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ABSTRACT OF DISSERTATION 

 

 

ZHX2 REGULATION OF LIPID METABOLISM AND THE BALANCE BETWEEN 
CARDIOVASCULAR AND HEPATIC HEALTH 

The growing obesity epidemic in America carries with it numerous health 
risks, including diabetes, increased serum lipid levels, and excess fat 
accumulation in the liver. If these conditions persist or become exacerbated, they 
may lead to the development of cardiovascular disease, the current leading 
cause of death among Americans, or to nonalcoholic fatty liver disease (NAFLD) 
which can progress to hepatocellular carcinoma (HCC), one of the deadliest 
forms of cancer. Better understanding of the genes involved in these diseases 
can lead to improved identification of at-risk individuals and treatment strategies.   

Our lab previously identified zinc fingers and homeoboxes 2 (Zhx2) as a 
regulator of hepatic gene expression. The BALB/cJ mouse strain has a 
hypomorphic mutation in the Zhx2 gene, causing a 95% reduction in Zhx2 protein 
expression. The near ablation of Zhx2 in BALB/cJ mice confers protection from 
cardiovascular disease when fed a high fat diet, yet these mice show increased 
hepatic lipid accumulation and liver damage. Microarray data indicates Zhx2 may 
be involved in the regulation of numerous genes involved in lipid metabolism. 
Recent GWAS studies indicate ZHX2 may contribute to the risk of cardiovascular 
disease and liver damage in humans as well.  

In this dissertation, I characterize the role of Zhx2 expression in the liver 
and how it affects the risk of both cardiovascular disease and liver damage. I 
generated liver-specific Zhx2 knockout mice and confirmed Zhx2 regulates 
several novel targets that could contribute to the fatty liver phenotype seen in 
BALB/cJ mice. Further studies revealed that hepatic Zhx2 expression is 
necessary for proper sex-specific expression of several Cyptochrome P450 
(CYP) genes and could contribute to gender differences in disease susceptibility. 
Lastly, I performed studies into the functional role of the Zhx2 target gene Elovl3. 
A mouse model of HCC revealed that Elovl3 is completely repressed in HCC 
tumors. Cell viability and cell cycle assays indicate that Elovl3 expression slows 
cell proliferation and may be important for proper cell cycle checkpoints. 
Together, these data indicate that Zhx2 and/or its targets could be clinically 



relevant in the detection, prevention, or treatment of cardiovascular disease, fatty 
liver, and HCC. 
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Chapter One 

Introduction 

The liver is a key metabolic organ in mammals and its proper functioning 

is necessary to maintain health. The liver is responsible for the metabolism of 

macronutrients from dietary intake, including maintaining serum glucose balance, 

synthesizing non-essential amino acids and proteins, regulating lipid utilization 

and storage, and transporting these molecules through the body (Figure 1). 

Additionally, the liver is main site for synthesis of cholesterol and steroid 

hormones, bile acids, and serum transport proteins (i.e. albumin). The diverse 

functions of the liver continue with its role in detoxification of xenobiotic 

compounds and the elimination of harmful or excessive byproducts (ammonia, 

cholesterol) from the body. Most of the described metabolic functions are 

performed by hepatocytes, the predominant cell type in the liver. Hepatocytes 

comprise 80% of the liver mass, but only about 60% of the actual cells within the 

liver. Other liver cell types include Kuppfer cell (resident macrophages) natural 

killer (NK) cells (also known as Pit cells), as well as hepatic stellate cells, which 

serve as Vitamin A stores in quiescent states but produce collagen upon liver 

damage and can lead to fibrosis [1]. The remaining liver cells are sinusoidal and 

biliary endothelial cells which form a cell barrier between hepatocytes and the 

blood and bile ducts, respectively [2]. As hepatocytes are the primary 

contributors to metabolic functions of the liver, they will be the focus of this 

dissertation. 

Liver Lipid Metabolism 

Hepatocytes in the liver are the main site of multiple aspects of lipid 

metabolism and homeostasis. Under fasting conditions, blood glucose levels are 

low which results in the pancreatic release of the peptide hormone glucagon. 

Glucagon binds to receptors expressed on hepatocytes to activate 
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glycogenolysis, the cleavage of glucose molecules from the stored form 

glycogen. If fasting is prolonged and glycogen stores are depleted, glucagon 

activates hormone sensitive lipase in adipose tissue to hydrolyze fatty acids for 

an energy source for most tissues. Fats released from adipose depots undergo 

beta-oxidation in mitochondria to produce two-carbon acetyl-CoA units that are 

substrates for the Citric Acid Cycle and ATP synthesis. Fatty acids can also be 

transported to the liver where they are converted to glucose through 

gluconeogenesis, and during extreme fasting, they are converted to ketone 

bodies as an alternate energy source.  

In the fed state, short chain fatty acids (<C12), carbohydrates, and 

proteins are transported from the small intestine directly to the liver through the 

hepatic portal vein. Longer chain fatty acids, dietary cholesterol, and the fat 

soluble vitamins A, D, E, and K are packaged into triglyceride-rich chylomicrons 

that are transported through circulating blood to peripheral tissues. Interaction 

between apoCII in the chylomicron membrane and the cell surface enzyme 

lipoprotein lipase (Lpl) in peripheral tissues activates Lpl to hydrolyze dietary 

triglycerides into monoglycerol and two free fatty acids that can be transported 

into the cell. Chylomicron remnants or chylomicrons not utilized by peripheral 

tissues are transported through systemic circulation to the liver, where apoE 

binds hepatic receptors to deliver cholesterol, fat-soluble vitamins, and fatty acids 

for processing by hepatocytes. When dietary intake of carbohydrates and/or 

lipids is in excess of immediate physiologic need, hepatocytes convert them to 

triglycerides to be stored mostly in adipose tissue, but also to a lesser degree in 

the liver. Hepatocytes package triglycerides along with cholesterol in VLDL 

particles which are exported into the circulation, and again taken up by peripheral 

tissues by Lpl activation and hydrolysis. After triglycerides are deposited to other 

cells, the remaining cholesterol-containing particles are considered LDL and 

continue to circulate and transport cholesterol to peripheral tissues and back to 

the liver through receptor-mediated endocytosis. Hepatocytes synthesize apoAI 

and apoAII which are incorporated into the membrane of nascent HDL 

2 
 



 

lipoproteins that facilitate cholesterol uptake from peripheral tissues and transport 

it back to the liver, where it may be excreted as bile.  

Hepatocytes respond to increased glucose availability and insulin 

signaling through coordinated transcriptional regulation of genes to increase the 

synthesis of fatty acids and triglycerides. One key event is insulin signaling to 

activate SREBP1c-mediated induction of lipogenesis in the liver, with resulting 

fatty acids and triglycerides then transported in VLDL particles to peripheral 

tissues or adipose for storage [3, 4]. The cellular sterol content regulates the 

activity of SREBP1a and SREBP2 to induce cholesterol biosynthesis [4]. 

Cholesterol is an essential cellular component and is incorporated into 

membranes with roles in signal transduction and transport of molecules. 

Cholesterol is the precursor to bile acids, which are required for the 

emulsification and absorption of lipids in the digestive tract. Cholesterol is also 

the precursor to steroid hormones, including the sex hormones testosterone, 

estrogen and progesterone [5]. Steroid hormone synthesis involves metabolism 

by the cytochrome P450 (CYP) family of enzymes. CYPs function as 

monooxygenases that are involved in both the synthesis and degradation of 

various compounds, including lipid products and steroids, Vitamin D, bilirubin, 

ethanol, drugs, and toxic byproducts from nutrient metabolism [6]. There are a 

large number of CYP enzymes, as each subgroup operates in response to 

specific stimuli. Due to the metabolism of sex hormones and other substances, 

many CYPs are expressed in a gender-specific manner. The regulation of 

sexually dimorphic CYP expression appears to be in response to growth 

hormone signaling [7, 8].  

Disorders of lipid metabolism and health implications 

Disruptions in the synthesis and storage of triglycerides can manifest in a 

variety of detrimental health concerns. A main cause of disregulated lipid 

homeostasis is diet induced obesity, which has quickly risen to epidemic 

proportions in the U.S., with current estimates of 34.9% of adults (78.6 million) 

classifying as obese [9]. The excess energy supply characteristic of obesity is 
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stored as triglycerides in adipose tissue, which can also accumulate in the liver 

[10]. Increased hepatic lipid accumulation has been associated with insulin 

resistance and Type 2 Diabetes, hyperlipidemia, atherosclerosis, 

hepatosteatosis, non-alcoholic fatty liver disease (NAFLD), and hepatocellular 

carcinoma (HCC) [10, 11].  

NAFLD is a term used to describe the excessive presence of lipids in the 

liver that is not a result of alcohol consumption. NAFLD has several categories of 

manifestations with advancing disease states. Hepatic steatosis (fatty liver) is 

characterized as lipid droplet accumulation in hepatocytes and is the result of an 

imbalance in the triglyceride synthesis, transport, or utilization pathways [11]. 

Steatosis is a reversible condition and can be alleviated with dietary and activity 

modifications [12]. Unfortunately, steatosis is highly prevalent in people with 

obesity, type 2 diabetes, and metabolic syndrome, and often progresses to a 

more severe condition, hepatitis [13-15]. Hepatitis is an inflammatory condition 

marked by infiltration of immune cells and increased necrosis and apoptosis of 

damaged cells [15]. It has been strongly implicated that the inflammation 

associated with hepatitis can cause or exacerbate insulin resistance [11, 14, 16]. 

Hepatic inflammation can interfere with normal insulin response and glucose 

utilization, which then results in a metabolic switch to induce lipolysis, releasing 

triglycerides into the blood and causing hyperlipidemia. Dyslipidemia, elevated 

serum glucose, and obesity are key features of metabolic syndrome, which is a 

key risk factor in developing cardiovascular disease [17, 18]. There is growing 

evidence that NAFLD increases atherosclerotic plaque formation and elevates 

incidence of cardiovascular disease [13, 19, 20]. It is difficult to determine if 

NAFLD is an independent cause of atherosclerosis because it usually occurs in 

conjunction with other risk factors. Cardiovascular disease is the leading cause of 

death among Americans, and the number of people at risk is expected to 

continue to increase along with the rising obesity rate [21].  

In addition to the cardiovascular implications of NAFLD, the inflammation 

and increasing damage to hepatocytes can result in fibrosis, the development of 
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scarring that interferes with normal liver function, and cirrhosis. Hepatic stellate 

cells become activated in response to increasing hepatocyte death. Stellate cells 

attempt to repair damaged tissue by expanding collagen fibers and extracellular 

matrix proteins around the injury site [15]. Prolonged damage increases the 

amount of collagen produced and results in cirrhosis. Cirrhosis is considered 

end-stage liver disease and results in liver failure and death [22]. Between 5-30% 

of people with cirrhosis will progress to HCC, depending on the disease severity 

at diagnosis and other risk factors [23]. HCC is the fifth most common cancer and 

is the third leading cause of cancer deaths worldwide. The most common causes 

of HCC are viral infections (hepatitis B and C) and alcohol abuse [15]. Patients 

with these risk factors can undergo serum screening for elevated alpha-

fetoprotein (AFP) and ultrasound imaging for HCC tumor detection, which are 

currently the best methods of identifying HCC. These methods are not highly 

specific or accurate since serum AFP can be elevated in response to any type of 

liver damage, and many people do not present with the traditional risk factors for 

HCC. In recent years, metabolic syndrome and associated NAFLD have become 

increasingly linked to HCC. HCC has a high mortality rate and very poor survival 

prognosis in part because there are few reliable diagnostic markers for HCC, 

which is an alarming realization when paired with a huge potential increase in 

people at risk due to obesity and metabolic syndrome. HCC is projected to be the 

third leading cause of cancer deaths in the United States by 2030 [24]. A better 

understanding of early events in the development of HCC and better detection 

methods is critical to preventing this anticipated surge in HCC related deaths.  

 

Zinc Fingers and Homeoboxes 2 (Zhx2) 

AFP was the first diagnosed oncofetal gene in that it is normally 

expressed during fetal life, silenced at birth, and reactivated in cancer [25]. 

Serum AFP levels is a widely used diagnostic marker to detect liver damage and 

possible HCC, so understanding its expression is of clinical interest. A screen of 

various mouse strains revealed very low AFP levels in adult serum [26]. 

However, the one exception was the BALB/cJ substrain, with serum AFP levels 
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roughly 20-fold higher than other mouse strains (Figure 2). The persistent AFP 

expression in BALB/cJ mice was characterized as a monogenic trait and mapped 

to mouse chromosome 15 [27]. Additional studies indicated that elevated serum 

AFP levels correlated with increased hepatic AFP mRNA levels, suggesting that 

difference was occurring at the level of gene regulation [26].  A molecular screen 

for other genes expressed similarly to AFP (high in fetal liver, silenced at birth, 

persistent expression in adult BALB/cJ liver) identified H19 as another Zhx2 

target [28]. Our lab found that Glypican 3 (Gpc3) is silenced in the perinatal liver 

but expressed at higher levels in BALB/cJ liver [29], similarly to AFP and H19. 

Using positional cloning, our lab identified a mutation in the BALB/cJ Zhx2 allele 

as being responsible for the persistent AFP and H19 expression in the adult liver 

of these mice [30]. For confirmation, overexpression of a liver-specific Zhx2 

transgene in BALB/cJ mice resulted in normal AFP and H19 silencing after birth 

[30] (Figure 3). The mutation in BALB/cJ Zhx2 allele is due to a Mouse 

Endogenous Retroviral (MERV) insertion element within the first Zhx2 intron that 

dramatically reduces, but does not eliminate, Zhx2 expression [30, 31]. Thus, the 

Zhx2 mutation in BALB/cJ mice is hypomorphic, resulting in Zhx2 mRNA levels 

that are roughly 5% of that found in strains with a wild-type Zhx2 allele. These 

combined data suggest that Zhx2 functions to repress target genes in the 

perinatal liver, and the reduction in Zhx2 levels in BALB/cJ livers results in 

persistent expression of these genes.  

Zhx2 is the member of a small family of highly conserved vertebrate-

specific genes (Zhx1, Zhx2 and Zhx3).  Each Zhx protein contains two amino-

terminal C2H2 zinc finger domains, typically associated with DNA, RNA, and 

protein interactions, and four to five carboxy-terminal DNA-binding 

homeodomains, suggesting that these proteins function as transcriptional 

regulators [32]. Early studies indicate that ZHX proteins can homodimerize and 

heterodimerize with each other, and luciferase assays suggest that ZHX proteins 

function as transcriptional repressors [32, 33]. Chromatin immunoprecipitation 

(ChIP) and luciferase reporter assays indicate that ZHX2 binds to and regulates 

the human AFP and Gpc3 promoters [34]. Taken together, these data are 
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consistent with our model of Zhx2 acting to repress AFP and Gpc3 expression in 

the adult liver. Further, ChIP analysis in human HCC cell lines indicate that ZHX2 

binds to the promoter regions of CCNA2 and CCNE1, the genes coding for 

Cyclins A and E, respectively, and inhibited their transcription [35]. However, 

other data suggests Zhx2 may regulate target gene expression at the 

posttranscriptional level (Martha Peterson, unpublished data, [36]). Additionally, 

as described in this dissertation, we have recently identified several novel Zhx2 

targets, including Elovl3, Cyp2a4, and MUPs, that are regulated by Zhx2.  These 

data indicate that Zhx2 is involved in both gene activation and repression.  

Zhx2 targets in HCC and other diseases 

The Zhx2 target AFP serves as a model for examining gene expression in 

fetal development and disease. AFP is expressed at very high levels in the fetal 

liver, repressed over 1000-fold shortly after birth, and becomes reactivated in 

liver damage [25, 37]. AFP is a serum transport protein that circulates lipids, 

steroids, and other substances through the body. Although it is commonly used 

as a diagnostic marker for liver damage and HCC, the functional relevance of its 

increased expression in liver disease is not clear. In humans, hereditary 

persistence of AFP (HPAFP) is considered a benign condition with no known 

health risks [38] Known cases of HPAFP have indicated a mutation in the 

hepatocyte nuclear factor-1 (HNF1) binding site in the AFP promoter results in 

the elevated AFP expression [39, 40]. Although the basis for persistent AFP 

expression in adult BALB/cJ mice is different than HPAFP in humans, they 

similarly do not appear to have any adverse consequences associated with 

increase serum AFP levels.  

Since AFP is frequently reactivated in HCC, there is interest in whether 

other Zhx2 targets and Zhx2 itself are disregulated in HCC. Gpc3 has a similar 

expression pattern to AFP in that it is expressed in the fetal liver, repressed at 

birth, and remains silent in normal adult tissue [41]. Gpc3 is a heparin sulfate 

proteoglycan present on the cell surface and linked to the membrane by 

phosphatidylinositol [42]. Proteins in this category are associated with cell-cell 
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interactions and formation of extracellular matrix, and may integrate signals for 

cell growth and division. Humans with loss of function Gpc3 mutations suffer from 

Simpson-Golabi-Behmel Syndrome (SGBS), characterized by overgrowth in both 

prenatal and postnatal development, multiple body dysmorphisms, and frequent 

death in infancy [43]. Gpc3 knockout mice display many of these maladies, but 

studies in the mice have not elucidated the mechanism that causes SGBS [44]. 

Gpc3 is silenced in normal adult tissues but becomes elevated in HCC, making it 

another candidate HCC diagnostic marker. In fact, some studies suggest Gpc3 is 

more specific for HCC than AFP and could be used for more accurate diagnosis 

[34]. Elevated serum Gpc3 is associated with poor prognosis in HCC patients 

[45] and increased Gpcs3 detected by IHC has over 95% predictive rate of 

pediatric hepatoblastoma [46]. Gpc3 may increase the metastatic properties of 

cells through ERK signaling [47]. Antibodies targeting Gpc3 inhibit Wnt signaling 

and reduce tumor xenografts in nude mice [48], so there is potential for HCC 

therapeutic treatment by regulating Gpc3.  

H19 was the second Zhx2 target to be identified. H19 is a long non-coding 

RNA and serves as a model of parent-of-origin genomic imprinting [49]. The H19 

transcript is processed into microRNA (miR) [50], and may also interact with 

other miRs and thus contributes to gene regulation [51]. H19 knockout mice 

appear to develop normally, yet overexpression of H19 in zygotes results in 

perinatal death [52]. The role of H19 in tumorigenesis has yet to be elucidated. 

Studies have reported increased H19 expression in pancreatic, ovarian, and 

bladder cancers [53-55]. Additional studies suggest that H19 is necessary for 

HCC tumor growth [56], and targeted interference of H19 inhibits cell proliferation 

and induces apoptosis [57]. In contrast, H19 has also been identified as a tumor 

suppressor in colorectal cancer and in HCC [58]. Based on these conflicting data, 

further analysis of the role of H19 in cancer is warranted. In addition to its 

involvement in cancer, polymorphisms in H19 has been associated with 

increased risk of coronary artery disease (CAD) in Chinese men [59]. The impact 

of the polymorphism is unknown, but altered H19 expression increased the risk 

and severity of CAD in the study subjects.  
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Lipoprotein lipase (Lpl) is expressed at high levels in the fetal liver, 

silenced at birth, continues to be expressed at elevated levels in adult BALB/cJ 

liver, and silenced in BALB/cJ mice expressing a liver-specific Zhx2 transgene 

(H. Ren, unpublished). This suggests that Lpl is also a target of Zhx2. Increased 

Lpl expression has been observed in cases of HCC as well as cervical squamous 

cell carcinoma, chronic lymphocytic leukemia, and non-small cell lung cancer 

[60-62]. Lpl facilitates the uptake of fatty acids into cells for energy production, 

which is necessary for the high metabolic requirements of tumorigenic cells [63]. 

Although its expression is altered in cancer, normal Lpl expression is necessary 

for fetal development and cardiovascular health in mature organisms. Lpl 

knockout mice suffer from severe hyperlipidemia and die shortly after birth due to 

blood saturation of chylomicrons and lack of energy in peripheral tissues [64]. 

Partial deletion mutations in human LPL are associated with elevated serum 

lipoproteins [65, 66]. Lpl overexpression in otherwise healthy animal models 

alters lipid metabolism, results in increased atherosclerosis and skeletal muscle 

damage due to lipotoxicity [67, 68], and may contribute to insulin resistance [69]. 

In mouse models of diabetes, increased transgenic Lpl expression has a 

protective effect and has been shown to reduce diabetic hyperlipidemia and 

lessen atherosclerotic lesions [70]. The cardioprotective effect may depend on 

tissue-specific expression, as reduced Lpl in vascular tissue is associated with 

less lipoprotein infiltration [71]. 

 

The disregulation of many Zhx2 targets in HCC leads to question if Zhx2 

expression is also altered in liver cancer. Current data regarding Zhx2 expression 

in HCC tumors are conflicting. A study utilizing sequence screening of tumor and 

adjacent non-tumor tissue reported that CpG islands in the Zhx2 promoter were 

hypermethylated in HCC, resulting in reduced Zhx2 expression in tumors [72]. In 

contrast, another study analyzing tissue samples by immunohistochemistry (IHC) 

noted that Zhx2 protein was expressed only in HCC samples compared to 

cirrhotic liver, cholangitis samples, and normal adjacent tissue [73]. This second 

study also indicated that increased Zhx2 was associated with more advanced 
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stages of HCC. Dr. Chunhong Ma and our collaborators at Shandong University, 

China have found that ZHX2 overexpression reduced proliferation of HCC cells 

as well as reduced the growth of tumor xenografts in nude mice [35]. Further, 

they showed that the Zhx2 proteins were primarily in the nucleus in non-tumor 

liver tissue, but localized to the cytoplasm in HCC samples [35]. This data 

suggests that ZHX2 is excluded from the nucleus in HCC, effectively blocking its 

ability to control expression of target genes. More recently, our collaborators 

published data showing again reduced nuclear ZHX2 localization in HCC tumors 

and a resulting increase in Gpc3 expression in human patient samples [34]. In 

tumor samples from a mouse model of HCC, my analysis indicates increased 

mRNA levels of AFP, Gpc3 and Lpl in tumors compared to control liver samples, 

but no difference in total Zhx2 mRNA expression in normal and HCC samples  

(Figure 4). My analysis of mouse HCC samples indicates that Zhx2 accumulates 

in the cytoplasm and is excluded from the nucleus, consistent with published 

findings. The nuclear exclusion seen in these samples would likely cause the 

disregulation of target genes without necessarily altering the total Zhx2 mRNA or 

protein levels. The mechanism causing the altered Zhx2 localization and 

subsequent disregulation of target gene expression will provide great insight into 

the progression of liver damage and HCC, and may identify new therapeutic 

targets.  

Zhx2 has also been implicated in the regulation of lipid metabolism genes 

and cardiovascular disease risk. Serum lipid analysis performed on various 

mouse strains found that on a high fat diet (HFD), BALB/cJ mice have reduced 

serum lipid levels and fewer atherosclerotic plaques than other strains. 

Quantitative trait locus (QTL) mapping identified this trait, known as 

Hyperlipidemia2 (Hylip2), to a region on mouse chromosome 15 [74]. The Hylip2 

phenotype results in hypertriglyceridemia due to reduced clearance of serum 

triglycerides. The BALB/cJ Hyplip2 allele confers cardiovascular protection by 

increased triglyceride clearance and lower circulating lipid levels, resulting in 

fewer atherosclerotic lesions. In collaboration with the lab of Jake Lusis (UCLA), 

we identified Zhx2 as the gene responsible for the Hylip2 phenotype [75].  
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BALB/cJ mice expressing a liver-specific Zhx2 transgene exhibited significantly 

higher plasma cholesterol and triglycerides and increased atherosclerotic 

plaques compared to non-transgenic BALB/cJ littermates. Consistent with this 

mouse data, ZHX2 has been identified in two human GWAS studies with 

interactions in cardiovascular disease. GWAS analysis of over 31,000 patients in 

the CHARGE consortium identified single nucleotide polymorphisms (SNPs) in 

ZHX2 as the strongest predictive factor of lower carotid intima media thickness 

(cIMT), a subclinical marker of atherosclerosis [76]. A GWAS study analyzing 

data gathered on black and white males in the Bogalusa Heart Study found that a 

particular ZHX2 SNP was strongly associated with cIMT in white males [77]. It is 

not clear how the SNPs evaluated in the study affect the expression or function 

of ZHX2 in humans, but these data indicate ZHX2 has a role in the risk of 

developing cardiovascular disease in humans. The significance of Zhx2 

involvement in serum lipid levels and cardiovascular disease risk is a new 

avenue of investigation for our lab. The Lusis lab performed microarray analysis 

in congenic mice expressing wild-type or the mutated BALB/cJ Zhx2 alleles.  This 

analysis identified over 1000 genes that showed differences in expression in the 

presence or absence of Zhx2 and are therefore potential new targets of Zhx2.  

My dissertation explores the effects of Zhx2 on the regulation of lipid 

metabolism gene expression and resulting disease risk. Many of these studies 

have utilized a novel mouse model I developed that utilized mice with a floxed 

allele of Zhx2 in the BL/6 background; by crossing these mice with Albumin-Cre 

transgenic mice, I have been able to delete Zhx2 specifically in hepatocytes.  I 

have identified several novel Zhx2 targets and further developed the mechanism 

by which hepatic Zhx2 deletion increases hepatic lipid accumulation, resulting in 

lower serum triglycerides and lower risk of cardiovascular disease. I have 

identified the cytochrome P450 enzyme Cyp2a4 as a Zhx2 target, and 

discovered that Zhx2 regulates sexually dimorphic CYP gene expression in the 

adult liver. Additionally, I have characterized the regulation and function of the 

Zhx2 target Elongation of very long chain fatty acids-like 3 (Elovl3) in cell cycle 

regulation and HCC progression.  
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Figure 1. Overview of lipid metabolism in the liver. The liver is the main 
processing site of nutrient metabolites. The liver synthesizes numerous 
Cytochrome P450 (Cyp) enzymes which synthesize cholesterol and bile acids, as 
well as break down drugs, toxins, and other substances to be removed from the 
body. Bile secretion into the intestine is necessary for the absorption of dietary 
fats that are packaged into chylomicron particles. Lipoprotein lipase (Lpl) on the 
surface of peripheral tissues hydrolyzes triglycerides from chylomicrons for 
uptake into cells. Unused remnants travel back to the liver for processing. 
Cholesterol is exported from the liver in VLDL particles for delivery of substances 
to peripheral tissues, and unused particles are reabsorbed by the liver. In cases 
of excess dietary intake, fat can accumulate in the liver, causing non-alcoholic 
fatty liver disease (NAFLD). Continued damage resulting in inflammation and 
macrophage infiltration is characterized as non-alcoholic steatohepatitis (NASH). 
Prolonged damage to the liver increases the risk of hepatocellular carcinoma 
(HCC).  
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Figure 2. Postnatal AFP repression in inbred mouse strains. RNA was 
isolated from mouse livers at embryonic day 19 and periodically from birth to day 
28. Mice have high AFP expression during fetal development which is repressed 
after birth. C3H and B6 mice have rapid and dramatic repression of AFP 
expression.  BALB/cJ mice have delayed onset of repression that is incomplete 
at day 28. BALB/cJ mice continue to express AFP 10 to 20-fold higher than other 
mouse strains. Copyright 1982 Molecular and Cellular Biology.  
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Figure 3. Hepatic Zhx2  transgene expression restores AFP repression. 
Mouse liver RNA amplified by RT-PCR to detect Zhx2, AFP, and Zhx2 transgene 
expression. BALB/c mice with wildtype Zhx2 expression (Lane 1)  have postnatal 
AFP repression. BALB/cJ mice (Lanes 2-3) have greatly diminished Zhx2 
expression and persistent AFP expression. BALB/cJ mice with  liver-specific 
Zhx2 expression (Lanes 4-5) have elevated Zhx2 and restoration of AFP 
repression. These data confirm Zhx2 represses AFP in the mouse liver. L. 
Morford, unpublished data.  
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Figure 4. Zhx2 targets, but not Zhx2, are overexpressed in HCC tumors. 
Male C3H-B6 F1 offspring were injected with PBS (n=5) or DEN (n=16) to initiate 
liver tumor development in a mouse model of HCC. At 36 weeks post-injection, 
liver and tumor samples were collected and analyzed by qPCR for expression of 
Zhx2 (A), and its targets AFP (B), Gpc3 (C), and Lpl (D). AFP, Gpc3, and Lpl 
have increased mRNA expression in HCC tumors, but Zhx2 expression does not 
change. Values are normalized expression shown as fold change to controls.  * 
p<0.05, **p<0.01.  
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Chapter 2  

Materials and Methods 

Mice 

All mice were housed in the University of Kentucky Division of Laboratory Animal 

Research (DLAR) facility and kept according to Institutional Animal Care and Use 

Committee (IACUC) approved protocols. All mice had ad libitum access to food 

and water and were maintained on a 12/12 hour light/dark cycle.  

 

Generation of hepatocyte-specific Zhx2 knockout (Zhx2∆hep) mice:  

Breeding pairs of C57Bl/6 mice with a Zhx2 floxed allele (Zhx2fl) were purchased 

from the Knockout Mouse Project Repository at the University of California-

Davis. In these mice, exon 3 has been flanked by loxP sites. Since the entire 

Zhx2 coding region is found on exon 3, deletion of this exon results in the loss of 

the entire Zhx2 protein.  These mice were crossed with C57/Bl6 mice expressing 

cre recombinase driven by the liver-specific Albumin promoter (Alb-Cre) (Jackson 

Labs). Mice were bred to achieve homozygous floxed Zhx2 alleles with Alb-Cre 

expression (Zhx2∆hep), or without Alb-Cre (Zhx2f/f) serving as littermate controls. 

Mice were maintained under normal conditions until 4-8 weeks old, then 

euthanized by CO2 asphyxiation for tissue harvest.  

 

Genotyping: 

At approximately 10-days of age, each mouse pup was given an ear punch for 

identification and the tissue was collected. DNA was extracted by incubation in 

lysis buffer (100mM Tris-HCl pH 8.5, 5mM EDTA, 200mM NaCl) with 2.5 units 

proteinase K (Sigma) followed by isopropanol precipitation and washing with 

95% ethanol. The DNA pellet was resuspended in water, then genotyped by PCR 

amplification using the appropriate primers (Table 1) with ThermoStart Master 

Mix according to manufacturer’s protocol (ThermoScientific). Samples were 

analyzed by gel electrophoresis and visualized by a UV lightbox. 
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Murine model of atherosclerosis with hepatocyte specific Zhx2 knockout mice:  

A breeding pair of LDLr-/- mice were purchased from Jackson Laboratory. After 

two weeks of acclimation, LDLr-/- mice were bred to Zhx2f/f and Zhx2∆hep mice. 

Offspring were genotyped and crossbred to obtain homozygous LDLr-/- and 

Zhx2f/f with and without Alb-Cre expression. LDLr-/-, Zhx2∆hep and control LDLr-/-, 

Zhx2f/f littermates were weaned onto a high fat, high cholesterol diet (TD.94059, 

Harlan Teklad; Appendix A) at 21 days old and were maintained on this diet for 

18 weeks. Mice were monitored for weight gain every week, and serum 

collections were obtained every 4 weeks throughout the study.  

 

Serum Collection: 

Starting at the second week on the HFD study (mouse age 5 weeks old) and 

repeated every four weeks, serum collections were obtained by submandibular 

bleeding. Mice were fasted starting at 8:00am for five hours but had access to 

water. Mice were manually restrained and punched with a lancet 

(Goldenrod/Medinet) to penetrate the submandibular vein in the cheek. Blood 

was collected in a serum separator tube (~20-100ul blood per collection, 

depending on age of mouse) and incubated at room temperature for at least 30 

minutes before centrifugation at 13000 xg rcf for 1 minute. Serum was aspirated 

by pipetting and transferred to a 1.5ml Eppendorf tube and stored at -80°C.  

 

Euthanasia and Tissue Collection: 

Mice were maintained on HFD for 18 weeks with weekly weight measurements 

and monthly serum collections. After the 18th week, mice were fasted beginning 

at 8:00am for five hours. Mice were weighed and administered Tribromoethanol 

(Avertin) by intraperitoneal injection (250 mg/Kg body weight) and monitored for 

non-responsiveness to sensory stimuli. Mice were dissected and underwent 

transcardial perfusion with PBS to complete exsanguination. For each mouse, 

the liver was removed and separated into three portions: one section was placed 

in OCT media and frozen at -80° (for IHC-F), one section as placed in a tissue 
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cassette and formalin fixed (for IHC-P), and one portion was flash frozen and 

stored at -80° (for RNA extraction). The aorta was removed from surrounding 

tissue and placed with the aortic root perpendicular to the bottom of a tissue 

cassette and fixed in OCT media and frozen at -80°C. 

 

Developmental timepoint studies:  

Female C3H/HeJ (C3H) mice were bred to male C57Bl/6J (Bl/6) mice, and 

female mice were monitored for vaginal plugs to estimate the time of fertilization. 

Pregnant females were euthanized by CO2 asphyxiation at 17.5 days post-

conception and the amniotic sac removed. Neonatal pups were euthanized by 

decapitation, and pups aged more than 14 days were euthanized by CO2 

asphyxiation. All pups were dissected and livers were isolated, frozen, and stored 

at -80° C. 

 

Liver Regeneration:  

Mouse liver regeneration was induced by a single intraperitoneal injection of 

carbon tetrachloride (CCl4). Adult male C3H and Bl/6 mice were administered 

either 0.05 ml mineral oil (MO, n=5) or 0.05 ml 10% CCl4 diluted in MO (n=5). 

After 3 days, animals were euthanized by CO2 asphyxiation, the livers were 

removed, and samples were analyzed by quantitative Real-Time PCR of genes 

indicative of hepatic injury.  

 

Murine model of hepatocellular carcinoma:  

Female C3H mice were bred to male Bl/6 mice and monitored until pups were 

born. At 14 days of age, male offspring were injected with either 

diethylnitrosamine (DEN, n=16) or PBS (n=5) at a dose of 10ul/g body weight. 

Mice were weaned at 21 days of age and maintained under normal conditions for 

36 weeks. Mice were euthanized by CO2 asphyxiation and examined for HCC 

tumor development.  
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RNA extraction, cDNA synthesis, and Quantitative Real-Time PCR: 

Samples were stored at -80° C until needed and then thawed on ice. 

Approximately 100 mg of tissue or 106 cells were homogenized in 1 ml RNAzol 

RT (Sigma #R4533) and mRNA was extracted according to the product technical 

bulletin. Rehydrated RNA was quantified by OD measurement using a NanoDrop 

Spectrophotometer (Thermo Scientific). cDNA was synthesized from 1 ug RNA 

by the iScript cDNA Synthesis Kit (BioRad #170-8891) per manufacturer’s 

protocol. Quantitative Real-Time PCR (qPCR) reactions using SYBR Green PCR 

Supermix (BioRad #172-5275) were performed with a CFX96 Touch Real-Time 

PCR Detection System and results were analyzed with the CFX Manager 

software (BioRad). Oligonucleotide primer sequences are listed in Table 2. qPCR 

Ct values were normalized to the ribosomal protein L30 and is reported as 

Normalized Expression of the indicated gene. Data shown as Fold Change was 

normalized to L30, then values were calculated using the ∆∆Ct method. 

 

Immunohistochemistry: 

Dissected mouse tissues were embedded in OCT media (#), flash frozen, and 

stored at  -80°C. Frozen tissues were acclimated to -20°C and sectioned (10um 

thick) using a Microm HM505 N cryostat. Sections were placed onto glass slides, 

air dried for 10 minutes, then fixed in 4% paraformaldehyde for 10 minutes. 

Slides were washed twice in cold 1xPBS buffer then blocked with the appropriate 

serum blocking buffer at room temperature for one hour. Primary antibody 

detecting Zhx2 (abcam #96083, 1:250) was incubated overnight at 4°C, washed 

twice with 1xPBS, then incubated with secondary antibody (SouthernBiotech 

#4010-13, 1:200)for 1.5 hours at room temperature. Slides were mounted with 

aqueous mounting media (Dako #2013-05) and covered. Slides were imaged 

with a Nikon Eclipse 80i upright microscope with NiS Elements software.  

 

Oil Red O Staining 
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Frozen mouse tissues embedded in OCT were sectioned at 10 um thick using a 

cryostat. Section were fixed in 10% buffered formalin for 10 minutes then washed 

in distilled water for 5 minutes. Slides were submerged in 60% isopropanol for 10 

minutes to dehydrate the tissues. Oil Red O stain (Sigma #O0625, 0.5% in 100% 

isopropanol) was diluted 3:2 in distilled water and filtered. Slides were stained for 

15 minutes while rocking, then washed with 60% isopropanol and counterstained 

with hematoxylin. Slides were mounted and covered and visualized Nikon 

Eclipse 80i upright microscope with NiS Elements software.  

 

Cell Culture: 

Cryopreserved HEK293, Huh7, and HeLa cells were removed from liquid 

nitrogen, thawed, and grown in T25 flasks with Dulbecco’s minimal eagle’s media 

(DMEM, Corning Cellgro #10-017-CV) supplemented with 10% fetal bovine 

serum (FBS, Fisher #03-600-511) and maintained in an incubator at 37°C and 

5% CO2. 

 

Expression Plasmid Cloning:  

A full-length expression vector for mouse Elovl3 was generated by PCR 

amplification (Forward primer: GCCACCATGGACACATCCATGAATTTCTCAC; 

Reverse primer: GGATCCTTGGCTCTTGGATGCAACTTTG) of mouse liver 

cDNA. Amplicons were cloned into the pGEM-T Easy vector (Promega #A1360), 

sequenced, excised using EcoRI and BamHI restriction digests, and cloned into 

the pcDNA3.1 expression vector (Invitrogen V790-20). Elovl3 and empty vector 

pcDNA3.1 expression plasmids were transformed into competent E. coli cells 

using a standard cell transformation protocol. Plasmid preparations were 

performed using a Plasmid Max Kit (Qiagen #12165). DNA was quantified by OD 

measurement using a NanoDrop Spectrophotometer.  

 

Transfection of Expression Plasmids: 

Cells were seeded onto 10 cm2 plates and cultured for 24 hours to obtain 70-

80% confluence. Transfection reactions using Turbofect reagent (Thermo 
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Scientific #R0531) were performed according to the manufacture’s protocol. Cells 

were co-transfected with a GFP expression plasmid to visualize transfection 

efficiency prior to further experimentation.  

 

Growth in Soft Agar:  

Transfected Huh7 cells were cultured for 24 hours, then washed with PBS and 

treated with trypsin to lift cells from the plates. Cell suspensions were centrifuged 

at 1400 x g for 10 minutes at 4°C, decanted, washed with 1 ml PBS and 

centrifuged again, then resuspended in 1 ml PBS. Cells were counted and then 

seeded in 96-well plates with media supplemented agar as described [78]. A 

feeder layer consisting of 25 ul growth media mixed with 25 ul warm 1.2% agar 

(RPI cat #9002-18-0) was added to each well of a 96-well plate and allowed to 

solidify. A cell layer of 25 ul 0.8% agar mixed with 5000 cells suspended in 

growth media was seeded on top of the feeder layer and allowed to solidify. 

Another layer 25 ul growth media with 25 ul 1.2% agar was gently added on top 

of the cell layer. The plate was covered and cultured in the cell incubator for one 

week. Each sample was plated in triplicate wells, and the experiment was 

repeated three times. Cell viability was measured by CellGlo Titer Luminescent 

Cell Viability Assay (Promega #G7570) according to the product protocol and 

results were read on a luminometer. Sample luminescent values were 

normalized to wells containing media and agar layers without cells to account for 

background. Luminescent values for control cells were set to 100% and 

compared to values of Elovl3 transfected cells in three separate experiments.  

 

Cell Synchronization and Analysis of Cell Cycle:  

GFP and Elovl3 or pcDNA3.1 co-transfected cells were cultured for 24 hours 

then synchronized by blocking cell growth using a double Thymidine block. 

Thymidine dissolved in DMEM was added to plates to a final concentration of 2.5 

mM.  After incubation for 17 hours, cells were washed three times with PBS and 

supplied with fresh growth media for 9 hours. At this time, cells were again 

blocked with 2.5 mM Thymidine solution for 15 hours, then washed with PBS. 
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Cells were collected at this time (time 0) and at subsequent hourly timepoints. 

Cells were fixed overnight in 70% ethanol then washed with 1 ml ice cold PBS 

and centrifuged at 1400 x g for 10 minutes at 4°C three times. Cells were 

resuspended in 1 ml cold PBS and treated with RNAse A (Sigma #R-5125) at 

37°C for 30 min. Cells were stained with propidium iodide (Roche 

#11348639001) and strained to remove cell aggregates immediately prior to 

analysis by Flow cytometry. Cells were gated for GFP expression then analyzed 

for DNA content to estimate the number of cell in each phase of the cell cycle. 

Flow cytometry analysis was performed by the Flow Cytometry & Cell Sorting 

core facility at the University of Kentucky.  

 

Statistical analysis: 

All values within a group were averaged and plotted as mean +/- standard 

deviation. p-values were calculated between two groups using student’s t-test 

and between three or more groups by ANOVA followed by Tukey’s test. A p-

value less than or equal to 0.05 was considered significant. Data was graphed 

and analyzed using GraphPad Prism 6 software. 
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Table 1. Primer Sequences, Genotyping.  
 

Gene Sequence (5’) 

Cre Recombinase F: ACCTGAAGATGTTCGCGATTATCT 

R: ACCGTCAGTACGTGAGATATCTT 

LDLr Neo Cassette  F: AGGTGAGATGACAGGAGATC 

R: ACCCCAAGACGTGCTCCCAGGATGA 

R: CGCAGTGCTCCTCATCTGACTTGT 

Zhx2 Floxed Allele  F: GGACCGAATCTCACTATTTAACTCA 

R: ACAACGGGTTCTTCTGTTAGTCC 
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Table 2. Primer Sequences, qRT-PCR 
  

Gene Forward Reverse 
AFP CCGGAAGCCACCGAGGAGGA TGGGACAGAGGCCGGAGCAG 
CD36 AAAGTTGCCATAATTGAGTCCT AAAGTTGCCATAATTGAGTCCT 
ChREBP CATCTCCAGCCTCGTCTTC CTTGGTCTTAGGGTCTTCAGG 
CPT1A ACTCGCTGAAGGTGCTGCTCTC GTGCTGTCATGCGTTGGAAGTC 
CPT1B TTCAACACTACACGCATCCC GCCCTCATAGAGCCAGACC 
CPT2 CACAGCATCGTACCCACCAT TGTCTTCCTGAACTGGC TGTC 
CYP1A1 CCGGCATTCATCCTTCGT GCCATTCAGACTTGTATCTCTTGTG 
CYP1A2 ATCCTTTGTCCCCTTCACCAT GGGAATGTGGGAAGCCATTCA 
CYP2A4 GGAAGACGAACGGTGCTTTC TTC CCA GCA TCA TTC TAA GA 
CYP2A5 GGA AGACGAACG GTG CTT TT TTC CCA GCA TCA TTC GAA GC 
CYP2B9 CCTCGACTACATTGCCCATAG GTTCTGGTGATGGAACTCTGTG 
CYP2B13 GCTTTTCTACCCTTCTCCACAG ATGTCCTTAGAAGCAACAGGGC 
CYP2C40 TGGAAGAGGAAGGATTCCGG TCACTGTGAAGACCCTTGTGG 
CYP2D9 AGAAGTCTCTGGCTTAATTCCTG GTGGTCCTATTCTCAGTCAACAC 
CYP2D10 GAAGGTCTTCCAAGGTCAGAAG CAGCATTCCCCTTTACCTTCTC 
CYP3A16 GATGCCCTCTTTTTGGTTCTGTTGGC TCAGGTTGGAATTCTTCAGGCTCTGG 
CYP3A25 TCCTCTTCACCGAAATCCTGAG TCCTGGGTCCATTTCCAAAGG 
CYP4A10 TCCTTAATGACCCTAGACACTG TGAAAGATATTCCTCACACGGG 
CYP4A12 ATCCTTCTCGATTTGCACCAGG TTCATCGCAAACTGTTTCCCAATG 
CYP7A1 GGGCTGTGCTCTGAAGTTCGG CACAGAGCATCTCCCTGGAGGG 
CYP8B1 CAGAGAAAGCGCTGGACTTC GGCCCCAGTAGGGAGTAGAC 
CYP39A TGGCTCCTGGCGCTGTTTGAG TGGACTGTATTGACGTGTTTCCGTCT 
Elovl1 GTGGCCCAGCCCTACCTTTGG TGGTAGTTGCAGCTGGGCATGA 
Elovl2 TCACCACGCGTCCATGTTCAACA AAGCTGTTCAGGGTGGGTCCAA 
Elovl3 CCTCTGGTCCTTCCTGGCA CGGCGTCATCCGTGTAGATGGC 
Elovl4 GTGGGTGGCTGGAGGCCAAG AGCTGCAGCATGGTCAGGTATCG 
Elovl5 ACTGGGTTCCCTGCGGCCAT TTCCACCAGAGGTAGGGACGCA 
Elovl6 TCCTGTTTTCTGCGCTGTACGCT GCACCAGTTCGAAGAGCACCGA 
Elovl7 TCATGGAGAACCGGAAGCCCTT AACCTGTACCCCAGCCAGACA 
HNF4α GGAAGCTGTCCAAAATGAGCG ATG TCG CCA TTG ATC CCA GAG 
L30 ATGGTGGCCGCAAAGAAGACGAA CCTCAAAGCTGGACAGTTGTTGGCA 
Lpl TGGCTACACCAAGCTGGTGGGA GGTGAACGTTGTCTAGGGGGTAGT 
MAT1a GGCTGAAATTCCTCAAGGAGTCA GGGCAAAGAGGGAGATAGCG 
PPARγ GATTCATGACCAGGGAGTTCCT GGTTGTCTTGGATGTCCTCGAT 
STAT5a CGCTGGACTCCATGCTTCTC GACGTGGGCTCCTTACACTGA 
STAT5b GGACTCCGTCCTTGATACCG TCCATCGTGTCTTCCAGATCG 
SREBP1a CCGAGATGTGCGAACTGGAC GGGAAGTCACTGTCTTGGTTG 
SREBP1c GGAGCCATGGATTGCACATTTG CCTGTCTCACCCCCAGCATA 
SREBP2 GGCGTTCTGGAGACCATG AGGGAAGGAGCTACAAAGTTG 
Zhx2 AGGCCGGCCAAGCCTAGACA TGAGGTGGCCCACAGCCACT 
hCyclin A CTGCATCTCTGGGCGTCTTT GTGCAACCCGTCTCGTCTTC 
hCyclin B TGGTGAATGGACACCAACTCT TAGCATGCTTCGATGTGGCA 
hCyclin D GGATGCTGGAGGTCTGCGA TAGAGGCCACGAACATGCAAGT 
hCyclin E CCCCATCATGCCGAGGGAG TTATTGTCCCAAGGCTGGCT 
hB2M GACTTTGTCACAGCCCAAGATAG TCCATTCCAAATGCGGCATCTTC 
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Chapter 3 

Hepatic Zhx2 regulates lipid metabolism genes that alter risks of fatty liver and 

cardiovascular disease 

 

Introduction 

Obesity in the United States is growing in prevalence, with over one-third 

of adults and almost one-third of children and adolescents classified as obese 

[9]. Obese people face a multitude of adverse health effects, such as 

dyslipidemia, diabetes, hypertension, and Metabolic Syndrome, conditions that 

increase the risk and prevalence of cardiovascular disease (CVD) and non-

alcoholic fatty liver disease (NAFLD). CVD is the leading cause of death of 

Americans with close to 800,000 deaths reported annually, and costing an 

estimated $320 billion in treatment as of 2011 [21]. Obesity and its comorbidities 

have strong associations with high fat diet, physical inactivity, smoking, gender, 

race, and age, yet there are numerous contributing genetic factors that are poorly 

understood.  

 

Obesity-related NAFLD is characterized by excess lipid accumulation in 

the liver, which can lead to inflammation and hepatocyte necrosis and apoptosis, 

classified as non-alcoholic steatohepatitis (NASH). Continuing damage and 

increased fibrosis in the liver can progress to cirrhosis with declining liver 

function. Cirrhosis is a risk factor for the development of hepatocellular 

carcinoma (HCC), which is one of the fastest growing cause of cancer deaths in 

America [24]. It is estimated that roughly 30% of the American population has 

NAFLD, and around 3% of these cases will progress to NASH, then cirrhosis or 

HCC [79]. However, almost 90% of obese people have NAFLD, and alarmingly, 

the mortality rate from HCC is five times higher in obese men than those of 

normal weight [80]. Even without the disease progression to cancer, fatty liver 

presents a significant health threat because it contributes to insulin resistance 

and diabetes which are features of metabolic syndrome and risk factors for CVD. 
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Given the dramatic increase of obese Americans, it is imperative to gain better 

understanding of the metabolic disruptions involved in both CVD and NAFLD.  

Zinc fingers and homeoboxes 2 (Zhx2) is a eukaryotic transcription factor 

identified by the Spear lab as a regulator of gene expression. A natural 

hypomorphic mutation in the BALB/cJ Zhx2 gene is responsible for the Hyplip2 

phenotype in this strain characterized by lower serum triglycerides and fewer 

atherosclerotic plaques when placed on a high fat diet compared to what is seen 

in other mouse strains [74]. BALB/cJ mice expressing a liver-specific Zhx2 

transgene have elevated serum lipid levels similar to other strains, confirming 

that hepatic Zhx2 expression contributes to lipid homeostasis and impacts CVD 

risk [75]. Studies in our lab have shown that BALB/cJ mice exhibit increased lipid 

accumulation and liver damage than other strains on HFD (Clinkenbeard Thesis, 

2011).This is an interesting finding in that BALB/cJ mice develop fatty liver and 

yet are protected from CVD, although the two conditions are usually concordant. 

Understanding Zhx2 regulation and identification of its targets will provide better 

insight into the switch between cardiovascular and hepatic protection seen in 

differing Zhx2 status. Notably, two recent human Genome Wide Association 

Study (GWAS) identified ZHX2 as an important risk factor for carotid intima 

media thickness (cIMT), a subclinical marker of atherosclerosis, although the 

functional role of Zhx2 in these cases was not identified [76, 77].  

Microarray data indicate Zhx2 may regulate numerous genes involved in 

lipid metabolism and transport, including lipoprotein lipase (Lpl), HMG CoA 

synthase, Fatty Acid Synthase (FAS), and CD36, among many others. The 

findings in BALB/cJ transgenic mice suggest that hepatic Zhx2 expression is 

sufficient to reverse the cardio-protective phenotype normally seen in these mice. 

As the liver is the major site of lipid metabolism and coordinates many metabolic 

processes, it is logical to examine the impact of hepatic Zhx2 on lipid metabolism 

genes. However, further exploration of Zhx2 regulation of lipid metabolism in the 

liver is limited by the fact that the mutation in BALB/cJ mice is hypomorphic, not 

null [81]. BALB/cJ mice continue to express low levels of Zhx2, but only around 
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5% of what is seen in other strains of mice. Additionally, Zhx2 is expressed 

ubiquitously and therefore Zhx2 and Zhx2-target genes in other tissues could 

contribute to the Hyplip2 phenotype. To elucidate the role of hepatic Zhx2 

expression on lipid gene regulation, I have developed a hepatocyte-specific Zhx2 

knockout mouse line (Zhx2∆hep). The studies described here analyze the impact 

of Zhx2 deletion from hepatocytes on lipid metabolism and the resulting impact 

on CVD and fatty liver.  

Results 

Confirmation of hepatocyte Zhx2 knockout 

To confirm the establishment of the Zhx2 hepatocyte-specific knockout 

mouse line, male mice were genotyped for the expression of Albumin-Cre. 

Zhx2∆hep and Zhx2f/f control littermates were housed under normal condition until 

6 weeks of age, then euthanized for tissue sample collection. Whole liver RNA 

was analyzed by qPCR for the expression of Zhx2 (Figure 5A). Zhx2∆hep mice 

had 97% decrease in Zhx2 mRNA compared to littermates. The remaining Zhx2 

expression in the RNA sample is likely from other cell types, as Zhx2 remains to 

be expressed in Kupffer cells and other non-parenchymal cells in the liver (B 

Spear, unpublished obs.). Immunofluorescence staining of frozen liver sections 

with antibodies demonstrate Zhx2 proteins localized to the nuclei of hepatocytes 

in Zhx2f/f livers (Figure 5C). In contrast, no Zhx2 staining is observed in 

hepatocytes of Zhx2∆hep mice, although nuclear staining is still evident in non-

parenchymal nuclei (Figure 5D). To confirm further the validity of Zhx2∆hep mice, 

we monitored AFP expression, AFP is known to be repressed by Zhx2 and 

continues to be expressed in synthesized in adult BALB/cJ liver.  RT-qPCR 

indicates that AFP mRNA levels are roughly 10-fold higher in Zhx2∆hep mice 

compared to Zhx2f/f controls (Figure 5B). These results are similar to what is 

observed in BALB/cJ mice, confirming Zhx2∆hep mice provide a valid model to 

study hepatic Zhx2 gene regulation.  
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Zhx2 regulates Cyp2a4, Elovl3, and MAT1a 

The cytochrome P450 member Cyp2a4 is a female-specific enzyme that 

catalyzes the hydroxylation of testosterone [82]. Male BALB/cJ have elevated 

expression of Cyp2a4 [83], so we were interested to investigate a connection 

with Zhx2. Male Zhx2∆hep mice have a 5-fold increase in hepatic Cyp2a4 

expression (Figure 6A). Interestingly, female Zhx2∆hep mice have moderately 

reduced Cyp2a4 compared to wildtype female littermates, indicating Zhx2 has a 

role in the gender-specific hepatic gene expression (Figure 12, Chapter4). This is 

discussed further in Chapter 4.  

A potential Zhx2 target gene is Elongation of very long chain fatty acids-

like 3 (Elovl3). Elovl3 synthesizes mono-unsaturated and saturated fatty acids 

22-24 carbons in length [84]. Elovl3 knockout mice are resistant to diet induced 

obesity, which is attributed to increased fatty acid oxidation to support 

thermogenesis [85, 86]. Elovl3 expression is reduced by more than 50% in 

Zhx2∆hep mice (Figure 6B), making Elovl3 the first identified target of Zhx2 to be 

positively regulated. Elovl3 is further described in Chapter 5. 

Methionine adenosyltransferase Ia (Mat1a) is involved in the synthesis of 

S- adenosylmethionine (SAMe), the sole carbon donor source for DNA 

methylation, which is important for epigenetic gene regulation. Mat1a is not 

detectable in fetal liver, but its expression increases during development and is 

expressed in adult liver. Mat1a is repressed in the regenerating liver and is 

greatly reduced in HCC [87]; other Zhx2 targets are also disregulated in these 

conditions. Under normal treatment, Mat1a knockout mice develop NASH by 6 

months and have spontaneous HCC by 18 months of age [88].  Mat1a mRNA 

levels are reduced in the livers of Zhx2∆hep mice, indicating that the Mat1a gene is 

positively regulated by Zhx2 (Figure 6C).  

Hepatic Zhx2 regulates lipid transport genes Lpl, Cpt1a, and Cd36 

Microarray data from livers of BALB/cJ congenic mice with or without the 

wild-type Zhx2 gene identified numerous genes involved in lipid metabolism and 
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homeostasis as putative Zhx2 targets [75]. We are interested in evaluating these 

target genes that are implicated in the control of lipid metabolism. Lpl was of 

interest due its known role in lipid disorders in humans. Lpl is usually expressed 

on the surface of adipose, skeletal muscle, and other non-hepatic tissues but not 

normally expressed in the adult liver. Lpl is activated by ApoCII to hydrolyze fatty 

acids from chylomicrons and VLDL particles for energy use or triglyceride 

storage within those tissues. qPCR of liver tissue shows that hepatic Lpl 

increases nearly two-fold in the absence of Zhx2 (Figure 7A). Lpl is not highly 

expressed in the liver, so the increase seen in Zhx2∆hep mice could result in fatty 

acid clearance from the serum via increased uptake in the liver. This 

disregulation of hepatic Lpl expression provides a possible mechanism for the 

BALB/cJ Hyplip2 phenotype.  

Studies in our lab have shown that BALB/cJ mice on a HFD have 

significantly increased liver lipid accumulation and liver damage compared to 

BALB/c mice, which have a normal Zhx2 gene (Clinkenbeard Thesis, 2011). This 

suggests that the reduction of Zhx2 results in increased lipid retention in the liver 

and a concomitant reduction in serum lipid levels, leading to CVD resistance. The 

transport of long chain fatty acids across membranes requires the activity of 

various enzymes. The carnitine shuttle consists of three enzymes with 

coordinated processes to move long chain fatty acids across the mitochondrial 

membrane for beta-oxidation [89]. Carnitine palmitoyltransferase-1 (Cpt1) 

replaces the CoA group on long chain fatty acids with carnitine, and the resulting 

acyl-carnitine traverses the outer mitochondrial membrane to the inner 

membrane space. Carnitine translocase shuttles acyl-carnitine through to the 

inner mitochondrial membrane in exchange for a free carnitine recycling back to 

the inner membrane space. The carnitine palmitoyltransferase-2 (Cpt2) enzyme 

then cleaves carnitine and substitutes CoA to yield fatty acyl-CoA, which is a 

substrate for acyl-CoA dehydrogenase in the beta-oxidation pathway. Cpt1a has 

two isoforms: Cpt1a is generally expressed in liver, whereas Cpt1b is expressed 

in muscle. Zhx2∆hep mice have roughly half the wildtype hepatic expression levels 

of Cpt1a (Figure 7C). Cpt1b and Cpt2 expression did not differ between Zhx2∆hep 
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and Zhx2f/f  mice (Figure 7D, 7E). Cpt1a activity is necessary for the proper 

utilization of fats and provides another mechanism to explain the increased liver 

lipid accumulation in BALB/cJ mice.  

CD36, a fatty acid translocase, is another lipid transport enzyme involved 

in the uptake of lipids, including oxidized LDL particles and long chain fatty acids 

[90]. CD36 is expressed in hepatocytes and Kupffer cell in the liver, but is 

typically more abundant in adipocytes, skeletal muscle, endothelial cells, and 

blood cells [91]. CD36 in macrophages facilitates the uptake of long chain fatty 

acids and lipoproteins, notably oxidized LDL particles which initiates foam cell 

formation and atherogenesis [92]. Expression of hepatic CD36 in Zhx2∆hep mice 

is reduced about 45% compared to wildtype mice (Figure 7B).  

Zhx2 interactions with other regulators of lipid metabolism 

Sterol regulatory element binding-proteins (SREBPs) are critical regulators 

of genes that control lipogenesis and therefore of interest as potential 

contributors to the Hyplip2 phenotype. SREBP1a activates LDL receptor 

expression for increased cholesterol uptake into cells and SREBP1c integrates 

insulin signals with lipogenic gene transcription [4]. SREBP2 is a key inducer of 

cholesterol biosynthesis [93]. Mutations in the SREBP genes have been 

associated with NASH and metabolic syndrome [94]. While these functions might 

suggest that SREBP genes could be Zhx2 targets, none of these genes is altered 

in Zhx2∆hep mice (Figure 8A-C). Similar to SREBP1c, the carbohydrate response 

element binding protein (ChREBP) is a regulator of lipid synthesis in the liver, 

though it is activated in response to glucose availability instead of insulin [3, 4] . 

ChREBP expression is reduced roughly 50% in Zhx2∆hep mice (Figure 8D). 

Zhx2 represses transcription factors HNF4α, STAT5a and STAT5b, and PPARγ 

Hepatocyte nuclear factor 4-alpha (HNF4α) is a member of the nuclear 

receptors superfamily and is among the most abundant transcription factor in the 

liver [95]. HNF4α is a key regulator of lipid metabolism, glucose homeostasis, 

and cell differentiation [96, 97] . Because of its importance in the regulation of 
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metabolic genes in the liver, we were interested to see if Zhx2 status had any 

impact on its expression. Indeed, Zhx2 deletion in hepatocytes lowers Hnf4α 

(Figure 9A). Interestingly, liver-specific Hnf4α knockout mice have reduced 

serum cholesterol and triglycerides and increased liver lipid accumulation, as is 

seen in BALB/cJ mice on HFD [96].  

The peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear 

receptor known for its role in adipocyte differentiation and increased lipid storage 

capacity [98]. PPARγ is increased in HFD-induced steatosis [99] and adipose 

PPARγ deletion may be protective against HFD insulin resistance [100]. PPARγ 

responds to long chain fatty acids to increase triglyceride synthesis and storage 

[101]. PPARγ is upregulated in the livers of Zhx2∆hep mice (Figure 9B). This could 

contribute to the increased liver damage seen in BALB/cJ on HFD.  

We also investigated the impact of Zhx2 on the transcription factors in the 

Signal Transducer and Activator of Transcription 5 family, STAT5a and STAT5b. 

These factors were identified as essential mediators of growth hormone signaling 

and sex-specific gene expression patterns [7]. The disregulation of Cyp2a4 and 

other CYP genes in male BALB/cJ [93] and Zhx2∆hep mice (Chapter 4) suggested 

a possible interaction with Zhx2. Livers of Zhx2∆hep mice had a modest but 

significant reduction in both STAT5a and STAT5b compared to Zhx2f/f mice 

(Figure 9C, 9D).  

Zhx2∆hep mice on a HFD (preliminary data) 

Analysis of altered hepatic gene expression in Zhx2∆hep mice has provided 

insight into the Hyplip2 phenotype in BALB/cJ mice. Because BALB/cJ mice 

continue to express low levels of Zhx2, one objective of my research is to 

examine the impact of complete hepatocyte Zhx2 deletion on cardiovascular 

disease risk in mice on HFD. To accomplish this, I bred Zhx2∆hep and Zhx2f/f mice 

onto LDLr-/- background. LDLr-/-, Zhx2∆hep and control LDLr-/-, Zhx2f/f littermates 

were weaned onto HFD and maintained on the diet for 18 weeks. This study is 

ongoing, but preliminary data reveals the hepatic consequences of Zhx2 hepatic 
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knockout on HFD. Both cohorts steadily gained weight over the course of the 

study. Although not statistically significant, LDLr-/-, Zhx2∆hep have a slightly 

greater weight increase than controls (Figure 10A). Completion of the study with 

more mice may reveal a difference in weight gain among the groups. H&E 

staining of mice livers shows lipid droplets, hepatocyte ballooning, and distorted 

morphology in both LDLr-/-, Zhx2∆hep and LDLr-/-, Zhx2f/f mice (Figure 10B). Oil 

Red O staining indicates LDLr-/-, Zhx2∆hep have dramatically increased lipid 

accumulation compared to LDLr-/-, Zhx2f/f mice, as expected (Figure 10C). 

Further analysis in this study will continue to evaluate the liver phenotype and 

characterize the cardiovascular phenotype, which will include serum lipid 

profiling, aortic root examination for atherosclerotic lesion formation and lipid 

accumulation, and IHC to detect CD68 for macrophage infiltration into cardiac 

tissue.  

Discussion  

BALB/cJ mice, which have a natural hypomorphic mutation in the Zhx2 

gene, have been instrumental in understanding liver gene regulation and lipid 

homeostasis.  Studies described in this chapter demonstrate that the Zhx2∆hep 

mice will also be valuable in understanding the role of Zhx2 in CVD and fatty liver 

disease. Overlapping and sometimes opposing functions of Zhx2-target genes 

identified here make understanding the underlying mechanisms of the Hyplip2 

phenotype complicated. BALB/cJ mice on a HFD have reduced serum 

triglycerides and cholesterol, yet the experience much greater liver lipid 

accumulation and damage (Clinkenbeard Thesis, 2011). Increase in hepatic Lpl 

expression seen in BALB/cJ and Zhx2∆hep mice presumably have increased fatty 

acid uptake into hepatocytes. The decrease in Cpt1a suggests lipids are not 

efficiently metabolized in these mice, which could also contribute to increased 

lipid accumulation. Additionally, when lipids are not utilized for mitochondrial 

beta-oxidation, long chain fatty acids may be shunted to peroxisomes for 

degradation [102]. These pathways produce more damaging oxidative 

byproducts and could contribute to an inflammatory state and increased liver 
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damage in these mice. The impact of decreased CD36 expression in Zhx2∆hep 

mice is not as obvious. CD36 null mice on a HFD have increased serum HDL 

attributed to increased hepatocyte cholesterol and lipoprotein efflux, conferring a 

cardio-protective phenotype in these mice [103]. Another study in CD36 null mice 

showed they were resistant to steatosis on a high carbohydrate and alcohol diet 

[104]. CD36 null mice under LXR activation exhibited less liver lipid accumulation 

than controls [90]. In contrast, CD36 null mice on ob/ob background had reduced 

VLDL secretion and greater steatosis [91]. The VLDL output has not been 

measured in Zhx2∆hep mice, but future investigation could help elucidate the 

impact of diminished CD36. The decrease in Mat1a likely also contributes to the 

NAFLD in BALB/cJ mice. In addition to spontaneous NASH and HCC 

development, Mat1a null mice also have altered plasma lipid levels marked by 

impaired VLDL secretion [87]. The combined impact of these alterations in gene 

expression is the increased clearance of serum triglycerides by elevated hepatic 

Lpl activity, blockage of beta-oxidation and fat usage for energy, and diminished 

secretion of lipids in VLDL. The consequence of these is reduced serum lipids 

and corresponding accumulation of lipids in the liver (Figure 11).  

Data reported in this study suggest cross-talk between Zhx2 and other 

transcription factors that are known regulators of lipid metabolism, adipose 

accumulation, liver injury and inflammation. These results implicate Zhx2 as a 

contributor to these main lipid regulatory networks and hint to a broader role in 

metabolic homeostasis than originally anticipated. The SREBP genes play key 

roles in regulating lipid and cholesterol homeostasis in the liver. The fact that 

they are not altered in Zhx2∆hep mice is curious but not unexpected as we have 

no indications of altered serum glucose levels or insulin sensitivity in these mice. 

We have not directly examined these characteristics but would predict that 

BALB/cJ mice would not exhibit cardiovascular protection on a HFD if they had 

fatty liver as well as altered glucose/insulin responses. 

 Studies in ob/ob mice, as a model of fatty liver and insulin resistance, 

report that ChREBP and SREBP1c synergistically increased after feeding, 
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resulting in increased lipogenesis and eventual steatosis [105]. Knockdown of 

ChREBP in these mice improved insulin sensitivity and lowered hepatic fat 

accumulation and serum triglycerides. Hepatic overexpression of ChREBP in B6 

mice maintained insulin sensitivity when placed on HFD, yet had increased 

steatosis [106]. The basis for decreased expression in ChREBP in Zhx2∆hep mice 

is not clear; analysis of possible changes in serum glucose or insulin response 

may provide insight into the relationship between ChREBP and Zhx2.  

PPARγ is a well characterized transcriptional activator of genes involved 

in adipogenesis and is primarily expressed in adipocytes. An interesting 

relationship exists between PPARγ and Elovl3, in that VLCFAs produced by 

Elovl3 stimulate PPARγ activity, and PPARγ may increase Elovl3 expression 

[107]. Elovl3 expression is ablated in Zhx2∆hep livers, so it would be interesting to 

see if it is upregulated in other tissues to compensate for decreased production in 

the liver. There is some overlap in substrate response with the other elongase 

members, so it is likely that other elongases expressed in the liver are able to 

synthesize the VLCFAs that stimulate PPARγ.  

HNF4α is well established as a master regulator of hepatic gene 

expression and therefore metabolic processes. It is unclear whether HNF4α 

responds directly to fatty acid binding or if it is activated by other mechanisms. 

The similarity in fatty liver and lower serum cholesterol and triglycerides in 

HNF4α liver knockout mice and BALB/cJ mice is consistent with our data that 

Zhx2∆hep mice have reduced HNF4α expression. Further analysis of the 

interaction of  genes regulated by ChREBP, PPARγ, and HNF4α and Zhx2 will 

help explain the relationship between these transcriptional regulators and 

resulting changes in expression of lipogeneic and adipogenic genes. It will be 

interesting to see if Zhx2 directly regulates the expression of these other 

transcription factors and thereby is a master regulator of hepatic gene 

expression.  

To understand the integrated effects of the alterations in these 

transcription factors in the livers of Zhx2∆hep mice, a more thorough metabolic 
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analysis must be completed. Serum panels to assess insulin and glucose repose 

and lipid abundance and content will clarify the role of hepatic Zhx2 in nutrient 

sensing responses and lipoprotein production/export. Zhx2∆hep mice should be 

analyzed for differences in food intake, absorption and excretion, as well as 

alterations in activity level, oxidative capacity, and thermogenesis. Detailed 

analysis of the complete metabolic profile of Zhx2∆hep mice will help identify the 

impact of altered transcription factor expression seen in the mice and understand 

how Zhx2 integrates into established lipid metabolism regulatory networks.  

Since Zhx2 is expressed in many tissues, the role of Zhx2 in other tissues, 

particularly metabolic tissues such as muscle and adipose, will provide further 

insight into Zhx2 and lipid homeostasis.   
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Figure 5. Hepatocyte Zhx2 Knockout Mouse Line. Total liver RNA from Zhx2f/f 
and Zhx2∆hep littermates was analyzed by qPCR for Zhx2 expression (A) and 
AFP (B). Elimination of Zhx2 expression in hepatocytes is confirmed by 
immunofluorescence staining which detected positive nuclear Zhx2 in Zhx2f/f (C) 
compared to Zhx2∆hep (D). *p<0.05, ***p<0.001. 
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Figure 6. Zhx2 regulates hepatic expression of Cyp2a4, Elovl3, and MAT1a. 
Zhx2∆hep mice have increased expression of Cyp2a4 (A), normally expressed at 
very low levels in male mouse liver. Elovl3 is repressed in Zhx2∆hep (B) and is the 
first identified Zhx2 that is positively regulated. MAT1a (C) is repressed in 
Zhx2∆hep. *p<0.05, **p<0.01. 
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Figure 7. Zhx2 regulates lipid transport genes. Zhx2∆hep mice have increased 
expression of Lpl (A), and decreased expression of CD36 (B) and Cpt1a (C). The 
alterations in these genes are consistent with the fatty liver phenotype in 
BALB/cJ mice.  Cpt1b (D) and Cpt2 (E) do not exhibit significant changes in 
Zhx2∆hep liver. *p<0.05, **p<0.01. 
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Figure 8. Zhx2 regulates other regulators of lipid metabolism. Hepatic Zhx2 
expression does not alter the expression of SREBP1a (A), SREBP1c (B), or 
SREBP2(C). The glucose-responsive transcription factor ChREBP is significantly 
reduced in the livers of Zhx2∆hep mice (D). *p<0.05. 
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Figure 9. Zhx2 regulates expression of several hepatic transcription 
factors.  The liver-enriched factor HNF4α is decreased in the absence of Zhx2 
(A), while PPARγ expression is enhanced (B). Signaling effecter genes STAT5a 
(C) and STAT5b (D) are modestly reduced in Zhx2∆hep mice. *p<0.05, **p<0.01.  
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Figure 10. Preliminary data of LDLr-/-, Zhx2∆hep and LDLr-/-, Zhx2f/f mice on 
HFD. LDLr-/-, Zhx2∆hep and LDLr-/-, Zhx2f/f littermates were fed HFD for 18 weeks. 
Weight gain is similar in both groups (A). H&E staining of livers shows ballooning 
of hepatocytes and triglyceride accumulation indicative of fatty liver in both 
cohorts (B). Noticeably increased lipid accumulation is detected in LDLr-/-, 
Zhx2∆hep livers by Oil Red O staining (C).  
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Figure 11. Impact of Hepatic Zhx2 Deletion. Zhx2∆hep mice have altered 
expression of numerous genes important for lipid metabolism. Hepatic Lpl 
expression increases triglyceride uptake to the liver. Repression of Cpt1a and 
Elovl3 reduces hepatic capacity to metabolize and export lipids and cholesterol 
from the liver, increasing retention and damage. Lowered Mat1a may 
independently contribute to NAFLD development. Decrease in HNF4α and 
increase in PPARγ expression could alter normal hepatic gene regulation on a 
global scale. The increase accumulation and reduced export of lipid in the liver 
effectively lower serum lipids and reduce atherogenesis.  
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Chapter 4 

Zhx2 regulates sexually dimorphic CYP gene expression in the adult mouse liver 

Introduction 

The cytochrome P450 (CYP) supergene family is one of the largest and 

most diverse gene families in eukaryotes [108, 109]. CYP genes encode 

structurally related enzymes that catalyze a variety of metabolic reactions, 

including metabolism of steroid-based hormones, lipids, drugs and environmental 

chemicals [110]. In humans, mutations in CYP genes contribute to a variety of 

metabolic diseases [111], and polymorphisms in CYP genes are a major 

contributor to variations in susceptibility to xenobiotics [112, 113]. The CYP 

supergene family arose through numerous duplication events. In vertebrates, the 

number of CYP genes and pseudogenes vary dramatically between different 

species. Analysis of genome databases suggests that humans contain 57 

functional CYP genes and 58 pseudogenes, whereas mice contain 102 functional 

CYP genes and 88 pseudogenes.  

CYP genes exhibit a variety of expression patterns. Some CYP genes are 

expressed in numerous tissues, whereas expression of other CYP genes is more 

highly restricted to one or several tissues. The liver has the highest level of CYP 

expression, which is not surprising since ingested xenobiotics enter the liver 

before circulation elsewhere in the body. Numerous drugs and xenobiotics can 

induce CYP gene expression; much of this is governed by members of the 

nuclear receptor family, including the Constitutive Androstane Receptor (CAR), 

aryl hydrocarbon receptor (AhR), pregnane X receptor (PXR), and peroxisome 

proliferator activated receptor α (PPARα) [114].  As with structural 

polymorphisms in CYP enyzmes, variation in the expression and induction of 

CYP enzymes in response to xenobiotics can lead to different responses to these 

agents. These variations must be considered when comparing the metabolism 

and toxicity of drugs and environmental chemicals between different humans as 

well as different species such as mice and humans [115]. 
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One common feature of many vertebrate CYP genes is sexual dimorphic 

expression [116]. Many CYP genes, including Cyp 2d9 and Cyp4a12, are 

expressed primarily in males [117]. In contrast, other CYP genes such as 

Cyp2b9 and 2b13 show a female-biased pattern of expression [117]. The degree 

of sex-biased expression varies considerably. Differences in circulating Growth 

Hormone (GH) levels play an important role in this sexually dimorphic expression 

[118]. In the liver, the transcription factors STAT5a/b and hepatocyte nuclear 

factor 4α (HNF4α) help govern gender-specific expression [8, 119, 120]. 

A dramatic example of sexually dimorphic expression is seen with the 

Cyp2a4 gene in mice. In normal adult liver, the mouse Cyp2a4 gene is 

expressed abundantly in female livers with very low hepatic expression in adult 

males [121]. Curiously, Cyp2a4 expression in adult male BALB/cJ mice is almost 

equal to what is seen in female mice [83] . The high Cyp2a4 mRNA levels 

observed in BALB/cJ males is an autosomal recessive trait. This led to the 

suggestion that the absence of Cyp2a4 expression in male mice is due to a 

transcriptional repressor, and that a mutation resulting in the loss of this putative 

repressor in BALB/cJ mice results in de-repression of Cyp2a4 in adult BALB/cJ 

male liver. 

Several years ago, we identified Zinc fingers and homeoboxes 2 (Zhx2) as 

a regulator of gene expression in the postnatal liver. Several Zhx2 target genes, 

including alpha-fetoprotein (AFP), H19, and Glypican 3 (Gpc3) are expressed 

abundantly in the fetal liver and dramatically repressed in the first several weeks 

after birth [29, 81]. In contrast to most strains of mice, AFP, H19 and Gpc3 

continues to be expressed in the adult liver of BALB/cJ mice. The continued 

expression of these genes in BALB/cJ liver, where adult liver AFP mRNA levels 

are 10- to 20-fold higher than other mouse strains, is an autosomal recessive trait 

regulated by a locus on Chromosome 15. Using positional cloning, we found that 

elevated AFP, H19 and Gpc3 mRNA levels in BALB/cJ livers was due to a 

hypomorphic mutation in the Zhx2 gene that dramatically reduces Zhx2 levels.  

Interestingly, when placed on a high fat diet, BALB/cJ mice have fewer serum 
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triglycerides and reduced atherosclerotic lesions compared to other mouse 

strains on the same diet.  This strain difference is also due to the Zhx2 mutation, 

and several proteins involved in lipid/cholesterol homeostasis are disregulated in 

BALB/cJ livers. Taken together, these data indicate that Zhx2 is an important 

regulator of numerous hepatic genes in the adult liver. 

Zhx2 is a member of a small gene family that also contains Zhx1 and 

Zhx3. The Zhx proteins contain two amino-terminal C2-H2 Zinc fingers and four 

(or five, in the case of Zhx1) carboxy-terminal homeodomains. In vitro studies 

suggest that Zhx proteins function as transcriptional repressors. This, along with 

the fact that the Zhx2 gene is mutated in BALB/cJ mice, led us to investigate 

whether the mutation in Zhx2 could account for elevated Cyp2a4 expression in 

adult male BALB/cJ mice. Using several mouse models, our data indicate that 

Cyp2a4 is a target of Zhx2 repression. In contrast to Cyp2a4, expression of the 

highly related Cyp2a5 gene shows little change in the absence of Zhx2. 

Furthermore, we demonstrate that numerous other sex-biased CYP enzymes 

exhibit altered expression in the absence of Zhx2. In general, female-biased CYP 

enzymes exhibit increased expression in males but male-biased CYP enzymes 

show little change in either sex. Levels of Cyp7a1 mRNA, which is present at 

high levels in both male and female liver, are increased in males and reduced in 

females in the absence of Zhx2. This data indicates that Zhx2 is an important 

regulator of sex-specific expression of CYP enzymes in the liver.   

Results 

Cyp2a4 mRNA levels are higher in the liver of male Zhx2∆hep mice 

Cyp2a4 is normally expressed at high levels in adult liver of female mice but not 

expressed in adult male liver. An exception to this is seen in BALB/cJ mice, in 

which Cyp2a4 mRNA levels are almost equal in both male and female adult liver. 

We asked whether Zhx2, which is mutated in BALB/cJ mice, could account for 

this strain-specific trait. To accomplish this, we analyzed Cyp2a4 expression in 

BL/6 mice with a hepatocyte-specific deletion of Zhx2. Mice with a floxed Zhx2 

45 
 



 

allele (described in Chapter 2) were bred with Albumin-Cre (Alb-Cre) transgenic 

mice to generate mice that were homozygous for the floxed Zhx2 gene and Alb-

Cre+ (Zhx2∆hep); floxed homozygous littermates that did not contain the Alb-Cre 

transgene (Zhx2f/f) were used as controls.  Zhx2 is efficiently silenced in the 

hepatocytes of Zhx2∆hep mice but still expressed in non-parenchymal cells 

(Chapter 3, Figure 5). In control Zhx2f/f mice at 5 weeks of age, Cyp2a4 is 

expressed in females but barely detectable in males as expected. In contrast, 

Cyp2a4 mRNA levels are increased nearly 90-fold in age matched Zhx2∆hep male 

mice to levels that are comparable to those seen in female Zhx2∆hep adult liver, 

which show a ~40% reduction in Cyp2a4 levels compared to Zhx2f/f females 

(Figure 12A, B). These data indicate that Zhx2 is responsible for the low Cyp2a4 

levels in adult male mice. Interestingly, Cyp2a5, which is highly related to 

Cyp2a4, does not exhibit sex-biased expression or significant differences 

between Zhx2∆hep and Zhx2f/f mice. 

Cyp2a4 levels exhibit gender-specific changes in the postnatal liver 

Previously identified Zhx2 targets, including AFP, H19 and Gpc3, are expressed 

abundantly in the fetal liver and silenced after birth. In contrast to Cyp2a4, these 

genes do not exhibit gender-biased expression. This led us to investigate 

Cyp2a4 in the fetal liver and postnatal patterns of Cyp2a4 expression in male 

and female wildtype mice. In both sexes, Cyp2a4 levels are very low in the e17.5 

liver and show a gradual increase during the first four weeks after birth.  A 

modest increase in Zhx2 mRNA levels is also seen at this time (Figure 13A, B). 

However, the gender bias in the liver is evident at p28, with female Cyp2a4 levels 

roughly 8-fold higher than that seen in males (Figure 13C, D). A dramatic change 

in this pattern occurs between four weeks and eight weeks of age. In male mice, 

Zhx2 levels increase roughly 6-fold during this period (Figure 13A), whereas 

Cyp2a4 levels are dramatically reduced to barely detectable levels (Figure 13C). 

In contrast, Zhx2 and Cyp2a4 levels show modest changes in the female liver 

during this time period (Figure 13B, D). This data supports the possibility that 

Zhx2 contributes to Cyp2a4 silencing in the adult male liver, and that full 
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repression is associated with sexual maturity that occurs between 4 and 8 weeks 

of age. 

A number of CYP enzymes in addition to Cyp2a4 exhibit gender-specific 

expression, with some being expressed at higher levels in male and others in 

females.  Since male-specific Cyp2a4 mRNA levels increased in Zhx2∆hep mice, 

we evaluated expression of other hepatic Cyp enzymes in the presence or 

absence of Zhx2. Eight Cyp genes that are normally expressed at higher levels in 

females were examined. In general, the loss of hepatic Zhx2 resulted in 

increased expression in adult male liver (Figure 14). The increase was robust in 

several cases (27-fold and 9-fold for Cyp2b13 and Cyp2b9, respectively) and 

more modest for other enzymes (2- to 3-fold for Cyp4a10, Cyp2c40, Cyp 3a16 

and Cyp39a). Zhx2 did not affect expression of Cyp1a1 or Cyp1a2 in males. 

Expression of these genes was the same or slightly less in females Zhx2∆hep 

mice than in Zhx2f/f only  This pattern is similar to what was seen with Cyp2a4 

(Figure 12). A different pattern was seen with several male-biased Cyp enzymes. 

In two that were analyzed, Cyp2d9 and Cyp8b1, showed little change in either 

sex in Zhx2∆hep liver compared to Zhx2f/f liver (Figure 15). Cyp4a12 was 

repressed in female Zhx2∆hep mice. Three Cyp enzymes that are expressed 

equally in both sexes were examined (Figure 16). Cyp3a25 and Cyp2d10 did not 

respond to the loss of Zhx2 whereas Cyp7a1 was slightly increased in males and 

decreased in females. Interestingly, Cyp7a1 codes for the rate-limiting enzyme 

that converts cholesterol to bile acids so alterations in its expression likely affects 

cholesterol metabolism.  

Cyp2a4 mRNA levels are increased in HCC 

Previously identified genes that are repressed by Zhx2, including AFP, 

H19 and Gpc3, are silent in the healthy adult liver but frequently reactivated in 

HCC.  Since Cyp2a4 also appears to be negatively regulated by Zhx2, we asked 

whether it was also disregulated in HCC.  Analysis of RNA from normal C3B6F1 

male mouse liver and male HCC tumors induced by DEN (described in Chapter 

2) indicated that Cp2a4 levels were significantly increased in tumors (Figure 17).  
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Discussion 

Data in this chapter provide the first evidence that Zhx2 contributes to 

gender-biased gene expression in the adult liver. The sexually dimorphic 

expression of CYP genes is well documented, but the involvement of Zhx2 

regulation of genes in a sex-specific manner provides a link between 

developmental gene regulation and gender-biased expression. Zhx2 represses 

targets AFP, H19, and Gpc3 in normal adult mouse liver, and these genes have 

similar expression levels in males and females. Zhx2 positively regulates Elovl3 

in mouse liver during development (discussed in Chapter 5). After sexual 

maturity, Elovl3 is more abundant in male liver, and is expressed in a circadian 

rhythm only in male liver [122]. Data presented here shows that Zhx2 positively 

regulates Cyp2a4 in male and female liver during development, but between 4-8 

weeks of age, Zhx2 is required for full Cyp2a4 repression in male liver.    

Cyp2a4 and other Cyp enzymes, along with Elovl3, exhibit circadian 

patterns of expression. Cyp2a4 circadian regulation in male mice is attributed to 

integration of growth hormone (GH) signaling via STAT5 activation [8, 123]. 

STAT5b expression is necessary for expression of male-specific Cyp genes, 

whereas both STAT5a and STAT5b expression are required for female gene 

patterning [119]. The expression of the appropriate STAT5 isoforms coordinates 

the expression of genes in a sex-specific manner in response to GH signaling. 

GH is expressed in a pulsating manner in males while females have more steady 

GH circulation [120]. HNF4α is a key regulator of gene expression in the liver. 

Almost half of actively transcribed hepatic genes containing response elements 

[95], suggesting that HNF4α affects more target genes than other hepatic 

transcription factors. Studies in HNF4α-deficient mice showed this factor to be 

necessary for the expression of several sex-specific Cyps [124]. A current model 

of integration of HNF4α with GH signaling suggests the pulsating spike in GH in 

male mice activates STAT5b, and possibly HNF4a, which translocate to the 

nucleus and increase transcription of male specific Cyp genes (Figure 18). 
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Increased HNF4a suppresses HNF6 and HNF3β which are associated with 

expression of female Cyps. The continuous GH levels in females correspond with 

increased HNF6 and HNF3β activity and fail to activate STAT5b and therefore 

fail to activate male Cyp expression [124, 125]. These combined studies indicate 

that GH pulses and activation of STAT5b and HNF4α are critical to male Cyp 

expression. Interestingly, qPCR data in Zhx2∆hep mice suggest hepatic Zhx2 

deletion reduces the expression of HNF4α, STAT5a, and STAT5b (Chapter 3). 

As each of these transcription factors is a critical component of sex-specific gene 

regulation, the reduction in Zhx2∆hep mice could help explain the disregulation of 

multiple Cyp genes in the livers of both male and female Zhx2∆hep mice. Further 

examination into the potential interaction of Zhx2 with HNF4α and STAT5 is 

warranted by these findings, and could elucidate the mechanism by which sex-

biased genes are regulated in the liver.   

We provide evidence that Cyp2a4 is activated in HCC, similarly to other Zhx2 

targets. Disregulated expression of various CYP genes has been associated with 

human liver disease risk. Data from human tissue arrays of HCV infected, HCV 

infected with HCC, and non-HCV normal livers identified differential expression of 

27 different CYPs depending on disease state and severity [126]. The pattern of 

expression varies; CYP2C9 is lower in HCC cases with larger tumors, whereas 

CYP51A1 increases with tumor size. CYP2B6, CYP2C9, CYP2C19, CYP3A5, 

CYP4F3, CYP27A1, CYP2E1, and CYP4F2 were lower in HCC with greater 

vascularization and thus more advanced progression [126]. A qRT-PCR panel of 

numerous CYPs revealed that HCC tissues generally have lower CYP 

expression than non-tumor tissue; however, HCC samples that overexpress one 

CYP gene usually exhibit higher expression of several CYPs [127]. Diminished 

CYP2E1 has been associated with increased tumor aggression and poor 

prognosis in HCC patients [128]. These studies confirm that CYP expression is 

often disregulated in HCC and the degree of disregulation could correlate with 

the advancement of disease. Data from our collaborator [35] indicates that 

nuclear Zhx2 levels are reduced in HCC samples compared to non-tumor liver 

tissue, suggesting that this differential localization of Zhx2 could account for the 
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lack of repression of Zhx2 targets in HCC. Additional studies will be needed to 

further explore whether reactivation of CYP enzymes in cancer is due, at least in 

part, to changes in Zhx2.   
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Figure 12. Zhx2 regulates Cyp2a4 in a gender-specific manner. Adult male 
Zhx2∆hep mice have 90-fold increase in Cyp2a4 expression (A), whereas female 
Zhx2∆hep have about 40% reduced expression (B) when compared to Zhx2f/f 
controls. This data suggests Zhx2 positively regulates Cyp2a4 in female mouse 
liver and represses it in adult male liver. *p<0.05.  
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Figure 13. Zhx2 regulation of Cyp2a4 during development. Liver RNA 
extracted from C3B6F1 offspring at development timepoints was analyzed by 
qRT-PCR. Zhx2 expression increases with age in both male (A) and female (B) 
offspring until d28. Zhx2 levels continue to increase in male mice from d28 to 
d56. Cyp2a4 expression is positively regulated in males (C) and females (D) until 
d28. Around sexual maturity at d56, male mice have almost complete repression 
of Cyp2a4 while females continue to express it. Developmental expression 
compared to e17.5, *p<0.05, **p<0.01, ***p<0.001.  
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Figure 14. Zhx2 regulation of female-specific Cyps. Eight Cyp genes 
characterized as being more abundant in females were analyzed. Liver mRNA 
was analyzed by qRT-PCR in Zhx2f/f and Zhx2∆hep littermates. Although not 
statistically significant, expression trends are apparent. Two genes, Cyp2b13 (C) 
and Cyp2b9 (G) increased dramatically in male Zhx2∆hep mice. Cyp4a10 (A), 
Cyp3a16 (B), Cyp39a (D) and Cyp2c40 (E) increased modestly in male Zhx2∆hep 
mice. Cyp1a1 (F) and Cyp1a2 (H) did not differ with Zhx2 status. Cyp1a2 (H) 
was lower in female Zhx2∆hep mice; hepatic Zhx2 expression did not affect 
expression of other female biased CYPs. *p<0.05. 
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Figure 15. Zhx2 regulation of male-specific Cyps. Three Cyp genes typically 
more abundant in males were analyzed by qRT-PCR. There is no difference in 
expression in male Zhx2∆hep mice from controls. Female Zhx2∆hep mice had lower 
expression of Cyp4a12 (B) and Cyp8b1 (C). *p<0.05 , ****p<0.0001.  
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Figure 16. Zhx2 regulation of gender-neutral Cyps. Analysis by qRT-PCR of 
Cyp genes expressed equally in males and females indicated hepatic Zhx2 does 
not alter their expression in males. Cyp7a1 (C) was reduced in female Zhx2∆hep 
mice. *p<0.05.  
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Figure 17. Cyp2a4 is disregulated in HCC. B6C3F1 male mice were injected 
with DEN (n=15) or PBS (n=5) to induce HCC tumor formation. Samples were 
collected 36 weeks post-injection. Tumor samples had 40-fold higher Cyp2a4 
than control liver. ****p<0.0001.  
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Figure 18. Zhx2 involvement in Growth hormone-STAT5 signaling to 
regulate gender-specific CYP expression. Female mice have continuous 
growth hormone (GH) signaling that activates STAT5a and STAT5b 
heterodimers to promote female-specific CYP expression. Male mice have GH 
pulses that activate STAT5b homodimers, possibly coordinated with HNF4α, to 
activate male-specific CYP genes and cause repression of female-specific CYPs. 
Our data suggest Zhx2 may be the male-specific repressor of female CYPs, 
explaining the elevated female-specific CYP expression in exhibited in male 
Zhx2∆hep mouse livers.   
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Chapter 5 

Zhx2 regulates hepatic Elovl3, a fatty acid elongase with tumor suppressor 

qualities  

Introduction 

Hepatocellular carcinoma (HCC) is the fifth most common type of cancer 

globally, and is the third leading cause of cancer deaths [129]. The prevalence of 

HCC in the United States is relatively low compared to other cancers and is 

primarily attributed to alcoholic liver disease and infection with Hepatitis C Virus 

(HCV) and, to a lesser extent, with Hepatitis B Virus (HBV) [130]. In the past 

several decades, there has been a surge in both cases and deaths from HCC in 

the U.S., and a large portion are correlated with the increasing rates of obesity 

and Type 2 Diabetes [15, 131]  With the expected increase of obesity and 

associated clinical manifestations, the incidence of HCC is expected to increase 

and be the third leading cause of cancer deaths in the United States by 2030 

[24]. The high death rate resulting from HCC is due in part to a lack of early 

detection methods and poor understanding of early events in the progression of 

the disease. Currently, the most commonly used detection method for liver 

damage is serum screening for elevated alpha-fetoprotein (AFP). AFP has been 

used as a diagnostic marker for liver damage and possible HCC for over 40 

years [132]. AFP is expressed abundantly in the fetal liver, dramatically 

repressed at birth, and reactivated in liver damage and liver cancer, and thus 

was the first identified and well-characterized HCC oncofetal protein.  

In contrast to other mouse strains, AFP continues to be expressed in the 

adult liver of BALB/cJ mice. This recessive trait has provided the basis for studies 

on postnatal AFP regulation and enabled us to identify the genetic basis for 

persistent AFP expression [26]. By positional cloning, we found that the loss of 

postnatal AFP repression was due to a hypomorphic mutation in the BALB/cJ 

Zinc fingers and homeoboxes 2 (Zhx2) gene [31, 81]. Several other genes that 
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are expressed abundantly in the fetal liver and repressed at birth, including H19, 

Glypican 3 (Gpc3), and Lipoprotein lipase (Lpl, unpublished), are also expressed 

in BALB/cJ adult liver; these genes are also targets of Zhx2 [29, 81]. 

Interestingly, all of these targets are also frequently reactivated in HCC. While 

AFP and Gpc3 are used clinically as diagnostic markers, a functional role for 

these proteins in HCC cause or progression has not been demonstrated. Due to 

the fact that AFP, H19 and Gpc3 are reactivated in HCC, there is interest in 

identifying other Zhx2 targets that might contribute to HCC progression and/or 

serve as biomarkers of liver disease. 

Microarray data provided by our collaborator, Jake Lusis (University of 

California, Los Angeles) identified Elongation of very long chain fatty acids-like 

3 (Elovl3) as a potential Zhx2 target. Elovl3 is a member of a family of seven 

mammalian fatty acid elongases (Elovl1-7) that are required for de novo 

synthesis of very long chain fatty acids (VLCFAs) up to 24 carbons in chain 

length [84]. Each elongase in this family has distinct tissue distribution and 

substrate specificity, making them important regulators of cellular lipid 

composition as well as specific cellular functions [133]. The Elovl3 enzyme 

synthesizes C20-C24 saturated and monounsaturated fatty acids and is most 

abundantly expressed in skin sebaceous glands, brown and white adipose, and 

the liver [133]. Prior reports indicate Elovl3 in the skin is imperative for proper 

barrier function [134] and is important in brown fat for activation of thermogenesis 

in response to cold exposure [135]. However, the role of Elolv3 in the liver has 

not been investigated. Here, using several mouse models, we tested whether 

Elovl3 is a target of Zhx2. Our data indicate that Elovl3 is controlled by Zhx2. In 

contrast to other Zhx2 targets that are silenced in the postnatal liver and 

repressed by Zhx2, hepatic Elovl3 mRNA levels increase after birth and are 

positively regulated by Zhx2. This led us analyze Elovl3 mRNA levels in 

regenerating liver and in HCC. We find that Elovl3 levels decrease in a mouse 

models of liver regeneration and in mouse liver tumors. Based on these data, we 

investigated whether the loss of Elovl3 has a causal role in HCC progression. We 

have found that forced Elovl3 expression reduces growth of human hepatoma 
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cells in soft agar. Consistent with this, flow cytometry indicates that Elovl3 alters 

cell cycle progression and expression of cyclins. Studies by our collaborators in 

China indicate that Elovl3 mRNA levels are significantly decreased in human 

HCC samples compared to adjacent non-tumor regions. Taken together, this 

data indicates that Elovl3 might function as a tumor suppressor in HCC and is a 

novel biomarker of HCC in humans.  

Results 

Hepatic Elovl3 mRNA levels are reduced in the absence of Zhx2. 

Microarray data suggested that Elovl3 might be a target of Zhx2. However, 

in contrast to previous Zhx2 targets that are higher when Zhx2 levels are 

reduced, Elovl3 levels appear to be decreased when Zhx2 levels are lower. This 

suggests that Elovl3 is positively regulated by Zhx2. To explore this further, 

studies were carried out in mice in which the Zhx2 gene was deleted in 

hepatocytes (Zhx2∆hep) mice and littermate controls (Zhx2f/f) (described in 

Chapters 2 and 3). To confirm the reduction in Zhx2 levels, qPCR was performed 

with cDNA from Zhx2∆hep and control Zhx2fl/fl mice (Figure 19). Zhx2 mRNA levels 

in 5 week old Zhx2∆hep mice were roughly 3% the levels seen in Zhx2f/f 

littermates, consistent with deletion of the Zhx2 gene in hepatocytes (Figure 

19A). The remaining Zhx2 expression in Zhx2∆hep liver is likely due to Zhx2 

expression in non-parenchymal cells where Alb-Cre is not active. Elovl3 mRNA 

levels were also significantly reduced in Zhx2∆hep livers (Figure 19B), indicating 

that Elovl3 is the first gene positively regulated by Zhx2.   

Elovl3 is developmentally activated in the perinatal mouse liver. 

Previously identified Zhx2 targets, including AFP, H19 and Gpc3, are 

silenced in the liver after birth and repressed by ZHx2. In contrast to these 

genes, Elovl3 appears to be positively regulated by Zhx2. This suggests that 

Elovl3 might be developmentally activated during the perinatal period. To test 

this, livers were removed from C3B6F1 mice at e17.5 and postnatal day 1 (p1), 

p7, p14, p21, p28 and p56. Since Elovl3 is expressed at higher levels in adult 
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male mice than in female mice, studies were performed in both sexes. RNA was 

extracted and analyzed by RT-qPCR for Zhx2 and Elovl3. Hepatic Zhx2 mRNA 

expression is very low but detectable at e17.5 and gradually increased in both 

male and female livers until p28 (Figure 20A, B). However, Zhx2 levels remain 

relatively constant in female mice for the next four weeks, but increased roughly 

6-fold in male mice between p28 and p56, suggesting that this male-specific 

Zhx2 increase between four and eight weeks coincides with sexual maturity. 

Elovl3 in male liver also showed a gradual but modest increase between e17.5 

and p28 (Figure 20C). In female livers, Elovl3 levels remain relative constant until 

p21 but increased somewhat by p28 (Figure 20D). Interestingly, at p28, Elovl3 

mRNA levels are 10-fold higher in female than in males. However, between p28 

and p56, hepatic Elovl3 levels increase ~10-fold in males and decrease ~20-fold 

in females. The dramatic rise in Elovl3 in male mice between p28 and p56 

coincides with the increase in Zhx2, whereas Elovl3 levels decrease in females 

during this period even though Zhx2 levels stay relatively constant. This data 

indicates that male-biased Elovl3 expression is established between 1 and 2 

months of age.  

Zhx2 regulation of elongase family members in adult liver. 

The seven mammalian elongases (Elovl1-7) are similar in sequence and 

structure, and there is some overlap and redundancy in their enzymatic activities 

[84, 133]. Due to the strong impact Zhx2 expression has on Elovl3, we examined 

whether expression of the other elongases at four weeks of age changed in the 

absence of Zhx2. Elovl1 mRNA levels were significantly lower in Zhx2∆hep liver. 

Elovl5 and Elovl6 showed this same trend but the difference between Zhx2∆hep 

and Zhx2f/f livers did not reach significance. Elovl2 showed no change of 

expression. Elovl4 and Elovl7 are not normally expressed in the liver and were 

not detected in these samples (Figure 21 and data not shown).  
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Elovl3 is repressed in the regenerating liver, and controlled by Afr2. 

Hepatocytes are normally quiescent in the adult liver, but have the ability 

to re-enter the cell cycle after injury to restore the liver to its original size and 

function [136]. This regenerative capacity is of great importance since a number 

of drugs and environmental chemicals are toxic to hepatocytes. Carbon 

tetrachloride (CCl4) is a well-studied hepatotoxin that induces liver regeneration. 

In adult mice, an intraperitoneal injection of 5 ul of CCl4 will kill roughly 70% of 

hepatocytes, and over a 5-7 day period after this insult the liver will regenerate to 

its normal size. All known targets of Zhx2, including AFP, are silent in the healthy 

adult liver but are transiently reactivated during liver regeneration, with peak 

expression occurring ~3 days after injury. Reactivation of these Zhx2 targets is 

lower in BL/6 mice than in other mouse strains. This low AFP induction in BL/6 

mice is a dominant trait governed by a single locus on mouse Chromosome 2 

called Alpha-fetoprotein regulator 2 (Afr2). Since every known target of Zhx2 is 

regulated by Afr2, we tested whether Elovl3 mRNA levels changed in 

regenerating liver and also be regulated by Afr2. Liver regeneration was initiated 

in C3H and BL/6 mice by a single IP injection of CCl4 in mineral oil, or mineral oil 

alone as control. Mice were killed and livers removed 72 hours post-injection. As 

expected, AFP levels were low in both strains when treated with mineral oil, 

whereas the AFP induction was much higher in C3H mice than in BL/6 mice 

(Spear lab, unpublished). Elovl3 levels were about the same in both strains 

treated with mineral oil. After CCl4 treatment, Elovl3 mRNA levels were reduced 

but the extent of reduction was greater in C3H than in BL/6 mice. Since Elovl3 

regulation by Zhx2 is opposite what is seen with AFP, It is not surprising that 

Elovl3 levels decreased, rather than increased, in regenerating liver. The more 

robust repression of Elovl3 in C3H compared to BL/6 liver indicates that Elovl3 is 

also regulated by Afr2 during liver regeneration.  

Elovl3 is repressed in a mouse model of HCC. 

While the liver regeneration in response to a single insult is a short-term 

proliferative response, persistent damage and/or treatment with mutagenic 
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agents can lead to tumor formation [137]. AFP and all other Zhx2 targets are 

classified as oncofetal genes in that they are expressed in fetal tissues, 

developmentally silenced at birth, and reactivated in cancer, including 

hepatocellular carcinoma (HCC). The dramatic reduction in Elovl3 during liver 

regeneration led us to ask if Elovl3 is also repressed in HCC. Male B6C3F1 mice 

were treated with the tumor initiator DEN. After 36 weeks, mice were killed. 

Those receiving no DEN had no tumors, whereas all DEN-treated mice had 

multiple tumors. qRT-PCR analysis showed an almost complete repression of 

Elovl3 expression in tumors (Figure 22A). Other elongase family members also 

exhibited altered expression in tumors (Figure 22B), but not to the same extent 

as Elovl3. Elovl2 expression increased over two-fold in tumor samples, whereas 

Elovl6 expression was decreased roughly 60%.  

Elovl3 expression reduces anchorage-independent cell growth and stalls cell 

cycle progression in S phase. 

Loss of Elovl3 mRNA and protein expression during liver regeneration and 

in HCC tumors led us to consider whether Elovl3 may influence cell proliferation. 

Anchorage independent cell growth is a noted feature of transformed cells, which 

can be measured by growth in soft agar. We examined the effect of Elovl3 

expression in Huh7 cells, a human HCC cell line that has negligible endogenous 

Elovl3 expression. Cells transfected with expression plasmids for either Elovl3 or 

pcDNA3.1 empty vector were seeded at 5000 cells per well in media-

supplemented soft agar, cultured for one week, and measured by a luminescent 

viability assay. Elovl3 transfected cells exhibit 35% reduced growth compared to 

pcDNA3.1-transfected control cells (Figure 23). A similar (~30%) reduction in cell 

growth was seen in Elovl3-transfected Huh7 cells grown as monolayers (data not 

shown).   

This data led us to look more closely at Elovl3 and cell cycle progression. 

Hela cells were transfected with a GFP expression plasmid along with Elovl3 

expression vector or control pcDNA3.1 and synchronized. Cells were then 

analyzed by flow cytometry at various times after release from the double-
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thymidine block. Propidium iodide (P.I.) staining of GFP-positive cells indicated 

that as early as one hour after release, Elovl3 expression results in fewer cells in 

G2 and an increased proportion of cells in S phase when compared to 

pcDNA3.1-transfected cells (Figure 24). This trend continued to hold for the first 

8 hours after release; control cells begin to progress to G2 roughly three hours 

after release whereas Elovl3 cells do not show noticeable G2 progression until 5 

hours, suggesting that Elovl3 stalls cells in the S phase.  

The cell cycle is a tightly regulated process that requires the coordinated 

expression of several cyclins at varying points in the cycle, as well as the 

association of the appropriate cyclin-dependent kinase (CDKs) [138]. Previous 

studies have shown that Zhx2 regulates the expression of cyclins E and A [35], 

which are necessary for the proper progression of cells from G1 to S-phase and 

S-phase to G2, respectively. As Zhx2 regulates Elovl3 and our data indicate that 

Elovl3 reduces cell proliferation and alters the cell cycle, we next examined the 

effect of Elovl3 on cyclin expression at the hourly timepoints after cell 

synchronization. Cyclins D, E, A, and B mRNA levels are similar in Elovl3-

transfected and pcDNA3.1-transfected control cells until hour 3 (Figure 25). At 

this time, control cells show a surge in expression of Cyclins D, E, and A, and a 

modest increase in Cyclin B. The increased cyclin expression coincides with the 

increased number of cells progressing to G2 at this timepoint. In contrast, the 

surge in Cyclins E, A and B in Elovl3-transfected cells is delayed until hour 5. 

Elovl3-transfected cells do not exhibit a surge in Cyclin D that is seen in control 

cells.  

Discussion 

Identification of Zhx2 was based on the continued expression of AFP and 

other fetal genes in the adult liver of BALB/cJ mice. This and additional studies 

indicate that Zhx2 is a repressor of AFP and other target genes that are silenced 

at birth. Data shown in this chapter indicate that Elovl3 is also a target of Zhx2. In 

contrast to other targets, Elovl3 is the first gene that appears to be positively 

regulated by Zhx2. Our data show that Elovl3 levels are significantly reduced in 
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Zhx2∆hep mice compared to Zhx2f/f control littermates (Figure 19). Consistent with 

this data, Elovl3 levels are higher in BALB/cJ mice that express a liver-specific 

Zhx2 transgene than in non-transgenic BALB/cJ littermate controls (Spear lab, 

unpublished). In addition, Elovl3 mRNA levels increase during the first four 

weeks after birth, a time when Zhx2 mRNA levels are also increasing (Figure 20). 

In vitro studies by our collaborators in China indicate that endogenous Elovl3 

mRNA levels in human hepatoma cell lines increase in Zhx2-transfected cells, 

whereas these Elovl3 levels decrease when Zhx2 levels are reduced by miRNA 

knock-down (Ma et al, unpublished). While these studies indicate that Elovl3 is 

positively regulated by Zhx2, they do not distinguish whether this regulation is 

direct or indirect. Further studies, including ChIP, will be needed to distinguish 

between these possibilities and to identify the cis-acting site(s) in the Elovl3 

regulatory region required for Zhx2 responsiveness. It should also be noted that 

nuclear run-on studies performed in Dr. Peterson’s lab indicate that Zhx2 might 

act, at least in part, at the post-transcriptional level. Thus, further studies will be 

needed to fully understand the mechanism by which Zhx2 regulates target gene 

expression. 

It is of great interest that Elovl3 is the first positively regulated Zhx2 target 

and is expressed in normal adult mouse livers. The increasing levels of Zhx2 and 

Elovl3 in the perinatal period matches the physiological need for proper skin and 

fur development [134], thermal regulation [135], and maintenance of storage 

triglyceride pools [133].  While our studies have focused on liver, future studies 

should evaluate Zhx2 and Elovl3 in other tissues, particularly skin and brown 

adipose tissue.   

Previous mouse studies have shown that Elovl3 is expressed at higher 

levels in males than in females [122]. The transcriptional basis for this gender-

biased expression is not fully understood. We found that Elovl3 levels increase in 

both sexes in the first month after birth, but were puzzled to find that Elovl3 

mRNA levels were roughly 10-fold higher in female liver than in male liver at p28. 

However, we observed a dramatic increase and decrease of Elovl3 in male and 
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female liver, respectively, between p28 and p56, resulting in male-biased 

expression by 2 months of age that is consistent with other reports. Since this 

Elovl3 increase in males coincides with a dramatic increase in Zhx2 levels and 

occurs at a time of sexual maturity, it is possible that male hepatic Elovl3 

expression is regulated by growth hormone signaling. Whether Zhx2 is also 

regulated by growth hormone will require further study. It should also be noted 

that Elovl3 displays a circadian expression pattern in males, whereas female 

mice appear to have constant, low-level Elovl3 expression [122, 139]. Zhx2 also 

exhibits a circadian pattern of expression (K. Esser, Personal communication), 

suggesting a possible role for Zhx2 in diurnal changes in the expression of Elovl3 

and other target genes.   

While Elovl3 levels are low in adult female mice, this basal Elovl3 

expression is still sufficient to have physiological impact. Zadravec et al. [86] 

reported that Elovl3 ablation resulted in resistance to diet-induced obesity and 

was much more pronounced in females than males. The sex difference in the 

magnitude of expression is similar in the other elongase family members as well. 

Although the potential impact is unknown, it would be interesting to determine if 

the constant elongase expression in females result in a favorable lipid pool 

concentration that confers protective effects and reduces disease risks in women 

more so than men. 

Previously identified Zhx2 targets are disregulated in HCC. Most, but not 

all studies suggest that AFP and H19 do not have functional role in HCC 

progression, but there is strong data that Gpc3 can promote cancer [46, 47]. This 

raises the question whether Zhx2 regulates liver tumor formation.  Data from Dr. 

Chunhong Ma and colleagues at Shandong University in China, with whom we 

have had a longstanding collaboration, suggest that Zhx2 proteins are primarily 

in the nucleus in normal hepatocytes but are localized in the cytoplasm in HCC 

samples. This would suggest that Zhx2 is disregulated in HCC, and that this is 

occurring at the post-translational level.  Irrespective of Zhx2, we have found that 

Elovl3 is repressed in mouse HCC samples. Preliminary analysis of human 
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samples at Shandong University show no significant differences in Elovl3 mRNA 

levels between human HCC samples and surrounding non-tumor tissues, but 

further analysis is warranted.   

The dramatic downregulation of Elovl3 in liver regeneration and HCC 

samples in mice led us to investigate a causal role for Elovl3 in cell proliferation. 

By transfections in cultured cells, our data indicate that Elovl3 can repress Huh7 

growth in soft agar and in cell monolayers and can alter Hela cell cycle 

progression and Cyclin expression. A functional consequence of reduced Elovl3 

levels could include a diminished supply of saturated and monounsaturated 

VLCFAs that would disrupt cell membrane integrity and fluidity, and the synthesis 

of sphingolipids [140].  Elovl3 expression in the liver is necessary for the 

generation of C20:1, C22:1, and C24:1 VLCFAs. Lipids of these categories are 

generally incorporated into sphingolipids in the plasma membrane and have 

been implicated in roles of signaling events, proliferation, and apoptosis [141, 

142].  Future studies should explore the relationship between Elovl3 and these 

lipids and how this might influence cell proliferation. 
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Figure 19. Zhx2 positively regulates Elovl3 expression in adult mouse liver. 
Liver RNA from male Zhx2f/f and Zhx2∆hep littermates analyzed by qRT-PCR. 
Zhx2 deletion from hepatocytes (A) results in reduction of Elovl3 expression 
nearly 75% (B). *p<0.05, ***p<0.001.  
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Figure 20. Elovl3 is developmentally activated in the perinatal mouse liver, 
but silenced in female adult liver. Liver RNA extracted from B6C3F1 offspring 
collected at developmental timepoints was analyzed by qPCR. Zhx2 expression 
increases with age  (A, B) and Zhx2 increases with sexual maturation in male 
mice by d56. Correspondingly, Elovl3 expression increases during development  
(C, D). At d56, female mice have ~20-fold Elovl3 repression while males have 
~10-fold increase. Developmental expression compared to e17.5, *p<0.05, 
**p<0.01, ***p<0.01.  
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Figure 21. Expression of elongase genes in male liver. Liver RNA from 5-
week old Zhx2f/f and Zhx2∆hep littermates was analyzed by qRT-PCR for relative 
elongase expression. Elovl3 and Elovl2 are the most abundantly expressed 
elongases in the liver. Elovl1 has low hepatic expression and is reduced in 
Zhx2∆hep mice, as is Elovl3 expression. *p<0.05.  
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Figure 22. Elovl3 is repressed in a mouse model of HCC. B6C3F1 male mice 
were injected with DEN (n=15) or PBS (n=5) to induce HCC tumor formation. 
Samples were collected 36 weeks post-injection. Elovl3 expression was 
dramatically reduced in tumors (A). Other elongases are also disregulated in 
HCC (B); Elovl2 is activated and Elovl6 is repressed. *p<0.05, ****p<0.001. 
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Figure 23. Elovl3 suppresses HCC cell  anchorage independent growth. 
Huh7 cells were transfected with either pcDNA3.1 empty vector (control) or 
Elovl3 expression plasmid, plated in media-supplemented soft agar and 
incubated for one week. Cell viability was measured using a luminescent DNA 
binding dye. Controls were set to 100%. Elovl3 expression reduced cell growth 
by 30%. *p<0.05. 
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Figure 24. Elovl3 expression stalls cell in S-phase. Hela cells were co-
transfected with GFP and either pcDNA3.1 empty vector (Control) or Elovl3 
expression plasmid. Cells were synchronized in G1 then collected at hourly 
timepoints after release. GFP positive cells were analyzed by FACS to determine 
the proportion of cells in each cell cycle phase. Elovl3 and control cells are not 
different in progression through G1 (A). Elovl3 expression increases the number 
of cells in S-phase (B) which accounts for fewer cells in G2/Mitosis (C).  This 
data suggests that Elovl3 reduces cell proliferation by stalling cells in S-phase.  
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Figure 25. Elovl3 expression alters expression of Cyclins. Cell RNA was 
collected at hourly timepoints after release from G1 synchronization and 
analyzed by qRT-PCR for expression of Cyclin D, E, A, and B. Control cells 
increase expression of Cyclins D, E, and A three hours after release (A, B, C). 
Expression of Cyclins is delayed and blunted in Elovl3 transfected cells.  Altered 
expression of Cyclins could contribute to the delay of cell progression through the 
cell cycle.  
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Chapter Six 

Summary and Future Directions 

The data reported in this dissertation characterize Zhx2 as a 

transcriptional regulator of genes involved in lipid, steroid and xenobiotic 

metabolism, sex-specific gene patterning, and cell cycle regulation. Zhx2 has 

previously been reported to act directly on some of its targets to repress 

expression (AFP, Cyclins A and E, Gpc3)  [34, 35, 143]. To date, the mechanism 

by which Zhx2 regulates many of its targets has not been determined. The fact 

that some targets are positively regulated while others are expressed suggests 

Zhx2 may part of a much larger signaling and regulatory complex. 

This dissertation describes the first analysis using mice with a floxed Zhx2 

allele.  My studies in Zhx2∆hep mice have identified new Zhx2 targets in entirely 

new areas of metabolism and cell function. Based on findings in studies with 

BALB/cJ mice, we expected that Zhx2 regulated many genes in lipid and 

cholesterol metabolism. I found that Zhx2 regulates ChREBP, Cpt1a, MAT1a, 

and CD36. The functional parameters of these genes align with characteristics of 

previously identified targets. Interestingly, Zhx2 appears to impact levels of 

transcription factors HNF4α and PPARγ. HNF4α, in particular, is a major 

regulator of liver gene expression. HNF4α is critical to liver function; deletion of 

the gene is embryonic lethal [96, 144] and loss of expression increases cell 

proliferation and HCC [145]. My finding that Zhx2 deletion in hepatocytes 

reduces HNF4α expression implicates Zhx2 involvement, at least by indirect 

means, of a large portion of genes and metabolic functions in the liver. To gain 

better insight into the function and impact of Zhx2, ChIP-seq analysis should be 

performed to identify targets with which Zhx2 has direct interaction, and RNA-seq 

data will provide a better understanding of the broader effects of Zhx2 on gene 

expression. Multiple HNF4α binding sites have been found in the Zhx2 promoter 

(K. Schroeder, personal communications), suggesting potential cross-talk 

between these factors that govern similar hepatic functions.   
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Another interesting facet of Zhx2 is its role in developmental gene 

expression. Zhx2 targets that we have investigated in detail in mouse 

development (AFP, Cyp2a4, Elovl3) display an expression pattern from 

embryonic to young adulthood that corresponds with increasing Zhx2 levels 

during this timeframe. This development regulation has become a hallmark of 

Zhx2 targets. In addition to HNF4α, the Zhx2 targets Lpl, Gpc3, and Cpt1a are 

necessary for proper fetal development and mutations in these genes can cause 

perinatal death. Since Zhx2∆hep mice could be obtained, liver-specific Zhx2 

expression is not absolutely essential. However, while not included in this 

dissertation, breeding Zhx2∆hep mice revealed an extremely unusual phenotype in 

that some offspring were born underdeveloped and missing internal organs, and 

many others dies within 24 hours of birth. Perinatal death in Zhx2∆hep mice could 

be the consequence of its disregulated targets that are important for metabolism. 

The early developmental abnormalities (absence of posterior half of embryos, 

lack of internal organs) seen in some of the offspring are quite puzzling, and the 

physical deformities were more severe than what has been characterized in other 

gene deletions. These defects are not due to the lack of Zhx2 in the livers of 

offspring, but are a consequence of the lack of hepatic Zhx2 in the mothers. 

While we do not know the molecular basis for this phenomenon, it is possible that 

the maternal hepatic Zhx2 deletion alters nutrient availability and/or ineffective 

signaling molecules essential for early embryonic patterning. This raises the 

question of whether maternal Zhx2 expression and proper regulation of Zhx2 

targets is required for proper fetal development in humans. Additional research 

into this topic is needed.  

My results identifying Zhx2 as a regulator of Cyp2a4 during sexual 

maturity of male mice reveals a new role for Zhx2. The dramatic increase in Zhx2 

expression seen only in male mice from 4 weeks of age to 8 weeks of age 

suggests Zhx2 is activated by steroid hormone signaling during sexual 

maturation. Increased Zhx2 in sexually mature male mice could increase 

expression of STAT5b and HNF4α, as my data indicates they are both positively 

regulated by Zhx2 expression in 5 week old mice, but this needs to be further  
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examined in older mice. My data provides compelling evidence that Zhx2 is an 

important component of the GH-STAT5-HNF4α signaling axis that is necessary 

for sex-specific gene expression in the liver. The difference in the expression of 

multiple Cyp enzymes in males and females has great implications in disease 

risks. In mice and in humans, males are generally at higher risk than women for 

fatty liver, liver damage, and HCC . In contrast, women are at higher risk of liver 

damage from alcohol use [146]; incidentally, women may have lower expression 

of Cyp2e1, the enzyme that metabolizes alcohol [147, 148]. CVD is the primary 

cause of death for both men and women in America, but the characteristics differ 

between sexes. CVD onset is delayed in women with complications appearing 

about 10 years later than the average age of men [149]. Menopause and 

hormonal perturbations coincide with the timing of CVD presentation in women. 

Since GWAS studies have confirmed Zhx2 as a risk factor for CVD in humans 

[76, 77], it is tempting to speculate that Zhx2 may contribute to the gender 

differences in disease susceptibility through its coordination of hormone signaling 

and sex-specific gene patterning. Differential Cyp gene expression could 

contribute to altered steroid and xenobiotic metabolism and directly impact the 

development of both fatty liver and cardiovascular disease, as well as the 

efficacy of therapeutic interventions for these conditions. Therefore, the 

cardioprotective phenotype seen in BALB/cJ mice might be due in part to the 

“feminization” of the liver caused by diminished Zhx2 and altered sex-specific 

expression of Cyps and other proteins. An extension of this observation would be 

to see if hepatic Zhx2 deletion causes a switch in gender-associated disease, i.e. 

if female Zhx2∆hep mice have increased liver damage and HCC compared to 

males. Further, I have established a role for Zhx2 in the sexual maturity of male 

mice, and our lab has shown its role in gene regulation during development. As 

sex hormones diminish with age, it is logical to examine the expression of Zhx2 

in aging mice as well. It will be interesting to explore the role of sex hormones on 

Zhx2 expression, hepatic gene regulation, and the resulting risk of both liver 

damage and cardiovascular disease throughout the life cycle in mice.  
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Zhx2 regulation of Elovl3 provides novel insight into the role of Zhx2 in 

lipid signaling and cellular metabolism. AFP and H19 are known to be 

disregulated in HCC and are clinically relevant as biomarkers, but it is not clear if 

or how their increased expression is involved in tumor formation. Gpc3, another 

Zhx2 target, is a cell surface proteoglycan that has been shown to influence liver 

tumor formation [150].  However, my data showing a link between Zhx2, Elovl3, 

and cell proliferation represents metabolism as another means by which Zhx2 

might influence HCC. Elovl3 synthesizes VLCFAs which often are incorporated 

into cell membranes, constitute sphingolipids, and are conductors of signaling 

events.[141, 142] There is growing interest in the role of sphingolipids, and 

ceramide metabolites, in regulating important cell fate processes such as growth 

and proliferation, apoptosis, and autophagy, among others. Ceramides and their 

analogues are being tested as therapeutics for cancers due to their role in cell 

cycle arrest and inducing apoptosis [151, 152]. My data shows that Elovl3 

expression contributes to cell cycle arrest, but the mechanism is unknown. It is 

possible that treatment of cancerous cell lines with Elovl3 lipid products could 

recapitulate the results of my study. Work is being done in our lab to isolate, 

culture and transfect primary hepatocytes, which will be an ideal model to 

perform these studies. Transfections with Elovl3 expression plasmids in these 

cells followed by LCMS analysis could identify the ceramide or sphingolipid 

compounds resulting from Elovl3 activity under normal condition. These lipids or 

synthetic analogs could be used to treat cells exposed to carcinogenic toxins to 

evaluate the effectiveness in regulating cell proliferation in a disease model. 

Further understanding of the role of Elovl3 in cell cycle regulation could provide a 

new avenue for therapeutic potential.  

Zhx2 regulates genes involved diverse functions that are important for 

health and normal metabolism. This makes Zhx2 a potential target for 

manipulation and mutation in disease. Many of the processes that are 

disregulated in Zhx2∆hep mice parallel activities attributed to the mTOR pathway. 

mTOR complex 1 (mTORC1) receives signals from insulin and growth factors 

and senses nutrient status through AMP/ATP ratio and amino acid abundance 
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[153]. mTORC1 activation results in new gene transcription, increased de novo 

lipogenesis, increased cell growth and proliferation, and inhibition of autophagy. 

mTOR is regulated by feedback inhibition from diminished nutrient availability 

(AMPK), amino acid deprivation, and glucocorticoid signals. When disregulated, 

mTOR activity proceeds without inhibition and can lead to diseases, including 

cardiovascular disease and cancer [153, 154]. Zhx2 is integral in conducting 

signals from GH and effecting gene expression regulation in response. My data 

suggests that disregulated Zhx2 function disengages nutrient sensing of lipids in 

hepatocytes resulting in excess fat accumulation, a condition that is exacerbated 

by faulty lipid export. In HFD conditions, the fatty liver environment in Zhx2∆hep 

mice provides abundant lipid substrate required by cancer cells for membranes 

and signaling molecule in rapidly dividing cells [155]. The apparent overlap of 

mTOR activity and Zhx2 regulation of lipid synthesis, growth signaling, cell 

proliferation, and associations with CVD, cancer, and multiple other disorders 

suggests Zhx2 could be a part of or affected by mTOR pathways. Future studies 

into a relationship between mTOR and Zhx2 disregulation in lipid metabolism and 

cell growth could provide new insight into key events in early stages of CVD and 

liver disease, including HCC.  

 

 

 

 

 

 

 

 

  

81 
 



 

APPENDIX A 

 

 

 

 

 

 

 

82 
 



 

REFERENCES 

[1] S.L. Friedman, Liver fibrosis - from bench to bedside, J. Hepatol., 38 (2003) S38-S53. 
[2] Z. Kmiec, Cooperation of liver cells in health and disease, Adv Anat Embryol Cell 
Biol, 161 (2001) III-XIII, 1-151. 
[3] X. Xu, J.S. So, J.G. Park, A.H. Lee, Transcriptional control of hepatic lipid metabolism 
by SREBP and ChREBP, Seminars in liver disease, 33 (2013) 301-311. 
[4] D. Eberle, B. Hegarty, P. Bossard, P. Ferre, F. Foufelle, SREBP transcription factors: 
master regulators of lipid homeostasis, Biochimie, 86 (2004) 839-848. 
[5] J. Hu, Z. Zhang, W.J. Shen, S. Azhar, Cellular cholesterol delivery, intracellular 
processing and utilization for biosynthesis of steroid hormones, Nutr Metab (Lond), 7 
(2010) 47. 
[6] U.M. Zanger, M. Schwab, Cytochrome P450 enzymes in drug metabolism: regulation 
of gene expression, enzyme activities, and impact of genetic variation, Pharmacol Ther, 
138 (2013) 103-141. 
[7] Y. Zhang, E.V. Laz, D.J. Waxman, Dynamic, sex-differential STAT5 and BCL6 
binding to sex-biased, growth hormone-regulated genes in adult mouse liver, Mol Cell 
Biol, 32 (2012) 880-896. 
[8] H.W. Davey, R.J. Wilkins, D.J. Waxman, STAT5 signaling in sexually dimorphic gene 
expression and growth patterns, Am J Hum Genet, 65 (1999) 959-965. 
[9] C.L. Ogden, M.D. Carroll, B.K. Kit, K.M. Flegal, Prevalence of childhood and adult 
obesity in the United States, 2011-2012, JAMA, 311 (2014) 806-814. 
[10] P. Angulo, K.D. Lindor, Non-alcoholic fatty liver disease, J Gastroenterol Hepatol, 17 
Suppl (2002) S186-190. 
[11] K.M. Utzschneider, S.E. Kahn, Review: The role of insulin resistance in nonalcoholic 
fatty liver disease, J Clin Endocrinol Metab, 91 (2006) 4753-4761. 
[12] J.K. Reddy, M.S. Rao, Lipid metabolism and liver inflammation. II. Fatty liver 
disease and fatty acid oxidation, American journal of physiology. Gastrointestinal and 
liver physiology, 290 (2006) G852-858. 
[13] H.C. Kim, D.J. Kim, K.B. Huh, Association between nonalcoholic fatty liver disease 
and carotid intima-media thickness according to the presence of metabolic syndrome, 
Atherosclerosis, 204 (2009) 521-525. 
[14] G. Marchesini, M. Brizi, A.M. Morselli-Labate, G. Bianchi, E. Bugianesi, A.J. 
McCullough, G. Forlani, N. Melchionda, Association of nonalcoholic fatty liver disease 
with insulin resistance, Am J Med, 107 (1999) 450-455. 
[15] S. Zakhari, Bermuda Triangle for the liver: alcohol, obesity, and viral hepatitis, J 
Gastroenterol Hepatol, 28 Suppl 1 (2013) 18-25. 
[16] M. Asrih, F.R. Jornayvaz, Inflammation as a potential link between nonalcoholic fatty 
liver disease and insulin resistance, J Endocrinol, 218 (2013) R25-36. 
[17] M. Al Rifai, M.G. Silverman, K. Nasir, M.J. Budoff, R. Blankstein, M. Szklo, R. Katz, 
R.S. Blumenthal, M.J. Blaha, The association of nonalcoholic fatty liver disease, obesity, 
and metabolic syndrome, with systemic inflammation and subclinical atherosclerosis: 
The Multi-Ethnic Study of Atherosclerosis (MESA), Atherosclerosis, 239 (2015) 629-633. 
[18] A. Tenenbaum, R. Klempfner, E.Z. Fisman, Hypertriglyceridemia: a too long unfairly 
neglected major cardiovascular risk factor, Cardiovasc Diabetol, 13 (2014) 159. 
[19] G. Targher, G. Arcaro, Non-alcoholic fatty liver disease and increased risk of 
cardiovascular disease, Atherosclerosis, 191 (2007) 235-240. 
[20] H. Volzke, D.M. Robinson, V. Kleine, R. Deutscher, W. Hoffmann, J. Ludemann, U. 
Schminke, C. Kessler, U. John, Hepatic steatosis is associated with an increased risk of 
carotid atherosclerosis, World J Gastroenterol, 11 (2005) 1848-1853. 

83 
 



 

[21] D. Mozaffarian, E.J. Benjamin, A.S. Go, D.K. Arnett, M.J. Blaha, M. Cushman, S. de 
Ferranti, J.P. Despres, H.J. Fullerton, V.J. Howard, M.D. Huffman, S.E. Judd, B.M. 
Kissela, D.T. Lackland, J.H. Lichtman, L.D. Lisabeth, S. Liu, R.H. Mackey, D.B. Matchar, 
D.K. McGuire, E.R. Mohler, 3rd, C.S. Moy, P. Muntner, M.E. Mussolino, K. Nasir, R.W. 
Neumar, G. Nichol, L. Palaniappan, D.K. Pandey, M.J. Reeves, C.J. Rodriguez, P.D. 
Sorlie, J. Stein, A. Towfighi, T.N. Turan, S.S. Virani, J.Z. Willey, D. Woo, R.W. Yeh, M.B. 
Turner, C. American Heart Association Statistics, S. Stroke Statistics, Heart disease and 
stroke statistics--2015 update: a report from the American Heart Association, Circulation, 
131 (2015) e29-322. 
[22] E.A. Tsochatzis, J. Bosch, A.K. Burroughs, Liver cirrhosis, Lancet, 383 (2014) 1749-
1761. 
[23] H.B. El-Serag, Hepatocellular carcinoma, N Engl J Med, 365 (2011) 1118-1127. 
[24] L. Rahib, B.D. Smith, R. Aizenberg, A.B. Rosenzweig, J.M. Fleshman, L.M. 
Matrisian, Projecting cancer incidence and deaths to 2030: the unexpected burden of 
thyroid, liver, and pancreas cancers in the United States, Cancer Res, 74 (2014) 2913-
2921. 
[25] G.I. Abelev, Alpha-fetoprotein in oncogenesis and its association with malignant 
tumors, Adv. Cancer Res., 14 (1971) 295-358. 
[26] A. Belayew, S.M. Tilghman, Genetic analysis of a-fetoprotein synthesis in mice., 
Mol. Cell. Biol., 2 (1982) 1427-1435. 
[27] E.P. Blankenhorn, R. Duncan, C. Huppi, M. Potter, Chromosomal location of the 
regulator of mouse a-fetoprotein, afr-1, Genetics, 119 (1988) 687-691. 
[28] V. Pachnis, A. Belayew, S.M. Tilghman, Locus unlinked to a-fetoprotein under the 
control of the murine raf and Rif genes, Proc. Natl. Acad. Sci. USA, 81 (1984) 5523-
5527. 
[29] L.A. Morford, C. Davis, L. Jin, A. Dobierzewska, M.L. Peterson, B.T. Spear, The 
oncofetal gene glypican 3 is regulated in the postnatal liver by zinc fingers and 
homeoboxes 2 and in the regenerating liver by alpha-fetoprotein regulator 2, 
Hepatology, 46 (2007) 1541-1547. 
[30] S. Perincheri, R.W. Dingle, M.L. Peterson, B.T. Spear, Hereditary persistence of 
alpha-fetoprotein and H19 expression in liver of BALB/cJ mice is due to a retrovirus 
insertion in the Zhx2 gene, Proc. Natl. Acad. Sci., USA, 102 (2005) 396-401. 
[31] S. Perincheri, D.K. Peyton, M. Glenn, M.L. Peterson, B.T. Spear, Characterization of 
the ETnII-alpha endogenous retroviral element in the BALB/cJ Zhx2 ( Afr1 ) allele, 
Mammalian genome : official journal of the International Mammalian Genome Society, 
19 (2008) 26-31. 
[32] H. Kawata, K. Yamada, Z. Shou, T. Mizutani, T. Yazawa, M. Yoshino, T. Sekiguchi, 
T. Kajitani, K. Miyamoto, Zinc-fingers and homeoboxes (ZHX) 2, a novel member of the 
ZHX family, functions as a transcriptional repressor., Biochem. J., 373 (2003) 747-757. 
[33] H. Kawata, D. Yamada, Z. Shou, T. Mizutani, K. Miyamoto, The mouse zinc-fingers 
and homeoboxes (ZHX) family; ZHX2 forms a heterdimer with ZHX3., Gene, 323 (2003) 
1330140. 
[34] F. Luan, P. Liu, H. Ma, X. Yue, J. Liu, L. Gao, X. Liang, C. Ma, Reduced nucleic 
ZHX2 involves in oncogenic activation of glypican 3 in human hepatocellular carcinoma, 
Int J Biochem Cell Biol, 55 (2014) 129-135. 
[35] X. Yue, Z. Zhang, X. Liang, L. Gao, X. Zhang, D. Zhao, X. Liu, H. Ma, M. Guo, B.T. 
Spear, Y. Gong, C. Ma, Zinc fingers and homeoboxes 2 inhibits hepatocellular 
carcinoma cell proliferation and represses expression of Cyclins A and E, 
Gastroenterology, 142 (2012) 1559-1570 e1552. 

84 
 



 

[36] J. Vacher, S.A. Camper, R. Krumlauf, R.S. Compton, S.M. Tilghman, raf regulates 
the postnatal repression of the mouse a-fetoprotein gene at the posttranscriptional level, 
Mol. Cell. Biol., 12 (1992) 856-864. 
[37] G.I. Abelev, T.L. Eraiser, Cellular aspects of alpha-fetoprotein reexpression in 
tumors., Semin. Canc. Biol., 9 (1999) 95-107. 
[38] A.C. Houwert, J.C. Giltay, E.G. Lentjes, M.T. Lock, Hereditary persistence of alpha-
fetoprotein (HPAF P): review of the literature, Neth J Med, 68 (2010) 354-358. 
[39] Y. Alj, M. Georgiakaki, J.F. Savouret, F. Mal, P. Attali, G. Pelletier, C. Fourre, E. 
Milgrom, C. Buffet, A. Guiochon-Mantel, G. Perlemuter, Hereditary persistence of alpha-
fetoprotein is due to both proximal and distal hepatocyte nuclear factor-1 site mutations, 
Gastroenterology, 126 (2004) 308-317. 
[40] J.H. McVey, K. Michaelides, L.P. Hansen, M. Ferguson-Smith, S. Tilghman, R. 
Krumlauf, E.G.D. Tuddenham, A G to A substitution in an HNF-1 binding site in the 
human a-fetoprotein gene is associated with hereditary persistence of a-fetoprotein 
(HPAFP), Human Molecular Genetics, 2 (1993) 379-384. 
[41] S.K. Wang, D.L. Zynger, O. Hes, X.J. Yang, Discovery and diagnostic value of a 
novel oncofetal protein: glypican 3, Adv Anat Pathol, 21 (2014) 450-460. 
[42] J. Filmus, S.B. Selleck, Glypicans: proteoglycans with a surprise, J Clin Invest, 108 
(2001) 497-501. 
[43] G. Pilia, R.M. Hughes-Benzie, A. MacKenzie, P. Baybayan, E.Y. Chen, R. Huber, G. 
Neri, A. Cao, A. Forabosco, D. Schlessinger, Mutations in GPC3, a glypican gene, cause 
the Simpson-Golabi-Behmel overgrowth syndrome, Nature genetics, 12 (1996) 241-247. 
[44] D.F. Cano-Gauci, H.H. Song, H. Yang, C. McKerlie, B. Choo, W. Shi, R. Pullano, 
T.D. Piscione, S. Grisaru, S. Soon, L. Sedlackova, A.K. Tanswell, T.W. Mak, H. Yeger, 
G.A. Lockwood, N.D. Rosenblum, J. Filmus, Glypican-3-deficient mice exhibit 
developmental overgrowth and some of the abnormalities typical of Simpson-Golabi-
Behmel syndrome, J Cell Biol, 146 (1999) 255-264. 
[45] W.K. Xiao, C.Y. Qi, D. Chen, S.Q. Li, S.J. Fu, B.G. Peng, L.J. Liang, Prognostic 
significance of glypican-3 in hepatocellular carcinoma: a meta-analysis, BMC Cancer, 14 
(2014) 104. 
[46] X.L. Xiong, H. Qin, S.Q. Yan, L.S. Zhou, P. Chen, D. Zhao, Expression of Glypican-
3 is Highly Associated with Pediatric Hepatoblastoma: a Systemic Analysis, Asian Pac J 
Cancer Prev, 16 (2015) 1029-1031. 
[47] Y. Wu, H. Liu, H. Weng, X. Zhang, P. Li, C.L. Fan, B. Li, P.L. Dong, L. Li, S. Dooley, 
H.G. Ding, Glypican-3 promotes epithelial-mesenchymal transition of hepatocellular 
carcinoma cells through ERK signaling pathway, Int J Oncol, 46 (2015) 1275-1285. 
[48] W. Gao, Z. Tang, Y.F. Zhang, M. Feng, M. Qian, D.S. Dimitrov, M. Ho, Immunotoxin 
targeting glypican-3 regresses liver cancer via dual inhibition of Wnt signalling and 
protein synthesis, Nat Commun, 6 (2015) 6536. 
[49] M. Bartolomei, S. Zemel, S.M. Tilghman, Parental imprinting of the mouse H19 
gene., Nature, 351 (1991) 153-155. 
[50] X. Cai, B.R. Cullen, The imprinted H19 noncoding RNA is a primary microRNA 
precursor, RNA, 13 (2007) 313-316. 
[51] A.N. Kallen, X.B. Zhou, J. Xu, C. Qiao, J. Ma, L. Yan, L. Lu, C. Liu, J.S. Yi, H. 
Zhang, W. Min, A.M. Bennett, R.I. Gregory, Y. Ding, Y. Huang, The imprinted H19 
lncRNA antagonizes let-7 microRNAs, Mol Cell, 52 (2013) 101-112. 
[52] M.E. Brunkow, S.M. Tilghman, Ectopic expression of the H19 gene in mice causes 
prenatal lethality, Genes Dev, 5 (1991) 1092-1101. 
[53] C. Ma, K. Nong, H. Zhu, W. Wang, X. Huang, Z. Yuan, K. Ai, H19 promotes 
pancreatic cancer metastasis by derepressing let-7's suppression on its target HMGA2-
mediated EMT, Tumour Biol, 35 (2014) 9163-9169. 

85 
 



 

[54] M. Medrzycki, Y. Zhang, W. Zhang, K. Cao, C. Pan, N. Lailler, J.F. McDonald, E.E. 
Bouhassira, Y. Fan, Histone h1.3 suppresses h19 noncoding RNA expression and cell 
growth of ovarian cancer cells, Cancer Res, 74 (2014) 6463-6473. 
[55] M. Luo, Z. Li, W. Wang, Y. Zeng, Z. Liu, J. Qiu, Long non-coding RNA H19 
increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin 
expression, Cancer Lett, 333 (2013) 213-221. 
[56] I.J. Matouk, N. DeGroot, S. Mezan, S. Ayesh, R. Abu-lail, A. Hochberg, E. Galun, 
The H19 non-coding RNA is essential for human tumor growth, PLoS One, 2 (2007) 
e845. 
[57] L.L. Yu, K. Chang, L.S. Lu, D. Zhao, J. Han, Y.R. Zheng, Y.H. Yan, P. Yi, J.X. Guo, 
Y.G. Zhou, M. Chen, L. Li, Lentivirus-mediated RNA interference targeting the H19 gene 
inhibits cell proliferation and apoptosis in human choriocarcinoma cell line JAR, BMC 
Cell Biol, 14 (2013) 26. 
[58] T. Yoshimizu, A. Miroglio, M.A. Ripoche, A. Gabory, M. Vernucci, A. Riccio, S. 
Colnot, C. Godard, B. Terris, H. Jammes, L. Dandolo, The H19 locus acts in vivo as a 
tumor suppressor, Proceedings of the National Academy of Sciences of the United 
States of America, 105 (2008) 12417-12422. 
[59] W. Gao, M. Zhu, H. Wang, S. Zhao, D. Zhao, Y. Yang, Z.M. Wang, F. Wang, Z.J. 
Yang, X. Lu, L.S. Wang, Association of polymorphisms in long non-coding RNA H19 with 
coronary artery disease risk in a Chinese population, Mutat Res, 772 (2015) 15-22. 
[60] S.A. Carter, N.A. Foster, C.G. Scarpini, A. Chattopadhyay, M.R. Pett, I. Roberts, N. 
Coleman, Lipoprotein lipase is frequently overexpressed or translocated in cervical 
squamous cell carcinoma and promotes invasiveness through the non-catalytic C 
terminus, Br J Cancer, 107 (2012) 739-747. 
[61] M.A. Kaderi, M. Kanduri, A.M. Buhl, M. Sevov, N. Cahill, R. Gunnarsson, M. 
Jansson, K.E. Smedby, H. Hjalgrim, J. Jurlander, G. Juliusson, L. Mansouri, R. 
Rosenquist, LPL is the strongest prognostic factor in a comparative analysis of RNA-
based markers in early chronic lymphocytic leukemia, Haematologica, 96 (2011) 1153-
1160. 
[62] H. Podgornik, M. Sok, I. Kern, J. Marc, D. Cerne, Lipoprotein lipase in non-small cell 
lung cancer tissue is highly expressed in a subpopulation of tumor-associated 
macrophages, Pathol Res Pract, 209 (2013) 516-520. 
[63] N. Zaidi, L. Lupien, N.B. Kuemmerle, W.B. Kinlaw, J.V. Swinnen, K. Smans, 
Lipogenesis and lipolysis: the pathways exploited by the cancer cells to acquire fatty 
acids, Prog Lipid Res, 52 (2013) 585-589. 
[64] P.H. Weinstock, C.L. Bisgaier, K. Aalto-Setala, H. Radner, R. Ramakrishnan, S. 
Levak-Frank, A.D. Essenburg, R. Zechner, J.L. Breslow, Severe hypertriglyceridemia, 
reduced high density lipoprotein, and neonatal death in lipoprotein lipase knockout mice. 
Mild hypertriglyceridemia with impaired very low density lipoprotein clearance in 
heterozygotes, J Clin Invest, 96 (1995) 2555-2568. 
[65] Y. Ma, M.S. Liu, H. Zhang, I.J. Forsythe, J.D. Brunzell, M.R. Hayden, A 4 basepair 
deletion in exon 4 of the human lipoprotein lipase gene results in type I 
hyperlipoproteinemia, Hum Mol Genet, 2 (1993) 1049-1050. 
[66] P. Benlian, J. Etienne, J.L. de Gennes, L. Noe, D. Brault, A. Raisonnier, F. Arnault, 
J. Hamelin, L. Foubert, J.C. Chuat, et al., Homozygous deletion of exon 9 causes 
lipoprotein lipase deficiency: possible intron-Alu recombination, Journal of lipid research, 
36 (1995) 356-366. 
[67] T. Ichikawa, S. Kitajima, J. Liang, T. Koike, X. Wang, H. Sun, M. Okazaki, M. 
Morimoto, H. Shikama, T. Watanabe, N. Yamada, J. Fan, Overexpression of lipoprotein 
lipase in transgenic rabbits leads to increased small dense LDL in plasma and promotes 

86 
 



 

atherosclerosis, Laboratory investigation; a journal of technical methods and pathology, 
84 (2004) 715-726. 
[68] S. Levak-Frank, H. Radner, A. Walsh, R. Stollberger, G. Knipping, G. Hoefler, W. 
Sattler, P.H. Weinstock, J.L. Breslow, R. Zechner, Muscle-specific overexpression of 
lipoprotein lipase causes a severe myopathy characterized by proliferation of 
mitochondria and peroxisomes in transgenic mice, J Clin Invest, 96 (1995) 976-986. 
[69] L.D. Ferreira, L.K. Pulawa, D.R. Jensen, R.H. Eckel, Overexpressing human 
lipoprotein lipase in mouse skeletal muscle is associated with insulin resistance, 
Diabetes, 50 (2001) 1064-1068. 
[70] M. Shimada, S. Ishibashi, T. Gotoda, M. Kawamura, K. Yamamoto, T. Inaba, K. 
Harada, J. Ohsuga, S. Perrey, Y. Yazaki, et al., Overexpression of human lipoprotein 
lipase protects diabetic transgenic mice from diabetic hypertriglyceridemia and 
hypercholesterolemia, Arteriosclerosis, thrombosis, and vascular biology, 15 (1995) 
1688-1694. 
[71] C.F. Semenkovich, T. Coleman, A. Daugherty, Effects of heterozygous lipoprotein 
lipase deficiency on diet-induced atherosclerosis in mice, Journal of lipid research, 39 
(1998) 1141-1151. 
[72] Z. Lv, M. Zhang, J. Bi, F. Xu, S. Hu, J. Wen, Promoter hypermethylation of a novel 
gene, ZHX2, in hepatocellular carcinoma, Am J Clin Pathol, 125 (2006) 740-746. 
[73] S. Hu, M. Zhang, Z. Lv, J. Bi, Y. Dong, J. Wen, Expression of zinc-fingers and 
homeoboxes 2 in hepatocellular carcinogenesis: a tissue microarray and 
clinicopathological analysis, Neoplasma, 54 (2007) 207-211. 
[74] X. Wang, P. Gargalovic, J. Wong, J.L. Gu, X. Wu, H. Qi, P. Wen, L. Xi, B. Tan, R. 
Gogliotti, L.W. Castellani, A. Chatterjee, A.J. Lusis, Hyplip2, a new gene for combined 
hyperlipidemia and increased atherosclerosis, Arteriosclerosis, thrombosis, and vascular 
biology, 24 (2004) 1928-1934. 
[75] P.S. Gargalovic, A. Erbilgin, O. Kohannim, J. Pagnon, X. Wang, L. Castellani, R. 
LeBoeuf, M.L. Peterson, B.T. Spear, A.J. Lusis, Quantitative trait locus mapping and 
identification of Zhx2 as a novel regulator of plasma lipid metabolism, Circulation. 
Cardiovascular genetics, 3 (2010) 60-67. 
[76] J.C. Bis, M. Kavousi, N. Franceschini, A. Isaacs, G.R. Abecasis, U. Schminke, W.S. 
Post, A.V. Smith, L.A. Cupples, H.S. Markus, R. Schmidt, J.E. Huffman, T. Lehtimaki, J. 
Baumert, T. Munzel, S.R. Heckbert, A. Dehghan, K. North, B. Oostra, S. Bevan, E.M. 
Stoegerer, C. Hayward, O. Raitakari, C. Meisinger, A. Schillert, S. Sanna, H. Volzke, 
Y.C. Cheng, B. Thorsson, C.S. Fox, K. Rice, F. Rivadeneira, V. Nambi, E. Halperin, K.E. 
Petrovic, L. Peltonen, H.E. Wichmann, R.B. Schnabel, M. Dorr, A. Parsa, T. Aspelund, 
S. Demissie, S. Kathiresan, M.P. Reilly, K. Taylor, A. Uitterlinden, D.J. Couper, M. 
Sitzer, M. Kahonen, T. Illig, P.S. Wild, M. Orru, J. Ludemann, A.R. Shuldiner, G. 
Eiriksdottir, C.C. White, J.I. Rotter, A. Hofman, J. Seissler, T. Zeller, G. Usala, F. Ernst, 
L.J. Launer, R.B. D'Agostino, Sr., D.H. O'Leary, C. Ballantyne, J. Thiery, A. Ziegler, E.G. 
Lakatta, R.K. Chilukoti, T.B. Harris, P.A. Wolf, B.M. Psaty, J.F. Polak, X. Li, W. 
Rathmann, M. Uda, E. Boerwinkle, N. Klopp, H. Schmidt, J.F. Wilson, J. Viikari, W. 
Koenig, S. Blankenberg, A.B. Newman, J. Witteman, G. Heiss, C. Duijn, A. Scuteri, G. 
Homuth, B.D. Mitchell, V. Gudnason, C.J. O'Donnell, C.A. Consortium, Meta-analysis of 
genome-wide association studies from the CHARGE consortium identifies common 
variants associated with carotid intima media thickness and plaque, Nature genetics, 43 
(2011) 940-947. 
[77] C. Li, W. Chen, F. Jiang, J. Simino, S.R. Srinivasan, G.S. Berenson, H. Mei, Genetic 
association and gene-smoking interaction study of carotid intima-media thickness at five 
GWAS-indicated genes: The Bogalusa Heart Study, Gene, 562 (2015) 226-231. 

87 
 



 

[78] N. Ke, A. Albers, G. Claassen, D.H. Yu, J.E. Chatterton, X. Hu, B. Meyhack, F. 
Wong-Staal, Q.X. Li, One-week 96-well soft agar growth assay for cancer target 
validation, BioTechniques, 36 (2004) 826-828, 830, 832-823. 
[79] S. Bellentani, F. Scaglioni, M. Marino, G. Bedogni, Epidemiology of non-alcoholic 
fatty liver disease, Dig Dis, 28 (2010) 155-161. 
[80] H. Nordenstedt, D.L. White, H.B. El-Serag, The changing pattern of epidemiology in 
hepatocellular carcinoma, Dig Liver Dis, 42 Suppl 3 (2010) S206-214. 
[81] S. Perincheri, R.W. Dingle, M.L. Peterson, B.T. Spear, Hereditary persistence of 
alpha-fetoprotein and H19 expression in liver of BALB/cJ mice is due to a retrovirus 
insertion in the Zhx2 gene, Proceedings of the National Academy of Sciences of the 
United States of America, 102 (2005) 396-401. 
[82] R. Lindberg, B. Burkhart, T. Ichikawa, M. Negishi, The structure and 
characterization of type I P-450(15) alpha gene as major steroid 15 alpha-hydroxylase 
and its comparison with type II P-450(15) alpha gene, J Biol Chem, 264 (1989) 6465-
6471. 
[83] K. Aida, M. Negishi, A trans-acting locus regulates transcriptional repression of the 
female-specific steroid 15 alpha-hydroxylase gene in male mice, J Mol Endocrinol, 11 
(1993) 213-222. 
[84] H. Guillou, D. Zadravec, P.G. Martin, A. Jacobsson, The key roles of elongases and 
desaturases in mammalian fatty acid metabolism: Insights from transgenic mice, Prog 
Lipid Res, 49 (2010) 186-199. 
[85] A. Jakobsson, J.A. Jorgensen, A. Jacobsson, Differential regulation of fatty acid 
elongation enzymes in brown adipocytes implies a unique role for Elovl3 during 
increased fatty acid oxidation, American journal of physiology. Endocrinology and 
metabolism, 289 (2005) E517-526. 
[86] D. Zadravec, A. Brolinson, R.M. Fisher, C. Carneheim, R.I. Csikasz, J. Bertrand-
Michel, J. Boren, H. Guillou, M. Rudling, A. Jacobsson, Ablation of the very-long-chain 
fatty acid elongase ELOVL3 in mice leads to constrained lipid storage and resistance to 
diet-induced obesity, FASEB J, 24 (2010) 4366-4377. 
[87] A. Cano, X. Buque, M. Martinez-Una, I. Aurrekoetxea, A. Menor, J.L. Garcia-
Rodriguez, S.C. Lu, M.L. Martinez-Chantar, J.M. Mato, B. Ochoa, P. Aspichueta, 
Methionine adenosyltransferase 1A gene deletion disrupts hepatic very low-density 
lipoprotein assembly in mice, Hepatology, 54 (2011) 1975-1986. 
[88] S.C. Lu, L. Alvarez, Z.Z. Huang, L. Chen, W. An, F.J. Corrales, M.A. Avila, G. Kanel, 
J.M. Mato, Methionine adenosyltransferase 1A knockout mice are predisposed to liver 
injury and exhibit increased expression of genes involved in proliferation, Proceedings of 
the National Academy of Sciences of the United States of America, 98 (2001) 5560-
5565. 
[89] J.D. McGarry, N.F. Brown, The mitochondrial carnitine palmitoyltransferase system. 
From concept to molecular analysis, Eur J Biochem, 244 (1997) 1-14. 
[90] J. Zhou, M. Febbraio, T. Wada, Y. Zhai, R. Kuruba, J. He, J.H. Lee, S. Khadem, S. 
Ren, S. Li, R.L. Silverstein, W. Xie, Hepatic fatty acid transporter Cd36 is a common 
target of LXR, PXR, and PPARgamma in promoting steatosis, Gastroenterology, 134 
(2008) 556-567. 
[91] F. Nassir, O.L. Adewole, E.M. Brunt, N.A. Abumrad, CD36 deletion reduces VLDL 
secretion, modulates liver prostaglandins, and exacerbates hepatic steatosis in ob/ob 
mice, Journal of lipid research, 54 (2013) 2988-2997. 
[92] Y. Zeng, N. Tao, K.N. Chung, J.E. Heuser, D.M. Lublin, Endocytosis of oxidized low 
density lipoprotein through scavenger receptor CD36 utilizes a lipid raft pathway that 
does not require caveolin-1, J Biol Chem, 278 (2003) 45931-45936. 

88 
 



 

[93] K. Ma, P. Malhotra, V. Soni, O. Hedroug, F. Annaba, A. Dudeja, L. Shen, J.R. 
Turner, E.A. Khramtsova, S. Saksena, P.K. Dudeja, R.K. Gill, W.A. Alrefai, 
Overactivation of intestinal SREBP2 in mice increases serum cholesterol, PLoS One, 9 
(2014) e84221. 
[94] J. Capeau, Insulin resistance and steatosis in humans, Diabetes Metab, 34 (2008) 
649-657. 
[95] V. Chandra, P. Huang, N. Potluri, D. Wu, Y. Kim, F. Rastinejad, Multidomain 
integration in the structure of the HNF-4alpha nuclear receptor complex, Nature, 495 
(2013) 394-398. 
[96] G.P. Hayhurst, Y.H. Lee, G. Lambert, J.M. Ward, F.J. Gonzalez, Hepatocyte nuclear 
factor 4alpha (nuclear receptor 2A1) is essential for maintenance of hepatic gene 
expression and lipid homeostasis, Mol Cell Biol, 21 (2001) 1393-1403. 
[97] L. Yin, H. Ma, X. Ge, P.A. Edwards, Y. Zhang, Hepatic hepatocyte nuclear factor 
4alpha is essential for maintaining triglyceride and cholesterol homeostasis, 
Arteriosclerosis, thrombosis, and vascular biology, 31 (2011) 328-336. 
[98] P. Nguyen, V. Leray, M. Diez, S. Serisier, J. Le Bloc'h, B. Siliart, H. Dumon, Liver 
lipid metabolism, J Anim Physiol Anim Nutr (Berl), 92 (2008) 272-283. 
[99] M. Inoue, T. Ohtake, W. Motomura, N. Takahashi, Y. Hosoki, S. Miyoshi, Y. Suzuki, 
H. Saito, Y. Kohgo, T. Okumura, Increased expression of PPARgamma in high fat diet-
induced liver steatosis in mice, Biochem Biophys Res Commun, 336 (2005) 215-222. 
[100] J.R. Jones, C. Barrick, K.A. Kim, J. Lindner, B. Blondeau, Y. Fujimoto, M. Shiota, 
R.A. Kesterson, B.B. Kahn, M.A. Magnuson, Deletion of PPARgamma in adipose tissues 
of mice protects against high fat diet-induced obesity and insulin resistance, 
Proceedings of the National Academy of Sciences of the United States of America, 102 
(2005) 6207-6212. 
[101] M.T. Nakamura, B.E. Yudell, J.J. Loor, Regulation of energy metabolism by long-
chain fatty acids, Prog Lipid Res, 53 (2014) 124-144. 
[102] I.J. Lodhi, C.F. Semenkovich, Peroxisomes: a nexus for lipid metabolism and 
cellular signaling, Cell Metab, 19 (2014) 380-392. 
[103] P. Yue, Z. Chen, F. Nassir, C. Bernal-Mizrachi, B. Finck, S. Azhar, N.A. Abumrad, 
Enhanced hepatic apoA-I secretion and peripheral efflux of cholesterol and phospholipid 
in CD36 null mice, PLoS One, 5 (2010) e9906. 
[104] R.D. Clugston, J.J. Yuen, Y. Hu, N.A. Abumrad, P.D. Berk, I.J. Goldberg, W.S. 
Blaner, L.S. Huang, CD36-deficient mice are resistant to alcohol- and high-
carbohydrate-induced hepatic steatosis, Journal of lipid research, 55 (2014) 239-246. 
[105] P.D. Denechaud, R. Dentin, J. Girard, C. Postic, Role of ChREBP in hepatic 
steatosis and insulin resistance, FEBS Lett, 582 (2008) 68-73. 
[106] F. Benhamed, P.D. Denechaud, M. Lemoine, C. Robichon, M. Moldes, J. Bertrand-
Michel, V. Ratziu, L. Serfaty, C. Housset, J. Capeau, J. Girard, H. Guillou, C. Postic, The 
lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin 
resistance in mice and humans, J Clin Invest, 122 (2012) 2176-2194. 
[107] T. Kobayashi, K. Fujimori, Very long-chain-fatty acids enhance adipogenesis 
through coregulation of Elovl3 and PPARgamma in 3T3-L1 cells, American journal of 
physiology. Endocrinology and metabolism, 302 (2012) E1461-1471. 
[108] D.R. Nelson, J.V. Goldstone, J.J. Stegeman, The cytochrome P450 genesis locus: 
the origin and evolution of animal cytochrome P450s, Philos Trans R Soc Lond B Biol 
Sci, 368 (2013) 20120474. 
[109] D.R. Nelson, L. Koymans, T. Kamataki, J.J. Stegeman, R. Feyereisen, D.J. 
Waxman, M.R. Waterman, O. Gotoh, M.J. Coon, R.W. Estabrook, I.C. Gunsalus, D.W. 
Nebert, P450 superfamily: update on new sequences, gene mapping, accession 
numbers and nomenclature, Pharmacogenetics, 6 (1996) 1-42. 

89 
 



 

[110] D.W. Nebert, D.W. Russell, Clinical importance of the cytochromes P450, Lancet, 
360 (2002) 1155-1162. 
[111] D.W. Nebert, K. Wikvall, W.L. Miller, Human cytochromes P450 in health and 
disease, Philos Trans R Soc Lond B Biol Sci, 368 (2013) 20120431. 
[112] I. Johansson, E. Lundqvist, L. Bertilsson, M.L. Dahl, F. Sjoqvist, M. Ingelman-
Sundberg, Inherited amplification of an active gene in the cytochrome P450 CYP2D 
locus as a cause of ultrarapid metabolism of debrisoquine, Proceedings of the National 
Academy of Sciences of the United States of America, 90 (1993) 11825-11829. 
[113] A.I. Choudhury, S. Chahal, A.R. Bell, S.R. Tomlinson, R.A. Roberts, A.M. Salter, 
D.R. Bell, Species differences in peroxisome proliferation; mechanisms and relevance, 
Mutat Res, 448 (2000) 201-212. 
[114] M.J. Graham, B.G. Lake, Induction of drug metabolism: species differences and 
toxicological relevance, Toxicology, 254 (2008) 184-191. 
[115] Z. Dvorak, P. Pavek, Regulation of drug-metabolizing cytochrome P450 enzymes 
by glucocorticoids, Drug Metab Rev, 42 (2010) 621-635. 
[116] D.J. Waxman, M.G. Holloway, Sex differences in the expression of hepatic drug 
metabolizing enzymes, Mol Pharmacol, 76 (2009) 215-228. 
[117] H.J. Renaud, J.Y. Cui, M. Khan, C.D. Klaassen, Tissue distribution and gender-
divergent expression of 78 cytochrome P450 mRNAs in mice, Toxicol Sci, 124 (2011) 
261-277. 
[118] D.J. Waxman, Regulation of liver-specific steroid metabolizing cytochromes P450: 
cholesterol 7alpha-hydroxylase, bile acid 6beta-hydroxylase, and growth hormone-
responsive steroid hormone hydroxylases, J Steroid Biochem Mol Biol, 43 (1992) 1055-
1072. 
[119] S.H. Park, X. Liu, L. Hennighausen, H.W. Davey, D.J. Waxman, Distinctive roles of 
STAT5a and STAT5b in sexual dimorphism of hepatic P450 gene expression. Impact of 
STAT5a gene disruption, J Biol Chem, 274 (1999) 7421-7430. 
[120] D.J. Waxman, P.A. Ram, S.H. Park, H.K. Choi, Intermittent plasma growth 
hormone triggers tyrosine phosphorylation and nuclear translocation of a liver-
expressed, Stat 5-related DNA binding protein. Proposed role as an intracellular 
regulator of male-specific liver gene transcription, J Biol Chem, 270 (1995) 13262-
13270. 
[121] J.P. Hernandez, L.M. Chapman, X.C. Kretschmer, W.S. Baldwin, Gender-specific 
induction of cytochrome P450s in nonylphenol-treated FVB/NJ mice, Toxicol Appl 
Pharmacol, 216 (2006) 186-196. 
[122] A. Anzulovich, A. Mir, M. Brewer, G. Ferreyra, C. Vinson, R. Baler, Elovl3: a model 
gene to dissect homeostatic links between the circadian clock and nutritional status, 
Journal of lipid research, 47 (2006) 2690-2700. 
[123] G.B. Udy, R.P. Towers, R.G. Snell, R.J. Wilkins, S.H. Park, P.A. Ram, D.J. 
Waxman, H.W. Davey, Requirement of STAT5b for sexual dimorphism of body growth 
rates and liver gene expression, Proceedings of the National Academy of Sciences of 
the United States of America, 94 (1997) 7239-7244. 
[124] C.A. Wiwi, D.J. Waxman, Role of hepatocyte nuclear factors in growth hormone-
regulated, sexually dimorphic expression of liver cytochromes P450, Growth Factors, 22 
(2004) 79-88. 
[125] M.G. Holloway, G.D. Miles, A.A. Dombkowski, D.J. Waxman, Liver-specific 
hepatocyte nuclear factor-4alpha deficiency: greater impact on gene expression in male 
than in female mouse liver, Mol Endocrinol, 22 (2008) 1274-1286. 
[126] R. Tsunedomi, N. Iizuka, Y. Hamamoto, S. Uchimura, T. Miyamoto, T. Tamesa, T. 
Okada, N. Takemoto, M. Takashima, K. Sakamoto, K. Hamada, H. Yamada-Okabe, M. 

90 
 



 

Oka, Patterns of expression of cytochrome P450 genes in progression of hepatitis C 
virus-associated hepatocellular carcinoma, Int J Oncol, 27 (2005) 661-667. 
[127] M. Furukawa, M. Nishimura, D. Ogino, R. Chiba, I. Ikai, N. Ueda, S. Naito, S. 
Kuribayashi, M.A. Moustafa, T. Uchida, H. Sawada, T. Kamataki, Y. Funae, M. 
Fukumoto, Cytochrome p450 gene expression levels in peripheral blood mononuclear 
cells in comparison with the liver, Cancer Sci, 95 (2004) 520-529. 
[128] J.C. Ho, S.T. Cheung, K.L. Leung, I.O. Ng, S.T. Fan, Decreased expression of 
cytochrome P450 2E1 is associated with poor prognosis of hepatocellular carcinoma, Int 
J Cancer, 111 (2004) 494-500. 
[129] J. Ferlay, H.R. Shin, F. Bray, D. Forman, C. Mathers, D.M. Parkin, Estimates of 
worldwide burden of cancer in 2008: GLOBOCAN 2008, Int J Cancer, 127 (2010) 2893-
2917. 
[130] S.F. Altekruse, K.A. McGlynn, M.E. Reichman, Hepatocellular carcinoma 
incidence, mortality, and survival trends in the United States from 1975 to 2005, J Clin 
Oncol, 27 (2009) 1485-1491. 
[131] H.B. El-Serag, T. Tran, J.E. Everhart, Diabetes increases the risk of chronic liver 
disease and hepatocellular carcinoma, Gastroenterology, 126 (2004) 460-468. 
[132] A. Koteish, P.J. Thuluvath, Screening for hepatocellular carcinoma, J Vasc Interv 
Radiol, 13 (2002) S185-190. 
[133] A. Jakobsson, R. Westerberg, A. Jacobsson, Fatty acid elongases in mammals: 
their regulation and roles in metabolism, Prog Lipid Res, 45 (2006) 237-249. 
[134] R. Westerberg, P. Tvrdik, A.B. Unden, J.E. Mansson, L. Norlen, A. Jakobsson, 
W.H. Holleran, P.M. Elias, A. Asadi, P. Flodby, R. Toftgard, M.R. Capecchi, A. 
Jacobsson, Role for ELOVL3 and fatty acid chain length in development of hair and skin 
function, J Biol Chem, 279 (2004) 5621-5629. 
[135] R. Westerberg, J.E. Mansson, V. Golozoubova, I.G. Shabalina, E.C. Backlund, P. 
Tvrdik, K. Retterstol, M.R. Capecchi, A. Jacobsson, ELOVL3 is an important component 
for early onset of lipid recruitment in brown adipose tissue, J Biol Chem, 281 (2006) 
4958-4968. 
[136] D. Haridass, Q. Yuan, P.D. Becker, T. Cantz, M. Iken, M. Rothe, N. Narain, M. 
Bock, M. Norder, N. Legrand, H. Wedemeyer, K. Weijer, H. Spits, M.P. Manns, J. Cai, H. 
Deng, J.P. Di Santo, C.A. Guzman, M. Ott, Repopulation efficiencies of adult 
hepatocytes, fetal liver progenitor cells, and embryonic stem cell-derived hepatic cells in 
albumin-promoter-enhancer urokinase-type plasminogen activator mice, Am J Pathol, 
175 (2009) 1483-1492. 
[137] J.H. Shi, P.D. Line, Effect of liver regeneration on malignant hepatic tumors, World 
J Gastroenterol, 20 (2014) 16167-16177. 
[138] K. Vermeulen, D.R. Van Bockstaele, Z.N. Berneman, The cell cycle: a review of 
regulation, deregulation and therapeutic targets in cancer, Cell Prolif, 36 (2003) 131-149. 
[139] A. Brolinson, S. Fourcade, A. Jakobsson, A. Pujol, A. Jacobsson, Steroid 
hormones control circadian Elovl3 expression in mouse liver, Endocrinology, 149 (2008) 
3158-3166. 
[140] P. Tvrdik, R. Westerberg, S. Silve, A. Asadi, A. Jakobsson, B. Cannon, G. Loison, 
A. Jacobsson, Role of a new mammalian gene family in the biosynthesis of very long 
chain fatty acids and sphingolipids, J Cell Biol, 149 (2000) 707-718. 
[141] D.K. Perry, Y.A. Hannun, The role of ceramide in cell signaling, Biochimica et 
biophysica acta, 1436 (1998) 233-243. 
[142] G.A. Patwardhan, L.J. Beverly, L.J. Siskind, Sphingolipids and mitochondrial 
apoptosis, J Bioenerg Biomembr, (2015). 

91 
 



 

[143] H. Shen, F. Luan, H. Liu, L. Gao, X. Liang, L. Zhang, W. Sun, C. Ma, ZHX2 is a 
repressor of alpha-fetoprotein expression in human hepatoma cell lines, J Cell Mol Med, 
12 (2008) 2772-2780. 
[144] W.S. Chen, K. Manova, D.C. Weinstein, S.A. Duncan, A.S. Plump, V.R. Prezioso, 
R.F. Bachvarova, J.E. Darnell, Jr., Disruption of the HNF-4 gene, expressed in visceral 
endoderm, leads to cell death in embryonic ectoderm and impaired gastrulation of 
mouse embryos, Genes Dev, 8 (1994) 2466-2477. 
[145] J.A. Bonzo, C.H. Ferry, T. Matsubara, J.H. Kim, F.J. Gonzalez, Suppression of 
hepatocyte proliferation by hepatocyte nuclear factor 4alpha in adult mice, J Biol Chem, 
287 (2012) 7345-7356. 
[146] U. Becker, A. Deis, T.I. Sorensen, M. Gronbaek, K. Borch-Johnsen, C.F. Muller, P. 
Schnohr, G. Jensen, Prediction of risk of liver disease by alcohol intake, sex, and age: a 
prospective population study, Hepatology, 23 (1996) 1025-1029. 
[147] B. Chanas, H. Wang, B.I. Ghanayem, Differential metabolism of acrylonitrile to 
cyanide is responsible for the greater sensitivity of male vs female mice: role of CYP2E1 
and epoxide hydrolases, Toxicol Appl Pharmacol, 193 (2003) 293-302. 
[148] A. Parkinson, D.R. Mudra, C. Johnson, A. Dwyer, K.M. Carroll, The effects of 
gender, age, ethnicity, and liver cirrhosis on cytochrome P450 enzyme activity in human 
liver microsomes and inducibility in cultured human hepatocytes, Toxicol Appl 
Pharmacol, 199 (2004) 193-209. 
[149] A.H. Maas, Y.E. Appelman, Gender differences in coronary heart disease, Neth 
Heart J, 18 (2010) 598-603. 
[150] Z. Dong, M. Yao, L. Wang, J. Yang, D. Yao, Down-regulating Glypican-3 
Expression: Molecular-targeted Therapy for Hepatocellular Carcinoma, Mini Rev Med 
Chem, 14 (2014) 1183-1193. 
[151] J. Liu, B.S. Beckman, M. Foroozesh, A review of ceramide analogs as potential 
anticancer agents, Future Med Chem, 5 (2013) 1405-1421. 
[152] J. Newton, S. Lima, M. Maceyka, S. Spiegel, Revisiting the sphingolipid rheostat: 
Evolving concepts in cancer therapy, Exp Cell Res, (2015). 
[153] D.A. Guertin, D.M. Sabatini, Defining the role of mTOR in cancer, Cancer Cell, 12 
(2007) 9-22. 
[154] G. Tarantino, D. Capone, Inhibition of the mTOR pathway: a possible protective 
role in coronary artery disease, Ann Med, 45 (2013) 348-356. 
[155] E. Currie, A. Schulze, R. Zechner, T.C. Walther, R.V. Farese, Jr., Cellular fatty acid 
metabolism and cancer, Cell Metab, 18 (2013) 153-161. 

 

 

 

 

 

 

 

 

92 
 



 

Vita 
Kate Townsend Creasy             

Education 
Doctor of Philosophy                                                                                                    August 2010 – May 2015 
University of Kentucky                        Lexington, KY                                                                                                                                                                                                 
Department of Pharmacology & Nutritional Sciences                     GPA: 3.8 
Research Advisor: Dr. Brett T. Spear   
Dissertation Title: Zhx2 regulation of lipid metabolism and the balance between cardiovascular and 
hepatic health.  

My dissertation research has focused on the transcription factor Zinc fingers and homeoboxes 2 
(Zhx2) and its regulation of genes involved in lipid metabolism and homeostasis. I have 
investigated the role of Zhx2 by generating a  conditional knockout mouse model and by using in 
vitro assays to identify Zhx2 targets, characterize the phenotypes associated with their 
deregulation, and examine the resulting effects on fatty liver, liver cancer, and atherosclerosis.  
 

Post-Baccalaureate Study          August 2008 – May 2010 
University of North Carolina, Greensboro         Greensboro, NC 
Human Nutrition & Dietetics                        GPA: 4.0 
                     
Bachelor of Science                                                                                                               August 2001 - May 2005 
Greensboro College                                         Greensboro, NC                                                                                                                                                                        
Major: Business Administration/Economics        GPA: 4.0 
Minor: International Studies                     Summa Cum Laude 
 

Fellowships and Academic Awards 

Graduate School Academic Year Fellowship               July 2014- June 2015 
• University of Kentucky:  $15,000 + Tuition                                                                                  

 
NIH T32 Predoctoral Training Fellowship                                                                   December 2012 – July 2014  

• Nutrition and Oxidative Stress  
• $23,500/year (2 years maximum support) 
•  

Daniel R. Reedy Quality Achievement Award                                                                August 2012 – May 2015 
• $3000/year supplemental funding award (renewed 3 years) 

 
Publications 
Gedaly R, Angulo P, Chen C, Creasy KT, Spear BT, Hundley J, Daily MF, Shah M, Evers BM. The Role of 
PI3K/mTOR Inhibition in Combination with Sorafenib in Hepatocellular Carcinoma Treatment. Anticancer 
Res. 2012 Jul; 32(7):2531-6. 
 
 
 

93 
 


	ZHX2 REGULATION OF LIPID METABOLISM AND THE BALANCE BETWEEN CARDIOVASCULAR AND HEPATIC HEALTH
	Recommended Citation

	Title
	Abstract
	Table of Contents
	Chapter 1
	Introduction
	Figure 1
	Figure 2
	Figure 3
	Figure 4

	Chapter 2
	Table 1
	Table 2

	Chapter 3
	Introduction
	Results
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11

	Discussion

	Chapter 4
	Introduction
	Results
	Figure 12
	Figure 13
	Figure 14
	Figure 15
	Figure 16
	Figure 17
	Figure 18

	Discussion

	Chapter 5
	Introduction
	Results
	Figure 19
	Figure 20
	Figure 21
	Figure 22
	Figure 23
	Figure 24
	Figure 25

	Discussion

	Chapter 6
	Appendix A
	References
	Vita

