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Abstract of Dissertation 

 

 

Structured Light Illumination is a widely used 3D shape measurement technique in non-
contact surface scanning. Multi-pattern based Structured Light Illumination methods 
reconstruct 3-D surface with high accuracy, but are sensitive to object motion during the 
pattern projection and the speed of scanning process is relatively long. To reduce this 
sensitivity, single pattern techniques are developed to achieve a high speed scanning 
process, such as Composite Pattern (CP) and Modified Composite Pattern (MCP) 
technique. However, most of single patter techniques have a significant banding artifact 
and sacrifice the accuracy. We focus on developing SLI techniques can achieve both high 
speed, high accuracy and have the tolerance to the relative motion. We first present a 
novel Two-Pattern Full Lateral Resolution (2PFLR) SLI method utilizing an MCP pattern 
for non-ambiguous phase followed by a single sinusoidal pattern for high accuracy. The 
surface phase modulates the single sinusoidal pattern which is demodulated using a 
Quadrature demodulation technique and then unwrapped by the MCP phase result. A 
single sinusoidal pattern reconstruction inherently has banding error. To effective de-
band the surface, we propose Projector Space De-banding algorithm (PSDb). We use 
projector space because the band error is aligned with the projector coordinates allowing 
more accurate estimation of the banding error. 2PFLR system only allows the relative 
motion within the FOV of the scanner, to extend the application of the SLI, we present 
the research on Relative Motion 3-D scanner which utilize a single pattern technique.  
The pattern in RM3D system is designed based on MCP but has white space area to 
capture the surface texture, and a constellation correlation filter method is used to 
estimate the scanner's trajectory and then align the 3-D surface reconstructed by each 
frame to a point cloud of the whole object surface. 
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Chapter 1 Introduction and Historical Perspectus 

In this chapter, we first introduce our research in section 1.1 which describes our 

motivation for doing the research in relative motion SLI area, and briefly introduces the 

methods used and techniques we developed. Section 1.2 is a historical prospectus of the 

related researches. Both passive and active computer vision techniques are reviewed, and 

the previous de-banding algorithms are also briefly described. Section 1.3 lists our 

contributions to the research areas of SLI and the details of our contribution are 

illustrated in the following chapters. 

1.1 Introduction 

Non-ambiguous depth accuracy and high speed data acquisition are the most important 

aspects of a 3-D capture technique. Ambiguous depth is a significant problem in many 

high speed approaches [1]. High accuracy ensures the quality of the 3D model 

reconstructed and many methods achieve high accuracy under certain environmental and 

scene. However, while most of the high accuracy techniques like Structured Light 

Illumination (SLI) produce very dense 3D points cloud, they require the object to be 

stationary for several seconds [11]-[13]. This limits SLI applications compared with some 

other methods such as Stereo Vision and Structure from Motion which allow the relative 

motion between the object and the scanner. Our group’s research focuses on solving the 

problems in SLI method to allow for the relative motion between the target object or 

scene and the scanning system. Given the "relative motion" problem, we address two 

research aspects of that problem: (1) Relative Motion within Field of View (FOV) of a 

scan and (2) Relative Motion across a scene larger than the FOV.  

The first direction of our research is a SLI scanner algorithm that allows the relative 

motion within the Field of View (FOV) of the Scanner. To achieve this goal, we need to 

address the scan time issue, which is that most of SLI methods require projecting a series 

of patterns temporally onto an object in order to capture its 3D surface. Our group 

inspired by the composite filter theory and communication theory has developed methods 
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to spatially modulate several patterns into one pattern. In this way the 3D model can be 

reconstructed by using a single pattern. This single pattern system gives the SLI 

technique ability to capture the 3D motion of the object limited only by the capture speed 

of the camera. However, the spatial modulation decreases the spatial resolution of the 

reconstruction results. Low spatial resolution makes the SLI technique less appealing. So 

a trade-off decision is made between the spatial resolution and the number of the patterns 

used (less patterns means less sensitivity to 3D motion). Previous research on fast PMP 

3D scanning requires at least 3 patterns whereas the spatial modulation method only 

requires 1 pattern [57]-[61]. Based on previous research we have developed a two-pattern 

method which achieves both non-ambiguous and high spatial resolution. The two-pattern 

method is a synergistic combination of a non-ambiguous pattern and a sinusoidal pattern. 

The first pattern is a Modified Composite Pattern (MCP) which is a non-ambiguous 

pattern but the 3D result has low lateral resolution along the phase direction. The second 

pattern is a sinusoidal pattern with same spatial frequency with MCP, and this 2nd pattern 

is ambiguous but with quadrature demodulation achieves high spatial resolution. In 

another level of synergistism the ambiguous pattern is used to locate the non-ambiguous 

pattern features. So we do not just use a non-ambiguous pattern to unwrap the second, but 

we make use of an almost symbiotic relationship between the two patterns. 

The second direction of our research is to study a SLI method that allows the relative 

motion beyond the Field of View of the scanner. This requires the scanner to be portable 

and not tethered to a computer, analogous to a commercial camera which captures 2D 

imagery. We refer to this as a “3D” camera which outputs the 3D model of the scene 

instead of a photograph. Our study of a 3D motion scanner is a good application of this 

idea. Inspired by the idea of finding correspondence between two parallax images in 

Stereo Vision, we designed a pattern which utilizes both the spatial modulation method of 

SLI and the correspondence matching method to reconstruct the 3D of a scanned surface. 

Unlike the classical SLI pattern which is just a series of sinusoidal pattern or the MCP 

which modulated the pattern, this motion scanning pattern only has a few lines of snakes 

that cover just part of the FOV and rest of the FOV is left open for correspondence 

matching. With three snakes groups we achieve the accurate 3D depth information. And 
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with the blank area in the pattern, we capture the texture of the surface which offers us 

the information for correspondence between the images captured by the scanner since 

there are a large overlapping areas. Many algorithms have been developed to reconstruct 

3-D shape using images with overlapping area [65]-[68]. By utilizing a constellation 

correlation filter which dramatically increases the efficiency and accuracy of the 

correlation. We then match the sparse 3D points cloud and merge them into one dense 3D 

surface. By moving the scanner across the scene, we achieve the goal to scan a large 

object by using a portable hand held scanner. 

1.2 Historical Prospectus 

Over the decades 3D optical metrology industry has required higher speed and higher 

accuracy 3D surface measurement and reconstruction technology for the application in 

many fields [19]. These include process control and yield management in manufacturing, 

surveillance system, privacy protection and security, and medical imaging area [16]. 

Numerous 3D reconstruction and measurement methods have been developed in 

Computer Vision area such as Stereo Vision, Time of Flight (ToF), Structure from 

Motion (SfM), Unstructured Lumingraph, and Structure Light Illumination (SLI). All of 

the depth estimation methods can be further divided into two categories: Passive method 

and Active Method [100]. In this section, we briefly describe the methods which are 

related to our research historically.  

1.2.1 Passive Methods 

Passive methods utilize the images taken from one or two cameras without interference 

with the object. That is, only cameras are used in these methods and most of these 

techniques are developed based on the multi-view geometry as illustrated in [101]. Based 

on the principle of multi-view triangulation, a point’s 3D position can be reconstructed by 

intersection the lines of sight of the corresponding pixels in multiple images [101]. Two 

of the most important methods, Structure from Motion and Stereo Vision, belong to this 

class. 

Stereo Vision. The idea of the Stereo Vision has evolved from mimicking the human 
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eyes. In a classical Stereo Vision method, the configurations of the camera are known by 

using the calibration method. And the correspondence of the pixels in multi-view images 

is computed to reconstruct a dense 3D surface [33]. However, the accuracy of Stereo 

Vision highly depends on the image-to-image correspondence which is complicated and 

usually fails for scenes with little texture or non-Lambertian [100]. Due to the 

computation complexity, dynamic programming framework is often necessary [40]. 

Structure from Motion. Unlike the Stereo Vision techniques, SfM does not require 

known configurations for the camera [99]. And given an image sequence with estimated 

correspondences of the feature points, the SfM is able to reconstruct both the camera 

trajectory and the 3D surface of the object. In [101], the pipe line of SfM is described. 

However, the correspondences across the image sequence are established for a few image 

feature points, so the reconstruction of the SfM usually has very sparse 3D points. 

1.2.2 Active Methods 

Active methods actively project the radiance or patterns onto the object and then the 

depth is estimated based on the captured reflected images. Among these methods, SLI 

technology provides the highest accuracy in reconstruction 3D surface [90]-[93]. The 

idea of SLI is to project a pre-designed pattern, which is usually a stripe pattern or grid 

pattern, onto an object [17] [32]. Then, a camera captures the reflected pattern which is 

laterally distorted by the 3D surface, and based on the triangulation geometry of the 3D 

scanning system, the 3D depth information is calculated [7].  

Multi-pattern SLI. Classical high accuracy SLI technology uses multi-pattern projection 

technique. It is widely researched to achieve a high accuracy 3D reconstruction and a 

high quality phase must to be recovered [35-39] [47]. So to reduce the phase error is of 

great significance, which is the reason for requiring projection of multiple sinusoidal 

patterns onto the object as in classical SLI methods. High reliability in identification of 

light patterns with minimum assumptions about the nature of the surface are achieved by 

time multiplexing, i.e. by sequentially projecting several patterns on the object. Kak, et 

al. proposed the gray level encoding time multiplexing pattern which is a binary-encoded 

SLI in 1980’s [1]. Later on, Kak, et al. proposed assigning a binary code word to each 
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projected stripe of a series of multiple stripe projections, where associated code word 

determines the presence of any given stripe [2]. This encoding method did achieve the 

non-ambiguous range sensing [14] [15] [44] [91] [93]. However it is limited by the 

device’s lateral resolution, because the resolution is dependent on each identified stripes. 

Phase Measuring Profilometry (PMP). Another widely used time multiplexing 

technique is known as Phase Measuring Profilometry (PMP) [3] [25], which uses a series 

of sinusoidal patterns across the surface of the object. In this way the patterns modulate 

each pixel with a unique phase value. However, the single frequency PMP technique’s 

accuracy and depth ambiguity is dependent on the frequency of the sinusoidal pattern. 

That is, a high frequency PMP technique maintains a high depth resolution but led to 

depth ambiguity, where as a low frequency results in noisy non-ambiguity reconstructed 

surface. To avoid the difficulties caused by single frequency, a multi-frequency PMP has 

been adopted in many applications [23]. Multi-frequency PMP techniques use low 

frequency for the non-ambiguity and high frequency pattern for the high depth resolution, 

and achieve a better result than the single frequency PMP. But the tradeoff of the multi-

pattern PMP is it requires the object to be remain motionless for all the patterns which 

leads to a long scanning process [61]. To improve the performance, high speed projection 

and capture systems have been developed. Liu et al. proposed a high speed SLI PMP 

system which achieves 120 frames per second acquisition, processing, and display 3D 

point cloud [24], however their system only utilized 3 patterns which decreased the 

accuracy of the 3D reconstruction result. In addition to this, low numbers of patterns are 

susceptible to banding artifacts. 

Color-multiplexing SLI. To reach the goal of high speed that allows the relative motion 

between scanner and object [90], single pattern Structure Light Illumination technique 

have been developed by using different spatial modulation methods or pattern design [5] 

[11]. A single pattern SLI approach is to use Color-multiplexing. Color-multiplexing 

combines the individual patterns of multi-pattern SLI techniques into several color 

channels, then processing them by decoding each channel’s image. For instance, one can 

easily combine three patterns from PMP technique into a color image’s R, G, and B 

channel. Then after capture of the color image, those three patterns are acquired from the 
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3 channels. However, this technique’s accuracy is limited by the channels that can be 

used and the color of the scanned object [17], which can cause both ambiguous, noisey 

and low depth resolution. 

Composite Pattern. The Composite Pattern technique was developed by Guan, et al. [6] 

[94] modulates patterns from a time multiplexed method, such as the PMP method, into 

one single pattern by using several known spatial carrier frequencies [63]. This idea 

comes from communication theory and signal modulation [67] [81], but unlike the Color-

multiplexing technique which combines the PMP patterns in the three color channels, all 

the PMP patterns in the Composite Pattern technique are the same "color" spectrum. So, 

by using demodulating procedure, all the PMP patterns are separated and processed for 

depth. CP method based SLI system achieves a very high speed 3D data acquisition with 

satisfactory accuracy [62]-[64]. However, the lateral resolution of CP is low, and when 

this technique is applied to human scanning [88], the Human skin’s Spatial Modulation 

Transfer Function’s (SMTF) attenuation of spatial frequencies components introduces 

errors in depth measurement [83] [84].  

Modified Composite Pattern. To solve the SMTF problems of Composite Pattern, 

instead of modulating PMP patterns, Pratibha [9] utilized binary Gray Code patterns in 

the modulation procedure. Casey, et al. improved lateral resolution of the gray code 

Composite Pattern by introducing a new pattern named Modified Composite Pattern 

(MCP) [10] [55] [95]. MCP is a pattern encoded along the orthogonal axis of the image, 

and each encoded stripes are encoded following the Gray Code sequence introduce by 

Pratibha. The biggest achievements of MCP technique are that it not only maintains the 

advantage of Composite Pattern but is also insensitive to skin SMTF, and has increased 

lateral resolution [8] [95]-[98].  

Pseudorandom Noise Pattern SLI. Instead of projecting the sinusoidal wave patterns 

onto the object, pseudorandom noise pattern SLI techniques utilize the generated 

pseudorandom noise as the projection pattern [102]. By using the similar correspondence 

estimating techniques utilized in Stereo Vision, the correspondence of each pixel is 

established between the captured reflected image with a reference image. The advantage 
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of this technique is by projecting the random noise to the object surface, the features 

points for correspondence are actively “projected” to object surface and do not have 

banding artifacts. The noise is utilized to establish a dense correspondence estimation 

map and then used to estimate the depth. However, in order to efficiently process the 

reflected image, dynamic programming is required as illustrated in [102], which increases 

the complexity of the algorithm dramatically.  

1.2.3 De-banding Algorithm and Gamma Distortion Correction for SLI 

As mentioned before, while the single pattern techniques make high speed 3D scanning 

possible, the banding error in the phase is a significant problem. For reducing banding 

error, the state-of-art research direction is to calibrate the nonlinear response of the 

system and then compensate for the error actively or passively. The active method 

modifies the projected pattern such as the non-sinusoidal fringe model proposed by 

Wang, and Zhu, etal. [25], in this way the error is suppressed by the pattern itself. The 

passive method is to compensate the phase banding error using post-processing method 

after capturing the image [26] [27]. Most of the passive methods focus on the gamma 

calibration and defocusing algorithms. 

1.3 Contribution 

Our research contribution for high speed relative motion SLI systems include: 1) 

Improved Post-processing technique for MCP; 2) Two Pattern Full Lateral Resolution 

techniques (2PFLR) with quadrature post-processing; 3) The Projector Space De-banding 

Algorithm (PSDb); 4) Performance Characterization for SLI system using Depth 

Modulation Transfer Function (DMTF); 5) Relative Motion 3D scanning system for 

relative motion beyond FOV.  

Our first contribution is the improved processing technique for MCP. Based on Casey’s 

work on MCP, we developed an improved processing algorithm by utilizing the Matched 

Filter Bank. The original processing technique proposed by Casey uses the 2-D Fourier 

Transform to detect and demodulate the snakes, but the results in the frequency space 

have significant noise which reduces the demodulation performance. And Casey’s 
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detection algorithm is sensitive to the surface discontinuity. Our processing algorithm 

reduces these problems by using 1-D Matched Filter Bank. 

To solve the problem of detection the modulated snakes in MCP and increase the 

resolution and accuracy of the MCP technique, the 2PFLR system is developed. This 

2PFLR is our second contribution. By adding another high frequency sinusoidal pattern, 

the problem of detecting the modulated snakes in MCP is reduced by identifying the 

snakes in the second sinusoidal pattern which improves the snake detection with high 

SNR. Also, we introduce a novel Quadrature Phase processing technique which processes 

the sinusoidal pattern efficiently and effectively to get the full lateral resolution wrapped 

phase image. This 2PFLR system is a significant contribution to SLI research. There is a 

trade-off between the high speed and high accuracy of the SLI system. To achieve high 

speed, single pattern SLI techniques are good solutions. However, single pattern 

techniques sacrifice the accuracy of the system. Instead of focusing on improving the 

performance of the single pattern technique such as CP and MCP, we develop this 

2PFLR system. The first MCP is used to reconstruct the coarse non-ambiguous surface 

and the second sinusoidal pattern is used to get the high resolution but ambiguous depth. 

We combine these two results together to achieve both non-ambiguous and high 

resolution at the same time. Although we added another pattern into the single pattern 

MCP system, this system is still considered as a high speed acquisition algorithm because 

it allows the relative motion between the scanner and the object during the scanning 

process, as long as the motion of the object between the projection the first and second 

pattern is less than half of a spatial wavelength along the phase direction. Our 

contribution in 2PFLR system opens a new direction of the research for high speed and 

high accuracy SLI depth measuring system, i.e. we can combine the advantage of the 

single pattern technique with the multi-pattern technique. 

Our third contribution is the Projector Space De-banding algorithm (PSDb). Due to the 

gamma distortion of the projected sinusoidal pattern and the quantization error in the 

hardware, the 3-D surface reconstructed by SLI techniques usually has significant 

banding distortion. This banding distortion corrupts the final results and decreases the 

accuracy of the depth measuring system. Unlike the widely used Gamma model for 
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compensating the banding distortion, our PSDb does not need to pre-calibrate the 

banding distortion for each system and can be actively applied to any 3-D model 

reconstructed by SLI technique. We assume the banding distortion is a 1-D signal along 

the phase direction, and we estimate the banding distortion in Projector space then correct 

it in the camera space. The reason to map the phase image to projector space is the phase 

value in the camera space is proportional to the row index in the projector space, so the 

curved snakes in camera space are straight in projector space. So, each column (along the 

phase direction) is a stochastic signal associated with banding distortion. We apply the 

stochastic signal processing techniques to estimate the 1-D banding distortion and then 

suppress it in camera space. 

The next contribution is the performance characterization of the SLI system. Although 

SLI is a widely research topic since 1990, there is not a standard performance 

characterization for any SLI systems. Inspired by the Modulation Transfer Function, we 

introduce a model of Depth Modulation Transfer Function (DMTF) performance 

characterization for SLI depth measuring system. By using several sinusoidal grids with 

different spatial frequencies and a rotation stage, we can characterize performance for 

any SLI systems.  By using this performance characterization system, both the accuracy 

and the precision of the SLI system can be measured. The accuracy is measured by the 

reconstructed 3-D sinusoidal surface’s peak to peak value, and the precision of the system 

is measured by the DMTF value as a function of spatial depth frequencies. Moreover, the 

rotation stage gives the ability to measure the performance of the SLI system for 

directions.  

The last contribution is Relative Motion 3-D (RM3D) scanning system. This system 

allows the motion of the object beyond the FOV of the scanner. We design a new single 

pattern technique especially for the RM3D system, and this pattern is designed based on 

MCP. The non-ambiguous single pattern technique used in RM3D makes the system 

tolerant to the motion of the object or the scanner, however, only this technique alone 

cannot reconstruct a whole 3-D surface. Since the 3-D surface reconstructed by the SLI is 

relative to the scanner, we do not have the absolute 3-D coordinates for the 3-D surface. 

So we apply and adapt a Correlation Constellation Filter method to align the images 
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captured by the camera and use this method to estimate the camera position for each 

frame in the image sequence. Compared with other camera tracking techniques in the 

Computer Vision area, our method is presently limited to in-plane rotation and x, y 

translation. However, the contribution to RM3D gives a clear direction for achieving 

additional affine distortion including out-plane rotation, scale and depth translation. 
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Chapter 2 Background 

The background related to our research is introduced briefly. Since our research mainly 

focuses on SLI technology, we first describe the fundamental idea, system and process of 

SLI method in section 2.1. Phase Measuring Profilometry method is a classical SLI 

technique that offers the one of the best 3D reconstruction results which is non-

ambiguous and high accuracy. Also many other SLI techniques are inspired by classical 

PMP method, so we introduced PMP method in section 2.2. In section 2.3, Composite 

Pattern (CP) method is introduced as background for our research on single and double 

SLI depth measuring methods. 

2.1 Structure Light Illumination 

Structured Light Illumination (SLI) is a well-known 3D measuring method which is used 

in acquiring the depth information of a surface by measuring the deformation in the light 

pattern projected onto the surface. Compared with many other 3D reconstruction methods 

in computer vision area, SLI offers one of most accurate 3D depth measuring results 

which is used for many application including finger print scanning, industrial 

measurement, human computer interface and special effets. 

 

Figure 2.1 (Left) SLI geometry and (Right) stripe pattern on a sphere from Guan. et al [6] 

Fig. 2.1 shows the classical SLI technology. An SLI system always consists of two parts: 

one is a camera and the other part is a projector, and the geometry of the system is shown 
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in Fig. 2.1 left to make sure the camera and projector are setup at relative angle for 

triangulation. And Fig. 2.1 right shows a classical sinusoidal pattern that is projected onto 

an object showing the lateral distortion caused by depth variation of a sphere. 

Since the sinusoidal pattern is curved by the object surface, we reconstruct the 3D depth 

of the surface by calculating the phase shift of the pattern. As shown in Fig. 2.2, we need 

to calculate the depth of surface at point A by using SLI. The depth at A is h to the 

reference plane. By using simple geometry of similar triangles, the depth at point A is 

calculated: 

ℎ = 𝐵𝐵𝐵𝐵∙𝐿𝐿
𝑑𝑑+𝐵𝐵𝐵𝐵

                                                                                                                        (2.1) 

L and d in the system are constant parameters which are determined by the calibration 

procedure. And the BC is determined by the phase difference of the sinusoidal pattern: 

𝐵𝐵𝐵𝐵 = 𝛽𝛽(𝜑𝜑𝐶𝐶 − 𝜑𝜑𝐵𝐵)                                                                                                        (2.2) 

Where 𝛽𝛽 is also a constant parameter which is calibrated in the calibration process, and 

𝜑𝜑𝐶𝐶  and 𝜑𝜑𝐵𝐵  are the unwrapped phase value at point C and point B.

 

Figure 2.2 Geometry of SLI to reconstruct 3D surface from [1] 
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Because the depth value is determined by the unwrapped value calculated at point B and 

point C, so the accuracy of the depth value depends on the accuracy of the phase value 

and the unwrapping algorithm. 

2.2 Classical Phase Measuring Profilometry (PMP) Method 

Phase Measuring Profilometry is a well know and widely used method in SLI research, 

since it offers the highly accurate 3D reconstruction by using multiple projected patterns. 

The accuracy of the 3D reconstruction is directly related to the number of patterns and 

the pattern spatial frequency. The sampling rate is equal to N times the number of the 

pixels per frame of a high resolution image, where N is the number of phase steps used in 

an N-step PMP algorithm [3]. 

When using PMP technique, we still use the classical SLI system setup as shown in Fig. 

2.2, and the patterns that needed to be projected are a series of sinusoidal patterns with 

different spatial frequency and then phase shift the patterns N steps.  Fig. 2.3 shows an 

object which is projected with one of the sinusoidal pattern and captured with the camera. 

 

Figure 2.3 An object projected with a sinusoidal pattern 

The basic idea of PMP is to use those captured image sequence to estimate the phase 

13 

 



 

shifting due to the depth distortion. For the image shown in Fig. 2.3, it can be expressed 

as 

𝐼𝐼𝑘𝑘(𝑥𝑥,𝑦𝑦) = 𝐴𝐴(𝑥𝑥,𝑦𝑦) + 𝐵𝐵(𝑥𝑥,𝑦𝑦)cos [𝜑𝜑𝑘𝑘(𝑥𝑥,𝑦𝑦)]                                                                  (2.3) 

where𝐴𝐴(𝑥𝑥, 𝑦𝑦) is the ambient light intensity, and 𝐵𝐵(𝑥𝑥,𝑦𝑦)/𝐴𝐴(𝑥𝑥, 𝑦𝑦) is the fringe contrast. 

The phase function 𝜑𝜑(𝑥𝑥,𝑦𝑦) contains the information for the 3D depth value at (𝑥𝑥,𝑦𝑦) 

point as mentioned before. For the general N-shift with kc frequency PMP method, to 

calculate phase function, we use the following equation: 

𝜑𝜑𝑘𝑘(𝑥𝑥,𝑦𝑦) = arctan [(∑ 𝐼𝐼𝑘𝑘𝑐𝑐,𝑛𝑛(𝑥𝑥, 𝑦𝑦)sin (2𝜋𝜋𝑛𝑛/𝑁𝑁)𝑁𝑁
𝑛𝑛=1 )/(∑ 𝐼𝐼𝑘𝑘𝑐𝑐,𝑛𝑛(𝑥𝑥,𝑦𝑦)cos (2𝜋𝜋𝜋𝜋/𝑁𝑁)𝑁𝑁

𝑛𝑛=1 )(2.4) 

where𝐼𝐼𝑘𝑘𝑐𝑐,𝑛𝑛(𝑥𝑥,𝑦𝑦) is the captured image with kspatial frequency pattern projected on the 

object, and N is the total number of phase shifted patterns. Note that if the spatial 

frequency kc is greater than 1, then the phase calculated by using the equation is wrapped 

into the range of its principal values as shown in Fig. 2.4 right. 

 

Figure 2.4 (left) phase calculated by using k=1, and (right) phase calculated by using k=16 

Fig. 2.4 shows the two different phase images calculated based on two different spatial 

frequencies. Left phase image is calculated by N phase shifting of a sinusoidal pattern 

withspatial frequency equals to 1, and right phase image is calculated by a sinusoidal 

pattern with spatial frequency of kc=16. The difference between phase images calculated 

by different spatial frequencies is the low spatial frequency phase image (Fig. 2.4 left) 

provides the phase with non-ambiguity but high noise, whereas the high frequency phase 
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image provides low noise but ambiguous phase. we can obtain both non-ambiguity and 

low noise by unwrapping the high spatial frequency phase image with the low spatial 

frequency phase image. In this way, a high accuracy non-ambiguity phase image will be 

acquired. 

The fundamental idea of unwrapping algorithm in PMP method is to utilize k=1 phase 

image as a reference to unwrap the other phase images. We first need to normalize the 

high spatial frequency image by dividing the phase value by the pattern spatial frequency 

k, for example, for the phase image shown in Fig. 2.4 (right), we need to divide it by 16 

in order to normalize it. Then the second step is to obtain the integer number of the phase 

unwrapping cycles that are at or below the desired value such that 

𝜆𝜆(𝑥𝑥,𝑦𝑦) = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑘𝑘𝜑𝜑1(𝑥𝑥,𝑦𝑦) − 𝜑𝜑𝑘𝑘𝑐𝑐(𝑥𝑥,𝑦𝑦)/2𝜋𝜋)                                                              (2.5) 

where kc is the spatial frequency of the phase image that need to be unwrapped, and 𝜑𝜑1 is 

the reference phase. 

Then, the difference between the reference phase or baseline phase and the unwrapping 

phase is calculated as 

𝑟𝑟(𝑥𝑥,𝑦𝑦) = (𝑘𝑘𝜑𝜑1(𝑥𝑥,𝑦𝑦) − 𝜑𝜑𝑘𝑘𝑐𝑐(𝑥𝑥,𝑦𝑦) − 2𝜋𝜋𝜋𝜋(𝑥𝑥,𝑦𝑦))/2𝜋𝜋                                                   (2.6) 

The final adjustment of the unwrapping cycles are done by using the remainder 𝑟𝑟(𝑥𝑥,𝑦𝑦), 

𝜆𝜆𝑢𝑢(𝑥𝑥,𝑦𝑦) = � 𝜆𝜆
(𝑥𝑥,𝑦𝑦) + 1,𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟(𝑥𝑥, 𝑦𝑦) > 0.5

𝜆𝜆(𝑥𝑥, 𝑦𝑦) − 1,𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟(𝑥𝑥,𝑦𝑦) < −0.5                                                              (2.7) 

After calculating the phase unwrapping cycles, we obtain the unwrapped phase by 

𝜑𝜑𝑘𝑘𝑐𝑐,𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑥𝑥,𝑦𝑦) = �2𝜋𝜋𝜆𝜆𝑢𝑢(𝑥𝑥,𝑦𝑦) + 𝜑𝜑𝑘𝑘(𝑥𝑥,𝑦𝑦)�                                                         (2.8) 

After we unwrap the high spatial frequency phase, we get a high accuracy phase map 

without wrapping which we utilize it direction to get the depth by using Eq. (2.1) and Eq. 

(2.2). And also we note that the accuracy of the depth directly related to the accuracy of 

the phase image. 
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2.3 Composite Pattern Technique 

Composite Pattern method is proposed by Guan, etal. And the details about this technique 

are described in [6]. The purpose of the technique is to create a single pattern SLI 

technique which reconstructs non-ambiguous 3D surface and can be used in real-time 

high speed 3D data acquisition system. The basic idea of the Composite Pattern (CP) is to 

use the modulation theory to modulate the PMP patterns into one pattern, the details of 

the theory and similar ideas are described in [75]-[82], and then demodulate the captured 

reflected image into the separate distorted pattern. 

 

Figure 2.5Composite Pattern technique [6] 

Fig. 2.5 shows the pipeline of creating a Composite Pattern by modulating four PMP 

patterns. We have four carrier patterns which are sinusoidal patterns in orthogonal 

direction, each with a different spatial frequency. Each PMP pattern is multiply by a 

carrier pattern and they are added together to yield a single Composite Pattern. 

The PMP patterns in Fig. 2.5 are expressed as 

𝐼𝐼𝑛𝑛
𝑝𝑝 = 𝑐𝑐 + cos (2𝜋𝜋𝑓𝑓𝜑𝜑𝑦𝑦𝑝𝑝 − 2𝜋𝜋𝜋𝜋/𝑁𝑁)                                                                              (2.10) 

where c is a constant that offset the pattern’s intensity to above 0. Then the Amplitude 

modulation is expressed as 

𝐼𝐼𝑝𝑝 = 𝐴𝐴𝑝𝑝 + 𝐵𝐵𝑝𝑝 ∑ 𝐼𝐼𝑛𝑛
𝑝𝑝cos (2𝜋𝜋𝑓𝑓𝑛𝑛

𝑝𝑝𝑥𝑥𝑝𝑝)𝑁𝑁
𝑛𝑛=1                                                                           (2.11) 
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where𝑓𝑓𝑛𝑛
𝑝𝑝 is the nth carrier frequency, and 𝐴𝐴𝑝𝑝, 𝐵𝐵𝑝𝑝 are calculated as: 

𝐴𝐴𝑝𝑝 = 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐵𝐵𝑝𝑝 ∙ min {∑ 𝐼𝐼𝑛𝑛
𝑝𝑝cos (2𝜋𝜋𝑓𝑓𝑛𝑛

𝑝𝑝𝑥𝑥𝑝𝑝)𝑁𝑁
𝑛𝑛=1 } (2.12) 

𝐵𝐵𝑝𝑝 =
(𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚)

(max�∑ 𝐼𝐼𝑛𝑛
𝑝𝑝 cos�2𝜋𝜋𝑓𝑓𝑛𝑛

𝑝𝑝𝑥𝑥𝑝𝑝�𝑁𝑁
𝑛𝑛=1 �} −  min {∑ 𝐼𝐼𝑛𝑛

𝑝𝑝 cos�2𝜋𝜋𝑓𝑓𝑛𝑛
𝑝𝑝𝑥𝑥𝑝𝑝�𝑁𝑁

𝑛𝑛=1 })
                     (2.13)  

where𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 are maximum and minimum pixel intensity in the pattern image. The 

equations of 𝐴𝐴𝑝𝑝 and 𝐵𝐵𝑝𝑝 ensure the intensity range of the composite pattern falls into the 

interval[𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚, 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚]. 

After capturing the reflected image of composite pattern, we need to demodulate it, so the 

PMP patterns are retrieved and are used to reconstruct the 3D surface by using classical 

PMP techniques. To demodulate the Composite Pattern image, band pass filters are used 

to identify the response of each carrier frequency and then demodulate each PMP pattern. 

As shown in Fig. 2.6, the Fourier transform of the Composite Pattern image has four 

isolated peaks which represent four modulated patterns, and then four band pass filters 

are applied to isolate each of the modulated patterns. 

 

Figure 2.6 Fourier Transform of Composite Pattern Image [6] 
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Figure 2.7 Block diagram of demodulate Composite Pattern [6] 

Fig. 2.7 shows the process of Composite Pattern demodulation. After passing through the 

band pass filters, a classical AM demodulating method is utilized to extract the PMP 

patterns. 

2.4 Microsoft Kinect 3-D Sensor 

Microsoft introduced its first generation 3-D sensor Kinect for gaming platform 

XBOX360 in 2010, and from that time on, Kinect became a widely used 3-D sensor 

especially for 3-D motion sensing.  

 

Figure 2.8 A Picture of Kinect 

Fig. 2.8 shows a picture of the Kinect. Kinect consists of 3 components for depth sensing: 

a RGB camera for texture, a near infrared camera and a near infrared projector. So the 

technology utilized in the first generation of Kinect is the infrared SLI. However, unlike 

projecting the sinusoidal wave in our research, Kinect’s projector omits the 

pseudorandom noise pattern as shown in Fig. 2.9.  
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Figure 2.9 Pattern from Kinect (Images are from flickr.com) 

As briefly introduced in Chapter 1, pseudorandom noise pattern is a single pattern SLI 

technique which is able to estimate the depth by using 1 captured image. In this way, 

Kinect has the ability to sense the 3-D motion in real time. A depth map reconstructed 

from Kinect is shown in Fig. 2.10. 

 

Figure 2.10 Captured reflected image from Kinect (left), Reconstructed Depth Map (right). (Images are from 
Wikipedia.org/wiki/Kinect) 

Compared with other single pattern technologies such as CP and MCP, the biggest 

advantage of pseudorandom noise pattern is the reconstructed 3-D surface does not have 

a significant banding artifact which is caused by gamma distortion of the projected 

sinusoidal pattern. And by using a well-designed dynamic programming framework, the 

accuracy of the depth map can be improved. However, the limitation of this technique is 

the resolution of reconstructed surface is not as high as CP or MCP . 
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Chapter 3 Two-Pattern Full Lateral Resolution SLI Depth Measuring 

The chapter describes our first research direction which focuses on the study of a high-

speed Structure Light Illumination system that allows the relative motion between the 3D 

scanner and the object within the Field of View of the scanner [28].  

Part of the Two-Pattern technique is based on a single pattern SLI method that proposed 

by Casey et al. [10], named the Modified Composite Pattern (MCP) method. In section 

3.1, we briefly describe the MCP technique and its restriction as a single pattern SLI 

technique. By adding a new high frequency sinusoidal pattern as the second pattern, we 

introduce a novel two-pattern SLI system [28]. In section 3.2, we introduce the overall 

system design and the pattern design, and briefly describe the system setup and the 3D 

reconstruction process. The two patterns have individual functions as well as interactive 

processing between them. The primary function of the first pattern is to allow 

reconstruction of the 3D surface without ambiguity, so in section 3.3, we describe non-

ambiguous pattern analysis method and processing technique. The second pattern is a 

high frequency sinusoidal pattern for full lateral resolution 3D reconstruction. We 

introduce a novel quadrature phase processing technique to process the second pattern. In 

section 3.4, the quadrature phase pattern analysis method is presented. In section 3.5, the 

experiments results are presented and a Depth Matched Transfer Function (DMTF) 

performance characterization method is described. Section 3.6 is the summary of the two-

pattern full lateral resolution SLI depth measuring method. 

3.1 Modified Composite Pattern (MCP) 

As mentioned in the Background Chapter 2, the Composite Pattern (CP) technique is a 

single pattern technique which is proposed to create a high-speed 3D depth measuring 

system. However, a problem with using CP became apparent which was the skin spatial 

frequency response was not flat and therefore corrupted the weighting of the individual 

patterns [10]. In this case, the 3-D reconstruction result is highly banded or distorted.  

MCP was proposed by Casey, etal. [10] based on the fundamental idea of Composite 

Pattern.To solve the problem with the skin spatial response; a binary encoding method 
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was introduced where a binary Gray code structured light pattern allows 3D 

reconstruction insensitive to variation in spatial frequency.The uniquely encoded binary 

value always corresponds to a point in the projector space, which means the depth of this 

point can be calculate. The values collected during the sequence create a binary number 

identified as the point’s Gray code value.  The Gray code form of CP, and especially 

MCP SLI allows a single frame equivalent of these multiple projections. 

In a MCP which uses Gray Code encoding, a single modulated "snake" will be associated 

with a specific Gray code value, where snake means the stripe in the SLI pattern. This 

novel design places an un-modulated snake between every two Gray code snakes.  Using 

Composite Pattern analysis and processing techniques each modulated snakeis able to be 

identified, but in addition to this, each un-modulated snake can be used for 3D 

reconstruction as well, since any un-modulated snakelocatedbetween two sequential Gray 

code snakes is uniquely identifiable.  The presence of un-modulated stripes effectively 

doubles the amount of useful information in a Modified Composite Pattern. A typical 

MCP is shown in Fig. 3.1. 

The mathematical expression of a MCP will be illustrated in next section. For the MCP in 

Fig. 3.1, we use four different frequencies to do the horizontal modulation. The spatial 

frequencies are 40, 80, 120 and 160 cycles per FOV. Each of the horizontally modulated 

snakes are demodulated after captured, and the demodulated snake gives us the 

information of the phase value of the sinusoidal pattern in the phase direction, since the 

phase value for each modulated snake is calibrated during the calibration procedure. 

Also, the un-modulated snakes which are located between the modulated snakes are 

identified after the modulated snakes are demodulated. The un-modulated snakes' phase 

values are also identified from calibration. After the phase value is identified for each 

snake (modulated or un-modulated), we form a phase image which has the phase value 

for each of the snakes, then linear interpolation for each column is utilized to calculate 

the phase valuebetween the two adjacent snakes. As a result, a phase image is obtained, 

and is able to unwrap the phase obtained from the second pattern. 
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Figure 3.1 A MCP pattern [10] 

 

3.2 2PFLR system setup 

This section describes the Two-Pattern full lateral resolution depth measuring system 

setup. As stated in the introduction Chapter 1, the Two-Pattern system is composed of a 

Modified Composite Pattern and a high frequency sinusoidal pattern (sinusoidal wave 

variation along the phase direction) and are sequentially projected onto the object surface. 

Since only two patterns are used, the projection time is intensively reduced compared 

with classical PMP method which needs to project at least 3 patterns and phase shifting N 

steps. In this way, like the single pattern technique, we allow the relative motion between 

the scanner and object within the Field of View of the scanner. And the speed of relative 

motion depends on the projection rate. Furthermore, since the final phase image is the 

unwrapped 2nd pattern phase, the Two-Pattern technique is tolerant of motion between the 

2 pattern projection as long as the motion distortion does not exceed the spatial 

wavelength of the 2nd pattern. In the Two-Pattern system, the MCP pattern is used for 

non-ambiguity and the high frequency sinusoidal wave pattern is used to achieve full 
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lateral resolution in depth. 

 

Figure 3.2 The two patterns used in Two-Pattern System 

Fig. 3.2 left shows an MCP with 15 horizontal modulated snakes (stripes in the horizontal 

direction). And Fig. 3.2 right shows the sinusoidal pattern with twice the spatial 

frequency, along the phase direction (y direction of the image), as the MCP. The system 

setup is a traditional SLI system that consists of a projector and a camera, and set to 

satisfy the triangulation principle. The system block diagram is shown in Fig. 3.3.  

As shown in Fig. 3.3, in the Two-Pattern full lateral resolution SLI depth measuring 

system, we project the Modified Composite Pattern onto the object surface first and 

captured the reflected image by the camera, and then the sinusoidal pattern is projected 

and captured. After the two reflected images are acquired, they are processed into a non-

ambiguous phase which is then used to reconstruct the 3D surface. The analysis 

algorithm and processing procedure will be discussed in the following sections. 
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Figure 3.3 Two-Pattern System block diagram 

 

3.3 Non-ambiguous Pattern analysis 

We discuss the MCP analysis algorithm which is utilized to reconstruct a non-ambiguous 

3D surface approximation. The final result of the Two-Pattern system high depends on 

the accuracy and non-ambiguity of the depth measuring results from MCP. In Casey's 

[10] proposed MCP processing method,  the 2D Fourier Transform and Band-Pass 

filtering is used to demodulate the MCP. The accuracy of the demodulation relies on the 

filtering performance and requires identification of each frequency component. We 
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introduce a new MCP analysis algorithm that utilizes the 2nd sinusoidal pattern to 

improve snake detection.  

MCP is a pattern encoded both along the phase and orthogonal dimensions. Casey, et al. 

thoroughly describes the details of MCP design in reference [10]. A MCP has two kinds 

of snakes. One is un-modulated “white” snakes; the other is horizontally modulated 

snakes. The Amplitude-Modulation (AM) modulated snakes are a weighted combination 

of different sinusoidal waves with different spatial frequencies. The weight is based on a 

gray code. The phase image is non-ambiguous at each of the modulated snakes. A MCP 

in Fig. 3.2 left is defined as 

𝐼𝐼(𝑥𝑥,𝑦𝑦) = ��∑ 1
2
𝐺𝐺𝑖𝑖(𝑥𝑥, 𝑦𝑦) ∙ (𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑓𝑓𝑖𝑖𝑥𝑥) + 1)𝑁𝑁

𝑖𝑖=1 � ∙ 𝑆𝑆(𝑥𝑥,𝑦𝑦) + 𝑊𝑊(𝑥𝑥,𝑦𝑦)� ∙ 𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥,𝑦𝑦) (3.1) 

where 

𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥,𝑦𝑦) = 𝑎𝑎(𝑥𝑥,𝑦𝑦) + 𝑏𝑏(𝑥𝑥,𝑦𝑦) 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑓𝑓𝑐𝑐𝑦𝑦),     (3.2) 

𝑆𝑆(𝑥𝑥,𝑦𝑦) = ∑ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �𝑦𝑦−2𝑚𝑚𝑚𝑚𝑐𝑐
𝑇𝑇𝑐𝑐

�𝑁𝑁𝑠𝑠
𝑚𝑚=1 ,       (3.3) 

and 

𝑊𝑊(𝑥𝑥,𝑦𝑦) = ∑ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �𝑦𝑦−(2𝑚𝑚+1)𝑇𝑇𝑐𝑐
𝑇𝑇𝑐𝑐

�𝑁𝑁𝑠𝑠
𝑚𝑚=1  .      (3.4) 

The result, I(x,y), is the Modified Composite Pattern image, and i is the index number of 

Gray Code modulated snakes from 1 to N. Gi is the ith binary Gray code pattern. The ith 

modulation carrier frequency is fi, S is the rectangular stripe mask function which 

modifies the Composite Pattern, and W is the rectangular function defining the un-

modulated stripes [17]. The multiplication operation used here is Hadamardelement-wise 

matrix multiplication [22], and𝑇𝑇𝑐𝑐 = 1/𝑓𝑓𝑐𝑐 . 

The number of carrier frequencies can be varied based on the spatial frequency of the 

sinusoidal wave along the phase direction. In our Two-Pattern system, four carrier spatial 

frequencies are used, since there are total 32 snakes in the pattern. As shown in Table 3-

1the MCP uses 4 orthogonal frequencies so the maximum number of modulated snakes 
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are 24 -1= 15 where {0, 0, 0, 0} pattern is not included. These modulated snakes are 

identified by a snake code number and a phase code as shown in Table 3-1. 

 

Table 3-1 Phase Code (PC), Snake Code (SC) and Gray code (GC) 

PC SC GC  

{ f4, f3, f2, f1 } 

PC SC GC  

{ f4, f3, f2, f1 } 

0 0 N/A 8 12 1100 

1 1 0001 9 13 1101 

2 3 0011 10 15 1111 

3 2 0010 11 14 1110 

4 6 0110 12 10 1010 

5 7 0111 13 11 1011 

6 5 0101 14 9 1001 

7 4 0100 15 8 1000 

 

The Phase code (PC) of a snake in the table is the snake number, since each snake is 

indexed along the phase direction from the top of the image to the bottom, so the 

modulated snake on the top most of the image is number as 1 and the other are numbered 

accordingly. The Gray Code (GC) of a snake indicates which carrier frequencies are used 

to modify the current snake, for example, if the Gray Code of a modulated snake is 1011, 

then this snake is horizontally modulated by three carrier frequencies: f4,f2, and f1, since { 

f4, f3, f2, f1 } represents the Gray Code of the snake. And Snake Code (SC) is the decimal 

representation of the Gray Code.   

3.3.1 Peak Isolation 

MCPimage analysis and processing begins with a single image of an object illuminated 

by the projected MCP i.e. pattern 1. The first step is isolation of the stripe peaks. To get a 

better result, a 1-D filter is used to pre-filter the captured image along the phase direction. 

The 1-D filter is a moving average filter on the phase direction, and it is one column wide 
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and the height of the filter corresponds to half of the vertical period of the snakes. This 

filter will blur the image slightly in the phase direction without affecting the details in the 

orthogonal direction. In this way, it will improve detection of the modulated snakes in the 

next step. As shown in Fig. 3.4, the left image is the original captured image, and the 

right one is the image after filtering. We can see the eyebrow part is suppressed in the 

filtered image.  

 

Figure 3.4 Pre-Filter the image. Original Image (left), filtered image (right) 

To isolate the peaks of the snakes of the MCP, the high frequency sinusoidal pattern is 

utilized. The second pattern has the same spatial frequency along the phase direction as 

the MCP image, so the snake peak locations are exactly the same. To get the peak 

location along phase direction of 2nd pattern, a threshold 𝑇𝑇𝑠𝑠  is set to detect the snake 

region of the 2nd pattern. A snake isolation mask is defined by Eq. (3.5). 

𝐵𝐵𝑝𝑝𝑝𝑝(𝑥𝑥,𝑦𝑦) = �0, 𝐼𝐼2(𝑥𝑥,𝑦𝑦) < 𝑇𝑇𝑠𝑠
1, 𝐼𝐼2(𝑥𝑥,𝑦𝑦) ≥  𝑇𝑇𝑠𝑠

,       (3.5) 

Where 𝐵𝐵𝑝𝑝𝑝𝑝(𝑥𝑥,𝑦𝑦) the binarized peak region is image, and 𝐼𝐼2(𝑥𝑥,𝑦𝑦)  is the reflected 

sinusoidal pattern image.  

27 

 



 

 

Figure 3.5 Snake Detection Process. Captured Image (left), detected snakes image (right) 

As shown in Fig. 3.5 right, the detected snakes regions are in white. Since we don’t use 

negative snakes in the Modified Composite Pattern,  we only need to detect the “positive 

snakes” which are ether horizontally modulated or not. 

Furthermore, we define the very center of the region of each isolated snake along the 

phase direction in 𝐵𝐵𝑝𝑝𝑝𝑝 as the peak location image𝐵𝐵𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 .  𝐵𝐵𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝is used as an indicator 

image to isolate the peak pixels in the MCP image as 

𝑃𝑃(𝑥𝑥,𝑦𝑦) = 𝐵𝐵𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(x, y)  ∙  𝐼𝐼2(𝑥𝑥, 𝑦𝑦)                    (3.6) 

whereP is the peaks location and The multiplication operation used in Eq. (3.6) is the 

Hadamardelement-wise matrix multiplication. Fig. 3.6 shows the result image of peak 

isolation, although in the Fig. 3.6 the peaks lines seem discontinued, it is caused by the 

MATLAB display function down-sampling process.  

In our peak isolation algorithm, instead of identifying the peak location directly in 

Modified Composite Pattern image, we utilize the 2nd pattern to help isolation.  This is a 

big advantage of using a 2nd pattern compared with single pattern technique that just 

using MCP to isolate the peaks of each snakes, since the snakes are modulated 

horizontally which corrupts the results of the binarization of the image, and other image 

segmentation algorithms also have a hard time to identify the peaks. 
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Figure 3.6 Detected Snake Peaks image (negative image) 

After the peaks locations are identified, each snake’s peak pixel intensity in 𝑃𝑃 is mapped 

to a sequence in matrix Y defined as  

𝒀𝒀 ≡ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒′𝑠𝑠  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , and in matrix form 

𝒀𝒀such that 

𝒀𝒀 = �

𝒚𝒚𝟏𝟏
𝒚𝒚𝟐𝟐
⋮

𝒚𝒚𝑴𝑴𝒔𝒔

�          (3.7) 

where 𝑀𝑀𝑆𝑆 ≡ Number of detected snakes ,  𝑁𝑁𝑆𝑆 ≡ Maximum length of the snakes , and 

𝒚𝒚𝒊𝒊 ≡ 1 by 𝑁𝑁𝑠𝑠 vector. 
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In this way, we store each detected snakes’ peaks into a row of matrix Y as shown in Eq. 

(3.7). The reason to create a matrix Y is that demodulating a 1D Amplitude Modulated 

signal is much easier than demodulating a 2D AM image. We also apply a 1-D low-pass 

filter to each of the 1-D snakes’ peaks to filter out some high frequency noise, as shown 

in Fig. 3.7. 

 

Figure 3.7 The snake before filtering (left), the snake after filtering (right) 

 

3.3.2 Modified Composite Pattern Demodulation by Using Matched Filter Bank 

The second step is the MCP demodulation. A Matched Filter bank method is used to 

identify each snake. There are 4 frequency components in each snake so we need to use 

15 matched filters. Each frequency component has Ns length, and according to the 

Surface Modulation Transfer Function (SMTF), the higher frequencies may be 

suppressed in the captured image, so the matched filter is formed from a selected subset 

of weighted cosine waves defined by  

𝑠𝑠1(𝑛𝑛) = 𝛼𝛼1 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐 �2𝜋𝜋 𝑘𝑘1
𝑁𝑁𝑠𝑠
𝑛𝑛�                                                                                           (3.8a) 

𝑠𝑠2(𝑛𝑛) = 𝛼𝛼2 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐 �2𝜋𝜋 𝑘𝑘2
𝑁𝑁𝑠𝑠
𝑛𝑛�                                                                                          (3.8b) 

𝑠𝑠3(𝑛𝑛) = 𝛼𝛼3 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐 �2𝜋𝜋 𝑘𝑘3
𝑁𝑁𝑠𝑠
𝑛𝑛�                                                                                          (3.8c) 
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𝑠𝑠4(𝑛𝑛) = 𝛼𝛼4 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐 �2𝜋𝜋 𝑘𝑘4
𝑁𝑁𝑠𝑠
𝑛𝑛�                                                                                                      (3.8d) 

The weights are set by experience to compensate for the frequency attenuation. A 

set of weights use for this study is in the Table 3-2. 

Table 3-2 The weights for matched filters used in our research 

 𝛼𝛼1 𝛼𝛼2 𝛼𝛼3 𝛼𝛼4 

value 1.2 1.2 0.45 0.15 

A matrix of 15 matched filters is given by Eq. (3.9), where H is a 15 by Ns matrix. 

𝑯𝑯 =

⎣
⎢
⎢
⎢
⎡

𝑠𝑠1(𝑛𝑛)                 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒   𝑆𝑆𝑆𝑆 = 1 
𝑠𝑠1(𝑛𝑛) + 𝑠𝑠2(𝑛𝑛),𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 3
𝑠𝑠2(𝑛𝑛)                 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 2

:
𝑠𝑠1(𝑛𝑛) + 𝑠𝑠2(𝑛𝑛) + 𝑠𝑠3(𝑛𝑛) + 𝑠𝑠4(𝑛𝑛),𝑤𝑤ℎ𝑒𝑒𝑒𝑒  𝑆𝑆𝑆𝑆 = 15⎦

⎥
⎥
⎥
⎤

       (3.9) 

To simplify the representation, we refer each row of H as a vector 𝒉𝒉𝒊𝒊 : 

        𝑯𝑯 =

⎣
⎢
⎢
⎢
⎢
⎡
𝒉𝒉𝟏𝟏
𝒉𝒉𝟐𝟐
⋮
𝒉𝒉𝒊𝒊
:

𝒉𝒉𝟏𝟏𝟏𝟏⎦
⎥
⎥
⎥
⎥
⎤

                                                                                                          (3.10) 

Then, we utilize the prebuilt Matched Filter Bank to demodulate the extracted 1-D 

snakes’ peaks which are stored in matrix Y as expressed in Eq. (3.7).The matched filter 

correlation is implemented by: 

 𝒆𝒆𝒊𝒊,𝒋𝒋 = 𝒚𝒚𝒊𝒊 ∗ 𝒉𝒉𝒋𝒋
∗(−𝑛𝑛)                                                                                                     (3.11) 

where superscript ∗denotes conjugation and operator ∗denotes convolution. After the 

Discrete Fourier Transform (DFT) of both sides of Eq. (3.11), we get 

𝐷𝐷𝐷𝐷𝐷𝐷[𝒆𝒆𝒊𝒊,𝒋𝒋] = 𝐷𝐷𝐷𝐷𝐷𝐷[𝒚𝒚𝒊𝒊] ∙ 𝐷𝐷𝐷𝐷𝐷𝐷[𝒉𝒉𝒋𝒋
∗(−𝑛𝑛)]                                                                       (3.12) 

which can be rewritten as 
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𝒆𝒆�𝒊𝒊,𝒋𝒋(𝒇𝒇) = 𝒚𝒚𝒊𝒊� (𝒇𝒇) ∙ 𝒉𝒉𝒋𝒋�
∗(𝑓𝑓)                                                                                              (3.13) 

where ^ denotes the DFT form of the signal. In matrix form this yields 

𝑬𝑬� = 𝒀𝒀� ∙ 𝑯𝑯�𝑻𝑻 =

⎣
⎢
⎢
⎢
⎡
𝒆𝒆�𝟏𝟏,𝟏𝟏(𝒇𝒇) 𝒆𝒆�𝟏𝟏,𝟐𝟐(𝒇𝒇) ⋯ 𝒆𝒆�𝟏𝟏,𝟏𝟏𝟏𝟏(𝒇𝒇)
𝒆𝒆�𝟐𝟐,𝟏𝟏(𝒇𝒇) ⋮ ⋮ ⋮

⋮ 𝒆𝒆�𝒊𝒊,𝒋𝒋(𝒇𝒇) ⋮ ⋮
𝒆𝒆�𝑴𝑴𝑴𝑴,𝟏𝟏(𝒇𝒇) ⋯ ⋯ 𝒆𝒆�𝑴𝑴𝑴𝑴,𝟏𝟏𝟏𝟏(𝒇𝒇)⎦

⎥
⎥
⎥
⎤

𝑴𝑴𝑴𝑴×(𝟏𝟏𝟏𝟏∙𝑵𝑵𝑵𝑵)

                                (3.14) 

After the matched filter correlation, the maximum correlation peaks and the indices are 

found and represented by 

𝑪𝑪 = 𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑗𝑗 𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑟𝑟𝑟𝑟𝑟𝑟 �𝐷𝐷𝐷𝐷𝐷𝐷−𝟏𝟏�𝑬𝑬���

= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑗𝑗 𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑟𝑟𝑟𝑟𝑟𝑟(𝑬𝑬) =

⎣
⎢
⎢
⎢
⎢
⎡
𝒄𝒄𝟏𝟏
𝒄𝒄𝟐𝟐
⋮
𝒄𝒄𝒊𝒊
:

𝒄𝒄𝑴𝑴𝑴𝑴⎦
⎥
⎥
⎥
⎥
⎤

𝑀𝑀𝑀𝑀×1

                                           (3.15) 

where𝒄𝒄𝒊𝒊 = 𝑗𝑗indicates that for the ith snake, the maximum correlation is with the jth code. 

If the maximum value for ith row in 𝑬𝑬 is below a threshold TE, then this snake is 

considered as an un-modulated snake, and 𝒄𝒄𝒊𝒊 = 0to eliminate that snake from the set of 

modulated snakes. 

Fig. 3.8 summarizes the algorithm of non-ambiguity pattern analysis process. We first 

read in the captured MCP image and pre-filter it with a 1D moving average filter and then 

we identify the snake region by binarizing the second sinusoidal pattern. The 1D snakes 

peaks are extracted from the snake peak image and these 1D snake peaks are used for 

demodulation. For demodulation procedure, we first pre-build a Matched Filter Bank 

which consists of 15 matched filters, and then correlate the Matched Filter Bank with the 

1D snake peaks to demodulate each snake and get the Snake Code back.  
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Figure 3.8 Algorithm of Modified Composite Pattern processing 

3.3.3 Phase Image Reconstruction by Using Demodulated Snakes 

After the demodulation process, based on the calibration results for each snakes in the 

MCP image, we reconstruct the Sy matrix as shown in Fig. 3.9 left. This format is named 

as MAT5, and the details of MAT5 are described in [9]. The Sy image indicates the depth 

for each snake peak, so in order to get phase image for the whole surface that covered by 

the MCP, we need to do 1-D linear interpolation along the phase direction between each 

two adjacent snakes. Fig. 3.9 right shows the final phase image (depth image) that is used 

for un-wrapping the second pattern phase. Also, from Fig. 3.9, we know that the phase 

image generated by MCP is non-ambiguous, since each snakes’ Snake Code is different, 

which indicates the absolute phase value of the snake, and the phase value is obtained 

from calibration procedure. The phase value between the snakes is calculated by utilizing 

the linear interpolation, so the phase value is not wrapped, which means the phase image 

is not ambiguous.  
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Figure 3.9 Sy image (left), linear interpolated phase image (right) 

 

3.4 Quadrature Phase Pattern Analysis 

In section 3.3, we discussed the method of processing non-ambiguous MCP data based 

on a Matched Filter Bank technique. However, the phase resolution of that processing is 

limited to the snake’s width or period in the phase direction. In this section, we process 

the second pattern using a Quadrature Phase (QP) processing technique to achieve full 

lateral resolution. 

Quadrature processing yields a wrapped phase image from a single captured pattern 

image. By using the non-ambiguous phase of modulated snakes that we already acquired 

in section 3.3, we un-wrap the wrapped phase image to achieve both high lateral 

resolution and non-ambiguous surface depth. 

Section 3.4.1 illustrates the mathematical model for quadrature processing, and 

thoroughly discusses the details of this technique. Section 3.4.2 provides an explanation 

of unwrapping algorithm, and its implementation.  

3.4.1 Mathematical model of Quadrature Processing (QP) 

As we described in section 3.3, the mathematical representation of MCP is defined in Eq. 
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(3.1). To simplify the representation, we represent the Gray Code modulation as  

𝐺𝐺(𝑥𝑥,𝑦𝑦) = �∑ 1
2
𝐺𝐺𝑖𝑖(𝑥𝑥, 𝑦𝑦) ∙ (cos(2𝜋𝜋𝑓𝑓𝑖𝑖𝑥𝑥) + 1)𝑁𝑁

𝑖𝑖=1 �                                                          (3.16) 

The captured distorted MCP pattern in camera coordinate is: 

𝐼𝐼(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐) = �𝐺𝐺�(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐)𝑆̃𝑆(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐) + 𝑊𝑊� (𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐)� ∙ 𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃� (𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐)                                     (3.17) 

 

Then by substituting 𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃� (𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐) by Eq. (3.2), the Eq. (3.17) is rewritten as Eq. (3.18a) 

𝐼𝐼(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐) = 𝑀𝑀(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐) ∙ 𝑎𝑎(𝑥𝑥,𝑦𝑦) + 𝑀𝑀(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐) ∙ 𝑏𝑏(𝑥𝑥,𝑦𝑦) cos�2𝜋𝜋𝑓𝑓𝑐𝑐𝑦𝑦𝑐𝑐 + 𝜃𝜃(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐, 𝑧𝑧)� (3.18𝑎𝑎) 

where 𝑀𝑀(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐) is: 

𝑀𝑀(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐) = [𝐺𝐺(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐)𝑆𝑆(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐) + 𝑊𝑊(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐)]                                                        (3.18b) 

the Eq. (3.18a) is rewritten as 

 𝐼𝐼(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐) = 𝑎𝑎�𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐) + 𝑏𝑏�𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐) cos�2𝜋𝜋𝑓𝑓𝑐𝑐𝑦𝑦𝑐𝑐 + 𝜃𝜃(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐 , 𝑧𝑧)�                     (3.19) 

Also, The reflected 2nd pattern intensity in camera space {x, y} is 

𝐼𝐼2(𝑥𝑥,𝑦𝑦) = 𝑎𝑎�(𝑥𝑥, 𝑦𝑦) + 𝑏𝑏�(𝑥𝑥,𝑦𝑦) 𝑐𝑐𝑐𝑐𝑐𝑐�2𝜋𝜋𝑓𝑓𝑐𝑐𝑦𝑦 + 𝜃𝜃(𝑥𝑥, 𝑦𝑦, 𝑧𝑧𝑤𝑤)�                               (3.20) 

where𝑎𝑎�(𝑥𝑥,𝑦𝑦)is the reflected ambient plus projected light dc intensity times the surface 

albedo in the direction of the camera. The term 𝑏𝑏�(𝑥𝑥,𝑦𝑦)is only the cosine contribution to 

the reflected light intensity, also multiplied by the surface albedo in the direction of the 

camera. All terms are also attenuated by the surface gradient. The phase term is a 

function of the camera coordinate and zw is a world coordinate. 

From Eq. (3.19) and Eq. (3.20), we know that both patterns have the similar 

mathematical form, which can be used for Quadrature Processing, the reason we 

introduce the 2nd pattern for Quadrature Processing is that the phase generated by the 2nd 

pattern has much less noise and is not corrupted by the horizontal modulation.  
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Figure 3.10 Quadrature Phase Demodulator 

The Quadrature Processing procedure is shown in the Fig. 3.10. The first step is to 

generate an in-phase function𝑔𝑔𝐼𝐼(𝑥𝑥,𝑦𝑦), and quadrature function𝑔𝑔𝑄𝑄(𝑥𝑥,𝑦𝑦), by multiplying 

the cosine image, cos(2𝜋𝜋𝑓𝑓𝑐𝑐𝑦𝑦) and sine image, sin(2𝜋𝜋𝑓𝑓𝑐𝑐𝑦𝑦)) with reflected image 𝐼𝐼2(𝑥𝑥,𝑦𝑦).  

The reference frequency fc is chosen to be the frequency of the captured image reflected 

off a flat calibration surface. 

So, the in-phase component 𝑔𝑔𝐼𝐼(𝑥𝑥, 𝑦𝑦) and the quadrature component 𝑔𝑔𝑄𝑄(𝑥𝑥,𝑦𝑦) are 

𝑔𝑔𝐼𝐼(𝑥𝑥,𝑦𝑦) = �𝑎𝑎�(𝑥𝑥,𝑦𝑦) + 𝑏𝑏�(𝑥𝑥, 𝑦𝑦) 𝑐𝑐𝑐𝑐𝑐𝑐�2𝜋𝜋𝑓𝑓𝑐𝑐𝑦𝑦 + 𝜃𝜃(𝑥𝑥,𝑦𝑦)�� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑓𝑓𝑐𝑐𝑦𝑦),  (3.21) 

and 

𝑔𝑔𝑄𝑄(𝑥𝑥,𝑦𝑦) = �𝑎𝑎�(𝑥𝑥, 𝑦𝑦) + 𝑏𝑏�(𝑥𝑥,𝑦𝑦) 𝑐𝑐𝑐𝑐𝑐𝑐�2𝜋𝜋𝑓𝑓𝑐𝑐𝑦𝑦 + 𝜃𝜃(𝑥𝑥, 𝑦𝑦)�� ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(2𝜋𝜋𝑓𝑓𝑐𝑐𝑦𝑦),  (3.22) 

respectively. Using trigonometric identities with Eq. (3.21) and (3.22) yields 

𝑔𝑔𝐼𝐼(𝑥𝑥,𝑦𝑦) = 𝑎𝑎�(𝑥𝑥,𝑦𝑦) 𝑐𝑐𝑜𝑜𝑜𝑜(2𝜋𝜋𝑓𝑓𝑐𝑐𝑦𝑦) +
𝑏𝑏�(𝑥𝑥,𝑦𝑦)

2
𝑐𝑐𝑐𝑐𝑐𝑐�𝜃𝜃(𝑥𝑥, 𝑦𝑦)�

+  
𝑏𝑏�(𝑥𝑥,𝑦𝑦)

2
𝑐𝑐𝑐𝑐𝑐𝑐�4𝜋𝜋𝑓𝑓𝑐𝑐𝑦𝑦 + 𝜃𝜃(𝑥𝑥,𝑦𝑦)�                                                          (3.23) 

and 
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𝑔𝑔𝑄𝑄(𝑥𝑥,𝑦𝑦) = 𝑎𝑎�(𝑥𝑥,𝑦𝑦) 𝑠𝑠𝑠𝑠𝑠𝑠(2𝜋𝜋𝑓𝑓𝑐𝑐𝑦𝑦) −
𝑏𝑏�(𝑥𝑥,𝑦𝑦)

2
𝑠𝑠𝑠𝑠𝑠𝑠�𝜃𝜃(𝑥𝑥,𝑦𝑦)�

+ 
𝑏𝑏�(𝑥𝑥, 𝑦𝑦)

2
𝑠𝑠𝑠𝑠𝑠𝑠�4𝜋𝜋𝑓𝑓𝑐𝑐𝑦𝑦 + 𝜃𝜃(𝑥𝑥,𝑦𝑦)�                                                            (3.24) 

The filters in Fig. 3.10 are a 1-Dimensional and only applied along the phase dimension 

y. We use two filters; one is a band pass filter HBPF with center frequency at fc and 

bandwidth smaller than2fc, the other is a low pass filter HLPF with cut frequency atfL ≤

fc. Both gI and gQ will be filtered to yield four filtered images as output. As shown in 

Fig. 3.10, the outputs images are rBI(x, y) and rLI(x, y), which come from by filtering the 

gI, rBQ(x, y) and rLQ(x, y) which come from by filtering the gQ. 

𝑟𝑟𝐵𝐵𝐵𝐵(𝑥𝑥, 𝑦𝑦) = 𝑎𝑎�(𝑥𝑥,𝑦𝑦) 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑓𝑓𝑐𝑐𝑦𝑦)       (3.25a) 

𝑟𝑟𝐿𝐿𝐿𝐿(𝑥𝑥,𝑦𝑦) = 𝑏𝑏�(𝑥𝑥,𝑦𝑦)
2

𝑐𝑐𝑐𝑐𝑐𝑐�𝜃𝜃(𝑥𝑥,𝑦𝑦)�       (3.25b) 

𝑟𝑟𝐵𝐵𝐵𝐵(𝑥𝑥,𝑦𝑦) = 𝑎𝑎�(𝑥𝑥, 𝑦𝑦) 𝑠𝑠𝑠𝑠𝑠𝑠(2𝜋𝜋𝑓𝑓𝑐𝑐𝑦𝑦)       (3.25c) 

𝑟𝑟𝐿𝐿𝐿𝐿(𝑥𝑥,𝑦𝑦) = −𝑏𝑏�(𝑥𝑥,𝑦𝑦)
2

𝑠𝑠𝑠𝑠𝑠𝑠�𝜃𝜃(𝑥𝑥,𝑦𝑦)�       (3.25d) 

The high frequency components in Eq. (3.23) and Eq. (3.29) are filtered out. By using the 

four outputs in Eq. (3.25), the average intensity,𝑎𝑎�(𝑥𝑥,𝑦𝑦), intensity modulation, 𝑏𝑏�(𝑥𝑥,𝑦𝑦) and 

phase, 𝜃𝜃(𝑥𝑥,𝑦𝑦) can be calculated by 

𝑎𝑎�(𝑥𝑥,𝑦𝑦) = �𝑟𝑟𝐵𝐵𝐵𝐵(𝑥𝑥,𝑦𝑦)2 + 𝑟𝑟𝐵𝐵𝐵𝐵(𝑥𝑥,𝑦𝑦)2                  (3.26a) 

𝑏𝑏�(𝑥𝑥,𝑦𝑦) = 4�𝑟𝑟𝐿𝐿𝐿𝐿(𝑥𝑥,𝑦𝑦)2 + 𝑟𝑟𝐿𝐿𝑄𝑄(𝑥𝑥, 𝑦𝑦)2       (3.26b) 

𝜃𝜃(𝑥𝑥,𝑦𝑦) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �− 𝑟𝑟𝐿𝐿𝐿𝐿(𝑥𝑥,𝑦𝑦)
𝑟𝑟𝐿𝐿𝐿𝐿(𝑥𝑥,𝑦𝑦)�       (3.26c) 

However, the phase image is wrapped, as shown in Fig. 3.11, so we need to use the MCP  

phase image as a baseline phase image to unwrap the 𝜃𝜃(𝑥𝑥,𝑦𝑦). 
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Figure 3.11 Wrapped Phase Image 

3.4.2 Quadrature Processing Phase Unwrapping 

The first step to unwrap the phase is to mask out the noise outside object border, since we 

only need the phase image for the object scanned. So we set our Region of Interest (ROI) 

to the object, mask out all the other noise. As shown in Fig. 3.12 left, the border of the 

object is in black.  

 

Figure 3.12 Object Bolder in black(left), masked out ROI image(right) 

From Section 3.4.1, we get the average image, indicator image, and the phase image from 
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the quadrature processing, and to get the ROI of the phase image, we utilize the indicator 

image. A threshold Tb is set to binarize the intensity modulation image into an indicator 

image, which is 

𝑏𝑏�(𝑥𝑥,𝑦𝑦) = �1, 𝑏𝑏�(𝑥𝑥,𝑦𝑦) ≥ 𝑇𝑇𝑏𝑏
0, 𝑏𝑏�(𝑥𝑥,𝑦𝑦) < 𝑇𝑇𝑏𝑏

        (3.27) 

Then, by multiplying the phase image by the binarized indicator image, we mask out the 

phase noise, such that 

𝜃𝜃(𝑥𝑥,𝑦𝑦) = 𝜃𝜃(𝑥𝑥, 𝑦𝑦) ∙ 𝑏𝑏�(𝑥𝑥,𝑦𝑦)        (3.28) 

The masked phase image boundary is shown in Fig. 3.12 right. 

With noise removed, our unwrapping algorithm works robustly on the wrapped phase in 

Fig. 3.12 right. The basic idea of the unwrapping algorithm is to scale the wrapped phase 

to follow the trend of the Modified Composite Pattern phase we got from the first pattern. 

If we take a cross section (i.e., a single column) of both phase images, one is wrapped 

and the other is unwrapped baseline MCP phase image [86] [87], as shown in Fig. 3.13.  

 

Figure 3.13 One column signal of both phase images, Green in wrapped phase image, Blue is the baseline 
unwrapped phase image 

In preparation to unwrap the phase, 𝜃𝜃(𝑥𝑥,𝑦𝑦), we normalize it by dividing by its pattern 

spatial frequency of 𝑘𝑘𝑐𝑐 = 29. The two normalized signals have same gradient. The first 

step is to obtain the integer number of phase unwrapping wavelengths (unwrapping 
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cycles) that are at or below the desired value such that 

𝜆𝜆(𝑥𝑥,𝑦𝑦) = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 �𝑘𝑘𝑐𝑐𝜑𝜑0(𝑥𝑥,𝑦𝑦)−𝜑𝜑1(𝑥𝑥,𝑦𝑦)
2𝜋𝜋

�       (3.29) 

where𝜑𝜑0(𝑥𝑥,𝑦𝑦) is the baseline unwrapped phase image, 𝜑𝜑1(𝑥𝑥, 𝑦𝑦) is the wrapped phase 

image, and 𝑘𝑘𝑐𝑐  is the 𝜑𝜑1(𝑥𝑥,𝑦𝑦)  pattern spatial frequency. Then we need to scale the 

𝜑𝜑1(𝑥𝑥, 𝑦𝑦) to baseline phase. So, in units of cycles, the difference between baseline phase 

and unwrapping cycle is calculated as 

𝑟𝑟(𝑥𝑥,𝑦𝑦) = 𝑘𝑘𝑐𝑐𝜑𝜑0(𝑥𝑥,𝑦𝑦)−𝜑𝜑1(𝑥𝑥,𝑦𝑦)−2𝜋𝜋𝜋𝜋(𝑥𝑥,𝑦𝑦)
2𝜋𝜋

       (3.30) 

A final adjustment of +/- 1 unwrapping cycle is determined by evaluating the remainder 

such that 

𝜆𝜆𝑢𝑢(𝑥𝑥,𝑦𝑦) = � 𝜆𝜆
(𝑥𝑥,𝑦𝑦) + 1,    for 𝑟𝑟(𝑥𝑥, 𝑦𝑦) > 0.5

𝜆𝜆(𝑥𝑥, 𝑦𝑦) − 1,    for 𝑟𝑟(𝑥𝑥,𝑦𝑦) < −0.5     (3.31) 

The phase image is unwrapping by 

𝜑𝜑𝑢𝑢(𝑥𝑥,𝑦𝑦) = 2𝜋𝜋𝜆𝜆𝑢𝑢(𝑥𝑥,𝑦𝑦)+𝜑𝜑1(𝑥𝑥,𝑦𝑦)
𝑘𝑘𝑐𝑐

        (3.32) 

 

Figure 3.14 Unwrapped phase and baseline phase 

Fig. 3.14 displays a column of the unwrapped quadrature phase plotted with baseline 

MCP phase. The unwrapped phase follows the baseline phase very closely. However, the 

unwrapped quadrature phase has much more high frequency components which represent 
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the details of the surface. And, the quadrature phase is full lateral resolution. The final 

unwrapped phase image is shown in fig. 3.15. 

 

Figure 3.15 Unwrapped Quadrature Processing Phase Image 

With the phase image shown in Fig. 3.15, we reconstruct the full lateral resolution 3D 

surface directly.  

3.5 Experiments Results 

The previous sections describe and discuss the research of Two-pattern Full Lateral 

Resolution (2PFLR) SLI depth measuring system, and in section 3.4 and section 3.5 

explicitly illustrates the details of the analysis of the non-ambiguous pattern, which is 

Modified Composite Pattern, and analysis of Quadrature Phase Pattern, which is utilized 

for full lateral resolution 3-D reconstruction. In this section, we present the experiments 

results of our Two-pattern system.  

In section 3.5.1, we demonstrate the Experiment setup for Two-Pattern Full Lateral 

Resolution SLI depth measuring system. Then, in section3.5.2 we first present the 3D 

reconstruction results of using Modified Composite Pattern only. In section 3.5.3, we 

demonstrate our Two-pattern system's 3D surface reconstruction result and compared 

with other single pattern technique such as MCP or Composite Pattern.  

41 

 



 

3.5.1 Experiment Setup for Two-Pattern Full Lateral Resolution SLI System 

The system apparatus for 2PFLR system is described. The Two-Pattern 3D scanner setup 

is based on the classical SLI scanner as shown in Fig. 3.16.  

This system is a classic SLI system set up with a camera and a projector in triangulation 

geometry. A high definition camera is used here to capture the projected pattern. We use 

a Canon EOS-7D high definition camera with resolution 5184 x 3456 and a ViewSonic 

PJ260D digital projector with resolution 1024*768. 

The distance between the camera and the projector is 14 inches, and the object is 24 

inches away from the projector lens.  

 

Figure 3.16 Two-Pattern Full Lateral Resolution Scanner Structure 

To calibrate this system, we follow the calibration method by using a roof grid with circle 

features as shown in Fig. 3.17. Unlike some other classical calibration target such as 

Checker Board [85], this roof grid makes the calibration procedures for Structure Light 
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Illumination system to be based on one scan [29]-[31]. The calibration points are the 

known centers of all the circles on the calibration grid [34]. The angle of the roof is 90 

degree. Here, the Z axis is pointing into the Fig. 3.17. The second step is to generate the 

phase image of the calibration grid by using our Two-Pattern Structure Light Illumination 

System. Then, in our calibration software, we read in the calibration target’s captured 

image and automatically detect the center of each circle, and obtain the phase value 

associated with each center, as shown in Fig. 3.18. The green square around the ring 

means this ring is automatically identified, and the cross in the square points out the 

center of the ring. The automatic ring center detection algorithm is proposed by 

Hassebrook.  

 

Figure 3.17 Calibration Target [94] 
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Figure 3.18 Automatically detect the rings’ centers (left), Phase Image with detected center in green (right) 

Each circle’s center’s world coordinates are known, and in this way, with the phase value 

of each center, the system parameters are calculated. The intrinsic and extrinsic 

parameters of the camera are calculated based on perspective transformation.   

 

3.5.2 Modified Composite Pattern 3D reconstruction 

As described in section 3.5.2, the 3D surface is reconstructed directly using the phase 

image generated by MCP as shown in Fig. 3.9. The reconstructed 3D surface by using 

single Modified Composite Pattern is shown in Fig. 3. 19. 
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Figure 3.19 3D surface reconstructed only use MCP 

We see in Fig. 3.19 the surface is not full lateral resolution since the phase image 

generated by Modified Composite Pattern is interpolated between adjacent snake peaks. 

If we are only going to use the MCP for 3-D reconstruction, then a trend filter is applied 

to smooth the sharp peaks on the 3D surface as shown in Fig. 3.20. The trend filter is a 

low pass filter, so the surface loses some high frequency details.  
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Figure 3.20 Surface after Trend-filtering 

 

Figure 3.21 3D surface with color texture 
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Fig. 3.21 shows the final result with color texture mapping to it. Note that, even after 

some post processing procedure including trend filtering, there are still some obvious 

defects in the 3D surface such as the nose area.  

3.5.3 Two-Pattern Full Lateral Resolution 3D reconstruction result 

As demonstrated in section 3.5.2, reconstruction using only Modified Composite Pattern 

technique is not able to reach the full lateral resolution, and this is also the problem that 

all the other single pattern techniques have. As described in section 3.4, the Quadrature 

Phase processing of the 2nd high frequency sinusoidal pattern provides the phase image 

without interpolation.  

 

Figure 3.22 3D reconstruction by using Quadrature Phase Processing 

Fig. 3.22 shows 3D reconstruction result by using Two-Pattern Full Lateral Resolution 

SLI system. The phase image used in reconstruction is shown in Fig. 3.15. As shown in 

Fig. 3.22, the 3D surface has a lot of banding artifact across the surface; we call this 
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“banding error” which is caused by the projected sinusoidal pattern. Banding error is a 

common issue of Structure Light Illumination techniques, especially in single pattern 

technique. We discuss the banding issue and propose a solution in the next chapter. 

However, compared with Fig. 3.22 with Fig. 3.19, we can easily see that the surface from 

Two-Pattern Full Lateral Resolution system has much higher resolution and much more 

details than the surface only using MCP. We just need to suppress the banding error. 

 

Figure 3.23 QP reconstructed surface after trend filter 

Fig. 3.23 displays the Quadrature Phase reconstructed surface after trend filtering 

procedure as we did for MCP reconstructed surface. However, the banding error on the 

surface is not suppressed by filtering technique. The final result with color texture 

mapping is shown in Fig. 3.24. 
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Figure 3.24 Colored 3D surface 

3.6Summary 

This chapter we thoroughly define on Two-Pattern Full Lateral Resolution Structure 

Light Illumination depth measuring system. The full lateral resolution 3D surface result is 

able to be reconstructed by utilizing only two patterns by using our system. This is of 

great significance since we allow the relative motion between the scanner and the object 

within the FOV of the scanner just as other single pattern techniques,  

In our system, two patterns are used to reconstruct the 3D surface. The first pattern is a 

Modified Composite Pattern, and this MCP is utilized as a non-ambiguous pattern, which 

means the 3D results reconstruct by this pattern is non-ambiguous. But MCP only is not 

able to provide the 3D result with full lateral resolution, only a coarse 3D surface. The 

second pattern is a high frequency sinusoidal pattern that is utilized as an ambiguous but 

full lateral resolution pattern. To process the sinusoidal pattern, we proposed a novel 
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Quadrature Phase processing method which effectively and efficiently processes the 

pattern and generates the ambiguous phase image. Then, a baseline un-wrapping method 

is needed to un-wrap the phase image; this method is much more robust compared with 

Goldstein un-wrapping method. 

However, the reconstruction 3D surface is still corrupted by the banding error which is a 

noise caused by the projected sinusoidal pattern. We introduce methods to reduce this 

problem in next chapter.  
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Chapter 4 Projector Space De-banding Algorithm 

We know that the accuracy of the 3D reconstruction results of the Structure Light 

Illumination system highly rely on the accuracy of the phase image, because the 3D 

surface is directly reconstructed by using the phase image. If there is banding noise or 

distortion in the phase image, the final 3D depth measurement will be corrupted. From 

many experiments, we know thatSLI techniques are prone to banding error. As shown in 

Fig. 3.26, the Quadrature Phase Processing of the sinusoidal wave pattern has significant 

banding error. The de-banding of3Dis aresearch topic. As described in the introduction, 

utilizing more patterns does reduce and suppress harmonics, and in this way, reduce 

banding artifact. However, these multi-pattern methods sacrifice the time efficiency of 

3D scanning system and are in conflict with our research purpose to develop a high speed 

3D scanning system that allows the relative motion between the target surface and 

scanner.  

Some de-banding methods use the de-focusing of the projected pattern to create a more 

ideal sinusoidal pattern. However, de-focused the projector has very limited measurement 

range. The majority state-of-art de-banding methods estimate the banding error and 

compensate distortion for it. However, to estimate the banding error is not easy since the 

projected pattern is curved by the object’s surface. We propose a novel Projector Space 

De-banding algorithm to de-band the surface effectively and efficiently. 

The following sections in this chapter are organized as follows: section 4.1 briefly 

describes our de-banding algorithm. Section 4.2 illustrates the mathematical model of the 

de-banding algorithm. Section 4.3 summarizes all the notations and mathematical 

representation used in the section 4.2 and put them into a table. Section 4.4 demonstrates 

the de-banded 3D surface and compared with other techniques. Section 4.5 describes a 

performance characterization method for any SLI system. Section 4.6 is the summary of 

the whole chapter. 

4.1 Introduction to Projector Space De-banding Algorithm 

As mentioned above, our research on de-banding is based on the main-sequence banding 
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error correction research, which focuses on eliminating the banding error in the 

calibration procedure and compensates for the distortion in the scanning procedure. 

However, most of the techniques focus on estimation of the nonlinear gamma distortion 

and try to eliminate the error by using gamma correction. Several algorithms are 

developed to estimate the gamma coefficients. However, as mentioned by Guo[12], the 

gamma distortion in a Structure Light System is not a simple single-parameter gamma 

function. And quantization error in both camera and projector need to be modeled. These 

problems limit the effectiveness of the gamma correction algorithms. 

As we know, the multi-pattern PMP has the ability to suppress the banding distortion, so 

the fundamental idea of Projector Space De-banding algorithm is instead of estimating 

the model banding error directly from one pattern; we utilize our Two-Pattern Full 

Lateral Resolution SLI system to estimate the mapping from camera space to projector 

space prior to de-banding. Furthermore, the Modified Composite Pattern yield an 

interpolated surface between peaks where the peak snakes do not contain banding but do 

accurately measure the wave length boundaries of the second pattern, as displayed in Fig. 

3.19. Note that the strip defect in Fig. 3.19 is caused by linear interpolation in the phase 

image. So the basic idea of our algorithm is to use the 1st pattern’s recovered phase image 

to estimate the banding error in the 2nd sinusoidal pattern’s recovered phase image. Then 

compensate it in the final phase image.  

However, how to estimate the banding error in the 2nd pattern's recovered phase image is 

the biggest problem that has to be solved. Most passive de-banding methods estimate the 

banding error during the calibration process and utilize the calibrated banding error to 

compensate for all future scans. The problem is that the banding error is related to surface 

depth variation and albedo variation. These banding artifact are difficult to reduce 

because the phase is distorted by the surface depth and as such, the banding error is 

difficult to estimate.  

We propose post-processing each scan to reduce banding. To avoid the problems with 

surface interference we introduce a novel Projector Space de-banding algorithm, which 

instead of estimating the banding error directly in the camera space, we map the 
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recovered both phase image from 1st and 2nd patterns to the projector space, then 

estimate the banding error.  The advantage of mapping the phase image to the projector 

space is all the snakes are aligned straight along the horizontal direction, so the 1-D 

banding error is strictly along the phase direction. This simplified the estimation of the 

banding error. We use a stochastic signal processing method for the banding error 

estimation which will be illustrated in the following sections. 

4.2 Mathematical Model of Projector Space De-banding Algorithm (PSDb) 

The mathematical model Projector Space De-banding algorithm is defined and 

demonstrated for better understanding the algorithm. Our Projector Space De-banding 

algorithm is an automated banding error correction algorithm using mapping of the 

captured image to projector space to align the bands to the projector rows and thereby 

simplify and improve the banding error estimation. 

4.2.1 Mapping to Projector Space 

The first step is to map the phase images recovered by the Modified Composite Pattern 

and the 2nd sinusoidal pattern to the projector space. Given the unwrapped phase image, 

𝑌𝑌𝑝𝑝𝑝𝑝(𝑥𝑥, 𝑦𝑦) and the wrapped phase image, 𝑌𝑌𝑤𝑤𝑤𝑤(𝑥𝑥,𝑦𝑦), the 𝑌𝑌𝑝𝑝𝑝𝑝 and 𝑌𝑌𝑤𝑤𝑤𝑤 elements are between 

0 to 2π radians. We now assume the number of rows in the Projector Space (PS) is 𝑀𝑀𝑝𝑝, so 

the mapping scale factor between radians and projector row is  

𝛼𝛼𝑃𝑃𝑃𝑃 =  𝑀𝑀𝑝𝑝−1
2𝜋𝜋

              (4.1) 

Banding geometry corresponds to the projector space geometry. By mapping data from 

camera space(𝑥𝑥, 𝑦𝑦) to partial projector space (𝑥𝑥,𝑦𝑦𝑝𝑝𝑝𝑝) the depth distortion of the reflected 

banding is removed and all bands are aligned with the projector rows. We keep thexp 

coordinate of the projector space image as the coordinate of the phase image in camera 

space, such that 𝑌𝑌𝑝𝑝𝑝𝑝(𝑥𝑥,𝑦𝑦𝑝𝑝)  is the phase image in projector space.  The 𝑦𝑦𝑝𝑝𝑝𝑝  is the y 

coordinate in projector space, it is calculated as 

𝑦𝑦𝑝𝑝𝑝𝑝(𝑥𝑥,𝑦𝑦) = 𝛼𝛼𝑃𝑃𝑃𝑃 ∙ 𝑌𝑌𝑝𝑝𝑝𝑝(𝑥𝑥,𝑦𝑦),            (4.2) 
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𝑦𝑦𝑝𝑝 = round �𝑦𝑦𝑝𝑝𝑝𝑝(𝑥𝑥,𝑦𝑦)�,            (4.3) 

The value in the image 𝑦𝑦𝑝𝑝𝑝𝑝(𝑥𝑥, 𝑦𝑦) is the 𝑦𝑦𝑝𝑝 coordinate for each point in unwrapped phase 

image 𝑌𝑌𝑝𝑝𝑝𝑝(𝑥𝑥,𝑦𝑦). Now, the mapping function is denoted as 𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐{∙}. 

Fig. 4.1 shows an example of mapping a camera space image to projector space. We can 

see that although the snakes are distorted by the surface in the camera space image, 

however, when we map it to projector space, all the snakes are aligned from left to right 

in the projector space. Note that we have some holes (black dots) in the projector space 

image. This is because the mapping between camera space and projector space is subject 

to spatial quantization resulting in “pin hole”. 

 

 

Figure 4.1 Mapping a camera space image (left) to a projector space image (right). 

Fig. 4.1 shows a demonstration of thePSDb mapping. In projector space, we only map the 

MCP phase result. 

4.2.2 Calculate the Differential of the Banding Error 

We treat the banding error as a 1D signal, and the surface albedo variation as a noise 
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signal added to the banding we are trying to estimate. So to estimate and recover the 

banding error along the phase direction in the projector space image we formulate the 

problem as a standard additive noise problem. Also mentioned in the algorithm 

introduction, we utilize the Modified Composite Pattern recovered phase image to map 

the baseline phase image to projector space. However, this phase image contains a linear 

ramp that is recovered by mapping the differential phase images to the projector space.  

The differential of the phase image in projector space is approximated as a difference 

equation such that 

𝛥𝛥𝑌𝑌𝑝𝑝𝑝𝑝�𝑥𝑥,𝑦𝑦𝑝𝑝� = 𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐{𝑌𝑌𝑝𝑝𝑝𝑝(𝑥𝑥, 𝑦𝑦) − 𝑌𝑌𝑝𝑝𝑝𝑝(𝑥𝑥, 𝑦𝑦 − 1)},        (4.4) 

where𝑌𝑌𝑝𝑝𝑝𝑝(𝑥𝑥,𝑦𝑦) is the unwrapped phase image from 2nd pattern. 

Note that the phase image now has banding error, so the phase image could be 

represented as the summation of the ideal phase,𝑌𝑌𝑝𝑝𝑝𝑝(𝑥𝑥,𝑦𝑦), and the banding error image, 

𝜃𝜃(𝑥𝑥,𝑦𝑦) such that  

𝑌𝑌𝑝𝑝𝑝𝑝�𝑥𝑥,𝑦𝑦𝑝𝑝� = 𝑌𝑌𝑝𝑝𝑝𝑝(𝑥𝑥,𝑦𝑦) + 𝜃𝜃𝑒𝑒(𝑥𝑥,𝑦𝑦),            (4.5) 

So, 𝛥𝛥𝑌𝑌𝑝𝑝𝑝𝑝�𝑥𝑥,𝑦𝑦𝑝𝑝𝑝𝑝� is rewritten as 

𝛥𝛥𝑌𝑌𝑝𝑝𝑝𝑝�𝑥𝑥,𝑦𝑦𝑝𝑝� = ∆𝑌𝑌𝑝𝑝𝑝𝑝�𝑥𝑥, 𝑦𝑦𝑝𝑝� + ∆𝜃𝜃𝑒𝑒�𝑥𝑥,𝑦𝑦𝑝𝑝�,          (4.6) 

where, 

𝛥𝛥𝑌𝑌𝑝𝑝𝑝𝑝�𝑥𝑥,𝑦𝑦𝑝𝑝� = 𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐{𝑌𝑌𝑝𝑝𝑝𝑝(𝑥𝑥, 𝑦𝑦) − 𝑌𝑌𝑝𝑝𝑝𝑝(𝑥𝑥,𝑦𝑦 − 1),         (4.7) 

𝛥𝛥𝜃𝜃𝑒𝑒�𝑦𝑦𝑝𝑝� = 𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐{𝜃𝜃𝑒𝑒(𝑥𝑥,𝑦𝑦) − 𝜃𝜃𝑒𝑒(𝑥𝑥, 𝑦𝑦 − 1) },         (4.8) 

In Eq. (4.5) to Eq. (4.7) we represent the banding error as a 2-D image𝜃𝜃(𝑥𝑥,𝑦𝑦). As 

illustrate above, we treat the banding error as a 1-D signal. So each column (along the 

phase direction) in the 2-D banding error image 𝜃𝜃(𝑥𝑥,𝑦𝑦) is a banding error signal. In Eq. 

(4.7), after mapping, although the mapped result is still a 2-D image, we represent it as a 

1-D signal since all the columns in the banding error image are the same 1-D banding 
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error signal, which means we assume 𝛥𝛥𝜃𝜃𝑒𝑒�𝑦𝑦𝑝𝑝�  is only a function of projector row 

coordinate yp.  

As shown in Fig. 4.1, the pin holes in the projector space image cause problems in 

banding error estimation, since those black holes are like adding more noise into the 

projector space image. In our research, we use linear interpolation to fill in the holes in 

projector space image. The 1-D linear interpolation method is utilized along the phase 

direction to interpolate the projector space image. Fig. 4.2 shows the final result of the 

differential of the phase image mapped in the projector space with holes interpolated.  

 

Figure 4.2 Projector Space differential of the phase image with interpolation 

As we can see from Fig. 4.2 of the differential of phase image, the DC component is 

removed. 
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We assume the object surface is complicated and each column of𝛥𝛥𝑌𝑌𝑝𝑝𝑝𝑝�𝑥𝑥,𝑦𝑦𝑝𝑝�  can be 

modeled as an ergodic random process with mean,µ𝑎𝑎(𝑦𝑦𝑝𝑝).  So the expected value is 

calculated for each row as 

µ∆�𝑦𝑦𝑝𝑝� = 𝐸𝐸�∆𝑌𝑌𝑝𝑝𝑝𝑝�𝑥𝑥,𝑦𝑦𝑝𝑝�|𝑦𝑦𝑝𝑝� ≈
1
𝑁𝑁𝑥𝑥
∑ 𝛥𝛥𝑌𝑌𝑝𝑝𝑝𝑝�𝑥𝑥𝑛𝑛,𝑦𝑦𝑝𝑝�
𝑁𝑁𝑥𝑥
𝑛𝑛=1 ,         (4.9) 

Where µ∆�𝑦𝑦𝑝𝑝� is a 1-D vector sequence containing the expected value of each row of 

the 𝛥𝛥𝑌𝑌𝑝𝑝𝑝𝑝�𝑥𝑥,𝑦𝑦𝑝𝑝� and𝑁𝑁𝑥𝑥 is the number of columns of 𝛥𝛥𝑌𝑌𝑝𝑝𝑝𝑝�𝑥𝑥,𝑦𝑦𝑝𝑝�. 

Fig. 4.3 shows the estimate expectation of differential phase image, which is µ∆�𝑦𝑦𝑝𝑝� in 

Eq. (4.9). Note that from row 2500 to 2700, there is a phase jump in the phase image, 

which results in a sharp drop in the differential of phase image.  

 

Figure 4.3 Estimate Expectation of differential phase image 

From Fig. 4.3, we know that the high frequency component is caused by banding error 

and the low frequency component is the result of the differential of the phase ramp. Since 
57 

 



 

in Fig. 3.13, the baseline phase ramp is a low frequency signal. The expectation of 

differential phase image also supports our assumption that the banding error is a 1-D 

signal along the phase direction in the projector space, otherwise µ∆�𝑦𝑦𝑝𝑝� in Fig. 4.3 will 

be corrupted by the averaging operation in the Eq. (4.9), since we have nearly 3000 

columns with banding error in the phase image.  

Then, µ∆�𝑦𝑦𝑝𝑝� is numerically integrated to get 𝑌𝑌𝑝𝑝𝑝𝑝,𝐼𝐼(𝑦𝑦𝑝𝑝) which contains the expected value 

of the actual phase 𝑌𝑌𝑝𝑝𝑝𝑝,𝑎𝑎�𝑦𝑦𝑝𝑝� and the banding error 𝜃𝜃𝑒𝑒(𝑦𝑦𝑝𝑝) such that 

𝑌𝑌𝑝𝑝𝑝𝑝,𝐼𝐼�𝑦𝑦𝑝𝑝� = ∑ µ∆(𝑚𝑚) = 𝑌𝑌𝑝𝑝𝑝𝑝,𝑎𝑎�𝑦𝑦𝑝𝑝� + 𝜃𝜃𝑒𝑒�𝑦𝑦𝑝𝑝�
𝑦𝑦𝑝𝑝
𝑚𝑚=1 ,        (4.10) 

 

 

Figure 4.4Estimated  Expectation of Phase Value 

The result of Eq. (4.10) is shown in Fig. 4.4. The phase banding error is difficult to 

observe along with the phase ramp, so that is why we use differential for the phase image. 
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4.2.3 Estimate Banding Error 

In section 4.2.2, we estimate the expectation of the phase with banding error, and in this 

section we need to recover the banding error from it. From Eq. (4.10) we know that, the 

way to estimate the banding error is to subtract the actual phase ramp (ideal phase ramp 

without noise and banding error) from the estimated expectation. The actual phase ramp 

𝑌𝑌𝑝𝑝𝑝𝑝,𝑎𝑎�𝑦𝑦𝑝𝑝� is between 0 to 2π radians, so we need to estimate it and subtract it from the 

𝑌𝑌𝑝𝑝𝑝𝑝,𝐼𝐼�𝑦𝑦𝑝𝑝� to get the banding error. 

To approximately calculate the actual phase ramp𝑌𝑌𝑝𝑝𝑝𝑝,𝑎𝑎�𝑦𝑦𝑝𝑝�, we proposed to utilize the 

branch cut locations in the wrapped phase image recovered by Quadrature Phase 

Processing technique to fit a line between each branch cut point locations to estimate the 

actual phase. Also, since we have phase ramp from Modified Composite Pattern, we 

combine the two results together to get a better estimation.  

We first illustrate the reason to use branch cuts points as baseline points for estimating 

the actual phase ramp. As shown in Fig. 3.11, the phase image is wrapped after 

Quadrature Phase Processing, which means the phase value along the phase direction is 

cyclic from 0 to 2π radians, and the period of the cycle corresponds to the period of the 

sinusoidal pattern. So, there are phase jumps between each two cycles that the phase 

value drops from 2π radians to 0 sharply.  We call the phase jump in the wrapped phase 

image as branch cut.  

Because the banding error is caused by the deterministic distortion of the digital projected 

sinusoidal pattern,  so for each cycle of the sinusoidal pattern, the banding error is the 

same, which means banding error is cyclic with period of the highest frequency 

unwrapped phase result. In this way, the banding error ideally is the same within each of 

two branch cuts. So after unwrapping process, we are able to use the branch cut locations 

in the wrapped phase to fit a line between each of two of the branch cuts locations to 

approximate the actual phase ramp 𝑌𝑌𝑝𝑝𝑝𝑝,𝑎𝑎�𝑦𝑦𝑝𝑝� . The estimated 𝑌𝑌𝑝𝑝𝑝𝑝,𝑎𝑎�𝑦𝑦𝑝𝑝�  through line 

fitting is composed by several line segments, and between each two branch cuts 

locations, the phase is a linear ramp.  
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To get the branch cut points, we use the wrapped phase image shown Fig. 3.11, and 

calculate the differential along the phase image of the wrapped phase image. The reason 

to do differential along the phase image is to detect the phase jump.  

𝛥𝛥𝑌𝑌𝑤𝑤𝑤𝑤�𝑥𝑥,𝑦𝑦𝑝𝑝� = 𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐{𝑌𝑌𝑤𝑤𝑤𝑤(𝑥𝑥,𝑦𝑦) − 𝑌𝑌𝑤𝑤𝑤𝑤(𝑥𝑥,𝑦𝑦 − 1)},        (4.11) 

As illustrated in Eq. (4.11), 𝑌𝑌𝑤𝑤𝑤𝑤(𝑥𝑥,𝑦𝑦) is the wrapped phase image in camera space, and 

the differential along the phase direction (y direction of the image) is calculated and then 

map to projector space through the same mapping factor  𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐{∙} . The result 

differentiated wrapped phase image 𝛥𝛥𝑌𝑌𝑤𝑤𝑤𝑤�𝑥𝑥,𝑦𝑦𝑝𝑝� is shown in Fig. 4.5.  

 

Figure 4.5Diffirential wrapped phase image in camera space 

Fig. 4.5 clearly shows the branch cuts locations in the image, highlighted in black. Then, 
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we identify those branch cuts by using a threshold 𝑇𝑇𝐵𝐵𝐵𝐵 as in 

𝐵𝐵𝐵𝐵𝐵𝐵�𝑥𝑥,𝑦𝑦𝑝𝑝� = �
1,𝛥𝛥𝑌𝑌𝑤𝑤𝑤𝑤�𝑥𝑥,𝑦𝑦𝑝𝑝� ≥ 𝑇𝑇𝐵𝐵𝐵𝐵
0,𝛥𝛥𝑌𝑌𝑤𝑤𝑤𝑤�𝑥𝑥,𝑦𝑦𝑝𝑝� < 𝑇𝑇𝐵𝐵𝐵𝐵

,         (4.12) 

where 𝐵𝐵𝐵𝐵𝐵𝐵�𝑥𝑥,𝑦𝑦𝑝𝑝� is a 2-D branch cut image which is an binary image that stores the 

branch cuts locations. In the 𝐵𝐵𝐵𝐵𝐵𝐵�𝑥𝑥, 𝑦𝑦𝑝𝑝�, the branch cuts locations have value 1 and all the 

other has value 0. An example of 2-D branch cut image is shown in Fig. 4.6. Note that, in 

Fig. 4.6, most of the noise in Fig. 4.5 is filtered out through the threshold 𝑇𝑇𝐵𝐵𝐵𝐵. In our 

research to filter out the noise robustly and keep the correct branch cuts locations, we use 

value 1.8𝜋𝜋 for threshold 𝑇𝑇𝐵𝐵𝐵𝐵. This value is acquired by trial and error experiments.  
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Figure 4.6  Branch Cuts image in projector space 

Although using 𝑇𝑇𝐵𝐵𝐵𝐵 as a global threshold can reject most of white noise in the branch cuts 

image 𝐵𝐵𝐵𝐵𝐵𝐵�𝑥𝑥,𝑦𝑦𝑝𝑝�, however, due to the snakes' distortion in the camera space image and 

the non-bijection mapping factor  𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐{∙}, one horizontal branch cut is not a straight 

line locates in one row in the branch cuts image. As shown in Fig. 4.7 when we zoom in 

the branch cuts image, we see the branch cut is not strictly horizontal along the x 

direction.  
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Figure 4.7Zoomed in branch cuts image 

So in order to estimate the branch cut locations, we utilize a histogram to estimate the 

branch cut locations for the 1-D phase ramp with banding error 𝑌𝑌𝑝𝑝𝑝𝑝,𝐼𝐼�𝑦𝑦𝑝𝑝� in Eq. (4.10). 

We count the number of branch cuts points (number of ones) for each row of 𝐵𝐵𝐵𝐵𝐵𝐵�𝑥𝑥𝑐𝑐,𝑦𝑦𝑝𝑝� 

to get a 1D histogram vector as represented by 

𝐻𝐻𝐵𝐵𝐵𝐵�𝑦𝑦𝑝𝑝� = Histogram �𝐵𝐵𝐵𝐵𝐵𝐵�𝑥𝑥,𝑦𝑦𝑝𝑝��,         (4.13) 

where𝐻𝐻𝐵𝐵𝐵𝐵�𝑦𝑦𝑝𝑝� is the 1-D histogramalong the phase direction of 𝐵𝐵𝐵𝐵𝐵𝐵�𝑥𝑥,𝑦𝑦𝑝𝑝�. Then another 

threshold 𝑇𝑇𝑝𝑝 is set to decide the branch cuts points along the phase direction.The final 

result of branch cuts detection in projector space is shown in Fig. 4.8. In Fig. 4.8, the row 

which has a blue line means this row has a branch cut in it. 

After we detect all the branch cuts in projector space, we need to store the phase value at 

the branch cuts locations for the interpolation, as expressed in Eq. (4.14).  

𝑌𝑌𝐵𝐵𝐵𝐵𝐵𝐵�𝑦𝑦𝑝𝑝� = �
𝑌𝑌𝑝𝑝𝑝𝑝,𝐼𝐼�𝑦𝑦𝑝𝑝�,   for𝐻𝐻𝐵𝐵𝐵𝐵�𝑦𝑦𝑝𝑝� ≥ 𝑇𝑇𝑝𝑝
0,                 for𝐻𝐻𝐵𝐵𝐵𝐵�𝑦𝑦𝑝𝑝� < 𝑇𝑇𝑝𝑝

,       (4.14) 
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Figure 4.8 Image indicates the rows have branch cuts in projector space 

In Eq. (4.14), the 𝑌𝑌𝐵𝐵𝐵𝐵𝐵𝐵�𝑦𝑦𝑝𝑝� is a 1-D vector with length same as the number of rows in the 

phase image. So in 𝑌𝑌𝐵𝐵𝐵𝐵𝐵𝐵�𝑦𝑦𝑝𝑝�, only the branch cut locations have phase value, other points 

are zero. For efficiently, we use a vector that only stores the phase value of the branch 

cuts points as represented by 

𝑌𝑌𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛𝐵𝐵𝐵𝐵) = 𝑌𝑌𝐵𝐵𝐵𝐵𝐵𝐵�𝑦𝑦𝑝𝑝�for𝐻𝐻𝐵𝐵𝐵𝐵�𝑦𝑦𝑝𝑝� ≥ 𝑇𝑇𝑝𝑝,       (4.15) 

The vector element 𝑌𝑌𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛𝐵𝐵𝐵𝐵) contains only values of phase at branch cuts locations, 

BCBC Mn ,,2,1 = . Where BCM is the number of branch cuts. Also, we need another vector 

stores the row index for the branch cuts locations as expressed in by 

𝑦𝑦𝑝𝑝,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛𝐵𝐵𝐵𝐵) = 𝑦𝑦𝑝𝑝 for𝐻𝐻𝐵𝐵𝐵𝐵�𝑦𝑦𝑝𝑝� ≥ 𝑇𝑇𝑝𝑝,      (4.16) 
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where  𝑦𝑦𝑝𝑝,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛𝐵𝐵𝐵𝐵)  is the projector space row index only at BC locations.We use 

𝑦𝑦𝑝𝑝,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛𝐵𝐵𝐵𝐵) and  𝑌𝑌𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛𝐵𝐵𝐵𝐵) to fit line segments between every two adjacent branch 

points such that the interpolation values are  

𝑎𝑎𝑦𝑦(𝑛𝑛) = 𝑌𝑌𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛+1)− 𝑌𝑌𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛)

𝑦𝑦𝑝𝑝,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛+1)−𝑦𝑦𝑝𝑝,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛),          (4.17) 

𝑏𝑏𝑦𝑦(𝑛𝑛) = 𝑌𝑌𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛)− 𝑎𝑎𝑦𝑦(𝑛𝑛) ∙ 𝑦𝑦𝑝𝑝,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛)       (4.18) 

where𝑎𝑎𝑦𝑦(𝑛𝑛)  is the slope for the nth line segment, and  𝑏𝑏𝑦𝑦(𝑛𝑛)  is the intercept. The 

interpolated phase acts as a reference phase 

𝑌𝑌𝑟𝑟𝑟𝑟𝑟𝑟(𝑛𝑛) = 𝑎𝑎𝑦𝑦(𝑛𝑛)𝑦𝑦𝑝𝑝 + 𝑏𝑏𝑦𝑦(𝑛𝑛)         (4.19) 

 

Figure 4.9 Interpolated reference phase ramp 

Fig. 4.9 shows the result of interpolation. This reference phase ramp 𝑌𝑌𝑟𝑟𝑟𝑟𝑟𝑟(𝑛𝑛)  is the 

estimation of the actual phase ramp in Eq. (4.10). And compared with Fig. 4.4, we can 
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see the estimated phase ramp is a good approximation to the actual phase ramp without 

banding error.  

Based on Eq. (4.10) and Eq. (4.19), the banding error is estimated as the following 

equations: 

𝜃𝜃�𝑦𝑦𝑝𝑝� = 𝑌𝑌𝑝𝑝𝑝𝑝,𝐼𝐼�𝑦𝑦𝑝𝑝� − 𝑌𝑌𝑟𝑟𝑟𝑟𝑟𝑟�𝑦𝑦𝑝𝑝� = 𝑌𝑌𝑝𝑝𝑝𝑝,𝐼𝐼�𝑦𝑦𝑝𝑝� − �𝑎𝑎𝑦𝑦𝑦𝑦 ∙ 𝑦𝑦𝑝𝑝 + 𝑏𝑏𝑦𝑦𝑦𝑦�,   

𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥𝑛𝑛 ≤ 𝑦𝑦𝑝𝑝 < 𝑥𝑥𝑛𝑛+1           (4.20) 

where the 𝜃𝜃�𝑦𝑦𝑝𝑝� is the 1-D estimated banding error.  

 

Figure 4.10 Estimated Banding Error 

Fig. 4.10 shows the estimated banding error𝜃𝜃�𝑦𝑦𝑝𝑝� . Note that the big jump at the 

beginning and end of the banding error vector is caused by the phase jump between the 

background and the object surface’s phase, so the real banding error lies in the middle 

part of the plot in Fig. 4.10. From Fig. 4.10 we know that the range of the banding error, 
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that is the peak to peak phase value, is within ±0.02 radiance.  

The final step is to correct the phase image based on estimated banding error. The 

procedure is map each point in 𝑌𝑌𝑝𝑝(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐) to projector space to check the banding error of 

that point such as 𝜃𝜃�𝑦𝑦𝑝𝑝�, then we subtract the banding error out for this given point as  

𝑌𝑌𝑝𝑝𝑝𝑝,𝐷𝐷(𝑥𝑥,𝑦𝑦) = 𝑌𝑌𝑝𝑝𝑝𝑝(𝑥𝑥,𝑦𝑦) − 𝜃𝜃�𝑦𝑦𝑝𝑝�,          (4.21) 

The de-band phase image is shown in Fig. 4.11. Although we cannot see much difference 

in the phase image compared with the previous phase image with the banding error, but 

the 3D reconstructed result has significantly less banding error which will be 

demonstrated in the following sections.  

 

Figure 4.11 De-band Phase Image 
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4.3 Notations for Mathematical Model of De-Banding Algorithm 

We summarize all the equations and notation used in the previous sections for a better 

understanding of our mathematical model of De-Banding algorithm. We separate all the 

equations into three categories: (1) Camera Space Notations and processing equations; 

(2) Projector Space Notations, Equations and processing techniques; (3) 1-D Banding 

Error estimation statistics. 

Table 4-1 Notations for Math Model of PSDB  

Notation Meaning 

CAMERA SPACE 

{𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐} Camera Space Coordinates 

𝑌𝑌𝑤𝑤𝑤𝑤(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐) wrapped phase image in Camera Space 

𝑌𝑌𝑝𝑝𝑝𝑝(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐) unwrapped phase image in Camera Space 

𝑌𝑌𝑝𝑝𝑝𝑝(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐) Phase Image without banding error 

𝜃𝜃𝑒𝑒(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐) banding error in camera space 

𝑌𝑌𝑝𝑝𝑝𝑝,𝐷𝐷(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐) De-banded phase image in camera space 

  

PROJECTOR SPACE 

�𝑥𝑥𝑐𝑐,𝑦𝑦𝑝𝑝� Partial Projector Space Coordinates 

𝑀𝑀𝑝𝑝 Number of rows in projector space 

𝛼𝛼𝑃𝑃𝑃𝑃 scale factor between radians and projector 

row 

𝑦𝑦𝑝𝑝𝑝𝑝(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐) = 𝛼𝛼𝑃𝑃𝑃𝑃 × 𝑌𝑌𝑝𝑝𝑝𝑝(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐) Fractional projector row coordinate 
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matrix 

𝑦𝑦𝑝𝑝 = round �𝑦𝑦𝑝𝑝𝑝𝑝(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐)� Integer projector row value 

𝑌𝑌𝑤𝑤𝑤𝑤(𝑥𝑥𝑐𝑐,𝑦𝑦𝑝𝑝) Wrapped phase image in projector space 

𝑌𝑌𝑝𝑝𝑝𝑝�𝑥𝑥𝑐𝑐,𝑦𝑦𝑝𝑝� = 𝑦𝑦𝑝𝑝𝑝𝑝(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐) Unwrapped phase image in projector 

space 

  

PROJECTOR SPACE DIFFERENTIALS 

∆𝑌𝑌𝑝𝑝𝑝𝑝�𝑥𝑥𝑐𝑐,𝑦𝑦𝑝𝑝� = 𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐{𝑌𝑌𝑝𝑝𝑝𝑝(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐)

− 𝑌𝑌𝑝𝑝𝑝𝑝(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐 − 1)} 

Phase difference image without banding 

error 

∆𝜃𝜃𝑒𝑒�𝑥𝑥𝑐𝑐,𝑦𝑦𝑝𝑝� = 𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐{𝜃𝜃𝑒𝑒(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐)

− 𝜃𝜃𝑒𝑒(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐 − 1)} 

Phase Banding Error Difference image  

∆𝑌𝑌𝑝𝑝𝑝𝑝�𝑥𝑥𝑐𝑐,𝑦𝑦𝑝𝑝� = ∆𝑌𝑌𝑝𝑝𝑝𝑝�𝑥𝑥𝑐𝑐,𝑦𝑦𝑝𝑝� + ∆𝜃𝜃𝑒𝑒�𝑥𝑥𝑐𝑐,𝑦𝑦𝑝𝑝� Phase difference image including band 

error 

∆𝑌𝑌𝑤𝑤𝑤𝑤�𝑥𝑥𝑐𝑐,𝑦𝑦𝑝𝑝� = 𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐{𝑌𝑌𝑤𝑤𝑤𝑤(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐)

− 𝑌𝑌𝑤𝑤𝑤𝑤(𝑥𝑥𝑐𝑐, 𝑦𝑦𝑐𝑐 − 1)} 

Wrapped Phase difference image 

𝑇𝑇𝐵𝐵𝐵𝐵 Threshold set to detect Branch Cuts 

points 

𝐵𝐵𝐵𝐵𝐵𝐵�𝑥𝑥𝑐𝑐,𝑦𝑦𝑝𝑝� Binary Branch Cut Indicator Image 

  

1-D BANDING STATISTICS 

µ∆�𝑦𝑦𝑝𝑝� = 𝐸𝐸�∆𝑌𝑌𝑝𝑝𝑝𝑝�𝑥𝑥𝑐𝑐,𝑦𝑦𝑝𝑝�|𝑦𝑦𝑝𝑝� Average Phase Difference image 
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𝑌𝑌𝑝𝑝𝑝𝑝,𝐼𝐼�𝑦𝑦𝑝𝑝� Average phase ramp 

𝑌𝑌𝑝𝑝𝑝𝑝,𝑎𝑎�𝑦𝑦𝑝𝑝� actual phase ramp needs to be estimated 

𝜃𝜃𝑒𝑒�𝑦𝑦𝑝𝑝� = 𝜃𝜃𝑒𝑒�𝑥𝑥𝑐𝑐, 𝑦𝑦𝑝𝑝� Banding phase error is not a function of xc 

𝑌𝑌𝑝𝑝𝑝𝑝,𝐼𝐼�𝑦𝑦𝑝𝑝� = � µ∆(𝑚𝑚)

𝑦𝑦𝑝𝑝

𝑚𝑚=1

= 𝑌𝑌𝑝𝑝𝑝𝑝,𝑎𝑎�𝑦𝑦𝑝𝑝� + 𝜃𝜃𝑒𝑒�𝑦𝑦𝑝𝑝� 

Numerical integration of Average Phase 

Difference  

𝐻𝐻𝐵𝐵𝐵𝐵�𝑦𝑦𝑝𝑝� = Histogram �𝐵𝐵𝐵𝐵𝐶𝐶�𝑥𝑥𝑐𝑐,𝑦𝑦𝑝𝑝�� Histogram of Binary Branch Cut 

Indicator Image 

𝑇𝑇𝑝𝑝 Threshold set to decide valid branch cuts 

𝑌𝑌𝐵𝐵𝐵𝐵𝐵𝐵�𝑦𝑦𝑝𝑝� = �
𝑌𝑌𝑝𝑝𝑝𝑝,𝐼𝐼�𝑦𝑦𝑝𝑝�for𝐻𝐻𝐵𝐵𝐵𝐵�𝑦𝑦𝑝𝑝� ≥ 𝑇𝑇𝑝𝑝

0 for𝐻𝐻𝐵𝐵𝐵𝐵�𝑦𝑦𝑝𝑝� < 𝑇𝑇𝑝𝑝
 

Values of Average Phase at BC locations 

𝑌𝑌𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛𝐵𝐵𝐵𝐵) = 𝑌𝑌𝐵𝐵𝐵𝐵𝐵𝐵�𝑦𝑦𝑝𝑝�for𝐻𝐻𝐵𝐵𝐵𝐵�𝑦𝑦𝑝𝑝� ≥ 𝑇𝑇𝑝𝑝 Values of Average Phase only at BC 

locations, nBC=1,2, ..MBC 

MBC Number of branch cuts 

𝑦𝑦𝑝𝑝,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛𝐵𝐵𝐵𝐵) = 𝑦𝑦𝑝𝑝for𝐻𝐻𝐵𝐵𝐵𝐵�𝑦𝑦𝑝𝑝� ≥ 𝑇𝑇𝑝𝑝 Projector space row indices only at BC 

locations 

( )
( ) ( )( )
( ) ( )( )nYnY

nyny
na

BConlyBConly

BConlypBConlyp
y −+

−+
=

1
1 ,,

 

Slope between BCs n and n+1 

where n=1,2,…( MBC -1) 

( ) ( ) ( ) ( )nynanYnb BConlypyBConlyy ,−=  Intercept between BCs n and n+1 

𝑌𝑌𝑟𝑟𝑟𝑟𝑟𝑟(𝑛𝑛) = 𝑎𝑎𝑦𝑦(𝑛𝑛)𝑦𝑦𝑝𝑝 + 𝑏𝑏𝑦𝑦(𝑛𝑛) Reference angle between BCs 

𝜃𝜃�𝑦𝑦𝑝𝑝� = 𝑌𝑌𝑝𝑝𝑝𝑝,𝐼𝐼�𝑦𝑦𝑝𝑝� − 𝑌𝑌𝑟𝑟𝑟𝑟𝑟𝑟�𝑦𝑦𝑝𝑝� Estimated banding error projector space 
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4.4 Experimental Results of PSDb Algorithm 

We present the experimental results of the PSDb algorithm. We still use the same system 

set-up as Two-Pattern Full Lateral Resolution SLI system as shown in Fig. 3.16. Note 

that although we use our Two-Pattern system to do the experiments, the PSDb algorithm 

is applicable to the phase image recovered by any SLI System.  

A baseline object for testing the PSDb algorithm is a flat surface as shown in Fig. 4.12. 

The flat board in Fig. 4.12 is a piece of flat wood with 18cm by 18 cm size.  

 

Figure 4.12 A Baseline Flat Board to test thePSDbAlgorithm 

The 3-D reconstructed surface is shown in Fig. 4.13. The rotated view in Fig. 4.13 right 

demonstrates the banding error on the 3-D surface. To demonstrate the banding, in Fig. 

4.14 left, the side view of the reconstructed 3-D surface of the flat board is displayed 

where the flat board 3-D reconstruction has a significant banding error. The measured 

average peak to peak value of the banding error is 2.058mm.  

We apply the PSDb algorithm to de-band the recovered phase image from Quadrature 

Phase Processing method. The result of PSDb is shown in Fig. 4.14 right.  
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Figure 4.13 Reconstructed 3-D surface, front view (left) and rotated view (right) 

 

Figure 4.14 Side view of the reconstructed 3-D surface of the flat board: Surface with Banding error (left), De-
Band Result (Right) 
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From the comparison of the surface with banding with the De-Banded result in Fig. 4.14, 

we can see the huge improvement in the 3-D surface reconstruction with the De-Banding 

algorithm. The measured average peak to peak value of the banding error is 0.07mm, 

which is 30 times less banding error. 

Second experimented result is shown in Fig. 4.15, where a human face 3-D scanned by 

the Two-Pattern SLI system with our PSDb algorithm applied. The original surface with 

banding distortion is shown Fig. 3.22. 

 

Figure 4.15 Human Face Scan. Left One is with texture, right one is metallic 3D surface 

 

The improvement about banding error attenuation in human face scanexperimentis 23× 

better. As we know, for human face 3-D surface reconstruction, the nose area and the 

eyebrow area are both very hard to reconstruct accurately due to the albedo and depth 

jumps. In our PSDb algorithm we need to estimate the ergodic mean, so the big phase 

jump around the nose area affects the expectation value of the differentiated phase. These 

factors deteriorate the performance of PSDb algorithm for complicate surface 

reconstruction. 
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The table below lists the comparison between our algorithm and some other De-banding 

methods. 

Table 4-2 Comparison between Different De-Banding techniques 

De-Banding Method Improvement Require Pre-Calibration for 

Banding Error of Scanning 

System? 

’s Gamma Model for 

Gamma Calibration 

33× Yes 

Active Gamma Correction 

Model 

12.6× No 

Projector Space De-

Banding Method 

23× (Complicated Surface) 

30×(Smooth Surface) 

No 

 

Compared with gamma correction type banding error correction algorithms in table 4-1, 

the PSDb is better than active gamma correction and comparable to Kai's gamma model. 

However, the PSDb does not require a pre-calibration. For other active De-banding 

algorithm, such as active gamma correction model proposed by Zhang, etal, our 

algorithm’s performance is much better and is able to handle the complicate surface de-

banding tasks, which is a significant improvement in active de-banding technology. It 

should also be noted that the PSDb is a post-processing algorithm so it can be used in 

conjunction with pre-calibration algorithm for additional performance. 

4.5 Depth Modulation Transfer Function Performance Characterization for SLI 

system 

After the development of our Two-pattern Full Lateral Resolution SLI depth measuring 

system and Projector Space De-Banding algorithm, we proposed a performance 

characterization method for performance measurement of SLI system. There are 

numerous techniques of 3-D reconstruction or depth measuring based on SLI system, 

however, there is not a very standard performance testing or characterization for SLI 

system. So in this section, we proposed a method for SLI system performance testing 
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based on the concept of the Matched Transfer Function (MTF). 

The performance of the two-pattern method is demonstrated and quantified by 

performance measurements. For a SLI sensor, the lateral units of an SLI scan are in world 

coordinates {xw, yw, zw} in units of millimeters. We calculate the Matched Transfer 

Function in terms of “Depth”, which is called DMTF here. Analogy to the CTF of a 2D 

grayscale intensity image, we use depth here in place of intensity to calculate the DMTF, 

which shows the performance of the 3D SLI scanner [20]. 

4.5.1 Background of DMTF and Rotation Stage Experiment 

The original MTF math model for a 2D image is based on the modulation index as 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚𝑚𝑚+𝑚𝑚𝑚𝑚𝑚𝑚

                                                                                 (4.22) 

Where max the maximum value of the intensity and min is the minimum value of the 

intensity. So, MTF is calculated by computing the ratio between other frequency’s 

Modulation Index and the DC component’s Modulation Index. However, depth does not 

work in this way since the DC component of depth is not a constant value and it 

converges to the average height of the surface which is preset. Thus, definition of the 

performance measures that is independent of surface cross-section is needed. As 

presented by Hassebrook [23], representing a surface cross-section as a set of Fourier 

Components allows to access the different components separately in order to obtain 

DMTF measures. In this section, we use 6 sinusoidal wave grids as Fourier Components 

to compute the DMTF for the two-pattern scanner. Then, we measure the average Peak to 

Peak value in the 3D reconstructed surface, and divided by the real Peak to Peak value to 

get the modulation index value, and then normalize them to plot DMTF. 

Based on the idea of the DMTF and Fourier Transform, we want to test the DMTF 

response of the 3D scanner on several directions. So we rotate the sinusoidal grid on x-y 

plane to get different DMTF corresponding to different angles.  

4.5.2 Experiments Set up and Results 

Fig. 4.16 shows the set of the sinusoidal grids (totally 6 grids) used in the experiments, 
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with spatial frequency from 0.0203 cy/mm to 0.32 cy/mm and peak to peak value from 

10 mm to 1 mm. A rotation stage is set up to rotate the grid in x-y plane, so the average 

depth (z value) of the grid is not changed. Fig. 4.17demonstrates how the rotation stage 

works. We mount a sinusoidal grid from the set onto the rotation stage, then we counter-

clock-wise rotate the grid on the stage on the x-y plane from the 90 degree, which means 

the grid is vertical (the wave length direction of the grid is parallel to the x axis), to 0 

degree. We record 4 positions of the grid on 90 degree, 60 degree, 30 degree and 0 

degree.  

The scanner apparatus is described in Chapter 3 section 2. A high-end with high 

definition camera is used here to capture the projected pattern. The system uses a Canon 

EOS-7D high definition camera with resolution 5184 x 3456 and a ViewSonic PJ260D 

digital projector with resolution 1024 x 768. The scanner is shown in Fig. 10 right. 

The distance between the camera and the projector is 14 inches, and the object is 24 

inches away from the projector lens.  

 

Figure 4.16 Set of Sinusoidal Grid in the Experiment(left), scanner settings (right) 
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Figure 4.17 Sinusoidal Grid on the rotation stage, rotate the grid counter-clock-wisely from 90 degree (gird is 
vertical, top left), 60 degree (top right), 30 degree (bottom left) to 0 degree (grid is horizontal, bottom right). 

 

The Sinusoidal Grid Rotation-Stage experiment procedure is described below: 

(1) Fix the rotation-stage to a certain angle, such as 90 degree. 

(2) Mount every grid onto the stage, and use the scanner and the software to reconstruct 

the 3D surface of the grid then calculate the peak to peak value of the sinusoidal surface. 

(3) Use the peak to peak values for each grid to calculate the DMTF for each angle and 

each frequency. 
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(4)Continue to rotate the stage. Repeat step 1, 2 and 3. 

The result of the DMTF is shown in Fig. 4.18. Each point on the DMTF represents a ratio 

between peak to peak value of reconstructed 3D surface and peak to peak value of real 

grid at certain sinusoidal grid frequency (cy/mm). 

As shown in Fig. 4.18, it shows our system achieves wide bandwidth performance when 

the rotation angle is 90 degree and 60 degree. Note that the peak to peak value of real 

grid is only 1 mm. Moreover, when the sine wave on the grid surface becomes parallel to 

the projected pattern, which is considered as a difficult task for SLI method, the system 

still performs well at lower frequency. We see a drop of performance from low frequency 

to high frequency and from 90 degree angle to 0 degree angle, which is our expectation 

of the performance of our scanner. The drop of the performance is caused by two aspects: 

1) the spatial frequency of the board exceeds the spatial frequency of the projected 

sinusoidal pattern, this will cause the ambiguity problem; 2) the PSDb algorithm suppress 

the high frequency component along the phase direction. 

 

 

Figure 4.18 DMTF for 90 degree to 0 degree 
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Table 4-3 Depth measurement performance characterization for MCP only 

Depth Frequency ft 

(cy/mm) 

Zp-p,t  (mm) 90 Degree Zp-p,mcp 

(mm) 

0 Degree Zp-p,mcp 

(mm) 

0.020=1/49.3 10 8.8 8.59 

0.027=1/37.5 7.5 6.13 6.57 

0.080=1/12.5 5.5 4.03 3.83 

0.160=1/6.25 3 1.91 1.28 

0.320=1/3.125 2 1.06 0.05 

The sinusoidal target frequency ft (cy/mm) as an inverse of spatial wavelength (mm/cy), 

accurate target peak-to-peak variation zp-p,t (mm), and MCP rendered peak-to-peak 

values, zp-p,MCP (mm), are shown in Table 4-2. The zp-p,MCP measurements were performed 

with the sinusoidal targets orientated both 90 degree and 0 degree. [10]  

Table 4-4 Depth measurement performance characterization for 2PFLR 

Depth Frequency ft 

(cy/mm) 

Zp-p,t  (mm) 90 Degree error  (Zp-

p,2PFLR - Zp-p,t  )/ Zp-p,t   

0 Degree error  (Zp-

p,2PFLR - Zp-p,t  )/ Zp-p,t   

0.020=1/49.3 10 7.80% 14.00% 

0.027=1/37.5 7.5 10.38% 19.63% 

0.080=1/12.5 5.5 27.20% 29.60% 

0.160=1/6.25 3 38.33% 91.33% 

0.320=1/3.125 2 49.70% 96.00% 

Table 4-3 demonstrates the error measurement for 2PFLR using the developed 

performance characterization system.  

4.6 Summary 

In this chapter we illustrate our PSDb algorithm for Structured Light Illumination system. 

Our de-banding algorithm is based on the fundamental idea of estimation of the banding 

error in projector space. By mapping the phase image to projector space, all the snakes in 

the image are straight, which means for any one row in the image, the banding error stays 

the same for each column. In this way, we treat each column of phase image in projector 

space as a 1-D stochastic signal and by the stochastic processing described in section 4.2, 
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we are able to estimate the 1-D banding error. We propose a novel method to estimate the 

actual phase ramp without banding error based on the interpolation between each two 

branch cuts points. The branch cuts points are detect directly from the wrapped phase 

image or in our Two-Pattern Full Lateral Resolution SLI depth measuring system, the 

snakes’ peaks detected in Modified Composite Pattern is able to be utilized to do branch 

cuts location estimation. Then, after we estimate the actual phase ramp, we is able to 

calculate the banding error by subtract the actual phase ramp out from the 1-D phase 

ramp with the banding error. We then correct each point in the phase image in the camera 

space based on this estimated 1-D banding error. Our de-banding algorithm is able to de-

band the 3D reconstruction of any of the Structured Light Illumination system without 

pre-calibrate the banding error for the system. Also, the de-banding performance of our 

algorithm results in a with 30× improvement, and it has better performance than active 

gamma correction method and has performance comparable with sophistic gamma 

calibration models. 
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Chapter 5 Relative Motion 3-D Scanner (RM3D) 

In Chapter 3, we discussed our research on 2PFLR SLI depth Measuring system to solve 

the problem of relative motion within the field of view of the scanner. We extend our 

research to solve the problem of relative motion beyond the FOV of the scanner. The goal 

of the research in this chapter is to extend the SLI system to scan surface of object larger 

than the FOV by moving the scanner across the object to capture a series of non-

ambiguous single pattern scans. Then by correspondence analysis, combine the 

overlapping images to achieve both non-ambiguous and high lateral resolution scan, 

larger than the scanner FOV.  

For any SLI system, a limitation of its application is the FOV of the scanning system. 

This is caused by the structure of SLI system itself, since we need to project at least one 

pattern to object surface, the object needs to be inside the FOV of both camera and 

projector during the scanning procedure. Further limitation to FOV is the lateral 

resolution of the scanner. The scanner must be close enough to the object surface to 

achieve desired lateral resolution which has the tradeoff of limiting the FOV. Limited by 

the effective distance, the FOV of a scanner is not enough to cover many large scale 

objects. This raises the need for the 3-D scanner that is able to scan the object by 

allowing the relative motion between the scanner and the object. We call this scanner as 

Relative Motion 3-D scanner (RM3D). The additional methodology to achieve our goal is 

the correspondence analysis between overlapping scans. 

We present the following sections to illustrate our research on RM3D scanner. In section 

5.1, an introduction briefly describes RM3D scanning system. Section 5.2 describes the 

processing techniques for analysis the pattern used in Relative Motion 3-D scanner. 

Section 5.3 illustrates the 3-D surface alignment techniques which are used for generated 

the completed 3-D surface for a large scale object. Section 5.4 describes our post-

processing method to decrease the accumulate error for the 3D surface alignment. 

Experimental results of the Relative Motion 3-D scanner are demonstrated in Section 5.5. 

And Section 5.6 is the summary for the whole chapter. 
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5.1 Introduction to Relative Motion 3-D Scanning System 

There are numerous techniques in Computer Vision area that are able to reconstruct the 

3-D surface or scene without the restriction of the relative position of the scanner and 

object, such as Structure from Motion (SfM) and high speed SLI techniques [70]-[74]. 

However, the result from SfM method is just a point cloud and the 3D points 

reconstructed are very sparse compared with SLI method [89]. In RM3D scanning system 

research, we introduce a scanning system based on the single pattern Structured Light 

Illumination system. The advantage of using single pattern SLI system is that the motion 

of the scanner will not affect the 3-D reconstruction procedure as long as the camera 

captured the reflected pattern image without blurring. Moreover, many single pattern SLI 

techniques can reach a satisfactory accuracy using the MCP technique. 

Our fundamental idea of developing Relative Motion 3-D scanning system is to utilize a 

non-ambiguous single pattern SLI system to scan across the surface and capture a 

sequence of reflected overlapping images. Then, the surface is reconstructed by using 

each new image with the correspondence alignment of all processed images to obtain the 

completed 3-D surface. Some of the previous work using the same idea is presented in 

[41] – [45]. However, from the mathematical model of SLI technique, we know that the 

3-D model reconstructed by using SLI technique is in a coordinate space relative to the 

scanner.We also know that the camera will change the position during the scan so we 

need to estimate the scanner's trajectory to increase the accuracy of the reconstruction. 

5.1.1 System Setup for Relative Motion 3-D Scanner 

In order to solve the problem of estimating the camera motion, we introduce a new 

pattern based on MCP technique with a novel constellation correlation filter pattern 

analysis method.  
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Figure 5.1 Relative Motion 3-D Scanning system, folded for portal able 

Fig. 5.1 and Fig. 5.2 show the prototype of the RM3D scanning system. The scanner is 

about 40cm high and less than 10 pounds in weight. The mechanical design makes the 

scanner portable and easy to use in the field or underwater. Fig. 5.2 displays the portable 

and operation configuration of the RM3D scanner. From Fig. 5.2 right we can see that 

our RM3D scanning system is built as a classical Structure Light Illumination system 

which consists of a projector and a camera forming triangulation geometry. A go pro 

camera with 1024 by 768resolution and a LED flash light illumination source with a 

pattern slide cover on the aperture works as a projector. Without mounting a digital 

projector onto the scanner, our system is much more portable by removing the power 

cable for the projector and very easy to configure.  Also, we can easily change the pattern 

that needs to be projected onto the object by replacing the 35mm slide. 
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Figure 5.2 Relative Motion 3-D Scanner, Folded (left) and  infolded for operation (right) 

 

5.1.2 Patten Design 

Because we need to translate the scanner to scan the large object surfaces, it is inevitable 

that the operator will introduce motion of the camera. The projection pattern is designed 

to address this issue. We introduce a single pattern technique based on the MCP to solve 

the problem of estimating the camera position and alignment. We assume the object 

surface is static and only the camera is moving. Fig.5.3 shows the pattern used in Relative 

Motion 3-D scanner. There are a total of 9 snakes in the pattern in three groups. In each 

group there is a center snake that is modulated and on both side of that snake there is on 

un-modulated snake. The modulated snakes yield non-ambiguous cross section. The two 

un-modulated snakes are used to improve the cross section accuracy. 

 This RM3D pattern has two main differences from previous SLI. The first difference is 

that instead of using sinusoidal pattern or grid pattern that covers the whole area of 

captured image, the pattern for RM3D scanner only has a few of sinusoidal cycles with 
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three modulated snakes. In this way, there are large areas of “white space” in the pattern, 

The advantage of this design is the reflected surface in the white space region is used for 

correspondence without the disturbance of the snakes. 

The second difference is that orthogonally modulated snakes are introduced to this 

pattern inspired by MCP. As we stated in Chapter 2, the modulated snakes yield non-

ambiguous results, and the un-modulated snakes which are on both sides of the 

modulated snake help to locate and identify it. Also, unlike MCP, the modulated snakes 

in the RM3D pattern are not following the Gray Code order, so we don’t use the Matched 

Filter Bank technique as illustrated in Chapter 3. In this way, the process time of 

analyzing the pattern is much faster than process the MCP.  

The RM3D pattern is shown in Fig. 5.3. The number of the snakes in the pattern affects 

the accuracy and the area of 3-D surface reconstructed by each frame captured by the 

camera, and the area of the white space between snake groups affects the accuracy of 

alignment of all the reconstructed 3-D patches. So there is a tradeoff between the 

accuracy of the 3-D reconstruction and the accuracy of the correspondence alignment 

between patterns. We reach a balance between the number of the snakes and the area of 

white space.  From Fig. 5.3, the snake wavelength correspond to a total 22 cycles along 

the phase direction, and there are 9 snakes which are about 10.5 cycles. So the area of the 

snakes are about half of the image total area, and the other half is white space.  
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Figure 5.3 Optical Pattern for Relative Motion Scanning system 

 

5.2Relative Motion 3-D Pattern Analysis 

The analysis and processing techniques for the RM3D pattern are illustrated.  Although 

the RM3D pattern design is based on the MCP, we modify the pattern analysis technique 

described in Chapter 3, since only single pattern is used in RM3D scanning system, and a 

sequence of images captured by the scanner must be processed. In order to process the 

sequence of images efficiently, we introduce a pipeline process for analyzing the RM3D 

pattern. There are two processes in the pipeline which are discussed in the following 

sections, the first process is the snake detection and tracking for each frame, and the 

second part is the camera motion estimation based on a proposed Constellation 

Correlation Filter technique.  

5.2.1 Snake Detection and Tracking 

Similar to the MCP analysis techniques described in Chapter 3, for RM3D pattern 

analysis, the modulated snakes in the pattern need to be detected first, then after 
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demodulating, the phase value of each modulated snake are recovered by using the 

calibration parameters.  

A 1-D Peak to Side-lobe Ratio (PSR) technique is proposed to isolate the snakes and 

identify the snakes’ peaks. The 1D-PSR is defined as a 1-D space domain moving filter, 

for a given pixel in the image A, 𝑃𝑃1 = 𝑨𝑨(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐) , where (𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐)  is its coordinate in 

camera space. The two neighborhood pixels along the phase direction are 𝑃𝑃0 =

𝑨𝑨(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐 − 𝜏𝜏)and 𝑃𝑃2 = 𝑨𝑨(𝑥𝑥𝑐𝑐, 𝑦𝑦𝑐𝑐 + 𝜏𝜏) , where τ is a given integer constant which is a 

estimation of the width of a snake. So the 1-D PSR is defined as 

𝑃𝑃𝑃𝑃𝑃𝑃𝜏𝜏(𝑃𝑃1) ≡ 𝑃𝑃1
max(𝑃𝑃0,𝑃𝑃2)                                                                                                    (5.1) 

Eq. (5.1) yields the PSR value for a given pixel in the image. We know that the 1-D PSR 

model is a peak point evaluation function which compared the intensity value of potential 

peak points with its side-lope for a given peak width 𝜏𝜏. Higher PSR value for a given 

pixel means this pixel is more likely being a peak value along the phase direction.  

However, using a fixed 𝜏𝜏value  is not able to offer a satisfactory performance the width of 

the snakes vary across the surface. To optimize the result of PSR, in each calculation of 

PSR we loop to find the best τ to maximize the PSR value: 

𝜏𝜏(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚≤𝜏𝜏≤𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚�𝑃𝑃𝑃𝑃𝑃𝑃𝜏𝜏�𝐴𝐴(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐)��                                                     (5.2) 

where𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚  and 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚  are the two bounds for 𝜏𝜏 , and their value is decided during the 

calibration procedure. By using the algorithm based on Eq. (5.2), we increase the 

robustness of peak detection. The relationship is represented as 

𝑨𝑨𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐) = 𝑃𝑃1(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐)
max(𝑃𝑃0,𝑃𝑃2)                                                                                             (5.3) 

where  𝑨𝑨𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐)  is the PSR image which is then binaried as 𝑩𝑩𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐) =

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵{𝑨𝑨𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐)| �1,𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝑝𝑝 > 𝑇𝑇
0,𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝 < 𝑇𝑇}                                                                         (5.4) 
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whereT is a threshold set by experiment. In this research threshold is set to 1.18. An 

example of 1-D PSR peak isolation is shown in Fig. 5.4.  

 

Figure 5.4 Original Image under test (left), result after PSR peak detection process (right) 

As shown in Fig. 5.4, the PSR technique detects the snake regions effectively and 

efficiently. After generating the binarized PSR image 𝑩𝑩𝑃𝑃𝑃𝑃𝑃𝑃, we define the very center of 

the region of each isolated snake along the phase direction in 𝑩𝑩𝑃𝑃𝑃𝑃𝑃𝑃 as the peak location as 

the same as in Chapter 3 for pattern analysis. Then we store the peaks location in the 

matrix 𝒀𝒀as represented in Eq. (3.7), and using the Matched Filters Bank to demodulate 

the snakes as the same procedures illustrated in Chapter 3.  

After demodulating the snakes in the matrix𝒀𝒀, the phase values for each snake are 

assigned based on the calibration file. We then save the detection result in a data structure 

called Snake4 Volume (𝑆𝑆4𝑉𝑉) which consists of four snakes’ matrices: Sp, Sy, Si, and Sz.  

𝑆𝑆4𝑉𝑉 = [𝑺𝑺𝑝𝑝,𝑺𝑺𝑦𝑦,𝑺𝑺𝑖𝑖 ,𝑺𝑺𝑧𝑧]                                                                                                     (5.5) 

The definition for the four 𝑀𝑀𝑆𝑆 × 𝑁𝑁 matrices is expressed in Eq. (5.6) (a) to (d). 

𝑺𝑺𝑝𝑝 ≡  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

𝑺𝑺𝑝𝑝(𝑥𝑥𝑐𝑐,𝑚𝑚) = 𝒀𝒀(𝑥𝑥𝑐𝑐,𝑚𝑚)                                                                                                  (5.6a) 

𝑺𝑺𝑦𝑦 ≡ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑦𝑦 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

𝑺𝑺𝑦𝑦(𝑥𝑥𝑐𝑐,𝑚𝑚) = 𝑦𝑦𝑐𝑐                                                                                                             (5.6b) 
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𝑺𝑺𝑖𝑖 ≡ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

𝑺𝑺𝑖𝑖(𝑥𝑥𝑐𝑐,𝑚𝑚) = �1,   𝑓𝑓𝑓𝑓𝑓𝑓 𝒀𝒀(𝑥𝑥𝑐𝑐,𝑚𝑚) > 0
0, 𝑓𝑓𝑓𝑓𝑓𝑓 𝒀𝒀(𝑥𝑥𝑐𝑐,𝑚𝑚) = 0                                                                             (5.6c) 

𝑺𝑺𝑧𝑧 ≡ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑧𝑧 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖 3𝐷𝐷 𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠                                     (5.6d) 

Where matrix𝒀𝒀 is defined in Eq. (3.7), (𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐)  is the coordinate for snakes’ peak 

locations in camera space image, and 𝑚𝑚 indices are the snake’s index number. So for the 

four snakes matrices, the size is 𝑀𝑀𝑆𝑆  height and 𝑁𝑁  width, where  𝑀𝑀𝑆𝑆 ≡

Number of detected snakes, and𝑁𝑁 ≡ width of original Image 𝑨𝑨, and 𝑚𝑚 ∈ [1,𝑀𝑀𝑆𝑆].  

The reason to store the detected snakes in𝑆𝑆4𝑉𝑉  data structure is to reduce the space 

complexity of the algorithm. Because there are only 9 snakes in the RM3D pattern, i.e. 

𝑀𝑀𝑆𝑆 = 9, so the total space request for 𝑆𝑆4𝑉𝑉 structure is 3 × 9 × 𝑁𝑁 = 27𝑁𝑁. The total space 

required to store the PSR image in our research is 768N, where 768 is the width of the 

captured image. Thus, we reduce the space costs about 28 times.  

89 

 



 

 

Figure 5.5 Snake Matrix Sy for Relative Motion 3-D pattern 

Fig. 5.5 shows the 𝑺𝑺𝑦𝑦 matrix after the PSR peak detection for the RM3D pattern analysis. 

The nine snakes are detected and stored in the matrix following the order of the snake 

number. The snake index number has a correspondence with the camera y coordinate as 

shown in Fig. 5.5. 

After detecting the 9 snakes in the RM3D pattern for the first captured frame and storing 

the information in the 𝑆𝑆4𝑉𝑉 data structure, one patch of the 3-D surface is reconstructed 

through reconstruction technique for Modified Composite Pattern described in Chapter 3. 

However, the 1-D PSR method used in snake detection is not as robust as the snake peak 

isolation method used in Two-Pattern SLI system, due to the variation of light conditions 

and the modulated snakes as shown in Fig. 5.6.  
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Figure 5.6RM3D scan of  test surface (left), PSR detection result(right) 

Fig. 5.6 right displays the 1-D PSR detection result for a captured frame from Relative 

Motion 3-D scan. In the resulting PSR image, some sections of the snakes are not 

detected, and the detection rate for the modulated snakes are not as high as expected due 

to the light condition. So the snake growing technique is utilized to post process the 

detected snakes’ peaks after PSR process.  

 

Figure 5.7 4-Connected Neighborhood 

Like the snake growing algorithm used in Casey’s work, we connect or “grow” from left 

to right, and since mathematically the 4-connected neighborhood are defined as the 4 

pixels around the center pixel indicated by the black spots in Fig. 5.7, there is no need to 

grow from right to left. The pixel in red is the pixel under analysis. 

A two pass 4-connected neighborhood checking method is used to find 4-connected 

component, one pass to record equivalences and assign temporary labels and the second 

to replace each temporary label by the label of its equivalence class [21]. 
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Connectivity checks are carried out by checking the labels of pixels that are top right, top 

center to the center, top left and left of the current pixel. Conditions to check: 

1. Does the pixel to the left have the same value? 

1. Yes - We are in the same region. Assign the same label to the current pixel 

2. No - Check next condition 

2. Do the pixels to the top and left of the current pixel have the same value but not 

the same label? 

1. Yes - We know that the top and left pixels belong to the same region and 

must be merged. Assign the current pixel the minimum of the top and left 

labels, and record their equivalence relationship 

2. No - Check next condition 

3. Does the pixel to the left have a different value and the one to the top the same 

value? 

1. Yes - Assign the label of the top pixel to the current pixel 

2. No - Check next condition 

4. Do the pixel's top and left neighbors have different pixel values? 

1. Yes - Create a new label ID and assign it to the current pixel 
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Figure 5.8 Snakes Peaks Detection result after snake growing 

 

The final result of snake detection is shown in Fig. 5.8. The white lines which lie on the 

pattern are the snake's peaks detected and grown by the algorithm.  

After growing the snakes in the first frame, we don’t have to re-run the snake growing 

algorithm for every frame in our system. A tracking algorithm across frames to track 

snakes. The fundamental idea of the snake tracking algorithm is that the snakes’ position 

in the captured images will not change much from frame to frame. This idea based on the 

assumption that the relative motion between the scanner and the object during the 

scanning procedure is smooth in translation and in-plane rotation and there is no extreme 

out-planes rotation of the scanner. Without extreme out-plane rotation, the capture image 

always has the pattern lies on similar location as the previous captured image. Based on 

this idea and assumption, the snake tracking algorithm: 

 (1) For a given ith frame (not the first one), utilize the 1-D PSR detection method to 

detect the Snake Peaks. 

 (2) Read in previous frame’s 𝑆𝑆4𝑉𝑉, and generate the snake peak image based on 𝑆𝑆4𝑉𝑉. 

 (3) For each detect peak point (𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖) in ith frame, compare with the all the peak points 
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with the same x coordinate in i-1frame (𝑥𝑥𝑖𝑖−1,𝑛𝑛,𝑦𝑦𝑖𝑖−1,𝑛𝑛). If�𝑦𝑦𝑖𝑖−1,𝑛𝑛 − 𝑦𝑦𝑖𝑖� < 𝑇𝑇𝑠𝑠, given 𝑥𝑥𝑖𝑖 =

𝑥𝑥𝑖𝑖−1,𝑛𝑛, where n is the snake number for the snakes’ peak points in i-1th frame and 𝑇𝑇𝑠𝑠 is a 

pre-defined threshold for the snake tracking process. Then this peak point  (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) 

belongs to the snake with snake number n, and labels this point as valid snake peak points. 

 (4) Store all the labeled peak points into a new 𝑆𝑆4𝑉𝑉data structure for current frame.  

 (5) Continue to next frame. 

In our research the threshold is set to 𝑇𝑇𝑠𝑠 = 4, which means there is at most 4 pixel 

differences between the current frame’s snake peaks and the previous frame’s.  

5.2.2 Camera Position Estimation by using Constellation Correlation Filters 

The RM3D pattern has white space is between the number 3 and number 4 snakes, and 

number 6 and number 7 snakes, the white space area is able to be located by using the 

𝑆𝑆4𝑉𝑉  data structure. We assume the scanning speed of the scanner allows for a large 

overlap area between two consecutive frames in the captured frame sequence.  So, we are 

able to align the frames based on the captured surface texture within the white space. 

Based on the alignment of the frames, the fundamental idea of the camera position 

estimation is to calculate the 2-D transformation including translation and rotation 

between each two consecutive frames, then secondly, the 3-D surface information is 

reconstructed [53] [56].  

It is well known that image correlation technique based on composite filters [48]-[51] is 

an efficient, effective and robust method to match two similar signals.  So, correlation 

technique is widely used in many pattern recognition and image processing applications. 

In our research, the correlation method is also utilized to align the surfaces between the 

two captured frames. However, if we directly correlate the two consecutive frames, the 

results are corrupted by noise and spatial distortion. To get a more accurate and robust 

result, we use a Constellation Correlation Filters method.  

As shown in Fig. 5.9, we partitioned the captured surface into several partitions within 

the white space. We refer to that partitions as constellations and the alignment algorithm 
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correlates the constellation partitions between two consecutive frames. 14 partitions 

(marked as white squares) are utilized which are displayed in Fig. 5.9. 

 

Figure 5.9 Partitions (white areas) for Constellation Correlation 

The mathematical model of correlating the constellations is illustrated as follows. For two 

consecutive frames 𝐴𝐴𝑖𝑖  and 𝐴𝐴𝑖𝑖+1 in the captured sequence, the partition is represented as: 

𝑆𝑆𝑖𝑖,𝑗𝑗 ≡ 𝑗𝑗 𝑡𝑡ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖 𝑡𝑡ℎ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓                                                                           (5.7) 

Then, the correlation result for each corresponded partition is expressed in Eq. (5.8). 

𝐶𝐶𝑗𝑗
𝑖𝑖,𝑖𝑖+1 = 𝑆𝑆𝑖𝑖,𝑗𝑗 ∗ 𝑆𝑆𝑖𝑖+1,𝑗𝑗                                                                                                       (5.8) 

where the 𝐶𝐶𝑗𝑗
𝑖𝑖,𝑖𝑖+1 is the correlation result between the jth partition of i and i+1 frames, and 

∗ denotes the correlation. 
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    (a)                                                               (b)   

 

 (c) 

Figure 5.10(a) Number 3 partition in current frame; (b) Number 3 Partition in previous frame; (c) Correlation 
results with shifting the peak to the middle of the image 

An example of two partitions and their correlation result is shown in Fig. 5.10. In Fig. 

5.10(c), the peak of the correlation provides the information of the translation to align the  

two partitions. The translation is stored in a matrix 𝐶𝐶𝐶𝐶𝑗𝑗
𝑖𝑖,𝑖𝑖+1 as expressed in Eq. (5.9). 

𝐶𝐶𝐶𝐶𝑗𝑗
𝑖𝑖,𝑖𝑖+1 = �

𝑥𝑥𝑡𝑡
𝑦𝑦𝑡𝑡�                                                                                                               (5.9) 
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where 𝑥𝑥𝑡𝑡  stands for the translation in x direction and 𝑦𝑦𝑡𝑡  stands for the translation in y 

direction.  

However, not all the correlation results of the partitions are accurate, so a Mean Square 

Displacement (MSD) checking process is proposed to eliminate the wrong correlation 

results. The partitions in the ith frame is translated by using the matrix 𝐶𝐶𝐶𝐶𝑗𝑗
𝑖𝑖,𝑖𝑖+1 at first: 

𝑆𝑆𝑆𝑆𝑖𝑖,𝑗𝑗(𝑥𝑥,𝑦𝑦) = 𝑆𝑆𝑖𝑖,𝑗𝑗(𝑥𝑥 + 𝑥𝑥𝑡𝑡,𝑦𝑦 + 𝑦𝑦𝑡𝑡)                                                                               (5.10) 

where 𝑆𝑆𝑆𝑆𝑖𝑖,𝑗𝑗 is the translated jth partition in frame i.  

We calculate the Mean Square Displacement for jth partition 𝐸𝐸𝑗𝑗 as  

𝐸𝐸𝑗𝑗 =
∑ ∑ �𝑆𝑆𝑆𝑆𝑖𝑖,𝑗𝑗(𝑚𝑚,𝑛𝑛)−𝑆𝑆𝑖𝑖+1,𝑗𝑗(𝑚𝑚,𝑛𝑛)�

2𝑁𝑁𝑠𝑠
𝑛𝑛=1

𝑀𝑀𝑠𝑠
𝑚𝑚=1

𝑀𝑀𝑠𝑠𝑁𝑁𝑠𝑠
                                                                           (5.11) 

whereMsandNs are the width and height of the partition. A threshold 𝑇𝑇𝐸𝐸 is set to check if 

the 𝐶𝐶𝐶𝐶𝑗𝑗
𝑖𝑖,𝑖𝑖+1 is a valid translation. 

𝐶𝐶𝐶𝐶𝑗𝑗
𝑖𝑖,𝑖𝑖+1 = �

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉,            𝑓𝑓𝑓𝑓𝑓𝑓  𝐸𝐸𝑗𝑗 < 𝑇𝑇𝐸𝐸
𝑁𝑁𝑁𝑁𝑁𝑁 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣,     𝑓𝑓𝑓𝑓𝑓𝑓   𝐸𝐸𝑗𝑗 ≥ 𝑇𝑇𝐸𝐸

                                                                     (5.12) 

In Eq. (5.12) ,  we utilize the calculated MSD of each pair of partitions to label the 

translation matrix 𝐶𝐶𝐶𝐶𝑗𝑗
𝑖𝑖,𝑖𝑖+1 . The invalid translations are eliminated and only valid 

translations are used. Fig. 5.11 plots the exponential MSD for the 14 partition pairs.  
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Figure 5.11 Exponential MSD of 14 Partitions 

In Fig 5.11, we display  the exponential MSD as  

𝐸𝐸𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑗𝑗 = 𝑒𝑒−𝐸𝐸𝑗𝑗                                                                                                        (5.13) 

where 𝐸𝐸𝑗𝑗 is the MSD in Eq. (5.12). We use 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑗𝑗  because low  𝐸𝐸𝑗𝑗 approaches 1 and 

high  𝐸𝐸𝑗𝑗 approaches 0. 

Based on the valid correlation results which are expressed as translation matrices, the 2-D 

transformation matrix is able to be calculated.  We express the 2-D coordinate in 

homogenous coordinate, so the 2-D transformation matrix is a 3 by 3 matrix, and 

accordingly the 3-D transformation matrix is a 4 × 4 matrix. The 2-D transformation 

matrix satisfies the Eq. (5.14) below. 

�
𝑥𝑥0,𝑡𝑡
𝑦𝑦0,𝑡𝑡
𝑡𝑡
� = 𝑻𝑻2𝐷𝐷 �

𝑥𝑥0
𝑦𝑦0
1
�                                                                                                        (5.14) 
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where 𝑻𝑻2𝐷𝐷 is the 3 × 3 2-D transformation matrix, (𝑥𝑥0,𝑦𝑦0)is the original 2-D coordinates, 

and the transformed coordinates are 

�
𝑥𝑥1
𝑦𝑦1� = �

𝑥𝑥0,𝑡𝑡
𝑡𝑡
𝑦𝑦0,𝑡𝑡
𝑡𝑡

�                                                                                                             (5.15) 

where the (𝑥𝑥1,𝑦𝑦1) are the transformed 2-D coordinates. From Eq. (5.14) we know that in 

order to calculate the 2-D transformation matrix 𝑻𝑻2𝐷𝐷, the two homogenous coordinates 

are needed. And then, the transformation matrix is calculated as Eq. (5.16). 

𝑽𝑽0𝑻𝑻2𝐷𝐷 = 𝑽𝑽𝑡𝑡(5.16) 

where 

𝑽𝑽𝑡𝑡 = �
𝑥𝑥0,𝑡𝑡
𝑦𝑦0,𝑡𝑡
𝑡𝑡
�                                                                                                               (5.17a)  

𝑽𝑽0 = �
𝑥𝑥0
𝑦𝑦0
1
�                                                                                                                 (5.17b) 

From the results of the correlation for two consecutive frames 𝐴𝐴𝑖𝑖   and 𝐴𝐴𝑖𝑖+1  in the 

captured sequence which are illustrated in above, the two vectors 𝑽𝑽0 and 𝑽𝑽𝑡𝑡are able to be 

generated. Since (𝑥𝑥0,𝑦𝑦0)  is the 2-D coordinates before the transformation, all the 

coordinates lie in the valid partitions 𝑆𝑆𝑖𝑖,𝑗𝑗(𝑥𝑥, 𝑦𝑦) in 𝐴𝐴𝑖𝑖  are allowed to be utilized in the 

coordinate vector 𝑽𝑽0 . To get the vector 𝑽𝑽𝑡𝑡 ,  we use the correlation result 𝐶𝐶𝐶𝐶𝑗𝑗
𝑖𝑖,𝑖𝑖+1  to 

translate the coordinates in valid partitions 𝑆𝑆𝑖𝑖,𝑗𝑗(𝑥𝑥,𝑦𝑦) to get the coordinates (𝑥𝑥0,𝑡𝑡,𝑦𝑦0,𝑡𝑡)as 

illustrated in Eq. (5.18). 

�
𝑥𝑥0,𝑡𝑡
𝑦𝑦0,𝑡𝑡

� = �
𝑥𝑥0
𝑦𝑦0� + 𝐶𝐶𝐶𝐶𝑗𝑗

𝑖𝑖,𝑖𝑖+1 = �
𝑥𝑥0 + 𝑥𝑥𝑡𝑡
𝑦𝑦0 + 𝑦𝑦𝑡𝑡

�                                                                          (5.18) 

However, there are at least 14 partitions and the size of the partitions are 64 by 64 in our 

research, so we have total 64 × 64 × 14 = 57344 sample points that can be used as 𝑽𝑽0. 

In order to get an accurate estimation of the 2-D transformation matrix, the more points 

are required to be used in the calculation process. This results in a typical least square 
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problem, so the classical least square method is chosen to utilize more points to improve 

the estimation of 𝑻𝑻2𝐷𝐷. The least square representation is expressed in Eq. (5.19a). 

𝑻𝑻2𝐷𝐷 ∙ 𝑴𝑴0 = 𝑴𝑴𝑡𝑡(5.19a) 

where 𝑴𝑴𝑡𝑡 and 𝑴𝑴0 are the matrices composed by the homogenous coordinates vectors as 

represented in  

𝑴𝑴0 = [𝑽𝑽01 ⋯ 𝑽𝑽0𝑛𝑛]                                                                                                 (5.19b) 

𝑴𝑴𝑡𝑡 = [𝑽𝑽𝑡𝑡1 ⋯ 𝑽𝑽𝑡𝑡𝑛𝑛]                                                                                                  (5.19c) 

In order to calculate the 2-D transformation matrix, we need to calculate the pseudo-

inverse of the matrix 𝑴𝑴0. A widely used pseudo inverse calculation method is Moore-

Penrose pseudo inverse method, which is expressed in Eq. (5.20). 

𝑻𝑻2𝐷𝐷 = 𝑴𝑴𝑡𝑡𝑴𝑴0
𝑇𝑇(𝑴𝑴0𝑴𝑴0

𝑇𝑇)−𝟏𝟏(5.20) 

where 𝑴𝑴0
𝑇𝑇  is the transpose of the marix𝑴𝑴0. 

The 2-D transformation between two consecutive frames is estimated from the 

constellation and has the parameters as 

𝑻𝑻2𝐷𝐷 = �
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑥𝑥
−𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑦𝑦

0 0 1
�                                                                                      (5.21) 

where𝜃𝜃 denotes the clock-wise rotation angle, 𝑡𝑡𝑥𝑥  and 𝑡𝑡𝑦𝑦  are the translation in x and y 

directions, respectively. 

The camera is moving in 3-D coordinates, so the estimation of 𝑻𝑻2𝐷𝐷  is not enough to 

determine the 3-D of the camera. However, if we make some assumptions, the 3-D 

transformation matrix 𝑻𝑻3𝐷𝐷  can be approximated by using the 3-D cross section 

information.  

In the prototype RM3D Scanner, we assume there is no significant movement along the z 

direction, and we assume no out of plane rotation. Under these assumptions, the 
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translation in z in  𝑻𝑻3𝐷𝐷  is zero, and there is only in-plane rotation relate to z axis. 

𝑻𝑻3𝐷𝐷isexpressed as  

𝑻𝑻3𝐷𝐷 = �

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 0 𝑡𝑡𝑥𝑥′
−𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 0 𝑡𝑡𝑦𝑦′

0 0 1 𝑡𝑡𝑧𝑧′
0 0 0 1

�                                                                                (5.22) 

where𝜃𝜃 is the clock-wise rotation angle, and 𝑡𝑡𝑥𝑥′ , 𝑡𝑡𝑦𝑦′ , and 𝑡𝑡𝑧𝑧′  are the translation along x, y 

and z directions, respectively and 𝑡𝑡𝑧𝑧′  is almost 0. 

The 𝜃𝜃 is estimated in Eq. (5.21), so the 3-D rotation is estimated in Eq. (5.22).  Our goal 

is to estimate 𝑡𝑡𝑥𝑥′ , 𝑡𝑡𝑦𝑦′ , and 𝑡𝑡𝑧𝑧′  based on 2-D translation 𝑡𝑡𝑥𝑥  and 𝑡𝑡𝑦𝑦 . In our research, we 

proposed a method to solve this problem based on the calibration based on the 

assumption that there is not a big depth jump between two consecutive frames.  Fig. 5.12 

demonstrates the geometry of estimation of  𝑡𝑡𝑥𝑥′ and 𝑡𝑡𝑦𝑦′ .  

As shown in Fig. 5.12, O is the optical center of the camera. During the calibration 

process, we calibrate for a translation in 𝑡𝑡𝑥𝑥 and its corresponding translation in 3-D at 

depth 𝑑𝑑1, which is 𝑡𝑡𝑥𝑥,𝑑𝑑1
′ . The relationship is expressed as 

𝑡𝑡𝑥𝑥,𝑑𝑑1
′ = 𝑑𝑑1

𝑓𝑓
𝑡𝑡𝑥𝑥                                                                                                               (5.23) 

And for𝑡𝑡𝑦𝑦′ , we have the same relationship and same calculation procedures. 
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Figure 5.12 Geometry of estimation of 3-D transformation matrix 

As described in section 5.2.1, after we demodulated the snakes, we are able to get the 

depth of the snakes. So in Eq. (5.25), depth d1 is known, and f is calibrated during the 

calibration process. In this way the 3-D translation 𝑡𝑡𝑥𝑥,𝑑𝑑1
′  at d1 depth is calculated. Also for 

the 3-D translation at y direction 𝑡𝑡𝑦𝑦′ , we have the same process. Then, the 3-D 

transformation matrix 𝑻𝑻3𝐷𝐷  is recovered.  Fig. 5.13 summarizes the pattern analysis 

algorithm. 
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Figure 5.13Block Diagram for Snake Tracking and Constellation Correlation for Transformation Matrix 
Estimation algorithm 

 

5.3 3-D Surface Alignment Based on Estimated Transformation Matrix 

Based on the results from section 5.2, in this section we illustrate the technique and 

process of aligning the 3-D patches into a big large scale 3-D surface.  

The fundamental idea is to use each frames' detected snakes which are stored in the 𝑆𝑆4𝑉𝑉 

data structure to reconstruct a 3-D patch for the frame, then use the estimated 3-D 

transformation matrix to align the 3-D patches for each frame into a larger point cloud 

representing the surface. Fig. 5.14 displays the recovered phase image of the nine snakes 
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for one frame. Based on this phase image, we are able to directly reconstruct the 3-D 

surface which are captured in this frame by using the MCP 3-D reconstruction technique.  

 

Figure 5.14 Recovered Phase Image for the nine snakes, depth information for only nine snakes 

We use the 3-D transformation matrix between each two frames which is 𝑇𝑇3𝐷𝐷
𝑖𝑖,𝑖𝑖+1 , to 

transform the reconstructed 3-D coordinates. Fig. 5.15 shows the point cloud of 

transformation result.  

 

Figure 5.15 Point Cloud for 3-D reconstruction of all aligned patches, side view (left), frontal view (right) 
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5.4 Post Processing to Decrease the Accumulate Error 

We know that the transformation matrix 𝑻𝑻3𝐷𝐷  is calculated based on the correlation 

between two consecutive frames, however, this technique will have the accumulate error. 

In this section, we describe the post processing method for decrease the accumulate error 

for the aligned 3-D reconstruction.  

Our goal is to decrease the accumulated error and correct the 𝑻𝑻3𝐷𝐷  between each two 

consecutive frames. Since the 3-D transformation matrix 𝑻𝑻3𝐷𝐷 is calculated based on the 

transformation matrix 𝑻𝑻2𝐷𝐷, we decide to correct 𝑻𝑻2𝐷𝐷directly then re-calculate 𝑻𝑻3𝐷𝐷. The 

basic idea of decreasing the accumulate error is to re-calculate the 𝑻𝑻2𝐷𝐷
𝑛𝑛−1,𝑛𝑛 based on not 

just on an adjacent frame but a series of frames more distant in displacement. That is, the 

two frames are separated by k frames in time, let 𝑻𝑻2𝐷𝐷
𝑛𝑛−1,𝑛𝑛 be the transformation matrix 

between the n-1th frame and nth frame, and kdenotes the distance between two frames.  

Firstly, in order to effectively decrease the accumulate error, we varies the k from 2 to a 

fixed upper-bound K as expressed as follows: 

𝑘𝑘 ∈ [2,𝐾𝐾]                                                                                                                    (5.24) 

Then, we re-calculate the 2-D transformation matrix between nth frame and n-kth frame, 

which is expressed as 

𝑻𝑻2𝐷𝐷
𝑛𝑛−𝑘𝑘,𝑛𝑛 = ∏ 𝑻𝑻2𝐷𝐷

𝑛𝑛−𝑖𝑖,𝑛𝑛−(𝑖𝑖−1)𝑘𝑘
𝑖𝑖=0                                                                                          (5.25) 

Then, by using the 2-D transformation matrix 𝑻𝑻2𝐷𝐷
𝑛𝑛−𝑘𝑘,𝑛𝑛, we align the n-kth frame and nth 

frame. Since we have accumulated error, the two frames are not perfectly aligned. 

Then, we follow the procedures described in section 5.2 to use the constellation 

correlation filters to calculate a 2-D transformation matrix 𝑻𝑻𝐶𝐶  which is a correction 

matrix. This 𝑻𝑻𝐶𝐶  corrected the matrix  𝑻𝑻2𝐷𝐷
𝑛𝑛−𝑘𝑘,𝑛𝑛 to achieve improved alignment as  

𝑻𝑻2𝐷𝐷,𝐶𝐶
𝑛𝑛−𝑘𝑘,𝑛𝑛 = 𝑻𝑻𝐶𝐶𝑻𝑻2𝐷𝐷

𝑛𝑛−𝑘𝑘,𝑛𝑛                                                                                                     (5.26)  

where𝑻𝑻2𝐷𝐷,𝐶𝐶
𝑛𝑛−𝑘𝑘,𝑛𝑛 is the corrected 2-D transformation matrix with decreases accumulated error. 
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Then, we calculate the corrected 2-D transformation as 

𝑻𝑻𝑘𝑘
𝑛𝑛−1,𝑛𝑛 = 𝑻𝑻2𝐷𝐷,𝐶𝐶

𝑛𝑛−𝑘𝑘,𝑛𝑛 ∙ ∏ (𝑻𝑻2𝐷𝐷
𝑛𝑛−𝑖𝑖,𝑛𝑛−(𝑖𝑖−1))−1𝑘𝑘−1

𝑖𝑖=1                                                                    (5.27) 

where 𝑻𝑻𝑘𝑘
𝑛𝑛−1,𝑛𝑛  is the corrected 2-D transformation matrix for  𝑻𝑻2𝐷𝐷

𝑛𝑛−1,𝑛𝑛  based on the 

correlation between n-k and n frame. The final step is to average all the calculated 𝑻𝑻𝑘𝑘
𝑛𝑛−1,𝑛𝑛 

for each k to get a 2-D transformation matrix with decreased accumulated error. 

𝑻𝑻2𝐷𝐷,𝐷𝐷𝐷𝐷𝐷𝐷
𝑛𝑛−1,𝑛𝑛 = 1

𝐾𝐾−1
∑ 𝑻𝑻𝑘𝑘

𝑛𝑛−1,𝑛𝑛𝐾𝐾
𝑘𝑘=2                                                                                         (5.28) 

We refer 𝑻𝑻2𝐷𝐷,𝐷𝐷𝐷𝐷𝐷𝐷
𝑛𝑛−1,𝑛𝑛  as reduced accumulated error (RAE). Then we repeat the process for all 

the transformation matrices to decrease the accumulate error.  

The algorithm for decreasing the accumulated error is summarized as follows: 

 for nth frame in the captured frames: 

  for k from 2 to K: 

   calculate 𝑻𝑻2𝐷𝐷
𝑛𝑛−𝑘𝑘,𝑛𝑛; 

   transform frame 𝐴𝐴𝑛𝑛 to align with frame 𝐴𝐴𝑛𝑛−𝑘𝑘 by using  𝑻𝑻2𝐷𝐷
𝑛𝑛−𝑘𝑘,𝑛𝑛; 

   calculate the correction transformation matrix 𝑻𝑻𝐶𝐶; 

   use𝑻𝑻𝐶𝐶  to correct 2-D transformation  matrix 𝑻𝑻2𝐷𝐷,𝐶𝐶
𝑛𝑛−𝑘𝑘,𝑛𝑛, the result is 𝑻𝑻2𝐷𝐷,𝐶𝐶

𝑛𝑛−𝑘𝑘,𝑛𝑛; 

   calculate the corrected 2-D transformation matrix 𝑻𝑻𝑘𝑘
𝑛𝑛−1,𝑛𝑛; 

  end 

  average𝑻𝑻𝑘𝑘
𝑛𝑛−1,𝑛𝑛to get 𝑻𝑻2𝐷𝐷,𝐷𝐷𝐷𝐷𝐷𝐷

𝑛𝑛−1,𝑛𝑛 ; 

 end 

5.5 Experimental Results of 3-D Motion Scanner 

The experiment setup is shown in Fig. 5.16,we mounted the scanner on to a trailin order 
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to ensure there is no out-plane rotation. The object is surface is shown in Fig. 5.17. We 

put a towel onto an artifact to create a large scale object surface.  

 

Figure 5.16 Experimental setup 
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Figure 5.17 Front view of scanned object surface (left), side view of scanned object (right) 

Fig. 5.18 displays the result of points cloud of the scanned object surface. We can see the 

points cloud is not as dense as traditional SLI scan. However, the actual shape of the 

object surface is reconstructed. And further research needed to achieve a higher accuracy 

of the reconstruction.  

5.6 Summary 

In this chapter the Relative Motion 3-D Scanning system is discussed and illustrated. 

Unlike the classical SLI depth measuring system, our system focus on developing a 3-D 

scanner allows the relative motion beyond the Field of View of scanner. In our research, 

we designed a new pattern especially for the Relative Motion 3-D scanning system, and 

this pattern is designed based on the MCP technique. Not only the 3-D depth information 

is able to be retrieved by the 9 snakes in the pattern, but also we can use the captured 

surface texture to do the alignment. A constellation correlation filters technique is 

developed to align the frames in the captured image sequences. By utilizing this 
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technique, the 2-D transformation matrix between two consecutive frames is estimated 

robustly. Furthermore, the 3-D transformation matrix for the estimation of camera 

position is estimated by using the 2-D transformation matrix. In this way, the points cloud 

for the large scale object surface is recovered by aligning the 3-D patches reconstructed 

from each frame through the 3-D transformation matrix. The final step is to decrease the 

accumulated error to achieve a better reconstruction. A post processing technique is 

developed.  
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Chapter 6 Conclusion and Future Research 

We summarize our present and the future research in section 6.1 and 6.2 respectively. 

Section 6.1 summarizes all the work in our present research for2PFLR SLI andRM3D 

SLI depth measuring, and section 6.2 provides the direction for future research based on 

the results of our current research.  

6.1 Conclusion 

Our research focuses on developing high speed and high accuracy SLI depth measuring 

system which can be applied to solve many problems in Computer Vision and 3-D data 

acquisition area. SLI technique is widely researched and already being used in many 

industrial 3-D scanners due to its high accuracy and non-ambiguity reconstruction. 

However, in order to achieve a high accuracy result, most of the SLI techniques rely on 

multi-pattern SLI techniques which are sensitive to continuous relative motion between 

the scanning system and the object surface. Multi-pattern method suffer from banding 

distortion and require lower velocities of the object and have tolerance toward depth 

ambiguity. This raises the need for developing high speed 3-D scanning systems with 

reduced sensitivity to the relative motion between the scanner and the object. 

Based on the fundamental idea of the single pattern SLI technique, our first research 

direction is to study a high speed SLI system that allows the relative motion within the 

FOV of the scanner. We introduce Two-pattern Full Lateral Resolution (2PFLR) SLI 

depth measuring system. At first analysis, this seems to share the same sensitivity to 

motion between patterns but in fact we have separated functionality of the two patterns to 

allow continuous motion, certainly more than 3 patterns PMP technique. Single pattern 

SLI system, such as Composite Pattern (CP), Modified Composite Pattern, and de-bruijn 

modulated Pattern are not able to achieve a high accuracy result.  To solve this problem 

and inspired by the non-ambiguous MCP technique, we introduce the2PFLR SLI system. 

By including a second high frequency sinusoidal pattern, we not only achieve the full 

lateral resolution which in turn leads to a high accuracy 3-D reconstruction, but also 

reduce the number of the patterns utilized to two. Since there are only two patterns in our 
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2PFLR, the system is comparable to the single pattern technique in the term of the speed. 

And the most significant feature is our 2PFLR system allows the relative motion between 

the scanner and the object as long as the object stays in the FOV of the scanner. In our 

2PFLR system, the first pattern is a MCP associated with an improved processing 

technique based on Casey's work, and the second pattern is a high frequency sinusoidal 

pattern. The MCP is utilized to achieve non-ambiguous 3-D reconstruction. The 2nd 

pattern is used to achieve full lateral resolution with a novel Quadrature Processing 

technique. 

Although our 2PFLR SLI system achieves the goal of high scanning speed, the 3-D 

reconstruction has a significant banding distortion. The banding distortion is an issue in 

the SLI techniques due to the gamma distortion of the projected sinusoidal wave, 

interference by surface contrast, and quantization error of the hardware system. The 

banding artifact corrupts the 3-D surface and affects the accuracy of the depth 

measurement. To reduce the banding error, we introduce a Projector Space De-banding 

(PSDb) algorithm which is applicable to most SLI systems. Our PSDb algorithm is based 

on the estimation of the banding error in projector space, and actively suppresses it in 

camera space.  

The second research direction is to allow the relative motion beyond the FOV the 

scanner. The goal of this research is to develop a portable SLI scanning system for large 

scale object 3-D reconstruction. We introduce a single pattern SLI system combined with 

image correspondence alignment to achieve surface scan areas beyond the scanner FOV. 

We design a new single pattern based on MCP technique that has open areas for image 

correspondence. To achieve robust correspondence that allows for irregular scanner 

trajectory, a Constellation Correlation Filter method is developed to track the camera by 

estimating the 3-D transformation matrix sequence of the camera. We use a two pass 

approach to increase the accuracy of the alignment across several frames to reduce 

accumulated error. By using the 3-D transformation matrix sequence, all the image 

frames are aligned to a single point cloud of the entire surface.  
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6.2 Future Research 

For the 2PFLR SLI depth measuring system, the accuracy depends on the frequency of 

the 2nd sinusoidal pattern, however this spatial frequency is limited by the first MCP, so 

the future research may try other types of non-ambiguous single pattern for non-

ambiguous phase recovery. For the RM3D scanner research, the scanning system needs 

estimation of out plane rotation to allow more robust images in uncontrolled environment. 

The future research may include testing other Computer Vision technologies and 

algorithms to improve the camera tracking problem and combine with the SLI techniques 

to achieve a more robust and portable 3-D scanning system. 
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