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ABSTRACT OF DISSERTATION 

STRUCTURAL AND FUNCTIONAL CHARACTERIZATION OF MULTIDRUG 

RESISTANCE TRANSPORTER AND REGULATOR 

Drug resistant bacteria pathogen poses a severe threat to human health. Bacterial drug 

efflux pumps are transporter proteins involved in the export of antibiotics out of cells. 

Efflux by transporters is one of the major drug resistant mechanisms. Multidrug 

efflux pumps can transport multiple classes of antibiotics and are associated with 

bacteria multiple drug resistance (MDR). Overproduction of these pumps reduces 

susceptibility of bacteria to a variety of antibiotics. MDR regulators are cytoplasmic 

proteins that control the expression level of MDR transporters in response to the 

cellular concentration of antibiotics. This thesis research focuses on three main 

directions in the area of bacteria drug resistance: the structural and functional study of 

a MDR transporter, the characterization of a novel MDR regulator protein, and the 

development of a sensing method for the detection of glycopeptide antibiotics.  

Acriflavine resistance protein B (AcrB) in Escherichia coli belongs to resistance 

nodulation division (RND) superfamily of efflux transporters. It plays an important 

role in confering multidrug resistance in Gram-negative bacteria. The functional unit 

of AcrB is a trimer in vivo. However, the relationship between AcrB trimer stability 

and functionality remains elusive. In chapter 2, a residue that is critical for AcrB 

trimerization, Pro 223, was identified. The replacement of Pro 223 by other residues 

destabilized AcrB trimer, and thus decreased its activity. The loss of transport activity 

could be partially recovered when the AcrB trimer was stabilized by the introduction 

of a pair of inter-subunit disulfide bond. In chapter 3, a systematically alanine-

scanning study of the producing loop (amino acid residues 211-240) was conducted.  

Five residues in the loop were found to be important for AcrB activity. These residues 

form a collar or belt in the loop close to the tip. These mutation studies revealed new 

insight into the conformation of the loop during AcrB trimerization. In chapter 4, 

residue Arg 780 was identified to be crucial for the pump function of AcrB. The study 

results indicated that Pro 223 serves as a “wedge” and Arg 780 as a “lock” via 

hydrogen bonding between the backbone carbonyl oxygen of Pro 223 and side chain 



 

 

of Arg780. Similar as Pro 223, replacement of Arg 780 by other residues drastically 

decreased the activity of AcrB. Dissociation of the AcrB trimer also contributed to the 

decrease of activity. However, the introduction of inter-subunit disulfide bond could 

not restore the function of the mutant, indicating that Arg 780 plays multiples roles in 

the operation of AcrB.   

In chapter 5, a MDR regulator ST1710 from the archaeon Sulfolobus tokodaii, 

homologous to the multiple-antibiotic resistance repressor (MarR) family bacterial 

regulators, was characterized in vitro. The binding affinities of ligands and double 

strand (ds) DNA for ST1710 were measured. The presence of substrates suppressed 

the interaction between ST1710 and dsDNA, which indicated that ST1710 functioned 

as a repressor in vivo.  

Finally, in chapter 6, a direct fluorescence polarization based method for the detection 

of glycopeptide antibiotics is developed.  Briefly, the acetylated tripeptide L-Lys-D-

Ala-D-Ala was labeled with a fluorophore (fluorescein isothiocyanate or AlexaFluor 

680) to create a peptide probe. The fluorescence polarization signal of the peptide 

probe increased upon binding with glycopeptide antibiotics in a concentration 

dependent manner. The detection is highly selective toward glycopeptide antibiotics. 

The designed method is expected it to have broad applications in both research and 

clinical settings. 

KEY WORDS: MDR transporter, AcrB, oligomerization, MDR regulator, 

glycopeptide antibiotics 
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Chapter 1 Introduction 

1.1 Oligomerization is a Dominant Feature of Bacterial Membrane Protein  

A genome-wide analysis shows that 20-30% of all genes code for membrane protein both 

in prokaryotic and eukaryotic organisms.
1
 As for Escherichia coli, about 20-30% of its 

proteome are inner-membrane proteins and about 2% are outer membrane proteins.
2, 3

 

Membrane proteins contain trans-membrane domains that are embedded in a lipid bilayer 

and extra-membrane regions exposed to an aqueous environment. They facilitate 

communication across cellular membrane, and are essential for cellular function.  

Based on the structure, membrane proteins can be categorized into two general classes: α-

helix bundles and β-barrels. Most bacterial outer membrane proteins are β-barrels. 

Compared with α-helix bundles, β-barrels are less common. Recently, Meng et al. have 

summarized the latest studies on oligomerization of bacterial outer membrane proteins.
4
  

Therefore, outer-membrane proteins would not be discussed in my thesis.  

The inherit difficulty of expression and purification of membrane proteins has been an 

obstacles for studies of those crucial components. However, in the past decade, with the 

efforts of many research groups and novel crystallization methodology, more and more 

high-resolution crystal structures of membrane protein were reported. The availability of 

an increasing number of protein structures has made it possible to study those critical 

cellular players from a structure-based view. Oligomerization is a general feature of 

membrane proteins whose structures are known. Oligomers containing the multi-copies 

of the same or different subunits are called homo or hetero-oligomers. Statistically, more 

than half of proteins exist as dimers or higher-order oligomers either in prokaryotes or 
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eukaryotes and homo-oligomers appear more frequent than hetero-oligomers.
5
 The 

oligomeric state of α-helix membrane protein is summarized in the figure 1.1 for all 

bacterial membrane proteins with known structures 

(http://blanco.biomol.uci.edu/mpstruc/listAll/list). As of October of 2012, there are about 

95 unique crystal structures of bacterial homo-oligomeric α-helices bundles membrane 

proteins in the data bank. Out of these proteins (Figure 1.1), 22 structures are monomers, 

27 dimers, 19 trimers, 12 tertramers, 10 pentamers, 1 hexamer, 1 heptamer, 1 octomer, 1 

decamer, and 1 dodecamer. Dimeric state occurs more frequent than other oligomeric 

state. Oligomer state containing more than 6 subunits was much less prevalent. These 

statistics from crystal structures further emphasized the importance of oligomerization for 

membrane proteins.   
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Figure 1.1 Oligomeric state of crystal structures of bacterial homo-oligomeric α-helices 

bundles membrane proteins in the data bank. Only a small percentage of membrane 

proteins exist as monomers.  
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1.2 Biogenesis of Membrane Proteins 

Synthesis of membrane protein is more complicated than soluble proteins. Understanding 

of membrane protein biogenesis is crucial for the study of their oligomerization process. 

An important step of membrane protein biogenesis is insertion of the nascent polypeptide 

chains from the ribosome into the membrane. There are three biochemical steps for 

bacterial membrane protein insertion (Figure 1.2): the nascent polypeptide targeted to the 

membrane, the co-translational lateral insertion of the apolar region of polypeptide into 

the membrane, and membrane protein folding.  

In step 1, the translation of bacterial membrane protein is initiated in the cytoplasm. The 

first hydrophobic region of the nascent chain emerges from the ribosome exit tunnel and 

binds to a signal recognition particle (SRP), which guides the entire complex (the nascent 

membrane-ribosome-mRNA) to the SRP receptor located on the surface of the 

membrane.
6
 In Escherichia coli, SRP is composed of SRP54 ortholog (Ffh) and small 

RNA (4.5S RNA). It binds to the exit site of the ribosome when the hydrophobic signal 

sequence of membrane protein emerges.
7
 The SRP receptor (FtsY) is anchored in 

membrane and also associated with the SecYEG translocase. The interaction between 

SRP and FtsY is driven by the hydrolysis of GTP, leading to the releases of the SPR and 

insertion of the nascent membrane protein forward to Sec translocase. The dissociated 

SRP was recycled for another round of membrane targeting.
8-10

  

In step 2, the protein membrane insertion is facilitated by the Sec transclocase. The Sec 

transcloase is made of a core component-SecYEG translocon, SecDF complex and SecA 

ATPase. SecYEG is an integral membrane heterotrimeric complex and provides a 

conduction pore through which the newly synthesized membrane protein enters into the 
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membrane.
11, 12

 SecDF is another membrane-integrated complex. It associates with Sec 

YEG and makes membrane protein transolocation and insertion more efficient.
13, 14

 SecA 

functions as a molecular motor for the translocation process. The hydrolysis of ATP by 

SecA mediates the inserting of the polypeptide through the Sec YEG channel.
15, 16

 For a 

small selection of proteins, YidC insertase plays an important role for membrane 

insertion in a Sec-dependent or Sec-independent manner.
17, 18

   

In step 3, the inserted polypeptide folds and assembles into functional unit or complex. A 

two-stage model for membrane protein folding has been proposed by Popot and 

Engelman.
19

 The model simplifies the α-helix membrane protein folding into two 

distinguished stages. In the first stage, transmembrane helices form independently; in the 

second stage, transmembrane helics interact with each other to form the higher order of 

interaction. The tertiary and quaternary structures are built on the second stage. 

 

Figure 1.2 A biogenesis process of bacterial membrane protein. 
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The three steps are essential for the biogenesis of membrane proteins. However, it is still 

elusive how membrane proteins form quaternary structures in the plasma membrane of a 

cell. Several models have been proposed through the studies of assemblies of hetero-

oligomeric membrane protein complexes. In one model, the assemblies of hetero-

oligomeric membrane proteins are sequential. Each subunit of the complex interacts in an 

ordered manner to form intermediates, and then is organized into a functional complex. 

For example, Green and Claudio studied the assembly of the acetylcholine receptor, and 

found that the folding and assembly of the hetero-pentameric α2βγδ complex are 

sequential.
20 The intermediate trimer αβγ forms first, followed the second intermediate 

αβγδ tetramer and finally the α2βγδ pentamer. During the process, several subunits 

folding occur during or between these oligomerization steps and contributed to subunit 

recognition site formation during assembly. In the other model, the subunit assembly is 

not sequential. There are no specific intermediate complexes formed during the process. 

For example, Escherichia coli maltose transporter complex MalFGK2, is composed of 

two membrane subunits MalF and MalG, and a dimer MalK2 in the cytoplasm for ATP-

binding. First, the Malk forms a dimer in the absence of MalF and MalG.
21

 The MalF or 

MalG is synthesized, inserted into the membrane and folded independently.
22

 The 

isolation of stable complexes-MalFG, MalFK2, and MalGK2 indicated that the formation 

of tetrameric complex MalFGK2 are not necessarily sequential.
23

  

It is a different story in the case of obligate homo-oligomers. Obligate oligomers exist 

and function predominantly in one specific aggregation state. No monomeric or 

intermediate oligomeric states can be isolated from the cell membrane. Studies of homo-

oligomeric soluble proteins reveal that oligomerization may occur via a two-step or a 
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three-step pathway (Figure 1.3).
24

 In the two-step pathway, individual monomers remain 

largely unfolded prior to oligomerization and there is no well-folded monomer as an 

intermediate. Folding and oligomerization occur simultaneously. In the three-step 

pathway, individual monomers first fold independently into a structure that may or may 

not be the same as the final structure in the complex, which then assemble into an 

oligomer.  

 

Figure 1.3 Protein oligomerization process. A. Subunit folding is coupled with 

oligomerization. B. Subunit folding precedes oligomerization. 

Study of membrane protein oligomerization is a challenging task. The expression level of 

membrane proteins is usually much lower than the expression level of soluble proteins, 

limiting the quantity and quality of protein samples that could be obtained for analysis. In 

addition, purification of membrane protein involves the extraction of the protein from cell 

membrane using detergent, which could dissociate membrane protein oligomers. Another 

obstacle is the scarceity of suitable experimental techniques. Structures obtained via x-ray 
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crystallography do not always faithfully reflect the biologically relevant quaternary 

structure. And membrane proteins of the same family in different species may have 

different oligomeric state. For example, the tetracycline transporter TetA from 

Escherichia coli is a trimer,
25

 while a related tetracycline transporter TetL from Bacillus 

subtilis is a dimer.
26

 In addition to x-ray crystallography, the combinations of other 

methods including chemical cross-linking, 2D-electron microscopy, analytical 

ultracentrifugation, blue-native PAGE, and electron spin resonance (EPR) have been used 

to determine the oligomeric state of membrane proteins.
27

 Most of these methods need 

purified protein samples dissolved in detergent micelles, which may not reflect the actual 

oligomeric state of the protein in cell membrane.  More recently, methods that reveal the 

oligomeric state of proteins in lipid bilayer or even in vivo are emerging, including steric 

trap, fluorescence resonance energy transfer (FRET), TOXCAT, and GALLEX.
28-31

  

Finally, obtaining of the monomeric form of an otherwise stable oligomer without 

affecting the tertiary folding is also challenging. Despite of these difficulties, the 

assembly process and functional role of oligomerization have been investigated for 

several α-helical membrane proteins. 
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1.3 Function Roles of Helix Bundle Membrane Protein Oligomerization 

1.3.1 Chloride Channel  

Chloride channels (ClC) play important roles in many cellular functions including the 

regulation of cellular excitability, cell volume, transepithelial transport, and acidification 

of intracellular organelles.
32

 In mammals, there are nine known ClCs distributed in 

different tissues. Clinical studied have shown that mutations of ClC channels are 

correlated with many human inherited diseases.
33

 ClC genes have also been identified in 

prokaryotic cells.  Based on the mechanism of its function, ClC family proteins could be 

categorized into two subclasses--ion channels and exchange transporters.
34

 In ion 

channels, free chloride ion could diffuse through the center pore down the 

electrochemical gradient. In exchange transporters, the proton gradient across the cell 

membrane is exploited by the protein to move chloride against its electrochemical 

gradient. Both channels and transporters share similar structure organization. 

The sequence conservation among ClC family proteins is low, but their structural 

architectures are similar. Compared with eukaryotic ClCs, the bacterial homologues lack 

the large C-terminal domain but maintain the minimal functional unit of a ClC protein. 

The ClC transporter from Escherichia coli (ClC-ec) has been purified and reconstituted 

into lipid bilayers.
35, 36

 The projection structure of ClC-ec has been obtained from cryo-

electron microscopy in 2001, which reveals a dimeric complex.
36

 The first crystal 

structure of the chloride channel from S. typhimurium (ClC-st) and Escherichia coli 

(ClC-ec) were reported by Raimund et al. shortly after.
37

 The structure of ClC-ec is 

essentially the same as that of the ClC-st, although their primary sequences only have 20% 

similarity. Each subunit of ClC-ec contains 18-helics and crosses the membrane with a 
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titled angle (Figure 1.4A).  Each subunit contains its own chloride binding site and ion 

translocation pathway. The dimer interface is approximately 1200 Å
2
. Interaction 

between Leu and Ile side chains is the major stabilizing force for dimerization. No 

hydrogen bond or salt bridge has been observed at the dimer interface. 

In an effort to create ClC monomers, Robertson et al. developed a “warts and hooks” 

strategy to destabilize the dimeric structure.
38

 They introduced Trp mutations on the 

subunit interface near the position of the lipid head groups. Trp is usually found at the 

extracullular or intracellular ends of transmembrane α-helices, and therefore has been 

assumed to serve as floats to anchor the helices into the membrane. By replacing Leu and 

Ile with Trp, the authors expected to disrupt the dimer structure while stabilize the 

resultant monomer. Among the mutants created, a double mutant (I201W/I422W, 

denoted as WW), completely dissociated into monomer (Figure 1.4B). WW is partially 

functional. The Cl
-
/H

+
 exchange stoichiometry of transport conducted by WW is the 

same as that conducted by the wild type protein, while the Cl
-
 efflux rate of WW reduces 

to half of the wild type level. The crystal structure of WW mutant has been obtained, 

which is very similar to the structure of individual subunit in a WT dimer. 

Mutations in ClC at the dimer interface lead to several diseases. To date, 148 ClC-5 

mutations have been reported in patients with Dent’s disease.
39

 The majority of these 

mutations have been located at the dimer interface.
40

 Effects of these mutations include 

defective or delayed protein processing and decreased stability of the mature protein.
41

 

Interestingly, several mutations without apparent defect in processing or stability lead to 

altered chloride conduction. Although the quaternary structure of these mutants ClC-5 is 
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unknown, it is tempting to speculate that the mutation could have led to dimer 

dissociation and affected channel regulation. Similarly, many of mutations that alter the 

function of ClC-1 have been located to the dimer interface, which lead to a dramatic shift 

in the voltage dependence of channel activation.
42

 Mutations introduced at the subunit 

interface in ClC-0 also lead to altered gating.
43

  

 

Figure 1.4 A. Structure of ClC-ec dimer (Protein Data Bank ID 1KPK ).
37

 B. Zoom in 

view of the dimer interface of ClC-ec (box in A) with residues I201 and I422 highlighted. 

The structure was generated using PYMOL. 

1.3.2 Na
+
/H

+
 Channel 

Na
+
/H

+
 channels are a large family of integral membrane proteins which allow the 

diffusion of monovalent cations H
+
 and Na

+
 across biological membranes.  They regulate 

the intracellular pH, Na
+
 concentration, and volume of cells.

44
 Two subfamilies of Na

+
/H

+
 

channel, NHE (Na
+
-H

+
 exchanger) and NHA (Na

+
-H

+ 
antiporter), spread widely in all 

kingdoms of life, ranging from bacterial to human cells. In mammalian cells, NHE family 



12 

 

has nine isoforms (NHE1-9) presenting in different tissues.
45

 Among them, NHE1 is the 

most widely expressed in the cytoplasmic membrane. It exchanges an intracellular H
+
 for 

an extracellular Na
+
 to control intracellular pH. Dysfunction of NHE1 has been 

associated with health issues including cancer, heart failure, and kidney disease.
44

.  In 

plant cells, the deletion of Na
+
/H

+ 
antiporter gene decreases the plant’s salt tolerance 

while over-expression of these transporters yields salt resistant plants.
46

 In bacteria, 

function of the Na
+
/H

+ 
antiporters is critical for their growth at alkaline pH and high salt 

condition. 
47

   

Escherichia coli NhaA is the most extensively studied protein in this family. The activity 

of NhaA is pH dependent. It has maximum activity at pH 8.5 and no activity at pH 6.5. It 

plays an essential role for the homeostasis of Na
+
 and H

+
 in Escherichia coli. The crystal 

structure of NhaA at pH 4.0 was obtained in 2005.
48

 The protein contains 12 

transmembrane helices, with both N and C-termini facing the periplasm (Figure 1.5A).  

NhaA exists as a monomer in the crystal. However, several other studies of NhaA in 2D 

crystals and reconstituted proteoliposomes indicate that NhaA is a dimer.
49-51

.  Finally, a 

high-resolution structure of NhaA dimer is obtained through an electron paramagnetic 

resonance study, which reveals two points of contact between two subunits in a dimer 

(Figure 1.5B).
52

 NhaA contains a double-stranded β hairpin loop close to the level of 

lipid bilayer head groups at the periplasmic side, far away from the active site. The 

deletion of the β-hairpin leads to a monomeric mutant ∆P45-N58.
53

 When reconstituted 

in proteoliposomes, the ∆P45-N58 mutant and the wild type NhaA have similar transport 

activity and response to pH regulation, which indicates that monomeric NhaA is the 

functional unit. Defect in the function of the monomeric mutant was only apparent under 
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the extreme stress condition, at which point the growth of the cells with monomeric 

NhaA is greatly reduced while the cells containing wild type dimeric NhaA is not 

affected. Furthermore, apparent Km for Na
+
 of Δ(P45-N58) increased 50-fold as 

compared with the wild type protein, indicating that the affinity of a monomer to the 

substrate is much weaker.
54

 Dimerization has been shown to greatly improve the 

thermostability of NhaA as compared to that of the monomer, suggesting that the 

increased stability might play certain roles in the observed functional difference between 

monomer and dimer under extreme stress conditions. 

 

Figure 1.5 A. Structure of NhaA monomer (Protein Data Bank ID 1ZCD).
48

 The β loop 

and residues critical for dimerization are shown in red.  B. Structure of dimeric NhaA. 

The structure was generated using PYMOL. 

Additional cysteine-scanning study of the β-hairpin revealed a stretch of three residues, 

Q47, L48, and R49, to be critical for the dimerization of NhaA.
54

 Similarly, a cysteine-

scanning study of the β-hairpin has also been conducted on NhaA from Helicobacter 

pylori.
55

 The mutant Q58C in the β hairpin loop forms an intermolecular disulfide bond, 

which is expected to stabilize the dimer and increase the activity. However, the Q58C 
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mutant is nonfunctional under a non-reducing condition, and the activity can be restored 

under a reducing condition. This observation suggests that a flexible association between 

the two subunits in a dimer is necessary for NhaA to function.  

1.3.3 Osmoregulated Transporters 

Osmolytes are a class of highly polar organic compounds ubiquitously used by living 

organisms to maintain cell volume and fluid balance.
56

 Osmolytes also stabilize 

intracellular proteins against denaturation.
57

 Common osmolytes include betaine, taurine, 

sarcosine, and trimethylglycine.  Among them, betaine is widely used for osmoregulation 

in bacteria, plant, and human cells. Many organisms can not synthesize osmolytes. 

Instead, they express highly efficient transporters to import osmolytes from the 

extracellular environment. The osmoregulated betaine transporter BetP from 

Corynebacterium glutamicum is a well-characterized model protein to investigate the 

osmolytes transport across cell membrane. Coupled with two Na
+
 ions, one molecule of 

betaine is specifically imported by BetP. BetP is activated specifically by a change of 

internal K
+
 concentration. 

The first BetP crystal structure has been reported by Ressl et al.
58

 It exits as a symmetric 

trimer, with twelve transmembrane helices and a curved helix 7 along the periplasm 

membrane surfaces (Figure 1.6A). The C-terminal domain of BetP contains a long α-

helix, which acts as a senor for the cytoplasmic K
+ 

concentration and regulates the uptake 

of betaine.  The interface of subunit interaction is composed of the transmembrane helix 

2 and the amphipathic helix 7 on the periplasmic side. In a later study, BetP has been 

showed to exist as an asymmetric trimer in 2D crystals, suggesting a coupling interaction 
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between protomers in a trimer.
59

 More recently BetP has been crystalized as asymmetric 

trimers in two different conformations, which reveals three distinct transport states.
60

  

 

Figure 1.6 Oligomer of BetP. A. BetP trimer (Protein Data Bank ID 2W8A.
56

 B. Zoom in 

picture of important interface residue W101 and T351. The structure was generated using 

PYMOL. 

To probe the functional importance of trimerization, Camilo et al. created a well-folded 

monomeric BetP. The in silico alanine scanning has been used as a prediction method to 

investigate the association energy contributed from each residue on the subunits 

interfaces.
62

 Two residues were identified as making critical contributions to inter-subunit 

interaction, T351 and W101. T351 locates in transmembrane helix 7 and contributes to 

multiple hydrogen bonds and van der Waals interactions with residues form the 

neighboring subunit. W101 in transmembrane helix 2 makes hydrophobic contacts with 

residues in helix 7 from the adjacent subunit (Figure 1.6B). When mutated individually, 

both T351A and W101A are mostly trimers. However, the double mutation 

T351A/W101A drastically disrupts the trimerization of BetP. This monomeric mutant has 

similar apparent Km as the wild type BetP and retains the ability to accumulate betaine.  
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However, it is no longer regulated, behaving similarly as a trimer formed from truncated 

BetP monomers lacking the C-terminal sensing domain. 

1.3.4 Aquaglyceroporin  

Aquaporins are a family of membrane proteins that regulate the flow of water across the 

cell membrane.
63

 Aquaporins found in bacterial, plant and human are genetically 

conserved and structurally similar. Aquaglyceroporin are a subfamily of aquaporins that 

regulate the flow of glycerol, water and small uncharged organic molecules. 

Aquaglyceroporins-glycerol facilitator (GlpF) from Escherichia coli is an extensively 

studied example in this family. GlpF conducts urea, glycine, DL-glyceraldehyde and 

several other linear carbohydrates, but not cyclized carbohydrates. The first crystal 

structure of GlpF was determined by Fu et al.
64

 It crystallized as a tetramer, with three 

glycerol molecules bound to each subunit (Figure 1.7A). Each subunit folds into an α-

helical bundle, with a central channel surrounded by six transmembrane helices and two 

half-spanning helices. Two Mg
2+

 ions were identified in the center of the tertramer 

interface close to the periplasmic side. The coordination shell of Mg
2+

 includes water and 

residues E42 and W43 (Figure 1.7B). 

Cymer and Schneider speculated that E42 or W43 were involved in the tertramerization 

of GlpF and created mutants in which E42 or W43 were replaced by different amino 

acids.
65

 The oligomerization propensity of wide type and the mutated GlpFs were 

measured using an in vivo GALLEX assay developed by the Engelman group.
31

 The 

GALLEX assay couples the target protein oligomerization with a decrease of protein 

expression from the reporter gene (lacZ). The β-galactosidase activity is used as readout 
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of oligomerization propensity. With this method, Cymer and Schneider found that 

mutation of W43 had little effect on GlpF oligomerization.
65

 However, the replacement 

of E42 with Ala, Thr, or Cys greatly reduces the tetramer propensity. Compared with 

wild type GlpF, the mutant GlpFE43A has decreased transport activity and is degraded 

much faster in cell. Tetrameric GlpF is more active and stable in vivo. The authors 

suggest that cations such as Mg
2+ 

coordinate with GlpF in vivo to stabilize the tetramer. 

Later in vitro studies revealed that the unfolding of tetrameric GlpF followed two stages: 

tetrameric GlpF first dissociated into dimeric units, followed by the dissociation into 

monomers.
66

 These results suggest that dimer is an intermediate state in the process of 

GlpF tetramerization in vivo.   

 

Figure 1.7 A. Structure of GlpF tetramer with glycerol bound. (Protein Data Bank ID 

1FX8 ).
64

 B. The zoom in picture of interface residues E42 and W43 coordinated with a 

magnesium cation. The structure was generated using PYMOL. 
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1.3.5 Potassium Channel  

Potassium channels conduct the flow of K
+
 with high specificity.

67
 Much insight of the 

structure and function of this family protein has been obtained from studies on a bacterial 

potassium channel—KcsA from Streptomyces lividans. A truncated version of KcsA, 

with the fragments at the N-terminus (the first 22 residues) and C-terminus (the last 30 

residues) removed, has been crystallized in the presence of 150 mM K
+
 at pH 7.5.

68
 Later 

EPR studies reveal that the C-terminal and N-terminal fragments form a bundle of α-

helices in the cytoplasm.
69

 KcsA is a tetramer and each subunit contains two 

transmembrane helices (Figure 1.8). The sequence connecting the two transmembrane 

helices is named P-loop, which forms the selection filter. The motif sequence TVGYG in 

the P-loop adopts an extended conformation and their backbone oxygen atoms face 

toward the pore center. K
+
 ion is coordinated by these oxygen atoms while passing 

through the channel. The structure suggests that the coordination of potassium ion by the 

cation-oxygen interactions may contribute to the tetramer stability.  

Krishnan et al. measured the effect of different cations on the thermal stability of KcsA 

tetramer using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-

PAGE).
70

 The presence of substrate K
+
 improves the thermal stability of KcsA tetramer, 

while non-substrate cations including Li
+
, Na

+
, and Tris

+
 destabilizes the tetramer. In 

addition, a mutation of residues in the TVGYG motif also reduces the tetramer stability 

as well as compromising the potassium conducting activity.
71

 These results indicate that 

the interfacial pore at the four-fold axis of the tetramer is not only an important ion 

translocation pathway, but also involved in tetramerization. The KcsA tetramerization 

process has been monitored in vivo through a pulse chase experiment.
72

 The assembly of 
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membrane inserted KcsA monomers to tetramers has been shown to be a rapid and 

efficient process. Tetrameric species could be detected immediately after the 30 sec pulse 

labeling step at a monomer to tetramer ratio of 0.6, indicating that more than 60% of 

KscA synthesized during the 30 sec window has already tetramerized. The monomer to 

tetramer ratio drops to 0.2 ten min after the chase and maintained stable afterward. 

Interestingly, the authors also discovered that the proton motive force is required for 

efficient KcsA tetramerization.
72

 More recently, Molina et al. found that the cytoplasmic 

C-terminal domain of KcsA plays an important role during the assembly of KcsA 

tetramer.
73

 However, once assembled, the tetramer stability is not affected by the 

truncation of the C-terminal domain. Finally, KcsA without the C-terminal domain has 

been shown to tetramerize efficiently into lipid bilayers in vitro. These results indicate 

that the role of the C-terminal domain is to promote the initial subunit association during 

tetramerization in vivo.  

 

Figure 1.8 A. Structure of KcsA tetramer with bound potassium. (Protein Data Bank ID 

1BL8).
68

 B. The zoom in view of the TVGYG motif with bound potassium cation. The 

structure was generated using PYMOL.  
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1.4 Why Membrane Proteins Form Homo-oligomers 

Why membrane proteins form homo-oligomers? Several functional roles of 

oligomerization have emerged from case studies of model systems. First, for certain 

proteins oligomerization is essential for the architectural purpose. The active sites or 

translocation pathway of the protein is located at the inter-subunit surface. The potassium 

channel KcsA is such an example—the translocation pathway of the channel is at the 

center of the tetramer. Second, oligomerization could provide increased structural 

stability against denaturation and degradation. Oligomerization reduces the specific 

surface area of a protein. Exposed protein surface is vulnerable to protease digestion and 

chemical modification. It is a common observation that protein oligomers are digested 

much slower than the corresponding monomers. In addition, the reduction of specific 

surface area decreases the amount of solvent molecules necessary to hydrate the protein, 

which is an important entropic factor for protein stability. Therefore, oligomers are 

usually thermodynamically more stable than the corresponding monomers. Third, 

oligomerization creates additional opportunities for allosteric regulation. Each subunit in 

a homo-oligomer may have an identical binding site for the ligands. The sequential 

binding and occupation of a site in one subunit may affect the binding of the neighboring 

subunit. For many secondary transporters such as ClC, NhaA, and BetP, while the 

functional unit is a monomer, the oligomeric organization is important for the regulation 

of protein function in vivo.  

In summary, while membrane protein oligomerization remains a challenging field of 

study, immense progress has been made to elucidate the functional role and assembly 

progress of membrane protein oligomers. Based on a limited number of case studies, 
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oligomerization has been shown to play roles including architectural support, structure-

stabilization, and allosteric regulation and activation.
74-77

 Proteins rarely function alone in 

biological systems. How protein subunits recognize and interact with each other is a 

fundamental question in protein science. The exploration of structure and functional 

mechanism of membrane proteins lags far behind those of soluble proteins. With the 

advance of experimental techniques and collective efforts of many research groups, new 

and exciting discoveries on how membrane proteins work are emerging at an 

unprecedented rate.  The recent award of the Nobel Prize in Chemistry to Drs. Robert J. 

Lefkowitz and Brian K. Kobilka for their work on G-protein coupled receptors is a great 

recognition of the importance of membrane proteins. Without these amazing proteins, 

cells would be isolated islands that could not survive and adapt to the ever changing 

environment. 
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1.5 Major Multidrug Resistant Transporter Families 

The emergence of bacterial infection involving drug-resistant strains is a serious issue for 

human health. The wide spread drug resistance among pathogens drastically reduced the 

efficacy of current therapeutic treatments. One of the resistance mechanisms is the 

expression of efflux pumps to export antibiotic out of bacteria. Multidrug resistant (MDR) 

transporters are one kind of the efflux pumps. It can actively recognize and extrude a 

broad spectrum of structurally diverse chemical compounds. Over-expression of those 

MDR pumps by bacteria has been observed in multidrug resistance infections, and thus 

presents serious health problems. 

Based on structures, bacterial multidrug efflux transporters can be divided into five major 

families (Figure 1.9): (1) Resistance nodulation cell division (RND), (2) Major facilitator 

superfamily (MFS), (3) Small multidrug resistance (SMR), (4) Multidrug and toxic 

compound extrusion (MATE) and (5) ATP-binding cassette (ABC) family. The functions 

of first three families of transporters (RND, MFS and SMR) are driven by the proton 

gradient across the inner membrane. MATE family transporters are powered by the 

sodium gradient. ATP- binding cassette family transporters  hydrolyze ATP as an energy 

source.
78

 

 Each family has their respective energy source and selection of substrates. A single 

organism can express MDR transporters from more than one family. Different MDR 

transporters belonging to the same family could also be expressed in one organism. For 

example, Escherichia coli expresses AcrAB-TolC (one type of RND family), EmrE (one 

type of SMR family) and MacAB-TolC (one type of ABC family) simultaneously; 

AcrEF-TolC (belongs to RND family) is also expressed in Escherichia coli.  
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Figure 1.9 Five major families of multi-drug resistant transporter. 

1.5.1 RND family  

 RND family multidrug resistant pumps are prevalent among Gram-negative species and 

major contributors for MDR drug resistance. The functional MDR complex is composed 

of three proteins: an inner membrane protein, an outer membrane protein and a 

membrane fusion protein in the periplasm (Figure 1.9). The inner membrane protein 

captures drugs and provides energy for the entire system, the outer membrane protein 

interacts with inner membrane protein in the periplasm and helps to extrude drugs out of 

cells, and the membrane fusion protein assists with the docking and interaction between 

the inner and outer membrane proteins. Each of the three components is essential for drug 

efflux, and absence of one component makes the system nonfunctional. The tripartite 

complex allows the direct efflux of drug outside of cell. The AcrAB-TolC system in 

Escherichia coli and MexAB-OprM in Pseudomonas aeruginosa are the representative 

examples of this family.
79

 Except for efflux of antibiotics, RND family like MexAB-

Oprm in Pseudomonas aeruginosa could export virulence determinants which allowed 
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bacteria to be invasive and cause infection
80

; AcrAB-TolC system in Escherichia coli has 

also been found to export signal molecules for bacterial quorum sensing (communication 

between bacterial cells), which stimulated the bacterial growth density.
81

 In addition, 

some types of RND transporter protect gram-negative bacteria against toxic heavy metal. 

Efflux system CusCBA in Escherichia coli is responsible for extruding of Cu(I) and Ag(I) 

ions.
82

 

1.5.2 MFS family 

The MFS family transporters exist in both Gram-positive and Gram-negative bacteria. 

The QacA from Staphylococcus aureus is the first identified example in this family.
83

 

Other examples include NorA from Staphylococcus aureas, LmrP from Lactococcus 

lactis, MdfA and EmrD  from Escherichia coli, and Bmr from Bacillus subtilis. Those 

pumps actively extrude monocationic biocides and dyes, such as benzalkonium chloride, 

cetyltrimethylammonium bromide, and ethidium bromide.
84

 Among MFS transporters, 

the crystal structure of EmrD from Escherichia coli has been solved, which reveals the 

structural-based transport mechanism of this family.
85

 It crystallized as a monomer with 

12 transmembrane helices (Figure 1.10).  It was suggested that drugs could be facilitated 

through the hydrophobic internal cavity of EmrD from the cytoplasm coupled with proton 

antiport.   
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Figure 1.10  EmrD monomer (Protein Data Bank ID 2GFP)
85

. 

1.5.3 SMR family  

The SMR family, one of the smallest transporters in nature (amino acid length ranged 

from 100-140) also exists in both Gram-positive and Gram-negative bacteria. The 

substrates of this family include cetylpridinium, tetraphenyl phosphonium, ethidium, 

methyl vilogen and benzalkonium.
86

 EmrE from Escherichia coli is the model protein 

from this family. EmrE forms a dimer in the inner membrane and can cooperate with 

AcrAB-TolC to remove toxic compounds.
87

 Toxic compound such as ethidium is 

extruded from the cytoplasm to periplasm by EmrE. AcrAB-TolC captures those 

compounds in the periplasm and extrudes it out of the cell. Based on the structure of 

EmrE, there is one charged residues E14 in the EmrE transmembrane domain, which is 

proposed to bind with protons, or stabilize the positive charge of polyaromatic cation 

substrate in the deprotonated state. The crystal structure of apo and substrate bound EmrE 

was solved by Chen et al.
88

 However, the active form in vivo (parallel dimer or 

antiparaller dimer) of the protein is still under debate (Figure 1.11). Recently, Morrison et 

Periplas

m 

Cytoplasm 
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al. conducted solution NMR and FRET experiments to study substrate-bound EmrE in 

micelles in vitro. They revealed that the monomers in dimeric EmrE were antiparallel and 

functional residues in the active site were asymmetric.
89

 Pilar et al. found that the 

antiparallel dimeric EmrE was more stable than the parallel one, which suggested that 

antiparallel dimer might be the functional form of the protein.
90

   

 

Figure 1.11 Two dimeric forms (parallel and antiparallel) of EmrE.  

1.5.4 MATE family 

The MATE is the most recently established among the five major families. NorM from 

Vibrio parahaemolyticus is the first multidrug resistant transporter categorized in the 

MATE family.
91

 The crystal structure of NorM from Vibrio cholerae  was determined by 

He et al.
92

 It consists of 12 trans-membrane helices and an Rb
+
 binding site is identified 

in the structure (Figure 1.12). It adopts an outward-facing conformation open to the 

outer-leaflet of the membrane. A substrate transport mechanism has been proposed based 

on this structure: cation binds in the conserved pocket in the outward facing conformation, 

which induces a structural change to the inward-facing conformation suitable for 

capturing the substrate. Substrate binding will change NorM back to outward-facing 

conformation followed by the export of the substrate to the medium.   
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Figure 1.12  Structure of Norm. A.  Norm Monomer (Protein Data Bank ID 3MKU) 
92

  B. 

Zoom in picture of cation binding domain. The structure was generated with PYMOL. 

1.5.5 ABC family 

ABC transporters are a large family. Approximately 5% of the entire Escherichia coli 

genome encodes ABC transporters.
93

 In mammalian cells, ABC multidrug transporter 

like P-glycoprotein in cancer cells extrudes anti-tumor drugs during chemotherapy.
94

 

Established role of bacterial ABC multidrug transporter is limited.
84

 LmrA from gram-

positive bacteria Lactococcus lactis was the first identified bacterial ABC-type MDR 

transporter.
95

 LmrA conferred a broad spectrum of antibiotics resistance when it was 

expressed in  Escherichia coli.
96

 Sav 1866 from Staphylococcus aureus is the first 

bacterial multidrug ABC transporter crystallized.
97

 The protein is crystallized as a 

homodimer with an outward-facing conformation and with bound ADP. Like most ABC 

transporters, Sav 1866 consists of two trans-membrane domains which provide a 

substrate translocation pathway, and two cytoplasm nucleotide-binding domains which 
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hydrolyze ATP to drive the pump (Figure 1.13). Based on the structure, drug transport 

was proposed to invoke two stages: the drug binds to the protein from the cell interior in 

an inward-facing conformation; the energy from hydrolysis of ATP drives the protein to 

an outward-facing conformation and extrude the drug to the external medium. Next, ATP 

binding returns the protein conformation to an inward-facing conformation. MacAB-

TolC efflux system is an ABC-type transporter in gram-negative bacteria. Similar to 

AcrAB-TolC from RND family, MacB is the inner membrane protein, MacA a 

membrane fusion protein and TolC an out-membrane component. Experiments showed 

that the ATP binding to MacB stimulated the association between MacB and MacA, and 

assembly of MacAB stabilized the ATP-bound conformation of MacB.
98, 99

  

 

Figure 1.13 Structure of Sav 1866 A.  Sav 1866 Dimer (Protein Data Bank ID 2ONJ),
97

 

TMDs stands trans-membrane domains; NBDs for nucleotide binding domains. B. Zoom 

in picture of ADP binding domain. The structure was generated with PYMOL. 
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1.6 Introduction of AcrB  

AcrAB-TolC is one of the most well characterized RND efflux transporter systems in 

Gram-negative bacteria (Figure 1.14). AcrB is an inner membrane protein, AcrA a 

membrane fusion protein and TolC an outermembrane protein. AcrA was the first protein 

in the complex that drew researchers’ attention. The mutation of gene acrA of 

Eschereichia coli was firstly identified to make the host strain hyper-susceptible to 

acridine dyes.
100

 Further studies showed that mutations at this locus also make the strain 

susceptibility to other basic dyes, detergents, and certain antibiotics.
101

 Ma et al. first 

cloned and characterized acrB (formerly called acrE) gene of Eschereichia coli, a 

neighbor gene to acrA.
102

 Primary protein sequence aligned with a known toxic metal 

cation efflux transporter EnvD, AcrB was predicted as a transmembrane protein and 

involved in the drug susceptibilities. Over-expression of AcrAB increased levels of 

bacterial resistance to a number of chemical agents, which demonstrated that the acrAB 

gene codes for the multi-drug resistant pump.
103

 In light of the structure of the hemolysin 

transporter system HlyBD-TolC (AcrB is the homologue of transmembrane protein HlyB; 

AcrA is the homologue of putative accessory protein HlyD), TolC was late proved to be 

required for the function of AcrAB efflux pump.
104

 AcrAB-TolC pump complex has a 

wide a range of substrate specificity (Figure 1.15), such as dyes (acriflavine, rhodamine 

6G and ethidium bromide), antibiotics (β-lactams, tetracyclines, novobiocin and 

erythromycin but not aminoglycosieds), detergents (SDS and Trition X-100), other 

organic chemicals (tetraphenylphosphonium and hydroxylated polychlorinated biphenyl) 

and even organic solvent (cyclohexane, hexane, heptanes octane and nonane).
105, 106
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Figure 1.14 The surface structures of AcrA, AcrB and TolC and their locations in the cell. 

(Protein Data Bank ID: AcrA 1F1M, AcrB 2DHH, and TolC 1EK9). The structure was 

generated with PYMOL. 
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Figure 1.15 Selected substrates of the AcrAB-TolC efflux system. 
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1.6.1 Mechanism of Drug Extrusion  

 

The first AcrB crystal structure is determined by Murakami et al. in 2002.
107

 AcrB was 

crystallized as a symmetric homo-trimer. Each identical subunit has three distinct 

domains: a TolC docking domain, a pore domain, and a transmembrane domain with 12 

transmembrane helices. The pore and TolC docking domain protrudes over 70 Å into the 

periplasm and suggests a direct interaction between AcrB and TolC, which creates an 

inter-membrane channel for drug extrusion (Figure 1.16). A central cavity was formed 

among the interfaces of the three subunits. The cavity has three vestibules accessible to 

periplasm. Drug extrusion was original proposed to go through the cavity either from 

cytoplasm or periplasm, and then go out of the cell via TolC. The later cystal structures of 

AcrB with substrates bound in the cavity determined in 2003 seemed to support the 

existence of the central cavity pathway.
108

  

 

Figure 1.16 Structure of AcrB. A. The side view of ribbon structure of AcrB. (Protein 

Data Bank ID: 2DHH) 
61

 B. Top view of ribbon structure of AcrB. The structure was 

generated with PYMOL. 
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In 2006 and 2007, three research groups independently reported the asymmetric 

structures of AcrB, which indicated a conformational cycling model for drug transport 

(Figure 1.17A).
61, 109, 110

 Murakami et al. co-crystallized AcrB with minocyclin, 9-bromo-

minocyclin and doxorubincin, found only one subunit in each trimer bound with a drug 

molecule. The conformation of each subunit was different and the binding site was 

located in the periplasmic domain of AcrB. Based on those different conformations, the 

subunits were designated as access, binding and extrusion state, respectively. By 

comparison to ATP hydrolysis/synthesis mechanism of the F1-ATPase, a conformational 

rotation mechanism for drug export was proposed. The substrate binds with the subunit at 

the loose state, rotates through the tight and then open state before pumped out of the cell. 

61
 Seeger et al. also obtained asymmetric AcrB crystal structures. They named those 

monomers as loose (L), tight (T) and open (O) states corresponding to access, binding 

and extrusion states in Murakami’s paper. They suggested that the asymmetric subunits 

represent different stages of the pump cycles. From those structures, they proposed a 

model as “Peristaltic Pump Mechanism” for the functional AcrB, which was close to the 

conformational rotation model by Murakami.
109

 Sennhauser et al. used a Designed 

Ankirin Repeat Protein (DARPin) to co-crystallize with AcrB and obtained another 

asymmetric structure at the highest resolution of 2.5 Å. The stoichiometry of AcrB-

DARPin complex was 3:2, and the DARPin was shown to stabilize the intermediates 

conformation in the transport cycles which supported a rotary mechanism for AcrB drug 

transport.
110
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Figure 1.17 Rotation mechanism of AcrB. A. The rotational drug transport mechanism of 

AcrB. B. The proposed conformation change of proton translocation during the rotational 

drug transport process 

Nikaido’s and Pos’s research groups used engineered disulfide bond to confirm 

functional rotation mechanism of multidrug efflux pump AcrB in vivo.
111, 112

 Based on 

the asymmetric crystal structure of AcrB that the large external cleft in the periplasmic 

domain of AcrB is wide open in the bind state but completely closed in the extrusion state, 

Nikaido constructed two intra-disulfide pairs in the external cleft and interface in one 

subunit. And they found that the formation of disulfide bond restricted the conformation 

change of AcrB and inactivated the pump function. Pos group incorporated several 

cysteine pairs in the moving domain between the subunits to make inter-disulfide bond. 
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The cross-link due to the disulfide bond deactivated the pump, and pump activity could 

be restored after reduction of disulfide cross-link.   

In order to learn more about the dynamics of the rotational function model, computer 

modeling and molecular dynamics simulation were applied to gain more detailed 

information about the pumping mechanism at the molecular level. Schulz et al. calculated 

and found that conformation change of subunit helped the drug release from the binding 

pocket and approach the gate to the central funnel.
113

 Yao et al. used a new coarse-grain 

molecular simulation technique to probe the asymmetric structure AcrB. They found the 

allosteric coupling between the subunits stabilized the asymmetric structure.
114

 Wang et 

al. observed the conformational coupling between the monomers of AcrB, and the 

trimeric assembly of AcrB was strengthened through the coupling effect between the 

transmembrane domain and other parts of AcrB.
115

  

The drugs transported from the cell to the outside via AcrAB-TolC system were coupled 

with proton translocation from the periplasm to cytoplasm. Through the comparison of 

the amino acid sequence of RND toxic cation efflux pump CzcA and other RND pumps, 

several conserved charged residues were found in the transmembrane domain. Mutation 

of those residues abolished the pump functionality.
116

 The site-directed mutagenesis of 

MexB, an analogue of AcrB, revealed residues D407, D408 and K940 were essential for 

the pump function, which suggested a proton-network formation from those residues.
117

 

The first crystal structure of AcrB confirmed that the ion pairs were formed among D407, 

D408 and K940.
107

 T978 and R971, which were the other components for the network in 

the transmembrane domain, were also identified through site-directed mutagenesis study 

http://phys.org/tags/molecular+simulation/
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of AcrB.
118

 The asymmetric structures of AcrB showed the different configuration of 

those residues in the three subunits.
61, 109

 In the access and binding state of subunits, there 

was a tight association among D407, D408, K940 and T978. In the extrusion state of 

subunit, the association collapsed and the side chain of K940 was tilted to form a polar 

contact with T978. The proton is proposed to be bound to D407 or D408 in the extrusion 

state and the bound proton dissociate when the extrusion state rotated to the access state 

(1.17B).
119

 From those findings, it was suggested that the proton traveled from the 

periplasm to the cytoplasm and changed the configuration of those charged residues. And 

the configuration change of those charged residues upon protonation and de-protonation 

affect the drug-binding domain in the perplasm and promote the rotation of the pump. To 

prove this model in vivo, Takatsuka and Nikaido constructed a giant gene in which three 

monomeric AcrB were covalently linked into a trimer, which could be expressed in a 

∆acrB strain and showed resistance activity to some toxic compounds.
120

 When D407 

was replaced with Ala in one subunit of the fused AcrB, the function of the transporter 

was completely lost. This result suggested that the function of each subunit was coupled 

and driven by proton translocation through the transmembrane of AcrB.  

One puzzle about AcrB is how the protein recognizes structurally different substrates. So 

far, drug-bound crystal structures, site-directed mutagenesis studies and computer 

modeling have begun to draw a picture about the binding pocket and path for substrates 

transport. The first set of drug-bound AcrB crystal structures showed that the substrates 

bound in the central cavity of AcrB, which suggested that the drugs were taken up from 

the vestibules, went through the central cavity and pore of AcrB, and finally escaped 

from the funnel-like opening at the top of the AcrB trimer to the TolC channel.
108
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Murakami et al. conducted cysteine scanning to the residues in the pore area. Two 

mutants V105C and D112C decreased pump activity, which suggested that the 

conformation of the pore changed during the transport process.
121

 However, site-directed 

mutagenesis of residues within the central cavity around substrate binding area did not 

change the AcrB activity. More recent drug-AcrB complex revealed a new periplasmic 

binding site.
122

 (Figure 1.18) 

 

Figure 1.18 The proposed drug pathways. (Protein Data Bank ID: 2DHH)
61

 The structure 

was generated with PYMOL. 

The asymmetric AcrB crystal structures reveal a new hydrophobic pocket defined by a 

cluster of phenylalanines including 136, 178, 610, 615, 617, and 628 (Figure 1.19).
61, 109, 

110
 Site-directed mutation of those phenylalanines to alanines combined with drug 
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susceptibilities assay revealed an important role of F610 for the substrate extrusion 

process. The mutant F610A dramatically decreased the pump functionality and increased 

the drug susceptibilities of bacterial.
123

 Targeted molecular simulation study suggested 

that the subtle interaction between the substrate and F610 determine the functionality of 

the pump.
124

  

 

Figure 1.19 Phenylalanines cluster region of binding pocket. A. The side view of ribbon 

structure of drug bound AcrB. (Protein Data Bank ID: 2DHH)
61

 B. Zoom in picture of 

phenylalanines cluster region for the binding pocket. The structure was generated with 

PYMOL. 

Based on the asymmetric crystal structure of AcrB, Takatuska et al. used computer 

docking to evaluate the interaction between the binding pocket and the substrates. 

Depending on the molecule structure of the substrates, they found that some substrates 

such as doxorubicin, novobiocin and levofloxacin et al. bound to a narrow groove at one 

end of the substrate binding pocket while substrates like ethidium, SDS, and 
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chloramphenicol prefer to bind to a wide cave of the binding pocket.
125

 To map out the 

translocation pathway of substrates through AcrB, Husain and Nikaido devised a 

fluorescence-based whole cell assay.
126

 They changed residues along the predicted 

substrate path into cysteines, and labeled these residues with a low concentration of 

Bodipy FL N-(2-aminoethyl) maleimide which is the substrate of AcrB. The labeling 

reagent traveled through the AcrB channel and covalently reacted with cysteines lining 

up the translocation pathway. The labeled AcrB were purified, resolved on SDS-PAGE 

and visualized with Coomassie stain. The intensity of fluorescence due to the labeling 

could be quantified to determine whether the residues faced the putative drug pathway. 

Those introduced cysteines at location distant from the drug pathway were not labeled. 

Several residues were identified to be part of the drug uptake and extrusion pathway. 

From the labeling results, it was suggested that the substrates were captured in the lower 

cleft region of AcrB, through the binding pocket, gate and to the funnel of AcrB. With 

the same method, they found four residues (S836, E842, L868 and Q872) in the 

vestibules and one residue (G97) in the central cavity could also be labeled with the 

fluorescent reagent, which indicated that substrate might travel through vestibules to the 

central cavity.
127

 The investigation of AcrB homologues MexB revealed that the double 

mutant of conserved residues F4A/F5A, located in the cytoplasm side of the central 

cavity, affected the efflux of compounds to the cytoplasm target but had no effects on 

those with targets in the perplasim, cell walls or membranes.
128

 All those results raised an 

apparent question: does AcrB pick up drugs in the cytoplasm and transport them outside 

of the cell? It is likely that there is an alternative pathway through which drugs could 
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enter from through the cytoplasm. The AcrB homologours protein AcrD has been 

demonstrated to transport aminoglycosides antibiotics from the cytoplasm.
129

 

Recently, crystal structures of AcrB bound with high-molecular-mass drugs rifampicin 

and erythromycin were reported by Nakashima et al.
130

 Those crystal structures revealed 

a new multi-site binding pocket called proximal pocket in the access state. They proposed 

that the high-molecular-mass drugs first bind to the proximal pocket and then forced into 

the distal pocket by a peristaltic mechanism while the low-molecular-mass drugs traveled 

through the proximal pocket without specific binding and bound to the distal pocket. The 

other high resolution crystal structures of AcrB/designed ankyrin repeat protein (DARPin) 

complex bound to the drugs were reported by Eicher et al.
131

 They found that the 

conformation flexibility of loop containing F615 and F617 were important for large 

substrates transport though the AcrB. All those findings further advanced our 

understanding of the broad substrates transport specificity of AcrB. The binding affinity 

between AcrB and its ligands were measured with the fluorescence polarization method 

in vitro.
132

 Fluorescent substrates were titrated with purified AcrB and dissociation 

constants ranged from 5.5 µM for rhodamine 6G to 74 µM for ciprofloxacin. The kinetic 

constants of AcrAB-TolC pump was modeling and calculated by Nikaido group.
133, 134

 

They used AcrB substrate β-lactams antibiotics and built an influx rate model for intact 

cell assay. From the known Km and Vmax of the periplasmic β-lactamase, they calculated 

the periplasmic concentration of β-lactam antibiotics. The rate of drug diffusion into the 

cell (influx rate) could be calculated from periplasmic concentration of β-lactams 

antibiotics. The rate of drug efflux from the cell through AcrAB-TolC pump was the 

difference between the influx rate and the rate of drug hydrolysis by periplasmic β-
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lactamase. From the efflux rate and Michaells-Menten equation, the Km of the pump 

were calculated to be around 3-5 µM.  

1.6.2 Assembly of AcrAB-TolC system 

The crystal structures of AcrB and TolC reveals that they might have a direct interaction 

via their respective periplasmic domains.
107, 135

 The AcrB periplasmic domain extends 70 

Å into the periplasm while the α-helical periplasmic domain of TolC is about 100 Å. The 

AcrB-TolC complex could be cross-linked in vivo with a chemical cross-linking reagent 

dithiobissuccinimidylpropionate (DSP) in the absence of AcrA, which suggests that AcrB 

and TolC existed in close proximity. However, a strong interaction between AcrB and 

TolC could not be detected using isothermal titration calorimetry.
136

 Therefore, the 

interaction between AcrB and TolC was proposed to be stabilized by AcrA. Tamura et al. 

engineered cysteines residues on the β-hairpins of TolC docking domain in AcrB and the 

coiled coils at the tip of TolC. Those cysteines form disulfide bonds in vivo and the 

formation of disulfide bond was not affected by AcrA, or substrates, or a putative proton 

coupling site mutation of AcrB.
137

 Those results indicated a direct interaction between 

AcrB and TolC. Recently, Tikhonova et al. immobilized AcrB, and measured its binding 

to TolC with surface plamon resonance in vitro. The calculated binding affinity was 90 

nM.
138

   

The interaction between AcrB and AcrA was detected through chemical cross-linking 

and co-purification.
136, 139, 140

 The association of AcrB and AcrA was measured to be 10
6
 

M
-1 

with isothermal titration calorimetry. Also, the isothermal titration calorimetry 

analysis revealed that the C-terminal region of AcrB (amino residues from 172-397) had 
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a strong interaction with AcrB.
136

 In another studies, the residues from 290-357 of AcrA 

was replaced with YhiU fragments to form a chimeric construct. The hybrid protein did 

not support efflux function of the AcrAB-TolC.
141

 Furthermore, a single mutant G363C, 

located in the C-terminal region of AcrA, greatly impaired the activity of pump.
142

 Taken 

together, those results emphasized the importance of the C-terminal region of AcrA for 

the interaction of AcrB. However, the crystal structure of AcrA lacks a large portion of N 

or C-terminal region, which were key parts for the interaction to AcrB and TolC.
143

 To 

better understand the intermolecular contacts between AcrA and AcrB, Symmons et al 

used the crystal structures of MexA, a homologue of AcrA, as a model to construct the 

structure of AcrA. The missing region in the AcrA crystal structure was predicted to be a 

β-roll, which was proposed to be involved in the interaction to AcrB. To verify the model, 

a series of chemical cross-linking using chemical cross-linking reagent with different 

length were conducted in vivo by introducing cysteines in both AcrB and AcrA.  Based 

on the results of cross-linking, an optimized docking model between AcrB and AcrA was 

proposed.
144

 Recently, a co-crystal structure of the CusBA, a RND family of metal efflux 

complex, showed detailed contacts between inner membrane transporter CusA 

(homologue to AcrB) and membrane fusion protein CusB (homologue to AcrA).
82

 The 

stoichiometry of the binding between CusA and CusB was 3 to 6. The periplasmic 

domain of CusA was involved in the interaction with CusB. The co-crystal structure of 

CusAB indicated that AcrAB might have the same binding stoichiometry and similar 

periplasmic binding domains.  

The interaction between AcrA and TolC has also been investigated intensively. The AcrA 

could be chemical cross-linked with TolC in the absence of AcrB and the substrates.
145
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The detailed map of perplasmic contacts between AcrA and TolC was achieved with 

chemical specific cross-linkers. Cysteines were introduced to the N-terminal helix of 

coiled coil in AcrA and α-helical barrel domain of TolC, respectively. The cross-linking 

results provided a docking model for the interface contracts between the proteins, which 

suggested that the α-helices of AcrA has a colied-coil interaction with α-helices of TolC 

periplasm domain.
146

 However, the recent chemical cross-linking experiment and 

electron microscopy studies suggested that AcrA interacts with TolC in a tip-to-tip 

manner.
147, 148

 

Overall, the bi-partite AcrB-AcrA, AcrB-TolC and AcrA-TolC interactions have been 

demonstrated in vitro. And in vivo cross-linking studies have shown that either bi-partite 

could be linked in the absence of the third part of the pump. One study shown that the 

substrate of the pump could stabilize the complex formation.
149

 Tikhonova et al. used 

surface plasmon resonance to study the assembly of AcrAB-TolC in vitro.
138

 They 

immobilized AcrB and AcrA on the surface, respectively. They found that the 

dissociation constants for AcrA-AcrB and TolC-AcrB were in the similar nanomolar 

range. But the initial association rate of TolC-AcrB was four fold faster than that of 

AcrA-AcrB.  Those results indicated that AcrB –TolC complex formed first, and AcrA 

interacted with the bi-partite complex to form the tri-partite system.  However, questions 

still remain about how the three components form a functional complex in vivo, what is 

the order for those three parts to assembly, or what are the roles of each individual 

component play in pump assembly. Moreover, the trimeric AcrB was always considered 

as a single unit for the study of AcrAB-TolC assembly. There are fewer studies for the 
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assembly of obligate trimeric AcrB itself. Therefore, in this thesis, I will mainly focus on 

the study of oligomerization of AcrB. 
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Chapter 2 An Invariable Residue P223 Is Critical for AcrB Stability and Function 

2.1 Introduction 

To study the assembly of AcrB, it is necessary to obtain a monomeric AcrB in the cell 

membrane. To obtain a monomeric AcrB, the inter-subunit interactions need to be 

disrupted. After examination of crystal structures of AcrB, our research group identified a 

protruding loop that is important for trimerization. We deleted 17 residues from the loop 

and obtained a mutant-AcrB∆loop (Figure 2.1). The protruding loop appeared to be 

involved in the formation of trimeric AcrB in vivo.
150

  From the crystal structures, the 

protruding loop penetrates into a “tunnel” in the neighboring subunit, and has no direct 

contacts with other domains. We found that AcrB∆loop completely lost its transport 

activity and failed to assembly into timer but remained well-folded with a conformation 

similar to the structure of wild-type AcrB.
151

 These results indicate that AcrB monomers 

could fold independently without the assistance from the neighboring subunits, 

suggesting that oligomerization of AcrB might occur through a three stage pathway: the 

nascent polypeptide chain co-translationally inserts into the lipid membrane, folds into 

monomers, and then well-folded monomers assemble into a function trimer. To further 

investigate which residues in the loop are critical for inter-subunit interaction during 

trimerization, I mutated individual residues in the loop and characterized the effect of 

mutation on AcrB structure and function. Among the loop residues studied, mutation of 

the invariable residue P223 had the most detrimental effect on function.  
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Figure 2.1 Subunit interaction of AcrB. A. The top view of AcrB trimer. The protruding 

loop was highlighted. B. The monomeric AcrB. The green part was the deleted 17 amino 

acids in the protruding loop.
151
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2.2 Materials and Methods 

2.2.1 Materials 

Protein molecular weight marker (Spectra Multicolor High Range Protein Ladder) for 

SDS-PAGE was from Thermo (Rockford, IL). The native protein marker was from 

Invitrogen (name of the product) (Carlsbad, CA). The custom polyclonal rabbit anti-AcrB 

antibody was obtained from GenScript as described (Piscataway, NJ).
151

 All enzymes 

were from New England Biolabs (Ipswich, MA) and all the chemicals from BioWorld 

(Dublin, OH). The parent wild type (BW25113) and AcrB deficient ΔacrB strains were 

obtained from the Yale E.coli genetic stock center. The genotypes of the BW25113 is 

rrnB3 ∆lacZ4784 hsdR514 ∆(araBAD)567 ∆(rhaBAD) 568rph_1; the ∆acrB strain lacks 

the chromosomal acrB gene and is kanamycin resistant.  

2.2.2 Site-Directed Mutagenesis of AcrB  

Mutations were introduced into the acrB gene in plasmid pQE70AcrB followed the 

Quick Change mutagenesis kit protocol (Agilent Technologies). Mutation was confirmed 

by sequencing before transformed into the AcrB deficient BW25113 ΔacrB strains for 

expression.  

2.2.3 Expression and Purification of AcrB and its mutants 

Plasmid pQE70-AcrB was transformed into a ΔacrB strain for protein expression. A 

single colony was picked from a fresh transformed plate and grown with shaking at 37°C 

in 3 ml Luria Bertani (LB) medium containing 100 µg/ml ampicillin for 12 hours. 1 ml of 

this cell culture was used to inoculate 300 ml LB medium containing 100 µg/ml 
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ampicillin and grown overnight. Cells were harvested by centrifugation at 8,000×g for 10 

min. The cell pellet was resuspended in buffer A (20 mM Tris-HCl, 100 mM NaCl, 10 % 

glycerol, 1mM phenylmethanesulfonylfluoride (PMSF), pH 8.0) and sonicated on ice for 

5 min with 10 s on/off intervals. After centrifuged at 15, 000×g for 20 min at 4°C, the 

supernatant was discarded. Pellet was resuspended in buffer B (20 mM Tris-HCl, 100 

mM NaCl, 1% Trition X-100, 10 % glycerol, 1mM PMSF, pH 8.0) and incubated with 

shaking for 1 hour at 4°C, followed by centrifugation at 15,000×g for 20 min at 4°C. The 

supernatant was incubated with the Ni-NTA resin (Qiagen, Huntsville, AL) with shaking 

at 4°C for 1 hour, washed with buffer B containing 50 mM imidazole, and finally eluted 

with buffer B containing 250 mM imidazole 

2.2.4 Drug Susceptibility Assays 

Drug tolerance of several strains with plasmid-borne AcrB and mutants were examined at 

37°C without IPTG induction. The minimum inhibition concentrations (MICs) were 

determined for known AcrB substrates including erythromycin, novobiocin, rhodamine 

6G, tetraphenylphosphonium, SDS and tetracycline. The exponential-phase cultures 

started from a single colony of freshly transformed cells was diluted to a final OD600 of 

0.1 unit with LB broth. 10 μl of this dilute culture was used to inoculate each well of 1 ml 

fresh LB medium in a sterile cultured plate (BD, Franklin Lakes, NJ). The plate was 

incubated at 37°C with shaking at 200 rpm, for 17-18 hours before the OD600 was 

measured. The turbidity visual detection limit was considered as the MIC. Each assay 

was repeated at least three times.  
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2.2.5 Expression Level Analysis with Immunoblotting 

BW25113 ΔacrB strains with the transformed mutant plasmids were grown in Luria-

Bertani medium with ampicillin at 37°C overnight. Cells were harvested, resuspended in 

sodium phosphate buffer (pH 7.4) buffer, and lysed with a French press. Cell debris was 

removed through low-speed centrifugation and membrane vesicles were collected by 

ultracentrifugation at 150,000g for 1hr at 4°C. Membrane vesicles were solubilized in 

sodium phosphate buffer (pH 7.4) with 2% (wt/vol) SDS at room temperature and 

separated on an 8% SDS-PAGE gel. Proteins were transferred to a nitrocellulose 

membrane (Millipore, Bedford, MA) for blotting using a polyclonal anti-AcrB antibody 

as the primary antibody and an alkaline phosphatase-conjugated anti-rabbit antibody 

(Abcam, Cambridge, MA) as the secondary antibody. The protein-antibody conjugates 

were detected after staining using nitroblue tetrazolium chloride and 5-bromo-4-chloro-

3’-indoyl phosphate p-toluidine (Sigma-Aldrich, St. Louis, MO).  

2.2.6 Circular Dichroism (CD) Measurement  

The secondary structure of AcrB and AcrBP223G were characterized with CD spectroscopy 

conducted on JASCO J-810 spectrometer. The protein samples dialyzed into a low salt 

buffer (10 Mm sodium-phosphate, 50 Mm NaCl, 10% glycerol, 0.05% DDM, pH 7.5) 

before the CD measurement. Blank scans were collected using the dialysis buffer. The 

spectrum wavelength scans from 255nm to 195nm in a 1 cm path-length cuvette. The 

thermal stability was assayed at wavelength of 222nm with the increasing temperature 

from 4°C to 98°C, in increments of 1°C at each temperature interval.  
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2.2.7 Blue Native (BN)-PAGE Analysis 

Briefly, blue native loading buffer was added into purified AcrBWT and AcrBP223G at a 

final concentration of 0.1 M 6-aminoocaproic acid, 10 Mm Bis-Tris-HCl, 6% sucrose, 1% 

Coomassie brilliant blue G-250, pH 7.0. The protein samples were load to a 4-20% 

gradient polyacrylamide gel. The electrophoresis was performed using the running buffer 

(25 Mm Tris-HCl, 192 Mm glycine, 0.01% Coomassie brilliant blue G-250, pH 8.3) at 60 

V, in the 4°C refrigerator for 14 hours. The protein bands were visualized after 

Coomassie Blue staining.  

2.2.8 Limited Trypsin Digestion 

The dynamic property of AcrB and its mutant were compared under the limited 

proteolysis condition. Trypsin (Sigma-Aldrich, St. Louis, MO) was mixed with AcrBWT 

or AcrBP223G at the weight ratio of 1:200 in buffer (10 mM sodium-phosphate, 50 mM 

NaCl, 10% glycerol, 0.05% DDM, pH 7.5) at room temperature. At the indicated time 

interval, digestion was quenched with the addition of SDS protein loading buffer and 

PMSF. The samples were resolved on SDS-PAGE.  

2.2.9 Disulfide Trapping 

Disulfide trapping was performed as described.
152

 Briefly, cell pellet from 100 mL 

overnight culture was suspended in a lysis buffer (30 mM iodoacetamide (IAM), 0.5 mM 

phenylmethanesulfonylfluoride (PMSF), 30 mM Tris, 0.5 M NaCl, pH 7.9) and sonicated 

for 15 minutes on ice. The cell lysate was centrifuged. The pellet was then suspended 

again in a buffer containing 1.5% TritonX-100, 10 mM IAM, 0.5 mM PMSF, 30 mM 
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Tris, 0.5 M NaCl (pH 7.9) and sonicated gently at low amplitude for 10 minutes on ice. 

The mixture was then incubated on ice with shaking for 2 hours, followed by 

centrifugation. The supernatant, containing the detergent solubilized AcrB, was collected. 

Imidazole was added into the supernatant to a final concentration of 10 mM to reduce 

non-specific binding during purification. The supernatant was mixed with Ni-NTA 

sepharose resin (Qiagen Inc., Valencia, CA) and rotated for 40 minutes. The suspension 

was packed into an empty column and subsequently washed with wash buffer (1.0% 

Trition X-100, 20 mM Tris, 100 mM NaCl, 50 mM Imidazole pH 7.9). The target protein 

was eluted using an elution buffer (1.0% Trition X-100, 20 mM Tris, 100 mM NaCl, 250 

mM Imidazole pH 7.9). After elution, maleimide (MAL) and SDS were immediately 

added to protein samples to final concentrations of 50 mM and 4% (w/v), respectively. 

The high percentage of SDS denatured the protein and MAL was included as a precaution 

to further block any residual free cysteines. After 30 minutes incubation at room 

temperature, proteins were precipitated using 15% trichloroacetic acid (TCA). After 

centrifugation, the precipitate was washed with cold acetone and then re-solubilized in a 

buffer containing 4% SDS and 50 mM Tris (pH 8.0). The precipitation and washing step 

was used to remove IAM and MAL from the sample. The protein concentrations of 

different AcrB mutant samples were adjusted to the same level by measuring the 

absorbance at 280 nm. Labeling was performed following three steps. First, β-

mercaptoethanol (BME) was added to the samples at a final concentration of 50 mM. The 

samples were then incubated at 37°C for 1 hour. Second, proteins in the samples were 

precipitated using 15% TCA. After centrifugation, the protein pellet was washed using 

ice cold acetone.  Finally, a buffer containing 4% SDS, 50 mM Tris, pH 8.0, and 5 mM 
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N-(5-fluoresceinyl) maleimide (F-MAL) was added immediately to the protein pellet to 

label the newly reduced free thiol groups. The pellet was resuspended using a pipette tip 

and incubated at room temperature for 30 minutes. After the incubation, 10 mM BME 

was added to quench the labeling reaction. The labeled samples were analyzed using 

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) on 8% gels. After the extra 

fluorescence dye migrated out of the gel, the gel was removed and the fluorescence 

image was taken using the Mini-Visionary gel documentation system (FOTODYNE Inc., 

Hartland, WI) under UV light. The same gel was then stained using Coomassie blue stain 

and the image of the gel was taken again under normal white light. 
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2.3 Results 

2.3.1 Construction of P223 Mutants 

The protruding loop of AcrB was composed of 30 amino acid residues (Figure 2.1). 

Through primary sequence alignment with other AcrB homologues and analysis of the 

crystal structure, P223 in the loop attracted our interests for investigation. It was an 

invariable amino acid according to sequence alignments (Figure 2.2). The crystal 

structure of AcrB showed that P223 caused a sharp turn at the tip of the loop (Figure 2.3). 

Proline is a unique amino acid among the twenty common amino acids. The rigidity of 

Pro backbone conformation originates from its cyclic structure. The structure feature of 

the proline played an important role in the functions of many proteins.
153, 154

 Based on 

this analysis, I hypothesize that the rigidity of P223 contributes to the stability of AcrB. 

The P223 was mutated to glycine, alanine, valine, tyrosine and asparagines for side 

chains of various flexibility, length and polarity to exam the importance of P223 on AcrB 

trimer stability.  

 

Figure 2.2 Sequence alignments of loop region of AcrB homologues. AcrB, AcrD and 

YhiV are from E.coli, MexB and MexD from Psudomoas aeruginosa, Ame from 

Agrobacterium tumefaciens, AdeB from Acinetobacter baumannii, CeoB from 
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Burkholderia cenocepacia, and MtrD from Neisseria gonorrhoeae. Asterisks, colons and 

periods indicate identical, conserved and semi-conserved residues, respectively. P223 

was an identical residue in the alignment. The alignment is performed with online T-

Coffee Alignment Tools (http://www.tcoffee.org/Projects/tcoffee/).  

 

Figure 2.3 Crystal structure of AcrB (Protein Data Bank ID 2HRT).
109

 A. AcrB trimer 

with each subunit color coded. B. Zoom in view of the loop region (grey box in A). 

Residues P223 and V225 from the red subunit, and A777 from the blue subunits are 

highlighted using ball-and-stick models.  

2.3.2 Efflux Activity of Mutants 

Six representative drugs known as substrates of AcrB including antibiotics, dye and 

detergent, with diverse chemical structures, were used for the drug susceptibilities 

assay.
125

 The drug resistance of E. coli BW25113 ∆acrB transformed with plasmid 

http://www.tcoffee.org/Projects/tcoffee/
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encoding AcrB mutated plasmids were measured as shown in Table 2.1. Compared with 

the strain expressing wild type AcrB, the strain containing mutations of P223 reduced the 

drug susceptibilities by a factor of 4 to 32. Among these mutations P223G had the lowest 

minimum inhibitory concentration (MICs) to all drugs; P223V and P223Y had similar 

MICs; P223A and P223N had the highest MICs.  The order of mutations activity implied 

that not the length or the polarity of side chains, but the inflexibility of P223 was the key 

to the functionality of AcrB. I have also mutated the neighboring amino acid P224, which 

was not conserved in the alignment, to glycine.  Mutant P224G remained fully functional 

and did not change the drug susceptibilities of the cells (Table 2.1).  P223 appeared to be 

a critical amino acid for the function of AcrB. Therefore, P223G was chosen for further 

structural analysis. To examine if replacement of P223 by Gly affected the expression 

level of AcrB, the relative expression level of AcrBP223G and wild type AcrB were 

determined using both membrane vesicles extracted from the cells and subjected to 

western blot analysis. The same samples were diluted 5- and 25-fold to reveal the 

expression levels of the two proteins in the cell. As shown in Figure 2.4, the expression 

level of the two proteins were comparable, indicating that the decrease of drug resistance 

was not due to expression level variation (Figure 2.4).  
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Table 2.1 MIC of BW25113ΔacrB containing plasmid encoding the indicated AcrB 

constructs.  

 

Plasmids or  Mutations 

MIC (µg/ml) 

Ery Nov R6G TPP SDS Tet 

pQE70 AcrB 80 160-320 320-640 640 >0.8% 1.28 

pQE70 2.5 5 5 5 0.00625% 0.32 

P224G 80 160 320 320 >0.8% 1.28 

P223G 5 10 20 20 0.2% 0.32 

P223A 10 40 80 40 >0.8% 0.64 

P223V 5 20 40-80 40 >0.8% 0.64 

P223Y 5 20 40-80 20 >0.8% 0.64 

P223N 5 40 80 40 >0.8% 0.64 

P223G V225C 2.5 5 5 5 0.00625% 0.32 

P223G V225C A777C 40 40 160 80 >0.8% 0.64 

V225C A777C 80 160 320 640 >0.8% 1.28 

 

*Drugs tested were Erythromycin (Ery), Novobiocin (Nov), Rhodamine 6G (R6G), 

Tetraphenylphosphonium (TPP), Sodium dodecyl sulfate (SDS), and Tetracycline (Tet). 

The unit of MIC for SDS wt/vol.  

 

 

 

 



57 

 

 

 

Figure 2.4 Comparison of the expression levels of wild type AcrB and AcrBP223G. A. 

Western blot analysis of membrane vesicles extracted from BW25113 ∆acrB expressing 

wild type AcrB (WT) or AcrBP223G (P223G). Same amount of bacterial cells for 

expression of different proteins are used for analysis. Each sample was diluted 1, 5, and 

25 fold. B. SDS-PAGE analysis of purified wild-type AcrB and AcrBP223G. The 

expression level of the WT and P223G are similar in the BW25113 ∆acrB strains. B. 

SDS-PAGE analysis of purified AcrB (WT) and AcrBP223.  
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2.3.3 Structure Analysis of AcrBWT  and AcrBP223G   

AcrBWT and AcrBP223G could be expressed and purified with a decent amount and purity 

as shown in Figure 2.4. Purified proteins were first analyzed using circular dichroism 

(CD) spectroscopy to characterize their secondary structure compositions. AcrBWT and 

AcrBP223G had similar CD spectra and had high content of α-helices as revealed by the 

negative peaks in the far-UV region (Figure 2.5A). Mutant AcrBP223G had a close 

secondary structure as AcrBWT and the structure of purified proteins were similar to the 

reported crystal structure of AcrB-a helix-bundle protein.   

Thermal denaturation analysis is a useful tool to investigate the thermal and chemical 

stability of the membrane proteins in vitro.
155, 156

 The purified proteins gradually lose 

their secondary structures with the increase of temperature, which can be monitored with 

the change of ellipicity at 222nm. Overall, about 40% loss of α-helical content was 

observed when temperature increased to 98°C for both AcrBWT and AcrBP223G (Figure 

2.5B). The ellipticity at 222 nm of the proteins could not recovery when temperature 

lowed back to 4°C, which indicated that unfolding transitions were irreversible. The 

similar melting curves of AcrBWT and AcrBP223G resembled their structure similarity.  
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Figure 2.5 Circular Dichroism (CD) characterization of  wild type and the mutant. A. Far 

UV CD spectra of wild type AcrB (black) and AcrBP223G (grey) superimposed well onto 

each other, indicating the two proteins had similar secondary structure contents. B. 

Temperature denaturation curves of wild-type AcrB (open diamonds) and AcrBΔloop 

(filled squares). The ellipticity values monitored at 222 nm were normalized to the 

reading at 4 °C. The thermal stabilities of the two proteins were very similar.  
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Limited proteolysis has been widely used to reveal the functional domains, assess the 

flexible elements and examine the topology of proteins.
157-159

 In this study, limited 

proteolysis was used as an additional method to compare the conformation difference 

between AcrBWT and AcrBP223G. Clearly, AcrBWT was more resistant to the trypsin 

digestion than AcrBP223G (Figure 2.6). At room temperature, AcrBP223G were completely 

digested to smaller fragments in 40 minutes, while detectable AcrBWT full length protein 

remained after the same digestion period. Based on the proteolysis results, the simple 

mutation P223G greatly increased the flexibility of the protein and made it more dynamic. 

The dynamic behavior of the mutated protein might be the reasons that P223G changed 

the tertiary structure of the protein, especially for the protruding loop part; or it loosen the 

assembly of the protein and exposed the active sites for digestion.
160

   

 

Figure 2.6 Limited trypsin digestion of purified wild type AcrB (A) and AcrBP223G (B). 

Under the current experimental condition (at room temperature, the weight ratio between 

trypsin and the protein was 1:200), wild type AcrB was digested much slower than 

AcrBP223G. Molecular weights (kDa) of bands in the molecular weight marker were 

marked on the left of the gel.  
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The CD spectroscopy result showed that AcrBWT and AcrBP223G shared similar secondary 

structure but cannot explain the increased flexibility due to the mutation. To demonstrate 

whether P223G changed the tertiary structure of the protein in the molecular level, a 

disulfide-trapping method was used to probe the conformational change of the mutant. 

Our group further applied this method for membrane protein study and established a 

reporter platform for the detection of tertiary change of AcrB under native condition.
161

 

In general, two amino acid residues within a close distance were mutated to cysteines. 

The introduced cysteines pair formed a disulfide bond under the oxidative environment of 

the perplasm, detected and visualized after (Figure 2.7A). If the structure of the protein 

changed, then the distance between the reporter Cys pair would change as well, this 

would lead to variations in the disulfide bond formation. Five cysteine pairs were 

introduced into the periplasmic domain of AcrB (Figure 2.7 B). It has been proved that 

the engineered cysteine pairs did not reduce the activity of the proteins.
161

 Experimental 

details could be found in Materials and Methods. As shown in Figure 2.7C, each set of 

data contains two SDS-PAGE gel pictures, one was stained with Coomassie blue dye and 

the other visualized with fluorescence imaging. Coomassie blue staining was used to 

measure the amount of the protein and fluorescence image was to reflect formation of the 

disulfide bond. In lane 1, the addition DTT released all free cysteines and activated the 

thiols group to react with fluorescein-5-maleimide (Flu-MAL) as a positive control. In 

lane 2, the iodoacetamide (IAM) blocked the free cysteines and deactivated the labeling 

reaction as a negative control. In lane 3, IAM blocked the free cysteines and DTT broke 

the existed disulfide bond formation and activated the labeling reaction. For each reporter, 

the mutant P223G had a strong fluorescence intensity band as the respectively positive 
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control and wild-type, which indicated that the disulfide bond still formed in the mutant. 

Especially for cysteine pair 216-234, located in the protruding loop and close to P223, the 

disulfide bond level was the same as wild-type, which conveyed the important 

information that tertiary structure of the loop might be similar as the wild type. Based on 

the results, I concluded that the P223G mutation did not detectably change the tertiary 

structure of the proteins. 

 

Figure 2.7 The disulfide trapping method. A. Schematic illustration of the blocking-

reducing-labeling procedure. B. The location of cysteine mutations for cross-linking pairs 

in overall structure of AcrB. The reporter pairs were emphasized with stick-ball models. 

C. Tertiary structure as revealed by the disulfide trapping method. CL is the wild type 

AcrB with two intrinsic cysteines mutated to alanine. The extents of disulfide bond 

formation for each reporter were very similar in AcrBP223G as compared to wild type 

AcrB. Therefore, the overall conformation, or tertiary structure, of AcrBP223G was very 

similar to that of wild type AcrB. 
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2.3.4 AcrBP223G Forms Monomer in vitro and Trimer in vivo  

In order to clarify the results of limited proteolysis, Blue native (BN) PAGE is used to 

characterize the oligomer state of purified AcrBP223G. BN-PAGE is a powerful, 

convenient and inexpensive technique to determine the oligomeric state of membrane 

proteins and identify physiological protein-protein interaction.
162, 163

 It has been used to 

confirm the oligomer state of wild-type AcrB was a trimer.
120

 In figure 2.8A, AcrBWT 

migrated as a trimer as reported and AcrBP223G migrated as a monomer on the gel. The 

BN-PAGE result suggested an interpretation for the difference in the limited proteolysis 

data. The monomeric AcrBP223G exposed additional active digestion site for trypsin. 

However, the drug resistance results showed that the AcrBP223G still maintained a low 

level of activity, which implied that the oligomerstate of AcrB still could be a trimer in 

vivo. To further examine the oligomer state of AcrBP223G in vivo, an intermolecular 

disulfide bond (V225C_A777C) was introduced into the mutant AcrBP223G (Fig 2.3B). 

Western blot analysis of membrane vesicles showed that AcrBP223G/V225C/A777C migrated as 

trimer in the absence of DTT and was fully reduced in the presence of DTT, confirming 

the formation of inter-subunit disulfide bond in AcrBP223G/V225C/A777C. The results not only 

suggested that  AcrBP223G existed as trimers in vivo, but also further confirmed that the 

P223G maintained the tertiary structure of the protein, consistent with our previous 

observation during the intra-molecular disulfide trapping experiments. Through the 

oligomer state characterization of AcrBP223G in vitro and in vivo, the functional role of 

P223 could be derived. It was a key residue to stabilize the functional oligomer state of 

AcrB. The mutant P223G drastically loosens the association of trimeric AcrB in vivo and 
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affected its function. And the weakly associated trimeric mutant AcrBP223G was easy to 

dissociate when purified.    

Interestingly, the inter-molecular disulfide cross-link (V225C_A777C) also partially 

restored the pump activity of the mutant AcrBP223G (Table 2.1). Mutant AcrBP223G/V225C 

was completely functionless; indicating that the restored a ctivity of AcrBP223G/V225C/A777C 

was not due to the possibility that introduction of V225C changed the overall tertiary 

structure of the protruding loop.  As V225 was very close to P223 according to the crystal 

structure, the engineered intermolecular cross-link formed strong covalent bond, stabilize 

the interaction of trimeric AcrBP223G and offset the effect of the glycine. Also, the 

oligomer state of purified AcrBP223G/V225C/A777C was characterized with BN-PAGE (Fig 

2.8A). The AcrBP223G/V225C/A777C maintained trimeric state like AcrBWT under non-

reducing condition and reduced to a monomer as AcrBP223G under reducing condition. 

Moreover, MIC tests have been performed in the presence of 4 mM DTT. Our data 

showed that the addition of 4 mM DTT had no effect on the drug resistance of AcrBWT, 

AcrBP223G or the bacterial with the empty plasmid pQE70, but reduced the MIC of 

AcrBP223G/V225C/A777C (Table 2.2). Western blot analysis of membrane vesicles showed that 

most AcrBP223G/V225C/A777C was reduced to monomeric state with 4 mM DTT addition to 

culture condition (Figure 2.8B).  All these results supported the fact that V225C_A777C 

cross-linking favored the assembly of  the AcrBP223G  trimer. 
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Figure 2.8 BN-PAGE and western-blot analysis of AcrBP223G/A225C/V777C. A. After 

detergent purification, freshly prepared wild type AcrB samples migrated as a trimer 

(lane 1) in BN-PAGE. Under the same condition, purified AcrBP223G most migrated as a 

monomer (lane 2). AcrBP223G/A225C/V777C migrated as a trimer in the non-reducing 

condition (lane 3), while as a monomer when reduced (lane 4). A 4-20% gradient gel was 

used in this experiment. B. Western blot analysis of membrane vesicles extracted from 

BW25113DacrB expressing wild type AcrB (lane 1 and 3) or AcrBP223G/A225C/V777C  (lane 

2 and 4) in the absence (lane 1 and 2) or presence (lane 3 and 4) of 4 mM DTT. Dr Wei 

Lu performed BN-PAGE analysis for AcrBP223G/V225C/A777C. 
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Table 2.2  MIC of BW25113acrB containing plasmid encoded AcrB measured in the 

presence or absence of DTT. 

 

Plasmids or  

Mutations 

MIC (µg/ml) 

No DTT 

(Ery) 

4 mM DTT 

(Ery) 

No DTT 

(TPP) 

4 mM DTT 

(TPP) 

pQE70 AcrB 80   80 640 640 

pQE70 2.5   2.5 5 5 

P223G 5   5 20 20 

P223G V225C_A777C 40   20 80 20-40 

 

*Drugs tested were Erythromycin (Ery) and Tetraphenylphosphonium (TPP). 
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2.4 Discussion and Conclusion 

In a previous study, our group had created an AcrB mutant with truncated loop and found 

that the mutant folded into a monomer, consistent with a three-stage pathway for the 

assembly of AcrB: the first well-folded AcrB monomer and then packed into a functional 

trimer.  

In this work, I studied the amino acid residue P223 in the loop and identified its 

functional role. Based on previous research, it appeared that P223 was not involved in the 

substrate binding site, proton translocation network and drug extrusion pathway.
61, 109, 121-

123, 125, 164-166
 I assumed that the rigidity of P223 helped to stabilize the oligomer of AcrB.  

To test the hypothesis, I first used site-mutagenesis to replace P223 with several other 

amino acids and evaluated their transport activity with different substrates of AcrB. All 

mutations of P223 greatly reduced its activity. Especially, the mutant P223G had the 

lowest activity, which indicated the importance of side chain rigidity. The expression 

level analysis showed that the loss of the pump activity was not caused by a decrease of 

level of the mutant proteins. AcrBP223G was chosen for further structure characterization. 

The secondary and tertiary structure of AcrBP223G and AcrBWT were compared via CD 

spectroscopy and intramolecular disulfide trapping method. AcrBP223G was found to fold 

into a structure similar to individual subunits in AcrBWT. However, limited proteolysis 

revealed that AcrBP223G contained more accessible digestion sites. BN-PAGE determined 

that most purified AcrBP223G exists as monomer. The disulfide cross-linking experiment 

revealed the AcrBP223G formed trimer in vivo. The different oligomer states of AcrBP223G 

in vitro and in vivo, correlated with its loss of activity, indicated a pivotal role of P223 in 
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stabilizing the entire trimeric structure. The inactivation of AcrBP223G could be partially 

rescued by the V225C_A777C intermolecular cross-linking.  

From the protein characterization data and crystal structure, the unique backbone 

structure of P223 lead to the formation of a kink (Figure 2.3). It may acts as a wedge to 

lock the loop in the tunnel in the neighboring subunit and stabilize the trimeric structure. 

This study revealed the importance of the loop to tunnel interaction for AcrB trimer 

stability. There are three possibilities for the loop-tunnel interaction process: loop first, 

the loop forms a stable tertiary structure and the tunnel maintains a certain degree of 

flexibility; tunnel first, the tunnel forms a stable tertiary structure and the loop still 

maintains a certain degree of flexibility; or both the loop and tunnel keep some degree of 

flexibility during the association. To test the flexibility of the loop during trimerization, a 

reporter Cys-pair C216-C234 was introduced to the loop (Figure 2.7B). This pair of intra-

molecular cysteines formed a dilsufide bond both in AcrBWT and AcrBP223G as indicated 

in Figure 2.7C, which indicated the mutant P223G did not change the conformation of 

loop. C216-C234 disulfide bond formation also restricted the conformation of the loop, 

but had no effect on the transport activity of AcrBWT or AcrBP223G. These results would 

suggest that the loop formed a stable tertiary structure during the association. In addition, 

the mutant P223Y is still partially active, which indicated that the AcrBP223Y remains a 

trimeric structure in vivo. If the tunnel forms a fixed structure, it is difficult for the loop 

of AcrBP223Y to penetrate due to the bulky side chain. Taken together, the “loop first” 

mechanism for the assembly is supported by our results.  
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A similar observation was also made in the AcrB homologous-MexB in Pseudomonas 

aeruginosa 
167

. Point mutations in the loop affected MexB activity and it was speculated 

that the amino acid residues were involved in its trimerization. Our observations of the 

importance of P223 in AcrB also supported their assumptions. Combined with our 

previous study 
160

, the role of P223 helped us to further understand the oligomerization 

process of AcrB--the well folded AcrB monomer recognized its neighbor subunit with the 

protruding loop, packed into a stable and fully functional trimer with the P223 residues.  

The oligomer structure is the essential architecture for the function of many membrane 

proteins. The stability of the oligomer complex modulates the functionality of the 

membrane proteins.
168, 169

 Here I used a homo-trimeric membrane protein, AcrB, as a 

model system and investigated the correlation between the oligomer stability and protein 

activity. We found the mutation of a residue P223 “loosened” the AcrB trimer and thus 

drastically decreased the transport activity of the efflux pump. The engineered inter-

subunit disulfide bond partially the activity of the mutant. My result implied that the long 

protruding loop remained a rigid tertiary structure and the tunnel in the neighboring 

subunit kept a certain degree of flexibility during the association. 
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Chapter 3 Alanine-Scaning Study of the Protruding Loop of AcrB 

3.1 Introduction 

In chapter 2, a conserved residue P223 in the protruding loop was found critical for   

trimerization of AcrB. Replacement of P223 with glycine or alanine “loosened” the 

stability of trimer and dramatically reduced the protein activity. In this chapter, I further 

investigated the role of each residue in the loop. The question I want to answer in this 

chapter is: whether the backbone structure of the loop or the side chain of each residue is 

more important for the assembly of AcrB and its efflux activity. I used the alanine-

scaning method to substitute each residue with alanine and test the activity of each 

mutant using a drug susceptibility assay. The alanine-scanning method has been used to 

determine the contribution of a specific residue for the stability or function of a 

protein.
170

 The residues on the interface of protein are usually replaced with alanine for 

study the protein-protein interaction.
171

 Important residues involved in the protein-protein 

interaction could be identified through the method. In addition, to investigate the 

importance of backbone structure, a chimeric AcrB construct-AMA has been designed 

and constructed. The protruding loop (residues from 211-240) of AcrB was replaced with 

a loop from its homologue—MexB. AcrB and MexB are the only two proteins from the 

multidrug resistant proteins of RND family with their crystal structures determined.
107, 172

 

The overall structures of those two proteins are similar, including the loop part. The 

backbone structure of the loops overlapped very well (Figure 3.1A). The structure 

analysis and activity test of chimeric AcrB-AMA would reveal the importance of 

backbone structure as compared to the side chain composition to the the oligomerization 

stability and function of AcB. 
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Figure 3.1 The structure and amino acid composition of loop. A. Superposition of the 

backbone traces of loops from AcrB (blue) and MexB (orange). B. The residues in the 

loop affected the activity of AcrB. The residues are highlighted with ball model. The 

position A214 and I234 were green. The pictures were adopted from reference 
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3.2 Materials and Methods 

3.2.1 Site-Directed Mutagenesis, Expression, Purification and Activity Assay  

Single point mutations were introduced with the Quick-Change site directed mutagenesis 

kit (Stratagene, La Jolla, CA). AcrB and its mutants were expressed and purified as 

described in section 2.2.3. AcrB drug efflux activity was measured by recording the 

minimum inhibitory concentration (MIC) of an acrB gene knockout strain 

(BW25113acrB) transformed with plasmid encoded AcrB or its mutant using agar 

plates as described in section 2.2.4.  

3.2.2 Construction of AMA  

Construct AMA, which is basically AcrB sequence containing the loop from MexB, was 

created by Dr. Jun Fang. The experimental process is included here for the completeness 

of the discussion. The AMA gene was constructed using overlapping PCR, as shown in 

Figure 3.2. Primers AMA-loop1F, AMAloop1R, AMA-loop2F, and AMA-loop2R are 

chimeric primers that contain a fragment of AcrB sequence and a fragment of MexB 

sequence (underlined). The MexB loop was amplified using primers AMA-loop1F (5′-

GGTTGATGTCATTACCGCCATCAAAGCGCAGAACGTGCAGATTTCCTCCG-3′) 

and AMA-loop2R (5′-CAGGATTTTGCCGAACTCT TCAGTGGTCTGCAGGCGGGT 

CTTGCCGATGATG-3′). The fragment of the 5′-end portion of AcrB was amplified 

using primers pET22-AcrB-F (5′-GTACCATATGCCTAATTTCTTTATCGATCGCCC-

3′) and AMA-loop1R: (5′-CCGAGCTGGCCGGAGGAAATCTGCACGTTCTGCGCT 

TTGATGGCGGTAAT-3′). The above two PCR products were gel purified and mixed at 

a 1:1M ratio to serve as the template for the second round of PCR, using primers pET22-
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AcrB-F and AMA-loop1R. The resultant product encodes the N-terminal 210 residues of 

AcrB and residues 211 to 240 from MexB (the loop), and then residues 241 to 249 of 

AcrB (fragment AM). The fragment of the 3′-end portion of AcrB was amplified using 

primers AMA-loop2F (5′-CATCATCGGCAAGACCCGCCTGCAGACCACTGAAGAG 

TTCGGCAAAATCCTG-3′) and pET22-AcrB-R (5′-GTACCTCGAGATGATGATCGA 

CAGTATGGCTGTGCT-3′). Finally, full-length AMA gene was constructed similarly 

through PCR using a mixture of AM and the 3′-end portion of AcrB as template and 

pET22-AcrB-F and pET22-AcrB-R as primers. The PCR product corresponding to the 

chimeric gene of AMA was purified after agarose gel electrophoresis and digested using 

NdeI and XhoI. The digested PCR was subsequently ligated into pET 22b digested with 

NdeI and XhoI. The construct gene was confirmed by DNA sequencing.  

 

Figure 3.2 The strategy to construct chimeric AMA gene using overlapping PCR. 

Primers AMA-loop1F, AMA-loop1R, AMA-loop2F, and AMA-loop2R are chimeric 

primers that contain a fragment of AcrB sequence and a fragment of MexB sequence. 

3.2.2 Expression Level Analysis Using Western Blot 

BW25113 ∆acrB cells transformed with plasmids encoding AcrB or its mutants were 

cultured at 37°C overnight. The cells were harvested, resuspended in sodium phosphate 

buffer (pH 7.4), and lysed using a French press. Cell debris was removed through a low-
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speed centrifugation and membrane vesicles were collected by ultracentrifugation at 

150,000 g for 1 h at 4°C. Membrane vesicles were solubilized in sodium phosphate 

buffer (pH 7.4) containing 2% (wt/vol) SDS at room temperature and separated on a 8% 

SDS-PAGE gel. The proteins were transferred to a nitrocellulose membrane (Millipore, 

Bedford, MA) and detected as described in 2.2.5. 

3.2.3 CD Spectroscopy, and BN-PAGE Analysis 

CD spectra and temperature denaturation scans were collected on a JASCO J-810 

spectrometer as described in section 2.2.6. BN-PAGE was performed as described in 

section 2.2.7.  
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3.3 Results 

3.3.1 Ala-Scanning of Loop  

Before I started the Ala-scanning experiment of the loop and test each mutant, the 

primary sequence alignment for the loop from different homologues of AcrB provided a 

guideline to identify critical residues (Figure 2.2). Among the 30 residues in the loop, 4 

were identical (N211, G217, G220, and P223), and 7 conserved (Q213, V214, A215, 

L219, S233, I234 and L240). Each non-Ala residue in the loop was replaced with alanine 

systematically and the activity of the mutants was examined with drug susceptibilities 

assay (Table 3.1). As shown in Table 3.1, most Ala substitutions did not affect the MIC 

level of the bacteria, which indicated that the mutated AcrB was still well functional. 

Only five mutations (G217A, L219A, G220A, P223A, and L230A) drastically reduced 

the MIC (bond fonts in Table 3.1). P223 has been characterized and discussed in detail in 

the previous chapter. Compare with the sequence alignment, I found that not all 

conserved residues were important for AcrB function and not all critical residues were 

conserved. Residues N211A, Q213A, V214A, S233A, I234A, and L240A had no 

observable effect on the efflux activity of the protein. Among the five residues that were 

sensitive to Ala replacement, L230 not conserved, L219 are conserved, while G217, 

G220, and P223 are identical among all sequences aligned. Positions of these residues 

along the loop are highlighted in Figure 3.1B. I found that all five residues clustered close 

to the tip of the loop. 

The expression level of each mutant was measured with Western blot to test whether the 

decreased activity of protein was due to reduced expression (Figure 3.3A). The 
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expression level of all the mutants was similar. These results ruled out the possibility that 

the five mutants expressed low level of AcrB and reduced its activity.  

The substrate binding site in AcrB locates in the center of the periplasmic domain, distant 

from the loop.
110, 122, 130, 131

 Mutations in the extended loop are not likely to directly affect 

substrate binding. However, it is possible that substrate binding might be affected as a 

result of changes of inter-subunit interaction caused by mutations in the loop. To examine 

if mutations in the loop impaired the inter-subunit interaction and decreased the trimer 

stability, AcrBL230A was chosen for further investigation of its oligomeric state using BN-

PAGE (Figure 3.3B). BN-PAGE has been used to confirm that wild type AcrB is a trimer 

in the chapter 2 and other publications.
120, 173

 The results of BN-PAGE showed that after 

purification, AcrBL230A existed as a mixture of monomer and trimer. It was confirmed 

that under the same experimental conditions, wild type AcrB migrated as a trimer.  
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Table 3.1 Drug resistance of BW25113ΔacrB expressing plasmids and mutations. 
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Notes: Drugs tested were erythromycin (Ery), novobiocin (Nov), rhodamine 6G (R6G), 

tetraphenylphosphonium bromide (TPP), acriflavine (Aci) and sodium dodecyl sulfate 

(SDS) 
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Figure 3.3 Expression levels of loop mutants and BN-PAGE analysis of AcrBL230A. A. 

Western blot analysis of membrane vesicles extracted from BW25113ΔacrB containing 

different plasmid encoded wild type AcrB or AcrB mutants. The strain containing no 

plasmid was used as the negative control, and purified AcrB was used as the positive 

control. The five mutants that affected the MIC are underlined. B. BN-PAGE analysis of 

AcrB L230A. WT AcrB was also loaded as a control. MW is the molecular weight 
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marker and the molecular weights of each band are labeled on the left (kDa). Dr. Jun 

Fang performed the BN-PAGE experiment.  

3.3.2 Activity of Chimeric AcrB 

To probe the tolerance of the protein to multiple loop mutations, a chimeric AcrB 

construct was created, in which the loop sequence was replaced with the loop from 

protein MexB. The overall structures of the two proteins are very similar, including the 

loops. Their backbone traces superimposed onto each other very well (Figure 3.1A). 

Apparently both sequences are compatible with the same backbone conformation, 

although the exact amino acid compositions of the two loops are not identical. Of the 30 

residues in the loop, 9 are different (Figure 2.2). Through genetic modification, we have 

replaced the loop of AcrB (residues number 211 to 240) with the loop of MexB, and then 

examined the function of the mutant protein. If the backbone conformation rather than the 

composition of the side chains plays a dominant role, then the MexB loop should perform 

well and facilitate the assembly of the AcrB trimer. On the contrary, if AcrB mutant 

containing the MexB loop cannot assemble into a functional trimer, then more specific 

interactions between side chains of interface residues are necessary. In this case, the 9 

different residues were replaced simultaneously with the corresponding residues from 

AcrB. It was found that the resultant chimeric protein, AMA, remains partially active. 

Although 9 residues have been changed, the activity level of the chimeric protein is 

similar to or even better than several mutants containing Ala mutation at a single 

invariable or conserved site (Table 3.1).  
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3.3.4 Structural Characterization of AMA 

The expression level of AMA was comparable to wild type AcrB (Figure 3.4A). AMA 

was purified for further structural characterizations. The secondary structure of the 

mutant was compared with that of wild type protein (Figure 3.4 C/D). The far UV CD 

spectra of the two proteins superimposed well, indicating that AMA has similar 

secondary structure as WT. To examine the effect of mutation on the stability of the 

protein structure, reduction of the ellipticity at 222 nm was monitored with increase of 

temperature. As shown in Figure 3.4 D, the melting curve of wild type AcrB (black) was 

slightly steeper than the curve of AMA, while the midpoint transition temperatures of the 

two proteins were very similar. This result suggests that the overall stabilities of the two 

proteins are similar, while the unfolding of wild type AcrB might be slightly more 

cooperative. The oligomeric state of purified AMA was characterized with BN-PAGE 

(Figure 3.4 B). The purified AMA existed as a mixture of monomer and trimer on BN-

PAGE. Under the same condition, wild type AcrB migrated predominantly as a trimer. 

AMA trimer is less stable than AcrB trimer. However, it is difficult to speculate exactly 

to what extent AMA formed trimer in the cell. Since AMA was partially active, at least a 

portion of AMA existed as trimer in the cell. 
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Figure 3.4 Structural characterization of AMA. A. Expression level comparison between 

wild type AcrB and AMA. B. BN-PAGE analysis of  wild type AcrB and AMA.  C. CD 

spectra of purified WT AcrB and AMA. Wavelength scans at the far UV region of WT 

AcrB (black) and AMA (gray) superimposed well each other. D. Temperature 

denaturation curves of WT AcrB and AMA. The ellipicity values monitored at 222nm 

from 4 °C to 98 °C. Dr. Jun Fang performed those experiments.  
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3.4 Discussions 

AcrB is an obligate trimer. No monomeric or dimeric wild type AcrB have been observed 

in the cell membrane. Freshly purified AcrB samples migrate exclusively as a trimer band 

in native gel electrophoresis. It was demonstrated that individual subunits of AcrB were 

capable of folding into independent structurally stable monomers.
151

 In other words, 

assistance from neighboring subunit was not necessary for an AcrB subunit to achieve its 

tertiary structure. If AcrB monomers are capable of folding into stable structures, then 

why are AcrB monomers so scarce in the cell membrane? The lack of monomeric AcrB 

indicates that its oligomerization in cell membrane must be very efficient—the inter-

subunit association must be kinetically fast, dissociation must be slow, and the resultant 

oligomer must be thermodynamically very stable. Fascinated by the efficiency of AcrB 

trimerization in cell membrane, the inter-subunit interaction was investigated in AcrB, 

which leads to oligomerization.   

AcrB contains both a transmembrane domain and a periplasmic domain, with the major 

inter-subunit interaction contributed by the periplasmic domain. When AcrB trimerizes, 

the loop-and-tunnel interaction between neighboring subunits contributes approximately 

1,500 Å
2
 of buried surface area (BSA), which corresponds to 45% of the overall inter-

subunit interface.
174

 Studies have shown that protein-protein interactions with interfaces 

larger than ~1000 Å
2
 are likely to undergo conformational changes upon binding.

175, 176
 

In chapter 2, I introduced a Cys-pair in the loop, A216C-I234C.
173

  This pair of Cys did 

form a disulfide bond in AcrB, which greatly restricted the flexibility of the loop but had 

no effect on the drug efflux activity. These results suggested that the loop remained rigid 

during trimerization. Consistent with previous observation, here I found that the 
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compatibility of the loop sequence with a pre-determined loop conformation is more 

important than the actual identity of residues making up the loop. The replacement of 9 

residues simultaneously in the loop only led to a partial loss of trimer stability and efflux 

activity, indicating that AcrB trimers tolerated non-ideal interactions among residues, 

providing the backbone conformation of the loop was satisfied. Similarly, when ranked 

according to their contributions to the BSA (Table 3.2), the top 8 contributors in the loop 

are I235, P223, L219, T222, Q213, A215, I234 and N231with respective 121.94, 94.41, 

93.66, 89.58, 76.42, 75.52, 75.43, and 69.52 Å². And yet, Ala substitutions of these 

residues, except for P223 and L219, had little effect on the structure and function of AcrB. 

Residues that are sensitive to Ala replacement clustered close together, forming a collar 

or belt, close to the tip of the loop (Figure 3.1B). In addition, two out of the five residues 

are glycine. These residues are more likely to be geometrically important to the backbone 

conformation of the loop. However, the potential contribution from side chains that 

engages in specific interactions with other residues in the neighboring subunit could not 

be completely ruled out. The belt of functionally sensitive residues may be the site of 

inter-subunit recognition during trimerization, serving as a fishing pole, or a locking zone 

to stabilize the inter-subunit interaction after two subunits bind together.   
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Table 3.2 The surface area of residues in the loop, the calculated area is based on the 

server (PDBePISA)
174

 

Note: ASA, accessible surface area Å²; BSA, Buried Surface Area, Å²      

Copyright © Linliang Yu 2013 
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Chapter 4 Role of R780 for the Stability and Functionality of AcrB 

4.1. Introduction 

In chapter 2 and 3, the protruding loop of AcrB related to its functionality has been 

investigated in detail. A conserved residue P223 was identified to be critical for the 

function of AcrB. The site-mutagenesis studies of the residue showed that a single mutant 

P223G severely reduced the protein activity. Then a systematically alanine-scanning 

study of the loop and construction of a chimeric AcrB with the loop replaced with its 

analogue MexB revealed that the conformation of the loop, especially the collar or belt 

conformation close to the tip of the loop is extremely important for the trimerization of 

AcrB and its function. P223 is located at the tip of the loop and serves as a “wedge” to 

stabilize the trimeric AcrB. To further understand the interaction between the loop and 

tunnel of AcrB, the residues in the tunnel which is involved in the association with P223 

is stuied in this chapter. From the crystal structure, a semi-open binding pocket for P223 

is composed of residues W187, Y275, Q584, A777 and R780 from the neighboring 

subunit (Figure 4.1). The side chains of W187, Y275, Q584 and A777 anchor the rigid 

P223 via van der Waals interactions; the side chain of R780 forms a hydrogen bond to the 

backbone carbonyl oxygen of and potentially plays a critical role in bridging the two 

subunits.  Here I focused on the investigation of the role played by R780 in AcrB 

structure and function.  
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Figure 4.1 Proposed binding pocket of P223. A. AcrB trimer with each subunit color 

coded (Protein Data Bank ID 2DRD)
61

 B. Proposed binding pocket of P223, residues that 

form the binding pocket was shown in green.  
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4.2 Materials and Methods 

4.2.1 Materials 

Protein molecular weight markers for SDS-PAGE and BN-PAGE were from Fermentas 

(Glen Burnie, MD) and Invitrogen (Carlsbad, CA), respectively. The custom polyclonal 

rabbit anti-AcrB, AcrA and TolC were ordered from GenScript (Piscataway, NJ) and 

Pacific Immunology (Ramona CA), respectively. Escherichia coli gene knockout kit was 

from Gene Bridges (Heidelberg, Germany). Oligonucleotides were from Intergrated 

DNA Technologies, Inc (Coralville, IA). All enzymes were from New England Biolabs 

(Ipswich, MA). The parent WT (BW35113) and acrB knockout strain BW35113ΔacrB 

strains were obtained from the Yale E. coli genetic stock center.  

4.2.2 Site-Directed Mutagenesis, Expression, Purification, Activity Assay and 

Expression Level measurement  

AcrB and its mutants were expressed and purified as described in section 2.2.3. AcrB 

drug efflux activity was measured by recording the minimum inhibitory concentration 

(MIC) of an acrB gene knockout strain (BW25113 acrB) transformed with plasmid 

encoded AcrB or its mutant using agar plates as described in section 2.2.4.  

4.2.3 CD Spectroscopy and Disulfide Trapping Method 

CD spectra and temperature denaturation scans were collected on a JASCO J-810 

spectrometer as described.  Disulfide trapping was performed as described in section 

2.2.6 
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4.2.4 Blue Native (BN)-PAGE Analysis 

BN-PAGE was performed with modified procedure.
162

 Briefly, blue native loading buffer 

was added into purified AcrBWT, AcrBP223G, and AcrBR780A  at a final concentration of 0.1 

M 6-aminoocaproic acid, 10 mM Bis-Tris-HCl, 6% sucrose, 1% Coomassie brilliant blue 

G-250, pH 7.0. Protein samples were load to a 4-20% gradient polyacrylamide gel (Bio-

Rad, Hercules, CA). The electrophoresis was performed using a cathode running buffer 

containing 50 mM tricine, 7.5 mM imidazole, 0.02% coomassie blue G-250, pH 7.0 and 

anode buffer with 25 mM imidazole, pH 7.0 in the 4°C refrigerator at 15 mA for 2 hours. 

The protein bands were visualized with Coomassie Blue stain and analyzed with ImageJ 

(NIH).  

4.2.5 Ethidium Bromide Accumulation Assay 

The ethidium bromide accumulation assay was performed followed the reference.
177

 

Briefly, the bacterial cells with the mutant AcrB were cultured to OD600 of 1. The cells 

were harvested and resuspended in buffer containing 10 mM sodium phosphate, 100 mM 

sodium chloride, 0.1% glycerol, pH 7.4. The cells were diluted to OD600 of 0.2 in the 

same buffer above. 5 µM ethidium bromide was added to the diluted cells to monitor the 

fluorescence change at the room temperate using a Perkin Elmer LS-55 fluorescence 

spectrometer (Perkin Elmer, Waltham, MA). The excitation and emission wavelength 

were set 520 and 590 nm respectively.  
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4.2.6  Fluorescent Dye Labeling Assay 

The fluorescent substrate labeling assay was performed following a published protocol.
178

 

10 ml cells were grown overnight at 37°C, and were washed twice and resuspened with 

10 ml phosphate buffer (50 mM potassium phosphate, 0.5 mM MgCl2, pH 7.0). The cell 

density was adjusted to OD600 about 2.5. Glucose and Bodipy-FL-maleimide (Sigma-

Aldrich, St. Louis, MO) were added to the 10 ml cells to the concentration of 0.4% (w/w) 

and 6 mM, respectively. The cells were cultured for 1 hour at 30°Cand then washed twice 

with 5 ml phosphate buffer with 0.4% glucose and again with 5 ml phosphate buffer. The 

cells were lysed by sonication on ice for 3 min with 10 s on/off intervals. After 

centrifuged at 15, 000×g for 20 min at 4°C, the supernatant was discarded. Pellet was 

resuspended in extraction buffer A (20 mM Tris-HCl, 100 mM NaCl, 1% Trition X-

100,1mM PMSF, pH 8.0) and incubated with shaking for 3 hours at 4°C, followed by 

centrifugation at 15,000×g for 20 min at 4°C. The supernatant was incubated with 10 µl 

Ni-NTA resin (Qiagen, Huntsville, AL) with shaking at 4°C for 2 hours, washed with 

buffer A containing 50 mM imidazole, and finally eluted with buffer A containing 250 

mM imidazole. The labeled samples were analyzed using SDS-polyacrylamide gel 

electrophoresis (SDS-PAGE) on 10% gels. After the extra fluorescence dye migrated out 

of the gel, the gel was removed and the fluorescence image was taken using the Typhoon 

9410 phosphorimage/fluorescence imager (GE life science, Pittsburgh, PA) with an 

excitation 488nm. The same gel was then stained using Coomassie blue stain and the 

image of the gel was taken again under normal white light. The protein intensity was 

analyzed with ImageJ (NIH).   
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4.2.6 Knockout Strain (MG 1655 ∆acrAB tolC) Construction 

Construction of bacterial gene knockout strains was performed following the kit 

instruction manual. The designed functional DNA cassette (to knockout TolC) flanked by 

homology arms was generated by PCR reaction. The designed primers were as follow 

and the amplification of the cassette are underlined.  

Primer 1, 

CGCAGTCCATTACTGCCACGCTAGGTTTAGGTGCAGATTACACCTATAGAATT

AACCCTCACTAAAGGGCG 

Primer 2, 

ACGCACTGGTCGCGTTAGAGTTGATGCCGTTCGCGTCGCGGTACGCCGTTGTA

ATACGACTCACTATAGGGCTC 

The PCR reaction is set for 50 µl.  39.5 µl deionized water, 5 µl 10x vent polymerase 

reaction buffer, 2 µl 5 mM deoxyribonucleotide solutions, 1 µl  50 mM primer 1 and 

primer 2, 1 µl Escherichia coli genome, 0.5 µl vent polymerase.  The PCR reaction 

condition is, initial denaturation at 94°C for 30 seconds, thirty cycles (94°C for 30 

seconds, 55°C for 45 seconds, 72°C for 90 seconds), and final elongation step 72°C for 10 

minutes. The PCR product was separated on the 1% agarose gel and collected with gel 

extraction kit (Qiagen, Huntsville, AL). 

The MG 1655 strain was transformed with pRed/ET plasmid and incubated at 30°C 

overnight with 5 µg/ml tetracycline as selection marker. A single colony was picked up 
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and cultured overnight at 30°C. 2 ml overnight culture was transferred to 200 ml LB 

medium and cultured at 30°C in LB with 10 µg/ml tetracycline until the density reaching 

OD600 of 0.3. L-arabinose was added to the culture to a finial concentration of 0.3% and 

temperature was increased to 37°C for continuing culturing until OD600 reached 0.5. The 

culture was centrifuged and cells were collected. 10% glycerol was used to wash the cell 

pellet for 4 times. The cells were resuspended in 10% glycerol to OD600 about 30. 400 

ng DNA cassette was added to the resuspened cell and electroporated at 2500 V with 2 

mm width slit of electroporation curvette. The electroporated cells was resuspended in 1 

ml LB medium without antibiotics and incubated at 30°C for 2 hours. 200 µl cells was 

spread onto a LB agar plates containing kanamycin (100 µg/ml) and incubated at 37°C 

overnight. Single colonies were picked and verified with colony PCR.   

The single ∆tolc MG 1655 strain colony was picked up and prepared for electroporation 

competent cell as previous procedure. The 707-FLP plasmid was transformed into ∆tolc 

MG 1655 strain with electroporation. The electroporated cells was resuspended in 1 ml 

LB medium without antibiotics and incubated at 30°C for 1 hour. 200 µl cells were 

spread onto a LB agar plates containing kanamycin (100 µg/ml) and 5 µg/ml tetracycline, 

incubated at 37°C overnight. A single colony was picked and grew in 1 ml LB medium 

without antibiotics at 30 °C for 2 hours. The temperature increased to 37 °C and the cells 

were cultured continuously for 7 hours. 200 µl cells were spread onto a LB agar plates 

containing no antibiotics. The colonies were stroke on two different LB agar plates in 

parallel, one with kanamycin (100 µg/ml) and the other without antibiotics. Those 

colonies which grew only on LB agar plates without kanamycin but no longer on the 

plates with kanamycin were removed of the selection marker. The single ∆tolC MG 1655 
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strain colony without kanamycin marker was used to construct addition knockout in 

which acrAB gene was removed following the same procedure. The designed primers 

were as follow and the amplification cassette are underlined.  

Primer 3: 

CGATCGCGTAGTAATAAGTGGGCTGCAGAAAGTGCGTCCTGGTGTCCAGGAA

TTAACCCTCACTAAAGGGCG 

Primer 4: 

CATCAGCGCCGGGGTAGGAGGCGGAGATCGTTACTGCCGGCGGTGCAATCTA

ATACGACTCACTATAGGGCTC 

4.2.7 In Vivo Chemical Cross-Linking 

In vivo chemical cross-Linking was performed in BW25113∆acrB strain. The plasmid 

pQE70-AcrB (WT or mutants) was transformed into the ΔacrB strain for expression. A 

single colony was picked from a freshly transformed plate and grown with shaking at 

37°C in 3 ml LB medium containing 100 µg/ml ampicillin for 12 hours. 2 ml of this cell 

culture was used to inoculate 200 ml LB medium containing 100 µg/ml ampicillin. Cells  

were grown to OD600 of 0.7. Cells were harvested by centrifugation at 5,000×g for 10 

min. The cell pellet was resuspended in 10 ml cross-linking buffer (20 mM sodium 

phosphate, 100 mM NaCl, pH 7.2) and incubated with 0.4 mM dithiobis succinimidyl 

propionate (DSP) (Thermo, Rockford, IL) cross-linker at 37°C for 30 min. After 

quenched with 20 mM Tris, cells were centrifuged, harvested and resuspened in lysis 

buffer (20 mM Tris-HCl, 100 mM NaCl, pH 8.0). Cells were lysed by sonication on ice 
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for 3 min with 5 s on/off intervals. After centrifuged at 15, 000×g for 20 min at 4°C, the 

supernatant was discarded. Pellet was resuspended in extraction buffer (20 mM Tris-HCl, 

100 mM NaCl, 5% Trition X-100, pH 8.0) and incubated with shaking for 5 hours at 4°C, 

followed by centrifugation at 15,000×g for 30 min at 4°C. The supernatant was incubated 

with 80 µl Ni-NTA resin (Qiagen, Huntsville, AL) with shaking at 4°C for 5 hours, 

washed with washing buffer (20 mM Tris-HCl, 100 mM NaCl, 0.4% DDM, pH 8.0 50 

mM imidazole), and eluted with elution buffer (20 mM Tris-HCl, 100 mM NaCl, 0.4% 

DDM, pH 8.0 500 mM imidazole). The eluted fractions were reduced with 16 mM 

dithiothreitol (DTT) for 30 min at 37°C, resolved by 10% SDS-PAGE and 

immunoblotted with a polyclonal anti-AcrA, AcrB and Tolc antibodies as the primary 

antibodies, and an alkaline phosphatase-conjugated anti-rabbit antibody (Abcam, 

Cambridge, MA) as the secondary antibody. The protein-antibody conjugates were 

detected after staining using nitroblue tetrazolium chloride and 5-bromo-4-chloro-3’-

indoyl phosphate p-toluidine (Sigma-Aldrich, St. Louis, MO).  

4.2.9 In Vivo AcrB-TolC Disulfide Cross-Linking Assay 

∆acrAB tolC Escherichia coli MG1655 strain was transformed with a pair of plasmids 

(pBAD-AcrB and pAC5-TolC). The two proteins AcrB and TolC were co-expressed in 

150 ml LB medium at 30
o
C.  Protein was induced to express at OD600 around 0.8 with 

0.1 mM IPTG for 1 hour. Cultures were centrifuged and resuspended in a lysis buffer (30 

mM iodoacetamide (IAM), 0.5 mM PMSF, 20 mM Tris-HCl, 100 mM NaCl, pH 8.0) and 

sonicated for 5 minutes on ice with 5s on/off intervals. After centrifuged at 15, 000×g for 

30 min at 4°C, the supernatant was discarded. Pellet was resuspended in extraction buffer 
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(20 mM Tris-HCl, 100 mM NaCl, 5% Trition X-100, pH 8.0) and incubated with shaking 

for 5 hours at 4°C, followed by centrifugation at 15,000×g for 30 min at 4°C. The 

supernatant was incubated with 80 µl Ni-NTA resin (Qiagen, Huntsville, AL) with 

shaking at 4°C for 5 hours, washed with washing buffer (20 mM Tris-HCl, 100 mM NaCl, 

0.4% DDM, 50 mM imidazole, pH 8.0), and eluted with elution buffer (20 mM Tris-HCl, 

100 mM NaCl, 0.4% DDM, 500 mM imidazole, pH 8.0). The eluted fractions were 

resolved on 10% SDS-PAGE and immunoblotted with polyclonal anti-AcrB or anti-TolC 

antibodies as the primary antibodies, and an alkaline phosphatase-conjugated anti-rabbit 

antibody (Abcam, Cambridge, MA) as the secondary antibody. The protein-antibody 

conjugates were detected after staining using nitroblue tetrazolium chloride and 5-bromo-

4-chloro-3’-indoyl phosphate p-toluidine (Sigma-Aldrich, St. Louis, MO).  
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4.3 Results 

4.3.1 Alanine Scanning Studies of Proposed P223 Binding Pocket 

I previously found that P223 changed the backbone conformation of the loop and formed 

a kink, which may have served as a “wedge” to stabilize binding between neighboring 

subunits in an AcrB trimer. To investigate the receiving site of the interaction, I 

conducted Ala scanning of residues forming the binding pocket in the neighboring 

subunit. Each residue that contacted P223 in the neighboring subunit was replaced with 

Ala one as a time and the transport activity of the resultant mutant was examined using a 

drug susceptibility assay. The result is shown in Table 4.1. Y275A and Q584A did not 

have observable effects on protein activity while W187A slightly decreased the activity. 

Strikingly, R780A was completely nonfunctional.  

The side chain of arginine has the highest pKa value among the twenty common amino 

acids. Thus, it usually forms salt bridges with other negatively charged amino acid. The 

positive charged guanidinium group of arginine could also form hydrogen bonds to 

backbone carbonyl oxygen atoms.
179

 This kind of hydrogen bond formation plays 

combined structural and functional roles at the active site of enzymes.
180, 181

 The crystal 

structure reveals that the side chain of R780 forms a hydrogen bond with the backbone 

oxygen of P223. To further examine the role of R780, I also replaced it with other 

residues of various charge, polarity, and length to create R780M, R780Q, and R780K.  

R780M and R780Q also abolished the functionality of the protein similar as R780A, 

while R780K partially decreased its activity, indicating that a positive charge at this 

position is critical for function.  
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To confirm that the difference in activity was not a result of variation in protein 

expression due to the mutation, I measured the expression level of each mutant. Plasmid 

encoding each mutant was transformed into strain BW25113ΔacrB for expression under 

the basal condition. Protein levels in the extracted membrane vesicles were then 

evaluated using Western blot analysis with an anti-AcrB antibody (Figure 4.2). There was 

no significant difference among expression levels of AcrBWT and the other mutants, 

which indicated that the observed loss of activity was not a result of decreased protein 

expression.  

 

                           

Figure 4.2 Comparison of the expression levels of wild type AcrB and the other mutants. 

Western blot analysis of membrane vesicles extracted from BW25113∆acrB expressing 

wild type AcrB (WT), AcrB (R780A), AcrB (R780M), AcrB (R780K) and AcrB 

(R780Q). Same amount of bacterial cells for expression of different proteins are used for 

analysis.  

  

  WT        R780A     R780M     R780K     R780Q      
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Table 4.1 Drug resistance of BW25113ΔacrB expressing plasmids and mutations. 

 

           Plasmids or  Mutations 

MIC (µg/ml) 

Aci Ery Nov R6G TPP  

pQE70-AcrB 160 80 160-320 320-640 640  

pQE70 10 2.5 5 5 5  

pQE70-AcrBW187A 80 40 160 320 160  

pQE70-AcrBY275A 160 80 160-320 320-640 640  

pQE70-AcrBQ584A 160 80 160 320 640  

pQE70-AcrBR780A 10 2.5 5 5 5  

pQE70-AcrBR780K 20 20 40 40 20  

pQE70-AcrBR780M 10 2.5 5 5 5  

pQE70-AcrBR780Q 10 2.5 5 5 5  

pQE70-AcrBR780A/V225C/A777C 10 2.5 5 5 5  

pQE70-CLAcrBV225C/A777C 160 80 160-320 320-640 640  

 

Drugs tested were Acriflavine (Aci), Erythromycin (Ery), Novobiocin (Nov), Rhodamine 

6G (R6G), and Tetraphenylphosphonium (TPP). 
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4.3.2 Efflux Ability Assay 

To further confirm the bacterial susceptibilities data, ethidium bromide accumulation 

assay was performed using intact BW25113 or BW25113ΔacrB cells transformed with 

plasmid encoded AcrB constructs. Ethidium bromide is weakly fluorescent in buffer. 

Once inside E. coli, it binds to DNA and fluoresces intensely. Therefore, the entrance of 

ethidium bromide can be monitored through an increase of fluorescence emission, which 

gradually reaches a plateau at saturation. Ethidium briomide is a substrate of AcrB. 

Without the active efflux by AcrAB-TolC, it would enter the cell at a much faster rate.  In 

the presence of AcrAB-TolC, ethidium briomide accumulates inside the cell very slowly.  

The assay has been used to determine the substrates binding residues of AcrB.
122, 123

 A 

comparison of the rate of ethidium bromide accumulation in the presence of different 

AcrB constructs could be used to evaluate efflux activity.  

Figure 4.3 showed the different fluorescence trace of the mutants. The BW25113ΔacrB 

strains, transformed with pQE70 or pQE70-AcrBWT, were used as the negative and 

positive controls, respectively. The mutant R780A showed the fastest fluorescence 

increase, similar to that of the negative control. The mutant R780K had a much slower 

increasing rate, which was more rapid than WT AcrB but slower than R780A. The 

ethidium briomide accumulation results were consistent with the result of the MIC assay, 

indicating that the mutant R780A almost completely lost the activity while R780K 

maintained partial activity (Table 4.1).  
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Figure 4.3 Real-time measurement of ethidium bromide accumulation for the intact 

BW25113ΔacrB with different AcrB mutant. BW25113ΔacrB (a), R780A (b), R780K 

(c), and WT AcrB (d).  

4.3.4 Structural Characterization of AcrBR780A 

The replacement of R780 with other amino acids might possibly change the protein 

tertiary structure. To determine how R780A affect AcrB function, I chose R780A for 

further structure characterization in vitro and in vivo. The secondary structure of the 

mutant was characterized with circular dichroism (CD) spectroscopy. In Figure 4.4A, the 

CD spectrum in the far UV range of the mutant overlapped well with that of the WT, 

which indicated that the mutant still remained well folded secondary structure.  Thermal 

denaturation experiments were also performed to test the stability of the purified mutant. 

The melting curves of the mutant and WT AcrB were similar (figure 4.4B), which was 

consistent with our previous report and confirmed that the conformations of the proteins 

were close.  
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Figure 4.4 A. UV CD spectra of wild type AcrB (black) and AcrBR780A (grey) 

superimposed well onto each other, indicating the two proteins had similar secondary 

structure contents. B. Temperature denaturation curves of wild-type (black) and 

AcrBR780A (grey). The ellipticity values monitored at 222 nm were normalized to the 

reading at 4 °C. The thermal stabilities of the two proteins were very similar. 

To probe whether the R780A mutation change the tertiary structure, the disulfide-

trapping method was used to characterize R780A as described in section 2.3.3. As shown 

in Figure 4.5, similar to P223G structure characterization, a series of Cys pairs were 

introduced in the R780A mutant as reporters, which covered different parts of the protein 

in the periplasm domain of AcrB.  The drug susceptibility assay had been used to confirm 

that these mutations did not affect the protein activity. All five Cys-pairs formed disulfide 

bonds at similar levels in the mutant as in the wild type background. Specifically, the 

184-771 Cys pair was close to R780 and the formation of disulfide bond between them 

was not affected by the R780 to Ala mutation, which was a good indication that 
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AcrBR780A maintained a similar tertiary structure as AcrBWT and the mutation R780A did 

not alter the protein tertiary structure. 

 

 

Figure 4.5 Disulfide trapping analysis of AcrB tertiary structure. A. The locations of 

reporter Cys pairs in the structure of AcrB were highlighted using black circles and blue 

ball-and-stick models. Residue numbers of the Cys mutations were marked. B. AcrB 

tertiary structure as revealed by the disulfide trapping method. The extents of disulfide 

bond formation for each reporter Cys pair were very similar in AcrBR780A as compared to 

AcrBWT. Therefore, the overall conformation, or tertiary structure, of AcrBR780A was very 

similar to that of  AcrBWT. 

The quaternary structure of AcrBR780A was characterized with a modified BN-PAGE 

method as described in section 4.2.4. The oligomer state of the wild type and the mutant 

P223G were also quantified with BN-PAGE for comparison. The AcrBWT migrated as a 

trimer as expected while most AcrBP223G and AcrBR780A as monomers (Figure 4.6A), 
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which indicated that the R780 is also involved in the oligomerization of the protein. In 

addition, AcrBR780A has less trimer content than AcrBP223G (Figure 4.6B).  

To qualify the in vivo oligomer state of the mutant AcrBR780A, two cysteines mutation 

were introduced to AcrBR780A, V225C and A777C. Those two cysteines could form inter-

subunit disulfide bond, covalently linked AcrB monomers into a trimer in vivo but did not 

affect its function as described in chapter 2.
112

 The extracted membrane from BW25112 

∆acrB expressing CLAcrBR780A/V225C/A777C was analyzed by Western blot (Figure 4.7).  In 

the absence of DTT, a clear band migrated at high molecule weight in the SDS-PAGE, 

indicating that the mutant AcrBR780A still formed a trimer in vivo. The disulfide 

crosslinking result of AcrBR780A was the same as the result observed for AcrBP223G as 

reported before.
173

 However, the inter-subunit Cys pair (V225C and A777C) could partly 

restore the pump activity of AcrBP223G but did not have such an effect on AcrBR780. That 

is, AcrBR780A has the same MIC values as CLAcrBR780A/V225C/A777C (Table 4.1), implying 

that R780 might play other roles in addition to stabilizing the trimer.  
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Figure 4.6 Quaternary structure analysis. A. BN-PAGE analyses of freshly purified 

AcrBWT, AcrBR780A , and AcrBP223G.  B. The AcrB trimer content percent is calculated 

from BN-PAGE (ImageJ). 

 

 

Figure 4.7 Western blot analysis of membrane vesicles extracted from BW25113 ∆acrB 

expressing wild type AcrB (lane 1 and  lane 3),  AcrBR780A/V225C/A777C  (lane 2 and lane 4) 

with or without 4 mM DTT in LB medium.    
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4.3.5 Fluorescence Labeling Assay 

One possibility is that the mutant R780A affects the AcrAB-TolC activity through 

changing the conformation of the drug transport pathway. To explore this possibility, a 

fluorescence-based whole cell assay was used to determine the accessibility of residues 

lining up the drug translocation pathway.
126

 In this method, the two intrinsic Cys residues 

in the sequence of AcrB were first replaced with Ala to create a cysless AcrB (CLAcrB). 

Next, the residues along the substrate pathway in the AcrB are replaced with cysteine one 

at a time, and those mutated residues are labeled with a low concentration of Bodipy FL 

maleimide which is the substrate of AcrB. The labeling reagent travels through the AcrB 

channel and covalently reacted with cysteines lining up the translocation pathway. The 

intensity of fluorescence due to the labeling could be quantified to determine whether the 

residues could be accessed by the substrate. Experimental details could be found in 

Materials and Methods. This reaction is specific to residues involved in drug binding. 

As shown in Figure 4.8, each SDS-PAGE gel was first imaged under fluorescence light, 

and then stained with Coomassie blue dye. Coomassie blue staining was used to reveal 

the concentration of protein in each lane and fluorescence image reflected the efficiency 

of fluorescence substrate labeling. If the mutant R780A alters the interaction with the 

substrate, then the fluorescence labeling efficiency of residues lining up the drug 

transport pathway will reduce and band intensity will decrease. Four such residues were 

chosen for this study, including T676, S134, F617 and D276. T676 is located in the 

external cleft; S134, F617 and D276 are in the binding pocket of AcrB. Those residues 

were mutated to cysteine one at a time in CLAcrBWT, CLAcrBP223G and CLAcrBR780A for 
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labeling assay. As shown in Figure 4.8, the fluorescence band intensity of CLAcrBWT/T676C, 

CLAcrBP223G/T676C and CLAcrBR780A/T676C were close, indicating that the labeling efficiency 

of Bodipy FL maleimide to sites at the external cleft was similar among those mutants. 

For S134C, F617C, and D276C, the fluorescence band intensity of CLAcrBP223G and 

CLAcrBR780A were similar, which were much lower that of CLAcrBWT. This result indicate 

that the fluorescence dye could easily label the external cleft of the residues either 

AcrBWT or mutants. However, for the binding pocket, the labeling efficiency was low for 

CLAcrBP223G and CLAcrBR780A. Those results suggest that the substrate could still enter 

from the external cleft to binding pocket in mutants AcrBP223G and AcrBR780A but could 

not reach the deep binding pocket.  
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Figure 4.8 Fluorescent substrate labeling assay. A. The selected residues along the 

substrate transport pathway of AcrB. The residue was shown in a colored ball sphere 

model  B. The labeling results. 1, 2, and 3 represents AcrBWT, AcrBP223G, and AcrBR780A, 

respectively. For each labeling data, the upper panel is the fluorescence image before 

staining and the lower panel is the same gel after Coomassie blue stain. C. Quantitative 

analysis of labeling. The extent of labeling (F/I) was calculated by dividing the band 

fluorescence intensity with the amount of protein from the Coomassie staining. 

A B 

C 
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4.3.6 In Vivo Chemical Cross-linking 

It is also possible that the mutant R780A affects AcrB docking with AcrA or TolC. To 

probe in vivo interactions between components of AcrAB-TolC efflux pump, a chemical 

cross-linking experiment was performed. The chemical cross-linker dithiobis 

succinimidyl propionate (DSP) contains an amine active N-hydroxysuccinimide ester 

which reacts with primary amine to form stable amide bonds, and a disulfide bond which 

could be cleaved under reducing conditions. Thus the fixed 12 Å spacer arm of DSP 

could connects primary amine groups of target proteins in close proximity to study the 

protein-protein interactions. Live cells were treated with DSP and lysed. Cell membrane 

was solubilized, and protein complexes were isolated by Ni-NTA resin. The isolated 

complexes were reduced with DTT to release the conjugated complexes. The reduced 

components were resolved by 10% SDS-PAGE and detected by immunoblotting. In 

Figure 4.9, AcrBWT, AcrBP223G and AcrBR780A could cross-link with both AcrA and TolC. 

There are no obvious difference in band intensities of AcrA or TolC cross-linking among 

AcrBWT, AcrBP223G and AcrBR780A. Those results suggest that the mutant AcrBR780A could 

interact with AcrA and TolC as AcrBWT and AcrBP223G did. The efflux pump could still 

form in AcrBR780A. 
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Figure 4.9 In vivo chemical cross-linking of the AcrAB-TolC efflux pump. The complex 

was purified from membrane fractions of lysed cells with Ni
+
-agarose. The cross-linked 

proteins were reduced by DTT, resolved by 10% SDS-PAGE and identified by 

immunoblotting.  

4.3.7 In Vivo AcrB-TolC Disulfide Cross-Linking Assay 

AcrB has a tip-to-tip contact with TolC. The AcrBD256C and AcrBD795C could form 

disulfide bonds with TolCG147C and TolCG365C, respectively, which provided evidence for 

direct interaction between AcrB and TolC. (Figure 4.10)
137

 Since R780 is close to D795, 

the mutation R780A might change the conformation of the TolC docking domain in AcrB 

and prevent correct docking between AcrB and TolC. To test this hypothesis, D256 or 

D795 were mutated to cysteines in pBAD-AcrB (WT, P223G, and R780A) plasmid; 

G147 and G365 were mutated to cysteines in pAC5-TolC plasmid. The AcrB and TolC 

mutants were co-expressed in a ∆acrABtolC strain and disulfide bond formation between 

AcrB 

AcrA 

TolC 

   WT              P223G            R780A 
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AcrB and TolC were tested with Western blot. The disulfide bond might not form if the 

mutants R780A change the TolC docking domain. As shown in Figure 4.11, the purified 

proteins (AcrBD256C/TolCG147C and AcrBD795C/TolCG365C) were analyzed by SDS-PAGE 

and immunblotting. There are three major bands (110, 260 and 330 kDa) on the SDS-

PAGE when anti-AcrB antibody was used for detection. In the presence of reducing 

agent DTT, the 260 and 330 kDa bands disappeared. The 260 kDa bands also appeared 

when anti-TolC antibody was used in detection. Based on the molecular weight of AcrB 

(110 kDa) and TolC (50 kDa), the 260 kDa band could be a complex for the trimeric 

TolC with monomeric AcrB which are consistent with the previous report.
137

 It was 

found that mutants P223G or R780A both formed disulfide bond with engineered TolC, 

similar as the WT AcrB. It is possible that the mutants R780A and P223G did not affect 

the TolC docking domain.  
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Figure 4.10 A. The direct interaction of AcrB and TolC model. (Protein Data Bank ID 

2DRD and 1EK9)
61, 135

  B. Zoom in picture of the residues which are involved in the tip-

to-tip contacts between AcrB and TolC.  
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Figure 4.11 In vivo disulfide cross-linking between AcrB and TolC. 1, 2, and 3 

represents WT, P223G and R780A of AcrB, respectively.  

 

A 

B 
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4.4 Discussion and Conclusion 

To understand the oligomerization process and inter-subunit interaction of AcrB, 

structures and function of AcrB mutants were characterized in chapter 2 and 3. Our 

results identified a conserved residue P223 in the protruding loop, which helped the loop 

to form a “wedge”-like structure and stabilized the trimeric state. And the protruding loop 

is important for the trimerization and function of AcrB. In this study, to further illustrate 

the interaction between the loop-and-tunnel interactions in neighboring subunits of AcrB, 

I performed Ala scanning study of the proposed binding pocket of P223 and identified a 

critical residue R780 in the tunnel. Mutation of R780 had a drastic impact on AcrB 

function. The side chain of R780 could form a hydrogen bond to backbone carbonyl 

oxygen of P223. CD spectrum and disulfide bond trapping method were used to 

characterize the secondary and tertiary structure of the mutant AcrBR780A, which were 

similar to AcrBWT. The purified AcrBR780A was a monomer with BN-PAGE but a trimer 

in vivo with intra-disulfide bond cross-linking, which implied that R780A weakened 

oligomeric state of AcrB and trimeric AcrBR780A dissociated easily during purification.   

However, the inter-subunit disulfide bond cross-linking could not restore the activity of 

the mutant AcrBR780A, which was different from that of AcrBP223G. Based on the crystal 

structure (Figure 4.12), the backbone carbonyl oxygen of P223 is within H-bonding 

distance with the side chain of R780 from the neighboring subunit. When P223 was 

replaced with another amino acid, the flexibility of the loop increases but the backbone 

oxygen still exists. The inter-subunit disulfide bond between C225 and C777 helped to 

stabilized AcrB trimer and partially restores its activity.  
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In R780 mutants including R780A, R780M and R780Q, the guanidinium group at the end 

of the Arg side chain was replaced, which eliminated the possibility of forming hydrogen 

bond with P223 backbone oxygen. Lys could potentially form hydrogen bond with P223 

backbone oxygen, therefore the R780K retained partial activity.  Compared with lysine, 

the side chain guanidinium group in arginine might be positioned at a more favorable 

location to interaction with backbone carbonyl oxygen. R780K did not have the same 

level of stability as WT AcrB, but maintained partially its function. Moreover, the side 

chain of R780 underwent conformation change while the protein operate, which led to the 

switching of hydrogen bond parters with the backbone carbonyl oxygen of P223 (Figure 

4.12). The side chain of Lys might not be able to support the structure transition as well 

as Arg did at position 780.  

It was proposed that energy from derived from the proton translocation across in the 

transmembrane domain of AcrB drove the structural conversion in the periplasm domain 

of each monomer.
61

 The dynamic conformation change of R780 during the pump rotating 

cycle could be critical to conformational coupling among monomers and might provide 

an elastic network between the neighboring subunits interaction. Without R780, the inter-

subunit disulfide bond cross-linking could link the subunits to each other to form a trimer 

but not fully function for the lack of a dynamic hinge to provide the flexibility. Therefore, 

the inter-subunit disulfide bond cross-linking could partially restore the activity of the 

mutant AcrBP223G but not AcrBR780A.  

In this study, the stabilizing of AcrB oligomer for its functionality was further clarified. 

In an earlier study,
173

 it was suggested that the loop kept rigid structure during the 
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trimerization. Combined with the finding in this study, the rigid structure of the loop, 

especially P223 in the tip, help to form an important hydrogen bond to the R780 in the 

tunnel. During the asymmetric rotation function of AcrB in vivo, R780 also altered its 

conformation to well maintain the hydrogen bond formation and kinetic stabilize the 

trimer of AcrB. 

 

Figure 4.12 The overlook picture of asymmetric AcrB (Protein Data Bank ID 2DRD). 

Each monomer state was color coded. The zoom-in picture about the hydrogen bond 

(indicated with a yellow dash line) between R780 and P223 during different states.  

Copyright © Linliang Yu 2013 
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Chapter 5 Characterization of Ligand Binding of a Putative Archaean Regulator 

Protein ST1710 

 

5.1 Introduction 

Transcriptional regulators are proteins involved in regulating transcription of mRNA 

level. Those usually bind to a DNA binding site to control gene expression. Based on its 

mechanism, regulators could be divided as an activator and repressor. A transcriptional 

activator is a protein that increases gene transcription level while a repressor prevents the 

gene transcription. Multiple antibiotic resistance regulators (MarR) family is an important 

regulator family to regulate cellular function in response to aromoatic catabolic pathways, 

virulence factors and environmental stress.
182

 It was first identified by George and Levy 

in multidrug resistant strains of E. coli in 1983.
183, 184

 Now homologues of MarR can be 

found throughout the domains of bacteria and archaeon.
185, 186

 The bacteria MarR family 

has been studied extensively. 

MarR regulators bind to their cognate dsDNA sequences as homodimers. The interaction 

between MarR and DNA is modulated by specific lipophilic compounds, including 

salicylate, ethidium, and CCCP (Figure 5.1). Crystal structures of several MarR 

regulators have been obtained, either as apoproteins (MexR from Pseudomonas 

aeruginosa,
187

 SlyA from Enterococcus faecalis,
188

 and MTH313 from 

Methanobacterium thermoautotrophicum 
189

), in complex with the cognate dsDNA 

oligonucleotide fragment (OhrR from Bacillus subtilis 
190

), or in complex with salicylate 

(MarR from E. coli 
191

 and MTH313 from M. thermoautotrophicum 
189

). However, the 

DNA-complexed and ligand-complexed structures are not yet available simultaneously 

for the same protein to facilitate dwerect comparison. An allosteric regulation mechanism 
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has been proposed on the basis of the observation that the four dimers in the 

crystallographic asymmetric unit of MexR had different conformations, in which an open 

state (presumably DNA binding) and a closed state (presumably drug binding) could be 

identified.
187

 Recently, crystal structures of MTH313 were determined both in the apo 

state and in complex with salicylate.
189

 A comparison of these two structures illustrated a 

large conformational change in the DNA binding lobe, further supporting the notion that 

protein conformational changes are involved in the mechanism of regulation. However, 

much less is known about the MarR-like regulators in archaea. ST1710 from Sulfolobus 

tokodaii (found in hot springs of Kyushu Island, Japan) is a putative MarR-like regulator. 

Crystallographic structure of ST1710 has been determined in its apo form (Figure 5.1 

A).
192, 193

 The structure of ST1710 superimposes well with the MarR regulators, with a 

ligand binding site and a DNA binding site that share some common key residues.  Based 

on the similarity in structure, the mechanism of function is expected to resemble that of 

the bacterial MarR proteins. While the majority of the MarR regulators studied are 

repressors, there are also some members that act as activators. The repressors bind to 

their target DNA site to block the transcription of the cognate genes in the absence of the 

effector (a small molecule that binds to the protein and alters protein activity). When its 

cytoplasmic concentration reaches a critical level, the effector would bind at the ligand 

binding site of the repressor and generate a conformational change. The effector binding 

and conformational changes disrupt the binding between the protein and the DNA, and 

subsequently RNA polymerase could initiate the transcription of the genes. On the 

contrary, for activators the effector binding promotes interaction with the target DNA.   
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The effector binding has been characterized for a couple of bacterial MarR family 

regulators. These effectors are usually lipophilic compounds with planar structures, such 

as ethidium, salicylate, and CCCP (Figure 5.1 B). However, no detailed biophysical 

characterization of the ligand binding to archaeal MarR-like regulators has been reported. 

In this study, I characterize the binding of the above-mentioned ligands to ST1710. The 

binding affinity, stoichiometry, and resultant protein conformational change were 

examined. The effect of ligand binding on the interaction between ST1710 and a double-

stranded DNA oligonucleotide containing the putative ST1710 binding site were 

investigated. The recombinant ST1710 was found to bind to all three ligands, and this 

binding disrupted the interaction between the protein and DNA. 
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Figure 5.1 Structure of ST1710 and its ligands. A. Crystal structure of apo-form ST1710 

(Protein Data Bank ID 2EB7).
192

  B. Chemical structure of three ligands used in this 

study.  

 

 

 

 

A 
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5.2 Material and Methods 

5.2.1 Cloning, Expression and Purification of ST1710 

The gene of ST1710 was amplified by the polymerase chain reaction (PCR) from plasmid 

STLGR15159 (National Institute of Technology and Evaluation, Japan). Primer pairs 

used for the PCR are: forward 5'-CACCATGTTAGAAAGTAATGAAAACAGAAT AC, 

reverse 5'-TCACTGACTAATTTCCTCAATTCTTTTC. Next the PCR product was 

inserted into the TOPO TA expression vector following the manufacturer’s instruction 

(Invitrogen, Carlsbad, CA) to generate plasmid pTOPO-ST1710, which introduced a 

poly-histidine tag at the N terminus of the protein.  pTOPO-ST1710 was transformed into 

E coli. strain Rosetta2 (EMD Biosciences, San Diego, CA) for protein expression. The 

cells were grown in Luria Bertani (LB) media containing 100 g/mL ampicillin and 34 

g/mL chloramphenicol to an OD600 of 0.6, and then induced by adding 1 mM of 

isopropyl-beta-D-thiogalactopyranoside (IPTG). Sixteen hours after the induction, the 

cells were harvested by centrifugation at 6,000 g for 10 min. The cell pellet was 

resuspended in buffer A (50 mM HEPES buffer, 200 mM NaCl, pH 7.5), and lysed by 

sonicating on ice for 5 min with 10 s on/off intervals. Then, the cell debris was separated 

from the supernatant by centrifugation at 10,000 g for 15 min. The same centrifugation 

condition was used throughout the purification steps unless otherwise indicated. The 

supernatant was first incubated at 70 °C for 45 min, followed by centrifugation to remove 

the heat-denatured impurities. Next, the supernatant was incubated with the Ni-NTA 

resin (Qiagen, Huntsville, Alabama) with shaking for 1 hour, then washed with buffer B 

(50 mM HEPES buffer, 200 mM NaCl, 35 mM imidazole, pH 7.5), and finally eluted 

with buffer C (50 mM HEPES buffer, 200 mM NaCl, 500 mM imidazole, pH 7.5).  
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Purified ST1710 was dialyzed extensively against buffer A to remove the excess 

imidazole. The purity of the protein was analyzed with sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE). Protein samples were separated on a 20% 

homogenous polyacrylamide Phast gel (Phast System, GE healthcare, Waukesha, WI) 

and visualized by Coomassie Blue stain. Molecular weight standards (Benchmark Protein 

Markers) were obtained from Invitrogen. Protein concentrations were determined by UV 

absorbance at 280 nm using an extinction coefficient of 8940 M
-1

cm
-1

. 

5.2.2 Circular Dichroism (CD) Spectroscopy 

CD was performed on a JASCO J-810 spectrometer (JASCO, United Kingdom) with 1 

nm bandwidth and a 0.1 cm path length cuvette. ST1710 was dialyzed overnight into a 

low salt buffer (20 mM Tris buffer, pH 8.0) before the CD measurement. Blank scans 

were performed with the exterior dialysis buffer and subtracted from the measured data.   

5.2.3 Fluorescent spectroscopy  

Fluorescent polarization experiment and wavelength scans were performed with a Perkin 

Elmer LS-55 fluorescence spectrometer (Perkin Elmer, Waltham, MA). For the 

fluorescent polarization studies of FITC labeled ST1, the excitation and emission 

wavelengths are 492 and 515 nm, respectively. The forward oligonucleotide (5‘-

AATGAAAACAGAATACAAATAATGTCAACAATAGCAAAAATATACAG-3‘) 

was labeled with FITC at the 5’ (all DNA oligonucleotides, including FITC labeled ones, 

are obtained from Operon, Huntsville, Alabama). The forward and reverse 

oligonucleotides was mixed at a 1 to 1 ratio at 100 µM in 500 µl reaction buffer (10 mM 

HEPES, pH 7.5, 50 mM NaCl).  The sample was protected from light and incubated in 2 
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L of boiling water bath for 10 minutes, then cooled slowly in the water bath to room 

temperature. The annealed double stranded DNA was used throughout the binding 

experiment. The reaction buffer was supplemented with 1µg/ml calf thymus DNA to 

eliminate non-specific binding. For measuring the binding of ethidium to ST1710, the 

excitation and emission wavelengths for the fluorescent polarization experiment are 520 

and 600 nm, respectively. The same excitation wavelength was used for the emission 

spectra.    

Two models were used to fit for the binding dissociation constants from the concentration 

dependent curves. The Hill equation was used when the concentration of the ligand (ST1 

or ethidium), which is kept constant during the titration, is much smaller than the 

concentration of the ST1710. In such circumstances, the concentration of the protein-

ligand complex is very small compared to the total protein concentration, so the total 

protein concentration can be treated as [S] during the fitting:   

nn

n

SK

S
PP


 max  

P is the polarization increment upon the addition of ST1710, Pmax is the maximum 

polarization increment when the protein concentration [S] approaches infinity, and n is 

the hill coefficient, with n>1 indicate positive coordination and n<1 indicate negative 

coordination.   

A non-cooperative one to one binding model was used when the concentration of the 

complex cannot be ignored, as in the case of binding between ST1710 and CCCP:  



123 

 

][

])[]])([[]([

][][][],[][][

][

]][[

PL

PLLPLP
K

PLLLPLPP

PL

LP
K

LPPL

TT
d

TfTf

ff

d










 

[PT], [Pf], [LT], [Lf] and [PL] are concentrations of the total protein, free protein, total 

ligand, free ligand, and protein-ligand complex, respectively.  Solving for [PL]: 
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For CCCP binding, the ellipticity at 325 nm (y) is proportional to the concentration of 

protein-CCCP complex [PL]. The change of y as a function of the total ligand 

concentration x (x=[LT]) can be represented as: 
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In the experiment, small aliquot of CCCP was titrated into ST1710. The dilution effect 

was kept to be less than 2%, so [PT] can be treated as a constant without causing 

significant error in fitting. Ymin and Ymax correspond to the theoretical ellipticities at 

CCCP concentrations of 0 and infinity, respectively.  The y vs. x curve was fitted to 

derive three parameters, Kd, Ymin and Ymax. 
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5.2.4 Tetranitromethane (TNM) Nitration 

The TNM nitration procedure was performed following the published method.
194

 Briefly, 

TNM was added to a reaction buffer (0.5 M Tris-HCl (pH 8.0)) containing 62.5 µM 

ST1710 at a final concentration of 750 µM. Ethidium bromide was added when indicated 

to the reaction mixture at a final concentration of 100 µM before the addition of TNM. 

The reaction mixture was incubated at 35°C for 1 hour and then passed through desalting 

columns twice to remove the excess TNM and ethidium. The nitrated Tyr was quantified 

using the absorbance at 428 nm with an extinction coefficient of 4200 cm
-1

 M
-1

.
195

 The 

concentration of the protein was determined using the Bradford assay. The number of 

nitrated Tyr residues per protein molecule was estimated by the ratio of these two 

concentrations. 
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5.3 Results and Discussion 

5.3.1 Ligands binding to ST1710 

Capacity to bind with effectors is shared by all MarR type regulators characterized thus 

far. Several small molecules have been shown to bind to the MarR family regulators.  

Three representative ligands were chosen to study effector binding to ST1710, including 

a cationic molecule ethidium, an anionic molecule salicylate, and a neutral molecule 

CCCP (Figure 5.1 B). 

The binding of ethidium to ST1710 was studied directly using the intrinsic fluorescence 

of ethidium. After binding with the protein, the fluorescent emission peak was blue 

shifted by 5 nm and increased in intensity by 2 folds at 10
o
C (Figure 5.2 A, red traces).  

Since S. tokodaii is a thermophile living at 80
o
C, the effect of temperature was examined 

on ethidium binding with 10
o
C intervals from 10 to 50

o
C (Figure 5.2 A). The interaction 

between ethidium and ST1710 becomes weaker at higher temperature. At 10
o
C, fitting 

the binding curve with the Hill equation yields a dissociation constant of 19.1 ± 4.6 µM.  

The n value was found to be 0.88 ± 0.07, indicating the lack of binding coordination.   

To evaluate the potential contribution of the protein structural change on the observed 

temperature effect on binding, CD spectra of ST1710 was collected at 10 and 50
o
C, 

respectively. The structural stability of a helical protein is usually monitored by the 

disappearance of the helical structure at the far UV region. The far UV CD spectra at 

190-260 nm was collected (Figure 5.3). The protein is highly α-helical, consistent with 

the crystal structure. The two spectra show very little differences, indicating the protein is 

quite stable at 50
o
C.  
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Figure 5.2 Binding of ethidium with ST1710. The intrisic fluorescence of ethidium was 

used to moniter its binding to ST1710 at 10
o
C (red), 20

o
C (blue), 30

o
C (magenta), 40

o
C 

(cyan), and 50
o
C (green). Two traces Were collected at each temperature, one is ethidium 

alone and the other is ethidium (1 µM) plus protein (20 µM). The effect of temperature 

on the fluorescent emission of free ethidium is very small, so traces from all 5 

temperatures superimpose onto each other at the bottom of the figure. However, the 

increase of temperature drastically decreased the binding affinity of ethidium with 

ST1710. At 10
o
C, the binding to ST1710 cause the fluorescent emission of ethidium 

increases by 2 folds and blue shifted (A, first red line from the top). With the rising of the 

temperature, the binding becomes weaker, and the fluorescent enhancement decreases as 

a consequence.  At 10
o
C, the fluorescent polarization changes of an ethidium solution 

upon the addition of ST1710 were recorded and fitted with the Hill equation (B). 
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Figure 5.3 Circular Dichroism characterization of ST1710. The secondary structure of 

ST1710 is highly alpha-helical, consistant with its crystal structure. The conformation of 

the protein has very slight change when the temperature increased from 10
o
C (□) to 50

o
C 

( ).  

CD spectroscopy also was used to evaluate the ST1710 structural change associated with 

ligand binding. The near UV CD spectra (260-350 nm) which reveal information about a 

protein’s tertiary structure were collected for the free protein, free ligands, and the 

protein-ligand complexes (Figure 5.3). Aromatic residues, especially tryptophan, are 

major contributors to the near UV CD signal. Since ST1710 has no intrinsic tryptophan, 

high protein concentration has to be used (300 µM) to achieve decent signal to noise level 

for the spectrum. The ligand concentration need to be high enough to form significant 

amount of protein complex to facilitate detection, while at the same time not too high so 

its absorbance won’t significant deteriorate the signal. In the case of ethidium, its 

absorption at 300 µM (to achieve a 1:1 molar ratio to the protein) causes poor signal to 
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noise, so the spectrum shown in figure 5.3 was acquired with 150 µM ethidium. At a 

ligand to protein ratio of 0.5:1, only a portion of the protein would bind with ethidium.  

However, a clear difference can still be observed between the CD traces of the apo-

protein (open square) and the protein-ethidium mixture (filled diamond) at the 

wavelength region between 260 to 275 nm, indicating protein conformational change 

accompanied ethidium binding (Figure 5.4).   

Salicylate absorbs much less in the wavelength range studied, and can be used at 2 mM to 

achieve a ligand to protein ratio of 20:3 (Figure 5.4). The differences between the protein 

(open square) and protein-salicylate mixture (filled diamond) traces are apparent, with the 

major positive peak shifted from 275 nm to 280 nm, and the minor positive peak at 300 

nm became more predominant. The binding of salicylate clearly causes protein 

conformational change.    

Due to the limitations of experimental conditions as discussed above, the near-UV CD 

spectra exhibited only minor changes after the addition of ethidium (Figure 5.4). To 

further evaluate the effect of ethidium binding, Trp fluorescence spectrum was monitored. 

The Trp fluorescence is very sensitive to the environment and thus has been used broadly 

as a reporter for protein conformational change. Ethidium has no significant fluorescence 

emission under the experimental condition used for this study. Site-directed mutagenesis 

experiments were performed to introduce a single Trp into the protein sequence, as 

ST1710 has no intrinsic Trp. Ideally, the reporter Trp should be placed at a location that 

experiences the most dramatic structural change following ligand binding. In an effort to 

identify the proper position for the mutation, the structures of apo ST1710 with apo and 
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salicylate-bound MTH313 were superimposed (Figure 5.5 A). As expected, the overall 

structure of ST1710 was very similar to that of MTH313. In the structure of ST1710, two 

tyrosines (Y55 and Y60) were found to be close to the corresponding ligand binding site 

in MTH313. Therefore, these two tyrosines were chosen to be replaced with Trp. Two 

single Tyr to Trp mutants (Y55W and Y60W) were constructed to monitor their Trp 

fluorescence changes following ethidium binding (Figure 6.5 B,C). The fluorescence of 

wild-type ST1710 was also acquired under the same experimental condition as a 

reference (Figure 5.5 B). The fluorescence intensity of wild-type ST1710 was very small 

in the wavelength region examined, as expected for a protein without intrinsic Trp. As a 

control experiment, the effect of the presence of ethidium on the fluorescence emission of 

the free amino acid was also examined. Ethidium quenched the fluorescence of both the 

ST1710 mutants and the free amino acid Trp. However, in the latter case, the quenching 

involved an intensity drop of only approximately 30%, with very little wavelength shift 

of the emission peak. For mutants Y55W and Y60W, the intensities dropped by 

approximately 35 and 40%, respectively, and the emission maxima also red-shifted. In 

addition, the changes caused by ethidium binding on the fluorescence spectra of Y55W 

and Y60W were different, supporting the notion that protein conformational changes 

were associated with ethidium binding. However, the potential contributions from the 

direct Trp-ethidium interactions could not be completely excluded. The bound ethidium 

might be in the proximity of W55 and W60, and thus, the binding of ethidium might have 

changed the chemical environment of the reporter Trp and therefore produced the 

observed changes in fluorescence emission. 
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Figure 5.4 Circular Dichroism characterization of ST1710 conformation change. ST1710 

conformational change induced by the binding of ethidium (top) and salicylate (bottom) 

at 50 
o
C. CD spectra of ST1710 (□), ligand (∆), and ST1710 bound with ligand ( ).   
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Figure 5.5 Effect of ethidium binding on the Trp fluorescence emission. (A) The left 

panel shows the superimposition of the crystal structures of apo MTH313 (blue), MT313 

in complex with salicylate (yellow, with salicylate shown as a cyan ball-and-stick model), 

and ST1710 (red). Protein Data Bank entries 3BPV (apo MTH313), 3BPX (MTH313-

salicylate complex), and 2EB7 (ST1710) were used to create this figure. The right panel 

shows the structure of ST1710, with residues Y55 and Y60 shown as cyan ball-and-stick 

models. (B) Fluorescence emission spectra of mutants Y60W (solid black line), Y55W 

(solid gray line), wild-type ST1710 (dotted black line), Trp (dashed black line), and 



132 

 

ethidium bromide (dotted gray line). The excitation wavelength was 280 nm. The 

concentrations of the proteins, Trp, and ethidium were 1, 1, and 5 μM, respectively. (C) 

Normalized fluorescence emission spectra of mutants Y55W and Y60W and Trp in the 

absence (black) and presence (gray) of ethidium bromide. The experimental condition 

was the same as described above. The spectra in each panel were normalized to the 

maximum emission intensity of the sample in the absence of ethidium. 

Additional experiments were performed to further confirm that protein conformational 

change occurred. TNM specifically nitrates Tyr to form 3′-nitrotyrosine.
195, 196

 The 

susceptibility of a specific Tyr in a protein sequence to the TNM nitration has been 

exploited to assess the solvent accessibility of the corresponding residue.
194, 196

 Wild type 

ST1710 was treated with TNM in the presence or absence of 100 μM ethidium bromide. 

The modified protein was separated from the excess TNM and ethidium bromide by 

passing the reaction mixture through a desalting column. Finally, the number of Tyr 

residues nitrated per protein was estimated as described in Materials and Methods. 

ST1710 has five tyrosines. A 12-fold TNM-to-protein molar excess (2.4-fold molar 

excess vs Tyr) was used during the experiment. In the absence of ethidium, 

approximately two tyrosines per protein molecule were nitrated. The presence of 

ethidium in the nitration step reduced the efficiency of nitration by approximately 30%, 

with 1.4 tyrosines modified per protein. To identify the exact site of modification, I 

submitted TNM-modified ST1710 to the University of Kentucky Mass Spectrometry 

Facility for MS analysis. Gel pieces containing the modified protein were digested with 

trypsin and then subjected to LC-ESI-MS/MS analysis. Resulting MS/MS spectra were 

searched against archaeobacteria proteins in the NCBI database using the Mascot search 
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engine (Matrix Science) allowing nitrotyrosine modification. ST1710 was identified as 

the top hit. ST1710 contains five tyrosines: Y19, Y37, Y55, Y60, and Y111. 

Peptide fragments containing four of them (Y37, Y55, Y60, and Y111) were identified in 

the MS/MS spectra. Y55 only presented in the nitrated form, suggesting that this Tyr was 

nitrated to a very high extent. Y37, Y60, and Y111 presented in both the unmodified and 

nitrated forms. Due to the limited quantification capability of MS, the extent of nitration 

could not be reliably derived for Y37, Y60, and Y111. The nitration state of Y19 was 

also unknown, as the peptide fragment containing Y19 could not be observed in the 

spectra. As a summary, at least four tyrosines (Y37, Y55, Y60, and Y111) were nitrated 

in ST1710, with Y55 modified to a very high extent. Nitration was not localized to two 

specific tyrosines, although statistically two tyrosines were modified per protein. The 

extent of modification was 30% lower in the presence of ethidium. Due to the limited 

quantification capability of the experiment, it would be difficult to attribute the 30% 

decrease in nitration to any specific Tyr. Most likely, it was a combined effect of all the 

modified tyrosines. 

The CD spectra for CCCP binding are very intriguing (Figure 5.6). Neither 1 mM CCCP 

alone (grey) nor the ST1710 alone (black, first line from the top, overlaps partially with 

the grey line) had significant signal at around 325 nm (Figure 5.6 A). However, a 

negative peak emerged at 325 nm with the addition of CCCP into ST1710, which grew 

with the increase of CCCP concentration and finally reached saturation. The near UV CD 

profiles of proteins have been well characterized, and the signals are attributed to 

aromatic residues (Tryptophan, Tyrosine and Phenylalanine) and disulfide bond.
197, 198

  

There is no intrinsic tryptophan or cysteine in ST1710. Tyrosine usually has a peak 
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between 275 and 282 nm, and phenylalanine shows sharp fine structures between 255 and 

270 nm.
199

 The small change upon the addition of CCCP at the area between 260 to 270 

nm might come from the protein conformational change. However, the negative peak at 

325 nm most likely came from the protein bound CCCP, which gained a certain degree of 

chirality in the asymmetric binding pocket. Such observation is Ill documented for certain 

ligands and cofactors, that have little CD signal in their free form, while produce large 

signals once bound with protein.
200-203

 To further verify if the drastic signal change came 

from the specific binding of CCCP to ST1710, effect of CCCP on the CD ellipticity of 

the amino acid Tyrosine was examined (Figure 5.6b). There are five tyrosine residues in 

ST1710, so 1.5 mM of free Tyrosine was used in this study. The sample with Tyrosine 

alone had a peak at 270~280 nm, which does not change upon the addition of CCCP, 

indicating that the peak observed at 325 nm in figure 5.6 A did result from the interaction 

of CCCP with the protein binding pocket. The ellipticity at 325 nm in figure 5.6 A was 

plotted verses the molar ratio between CCCP and ST1710 (Figure 5.6 B). A clear 

inflection point can be observed at a CCCP to ST1710 molar ratio of 1:1, strongly 

suggesting a binding stoichiometry of one CCCP per ST1710 monomer. The one to one 

binding model was then used to fit the binding curve, yielding a dissociation constant of 

57.0 ± 7.0 µM (Figure 5.6 C).   
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Figure 5.6 Binding study of CCCP and ST1710 with CD spectroscopy. (A) Black traces 

from top to bottom are for 300 μM ST1710 with 0, 50, 100, 200, 400, 600, 800, and 1000 

μM CCCP, respectively. The gray trace is for 1000 μM CCCP alone. (B) The ellipiticity 

at 325nm in panel A was plotted vs the molar ratio of CCCP to ST1710 to determine the 

stoichiometry of binding. Liner regressions of the data points from the first four (0, 50, 

100, and 200 μM) and last three (600, 800, and 1000 μM) concentrations crossed at a 

ligand-to-protein ratio of ∼1:1 (dotted gray line). (C) The ellipiticity at 325 nm was 

plotted vs the concentration of CCCP and fitted with the 1:1 binding model 
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The information obtained from the binding of three ligands, it was found that ST1710 

binds to the ligands at affinities close to those of the bacterial MarR proteins (Table 5.1).  

ST1710 forms homodimers in solution, characteristic to MarR family members. Each 

ST1710 subunit in the dimer binds with one CCCP, However no coordination can be 

observed between the two binding sites in a ST1710 dimer. Similarly, no coordination 

can be observed for the binding of ethidium either. 

Table 5.1  Fitting parameters of binding property between ST1710 and its ligands.  

Ligand binding  

Ligand protein Kd (apparent) N ref 

Salicylate MarR 2 mM  
204

 

 ST1710 ~1 mM*  This study 

Ethidium ST1710 19.1 ± 4.6 µM 0.88 ± 0.07 This study 

CCCP EmrR 5~25 µM  
205

 

 EmrR 2 µM  
206

 

 ST1710 57.0 ± 7.0 µM  This study 

 

DNA binding 

 N Kd (nM) 

10 
o
C 1.12 ± 0.05 618 ± 34 

30 
o
C 1.13 ± 0.05 334 ± 15 

50 
o
C 1.06 ± 0.04 189 ± 9 

 

* Estimated from its inhibitory effect in Figure 5.8 B. 
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5.3.2 Temperature effect of ligand binding on ST1710-DNA interaction 

A MarR transcriptional regulator can be either a repressor or activator. ST1710 is 

expected to be a repressor, based on its homology with the E. coli MarR repressor 

EmrR.
193

 Kumarevel et al. identified a putative DNA binding sequence (ST1) for ST1710 

through scanning the local sequence of S. tokodaii genome for homology with the ohrA 

promoter sequence, the binding site for a MarR regulator OhrR.
190

 The binding constant 

between ST1 and ST1710 was estimated to be ~15µM using gel-mobility shift assay by 

the authors. Because of the low binding affinity, the authors suggested that the observed 

binding might be non-specific. One factor that was not taken into consideration during 

the study is the temperature. ST1710 normally operates at 80
o
C, and temperature is 

known to affect the interactions between DNA and protein.
207-209

 Binding constant 

determined at room temperature may not accurately reflect the real physiological value at 

80
o
C. In this study, binding between ST1and ST1710 with a different method 

(fluorescent polarization) at three temperatures, 10, 30, and 50
o
C was investigated. The 

highest temperature for this study is limited by the instrumentation, and the melting 

temperature of the double stranded oligonucleotide that contains the binding sequence. 

Since the Sulfolobus tokodaii is cultured in the Solfolobus medium, which has an ionic 

strength around 0.04 M (calculated based on the composition of the Solfolobus medium), 

50 mM NaCl was included in the binding buffer (10 mM HEPES, pH 7.5, 50 mM NaCl, 

1µg/ml Calf Thymus DNA). The forward sequence was labeled with FITC at the 5’ end, 

before annealed with the reverse sequence to generate FITC labeled double stranded 

sequence (F-ST1). Small aliquots of concentrated ST1710 Were titrated into 5 nM of F-

ST1, and the change of the fluorescent polarization (P) with the addition of protein was 
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monitored at all three temperatures (Figure 5.7). To evaluate the potential contribution of 

FITC to binding, ST1710 was titrated into free FITC solution, and no increase of 

fluorescent polarization can be observed. The dissociation constant Kd and the Hill 

coefficient were derived by fitting the binding curves with the Hill equation as described 

in the material and method section (Table 5.1). Two conclusions can be made based on 

the fitting results. Number one, the binding affinity increases with the rise of temperature.  

It almost doubled from 10
o
C to 30

o
C, and then doubled again from 30

o
C to 50

o
C. 

Number two, the Hill coefficient n is close to 1 for all three temperatures, indicating no 

coordination in binding can be observed. The melting temperature of the oligonucleotide 

prevented us from doing binding studies at even higher temperature. The increase of 

binding affinity with the rise of temperature is encouraging, suggesting that at 80
o
C the 

dissociation constant may further decrease to a value less than 100 nM. However, the 

lack of binding coordination is different from what had been observed with the bacterial 

MarR regulators, which clearly should positive coordination between the two subunits in 

a protein dimer.
210
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Figure 5.7 Effect of temperature on the binding between ST1710 and ST1. ST1710 was 

titrated into a binding buffer (10mM HEPES, 50 mM NaCl, pH 7.2) containing F-ST1 at 

5 nM at 50
o
C (A), 30

o
C (B) and 10

o
C (C).  Fluorescent polarization was monitered with 

the excitation wavelength of 492 nm and emission wavelength of 515 nm. The binding 

curves Were fitted with the Hill equation for the dissociate constant Kd and Hill 

coefficient n (sumerized in Table 5.1).   
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5.3.3 Small ligands repress the binding between ST1710 and ST1.  

Using the complex of ST1710-ST1 as a model system, the inhibitory effect of CCCP and 

salicylate on the protein-DNA binding at 50
o
C was examined (Figure 5.8). Ethidium was 

excluded from this study due to its capability to intercalate into dsDNA. The fluorescent 

polarization value of the ST1710-ST1 mixture was monitored while small aliquots of 

concentrated ligands were titrated into the system. For both CCCP and salicylate, the 

addition of ligand induced the dissociation of ST1710 and ST1, resulting in decreased 

polarization. No such effect can be observed when the ligands were titrated into free ST1 

solution. To further investigate the specificity of this inhibitory effect, I checked the 

effect of the amino acid Tyr on ST1710-ST1 binding. Tyr contains a phenyl moiety, 

resembles the structure of salicylate. The concentration range was limited by the poor 

solubility of Tyr in the binding buffer, but no repression could be observed at the highest 

concentration I used in this study (Figure 5.8 C).      
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Figure 5.8 Effects of small molecule ligands salycilate (A), CCCP (B) and Tyr (C) on 

ST1710-DNA binding. The ligand was titrated into a buffer solution (10mM HEPES, 50 

mM NaCl, pH 7.5, 1 µg/ml calf thymus DNA) containing 20 nM F-ST1 with 50 nM 

ST1710. Solid lines shows the trend of the data.      

In summary, I characterized the effector binding property of an archaeal MarR-type 

repressor, ST1710, to three representative bacterial MarR ligands, a cation, an anion, and 

a neutral molecule. These bindings cause conformational changes of the protein, as 
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revealed by the change of the protein tertiary structure. The binding affinities of the 

ligands were comparable to their bacterial homologs.  For CCCP, one ligand binds to one 

ST1710 monomeric subunit, and no coordination of binding can be observed.  

Intriguingly, no coordination can be observed for ST1710 binding to ST1 either, different 

from the bacterial MarR type repressor. Although it is possibility that the archaeal MarR 

has a difference mechanism of function, the high degree of structural and sequence 

homology with the bacterial MarR argues against it. Since ST1 was identified by 

sequence homology, not the more thorough study with DNA footprinting coupled with 

mutational experiments, there remains a possibility that ST1 does not contain the real 

promoter sequence of ST1710. The MarR regulators bind to (pseudo) palindromic 

sequences.  No clear base pair symmetry can be found in ST1. It is possible that part of 

the ST1 resembles half of the palindromic binding sequence, to which only one subunit 

of the protein dimer bind efficiently. This may explain the less than expected binding 

constant for a real promoter sequence, and the lack of binding coordination. Nonetheless, 

the binding of CCCP and salicylate clearly disrupted the ST1710 to DNA binding. Gene 

encoding ST1710 is just downstream of gene ST1709, forming part of a bacteria like 

operon. ST1709 is a putative multiple drug resistant transporter protein that belongs to 

the Major Facilitator Superfamily. It is likely that both proteins are involved in functions 

such as detoxification or response to environmental stress, with ST1710 regulating the 

expression level of ST1709. The MarR is one of the few regulator families that exist 

broadly in both the kingdoms of bacterium and archaea. As many archaea species are 

found in extremely hostile environments, it is not surprising that the MarR type regulators 

would be critical for the survival of such organisms. An archaeal MarR activator, BldR, 
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have been shown to play important roles of detoxification of aromatic aldehyde. The 

exact cellular function of ST1709 is still waiting to be determined.  
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Chapter 6 Development of a Direct Fluorescence Polarization Assay for the 

Detection of Glycopeptide Antibiotics  

6.1 Introduction 

Glycopeptide antibiotics are cyclic peptides that bind to the peptide precursor acyl-D-

alanyl-D-alanine in peptidoglycan to inhibit the biosynthesis of bacterial cell walls.  

Vancomycin, teicoplanin and telavancin are three main glycopeptides antibiotics used 

widely in clinical settings.
211-213

 The ability to precisely monitoring of the serum level of 

those glycopeptides antibiotics would help to minimize their toxicities and side effects,
214, 

215
 provide important pharmacokinetic and pharmacodynamic parameters for clinical 

studies,
216-220

 and thus optimize therapy for patients.
221-223

  

Various assays have been developed to measure the concentration of glycopeptide 

antibiotics, including immunoassay,
224-226

 HPLC,
227-229

 bioassay,
230, 231

 and solid phase 

enzyme receptor assay (SPERA).
232, 233

 These existing methods suffer from various 

drawbacks including the lack of selectivity, the requirement of large amount of samples, 

or the cumbersome pretreatment processes. For example, fluorescence polarization 

immunoassay (FPIA) is a traditional method for the determination of glycopeptide 

antibiotics in human serum.
226, 230

 The fluorescent-labeled vancomycin binds to an anti-

vancomycin antibody and leads to an increase of the fluorescence polarization signal.  

Free vancomycin in the clinical samples competitively binds to the antibody, release the 

labeled one, decrease the fluorescence polarization signal and allow the quantification of 

the analyte (Figure 6.1).
234, 235
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Figure 6.1 The mechanism of fluorescence polarization immunoassay 

In this study I developed a direct fluorescence polarization (FP) based assay, taking 

advantage of the specific interaction between glycopeptide antibiotics and their 

therapeutic target, the D-alanyl-D-alanine.  Fluorescence polarization is an intrinsically 

powerful tool for analysis of molecule interaction. These interactions include protein-

protein interaction, protein-DNA interaction, and protein-RNA interaction. And also the 

fluorescence polarization technology has been successfully applied to monitoring of 

medicine level, detection of enzyme activity and even to high-throughput screening 

during for the drug discovery.
236

  

The theory of fluorescence polarization is based on that when a small fluorescent 

molecule is excited with plane-polarized light, the emitted light is depolarized because 

molecules tumble and rotate rapidly in solution. However, when the small fluorescent 

molecule binds with a large molecule, the complex moves much slower and thus is not as 

efficient at depolarizing the light. The free fluorescent molecule and bound complex each 

has an intrinsic fluorescence polarization value: the free molecule has a low value while 

the bound has a higher one. The fluorescence polarization value of a fluorescent molecule 
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is proportional to the molecule’s rotational relaxation time (t), which depends on 

molecule volume (V), temperature (T), and viscosity (η). The relationship is as follow, 

RT

V
t

3


 

R is the gas constant. From the equation, decreasing temperature or increasing viscosity 

will increase fluorescence polarization value. On the other hand, if temperature and 

viscosity are kept constant, increasing the molecule volume will also increase 

fluorescence polarization value. Change of molecule volume can result from binding or 

dissociation of two molecules.  

Experimentally, the degree of polarization is monitored by measurements of fluorescence 

intensities parallel and perpendicular with respect to the plane of linearly polarized 

excitation light, and is expressed in terms of fluorescence polarization (P) or anisotropy (r) 
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P is the polarization, r is anisotropy, Iv is the vertical component of the emitted light and 

Ih is the horizontal component of the emitted light. From the equation, both P and r are 

independent of the fluorophore concentration.
237

 

Here, the acetylated L-Lys-D-Ala-D-Ala was labeled with a fluorephore and the increase 

of FP of the labeled peptide in the presence of antibiotics was monitored. Compared to 

the existing fluorescence polarization immunoassay, our method has the advantages of 

being more simple and cost-efficient. In addition, since no protein (such as the anti-
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vancomycin antibody) is used in the assay, the shelf-life and stability of the assay is 

expected to greatly exceed those of the immunoassay. The simplicity and low-cost of our 

dwerect fluorescence polarization assay hold a promise for the application of clinical use 

to determine the concentration of glycopeptide antibiotics.  
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6.2 Materials and Methods 

6.2.1 Materials 

The acetylated L-Lys-D-Ala-D-Ala peptide, teicoplanin, fluorescein isothiocyanate 

(FITC), High-performance-liquid-chromatography (HPLC) grade acetonitrile, and heat 

inactivated, sterile-filtered fetal bovine serum (FBS) were from Sigma-Aldrich (St. Louis, 

MO). Vancomycin hydrochloride was from Duchefa (Haarlem, the Netherlands).  

Telavancin was from Astellas (Deerfield, IL). AlexaFluor 680 (AF680) was from 

Invitrogen (Eugene, OR). Teicoplanin FPIA kit was from LABfx (Portland, OR). All 

other reagents were of analytical grade and purchased from Sigma-Aldrich. 

6.2.2 Labeling the Fluorophore to the Peptide 

The acetylated peptide L-Lys-D-Ala-D-Ala (3 mM) was incubated with FITC (4.5 mM) 

in a PBS buffer (10 mM Na2HPO4, 2 mM KH2PO4, 2.7 mM KCl, 137 mM NaCl, pH 7.4) 

at room temperature overnight. Tris-HCl buffer (5 mM, pH 7.4) was added to the reaction 

mixture and incubated for 2 h at room temperature to terminate the reaction. The FITC -

labeled peptide was purified using a reverse-phase HPLC (Waters, Milford, MA) on a 

C18 column (Waters, Milford, MA).  The purified FITC-labeled peptide was dried under 

vacuum and then resuspended in water. The molecule weight of the labeled peptide was 

confirmed by mass spectroscopy analysis. The concentration of the peptide was 

determined based on the absorption at 515 nm. Labeling with AlexaFluor 680 was 

performed similarly. The peptide probe concentration was determined by absorption at 

680 nm. The molecule weight of the labeled peptide was also confirmed by mass 

spectroscopy analysis. 
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6.2.3 Fluorescence Polarization Measurements 

Fluorescence polarization measurements Were performed using a Perkin Elmer LS-55 

fluorescence spectrometer (Perkin Elmer, Waltham, MA). The temperature was kept at 

20
o
C. Fluorophore-conjugated peptide (FITC-peptide or AF680-peptide) was added into 

400 µl PBS buffer or FBS to a final concentration of 1 µM.  The excitation and emission 

wavelengths were 479 nm and 515 nm for FITC-peptide, and 679 nm and 702 nm for 

AF680-peptide. Teicoplanin FPIA assay system was also performed on the Perkin Elmer 

LS-55 fluorescence spectrometer (Perkin Elmer, Waltham, MA) and followed the product 

instruction.  

6.2.4 Titration and Data Fitting 

For titration experiments, fluorophore-conjugated peptide (FITC-peptide or AF680-

peptide) was added into 400 µl PBS buffer to a final concentration of 1 µM, and then 

small aliquots of glycopeptide antibiotics (vancomycin, teicoplanin or telavancin) were 

titrated into the sample.  The increases of FP upon the formation of drug-peptide complex 

were recorded.  

The titration curve was simulated with the non-cooperative one to one binding model. 

238
[Eq. (1)]   
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                                (1) 

Y is the fluorescence polarization at the specific emission wavelength. (Ymax-Ymin) is 

the maximum change of the fluorescence polarization at the specific emission wavelength. 



150 

 

[P] is the peptide probe concentration. Kd is the dissociation constant between the probe 

and the glycopeptide antibiotic. x is the concentration of the glycopeptides antibiotics 

added into the buffer.  The titration curve is fitted using Origin (Northampton, MA). The 

standard deviation of the calculated dissociation constant is from the fitting.  

6.2.5 Binding Selectivity Assay 

For the selectivity measurement, AF680-peptide was added into 400 µl FBS to a final 

concentration of 1µM. Different antibiotics (ampicillin, gentamicin, tetracycline, 

nalidixic acid, chloramphenicol, vancomycin and teicoplanin) were added into the FBS at 

a concentration of 8 µM. 

6.2.6 Determination of Drug Concentration in Test Samples  

For tests in serum, AF680-peptide was added to 400 μl of FBS to a final concentration of 

1 μM. Then, known quantities of antibiotics were added into the sample. The 

concentrations of the drugs were determined based on the calibration curves derived in 

FBS. For tests in blood, three human blood samples were spiked with teicoplanin in the 

therapeutic range by a person not involved in this project. The exact values were kept 

blind to the authors during the analysis. The blood samples were centrifuged at 2000g for 

10min. The supernatant (serum) was collected and analyzed together with a series of 

teicoplanin standards in FBS as described above. For each serum sample, two sets of 

dilutions were prepared. So the final concentration of teicoplanin would be in the 

working concentration range of the assay. The first sets of three test samples contain 10 

μl of serum and 390 μl of FBS with 1 μM of AF680-peptide. The second sets of three test 

samples contain 20 μL of serum and 380 μl of FBS with 1 μM of AF680-peptide. The 
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teicoplanin concentration in each set of samples was determined. The original teicoplanin 

concentration calculated from the set of samples falls in the working concentration range. 

The same serum samples were analyzed using the teicoplanin FPIA kit following the 

instruction of the manufacturer. 
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6.3 Results and Discussions 

6.3.1 The Design and Synthesis of Peptide Probes. 

I used amine-reactive fluorophores to label the peptide acetylated L-Lys-D-Ala-D-Ala.  I 

chose this peptide for three reasons. First, glycopeptide antibiotics are known to bind 

specifically to D-Ala-D-Ala. Second, L-lys is naturally occurring in the peptidylglycan 

precursor peptide L-Ala-D-Glu-L-Lys-D-Ala-D-Ala. I expect the incorporation of the L-

lys will not affect the interaction between the peptide and the antibiotics.  Third, the side 

chain of Lys contains a primary amine group, which is far from the binding site judged 

by the crystal structure of the vancomycin and di-acetyl-L-Lys-D-Ala-D-Ala complex.
239

 

As expected, I found that the binding affinity between the labeled peptide and 

vancomycin is consistent with the value reported for the binding between the free peptide 

and the tested glycopeptide antibiotics, indicating that the modification did not affect the 

interaction (Table 6.1).   
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Table 6.1 Fitting parameters of labeled peptide and drug interaction  

 

Fitting Parameters for Peptide-probe and Glycopeptides Antibiotics Binding 

 

Probe 

 

Glycopeptide  

Antibiotics 

 

Test System 

 

Binding Constant 

Kd (µM) 

FITC-peptide Vancomycin PBS  0.91±0.06 

 Teicoplanin PBS  0.14±0.07 

 Telavancin  PBS 3.22±0.38 

AF680-peptide Vancomycin PBS  1.07±0.19 

  FBS 1.81±0.13 

 Teicoplanin PBS  0.29±0.02 

  FBS 0.87±0.08 

 Telavancin PBS 1.81±0.13 

                                       FBS 5.36±0.35 
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6.3.2 Effect of Different Fluorephores 

The change of fluorescence polarization signal follows the Perrin Equation 
240

[Eq. (2)].   
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 is the fluorescence lifetime (average time the molecule stays in its excited state before 

emitting a photon), P0 is the limiting polarization, k is the Boltzman constant, T is the 

absolute temperature, η the viscosity and V the molecular volume (molecule weight).  

The fluorescence polarization is reversely proportional to the lifetime of fluorophore, and 

proportional to the molecule volume (molecule weight).  In order to maximize the 

observed change of polarization upon antibiotic binding, I tested two fluorephores with 

different lifetimes, FITC (4 ns) and AF680 (1 ns).  I found that AF680-peptide yielded a 

larger change of signal upon drug binding (Figure 6.2), as expected based on their small 

sizes.  

To examine if the fluorophores (FITC or AF680) themselves associate non-specifically 

with the glycopeptide antibiotics, I first measured the FP of 1 µM solutions of each 

fluorescent molecules, FITC, AF680, FITC-peptide, or AF680-peptide. Then 

glycopeptides antibiotics were added into the solutions to final concentrations of 8 µM. 

The final FP signals were recorded (Figure 6.3).  No significant fluorescence polarization 

changes were observed in the solutions with the free fluorophores, suggesting that there is 

no significant interaction between the drugs and the peptide probes.  
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Figure 6.2 Calibration curves of two different peptide probes (FITC-peptide-diamond 

and AF680-peptide-squares) with vancomycin, teicoplanin, and telavancin in PBS buffer. 

The concentration of the peptide probes Were 1 µM. The concentrations of the 

glycopeptides antibiotics were increased from 0 to 8 µM during the titration.  
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Figure 6.3 The free fluorephores do not interact with glycopeptide antibiotics. The 

fluorescence polarization changed when the vancomycin (black), teicoplanin (white) or 

telavancin (gray) was added into PBS buffer containing peptide probes (FITC-peptide or 

AF680-peptide).  However, no change was observed when the drugs were added into 

solution of the free fluorephores (FITC or AF680). The free fluorephores (FITC or A680) 

were first deactivated using Tris-HCl buffer (5 mM, pH 7.4). The concentration of 

fluorophores or peptide probes was 1 µM. The concentration of the drugs is 8 M.   
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6.3.3 Titration Curves of Glycopeptide Antibiotics. 

The binding between the antibiotics and peptide probes were monitored following the 

increase of fluorescence polarization of the samples upon addition of an increasing 

concentration of the antibiotics (Figure 6.1).  The dissociation constants (Kd) between the 

drugs and peptide probes were estimated to be approximately 1 µM, 0.2 µM, and 1.8 µM, 

respectively, for vancomycin, teicoplanin, and telavancin (Table 6.1). The nature of the 

fluorephores did not have a drastic effect on the binding affinity, indicating they are not 

directly involved in the interaction. The determined affinities are similar to the values 

reported for the bindings between those antibiotics and the ligand di-acetyl-L-Lys-D-Ala-

D-Ala.
241-244

 Compared with the FITC-peptide probe, the AF680-peptide yielded larger 

changes in fluorescence polarization signals when it bound to the antibiotics, as expected 

from its shorter lifetime.   

6.3.4 Selectivity Study 

In many situations, several antibiotics may be used together as a cocktail in research or 

clinical applications. It is desirable to have a method that can selectively detect a specific 

one or specific class of antibiotics. The interaction between the peptide probe and 

glycopeptide antibiotics is highly specific. The binding selectivity of the AF680-peptide 

probe toward different antibiotics were tested in FBS (Figure 6.4). The assay was highly 

selective toward the three glycopeptides. No significant change of fluorescence 

polarization was observed for other antibiotics tested. 
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Figure 6.4 Selectivity of the assay. Different antibiotics (8 μM) were added into solutions 

containing AF680-peptide (1 μM). Antibiotics tested were ampicillin (1), gentamicin (2), 

tetracycline (3), nalidixic acid (4), chloramphenicol (5), vancomycin (6), telavancin (7), 

and teicoplanin (8). Error bars indicate the standard deviations from three independent 

measurements. 

6.3.5 Drugs Detection in Serum  

To further examine the usefulness of the current method in the detection of glycopeptide 

antibiotics in clinical samples, such as serum, I measured the calibration curve using 

AF680-peptide for the detection of vancomycin, teicoplanin, and telavancin in fetal 

bovine serum (Figure 6.5). The potential influence of serum on the assay is in two fold.  

First, according to the Eq 2, increasing viscosity will slow down the tumbling of the 

fluorophores, and thus increase fluorescence polarization. Second, certain species in the 

serum may interact with the peptide probe or the drugs to prevent accurate detection.  As 

expected, since the viscosity of fetal bovine serum is higher than that of the PBS buffer, 

the fluorescence polarization measured in serum increased both for the free peptide 
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probes and the drug-peptide complex. The increase is more dramatic for the complex, 

which resulted in an increase in the P. The binding affinity of both drugs decreased 

slightly compared to the affinities measured in PBS buffer (Table 6.1). I speculate this 

change of affinity is due to the interaction between certain components in the serum with 

either the peptide probe or glycopeptides antibiotics, which weakened their affinity for 

each other through competition mechanism.     

                   

Figure 6.5 Calibration curves of detection for vancomycin, teicoplanin and telavancin in 

FBS. AF680-peptide (1 µM) was used in the assay. 
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6.3.5 Recovery Test in Human Blood 

Finally, I used human blood samples spiked with known amounts of teicoplanin and 

compared our assay with a commercial FPIA kit. Human blood samples were spiked with 

different concentrations of teicoplanin based on the therapeutic concentration window of 

the drug. The same sample was tested with our assay side by side with a commercial 

FPIA teicoplanin detection kit. Each blood sample spiked with the teicoplanin was first 

centrifuge to remove the blood cells. The supernatant plasma was collected and diluted to 

the working concentration range. The working concentration range of teicoplanin ranges 

from 0.47 to 3.8 µg/ml while teicoplanin therapeutic window approximately is about 10-

30 µg/ml.
222, 245

 Therefore, each plasma sample was diluted to 20 fold and 40 fold. At 

least one of the diluted final concentrations would be in the working concentration range. 

The concentrations in the diluted serum solution were determined based on the 

calibration curve in the fetal bovine serum. In the meantime, each plasma sample was 

also tested with a commercial FPIA kit. The results of spiked human blood were listed in 

(Table 6.2). The accuracy and precision of the designed assay is comparable to the 

commercial kit. 
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Table 6.2 The recovery of teicoplanin with designed method and commercial kit 

Detection of teicoplanin in human blood with designed assay or a 

commercial FPIA kit 

Spiked (µg/mL) Designed Assay Recovery (%) FPIA Recovery (%) 

9.5 9.2±0.2 97 9.8±0.6 103 

19 19.6±0.4 103 18.5±0.6 97 

38 39.0±1.0 103 37.8±4.4 99 

 

In conclusion, a simple analytical assay was developed for the quantitative analysis of 

glycopeptides antibiotics in various samples.  The method is highly selective toward 

glycopeptide antibiotics. Due to its high specificity, no pre-treatment is necessary for the 

assay, which greatly reduced the time and cost of the analysis. The therapeutic window 

for the glycopeptides antibiotics is very narrow. While the therapeutic range of 

vancomycin in human serum is 10 to 30 µM.
214, 220

 The toxicity effect occurs when the 

drug concentration is above 30 µM.
214

 This range is much higher than the detection limit 

of our method, indicating our assay can be useful for such detections after sample 

dilution.  Since fluorescence polarization immunoassay are already commercially 

available and widely used in research and clinical laboratories, our assay method could be 

used with the same instrumental setting with minimal modifications.   

Copyright © Linliang Yu 2013 
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