonstrate that PE enriched at peroxisome and TGN locations of p33, we transformed 

yeast with plasmids expressing GFP-p33 together with peroxisome marker Pex13p-

mRFP (Fig. 5.3 A) or TGN marker mRFP-Tlg2p (Fig. 5.3 B). Viral proteins and repRNA 

were induced in galactose containing media for 10 hours, then the yeast cells were fixed 

and subsequently incubated with biotinylated duramycin, streptavidin-conjugated with 

Alexa Fluor 405 dye. Cells were observed under confocal microscope. In Fig. 5.3A, 

obvious punctuate structure was highlighted in all channels detecting PE, GFP-p33 and 

peroxisomes. However, PE and GFP-p33 were also co-localized and observed as diffused 
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pattern. To demonstrate that this diffused pattern indeed represented TGN, mRFP-Tlg2p 

were used to label TGN in addition to GFP-p33 and PE (Fig. 5.3B). In Fig. 5.3B, indeed, 

PE and GFP-p33 were co-localized and showed a diffused area outside the punctuate 

structure. This diffused area was labeled with TGN marker protein mRFP-Tlg2p. 

 

Deletion of TLG2 interfered with the enrichment of PE at site of TBSV replication. 

Since both the genetic study of PE synthesis pathway and confocal microscope study of 

PE localization site suggested the relevance of Trans-Golgi network in PE enrichment to 

TBSV site of replication. As well as in previously yeast single gene deletion library 

screen (12), deletion of TLG2 was shown to affect tombusvirus replication. We focused 

on the role of Trans-Golgi network in TBSV replication. 

 First, we confirmed that deletion of TLG2 could reduce TBSV replication to 

about 16% , by comparing repRNA accumulation with that of wild type yeast (Fig. 5.4A). 

Meanwhile, overexpression of a N-terminus Flag-tagged Tlg2 could compliment TBSV 

replication caused by the deletion of TLG2 in the mutant strain. 

 Secondly, in tlg2∆ yeast, plasmids expressing GFP-p33, p92, repRNA and 

pex13p-mRFP were co-transformed. Cells were induced for viral protein expression and 

labeled with biotinylated duramycin to detect PE localization. Importantly, in tlg2∆ yeast, 

PE was not co-localized with GFP-p33 (Fig. 5.4B).  

 

Deletion of genes coding for SNARE proteins in post-Golgi organelles reduces TBSV 

replication. Since genetic analysis showed that in mutant strains, in which only PSD2 

mediated PE synthesis, TBSV repRNA accumulation was ~2x fold more than wild type, 
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it suggested that PSD2 pathway might be the easiest for TBSV to hijack. PSD2 were 

shown to be localized at TGN or compartments of endocytic pathway in yeast or in plant 

(259-261). Furthermore, deletion of TLG2 in yeast also lead to dramatically decreased 

TBSV replication possibly due to lack of PE enrichment at TBSV replication sites. Tlg2p 

is a tSNARE on TGN (270). It would be interesting to see if gene deletion of other 

tSNAREs in endocytic pathway where Psd2p is localized could affect TBSV replication. 

 We tested deletion strains of TGN tSNAREs: tlg2∆ or tlg2∆tlg1∆, late endosome 

tSNARE: pep12∆ and vacuole tSNAREs: vam3∆, vam7∆ or vam3∆vam7∆. Surprisingly, 

all the SNARE protein deletions decreased TBSV repRNA accumulation to about 10% 

comparing to the wild type (Fig. 5.5A upper panel). Also p33 accumulation was 

decreased in all the mutant strain (Fig. 5.5A lower panel). 

 To test if p33 was targeted to the endocytic pathway, we utilized the vacuolar 

protease resistant feature of GFP when present as a fusion protein. TBSV p33 or p92 was 

tagged with GFP at the N-terminus (Fig. 5.5B). Free GFP detected by GFP-antibody 

would suggest presence of GFP-p33 or GFP-p92 in vacuole. We first checked GFP-

p33/p92 degradation pattern in wild type yeast, by western blot using anti-GFP antibody 

(Fig. 5.5C). In wild type yeast expressing GFP-p33/p92, anti-GFP antibody detected free 

GFP with size about 30kDa (Fig. 5.5C middle and right panel). While in wild type yeast 

expressing His-GFP, a expected ~33kDa band was detected (Fig. 5.5C left panel). 

 In addition, wild type yeast and SNARE gene mutants described above as well as 

a yeast strain with single gene deletion of PEP4, which aborts protein degradation in 

vacuole (271), were transformed with plasmids containing GFP-p33/p92 and induced for  

gene expression for 24 hours in 23°C. Total protein were analyzed by western blot using 
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anti-GFP antibody (Fig. 5.5D). In every strain, GFP-p33 and GFP-p92 were detected, 

however free GFP were only detected in wild type, tlg2∆, vam3∆, vam7∆ or 

vam3∆vam7∆, but not in pep4∆, tlg2∆tlg1∆ or pep12∆ (Fig. 5.5D upper panel and middle 

panel). Presence of free GFP in wild type strain and missing of free GFP in pep4∆ strain 

suggested a vacuole targeting of GFP-p33. And disruption of vesicle transport pathway 

by deletion of certain SNARE genes abolished the targeting of GFP-p33 to vacuole. 

 

Over-expression of SAR1 dominant mutant blocks vacuole targeting of p33 and 

reduces TBSV replication. Most of membrane proteins secreted to endocytic pathway 

through Golgi are dependent upon anterograde transportation pathway (235, 238). SAR1 

encode a GTPase which regulate anterograde transportation COP-II vesicle coat assembly 

and disassembly (272). Expression of GTP locked mutant SAR1-H77L could block cargo 

transportation to golgi (273, 274). Thus we tested its effects on p33 vacuole targeting as 

well as TBSV replication. 

 A C-terminal Flag-tagged SAR1-H77L was induced under controllable CUP1 

promoter at the same time point as the GFP-tagged viral proteins. After 24 hours protein 

expression, total proteins from different treatments were subjected to western blot 

analysis using anti-GFP antibody (Fig. 5.6A). As previously shown (Fig. 5.5 C &D), free 

GFP were detected in wild type yeast but not in pep4∆ strain (Fig. 5.6A). In wild type 

yeast co-expressing wild type SAR1 gene, free GFP was also detected in a similar 

amount as in wild type yeast. However in yeast co-expressing a SAR1 dominant mutant 

SAR1-H77L, free GFP was present in reduced amount in comparison with wild type 

yeast (Fig. 5.6A). 
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 To test effect of SAR1-H77L on TBSV replication, vectors expressing wild type 

SAR1 or SAR1-H77L, or an empty vector were transformed into yeasts together with 

TBSV p33, p92 and repRNA expressing plasmids. Viral components were induced 

together with SAR1 mutant for 24 hours. Total RNA and proteins were extracted from 

different treatments for RNA and protein blot analysis (Fig. 5.6B). Over-expression of 

wild type SAR1 did not affect TBSV repRNA accumulation, while over-expression of 

SAR1-H77L reduced TBSV repRNA accumulation to ~23%. 

 

Expression of ARF1 dominant-active mutant ARF1-Q71L, but not dominant-negative 

mutant ARF1-T31N, blocks TBSV replication. Since p33 is partially localized to TGN, 

and disruption of TLG2, tSNARE of TGN, aborted PE enrichment on peroxisome and 

reduced TBSV replication (Fig. 5.4), retrograde transportation from TGN could be a 

potential pathway that TBSV might hijack, and thus benefit to PE enrichment on 

peroxisome. To test this hypothesis, we utilized dominant mutants of ARF1, dominant-

negative mutant ARF1-T31N (275), or dominant-active mutant ARF1-Q71L (275, 276). 

Dominant negative mutant ARF1-T31N blocks the formation of COP-I vesicle, thus 

blocks COP-I-dependent retrograde transport. Dominant-active ARF1-Q71L stimulates 

formation of COP-I vesicles coats but blocks coatomer disassembly, thus also blocks 

retrograde transportation. 

 Empty vector, or vectors expressing controllable CUP1 promoter driven ARF1, 

ARF1-T31N and ARF1-Q71L ORFs were co-transformed with plasmids expressing 

TBSV viral proteins and repRNA. TBSV replication was induced in galactose containing 

media supplemented with copper to induce ARF1 and mutants expression. After 24 hours 
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induction of replicaiton, total RNA or proteins were extracted from samples and analyzed 

using RNA blot or western blot (Fig. 5.7A). RepRNA accumulation from samples over-

expressing ARF1 or ARF1-T31N did not show significant difference comparing to yeast 

samples transformed with an empty vector. While over-expression of dominant active 

ARF1-Q71L reduced replication to ~34%. Viral protein accumulation in ARF1-Q71L 

(lower panels in Fig. 5.7A) did not show significant difference comparing to those 

expressing an empty vector, ARF1 or ARF1-T31N.  

 

Alpha subunit of COP-I vesicle coatomer, Cop1p, inhibits TBSV replication. ARF1-

Q71L encodes a GTP locked form of ARF1, which stimulates the assembly of COP-I 

vesicle coatomer. To test if formation of COP-I vesicle benefits or inhibits TBSV 

replication in yeast, we tested TBSV replication while alpha subunit of COP-I vesicle 

was down-regulated. In yeast, COP1 encodes alpha subunit of COP-I vesicle coatomer 

and is essential to yeast growth (277). Replacing the COP1 promoter on the genome with 

a  tetracycline (tet)-regulatable promoter would allow control of the expression of COP1 

and study its function (278, 279). 

 We first obtained yeast strain of Tet-COP1 from Tet-promoters Hughes 

Collection (yTHC) (278). When 10 μg/ml doxycycline was added to media, Tet-COP1 

yeast growth was inhibited, suggesting genomic expression of COP1 was shut down. 

However expression of COP1 driven by a constitutive promoter from plasmid pRS315-

COP1 could rescue the inhibitory effect, thus allowed Tet-COP1 growth in doxycycline 

containing media (Fig. 5.7B). 
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 Vectors expressing TBSV replication proteins and repRNA were transformed to 

Tet-COP1 strain with or without pRS315-COP1. Yeasts were cultured to induce TBSV 

replication with or without doxycycline. In the growth media with doxycycline where 

COP1 expression was inhibited, TBSV repRNA accumulation increased ~3 fold, 

comparing to that in yeast without doxycycline treatment. However, over-expression of 

COP1 under a constitutive promoter from plasmid inhibited TBSV repRNA accumulation 

to ~30% in the growth condition either with or without doxycycline, suggesting that 

COP1 or formation of COP-I complex inhibited TBSV replication.  

 

5.4 Discussion 

 

Can PE synthesis pathway be co-opted by TBSV? In chapter 4, TBSV p33 was 

demonstrated to induce PE accumulation in peroxisomal membranes, the site of TBSV 

replication. To better understand the virus-driven lipid sorting process, we tested yeast 

mutants with deletion of genes involved in PE synthesis pathways for TBSV replication. 

From previous studies (268, 280, 281) we know that PE is essential for yeast growth, 

three PE synthesis pathways could not be deleted in the same yeast, but single or double 

deletion of the three pathways are possible. This suggests that PE from any of the three 

pathways could be transported to other cellular components where PE is needed. 

However, this endogenous PE transportation process has not yet revealed, except that a 

study using purified yeast post-Golgi vesicles in an cell-free environment showed that 

yeast post-golgi secretory vesicles contains ~80% of PE in the cytosolic leaflet, and  P4 

ATPases Drs2p and Dnf3p are required to maintain the assymetry (282). 
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 We tested TBSV replication in yeast strains with single or double deletions of PE 

synthesis pathways genes (Fig. 5.1), and found none of these deletions caused TBSV 

replication to drop more than 50% comparing to that in the wild type yeast. 

 However, we noticed that in the presence of ethanolamine, in the yeast mutant 

psd2∆ept1∆cpt1∆ where the only PE source come from the PSD1 pathway, TBSV 

repRNA accumulation reduced to ~60% (Fig. 5.1C). These data suggesting that deletion 

of PE source from PSD2 and EPT1 would affect TBSV replication, although not totally 

required. Meanwhile, in yeast strain psd1∆ept1∆cpt1∆, TBSV repRNA accumulation 

increased to 180%, suggesting that in this yeast strain PE could be more accessible for 

TBSV. PSD2 pathway is the only PE source in psd1∆ept1∆cpt1∆, and thus TBSV may 

utilize PE from PSD2 pathway more easily. 

 We also tested growth condition without ethanolamine. In this growth condition, 

PSD1 or PSD2 pathway contribute to the major cellular PE sources, while double 

deletion mutant psd1∆ psd2∆ could not grow due to lack of ethanolamine which is PE 

precursor. TBSV repRNA accumulation increased to ~2-2.5 fold in the yeast strain psd1∆ 

or psd1∆ept1∆cpt1∆, comparing to that of the wild type. In these strains, PSD2 pathway 

is the dominant/only PE synthesis pathway. PSD2 localized at TGN (259, 260), 

endosomes(260) and vacuole membrane (259). This finding is in line with the hypothesis 

that PE from post-Golgi compartments could be accessed by TBSV easier than from 

other pathways. 

 

TGN tSNARE Tlg2 co-localizes with TBSV p33 and affects PE redistribution to 

peroxisome as well as TBSV replication. In addition to peroxisome localization of p33, 
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we also observe diffused pattern of GFP-p33 outside the peroxisome marker Pex13p-

mRFP (Fig. 5.2A), especially when cells were harvested at 10-12 hours after the 

induction of viral protein expression in yeast. A TGN tSNARE Tlg2p was shown to 

localize with the diffused GFP-p33 (Fig. 5.2B). This finding added new level of sub-

cellular dynamics of TBSV infection. Indeed in a study performed by another research 

group, similar pattern of TBSV p33 distribution outside of peroxisome was also detected 

in plant cells after 24 hours of plasmids bombardment (18). The observed reticular 

distribution of p33 was claimed to be peroxisomal-ER (pER) based on its co-localization 

with Chloramphenicol acetyltransferase tagged to 36 C-terminal residues of Peroxisomal 

ascorbate peroxidase (CAT-APX), which was believed to be sorted to peroxisome 

through a sub-domain of ER (pER). But they also found that the reticular p33 pattern did 

not co-localiz either with concanavalin A-stained ER or immunostained ER endogenous 

protein calreticulin (18). However, whether p33 interferes with the targeting of CAT-

APX to peroxisome remains unknown. In other words, CAT-APX localization may 

changed during p33 expression, thus its co-localization with reticular p33 pattern may not 

suggest their presence in a sub-domain of ER. 

 We later demonstrated that PE was not only enriched in peroxisomal membranes 

by p33, but also enriched at TGN (Fig. 5.3B). Based on this finding, we hypothesize that 

enrichment of PE driven by p33 may be connected to cellular functions of TGN. Indeed, 

when TLG2 was deleted, PE did not co-localized with p33 (Fig. 5.4B). Although p33 

localization to the peroxisome was not affected. Since tSNARE is essential for TGN's 

function, this finding supported previous hypothesis that cellular function of TGN is 

required for PE enrichment with p33. 
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Disruption of vesicle transport in endocytic pathway inhibited replication. We 

previously hypothesis PSD2 pathway of PE synthesis was more accessible for TBSV p33 

to hijack, and we also showed that cellular function of TGN is important for viral 

hijacking of PE. Psd2 localized with TGN (259, 260), endosome (260) and Vacuolar 

membrane(259), and tSNARE proteins from these sub-cellular compartments also 

important for TBSV replication similar to that of tlg2∆. It might be that disruption of 

vesicle transport in endocytic pathway would interfere transportation of PE from PSD2 

source. It is also surprising to see minor amount of GFP-p33 is targeted to vacuole, 

whether p33 is directly involved in PE re-distribution to peroxisomal membranes remains 

to be tested. 

 

Arf1 regulated retrograde transportation is not needed for, but could interfere with, 

TBSV replication. One question may raise due to complicated locations and functions of  

TBSV p33: how does the presence of p33 in endocytic pathway benefit assembly of 

TBSV replication complexes?  

 One possibility maybe that p33 was retro-transported from TGN to ER or 

peroxisome and PE was hijacked from the carrying vesicle. Although previous evidences 

suggested that asymmetrical distribution of PE on one side of membrane bilayers only 

happened on post golgi organelles and ER possess a symmetrical lipid distribution across 

the bilayer (282), we still tested the hypothesis. 

 By over-expression a dominant negative mutant of ARF1, ARF1-T31N, which 

inhibit COP-I dependent coatomer assembly, we showed that COP-I dependent 
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retrograde transportation is not required for TBSV replication. However over-expression 

of ARF1-Q71L, which stimulate COP-I coatomer assembly but not disassembly, 

inhibited TBSV replication to ~34%. The difference of these to mutants was probably 

due to stimulation of assembly of COP-I vesicles by ARF1-Q71L also led a consumption 

of phospholipids, including PE, from TGN, thus interfere with PE recruitment by TBSV.  

 

Summary: In this chapter, efforts were made for finding the PE source for TBSV 

replication. However, deletion of single or double PE synthesis genes did not lead to 

significantly reduced TBSV replication in yeast. However, PSD2 mediated PE synthesis 

pathway was favored among three PE synthesis pathways by TBSV. 

 TBSV p33 was demonstrated to localize to both TGN and peroxisome. PE was 

also enriched at both TGN and peroxisome together with p33. Moreover, a TGN 

tSNARE Tlg2p was shown to have major function in TBSV replication, possibly due to 

its ability to regulate PE enrichment in replication complexes. 

 By using GFP tagged TBSV replication proteins, a vacuole targeting pathway of 

p33 and p92 was identified. This p33/p92 targeting requires vesicle transportation 

pathway on the TGN and endocytic compartments. And disruption of vesicle transport in 

the endocytic pathway also have negative effect on TBSV replication.  

 This p33/p92 secretion was shown to be dependent on COP-II mediated 

anterograde transportation from ER to Golgi, and was essential for TBSV replication in 

yeast. However, a COP-I dependent retrograde transportation seems not to contribute to 

TBSV replication, but interfere with replication. 
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 Overall, we found evidences that p33 secretion from ER to vacuole through COP-

II dependent early secretory pathway contributed to TBSV replication. An TGN tSNARE 

Tlg2p was also shown to regulate PE enrichment at TBSV site of replication.  

 

(Copyright © Kai Xu 2014) 
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Fig. 5.1  
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Fig. 5.1 Reduced TBSV replication in PE synthesis pathways deletion yeast strains.  

 
(A) Schematic of three PE synthesis pathways in yeast. (B) Replication of TBSV in yeast 
deletion strains grown in media without ethanolamine. Upper Panel: Northern blot of 
repRNA and 18S ribosomal RNA. Lower Panel: Western blot of total proteins extracted 
from different strains tested. TBSV p33 and p92 were tagged with HIS6 tag on their N-
terminals and detected with an anti-HIS antibody. Total proteins were stained with 
Ponceau S on PVDF membrane after transfer. (C) Replication of TBSV in yeast in 
deletion strains grown in media with ethanolamine. Note that psd1∆psd2∆ strain was able 
to grow under this condition. See further details described in panel B. Each experiment 
was repeated. 
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Fig. 5.2 
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Fig. 5.2 p33 co-localization to peroxisomes and TGN. 

 
(A) GFP-tagged p33 localized in peroxisomal membrane. Wild type yeast was 
transformed with vectors expressing GFP-tagged p33, p92 and DI-72, as well as pex13p-
mRFP. Viral components were induced in yeast grown in SC media containing 2% 
galactose for 10 hours. Cells were collected  and subjected to confocal laser microscopy 
analysis. Results showed partial co-localization of TBSV GFP-p33 with peroxisomal 
marker Pex13p-mRFP. DIC (differential interference contrast) images are shown on the 
right. (B) Confocal laser microscopy images showed that TBSV GFP-p33 also partially 
co-localized with TGN marker Tlg2p-mRFP. 
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Fig. 5.3 
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Fig. 5.3 PE is enriched in both peroxisome and TGN where TBSV GFP-p33 is 
localized.  
 
(A) Confocal laser microscope image showed that PE was enriched at sites of GFP-p33 
accumulation and partially co-localized with peroxisomal marker Pex13p-mRFP as 
punctuate structures. PE was visualized using biotinylated duramycin and streptavidin 
conjugated with Alexa-405. (B) TGN localization of GFP-p33 where PE was also 
enriched showed diffused pattern, which is visually distinguishable from peroxisomal 
punctuate structures.  
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Fig. 5.4 
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Fig. 5.4 TGN tSNARE Tlg2 is required for efficient TBSV replication in yeast, 
affecting PE enrichment to sites of replication.  
 
(A) Deletion of TLG2 dramatically reduced TBSV replication, and expression of a N-
terminal Flag-tagged Tlg2 from a vector complemented the effect caused by deletion of 
TLG2 from genome. Upper panel: Northern blot repRNA and ribosomal 18S RNA. 
Lower panel: Western blot detecting viral proteins as well as Flag-Tlg2p by anti-HIS 
antibody or anti-FLAG antibody. Total protein was detected with Ponceau S on PVDF 
membrane after transfer. Experiments were repeated. (B) Confocal microscope images 
showed that unlike in wt yeast PE was not enriched at sites of replication in tlg2∆ yeast. 
See further description of yeast growth condition in Fig. 5.2, PE detection method in Fig. 
5.3. 
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Fig. 5.5  
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Fig. 5.5 Targeting of TBSV p33/p92 to vacuole through vesicle transport pathway. 
 
(A) Deletion of tSNARE genes of TGN or endocytic pathway dramatically reduced 
TBSV replication. (B) Cartoon representation of partial proteolysis of GFP tagged viral 
proteins in vacuole. (C) Free GFP was detected in wild type yeast expressing GFP tagged 
p33/p92 using anti-GFP antibody. Arrows on the left showed sizes of protein markers. 
Arrows on the right showed expected bands of Free GFP or GFP tagged viral proteins. 
Right panel is a digitally over-exposed (ex.) copy of His-GFP-p33/p92 sample. (D) Free 
GFP was not detected in pep4∆, tlg2tlg1∆ or pep12∆ yeast strains expressing GFP-tagged 
p33/p92. Upper panel: protein blot of total protein from different yeast strains expressing 
GFP-tagged p33/p92 using anti-GFP antibody. Middle panel: Small portion of digitally 
over-exposed image of boxed area from upper panel, showing the free GFP bands. 
Noting that Free GFP was not detected in pep4∆, tlg2tlg1∆ or pep12∆ yeast strains. 
Lower panel: coomassie blue staining of total protein loaded. 
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Fig. 5.6 
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Fig. 5.6 SAR1 dominant mutant SAR1-H77L inhibits vacuole targeting of GFP-
p33/p92 as well as TBSV replication.  
 
(A) SAR1-H77L inhibited GFP-p33/p92 targeting to vacuole, based on less amount of 
free GFP detected. See further details on Fig.5.5C and D. (B) Reduced TBSV replication 
in SAR1-H77L-Flag expressing yeast. Upper panel shows repRNA accumulation reduced 
upon expression of Sar1(H77L)-Flag. Lower panel shows protein expression level of 
TBSV p33, p92 and Sar1 or Sar1(H77L). Total protein was stained by ponceau S. 
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Fig. 5.7 
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Fig. 5.7 COP-I dependent retrograde transport from TGN to ER is not required for 
TBSV replication in yeast.  
 
(A) ARF1 dominant active mutant ARF1-Q71L inhibit TBSV replication, but not 
dominant negative mutant ARF1-T31N. See further detail about RNA and protein blot 
from Fig. 5.6B. (B) Doxycycline inhibited a yeast strain whose COP1 was under a 
tetracycline (tet)-regulatable promoter, while plasmid (pRS315-COP1) expression of 
COP1 rescued yeast growth caused by doxycycline. (C) Over-expression of COP1 from 
pRS315-COP1 inhibited TBSV replication, while down-regulation of COP1 from 
genome under tetracycline (tet)-regulatable promoter by adding doxycycline into growth 
media stimulated TBSV repRNA accumulation to ~3 fold comparing to that of without 
adding doxycycline. 
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Chapter 6 

CLASS III PHOSPHOINOSITIDE 3-KINASE VPS34 IS A KEY HOST FACTOR 

IN TOMBUSVIRUS REPLICATION 

 

 

6.1 Introduction 

 During the past decades, PI3K or its product Phosphatidylinositol 3-phosphate 

(PI3P) emerged as an important host factor regulating diseases caused by various of 

pathogens (284), including influenza viruses (285), hepatitis C virus (286), human 

pathogenic bacteria(287, 288), plasmodium (284) and pathogenic fungi (284, 289). 

 Phosphatidylinositide 3-kinases (PI3Ks) are a group of proteins  defined by their 

enzymatic activity to phosphorylate the 3 position hydroxyl group of the inositol ring of 

phosphatidylinositol (PtdIns), or 4 , 5 position phosphorylated PtdIns . There are three 

classes of PI3Ks based on their substrate specificity in vitro and protein size (290, 291). 

Class I PI3Ks, usually ~110 kDa in size,  could phosphorylate Phosphatidylinositol (PI), 

Phosphatidylinositol 4-phosphate (PI4P) or Phosphatidylinositol (4,5)-bisphosphate 

(PI(4,5)P2), but with substrate preference toward PI(4,5)P2. Class II PI3Ks , about ~170 

kDa, prefer PI over PI4P over PI(4,5)P2 for substrate (290, 291).  

 Although two classes of PI3Ks play important role in human and animal cells, 

they are not found in yeast and in plants (292, 293). Class III PI3Ks, or Vps34 (Vacuole 

protein sorting 34), is the only class of PI3Ks present in yeast and plants. It has substrate 

activity solely toward PI. VPS34's function was firstly known in regulating vacuole 
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protein sorting, as indicated by its name. Deletion of VPS34 from plants, at least in 

Arabidopsis thaliana, is lethal for plant development and growth (293). However deletion 

of VPS34 in yeast is viable for yeast growth . 

 Besides genetic approaches, chemical inhibitors were developed to inhibit the 

activity of the lipid kinase domain of PI3Ks. There are many PI3Ks inhibitors been 

developed and used in PI3K functional studies. These inhibitors showed varied inhibitory 

sensitivity towards different forms/classes of PI3Ks. For example, the famous PI3K 

inhibitor Wortamanin have significantly less half maximal inhibitory concentration (IC50) 

value with mammalian hVps34 than with yeast Vps34p (294). Specificity of different 

PI3K inhibitors restricted the study of different PI3Ks functions. However this issue is 

minor in yeast and plant in which Vps34p is the only PI3K. 

 Vps34p is involved in many cellular protein and membrane trafficking processes, 

including vacuole protein targeting, macroautophagy, endocytosis, Gpa1p signaling, et al 

(292). Different Vps34p complexes are responsible for different functions (292).  There 

are two major distinct Vps34p complexes in yeast proposed by Kihara, A. et al. (295), 

both contain Vps34p, Vps15p and Vps30p. Complex I contains one additional protein 

Atg14, and is required for autophagy (296). Complex II contains protein Vps38p, 

regulating vacuole sorting of the lysosomal hydrolase CPY (carboxypeptidase Y). 

Complex I is localized to vacuolar membrane and perivacuolar pre-autophagosomal 

structure (PAS), while complex II is localized to TGN, late endosome and vacuolar 

membrane (295-298). 

 However, deletion of VPS30 does not affect vacuole targeting and processing of 

newly synthesized protease A or protease B (292, 295). In additon, GTP-binding alpha 
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subunit of the heterotrimeric G protein (Gpa1p) forms complex with Vps34p and Vps15p 

and controls pheromone signalling (299). Thus, based on these information, Jonathan M. 

Backer proposed two additional Vps34p complexes in yeast (292) (Fig. 6.3A). 

 Single-copy AtVPS34 is the only PI3K in Arabidopsis thaliana. Although 

heterozygous T-DNA insertion mutant of AtVPS34 exist, homozygous vps34 mutation is 

not viable, since VPS34 is essential for plant growth, including pollen development 

(293). Blocking of the PI3P in plant cells by over-expression of a PI3P specific binding 

domain from human early endosome antigen 1 inhibited targeting of vacuolar protein 

sporamin (300). Treatment of tobacco cells with PI3K inhibitor Wortmannin also 

inhibited the vacuole targeting of COOH-terminal propeptide (CTPP) of the barley lectin 

precursor, but not the sporamin precursor (301). Plant Vps34 as well as Vps30, Atg3, 

Atg7 were shown to restrict spreading of hypersensitive reaction (HR) of tobacco mosaic 

virus (TMV) infected cells to adjacent cells in leaves (302). 

 In this Chapter, we show evidence supporting a novel and essential function of 

VPS34 for positive RNA virus replication in yeast and in plant. We will also discuss the 

molecular and cellular mechanism of VPS34 in TBSV replication. 

 

6.2 Materials and Methods 

 

Yeast strains and expression plasmids. Yeast strains BY4741 (MAT a his3Δ1 leu2Δ0 

met15Δ0 ura3Δ0) and vps34∆, vps30∆, vps38∆ or atg14∆ (single-gene deletion strain) 

were obtained from Open Biosystems (Huntsville, AL, USA). 
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For yeast plasmid expressing Vps34p, VPS34 gene fragment was amplified from yeast 

genomic DNA using primer pair #5014 

(GGAAGATCTAAAATGTCACTGAACAACATAACATTCTGTG)/ #5015 

(GCCCTGCAGGGTCCGCCAGTATTGTGCC), digested with BglII/PstI and inserted into 

BamHI/PstI digested pRS315-CFlag (Chapter 5), generating pRS315-Vps34-CFlag. PCR 

fragment of mRFP1 or rsGFP using primer pair #2691 

(CGGAGATCTATGGCCTCCTCCGAGGAC)/ #2631 

(GGACTCGAGTTAGGCGCCGGTGGAGTGG) or #4568 

(GGCAGATCTGGTAAAGGAGAAGAACTTTTCACT)/ #3721 

(GCCGAGATCTCGGATAACAATTTCACACAG) were digested with BglII/XhoI and 

inserted into BglII/SalI digested pRS315-Vps34-mRFP1, or pRS315-Vps34-GFP. 

 

PI3K inhibitor AS604850. AS604850 was obtained from Selleck Chemicals, dissolved in 

DMSO in concentration of 5mM. 

 

Split-Ubiquitin based Y2H assay. For pray constructs pPR3N-Vps34 or pPR3C-Vps34, 

VPS34 was amplified from genomic DNA using primer pair #5104/#5105, digested with 

BglII, and inserted into BamHI/SmaI digested pPR-N-RE or pPR-C-RE (99). Bait 

construct pGAD-BT3-N-His33 or pGAD-BT3-N-His92 (110) together with pray 

construct were co-transformed into yeast NMY51 [MATahis3∆ 200 trp1-901 leu2-3, 112 

ade2 LYS2::(lexAop)4-HIS3 ura3::(lexAop)8-lacZ ade2::(lexAop)8-ADE2 

GAL4] (Dualsystems), and plated onto Trp−/Leu− synthetic minimal medium plates. 

Transformed colonies were picked, re-suspended in water, diluted 4 times with 10 fold 
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dilution each time, and spotted onto TLHA− (Trp−/Leu−/His−/Ade−) plates to test bait 

and pray interaction. 

 

6.3 Results 

 

VPS34 deletion affects PE enrichment in peroxisomal membrane and dramatically 

reduces TBSV replication in yeast. To test the role of VPS34 in TBSV replication, we 

utilized vps34∆ deletion yeast strain. Plasmids (9) (pESC-T33/DI72, pYES-T92) 

expressing viral replication components together with empty vector or pRS315-VPS34-

CFlag were transformed into wild type or vps34∆ deletion yeast strain. Cells were grown 

in SC media containing 2% galactose to induce TBSV replication, and harvested at 1 day 

post induction. Total RNA and protein were extracted and subjected for RNA and protein 

blot analysis. In vps34∆ strain, we observed a reduction by 90% of repRNA accumulation 

compared to that from wild type. However, a plasmid expressing Vps34p-Flag 

complemented TBSV replication caused by deletion of VPS34. Viral protein p33 and p92 

accumulation was reduced comparing to that in wild type yeast, while p92 also showed 

less accumulation level. 

 This reduction of p33/p92 protein level was also observed in TBSV replicating 

cells where TLG2 or other tSNAREs in endocytic pathways were deleted (In Chapter 5). 

Since TLG2 deletion could affect virus driven enrichment of PE in peroxisomal 

membrane during TBSV replication, we also tested the PE localization in vps34∆ strain 

(Fig. 6.1B). Surprisingly, PE was not enriched at the site of replication, however TBSV 
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p33/p92 still localized to peroxisome, as shown by co-localization of peroxisome marker 

Pex13p-GFP and mRFP-p33/p92.  

 

PI3K inhibitor AS604850 inhibits (+)RNA virus replication in yeast and in plant. 

AS604850 is a specific PI3K inhibitor, with higher specificity toward Class I PI3K 

isoform γ (PI3Kγ /p110γ) comparing to isoform α/β (303, 304). We tested its effect on 

TBSV replication in yeast and in plants (Fig. 6.2A/B). 

 At the concentration of 4µM, AS604850 inhibited TBSV replication in yeast as 

the repRNA accumulation was reduced to ~13% comparing to that in wild type. Similarly 

to deletion of VPS34, we observed an reduction in p33 accumulation level (Fig. 6.2A, 

lower panel). In Nicotiana benthamiana protoplast transfected with TBSV full length 

genomic RNA, 0.5 µM AS604850 inhibited TBSV genomic replication by 80% 

comparing to that of adding the solvent only. At concentration of 2.5 or 5 µM, TBSV 

replication is close to detection limit (Fig. 6.2B). 

 CIRV replication proteins or CNV replication proteins could also replicate DI-72 

repRNA in yeast mitochondria outer (9) or peroxisome membranes (10), respectively. 

Different concentrations of AS604850 were also added to growth media of yeast 

transformed with pESC-C36/DI72 and pYES-C95, or pESC-HisCNVp33-DI72 and 

pYES-CNVp92 (9). Interestingly, 4µM AS604850 could also effectively inhibit repRNA 

replication by CIRV or CNV replication proteins (Fig. 6.2C upper & middle panels).  

 AS604850 was also used to test its effect on Nodamura virus (NoV), a unrelated 

positive strand RNA virus replication using the mitochondrial outer membrane (109, 224, 
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305). At concentration of 4µM,  AS604850 inhibited Nov replication, similar to the 

results obtained with TBSV, CIRV and CNV. 

 

Deletion of genes encoding components of different Vps34p complexes reveals a role 

for vacuole targeting complexes in viral replication. We have tested single gene 

encoding deletions encoding protein components of different Vps34p complexes (Fig. 

6.3A) for their effects on supporting tombusvirus replication.  

 Deletion of VPS15 dramatically reduced repRNA accumulation in yeast cells 

expressing TBSV p33, p92 and DI72 to ~5% of wild type yeast strain. While VPS30 and 

VPS38 deletion also reduced repRNA accumulation to ~48% and ~27% respectively. 

However, deletion of ATG14, which is responsible for autophagy or pheromone 

signaling did not affect TBSV replication (Fig. 6.3B Upper panel). TBSV p33 

accumulation in vps15∆ and vps38∆ reduced significantly, similar to that in vps34∆ strain 

(Fig. 6.3B lower panel).  

 RepRNA DI-72 replication by CNV replication proteins was also tested (Fig. 

6.4C). In VPS15 deletion strain, repRNA was reduced to ~42%, however replication was 

not significantly affected in vps30∆, atg14∆ or vps38∆  strains. The above results 

suggested involvement of different Vps34p complexes controlling vacuole protein 

targeting are involved in TBSV or CNV replication in yeast. 

 

Vps34p is co-localized with TBSV p33 in yeast. To observe the localization of Vps34p 

during TBSV replication, we utilized a plasmid-borne C-terminal mRFP1 tagged Vps34p 

and GFP-tagged p33. Plasmids pESC-GFP-T33/DI72, pYES-T92 (9) and pRS315-



 

188 
 

Vps34-mRFP1 were transformed into vps34∆ yeast strain. Yeast cells were induced to 

support repRNA replication in growth media containing 2% galactose for 4, 6 or 24 hours 

and subjected to confocal microscope analysis (Fig. 6.4A).  We observed Vps34p-mRFP1 

showed punctuate structures in yeast, and some of Vps34p-mRFP1 containing punctuates 

co-localized with GFP-p33 after 4, 6 or 24 hours induction of viral replication. These co-

localized Vps34p-p33 structures may represent Vps34p complexes responsible for TBSV 

replication (Fig. 6.3). 

 Pex13p tagged with mRFP on its C-terminal end was also used to test Vps34p 

localization during TBSV repRNA replication in yeast. Plasmids pESC-T33/DI72, 

pYES-T92, pRS315-pex13-mRFP and pRS314-Vps34-GFP were transformed to diploid 

Sc1 yeast strain. RepRNA replication was induced in growth media containing 2% 

galactose for 24hours. Yeast cells were collected and subjected to confocal laser 

microscope analysis. Vps34p-GFP forms many punctuate structures similar to  the 

observation using Vps34p-mRFP1, and some of the Vps34p-GFP punctuate structures 

were co-localized with peroxisome marker Pex13p-mRFP (Fig. 6.4B). Thus these 

observations supported that some of the Vps34p localized to peroxisome in TBSV 

replicating yeast. 

 

Vps34p does not interact with tombusvirus replication proteins in Split- Ubiquitin 

based yeast two hybrid assay. To test if Vps34p interacts with TBSV replication proteins, 

we utilized a split-ubiquitin based yeast two hybrid assay, designed for testing the 

interaction of a pray protein with a membrane bait protein (110). 
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 Vps34p was tagged with N-terminal half of ubiquitin (NubG) on its N-terminal or 

C-terminal and expressed from a plasmid which was co-transformed into yeast strain 

NMY51 (110) together with a plasmid expressing C-terminal Cub (C-terminal half of 

ubiquitin)-tagged CNV p33 or p92. Transformed yeast cells were spotted on Trp-/Leu-

/His-/Ade- (TLHA-) or Trp-/Leu- (TL-) media with 10X dilution sequentially for 5 times 

(Fig. 6.5 A&B right panels). Growing of the yeast cells from TLHA- media suggested 

interaction between bait and prey proteins. A known interacting protein Ssa1p (101) was 

used as positive control, while an empty plasmid was used as negative control.  

 Yeasts transformed with plasmids containing Cub-tagged p33 or p92 with NubG 

tagged Ssa1p grown in TLHA- media suggested an interaction between viral proteins and 

Ssa1p. However, yeast co-expressing N or C terminal NubG tagged  Vps34p and viral 

proteins did not show growth, suggesting lack of interaction between viral proteins and 

Vps34p. 

 

TBSV replication does not induce pexophagy. Pexophagy is selective macro-autophagy 

for peroxisome, which is controlled by VPS34 (306). The pexophagy event is usually 

monitored by vacuolar degradation of peroxisome matrix protein Pot1p (306), or 

visualization of vacuolar localization of peroxisomal matrix targeted BFP-SKL (307), or 

free GFP caused by vacuolar degradation GFP-tagged peroxisome membrane proteins, 

including Pex11p-GFP(283). 

 Since minor amount of free GFP was detected from yeast cells expressing GFP-

p33/p92 (Chapter 5, Fig. 5.5C&D) , it could be possible that pexophagy was also 

involved besides previously identified COP-II dependent secretion and endocytic 
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pathway that transfers p33 from ER to TGN/endosome/vacuole (Chapter 5, Fig. 5.5 & 

5.6). To test if pexophagy contributes to TBSV replication, we utilized GFP-tagged 

p33/p92 expressed in wild type or vps34∆ deletion yeast strain. GFP-p33/p92 

accumulation was dramatically reduced in vps34∆ yeast strain (Fig. 6.6A), in which 

pexophagy did not occur due to deletion of VPS34. The reduced GFP-p33/p92 

accumulation level in pexophagy-free vps34∆ yeast strain was contrary to the vacuolar 

degradation of pexophagic cargo proteins, suggesting pexophagy is not involved in 

targeting GPF-p33/p92 to vacuole. 

 To test if TBSV viral protein expression induces pexophagic degradation of 

peroxisomal matrix protein Pot1p/Fox3p, we detected Pot1p protein level by protein blot 

using anti-Pot1p antibody (kindly provided by Daniel J. Klionsky from University of 

Michigan) between samples with or without TBSV replication, in wild type or vps34∆ 

deletion strain (Fig. 6.6B). We found that Pot1p level was not significantly different 

between different samples described above.  Total protein, mitochondria membrane 

protein Porin, ER membrane protein Sec61p and cytosolic protein PGK were used as 

control to show equal loading between samples. Thus, our data suggest that TBSV 

replication in yeast does not induce pexophagy, and the role of Vps34p function in TBSV 

replication is not related to pexophagy-like event. This finding supported the previous 

finding that ATG14 deletion did not affect TBSV replication in yeast (Fig. 6.3). 

 

6.4 Discussion 
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VPS34 is involved in RNA viruses replication. Based on genetic study on model host 

yeast for TBSV replication, as well as utilizing a PI3K inhibitor AS604850 in yeast and 

plant cells, we identified VPS34/PI3K as a host factor important for TBSV replication 

(Fig. 6.1A, 6.2A&B). In plant protoplast cells transfected with TBSV full genomic RNA, 

TBSV replication was almost eliminated by adding 5 µM AS604850 into the incubation 

media (Fig. 6.2B). In yeast, either deletion of VPS34 or 4 µM AS604850 could reduce 

repRNA accumulation to ~11%. Interestingly, the accumulation of plasmid driven viral 

protein was also reduced dramatically. Such reduced level of repRNA as well as lower 

viral protein accumulation as also observed when tSNAREs from endocytic pathway or 

TGN were deleted. It could be interesting if PE distribution was affected during TBSV 

replication, since deletion of TGN tSNARE TLG2 abolished PE enrichment in 

peroxisome at the presence of TBSV replication. Interestingly, PE also did not 

accumulate in peroxisome in vps34∆ when mRFP tagged p33/p92 were expressed (Fig. 

6.1B). 

 PI3K inhibitor AS604850 was also tested for its effect on DI-72 replication using 

CIRV or CNV replication proteins in yeast, and Nodamura virus genomic RNA1 

replication in yeast. Results showed that at concentration of 4 µM, it inhibited viral 

replication in all these three cases (Fig. 6.2C). It is notable that PE was also enriched at 

site of CIRV, CNV or Nov replication (Chapter 4). 

 

Identifying a vacuolar protein targeting function of VPS34 in TBSV replication. As 

TBSV driven PE enrichment in peroxisome was affected in tlg2∆ or vps34∆ deletion 

strains, we wonder if these two gene have common functions? Vps34p in yeast is known 
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to function in distinct complexes (Fig. 6.3A), containing additional proteins including 

Vps15p, Vps30p, Vps38p or Atg14p (292, 295). We used single gene deletion yeast 

strains of vps15∆, vps30∆, vps38∆ or atg14∆ to dissect different functions of VPS34 in 

tombusvirus replication. Deletion of VPS15 reduced TBSV repRNA and proteins 

accumulation to similar level comparing to VPS34 deletion, while deletion of VPS30 or 

VPS38 also reduced TBSV replication (Fig. 6.3B). In case where DI-72 was replicated by 

CNV p33 and p92 (Fig. 6.3C), repRNA accumulation was only reduced in VPS15 

deletion strain, and did not change in VPS30, VPS38 or ATG14 deletions. 

 Based on Jonathan M. BACKER's model of four Vps34p complexes (292), I 

demonstrated that vacuole protein targeting function of VPS34 seems to be involved in 

TBSV replication. This results agreed with the finding that PE was not enriched in 

peroxisome in yeast deletion strain of TGN tSNARE TLG2, which is involved in 

vesicle/protein transportation. 

 

Vps34p localized at site of TBSV replication, but does not interact with p33/p92. In 

vps34∆ yeast expressing Vps34p-mRFP1, GFP-p33/p92, of which fluorescence under 

confocal laser microscope, co-localized with some of the punctuate-like structures of 

Vps34p-mRFP1, suggesting a direct involvement of Vps34p in TBSV replication. This 

result was confirmed by co-localization of Vps34p-GFP and a peroxisome marker 

Pex13p-mRFP in a diploid yeast cell when TBSV replication (Fig. 6.4). 

 We asked if Vps34p directly interacts with TBSV replication proteins. In a split 

ubiquitin based yeast membrane protein two hybrid system, Vps34p does not show 

interaction with p33 or p92 (Fig. 6.5). However other components of the Vps34p 
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complexes were not tested for their interaction with TBSV p33/p92 yet. Besides direct 

interaction, an existing function of Vps34p on peroxisome may be co-opted by TBSV to 

aid its replication. 

 

Pexophagy pathway is not co-opted for TBSV replication. A known function of VPS34 

in peroxisome regulation involves pexophagy during nutrition stressed environment 

(306). We tested degradation pattern of TBSV viral proteins GFP-p33/p92 and 

peroxisomal matrix protein Pot1p accumulation in wild type as well as pexophagy-free 

vps34∆ yeast strains (306). Pot1p level was similar in samples with or without TBSV in 

both WT and vps34∆ yeast strains, suggesting TBSV replication does not induce 

detectable pexophagy. GFP-p33/p92 accumulation reduced, not increased, in pexophagy 

free yeast strain suggesting that pexophagy does not play a role in stability of TBSV 

protein. Pexophagy is a selective macro-autophagy event, which is controlled by VPS15, 

VPS30 and ATG14, but not VPS38 (306). Absence of involvement of pexophagy in 

TBSV replication agreed with previously identified non-autophagy function of VPS34 

(Fig. 6.3). 

 

Summary: In this chapter, we show evidence that VPS34 is involved in TBSV replication 

in yeast and in plant, and possibly in CIRV, CNV and NoV replication in yeast. I 

identified a role in the vacuole protein targeting of Vps34 in TBSV replication. Co-

localization of Vps34p and TBSV p33/p92 suggests involvement of cellular functions of 

Vps34p in peroxisome that might be co-opted for TBSV replication. However this 

cellular function is not pexophagy, instead a non-autophagic function, possibly 



 

194 
 

vesicle/protein transport function of Vps34p, is involved in TBSV replication. 

Importantly I discovered that VPS34's function correlates to PE enrichment in 

peroxisome during TBSV replication.  

(Copyright © Kai Xu 2014)  



 

195 
 

 

Fig. 6.1 
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Fig. 6.1 VPS34 is required for efficient TBSV replication in yeast and is involved in PE 
enrichment at the site of replication.  
 
(A) TBSV replication in WT or vps34∆ strain was induced by expression of TBSV His6-
p33 and His6-p92 under the galactose-inducible GAL1 promoter and DI-72 (+)repRNA 
from the galactose-inducible GAL10 promoter at 23°C for 24 hours. Northern blot 
analysis of DI-72 accumulation or 18S rRNA accumulation was shown in upper panels. 
DI-72 accumulation data was normalized based on 18S rRNA. Each experiment was 
repeated three times. Lower panels: Western blot of TBSV p33, p92 or Flag-tagged 
Vps34p was performed using anti-HIS or anti-Flag antibodies. Total protein was shown 
as loading control. (B) Confocal microscope images showed that PE was not enriched at 
sites of replication in vps34∆ yeast. See further description of yeast growth condition in 
Fig. 5.2, PE detection method in Fig. 5.3. 
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Fig. 6.2 
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Fig. 6.2 PI3K inhibitor AS604850 inhibits positive strand RNA viruses replication. 
 
(A) AS604850 inhibited TBSV repliation in yeast at different concentrations. Notably at 
4µM, AS604850 inhibited TBSV repRNA accumulation to ~13% comparing to that of 
adding solvent DMSO alone. See further detail of RNA and protein blot in Fig. 6.1A (B) 
Genome replication of TBSV in plant protoplasts was inhibited by AS604850, as shown 
by RNA blot analysis of genomic TBSV RNA as well two sub-genomic RNA generated 
during TBSV genomic RNA replication (Upper panel). Lower panel: ribosomal RNA 
stained by ethidium bromide was shown as a loading control. 
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Fig. 6.3 
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Fig. 6.3 Dissecting the function of different Vps34p complexes in tombusvirus 
replication.  
 
(A) A cartoon illustration of Vps34p complexes as proposed by Jonathan M. Backer 
(292).(B) TBSV repRNA replication in wild type, vps15∆, vps30∆, atg14∆ or vps38∆. 
Upper panel: RNA blot of repRNA accumulation and 18S rRNA accumulation. Lower 
panel: Protein analysis of TBSV p33, p92 See further detail about growth condition and 
RNA or protein blot on Fig. 6.1A. (C) DI-72 replication by CNV His6-p33 and His6-p92 
driven under the galactose-inducible GAL1 promoter. 
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Fig. 6.4 
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Fig. 6.4 Confocal laser microscope analysis of Vps34p localization during TBSV 
replication in yeast.  
 
(A): Vps34p-mRFP is localized to site of TBSV replication visualized by GFP-tagged 
p33 expression in vps34∆ yeast strain. (B) Vps34p-GFP is localized to peroxisome during 
TBSV replication in yeast. 
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Fig. 6.5 
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Fig. 6.5 Split-ubiquitin based Y2H assay to test viral protein interaction with Vps34p.  
 
(A) Bait protein TBSV p33 was used to test the interaction with Vps34p tagged with N-
terminal half of ubiquitin (NubG) on its N-terminal or C-terminal. (B) Bait protein TBSV 
p92 was used to test the interaction with Vps34p. 
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Fig. 6.6 
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Fig. 6.6 GFP-p33/p92 and a peroxisomal matrix protein Pot1p were analyzed for 
accumulation during TBSV repRNA replication in wild type and vps34∆ yeast strains. 
 
(A) Western blot analysis of GFP-p33/p92 of yeast cells with or without induction 
repRNA replication Both anti-HIS and anti-GFP antibody were used. Note that: free GFP 
was detected when using anti-GFP antibody in wild type yeast with repRNA replication. 
(B) Western blot analysis of Pot1p, mitochondria porin, ER membrane protein Sec61p 
and cytosolic protein PGK of samples prepared as in Fig. 6.6A. No significant change of 
Pot1p accumulation was observed in wild type cells with viral protein expression. 
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Chapter 7 

CONCLUSION AND PERSPECTIVE 

  

7.1  Conclusion 

 

(+)RNA virus replication can take place on alternative organellar membranes. In 

Chapter 2, we demonstrated that in a cell-free environment, peroxisome/ER-based 

tombusvirus TBSV could utilize mitochondrial membrane to assemble replicase 

complexes, supporting asymmetric replication of (+)repRNA. While mitochondria-based 

CIRV could use ER membrane for assembly of replicase complexes only inefficiently. 

The ability of using ER or mitochondria membranes depended on the p33/p36 region of 

TBSV/CIRV replicase protein. Despite the C-terminal RdRp region coming from TBSV 

p92 or CIRV p95, p33 prefers ER and p36 prefers mitochondria to assemble the replicase 

complexes. The difference might come from co-evolution of TBSV or CIRV with 

different cellular membrane environments, however, it was surprising that TBSV or 

CIRV have the potential to explore alternative sub-cellular membranes for viral 

replication. Thus these viruses are more flexible in exploiting various membranes as 

previously anticipated. 

 Cymbidium ringspot virus (CymRSV) is a tombusvirus closely related with 

TBSV, replicating on peroxisome membrane. Previous study using chimeric viruses 

made between CymRSV and CIRV also suggested swapping a small N-terminal region of 

CIRV p36/p95 with CymRSV p33/p92 could led to a recombinant CymRSV (majority of 
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genome from CymRSV which replicates on peroxisomal membrane ) to replicate on 

mitochondrial outer membrane (114). While replacing the N-terminal region of CIRV 

p36/p95 with CymRSV p33/p92 could make a recombinant CIRV replicating on 

peroxisome (114). Although this study suggested that recombination event could change 

the sub-cellular replication site, it was still not answered if a non-modified tombusvirus 

could explore an alternative sub-cellular membrane for replication. Later studies on the 

N-terminal region of CymRSV (8) or CIRV (19) replication proteins proposed that this 

region contains perixosome or mitochondria targeting sequences as well as two trans-

membrane domains. 

 Similar study of changing sub-cellular replication site by modifying replicase 

protein was shown with an animal virus, Flock house virus (FHV). By replacing 

mitochondria targeting domain in FHV RdRp Protein A with three different types of ER 

targeting sequences, the replication of FHV was re-targeted from mitochondrial outer 

membrane to ER membrane (308). Surprisingly the replication of FHV increased when 

FHV was replicating on ER membrane. 

 Are the sites of replication of (+)RNA viruses simply decided by the organelle 

targeting sequence in their replication proteins? Or are other motifs in (+)RNA virus 

replication proteins also important for choosing the replication sites? In my studies in 

Chapter 2, when TBSV or CIRV replicase proteins were simply mixed with purified 

organellar membranes without a cellular targeting event, the wild type viral replicase 

proteins could utilize different organelles for viral replication, suggesting that the native 

replicase proteins have the ability of using an alternative membrane. However, their 

preference in using the native organellar membranes also suggested that non-organelle 
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targeting motifs of the replicase proteins could be co-evolved within the native membrane 

environment and contribute to selectivity of (+)RNA virus replication sites. It is also 

possible that viruses use the alternative membranes when the original membranes are 

becoming saturated with viral proteins during late infection. 

 Studies of TBSV or CymRSV also showed that genetic modification of a host cell 

could also lead to change in viral replication site. Pex3p is a peroxisomal membrane 

protein which controls peroxisome biogenesis (309). Deletion of PEX3 abolishes 

peroxisome biogenesis and relocates replication site of TBSV or CymRSV from 

peroxisome to ER (15, 32) in yeast model host. Recent study also showed that in the 

absence of an important lipid biogenesis gene, PAH1 (phosphatidic acid 

phosphohydrolase), TBSV replication switched from peroxisome to ER (310). 

 These studies discussed above including my study in chapter 2 suggest an 

emerging picture that (+)RNA viruses have the ability of using alternative replication 

sites in host cell (Summarized in Fig. 7.1). Such event could be observed in cell-free 

environment (9), viral protein recombination/modification (114, 308) or genetically 

altered host cell (15, 32, 310). 

 

TPR domain containing protein Sti1p inhibits CIRV replication. Previous work showed 

that some members of TPR-containing protein family act as cell-intrinsic negative 

regulators of tombusviruses replication (109, 150). Study on Sti1p which inhibited CIRV, 

not TBSV, replication provided a more detailed picture on how these TRP-containing 

proteins, often Heat shock protein 70 co-chaperones, affect tombusviruses replication. 

Specificity of Sti1p's inhibition of CIRV replication could provide more information on 
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CIRV replication protein targeting and replicase assembly process on mitochondria outer 

membrane, and emphasize importance of further analysis of more proteins from this 

TPR-containing proteins family. 

 

PE is required for TBSV replication. Utilizing a novel artificial vesicle-based cell-free 

replication system, different phospholipids showed different effects in three steps of 

TBSV replication: 1) viral replication protein association with membranes, 2) viral RNA 

recruitment by viral replication proteins to membranes, 3) asymmetric viral RNA 

replication. PE was the only phospholipid capable of supporting all three processes. 

These findings suggested that sub-cellular membrane is not simply a bilayer platform that 

functions as a scaffold, different head groups of different lipids may directly interact with 

viral replication proteins to stimulate their RdRp activity, or may introduce membrane 

curvature (For example, negative membrane curvature introduced by PE) which is 

favored for viral RdRp activity. 

 

Finding pathway for PE re-localization to the site of viral replication. Building up of 

PE enriched micro-environment by TBSV replication protein p33 was a surprising 

finding, suggesting that heavy modification of phospholipid transportation could be 

achieved by a single viral protein expression in a host cell. Finding the exact pathway of 

p33 induced PE enrichment to peroxisome could pioneeringly contribute to 

understanding of the cell biology of virus infected cell. 

 To hijack an PE synthesis pathway to build up PE enriched micro-environment, 

could require recruitment of PE synthesis enzyme/s to peroxisome, and also need PS or 
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CDP-ethanolamine, the precursors of PE synthesis in two different pathways, to be 

funneling to peroxisome. By deleting different PE synthesis genes, we concluded that no 

single PE synthesis pathway directly contribute to the virus-driven PE enrichment in 

peroxisomes. I have demonstrated that vesicle transport pathway is involved in PE 

enrichment in peroxisome driven by TBSV p33. 

 I provide multiple evidence supporting that TBSV p33/p92 are indeed targeted to 

post-Golgi compartment. Inhibition of p33/p92 secretion from ER to golgi inhibited 

TBSV replication suggesting post-Golgi p33 is essential for efficient viral replication. 

TGN localization of p33 as well as abolishment of PE enrichment in tlg2∆ yeast strain 

suggested that post-golgi p33 may directly induce PE enrichment in peroxisome through 

vesicle transport pathway. 

 

7.2  Perspective 

 

PE source for TBSV replication. PE is an important lipid for autophagy pathway. 

Lipidation of LC3 (Atg8p) requires covalently linking its molecule with PE, and serves as 

marker for autophagy event (247, 298). However membrane source of pre-

autophagosomal structure (PAS) was extensively studied and still remains unclear (244, 

246, 247, 249, 251). By studying the role of VPS34 and associated components in TBSV 

replication, we learned that autophagy is unlikely required for TBSV replication.  

 By utilizing yeast genetics as well as cell biology tools, we were able to narrow 

down certain pathway/s affecting PE enrichment in peroxisome. Current results 
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suggested vesicle transport pathway is involved in PE enrichment. Next question is 

WHY? 

 Aminophospholipid flippase could be involved in PE enrichment at peroxisome. 

Aminophospholipid flippases belong to P4 subfamily of P-type ATPases, which 

introduce phospholipid asymmetry on different sides of membrane bilayer (282). There 

are five P4 ATPase in yeast with overlapping functions, namely Drs2p, Dnf1p, Dnf2p, 

Dnf3p, and Neo1p (282). Dnf1p and Dnf2p are localized primarily at plasma membrane 

(311), Drs2p and Dnf3p are mostly localized at TGN (312), while Neo1p is mainly 

localized at endosomes (313). Nele Alder-Baerens and co-workers showed that 

phospholipid asymmetry exists on post-Golgi vesicles, including up to 80% of PE on the 

cytosolic leaflet of the total post-Golgi vesicles, while deletion of Drs2p and Dnf3p could 

abolish most of the PE asymmetry (282). 

 PE is the pro-fusion kind of phospholipid, which facilitates vesicle fusion into 

membrane bilayer (57, 314, 315). It could be that by hijacking post-Golgi vesicles 

generated from TGN or endosomes with enriched PE at cytosolic leaflets, TBSV might 

build up PE enriched micro-environment on peroxisomal membranes. This hypothesis 

fits to the current results that vesicle transport rather single PE synthesis pathway is 

required for PE enrichment in peroxisome. However since the asymmetric distribution 

could not change the overall PE content on post-golgi vesicles, this hypothesis could not 

directly explain why PE is enriched in peroxisome as observed under the confocal laser 

microscope, unless other cellular host factors also contribute to this hypothetic pathway. 
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Role of Vps34p during TBSV replication. Vps34p forms complexes with Vps15p, 

Vps30p and Vps38p at late golgi, late endosome and vacuole to regulate vesicle transport 

(295, 297, 298). A major organizer of endosomal and vaclular membrane/protein sorting 

is phosphoinositide phosphatidylinositol-3-phosphate (PI3P), a product of Vps34p, 

serving as a molecular signal (316). PI3P is predominantly localized at late endosome or 

in multivesicle bodies (MVB), and recruits many effectors containing PI3P binding 

domains, such as PX (Phox homology) and FYVE (Fab1, YOTB, Vac1, EEA1) domains 

(317). These effectors facilitates various membrane rearrangement events as the 

retromer-coated tubules budding (SNX1,2,6,27), the fusion of endosomes (EEA1) and the 

ESCRT-dependent intraluminal sorting of ubiquitinated cargos in multivesicular 

endosomes (Hrs) (316).  

 The accumulation of Vps34p at peroxisome was especially interesting, since one 

role of Vps34p on peroxisome is to induce pexophagy. However no macro-autophagy 

events was induced upon TBSV replication (Fig. 6.6). If PI3P on peroxisome membrane 

does not facilitate autophagy, it might instead recruits those effectors which have PI3P 

binding modules and introduce various endosome/ multivesicle bodies (MVB) -like 

events. One of the ESCRT-I component Vps23p was recruited to peroxisome upon TBSV 

replication (81). ESCRT factors, including Vps23p, Vps24p, Snf7p and Vps4p have been 

shown to help TBSV assemble replication complexes by introducing membrane 

invagination (81). CIRV could also recruit Vps23p to mitochondria upon infection (318). 

Very interestingly, these invaginated peroxisomes or mitochondria upon tombusvirus 

infections possessed MVB-like morphology, and were once called MVB by scientists 

(114). Vps23p has been shown to bind to p33 or p36, however the binding sites between 



 

214 
 

Vps23p and these viral replication proteins were quite different (81, 86, 318). N-terminal 

ubiquitin E2 domain of Vps23p was shown to bind to p33 depending on ubiquitination of 

two lysine sites N-terminals of p33 and a "late domain" between two trans-membrane 

domains (86). However, Vps23p C-terminal steadiness box domain showed ability to 

bind to N-terminal 16 amino-acid long sequence in CIRV p36 (318). Lack of conserving 

binding domain of vps23p to two related tombusviruses replication proteins may 

suggested a possibility that this binding maybe a result rather than a cause of vps23p 

recruitment. 

 ESCRT-I components are involved in ubiquitin-dependent sorting of proteins into 

the endosome/MVB (319), and Vps34p/PI3P controls ESCRT-I dependent intraluminal 

sorting into MVB (316). It is possible that Vps34p/PI3P controls the ESCRT-I 

recruitment to viral replication sites. 

 Since CIRV replication on mitochondria also led to PE enrichment (Chapter 4) 

and required Vps34p (Fig. 6.2), it is possible that PI3P serves as molecular signal on 

peroxisome or mitochondria to recruit ESCRT factors and other effectors which leads to 

PE enrichment and membrane invagination. It is quite interesting that PE possesses a 

physical property which favors negative curvature during formation of virus-induced 

spherules in peroxisomes or mitochondria, suggesting that membrane invagination 

introduced by ESCRT might be accompanied with PE enrichment. 

 PE was also shown to be enriched at site of Nodamura virus (NoV) replication 

(Chapter 4). At early stage of NoV infected muscle cells of suckling mouse, membrane 

invagination on mitochondria outer membrane (or vesiculation of mitochondria outter 

membrane) was observed (224), suggesting PE might play a common role for membrane 
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invagination. Interestingly, PI3P inhibitor also inhibited NoV replication (Fig. 6.2C), 

suggesting function of Vps34p during NoV replication could also be similar to its 

function in TBSV or CIRV replication. 

 In summary, we found that p33 was transported to TGN through COP-II 

dependent vesicle transport from ER, and peroxisome possibly via pex19p mediated 

proxisomal protein targeting (107).  We hypothesize that TGN localized p33 as well as 

peroxisome localized Vps34p may induce vesicle transport from TGN and endocytic 

pathway to peroxisome, lead to a MVB-like peroxisome in TBSV replicating cells as well 

as PE enrichment in peroxisome ( Summarized in Fig. 7.2).  

 

Role of secretory pathway. Current studies (235, 236) on trans-membrane protein sorting 

through early secretory and endocytic pathways shed a light on our understanding of 

(+)RNA virus RdRp function. Most of the (+)RNA virus RdRp or their auxiliary proteins 

are membrane associated, and their function depends on their sub-cellular association 

with membrane (20).  

 Membrane proteins accounts for 20-30% of the total protein products produced 

from eukaryotic genome (320). Their sorting were believed to be contributed by motifs 

residing on cytosolic part of the protein (321), however trans-membrane domain of these 

proteins also received attentions for their functions in determining protein localization 

and transport (235, 236). TMDs were shown to function in ER retention, golgi or plasma 

membrane localization and sorting through endocytic pathways [reviewed in (235)]. The 

sorting function of TMDs together with cytosolic organellar targeting signals on viral 
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replication proteins could explain various sub-cellular locations of (+)RNA viruses 

replication sites. 

 Current progress showed that early secretory pathways are involved in (+)RNA 

virus replication (33, 72, 226-228, 232, 322). Despite that other viral factors may join and 

modify ER membranes as well as early secretory pathway, TMDs within viral replication 

proteins could be a driving force of (+)RNA viruses to find the replication site on cellular 

membranes during evolution. 

(Copyright © Kai Xu 2014) 
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Fig. 7.1 Alternative replication sites found for different (+)RNA viruses. 

Solid lines show original replication sites for TBSV, CymRSV, CIRV and FHV. Dotted 
lines show alternative replication sites of these (+)RNA viruses in different experimental 
systems.  
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Fig. 7.2 Working Model for sub-cellular transport of TBSV replicase proteins. 

Portion of TBSV p33 and p92 molecules translated on ER or in cytoplasm are transported 
directly to peroxisome, while part of p33/p92 are transported to TGN and beyond through 
COP-II dependent early secretory pathway. Dotted lines suggest a proposed role played 
by p33, in which p33 induces vesicle transportation from TGN or early endosome (EE) to 
peroxisome, and thus produce MVB-like structures as well as PE enriched micro-
environment. See text for further detail and possible role of Vps34p in this model. 
  



 

219 
 

REFERENCES: 

1. White KA, Nagy PD. 2004. Advances in the molecular biology of 
tombusviruses: gene expression, genome replication, and recombination. Prog 
Nucleic Acid Res Mol Biol 78:187-226. 

2. Panaviene Z, Panavas T, Nagy PD. 2005. Role of an internal and two 3'-
terminal RNA elements in assembly of tombusvirus replicase. J Virol 79:10608-
10618. 

3. Pogany J, White KA, Nagy PD. 2005. Specific binding of tombusvirus 
replication protein p33 to an internal replication element in the viral RNA is 
essential for replication. J Virol 79:4859-4869. 

4. Pathak KB, Pogany J, Xu K, White KA, Nagy PD. 2012. Defining the Roles of 
cis-Acting RNA Elements in Tombusvirus Replicase Assembly In Vitro. J Virol 
86:156-171. 

5. Panavas T, Nagy PD. 2003. Yeast as a model host to study replication and 
recombination of defective interfering RNA of Tomato bushy stunt virus. 
Virology 314:315-325. 

6. Oster SK, Wu B, White KA. 1998. Uncoupled expression of p33 and p92 
permits amplification of tomato bushy stunt virus RNAs. J Virol 72:5845-5851. 

7. Stork J, Kovalev N, Sasvari Z, Nagy PD. 2011. RNA chaperone activity of the 
tombusviral p33 replication protein facilitates initiation of RNA synthesis by the 
viral RdRp in vitro. Virology 409:338-347. 

8. Navarro B, Rubino L, Russo M. 2004. Expression of the Cymbidium ringspot 
virus 33-kilodalton protein in Saccharomyces cerevisiae and molecular dissection 
of the peroxisomal targeting signal. J Virol 78:4744-4752. 

9. Xu K, Huang TS, Nagy PD. 2012. Authentic in vitro replication of two 
tombusviruses in isolated mitochondrial and endoplasmic reticulum membranes. J 
Virol 86:12779-12794. 

10. Panavas T, Hawkins CM, Panaviene Z, Nagy PD. 2005. The role of the 
p33:p33/p92 interaction domain in RNA replication and intracellular localization 
of p33 and p92 proteins of Cucumber necrosis tombusvirus. Virology 338:81-95. 

11. Rajendran KS, Nagy PD. 2006. Kinetics and functional studies on interaction 
between the replicase proteins of Tomato Bushy Stunt Virus: requirement of 
p33:p92 interaction for replicase assembly. Virology 345:270-279. 

12. Panavas T, Serviene E, Brasher J, Nagy PD. 2005. Yeast genome-wide screen 
reveals dissimilar sets of host genes affecting replication of RNA viruses. Proc 
Natl Acad Sci U S A 102:7326-7331. 

13. Nagy PD. 2008. Yeast as a model host to explore plant virus-host interactions. 
Annu Rev Phytopathol 46:217-242. 

14. Rubino L, Burgyan J, Russo M. 1995. Molecular cloning and complete 
nucleotide sequence of carnation Italian ringspot tombusvirus genomic and 
defective interfering RNAs. Archives of virology 140:2027-2039. 

15. Rubino L, Navarro B, Russo M. 2007. Cymbidium ringspot virus defective 
interfering RNA replication in yeast cells occurs on endoplasmic reticulum-
derived membranes in the absence of peroxisomes. J Gen Virol 88:1634-1642. 



 

220 
 

16. White KA, Morris TJ. 1994. Nonhomologous RNA recombination in 
tombusviruses: generation and evolution of defective interfering RNAs by 
stepwise deletions. J Virol 68:14-24. 

17. White KA, Morris TJ. 1994. Recombination between defective tombusvirus 
RNAs generates functional hybrid genomes. Proc Natl Acad Sci U S A 91:3642-
3646. 

18. McCartney AW, Greenwood JS, Fabian MR, White KA, Mullen RT. 2005. 
Localization of the tomato bushy stunt virus replication protein p33 reveals a 
peroxisome-to-endoplasmic reticulum sorting pathway. Plant Cell 17:3513-3531. 

19. Hwang YT, McCartney AW, Gidda SK, Mullen RT. 2008. Localization of the 
Carnation Italian ringspot virus replication protein p36 to the mitochondrial outer 
membrane is mediated by an internal targeting signal and the TOM complex. 
BMC Cell Biol 9:54. 

20. den Boon JA, Ahlquist P. 2010. Organelle-like membrane compartmentalization 
of positive-strand RNA virus replication factories. Annual review of microbiology 
64:241-256. 

21. Aylward RB, Mansour E, El Said AO, Haridi A, Abu El Kheir A, Hassan A. 
1997. The eradication of poliomyelitis in Egypt: critical factors affecting progress 
to date. The Journal of infectious diseases 175 Suppl 1:S56-61. 

22. Xia X, Luo J, Bai J, Yu R. 2008. Epidemiology of hepatitis C virus infection 
among injection drug users in China: systematic review and meta-analysis. Public 
health 122:990-1003. 

23. Cornberg M, Razavi HA, Alberti A, Bernasconi E, Buti M, Cooper C, 
Dalgard O, Dillion JF, Flisiak R, Forns X, Frankova S, Goldis A, Goulis I, 
Halota W, Hunyady B, Lagging M, Largen A, Makara M, Manolakopoulos 
S, Marcellin P, Marinho RT, Pol S, Poynard T, Puoti M, Sagalova O, Sibbel 
S, Simon K, Wallace C, Young K, Yurdaydin C, Zuckerman E, Negro F, 
Zeuzem S. 2011. A systematic review of hepatitis C virus epidemiology in 
Europe, Canada and Israel. Liver international : official journal of the 
International Association for the Study of the Liver 31 Suppl 2:30-60. 

24. Sievert W, Altraif I, Razavi HA, Abdo A, Ahmed EA, Alomair A, 
Amarapurkar D, Chen CH, Dou X, El Khayat H, Elshazly M, Esmat G, 
Guan R, Han KH, Koike K, Largen A, McCaughan G, Mogawer S, Monis A, 
Nawaz A, Piratvisuth T, Sanai FM, Sharara AI, Sibbel S, Sood A, Suh DJ, 
Wallace C, Young K, Negro F. 2011. A systematic review of hepatitis C virus 
epidemiology in Asia, Australia and Egypt. Liver international : official journal of 
the International Association for the Study of the Liver 31 Suppl 2:61-80. 

25. Mohamoud YA, Mumtaz GR, Riome S, Miller D, Abu-Raddad LJ. 2013. The 
epidemiology of hepatitis C virus in Egypt: a systematic review and data 
synthesis. BMC infectious diseases 13:288. 

26. Anez G, Rios M. 2013. Dengue in the United States of America: a worsening 
scenario? BioMed research international 2013:678645. 

27. 2002. The West Nile Virus epidemic. Child health alert 20:1. 
28. Hayes EB, Gubler DJ. 2006. West Nile virus: epidemiology and clinical features 

of an emerging epidemic in the United States. Annual review of medicine 57:181-
194. 



 

221 
 

29. de Vlas SJ, Cao WC, Richardus JH. 2009. Documenting the SARS epidemic in 
mainland China. Tropical medicine & international health : TM & IH 14 Suppl 
1:1-3. 

30. Feng D, de Vlas SJ, Fang LQ, Han XN, Zhao WJ, Sheng S, Yang H, Jia ZW, 
Richardus JH, Cao WC. 2009. The SARS epidemic in mainland China: bringing 
together all epidemiological data. Tropical medicine & international health : TM 
& IH 14 Suppl 1:4-13. 

31. Lee WM, Ahlquist P. 2003. Membrane synthesis, specific lipid requirements, 
and localized lipid composition changes associated with a positive-strand RNA 
virus RNA replication protein. J Virol 77:12819-12828. 

32. Jonczyk M, Pathak KB, Sharma M, Nagy PD. 2007. Exploiting alternative 
subcellular location for replication: tombusvirus replication switches to the 
endoplasmic reticulum in the absence of peroxisomes. Virology 362:320-330. 

33. Hsu NY, Ilnytska O, Belov G, Santiana M, Chen YH, Takvorian PM, Pau C, 
van der Schaar H, Kaushik-Basu N, Balla T, Cameron CE, Ehrenfeld E, van 
Kuppeveld FJ, Altan-Bonnet N. 2010. Viral reorganization of the secretory 
pathway generates distinct organelles for RNA replication. Cell 141:799-811. 

34. Welsch S, Miller S, Romero-Brey I, Merz A, Bleck CK, Walther P, Fuller 
SD, Antony C, Krijnse-Locker J, Bartenschlager R. 2009. Composition and 
three-dimensional architecture of the dengue virus replication and assembly sites. 
Cell Host Microbe 5:365-375. 

35. Knoops K, Kikkert M, Worm SH, Zevenhoven-Dobbe JC, van der Meer Y, 
Koster AJ, Mommaas AM, Snijder EJ. 2008. SARS-coronavirus replication is 
supported by a reticulovesicular network of modified endoplasmic reticulum. 
PLoS biology 6:e226. 

36. Venter PA, Krishna NK, Schneemann A. 2005. Capsid protein synthesis from 
replicating RNA directs specific packaging of the genome of a multipartite, 
positive-strand RNA virus. J Virol 79:6239-6248. 

37. Wang RY, Nagy PD. 2008. Tomato bushy stunt virus Co-Opts the RNA-Binding 
Function of a Host Metabolic Enzyme for Viral Genomic RNA Synthesis. Cell 
Host Microbe 3:178-187. 

38. Chen J, Ahlquist P. 2000. Brome mosaic virus polymerase-like protein 2a is 
directed to the endoplasmic reticulum by helicase-like viral protein 1a. J Virol 
74:4310-4318. 

39. Fernandez-Garcia MD, Mazzon M, Jacobs M, Amara A. 2009. Pathogenesis 
of flavivirus infections: using and abusing the host cell. Cell Host Microbe 5:318-
328. 

40. Fischl W, Bartenschlager R. 2011. Exploitation of cellular pathways by Dengue 
virus. Curr Opin Microbiol 14:470-475. 

41. Knoops K, Barcena M, Limpens RW, Koster AJ, Mommaas AM, Snijder EJ. 
2012. Ultrastructural characterization of arterivirus replication structures: 
reshaping the endoplasmic reticulum to accommodate viral RNA synthesis. J 
Virol 86:2474-2487. 

42. Froshauer S, Kartenbeck J, Helenius A. 1988. Alphavirus RNA replicase is 
located on the cytoplasmic surface of endosomes and lysosomes. J Cell Biol 
107:2075-2086. 



 

222 
 

43. Van Der Heijden MW, Carette JE, Reinhoud PJ, Haegi A, Bol JF. 2001. 
Alfalfa mosaic virus replicase proteins P1 and P2 interact and colocalize at the 
vacuolar membrane. J Virol 75:1879-1887. 

44. Ibrahim A, Hutchens HM, Berg RH, Loesch-Fries LS. 2012. Alfalfa mosaic 
virus replicase proteins, P1 and P2, localize to the tonoplast in the presence of 
virus RNA. Virology 433:449-461. 

45. Hagiwara Y, Komoda K, Yamanaka T, Tamai A, Meshi T, Funada R, 
Tsuchiya T, Naito S, Ishikawa M. 2003. Subcellular localization of host and 
viral proteins associated with tobamovirus RNA replication. EMBO J 22:344-
353. 

46. Miller DJ, Schwartz MD, Ahlquist P. 2001. Flock house virus RNA replicates 
on outer mitochondrial membranes in Drosophila cells. J Virol 75:11664-11676. 

47. Russo M, Martelli GP. 1982. Ultrastructure of turnip crinkle- and saguaro cactus 
virus-infected tissues. Virology 118:109-116. 

48. Weber-Lotfi F, Dietrich A, Russo M, Rubino L. 2002. Mitochondrial targeting 
and membrane anchoring of a viral replicase in plant and yeast cells. J Virol 
76:10485-10496. 

49. Pogany J, Nagy PD. 2008. Authentic replication and recombination of Tomato 
bushy stunt virus RNA in a cell-free extract from yeast. J Virol 82:5967-5980. 

50. Daum G. 1985. Lipids of mitochondria. Biochimica et biophysica acta 822:1-42. 
51. van Meer G, Voelker DR, Feigenson GW. 2008. Membrane lipids: where they 

are and how they behave. Nat Rev Mol Cell Biol 9:112-124. 
52. de Kroon AI, Dolis D, Mayer A, Lill R, de Kruijff B. 1997. Phospholipid 

composition of highly purified mitochondrial outer membranes of rat liver and 
Neurospora crassa. Is cardiolipin present in the mitochondrial outer membrane? 
Biochimica et biophysica acta 1325:108-116. 

53. Zinser E, Sperka-Gottlieb CD, Fasch EV, Kohlwein SD, Paltauf F, Daum G. 
1991. Phospholipid synthesis and lipid composition of subcellular membranes in 
the unicellular eukaryote Saccharomyces cerevisiae. Journal of bacteriology 
173:2026-2034. 

54. Vance JE, Steenbergen R. 2005. Metabolism and functions of 
phosphatidylserine. Progress in lipid research 44:207-234. 

55. Teissier E, Pecheur EI. 2007. Lipids as modulators of membrane fusion 
mediated by viral fusion proteins. European biophysics journal : EBJ 36:887-899. 

56. Marsh D. 2007. Lateral pressure profile, spontaneous curvature frustration, and 
the incorporation and conformation of proteins in membranes. Biophysical journal 
93:3884-3899. 

57. Schoggins JW, Randall G. 2013. Lipids in innate antiviral defense. Cell Host 
Microbe 14:379-385. 

58. Yeung T, Grinstein S. 2007. Lipid signaling and the modulation of surface 
charge during phagocytosis. Immunological reviews 219:17-36. 

59. Robbe K, Otto-Bruc A, Chardin P, Antonny B. 2003. Dissociation of GDP 
dissociation inhibitor and membrane translocation are required for efficient 
activation of Rac by the Dbl homology-pleckstrin homology region of Tiam. The 
Journal of biological chemistry 278:4756-4762. 



 

223 
 

60. Igarashi K, Kaneda M, Yamaji A, Saido TC, Kikkawa U, Ono Y, Inoue K, 
Umeda M. 1995. A novel phosphatidylserine-binding peptide motif defined by an 
anti-idiotypic monoclonal antibody. Localization of phosphatidylserine-specific 
binding sites on protein kinase C and phosphatidylserine decarboxylase. The 
Journal of biological chemistry 270:29075-29078. 

61. Yu JW, Lemmon MA. 2001. All phox homology (PX) domains from 
Saccharomyces cerevisiae specifically recognize phosphatidylinositol 3-
phosphate. The Journal of biological chemistry 276:44179-44184. 

62. Nchoutmboube JA, Viktorova EG, Scott AJ, Ford LA, Pei Z, Watkins PA, 
Ernst RK, Belov GA. 2013. Increased long chain acyl-Coa synthetase activity 
and fatty acid import is linked to membrane synthesis for development of 
picornavirus replication organelles. PLoS Pathog 9:e1003401. 

63. Wilsky S, Sobotta K, Wiesener N, Pilas J, Althof N, Munder T, Wutzler P, 
Henke A. 2012. Inhibition of fatty acid synthase by amentoflavone reduces 
coxsackievirus B3 replication. Archives of virology 157:259-269. 

64. Heaton NS, Perera R, Berger KL, Khadka S, Lacount DJ, Kuhn RJ, Randall 
G. 2010. Dengue virus nonstructural protein 3 redistributes fatty acid synthase to 
sites of viral replication and increases cellular fatty acid synthesis. Proc Natl Acad 
Sci U S A 107:17345-17350. 

65. Martin-Acebes MA, Blazquez AB, Jimenez de Oya N, Escribano-Romero E, 
Saiz JC. 2011. West Nile virus replication requires fatty acid synthesis but is 
independent on phosphatidylinositol-4-phosphate lipids. PloS one 6:e24970. 

66. Diamond DL, Syder AJ, Jacobs JM, Sorensen CM, Walters KA, Proll SC, 
McDermott JE, Gritsenko MA, Zhang Q, Zhao R, Metz TO, Camp DG, 2nd, 
Waters KM, Smith RD, Rice CM, Katze MG. 2010. Temporal proteome and 
lipidome profiles reveal hepatitis C virus-associated reprogramming of 
hepatocellular metabolism and bioenergetics. PLoS pathogens 6:e1000719. 

67. Perera R, Riley C, Isaac G, Hopf-Jannasch AS, Moore RJ, Weitz KW, Pasa-
Tolic L, Metz TO, Adamec J, Kuhn RJ. 2012. Dengue virus infection perturbs 
lipid homeostasis in infected mosquito cells. PLoS pathogens 8:e1002584. 

68. Thibaut HJ, van der Schaar HM, Lanke KH, Verbeken E, Andrews M, 
Leyssen P, Neyts J, van Kuppeveld FJ. 2013. Fitness and virulence of a 
coxsackievirus mutant that can circumnavigate the need for PI4KIIIbeta. Journal 
of virology. 

69. van der Schaar HM, van der Linden L, Lanke KH, Strating JR, Purstinger 
G, de Vries E, de Haan CA, Neyts J, van Kuppeveld FJ. 2012. Coxsackievirus 
mutants that can bypass host factor PI4KIIIbeta and the need for high levels of 
PI4P lipids for replication. Cell research 22:1576-1592. 

70. Berger KL, Kelly SM, Jordan TX, Tartell MA, Randall G. 2011. Hepatitis C 
virus stimulates the phosphatidylinositol 4-kinase III alpha-dependent 
phosphatidylinositol 4-phosphate production that is essential for its replication. J 
Virol 85:8870-8883. 

71. Mackenzie JM, Khromykh AA, Parton RG. 2007. Cholesterol manipulation by 
West Nile virus perturbs the cellular immune response. Cell Host Microbe 2:229-
239. 



 

224 
 

72. Ilnytska O, Santiana M, Hsu NY, Du WL, Chen YH, Viktorova EG, Belov G, 
Brinker A, Storch J, Moore C, Dixon JL, Altan-Bonnet N. 2013. Enteroviruses 
harness the cellular endocytic machinery to remodel the host cell cholesterol 
landscape for effective viral replication. Cell Host Microbe 14:281-293. 

73. Nagy PD, Pogany J. 2008. Multiple roles of viral replication proteins in plant 
RNA virus replication. Methods Mol Biol 451:55-68. 

74. Nagy PD, Wang RY, Pogany J, Hafren A, Makinen K. 2011. Emerging picture 
of host chaperone and cyclophilin roles in RNA virus replication. Virology 
411:374-382. 

75. Li Z, Nagy PD. 2011. Diverse roles of host RNA binding proteins in RNA virus 
replication. RNA Biol 8:305-315. 

76. den Boon JA, Diaz A, Ahlquist P. 2010. Cytoplasmic viral replication 
complexes. Cell Host Microbe 8:77-85. 

77. Salonen A, Ahola T, Kaariainen L. 2005. Viral RNA replication in association 
with cellular membranes. Curr Top Microbiol Immunol 285:139-173. 

78. Miller S, Krijnse-Locker J. 2008. Modification of intracellular membrane 
structures for virus replication. Nat Rev Microbiol 6:363-374. 

79. Nagy PD, Pogany J. 2012. The dependence of viral RNA replication on co-opted 
host factors. Nature Reviews Microbiology 10:137-149. 

80. Bartenschlager R, Cosset FL, Lohmann V. 2010. Hepatitis C virus replication 
cycle. Journal of Hepatology 53:583-585. 

81. Barajas D, Jiang Y, Nagy PD. 2009. A unique role for the host ESCRT proteins 
in replication of Tomato bushy stunt virus. PLoS Pathog 5:e1000705. 

82. Reiss S, Rebhan I, Backes P, Romero-Brey I, Erfle H, Matula P, Kaderali L, 
Poenisch M, Blankenburg H, Hiet MS, Longerich T, Diehl S, Ramirez F, 
Balla T, Rohr K, Kaul A, Buhler S, Pepperkok R, Lengauer T, Albrecht M, 
Eils R, Schirmacher P, Lohmann V, Bartenschlager R. 2011. Recruitment and 
activation of a lipid kinase by hepatitis C virus NS5A is essential for integrity of 
the membranous replication compartment. Cell Host Microbe 9:32-45. 

83. Sasvari Z, Nagy PD. 2010. Making of viral replication organelles by remodeling 
interior membranes. Viruses 2:2436-2442. 

84. Diaz A, Wang X, Ahlquist P. 2010. Membrane-shaping host reticulon proteins 
play crucial roles in viral RNA replication compartment formation and function. 
Proc Natl Acad Sci U S A. 

85. Neuvonen M, Kazlauskas A, Martikainen M, Hinkkanen A, Ahola T, Saksela 
K. 2011. SH3 domain-mediated recruitment of host cell amphiphysins by 
alphavirus nsP3 promotes viral RNA replication. PLoS Pathog 7:e1002383. 

86. Barajas D, Nagy PD. 2010. Ubiquitination of tombusvirus p33 replication 
protein plays a role in virus replication and binding to the host Vps23p ESCRT 
protein. Virology 397:358-368. 

87. Castorena KM, Stapleford KA, Miller DJ. 2010. Complementary 
transcriptomic, lipidomic, and targeted functional genetic analyses in cultured 
Drosophila cells highlight the role of glycerophospholipid metabolism in Flock 
House virus RNA replication. BMC Genomics 11:183. 



 

225 
 

88. Kapadia SB, Chisari FV. 2005. Hepatitis C virus RNA replication is regulated 
by host geranylgeranylation and fatty acids. Proc Natl Acad Sci U S A 102:2561-
2566. 

89. Sharma M, Sasvari Z, Nagy PD. 2011. Inhibition of phospholipid biosynthesis 
decreases the activity of the tombusvirus replicase and alters the subcellular 
localization of replication proteins. Virology 415:141-152. 

90. Sharma M, Sasvari Z, Nagy PD. 2010. Inhibition of sterol biosynthesis reduces 
tombusvirus replication in yeast and plants. J Virol 84:2270-2281. 

91. Nagy PD, Pogany J. 2006. Yeast as a model host to dissect functions of viral and 
host factors in tombusvirus replication. Virology 344:211-220. 

92. Panaviene Z, Panavas T, Serva S, Nagy PD. 2004. Purification of the cucumber 
necrosis virus replicase from yeast cells: role of coexpressed viral RNA in 
stimulation of replicase activity. J Virol 78:8254-8263. 

93. Serviene E, Shapka N, Cheng CP, Panavas T, Phuangrat B, Baker J, Nagy 
PD. 2005. Genome-wide screen identifies host genes affecting viral RNA 
recombination. Proc Natl Acad Sci U S A 102:10545-10550. 

94. Serviene E, Jiang Y, Cheng CP, Baker J, Nagy PD. 2006. Screening of the 
yeast yTHC collection identifies essential host factors affecting tombusvirus RNA 
recombination. J Virol 80:1231-1241. 

95. Jiang Y, Serviene E, Gal J, Panavas T, Nagy PD. 2006. Identification of 
essential host factors affecting tombusvirus RNA replication based on the yeast 
Tet promoters Hughes Collection. J Virol 80:7394-7404. 

96. Shah Nawaz-Ul-Rehman M, Martinez-Ochoa N, Pascal H, Sasvari Z, Herbst 
C, Xu K, Baker J, Sharma M, Herbst A, Nagy PD. 2012. Proteome-wide 
overexpression of host proteins for identification of factors affecting tombusvirus 
RNA replication: an inhibitory role of protein kinase C. J Virol 86:9384-9395. 

97. Li Z, Pogany J, Panavas T, Xu K, Esposito AM, Kinzy TG, Nagy PD. 2009. 
Translation elongation factor 1A is a component of the tombusvirus replicase 
complex and affects the stability of the p33 replication co-factor. Virology 
385:245-260. 

98. Serva S, Nagy PD. 2006. Proteomics analysis of the tombusvirus replicase: 
Hsp70 molecular chaperone is associated with the replicase and enhances viral 
RNA replication. J Virol 80:2162-2169. 

99. Li Z, Barajas D, Panavas T, Herbst DA, Nagy PD. 2008. Cdc34p ubiquitin-
conjugating enzyme is a component of the tombusvirus replicase complex and 
ubiquitinates p33 replication protein. J Virol 82:6911-6926. 

100. Wang RY, Stork J, Pogany J, Nagy PD. 2009. A temperature sensitive mutant 
of heat shock protein 70 reveals an essential role during the early steps of 
tombusvirus replication. Virology 394:28-38. 

101. Wang RY, Stork J, Nagy PD. 2009. A key role for heat shock protein 70 in the 
localization and insertion of tombusvirus replication proteins to intracellular 
membranes. J Virol 83:3276-3287. 

102. Pogany J, Stork J, Li Z, Nagy PD. 2008. In vitro assembly of the Tomato bushy 
stunt virus replicase requires the host Heat shock protein 70. Proc Natl Acad Sci 
U S A 105:19956-19961. 



 

226 
 

103. Li Z, Pogany J, Tupman S, Esposito AM, Kinzy TG, Nagy PD. 2010. 
Translation elongation factor 1A facilitates the assembly of the tombusvirus 
replicase and stimulates minus-strand synthesis. PLoS Pathog 6:e1001175. 

104. Sasvari Z, Izotova L, Kinzy TG, Nagy PD. 2011. Synergistic Roles of 
Eukaryotic Translation Elongation Factors 1Bgamma and 1A in Stimulation of 
Tombusvirus Minus-Strand Synthesis. PLoS Pathog 7:e1002438. 

105. Huang TS, Nagy PD. 2011. Direct inhibition of tombusvirus plus-strand RNA 
synthesis by a dominant negative mutant of a host metabolic enzyme, 
glyceraldehyde-3-phosphate dehydrogenase, in yeast and plants. J Virol 85:9090-
9102. 

106. Kovalev N, Pogany J, Nagy PD. 2012. A Co-Opted DEAD-Box RNA Helicase 
Enhances Tombusvirus Plus-Strand Synthesis. PLoS Pathog 8:e1002537. 

107. Pathak KB, Sasvari Z, Nagy PD. 2008. The host Pex19p plays a role in 
peroxisomal localization of tombusvirus replication proteins. Virology 379:294-
305. 

108. Qin J, Barajas D, Nagy PD. 2012. An inhibitory function of WW domain-
containing host proteins in RNA virus replication. Virology 426:106-119. 

109. Lin JY, Mendu V, Pogany J, Qin J, Nagy PD. 2012. The TPR Domain in the 
Host Cyp40-like Cyclophilin Binds to the Viral Replication Protein and Inhibits 
the Assembly of the Tombusviral Replicase. PLoS Pathog 8:e1002491. 

110. Mendu V, Chiu M, Barajas D, Li Z, Nagy PD. 2010. Cpr1 cyclophilin and Ess1 
parvulin prolyl isomerases interact with the tombusvirus replication protein and 
inhibit viral replication in yeast model host. Virology 406:342-351. 

111. Barajas D, Li Z, Nagy PD. 2009. The Nedd4-Type Rsp5p Ubiquitin Ligase 
Inhibits Tombusvirus Replication by Regulating Degradation of the p92 
Replication Protein and Decreasing the Activity of the Tombusvirus Replicase. J 
Virol 83:11751-11764. 

112. Jiang Y, Li Z, Nagy PD. 2010. Nucleolin/Nsr1p binds to the 3' noncoding region 
of the tombusvirus RNA and inhibits replication. Virology 396:10-20. 

113. Navarro B, Russo M, Pantaleo V, Rubino L. 2006. Cytological analysis of 
Saccharomyces cerevisiae cells supporting cymbidium ringspot virus defective 
interfering RNA replication. J Gen Virol 87:705-714. 

114. Burgyan J, Rubino L, Russo M. 1996. The 5'-terminal region of a tombusvirus 
genome determines the origin of multivesicular bodies. J Gen Virol 77 ( Pt 
8):1967-1974. 

115. Chakrabarty R, Banerjee R, Chung SM, Farman M, Citovsky V, Hogenhout 
SA, Tzfira T, Goodin M. 2007. PSITE vectors for stable integration or transient 
expression of autofluorescent protein fusions in plants: probing Nicotiana 
benthamiana-virus interactions. Mol Plant Microbe Interact 20:740-750. 

116. Waters MG, Blobel G. 1986. Secretory protein translocation in a yeast cell-free 
system can occur posttranslationally and requires ATP hydrolysis. J Cell Biol 
102:1543-1550. 

117. Meisinger C, Sommer T, Pfanner N. 2000. Purification of Saccharomcyes 
cerevisiae mitochondria devoid of microsomal and cytosolic contaminations. Anal 
Biochem 287:339-342. 



 

227 
 

118. Rieder SE, Emr SD. 2001. Isolation of subcellular fractions from the yeast 
Saccharomyces cerevisiae. Curr Protoc Cell Biol Chapter 3:Unit 3 8. 

119. Rajendran KS, Nagy PD. 2004. Interaction between the replicase proteins of 
Tomato bushy stunt virus in vitro and in vivo. Virology 326:250-261. 

120. Durr M, Escobar-Henriques M, Merz S, Geimer S, Langer T, Westermann 
B. 2006. Nonredundant roles of mitochondria-associated F-box proteins Mfb1 and 
Mdm30 in maintenance of mitochondrial morphology in yeast. Mol Biol Cell 
17:3745-3755. 

121. Nowikovsky K, Froschauer EM, Zsurka G, Samaj J, Reipert S, Kolisek M, 
Wiesenberger G, Schweyen RJ. 2004. The LETM1/YOL027 gene family 
encodes a factor of the mitochondrial K+ homeostasis with a potential role in the 
Wolf-Hirschhorn syndrome. J Biol Chem 279:30307-30315. 

122. Quesada I, Verdugo P. 2005. InsP3 signaling induces pulse-modulated Ca2+ 
signals in the nucleus of airway epithelial ciliated cells. Biophys J 88:3946-3953. 

123. Rajendran KS, Nagy PD. 2003. Characterization of the RNA-binding domains 
in the replicase proteins of tomato bushy stunt virus. J Virol 77:9244-9258. 

124. Russo M, Burgyan J, Martelli GP. 1994. Molecular biology of tombusviridae. 
Adv Virus Res 44:381-428. 

125. Hofmann L, Saunier R, Cossard R, Esposito M, Rinaldi T, Delahodde A. 
2009. A nonproteolytic proteasome activity controls organelle fission in yeast. J 
Cell Sci 122:3673-3683. 

126. Nagy PD. 2011. The roles of host factors in tombusvirus RNA recombination. 
Adv Virus Res 81:63-84. 

127. Jaag HM, Lu Q, Schmitt ME, Nagy PD. 2011. Role of RNase MRP in viral 
RNA degradation and RNA recombination. J Virol 85:243-253. 

128. Jaag HM, Pogany J, Nagy PD. 2010. A host Ca2+/Mn2+ ion pump is a factor in 
the emergence of viral RNA recombinants. Cell Host Microbe 7:74-81. 

129. Jaag HM, Nagy PD. 2010. The combined effect of environmental and host 
factors on the emergence of viral RNA recombinants. PLoS Pathog 6:e1001156. 

130. Cheng CP, Nagy PD. 2003. Mechanism of RNA recombination in carmo- and 
tombusviruses: evidence for template switching by the RNA-dependent RNA 
polymerase in vitro. J Virol 77:12033-12047. 

131. Koenig R, Lesemann DE, Pfeilstetter E. 2009. New isolates of carnation Italian 
ringspot virus differ from the original one by having replication-associated 
proteins with a typical tombusvirus-like N-terminus and by inducing peroxisome- 
rather than mitochondrion-derived multivesicular bodies. Archives of virology 
154:1695-1698. 

132. Laliberte JF, Sanfacon H. 2010. Cellular remodeling during plant virus 
infection. Annu Rev Phytopathol 48:69-91. 

133. Diamond MS, Gale M, Jr. 2012. Cell-intrinsic innate immune control of West 
Nile virus infection. Trends Immunol 33:522-530. 

134. Aoshi T, Koyama S, Kobiyama K, Akira S, Ishii KJ. 2011. Innate and adaptive 
immune responses to viral infection and vaccination. Curr Opin Virol 1:226-232. 

135. Jensen S, Thomsen AR. 2012. Sensing of RNA viruses: a review of innate 
immune receptors involved in recognizing RNA virus invasion. J Virol 86:2900-
2910. 



 

228 
 

136. Ding SW. 2010. RNA-based antiviral immunity. Nat Rev Immunol 10:632-644. 
137. Diamond MS, Farzan M. 2013. The broad-spectrum antiviral functions of IFIT 

and IFITM proteins. Nat Rev Immunol 13:46-57. 
138. Yasunaga A, Hanna SL, Li J, Cho H, Rose PP, Spiridigliozzi A, Gold B, 

Diamond MS, Cherry S. 2014. Genome-Wide RNAi Screen Identifies Broadly-
Acting Host Factors That Inhibit Arbovirus Infection. PLoS Pathog 10:e1003914. 

139. Xu J, Cherry S. 2014. Viruses and antiviral immunity in Drosophila. Dev Comp 
Immunol 42:67-84. 

140. Cherry S, Doukas T, Armknecht S, Whelan S, Wang H, Sarnow P, Perrimon 
N. 2005. Genome-wide RNAi screen reveals a specific sensitivity of IRES-
containing RNA viruses to host translation inhibition. Genes Dev 19:445-452. 

141. Kushner DB, Lindenbach BD, Grdzelishvili VZ, Noueiry AO, Paul SM, 
Ahlquist P. 2003. Systematic, genome-wide identification of host genes affecting 
replication of a positive-strand RNA virus. Proc Natl Acad Sci U S A 100:15764-
15769. 

142. Krishnan MN, Ng A, Sukumaran B, Gilfoy FD, Uchil PD, Sultana H, Brass 
AL, Adametz R, Tsui M, Qian F, Montgomery RR, Lev S, Mason PW, Koski 
RA, Elledge SJ, Xavier RJ, Agaisse H, Fikrig E. 2008. RNA interference 
screen for human genes associated with West Nile virus infection. Nature. 

143. Li Q, Brass AL, Ng A, Hu Z, Xavier RJ, Liang TJ, Elledge SJ. 2009. A 
genome-wide genetic screen for host factors required for hepatitis C virus 
propagation. Proc Natl Acad Sci U S A 106:16410-16415. 

144. Randall G, Panis M, Cooper JD, Tellinghuisen TL, Sukhodolets KE, Pfeffer 
S, Landthaler M, Landgraf P, Kan S, Lindenbach BD, Chien M, Weir DB, 
Russo JJ, Ju J, Brownstein MJ, Sheridan R, Sander C, Zavolan M, Tuschl T, 
Rice CM. 2007. Cellular cofactors affecting hepatitis C virus infection and 
replication. Proc Natl Acad Sci U S A 104:12884-12889. 

145. Sessions OM, Barrows NJ, Souza-Neto JA, Robinson TJ, Hershey CL, 
Rodgers MA, Ramirez JL, Dimopoulos G, Yang PL, Pearson JL, Garcia-
Blanco MA. 2009. Discovery of insect and human dengue virus host factors. 
Nature 458:1047-1050. 

146. Tai AW, Benita Y, Peng LF, Kim SS, Sakamoto N, Xavier RJ, Chung RT. 
2009. A functional genomic screen identifies cellular cofactors of hepatitis C 
virus replication. Cell Host Microbe 5:298-307. 

147. Nawaz-Ul-Rehman MS, Reddisiva Prasanth K, Baker J, Nagy PD. 2012. 
Yeast screens for host factors in positive-strand RNA virus replication based on a 
library of temperature-sensitive mutants. Methods. 

148. Nagy PD, Pogany J. 2010. Global genomics and proteomics approaches to 
identify host factors as targets to induce resistance against Tomato bushy stunt 
virus. Adv Virus Res 76:123-177. 

149. Xu K, Nagy PD. 2010. Dissecting Virus-Plant Interactions Through Proteomics 
Approaches. Current Proteomics 7:316-327. 

150. Lin JY, Nagy PD. 2013. Identification of Novel Host Factors via Conserved 
Domain Search: Cns1 Cochaperone Is a Novel Restriction Factor of Tombusvirus 
Replication in Yeast. J Virol 87:12600-12610. 



 

229 
 

151. Kovalev N, Nagy PD. 2013. Cyclophilin a binds to the viral RNA and replication 
proteins, resulting in inhibition of tombusviral replicase assembly. J Virol 
87:13330-13342. 

152. Nagy PD, Barajas D, Pogany J. 2012. Host factors with regulatory roles in 
tombusvirus replication. Curr Opin Virol. 

153. Huang TS, Nagy PD. 2011. Direct inhibition of tombusvirus plus-strand RNA 
synthesis by a dominant-negative mutant of a host metabolic enzyme, GAPDH, in 
yeast and plants. J Virol. 

154. Kovalev N, Barajas D, Nagy PD. 2012. Similar roles for yeast Dbp2 and 
Arabidopsis RH20 DEAD-box RNA helicases to Ded1 helicase in tombusvirus 
plus-strand synthesis. Virology 432:470-484. 

155. D'Andrea LD, Regan L. 2003. TPR proteins: the versatile helix. Trends 
Biochem Sci 28:655-662. 

156. Allan RK, Ratajczak T. 2011. Versatile TPR domains accommodate different 
modes of target protein recognition and function. Cell Stress Chaperones 16:353-
367. 

157. Haslbeck V, Eckl JM, Kaiser CJ, Papsdorf K, Hessling M, Richter K. 2013. 
Chaperone-interacting TPR proteins in Caenorhabditis elegans. J Mol Biol 
425:2922-2939. 

158. Xiol J, Cora E, Koglgruber R, Chuma S, Subramanian S, Hosokawa M, 
Reuter M, Yang Z, Berninger P, Palencia A, Benes V, Penninger J, 
Sachidanandam R, Pillai RS. 2012. A role for Fkbp6 and the chaperone 
machinery in piRNA amplification and transposon silencing. Mol Cell 47:970-
979. 

159. Stawowczyk M, Van Scoy S, Kumar KP, Reich NC. 2011. The interferon 
stimulated gene 54 promotes apoptosis. J Biol Chem 286:7257-7266. 

160. Cerveny L, Straskova A, Dankova V, Hartlova A, Ceckova M, Staud F, 
Stulik J. 2013. Tetratricopeptide repeat motifs in the world of bacterial 
pathogens: role in virulence mechanisms. Infect Immun 81:629-635. 

161. Assimon VA, Gillies AT, Rauch JN, Gestwicki JE. 2013. Hsp70 protein 
complexes as drug targets. Curr Pharm Des 19:404-417. 

162. Nordling E, Abraham-Nordling M. 2012. Colonic amyloidosis, computational 
analysis of the major amyloidogenic species, Serum Amyloid A. Comput Biol 
Chem 39:29-34. 

163. Adams CJ, Pike AC, Maniam S, Sharpe TD, Coutts AS, Knapp S, La 
Thangue NB, Bullock AN. 2012. The p53 cofactor Strap exhibits an unexpected 
TPR motif and oligonucleotide-binding (OB)-fold structure. Proc Natl Acad Sci U 
S A 109:3778-3783. 

164. Banasavadi-Siddegowda YK, Mai J, Fan Y, Bhattacharya S, Giovannucci 
DR, Sanchez ER, Fischer G, Wang X. 2011. FKBP38 peptidylprolyl isomerase 
promotes the folding of cystic fibrosis transmembrane conductance regulator in 
the endoplasmic reticulum. J Biol Chem 286:43071-43080. 

165. Kubota H, Yamamoto S, Itoh E, Abe Y, Nakamura A, Izumi Y, Okada H, 
Iida M, Nanjo H, Itoh H, Yamamoto Y. 2010. Increased expression of co-
chaperone HOP with HSP90 and HSC70 and complex formation in human 
colonic carcinoma. Cell Stress Chaperones 15:1003-1011. 



 

230 
 

166. Bourai M, Lucas-Hourani M, Gad HH, Drosten C, Jacob Y, Tafforeau L, 
Cassonnet P, Jones LM, Judith D, Couderc T, Lecuit M, Andre P, 
Kummerer BM, Lotteau V, Despres P, Tangy F, Vidalain PO. 2012. Mapping 
of Chikungunya virus interactions with host proteins identified nsP2 as a highly 
connected viral component. J Virol 86:3121-3134. 

167. Fensterl V, Wetzel JL, Ramachandran S, Ogino T, Stohlman SA, Bergmann 
CC, Diamond MS, Virgin HW, Sen GC. 2012. Interferon-induced Ifit2/ISG54 
protects mice from lethal VSV neuropathogenesis. PLoS Pathog 8:e1002712. 

168. Miettinen JJ, Matikainen S, Nyman TA. 2012. Global secretome 
characterization of herpes simplex virus 1-infected human primary macrophages. 
J Virol 86:12770-12778. 

169. Danquah JO, Botchway S, Jeshtadi A, King LA. 2012. Direct interaction of 
baculovirus capsid proteins VP39 and EXON0 with kinesin-1 in insect cells 
determined by fluorescence resonance energy transfer-fluorescence lifetime 
imaging microscopy. J Virol 86:844-853. 

170. Jeshtadi A, Burgos P, Stubbs CD, Parker AW, King LA, Skinner MA, 
Botchway SW. 2010. Interaction of poxvirus intracellular mature virion proteins 
with the TPR domain of kinesin light chain in live infected cells revealed by two-
photon-induced fluorescence resonance energy transfer fluorescence lifetime 
imaging microscopy. J Virol 84:12886-12894. 

171. Daffis S, Szretter KJ, Schriewer J, Li J, Youn S, Errett J, Lin TY, Schneller 
S, Zust R, Dong H, Thiel V, Sen GC, Fensterl V, Klimstra WB, Pierson TC, 
Buller RM, Gale M, Jr., Shi PY, Diamond MS. 2010. 2'-O methylation of the 
viral mRNA cap evades host restriction by IFIT family members. Nature 
468:452-456. 

172. Iki T, Yoshikawa M, Meshi T, Ishikawa M. 2012. Cyclophilin 40 facilitates 
HSP90-mediated RISC assembly in plants. EMBO J 31:267-278. 

173. Liu XY, Chen W, Wei B, Shan YF, Wang C. 2011. IFN-induced TPR protein 
IFIT3 potentiates antiviral signaling by bridging MAVS and TBK1. J Immunol 
187:2559-2568. 

174. Pichlmair A, Lassnig C, Eberle CA, Gorna MW, Baumann CL, Burkard TR, 
Burckstummer T, Stefanovic A, Krieger S, Bennett KL, Rulicke T, Weber F, 
Colinge J, Muller M, Superti-Furga G. 2011. IFIT1 is an antiviral protein that 
recognizes 5'-triphosphate RNA. Nat Immunol 12:624-630. 

175. Flom G, Behal RH, Rosen L, Cole DG, Johnson JL. 2007. Definition of the 
minimal fragments of Sti1 required for dimerization, interaction with Hsp70 and 
Hsp90 and in vivo functions. Biochem J 404:159-167. 

176. Wegele H, Haslbeck M, Reinstein J, Buchner J. 2003. Sti1 is a novel activator 
of the Ssa proteins. J Biol Chem 278:25970-25976. 

177. Schmid AB, Lagleder S, Grawert MA, Rohl A, Hagn F, Wandinger SK, Cox 
MB, Demmer O, Richter K, Groll M, Kessler H, Buchner J. 2012. The 
architecture of functional modules in the Hsp90 co-chaperone Sti1/Hop. EMBO J 
31:1506-1517. 

178. Odunuga OO, Hornby JA, Bies C, Zimmermann R, Pugh DJ, Blatch GL. 
2003. Tetratricopeptide repeat motif-mediated Hsc70-mSTI1 interaction. 



 

231 
 

Molecular characterization of the critical contacts for successful binding and 
specificity. J Biol Chem 278:6896-6904. 

179. Reidy M, Masison DC. 2010. Sti1 regulation of Hsp70 and Hsp90 is critical for 
curing of Saccharomyces cerevisiae [PSI+] prions by Hsp104. Molecular and 
cellular biology 30:3542-3552. 

180. Song Y, Masison DC. 2005. Independent regulation of Hsp70 and Hsp90 
chaperones by Hsp70/Hsp90-organizing protein Sti1 (Hop1). J Biol Chem 
280:34178-34185. 

181. Krishna P, Gloor G. 2001. The Hsp90 family of proteins in Arabidopsis thaliana. 
Cell Stress Chaperones 6:238-246. 

182. Pogany J, Panavas, T., Serviene, E., Nawaz-Ul-Rehman, MS., and Nagy, PD. 
2010. A high-throughput approach for studying virus replication in yeast. Current 
Protocols in Microbiology 19:16J.11.11-16J.11.15. 

183. Jaag HM, Nagy PD. 2009. Silencing of Nicotiana benthamiana Xrn4p 
exoribonuclease promotes tombusvirus RNA accumulation and recombination. 
Virology 386:344-352. 

184. Iyer K, Burkle L, Auerbach D, Thaminy S, Dinkel M, Engels K, Stagljar I. 
2005. Utilizing the split-ubiquitin membrane yeast two-hybrid system to identify 
protein-protein interactions of integral membrane proteins. Sci STKE 2005:pl3. 

185. Kittanakom S, Chuk M, Wong V, Snyder J, Edmonds D, Lydakis A, Zhang 
Z, Auerbach D, Stagljar I. 2009. Analysis of membrane protein complexes 
using the split-ubiquitin membrane yeast two-hybrid (MYTH) system. Methods 
Mol Biol 548:247-271. 

186. Flom G, Weekes J, Williams JJ, Johnson JL. 2006. Effect of mutation of the 
tetratricopeptide repeat and asparatate-proline 2 domains of Sti1 on Hsp90 
signaling and interaction in Saccharomyces cerevisiae. Genetics 172:41-51. 

187. Pathak KB, Pogany J, Nagy PD. 2011. Non-template functions of the viral RNA 
in plant RNA virus replication. Curr Opin Virol 1:332-338. 

188. Zhang Z, Quick MK, Kanelakis KC, Gijzen M, Krishna P. 2003. 
Characterization of a plant homolog of hop, a cochaperone of hsp90. Plant 
Physiol 131:525-535. 

189. Dufresne PJ, Thivierge K, Cotton S, Beauchemin C, Ide C, Ubalijoro E, 
Laliberte JF, Fortin MG. 2008. Heat shock 70 protein interaction with Turnip 
mosaic virus RNA-dependent RNA polymerase within virus-induced membrane 
vesicles. Virology 374:217-227. 

190. Kampmueller KM, Miller DJ. 2005. The cellular chaperone heat shock protein 
90 facilitates Flock House virus RNA replication in Drosophila cells. J Virol 
79:6827-6837. 

191. Mayer MP. 2005. Recruitment of Hsp70 chaperones: a crucial part of viral 
survival strategies. Rev Physiol Biochem Pharmacol 153:1-46. 

192. Okamoto T, Nishimura Y, Ichimura T, Suzuki K, Miyamura T, Suzuki T, 
Moriishi K, Matsuura Y. 2006. Hepatitis C virus RNA replication is regulated 
by FKBP8 and Hsp90. Embo J 25:5015-5025. 

193. Tomita Y, Mizuno T, Diez J, Naito S, Ahlquist P, Ishikawa M. 2003. Mutation 
of host DnaJ homolog inhibits brome mosaic virus negative-strand RNA 
synthesis. J Virol 77:2990-2997. 



 

232 
 

194. Weeks SA, Miller DJ. 2008. The heat shock protein 70 cochaperone YDJ1 is 
required for efficient membrane-specific flock house virus RNA replication 
complex assembly and function in Saccharomyces cerevisiae. J Virol 82:2004-
2012. 

195. Weeks SA, Shield WP, Sahi C, Craig EA, Rospert S, Miller DJ. 2010. A 
targeted analysis of cellular chaperones reveals contrasting roles for heat shock 
protein 70 in flock house virus RNA replication. J Virol 84:330-339. 

196. Taipale M, Jarosz DF, Lindquist S. 2010. HSP90 at the hub of protein 
homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11:515-528. 

197. Mayer MP. 2010. Gymnastics of molecular chaperones. Mol Cell 39:321-331. 
198. Kampinga HH, Craig EA. 2010. The HSP70 chaperone machinery: J proteins as 

drivers of functional specificity. Nat Rev Mol Cell Biol 11:579-592. 
199. Fellerer C, Schweiger R, Schongruber K, Soll J, Schwenkert S. 2011. 

Cytosolic HSP90 cochaperones HOP and FKBP interact with freshly synthesized 
chloroplast preproteins of Arabidopsis. Mol Plant 4:1133-1145. 

200. Bhangoo MK, Tzankov S, Fan AC, Dejgaard K, Thomas DY, Young JC. 
2007. Multiple 40-kDa heat-shock protein chaperones function in Tom70-
dependent mitochondrial import. Mol Biol Cell 18:3414-3428. 

201. Young JC, Hoogenraad NJ, Hartl FU. 2003. Molecular chaperones Hsp90 and 
Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 
112:41-50. 

202. Monkewich S, Lin HX, Fabian MR, Xu W, Na H, Ray D, Chernysheva OA, 
Nagy PD, White KA. 2005. The p92 polymerase coding region contains an 
internal RNA element required at an early step in Tombusvirus genome 
replication. J Virol 79:4848-4858. 

203. Pogany J, Nagy PD. 2012. p33-Independent Activation of a Truncated p92 RNA-
Dependent RNA Polymerase of Tomato Bushy Stunt Virus in Yeast Cell-Free 
Extract. J Virol 86:12025-12038. 

204. Panaviene Z, Baker JM, Nagy PD. 2003. The overlapping RNA-binding 
domains of p33 and p92 replicase proteins are essential for tombusvirus 
replication. Virology 308:191-205. 

205. Pathak KB, Jiang Z, Ochanine V, Sharma M, Pogany J, Nagy PD. 2013. 
Characterization of dominant-negative and temperature-sensitive mutants of 
tombusvirus replication proteins affecting replicase assembly. Virology 437:48-
61. 

206. Lee CT, Graf C, Mayer FJ, Richter SM, Mayer MP. 2012. Dynamics of the 
regulation of Hsp90 by the co-chaperone Sti1. EMBO J 31:1518-1528. 

207. Wegele H, Wandinger SK, Schmid AB, Reinstein J, Buchner J. 2006. 
Substrate transfer from the chaperone Hsp70 to Hsp90. J Mol Biol 356:802-811. 

208. Mine A, Okuno T. 2012. Composition of plant virus RNA replicase complexes. 
Curr Opin Virol 2:669-675. 

209. Chen L, Hamada S, Fujiwara M, Zhu T, Thao NP, Wong HL, Krishna P, 
Ueda T, Kaku H, Shibuya N, Kawasaki T, Shimamoto K. 2010. The Hop/Sti1-
Hsp90 chaperone complex facilitates the maturation and transport of a PAMP 
receptor in rice innate immunity. Cell Host Microbe 7:185-196. 



 

233 
 

210. Jones G, Song Y, Chung S, Masison DC. 2004. Propagation of Saccharomyces 
cerevisiae [PSI+] prion is impaired by factors that regulate Hsp70 substrate 
binding. Molecular and cellular biology 24:3928-3937. 

211. Honore B, Leffers H, Madsen P, Rasmussen HH, Vandekerckhove J, Celis 
JE. 1992. Molecular cloning and expression of a transformation-sensitive human 
protein containing the TPR motif and sharing identity to the stress-inducible yeast 
protein STI1. J Biol Chem 267:8485-8491. 

212. Stapleford KA, Rapaport D, Miller DJ. 2009. Mitochondrion-enriched anionic 
phospholipids facilitate flock house virus RNA polymerase membrane 
association. Journal of virology 83:4498-4507. 

213. Li W, Wang R, Li M, Li L, Wang C, Welti R, Wang X. 2008. Differential 
degradation of extraplastidic and plastidic lipids during freezing and post-freezing 
recovery in Arabidopsis thaliana. The Journal of biological chemistry 283:461-
468. 

214. Makino A, Baba T, Fujimoto K, Iwamoto K, Yano Y, Terada N, Ohno S, 
Sato SB, Ohta A, Umeda M, Matsuzaki K, Kobayashi T. 2003. Cinnamycin 
(Ro 09-0198) promotes cell binding and toxicity by inducing transbilayer lipid 
movement. The Journal of biological chemistry 278:3204-3209. 

215. Aoki Y, Uenaka T, Aoki J, Umeda M, Inoue K. 1994. A novel peptide probe 
for studying the transbilayer movement of phosphatidylethanolamine. Journal of 
biochemistry 116:291-297. 

216. Grant AM, Hanson PK, Malone L, Nichols JW. 2001. NBD-labeled 
phosphatidylcholine and phosphatidylethanolamine are internalized by 
transbilayer transport across the yeast plasma membrane. Traffic 2:37-50. 

217. Zhao M. 2011. Lantibiotics as probes for phosphatidylethanolamine. Amino acids 
41:1071-1079. 

218. Kodaki T, Yamashita S. 1989. Characterization of the methyltransferases in the 
yeast phosphatidylethanolamine methylation pathway by selective gene 
disruption. European journal of biochemistry / FEBS 185:243-251. 

219. Wriessnegger T, Gubitz G, Leitner E, Ingolic E, Cregg J, de la Cruz BJ, 
Daum G. 2007. Lipid composition of peroxisomes from the yeast Pichia pastoris 
grown on different carbon sources. Biochimica et biophysica acta 1771:455-461. 

220. Wriessnegger T, Leitner E, Belegratis MR, Ingolic E, Daum G. 2009. Lipid 
analysis of mitochondrial membranes from the yeast Pichia pastoris. Biochimica 
et biophysica acta 1791:166-172. 

221. Donaldson RP, Beevers H. 1977. Lipid composition of organelles from 
germinating castor bean endosperm. Plant Physiol 59:259-263. 

222. Kovalev N, Pogany J, Nagy PD. 2014. A template role of double-stranded RNA 
in tombusvirus replication. J Virol. 

223. Rochon D, Singh B, Reade R, Theilmann J, Ghoshal K, Alam SB, Maghodia 
A. 2014. The p33 auxiliary replicase protein of Cucumber necrosis virus targets 
peroxisomes and infection induces de novo peroxisome formation from the 
endoplasmic reticulum. Virology 452-453:133-142. 

224. Garzon S, Strykowski H, Charpentier G. 1990. Implication of mitochondria in 
the replication of Nodamura virus in larvae of the Lepidoptera, Galleria 
mellonella (L.) and in suckling mice. Archives of virology 113:165-176. 



 

234 
 

225. Perttila J, Spuul P, Ahola T. 2013. Early secretory pathway localization and 
lack of processing for hepatitis E virus replication protein pORF1. J Gen Virol 
94:807-816. 

226. Midgley R, Moffat K, Berryman S, Hawes P, Simpson J, Fullen D, Stephens 
DJ, Burman A, Jackson T. 2013. A role for endoplasmic reticulum exit sites in 
foot-and-mouth disease virus infection. J Gen Virol 94:2636-2646. 

227. Patarroyo C, Laliberte JF, Zheng H. 2012. Hijack it, change it: how do plant 
viruses utilize the host secretory pathway for efficient viral replication and 
spread? Frontiers in plant science 3:308. 

228. Hyodo K, Mine A, Taniguchi T, Kaido M, Mise K, Taniguchi H, Okuno T. 
2013. ADP ribosylation factor 1 plays an essential role in the replication of a plant 
RNA virus. J Virol 87:163-176. 

229. Schlegel A, Giddings TH, Jr., Ladinsky MS, Kirkegaard K. 1996. Cellular 
origin and ultrastructure of membranes induced during poliovirus infection. J 
Virol 70:6576-6588. 

230. Egger D, Teterina N, Ehrenfeld E, Bienz K. 2000. Formation of the poliovirus 
replication complex requires coupled viral translation, vesicle production, and 
viral RNA synthesis. J Virol 74:6570-6580. 

231. Belov GA, Habbersett C, Franco D, Ehrenfeld E. 2007. Activation of cellular 
Arf GTPases by poliovirus protein 3CD correlates with virus replication. J Virol 
81:9259-9267. 

232. Belov GA, Altan-Bonnet N, Kovtunovych G, Jackson CL, Lippincott-
Schwartz J, Ehrenfeld E. 2007. Hijacking components of the cellular secretory 
pathway for replication of poliovirus RNA. J Virol 81:558-567. 

233. Dorobantu CM, van der Schaar HM, Ford LA, Strating JR, Ulferts R, Fang 
Y, Belov G, van Kuppeveld FJ. 2014. Recruitment of PI4KIIIbeta to 
Coxsackievirus B3 Replication Organelles Is Independent of ACBD3, GBF1, and 
Arf1. J Virol 88:2725-2736. 

234. Turner KA, Sit TL, Callaway AS, Allen NS, Lommel SA. 2004. Red clover 
necrotic mosaic virus replication proteins accumulate at the endoplasmic 
reticulum. Virology 320:276-290. 

235. Cosson P, Perrin J, Bonifacino JS. 2013. Anchors aweigh: protein localization 
and transport mediated by transmembrane domains. Trends in cell biology 
23:511-517. 

236. Sharpe HJ, Stevens TJ, Munro S. 2010. A comprehensive comparison of 
transmembrane domains reveals organelle-specific properties. Cell 142:158-169. 

237. Nishikawa S, Nakano A. 1993. Identification of a gene required for membrane 
protein retention in the early secretory pathway. Proc Natl Acad Sci U S A 
90:8179-8183. 

238. Letourneur F, Cosson P. 1998. Targeting to the endoplasmic reticulum in yeast 
cells by determinants present in transmembrane domains. J Biol Chem 
273:33273-33278. 

239. Sato K, Sato M, Nakano A. 2001. Rer1p, a retrieval receptor for endoplasmic 
reticulum membrane proteins, is dynamically localized to the Golgi apparatus by 
coatomer. J Cell Biol 152:935-944. 



 

235 
 

240. Herzig Y, Sharpe HJ, Elbaz Y, Munro S, Schuldiner M. 2012. A systematic 
approach to pair secretory cargo receptors with their cargo suggests a mechanism 
for cargo selection by Erv14. PLoS biology 10:e1001329. 

241. Ronchi P, Colombo S, Francolini M, Borgese N. 2008. Transmembrane 
domain-dependent partitioning of membrane proteins within the endoplasmic 
reticulum. J Cell Biol 181:105-118. 

242. Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, 
Yamamoto A. 2009. A subdomain of the endoplasmic reticulum forms a cradle 
for autophagosome formation. Nature cell biology 11:1433-1437. 

243. Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, Kim PK, 
Lippincott-Schwartz J. 2010. Mitochondria supply membranes for 
autophagosome biogenesis during starvation. Cell 141:656-667. 

244. Hamasaki M, Furuta N, Matsuda A, Nezu A, Yamamoto A, Fujita N, Oomori 
H, Noda T, Haraguchi T, Hiraoka Y, Amano A, Yoshimori T. 2013. 
Autophagosomes form at ER-mitochondria contact sites. Nature 495:389-393. 

245. Moreau K, Ravikumar B, Renna M, Puri C, Rubinsztein DC. 2011. 
Autophagosome precursor maturation requires homotypic fusion. Cell 146:303-
317. 

246. Ravikumar B, Moreau K, Jahreiss L, Puri C, Rubinsztein DC. 2010. Plasma 
membrane contributes to the formation of pre-autophagosomal structures. Nature 
cell biology 12:747-757. 

247. Geng J, Nair U, Yasumura-Yorimitsu K, Klionsky DJ. 2010. Post-Golgi Sec 
proteins are required for autophagy in Saccharomyces cerevisiae. Mol Biol Cell 
21:2257-2269. 

248. Yen WL, Shintani T, Nair U, Cao Y, Richardson BC, Li Z, Hughson FM, 
Baba M, Klionsky DJ. 2010. The conserved oligomeric Golgi complex is 
involved in double-membrane vesicle formation during autophagy. J Cell Biol 
188:101-114. 

249. Ohashi Y, Munro S. 2010. Membrane delivery to the yeast autophagosome from 
the Golgi-endosomal system. Mol Biol Cell 21:3998-4008. 

250. van der Vaart A, Griffith J, Reggiori F. 2010. Exit from the Golgi is required 
for the expansion of the autophagosomal phagophore in yeast Saccharomyces 
cerevisiae. Mol Biol Cell 21:2270-2284. 

251. Guo Y, Chang C, Huang R, Liu B, Bao L, Liu W. 2012. AP1 is essential for 
generation of autophagosomes from the trans-Golgi network. J Cell Sci 125:1706-
1715. 

252. Longatti A, Lamb CA, Razi M, Yoshimura S, Barr FA, Tooze SA. 2012. 
TBC1D14 regulates autophagosome formation via Rab11- and ULK1-positive 
recycling endosomes. J Cell Biol 197:659-675. 

253. Zoppino FC, Militello RD, Slavin I, Alvarez C, Colombo MI. 2010. 
Autophagosome formation depends on the small GTPase Rab1 and functional ER 
exit sites. Traffic 11:1246-1261. 

254. Hamasaki M, Noda T, Ohsumi Y. 2003. The early secretory pathway 
contributes to autophagy in yeast. Cell structure and function 28:49-54. 



 

236 
 

255. Ge L, Melville D, Zhang M, Schekman R. 2013. The ER-Golgi intermediate 
compartment is a key membrane source for the LC3 lipidation step of 
autophagosome biogenesis. eLife 2:e00947. 

256. Clancey CJ, Chang SC, Dowhan W. 1993. Cloning of a gene (PSD1) encoding 
phosphatidylserine decarboxylase from Saccharomyces cerevisiae by 
complementation of an Escherichia coli mutant. J Biol Chem 268:24580-24590. 

257. Trotter PJ, Pedretti J, Yates R, Voelker DR. 1995. Phosphatidylserine 
decarboxylase 2 of Saccharomyces cerevisiae. Cloning and mapping of the gene, 
heterologous expression, and creation of the null allele. J Biol Chem 270:6071-
6080. 

258. Trotter PJ, Pedretti J, Voelker DR. 1993. Phosphatidylserine decarboxylase 
from Saccharomyces cerevisiae. Isolation of mutants, cloning of the gene, and 
creation of a null allele. J Biol Chem 268:21416-21424. 

259. Trotter PJ, Voelker DR. 1995. Identification of a non-mitochondrial 
phosphatidylserine decarboxylase activity (PSD2) in the yeast Saccharomyces 
cerevisiae. J Biol Chem 270:6062-6070. 

260. Gulshan K, Shahi P, Moye-Rowley WS. 2010. Compartment-specific synthesis 
of phosphatidylethanolamine is required for normal heavy metal resistance. Mol 
Biol Cell 21:443-455. 

261. Nerlich A, von Orlow M, Rontein D, Hanson AD, Dormann P. 2007. 
Deficiency in phosphatidylserine decarboxylase activity in the psd1 psd2 psd3 
triple mutant of Arabidopsis affects phosphatidylethanolamine accumulation in 
mitochondria. Plant Physiol 144:904-914. 

262. McMaster CR, Bell RM. 1994. Phosphatidylcholine biosynthesis via the CDP-
choline pathway in Saccharomyces cerevisiae. Multiple mechanisms of 
regulation. J Biol Chem 269:14776-14783. 

263. Yang W, Moroney JV, Moore TS. 2004. Membrane lipid biosynthesis in 
Chlamydomonas reinhardtii: ethanolaminephosphotransferase is capable of 
synthesizing both phosphatidylcholine and phosphatidylethanolamine. Archives 
of biochemistry and biophysics 430:198-209. 

264. Sutoh K, Sanuki N, Sakaki T, Imai R. 2010. Specific induction of TaAAPT1, 
an ER- and Golgi-localized ECPT-type aminoalcoholphosphotransferase, results 
in preferential accumulation of the phosphatidylethanolamine membrane 
phospholipid during cold acclimation in wheat. Plant molecular biology 72:519-
531. 

265. Qi Q, Huang YF, Cutler AJ, Abrams SR, Taylor DC. 2003. Molecular and 
biochemical characterization of an aminoalcoholphosphotransferase (AAPT1) 
from Brassica napus: effects of low temperature and abscisic acid treatments on 
AAPT expression in Arabidopsis plants and effects of over-expression of 
BnAAPT1 in transgenic Arabidopsis. Planta 217:547-558. 

266. Choi YH, Lee JK, Lee CH, Cho SH. 2000. cDNA cloning and expression of an 
aminoalcoholphosphotransferase isoform in Chinese cabbage. Plant & cell 
physiology 41:1080-1084. 

267. Henneberry AL, Wright MM, McMaster CR. 2002. The major sites of cellular 
phospholipid synthesis and molecular determinants of Fatty Acid and lipid head 
group specificity. Mol Biol Cell 13:3148-3161. 



 

237 
 

268. Birner R, Burgermeister M, Schneiter R, Daum G. 2001. Roles of 
phosphatidylethanolamine and of its several biosynthetic pathways in 
Saccharomyces cerevisiae. Mol Biol Cell 12:997-1007. 

269. Janke C, Magiera MM, Rathfelder N, Taxis C, Reber S, Maekawa H, 
Moreno-Borchart A, Doenges G, Schwob E, Schiebel E, Knop M. 2004. A 
versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, 
more markers and promoter substitution cassettes. Yeast 21:947-962. 

270. Holthuis JC, Nichols BJ, Dhruvakumar S, Pelham HR. 1998. Two syntaxin 
homologues in the TGN/endosomal system of yeast. EMBO J 17:113-126. 

271. Parr CL, Keates RA, Bryksa BC, Ogawa M, Yada RY. 2007. The structure 
and function of Saccharomyces cerevisiae proteinase A. Yeast 24:467-480. 

272. Hughes H, Stephens DJ. 2008. Assembly, organization, and function of the 
COPII coat. Histochemistry and cell biology 129:129-151. 

273. Bacia K, Futai E, Prinz S, Meister A, Daum S, Glatte D, Briggs JA, 
Schekman R. 2011. Multibudded tubules formed by COPII on artificial 
liposomes. Scientific reports 1:17. 

274. Saito Y, Kimura K, Oka T, Nakano A. 1998. Activities of mutant Sar1 proteins 
in guanine nucleotide binding, GTP hydrolysis, and cell-free transport from the 
endoplasmic reticulum to the Golgi apparatus. Journal of biochemistry 124:816-
823. 

275. Eugster A, Frigerio G, Dale M, Duden R. 2000. COP I domains required for 
coatomer integrity, and novel interactions with ARF and ARF-GAP. EMBO J 
19:3905-3917. 

276. Yahara N, Sato K, Nakano A. 2006. The Arf1p GTPase-activating protein 
Glo3p executes its regulatory function through a conserved repeat motif at its C-
terminus. J Cell Sci 119:2604-2612. 

277. Gerich B, Orci L, Tschochner H, Lottspeich F, Ravazzola M, Amherdt M, 
Wieland F, Harter C. 1995. Non-clathrin-coat protein alpha is a conserved 
subunit of coatomer and in Saccharomyces cerevisiae is essential for growth. Proc 
Natl Acad Sci U S A 92:3229-3233. 

278. Mnaimneh S, Davierwala AP, Haynes J, Moffat J, Peng WT, Zhang W, Yang 
X, Pootoolal J, Chua G, Lopez A, Trochesset M, Morse D, Krogan NJ, Hiley 
SL, Li Z, Morris Q, Grigull J, Mitsakakis N, Roberts CJ, Greenblatt JF, 
Boone C, Kaiser CA, Andrews BJ, Hughes TR. 2004. Exploration of essential 
gene functions via titratable promoter alleles. Cell 118:31-44. 

279. Gari E, Piedrafita L, Aldea M, Herrero E. 1997. A set of vectors with a 
tetracycline-regulatable promoter system for modulated gene expression in 
Saccharomyces cerevisiae. Yeast 13:837-848. 

280. Opekarova M, Robl I, Tanner W. 2002. Phosphatidyl ethanolamine is essential 
for targeting the arginine transporter Can1p to the plasma membrane of yeast. 
Biochimica et biophysica acta 1564:9-13. 

281. Robl I, Grassl R, Tanner W, Opekarova M. 2001. Construction of 
phosphatidylethanolamine-less strain of Saccharomyces cerevisiae. Effect on 
amino acid transport. Yeast 18:251-260. 



 

238 
 

282. Alder-Baerens N, Lisman Q, Luong L, Pomorski T, Holthuis JC. 2006. Loss 
of P4 ATPases Drs2p and Dnf3p disrupts aminophospholipid transport and 
asymmetry in yeast post-Golgi secretory vesicles. Mol Biol Cell 17:1632-1642. 

283. Motley AM, Nuttall JM, Hettema EH. 2012. Pex3-anchored Atg36 tags 
peroxisomes for degradation in Saccharomyces cerevisiae. EMBO J 31:2852-
2868. 

284. Jiang RH, Stahelin RV, Bhattacharjee S, Haldar K. 2013. Eukaryotic 
virulence determinants utilize phosphoinositides at the ER and host cell surface. 
Trends in microbiology 21:145-156. 

285. Ehrhardt C, Ludwig S. 2009. A new player in a deadly game: influenza viruses 
and the PI3K/Akt signalling pathway. Cellular microbiology 11:863-871. 

286. Su WC, Chao TC, Huang YL, Weng SC, Jeng KS, Lai MM. 2011. Rab5 and 
class III phosphoinositide 3-kinase Vps34 are involved in hepatitis C virus NS4B-
induced autophagy. J Virol 85:10561-10571. 

287. Mallo GV, Espina M, Smith AC, Terebiznik MR, Aleman A, Finlay BB, 
Rameh LE, Grinstein S, Brumell JH. 2008. SopB promotes 
phosphatidylinositol 3-phosphate formation on Salmonella vacuoles by recruiting 
Rab5 and Vps34. J Cell Biol 182:741-752. 

288. Huang J, Birmingham CL, Shahnazari S, Shiu J, Zheng YT, Smith AC, 
Campellone KG, Heo WD, Gruenheid S, Meyer T, Welch MD, Ktistakis NT, 
Kim PK, Klionsky DJ, Brumell JH. 2011. Antibacterial autophagy occurs at 
PI(3)P-enriched domains of the endoplasmic reticulum and requires Rab1 
GTPase. Autophagy 7:17-26. 

289. Kale SD, Gu B, Capelluto DG, Dou D, Feldman E, Rumore A, Arredondo 
FD, Hanlon R, Fudal I, Rouxel T, Lawrence CB, Shan W, Tyler BM. 2010. 
External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and 
animal host cells. Cell 142:284-295. 

290. Leevers SJ, Vanhaesebroeck B, Waterfield MD. 1999. Signalling through 
phosphoinositide 3-kinases: the lipids take centre stage. Current opinion in cell 
biology 11:219-225. 

291. Vanhaesebroeck B, Leevers SJ, Ahmadi K, Timms J, Katso R, Driscoll PC, 
Woscholski R, Parker PJ, Waterfield MD. 2001. Synthesis and function of 3-
phosphorylated inositol lipids. Annual review of biochemistry 70:535-602. 

292. Backer JM. 2008. The regulation and function of Class III PI3Ks: novel roles for 
Vps34. Biochem J 410:1-17. 

293. Lee Y, Kim ES, Choi Y, Hwang I, Staiger CJ, Chung YY, Lee Y. 2008. The 
Arabidopsis phosphatidylinositol 3-kinase is important for pollen development. 
Plant Physiol 147:1886-1897. 

294. Stack JH, Emr SD. 1994. Vps34p required for yeast vacuolar protein sorting is a 
multiple specificity kinase that exhibits both protein kinase and 
phosphatidylinositol-specific PI 3-kinase activities. J Biol Chem 269:31552-
31562. 

295. Kihara A, Noda T, Ishihara N, Ohsumi Y. 2001. Two distinct Vps34 
phosphatidylinositol 3-kinase complexes function in autophagy and 
carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol 152:519-
530. 



 

239 
 

296. Kametaka S, Okano T, Ohsumi M, Ohsumi Y. 1998. Apg14p and 
Apg6/Vps30p form a protein complex essential for autophagy in the yeast, 
Saccharomyces cerevisiae. J Biol Chem 273:22284-22291. 

297. Obara K, Sekito T, Ohsumi Y. 2006. Assortment of phosphatidylinositol 3-
kinase complexes--Atg14p directs association of complex I to the pre-
autophagosomal structure in Saccharomyces cerevisiae. Mol Biol Cell 17:1527-
1539. 

298. Klionsky DJ. 2005. The molecular machinery of autophagy: unanswered 
questions. J Cell Sci 118:7-18. 

299. Slessareva JE, Routt SM, Temple B, Bankaitis VA, Dohlman HG. 2006. 
Activation of the phosphatidylinositol 3-kinase Vps34 by a G protein alpha 
subunit at the endosome. Cell 126:191-203. 

300. Kim DH, Eu YJ, Yoo CM, Kim YW, Pih KT, Jin JB, Kim SJ, Stenmark H, 
Hwang I. 2001. Trafficking of phosphatidylinositol 3-phosphate from the trans-
Golgi network to the lumen of the central vacuole in plant cells. Plant Cell 
13:287-301. 

301. Matsuoka K, Bassham DC, Raikhel NV, Nakamura K. 1995. Different 
sensitivity to wortmannin of two vacuolar sorting signals indicates the presence of 
distinct sorting machineries in tobacco cells. J Cell Biol 130:1307-1318. 

302. Liu Y, Schiff M, Czymmek K, Talloczy Z, Levine B, Dinesh-Kumar SP. 2005. 
Autophagy regulates programmed cell death during the plant innate immune 
response. Cell 121:567-577. 

303. Hohenester S, Gates A, Wimmer R, Beuers U, Anwer MS, Rust C, Webster 
CR. 2010. Phosphatidylinositol-3-kinase p110gamma contributes to bile salt-
induced apoptosis in primary rat hepatocytes and human hepatoma cells. J 
Hepatol 53:918-926. 

304. Hasan AM, Mourtada-Maarabouni M, Hameed MS, Williams GT, Dent G. 
2010. Phosphoinositide 3-kinase gamma mediates chemotactic responses of 
human eosinophils to platelet-activating factor. International 
immunopharmacology 10:1017-1021. 

305. Price BD, Eckerle LD, Ball LA, Johnson KL. 2005. Nodamura virus RNA 
replication in Saccharomyces cerevisiae: heterologous gene expression allows 
replication-dependent colony formation. J Virol 79:495-502. 

306. Grunau S, Lay D, Mindthoff S, Platta HW, Girzalsky W, Just WW, 
Erdmann R. 2011. The phosphoinositide 3-kinase Vps34p is required for 
pexophagy in Saccharomyces cerevisiae. Biochem J 434:161-170. 

307. Farre JC, Burkenroad A, Burnett SF, Subramani S. 2013. Phosphorylation of 
mitophagy and pexophagy receptors coordinates their interaction with Atg8 and 
Atg11. EMBO reports 14:441-449. 

308. Miller DJ, Schwartz MD, Dye BT, Ahlquist P. 2003. Engineered retargeting of 
viral RNA replication complexes to an alternative intracellular membrane. J Virol 
77:12193-12202. 

309. Kragt A, Voorn-Brouwer T, van den Berg M, Distel B. 2005. Endoplasmic 
reticulum-directed Pex3p routes to peroxisomes and restores peroxisome 
formation in a Saccharomyces cerevisiae pex3Delta strain. J Biol Chem 
280:34350-34357. 



 

240 
 

310. Chuang C, Barajas D, Qin J, Nagy PD. 2014. Inactivation of the host lipin gene 
accelerates RNA virus replication through viral exploitation of the expanded 
endoplasmic reticulum membrane. PLoS Pathog 10:e1003944. 

311. Pomorski T, Lombardi R, Riezman H, Devaux PF, van Meer G, Holthuis JC. 
2003. Drs2p-related P-type ATPases Dnf1p and Dnf2p are required for 
phospholipid translocation across the yeast plasma membrane and serve a role in 
endocytosis. Mol Biol Cell 14:1240-1254. 

312. Hua Z, Fatheddin P, Graham TR. 2002. An essential subfamily of Drs2p-
related P-type ATPases is required for protein trafficking between Golgi complex 
and endosomal/vacuolar system. Mol Biol Cell 13:3162-3177. 

313. Wicky S, Schwarz H, Singer-Kruger B. 2004. Molecular interactions of yeast 
Neo1p, an essential member of the Drs2 family of aminophospholipid 
translocases, and its role in membrane trafficking within the endomembrane 
system. Molecular and cellular biology 24:7402-7418. 

314. Marrink SJ, Mark AE. 2003. The mechanism of vesicle fusion as revealed by 
molecular dynamics simulations. Journal of the American Chemical Society 
125:11144-11145. 

315. Domanska MK, Kiessling V, Tamm LK. 2010. Docking and fast fusion of 
synaptobrevin vesicles depends on the lipid compositions of the vesicle and the 
acceptor SNARE complex-containing target membrane. Biophys J 99:2936-2946. 

316. Morel E, Chamoun Z, Lasiecka ZM, Chan RB, Williamson RL, Vetanovetz 
C, Dall'Armi C, Simoes S, Point Du Jour KS, McCabe BD, Small SA, Di 
Paolo G. 2013. Phosphatidylinositol-3-phosphate regulates sorting and processing 
of amyloid precursor protein through the endosomal system. Nature 
communications 4:2250. 

317. Raiborg C, Schink KO, Stenmark H. 2013. Class III phosphatidylinositol 3-
kinase and its catalytic product PtdIns3P in regulation of endocytic membrane 
traffic. The FEBS journal 280:2730-2742. 

318. Richardson LG, Clendening EA, Sheen H, Gidda SK, White KA, Mullen RT. 
2014. A unique N-terminal Sequence in the Carnation Italian Ringspot Virus p36 
Replicase-Associated Protein Interacts with the Host-Cell ESCRT-I Component 
Vps23. J Virol. 

319. Katzmann DJ, Babst M, Emr SD. 2001. Ubiquitin-dependent sorting into the 
multivesicular body pathway requires the function of a conserved endosomal 
protein sorting complex, ESCRT-I. Cell 106:145-155. 

320. Wallin E, von Heijne G. 1998. Genome-wide analysis of integral membrane 
proteins from eubacterial, archaean, and eukaryotic organisms. Protein science : a 
publication of the Protein Society 7:1029-1038. 

321. Traub LM. 2009. Tickets to ride: selecting cargo for clathrin-regulated 
internalization. Nat Rev Mol Cell Biol 10:583-596. 

322. Wei T, Wang A. 2008. Biogenesis of cytoplasmic membranous vesicles for plant 
potyvirus replication occurs at endoplasmic reticulum exit sites in a COPI- and 
COPII-dependent manner. J Virol 82:12252-12264. 

 

  



 

241 
 

VITA 

Xu, Kai 

Education: 

2001-2005, Bachelor degree in Biological Sciences, China Agricultural University, Beijing, 
China 

 

Award and scholarships: 

1. Travel award from 2010 American Society for Virology Annual Meeting 

2. Travel award from International Union of Microbiological Societies 2011 Congress 

3. Travel award from 2012 American Society for Virology Annual Meeting 

4. Excellent graduate with Bachelor degree from China Agricultural University 2005 

 

Publications: 

1. Xu K, Lin JY, Nagy PD. The Hop-like stress induced protein 1 co-chaperone is a novel 
cell-intrinsic restriction factor for mitochondrial tombusvirus replication. Journal of 
Virology. 2014 published ahead of print 11 June 2014 

2.Xu K, Huang TS, Nagy PD. Authentic in vitro replication of two tombusviruses in 
isolated mitochondrial and endoplasmic reticulum membranes. Journal of Virology. 
2012 Dec;86(23):12779-94. 

3.Shah Nawaz-ul-Rehman M, Martinez-Ochoa N, Pascal H, Sasvari Z, Herbst C, Xu K, 
Baker J, Sharma M, Herbst A, Nagy PD. Proteome-wide overexpression of host proteins 
for identification of factors affecting tombusvirus RNA replication: an inhibitory role of 
protein kinase C. Journal of Virology. 2012 Sep;86(17):9384-95. 

4.Pathak KB, Pogany J, Xu K, White KA, Nagy PD. Defining the roles of cis-acting RNA 
elements in tombusvirusreplicase assembly in vitro. Journal of Virology. 2012 
Jan;86(1):156-71. 

5.Xu K, Nagy PD. Dissecting Virus-Plant Interactions Through Proteomics Approaches. 
Current proteomics 2010 Dec; 7(4): 316-27 

6.Xu K, Yoshida R.Statistical Analysis on Detecting Recombination Sites in DNA-β 
Satellites Associated with Old World Geminiviruses. Frontiers in  Psychiatry. 2010 Oct 
25;1:138. 



 

242 
 

7.Li Z, Pogany J, Panavas T, Xu K, Esposito AM, Kinzy TG, Nagy PD. Translation elongation 
factor 1A is a component of the tombusvirusreplicase complex and affects the stability 
of the p33 replication co-factor. Virology. 2009 Mar 1;385(1):245-60. 

8. Niu S, Wang B, Guo X, Yu J, Wang X, Xu K, Zhai Y, Wang J, Liu Z.Identification of two 
RNA silencing suppressors from banana bunchy top virus. Archives in Virology. 
2009;154(11):1775-83. 

 

Meeting Presentations: 

1.Xu K, Nagy PD. Role of glycerophospholipid biosynthesis in tombusvirus 
replication.2012 American Society for Virology Annual Meeting, oral presentation 

2.Xu K, Nagy PD. Tombusvirusesreplicase proteins play important roles targeting and 
activation of replicase complex.International Union of Microbiological Societies 2011 
Congress, Poster presentation 

3.Xu K, Nagy PD. In vitro assembly of tombusvirusreplicase complex on purified yeast 
organelles.2010 American Society for Virology Annual Meeting, oral presentation 

 

Society membership 

American Society for Virology  

Association of Plant Pathology Scholars, University of Kentucky 

Delta Epsilon Iota Academic Honor Society 


	KEY ROLES OF SUB-CELLULAR MEMBRANES AND CO-CHAPERONE IN TOMBUSVIRUS REPLICATION
	Recommended Citation

	TITLE PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	Chapter 1  INTRODUCTION
	Chapter 2  AUTHENTIC IN VITRO REPLICATION OF TWO TOMBUSVIRUSES IN ISOLATED MITOCHONDRIAL AND ENDOPLASMIC RETICULUM MEMBRANES 
	2.1 Introduction
	2.2 Materials And Methods
	2.3 Results
	2.4 Discussion

	Chapter 3  THE HOP-LIKE STRESS INDUCED PROTEIN 1 CO-CHAPERONE IS A NOVEL RESTRICTION FACTOR FOR MITOCHONDRIAL TOMBUSVIRUS REPLICATION
	3.1 Introduction
	3.2 Materials And Methods
	3.3 Results
	3.4 Discussion

	Chapter 4  RNA VIRUS REPLICATION DEPENDS ON ENRICHMENT OF PHOSPHATIDYLETHANOLAMINE AT REPLICATION SITES IN SUBCELLULAR MEMBRANES
	4.1 Introduction
	4.2 Materials and Methods
	4.3 Results
	4.4 Discussion

	Chapter 5  VACUOLE TARGETING PATHWAY IS REQUIRED FOR EFFICIENT TBSV REPLICATION AND MAYBE RELATED TO PE ENRICHMENT IN THE PEROXISOMAL MEMBRANES
	5.1 Introduction
	5.2 Materials and Methods
	5.3 Results
	5.4 Discussion

	Chapter 6  CLASS III PHOSPHOINOSITIDE 3-KINASE VPS34 IS A KEY HOST FACTOR IN TOMBUSVIRUS REPLICATION
	6.1 Introduction
	6.2 Materials and Methods
	6.3 Results
	6.4 Discussion

	Chapter 7  CONCLUSION AND PERSPECTIVE
	7.1  Conclusion
	7.2  Perspective

	REFERENCES
	VITA

