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Summary

 

The Legionnaire’s disease bacterium, 

 

Legionella pneumophila

 

, is a facultative intracellular patho-
gen which invades and replicates within two evolutionarily distant hosts, free-living protozoa
and mammalian cells. Invasion and intracellular replication within protozoa are thought to be
major factors in the transmission of Legionnaire’s disease. Although attachment and invasion of
human macrophages by 

 

L. pneumophila

 

 is mediated in part by the complement receptors CR1
and CR3, the protozoan receptor involved in bacterial attachment and invasion has not been
identified. To define the molecular events involved in invasion of protozoa by 

 

L. pneumophila

 

,
we examined the role of protein tyrosine phosphorylation of the protozoan host 

 

Hartmannella
vermiformis

 

 upon attachment and invasion by 

 

L. pneumophila

 

. Bacterial attachment and invasion
were associated with a time-dependent tyrosine dephosphorylation of multiple host cell pro-
teins. This host cell response was highly specific for live 

 

L. pneumophila

 

, required contact with
viable bacteria, and was completely reversible following washing off the bacteria from the host
cell surface. Tyrosine dephosphorylation of host proteins was blocked by a tyrosine phosphatase
inhibitor but not by tyrosine kinase inhibitors. One of the tyrosine dephosphorylated proteins
was identified as the 170-kD galactose/

 

N

 

-acetylgalactosamine–inhibitable lectin (Gal/GalNAc)
using immunoprecipitation and immunoblotting by antibodies generated against the Gal/Gal-
NAc lectin of the protozoan 

 

Entamoeba histolytica

 

. This Gal/GalNAc–inhibitable lectin has been
shown previously to mediate adherence of 

 

E. histolytica

 

 to mammalian epithelial cells. Uptake
of 

 

L. pneumophila

 

 by 

 

H. vermiformis

 

 was specifically inhibited by two monovalent sugars, Gal and
GalNAc, and by mABs generated against the 170-kD lectin of 

 

E. histolytica

 

. Interestingly, inhi-
bition of invasion by Gal and GalNAc was associated with inhibition of bacterial-induced ty-
rosine dephosphorylation of 

 

H. vermiformis

 

 proteins. High stringency DNA hybridization con-
firmed the presence of the 170-kD lectin gene in 

 

H. vermiformis

 

. We conclude that attachment
of 

 

L. pneumophila

 

 to the 

 

H. vermiformis

 

 170-kD lectin is required for invasion and is associated
with tyrosine dephosphorylation of the Gal lectin and other host proteins. This is the first dem-
onstration of a potential receptor used by 

 

L. pneumophila

 

 to invade protozoa.

 

I

 

nitial contact between an intracellular pathogen and a
susceptible host cell involves attachment of the pathogen

to a host cell receptor. This molecular attachment allows a
cross talk between bacterial ligands and host cell receptors
to facilitate invasion, and possibly subsequent intracellular
survival (1). Manipulation of host signal transduction path-
ways which favor uptake of intracellular pathogens has been
studied for several pathogens but the processes involved are
not fully understood (for review see reference 2). Signal trans-
duction involved in entry and uptake of 

 

Yersinia

 

 is one of
the well studied examples. Binding of the outer membrane
invasin protein of enteropathogenic 

 

Yersinia

 

 to 

 

b

 

1

 

 integrins

on mammalian epithelial cells is required to trigger a zipper-
like phagocytic process (1, 3). Internalization of 

 

Yersinia

 

 into
epithelial cells requires cytoskeletal rearrangement such as
actin reorganization and accumulation of cytoskeletal pro-
teins, such as filamin and talin, beneath the contact site (4).
Uptake of 

 

Yersinia

 

 by epithelial cells is blocked by protein
tyrosine kinase inhibitors (5).

To study host invasion by intracellular pathogens, we
used the Legionnaire’s disease agent, 

 

Legionella pneumophila

 

,
as a model of an intracellular pathogen. This bacterium is
the only documented example of an intracellular pathogen
which can invade and replicate within both mammalian
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cells and protozoa (6). Protozoa play a major role in con-
tinuous presence and amplification of 

 

L. pneumophila

 

 in the
environment as well as in transmission of Legionnaire’s dis-
ease (6–8). The hallmark of the ability of 

 

L. pneumophila

 

 to
cause Legionnaire’s disease is dependent on its capacity to
invade and replicate within alveolar macrophages and epi-
thelial cells (9–16). Within both evolutionarily distant hosts
(human macrophages and protozoa), intracellular bacterial
replication occurs within a rough endoplasmic reticulum–
surrounded phagosome which neither becomes acidified
nor matures through the classical endosomal lysosomal deg-
radation pathway (13, 17–20).

Several lines of evidence indicate that the fate of some
intracellular pathogens is dictated at the level of attachment
to a specific receptor on the host cell. For example, in the
case of 

 

L. pneumophila

 

 and 

 

Toxoplasma gondii

 

, coating the
pathogen with antibodies to alter the uptake mechanism
and allow phagocytosis through the Fc receptor results in
alteration of the fate of the organism by its targeting into a
phagosome which matures through the classical endosomal–
lysosomal degradation pathway (21, 22). Additionally, phago-
somes containing particles which enter via the complement
receptor or Fc receptor are differentially surrounded by
phosphotyrosine-containing proteins and cytoskeletal-asso-
ciated proteins, indicating that different biochemical signal-
ing events are involved in uptake through these two recep-
tors (23).

Uptake of 

 

L. pneumophila

 

 by monocytes occurs in part
through attachment to complement receptor (CR) 1 and
CR3 (24), and is microfilament dependent (25). In con-
trast, uptake of 

 

L. pneumophila

 

 by protozoa has been pro-
posed to occur through a microfilament-independent and
receptor-mediated mechanism (6, 25), but the identity of
the receptor is not known. Determination of the mode of
uptake of the bacteria by protozoa through a defined re-
ceptor will facilitate identification, and subsequent charac-
terization, of the host cell signal transduction pathways used
to target the bacteria into a safe replicative vacuole. It will
also allow examination of the role of this receptor in the sub-
sequent fate of the bacteria within protozoa. Finally, study-
ing these pathways will allow us to understand the unique
evolution of this bacterium which allows it to invade and
replicate within two evolutionarily distant host cells.

To define the molecular and biochemical events in-
volved in adherence and invasion of protozoa by 

 

L. pneu-
mophila

 

, we investigated the involvement of host tyrosine
phosphorylation of the protozoan host 

 

Hartmannella vermi-
formis

 

 during bacterial attachment and invasion. Our data
show that contact of 

 

L. pneumophila

 

 with 

 

H. vermiformis

 

 re-
sults in the induction of a time-dependent tyrosine dephos-
phorylation of multiple host proteins, including a promi-
nent 170-kD protein. This protein is a homologue of the

 

Entamoeba histolytica

 

 galactose/

 

N

 

-acetylgalactosamine–inhi-
bitable lectin (Gal/GalNAc)

 

1

 

, which is involved in adher-

ence to human epithelial cells. We provide further evi-
dence that contact with this lectin is involved in invasion of

 

H. vermiformis

 

 by 

 

L. pneumophila

 

. This is the first example of
a potential protozoan receptor used for invasion by 

 

L. pneu-
mophila

 

.

 

Materials and Methods

 

Bacterial Strains and Media. L. pneumophila

 

 AA100 is a virulent
clinical isolate which has been described previously (18). 

 

L. pneu-
mophila

 

 was grown on buffered charcoal yeast extract agar
(BCYE) plates at 37

 

8

 

C. For infections, bacteria grown from 48-h
agar plates were resuspended in serum-free axenic medium to the
desired concentration.

 

Protozoan Culture. H. vermiformis

 

 strain CDC-19 (50237;
American Type Culture Collection, Rockville, MD) has been
cloned and grown in axenic culture as a model for the study of
the pathogenesis of 

 

L. pneumophila

 

 (26). This strain was isolated
from a water source of an outbreak of nosocomial Legionnaire’s
disease in a hospital in South Dakota, and its presence in the pota-
ble water sites correlated with the presence of the epidemic strain
of 

 

L. pneumophila

 

 (26, 27). The amebas were maintained in
American Type Culture Collection culture medium 1034 (26).

 

Detection of Tyrosine Phosphorylated Proteins in H. vermiformis
upon Contact with L. pneumophila. H. vermiformis

 

 was incubated
overnight in culture flasks in serum-free axenic medium. The
amebas were harvested by centrifugation and resuspended in fresh
serum-free axenic medium. Aliquots of 

 

z

 

2 

 

3

 

 10

 

7

 

 amebas/ml
were infected by 10

 

9

 

 

 

L. pneumophila

 

. At several time intervals of
coincubation at 37

 

8

 

C, amebal cell lysates were prepared for im-
munoblot analysis as described below.

To study the effects of different inhibitors, amebas were prein-
cubated in the presence or absence of a tyrosine phosphatase in-
hibitor, sodium orthovanadate (1 mM) (Sigma Chemical Co., St.
Louis, MO), or tyrosine kinase inhibitors, genistein (100 

 

m

 

M), or
herbimycin A (7 

 

m

 

g/ml) (Calbiochem-Behring Corp., San Di-
ego, CA) for 30 min at 37

 

8

 

C. Following this treatment 

 

H. vermi-
formis

 

 were coincubated with 

 

L. pneumophila

 

 in the presence of
the inhibitor for 30 min and amebal cell lysates were prepared as
described below.

To examine the ability of some sugars to block tyrosine de-
phosphorylation of amebal proteins upon contact with 

 

L. pneu-
mophila

 

, 

 

H. vermiformis

 

 were preincubated prior to infection in
serum-free axenic medium in the presence of different sugars. In-
cubation was performed for 15 min on ice followed by coincuba-
tion for 20 min at 37

 

8

 

C. At the end of the coincubation period,
amebal cell lysates were prepared as described below.

 

Preparation of Cell Lysates and Western Blotting.

 

After incuba-
tion of 

 

H. vermiformis

 

 with 

 

L. pneumophila

 

, infections were
stopped using cold stop buffer [1

 

3

 

 PBS, pH 7.2, containing the
phosphatase inhibitors NaF (5 mM) and Na

 

3

 

VO

 

4

 

 (1 mM) (Sigma
Chemical Co.)]. Cells were washed three times with stop buffer
and pelleted by low speed centrifugation at 2,500 rpm for 2 min.
The supernatant which contained bacteria was discarded, and
amebas were lysed using cold 1% Triton X-100 lysis buffer (20
mM Tris-HCl, pH 7.6, 150 mM NaCl, 10 mM NaF, 1 mM
Na

 

3

 

VO

 

4

 

, 1 mM EDTA, 1 mM PMSF, 2 

 

m

 

g/ml leupeptin, and 2

 

m

 

g/ml aprotinin). The soluble and insoluble fractions were sepa-
rated by centrifugation at 14,000 rpm for 30 min at 4

 

8

 

C in a mi-
crofuge tube. Proteins from soluble fractions were resolved on
10% SDS-PAGE under reducing conditions. Following transfer
onto Immobilon-P (Millipore, Bedford, MA), membranes were

 

1

 

Abbreviations used in this paper:

 

 BCYE, buffered charcoal yeast extract agar;
Gal/GalNAc, galactose/

 

N

 

-acetylgalactosamine-inhibitable lectin; HRP, horse-
radish peroxidase.
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incubated in a blocking buffer containing 1.5% BSA for 30 min.
Membranes were probed with antiphosphotyrosine antibody
(RC-20) (Transduction Laboratories, Lexington, KY). After ex-
tensive washing, blots were developed using the enhanced chemi-
luminescence kit (DuPont/NEN, Boston, MA) according to the
manufacturer’s instructions. The specificity of the RC-20 anti-
body for protozoan phosphotyrosine–containing proteins was
confirmed by Western blots probed with another antiphosphoty-
rosine antibody, clone 4G10 (Upstate Biotechnology, Inc., Lake
Placid, NY) followed by a horseradish peroxidase (HRP)–conju-
gated goat anti–mouse secondary antibody (Santa Cruz Biotech-
nology, Santa Cruz, CA) (data not shown).

To probe 

 

H. vermiformis

 

 proteins with antilectin antibodies in
Western blots, 10

 

7

 

 equivalent cell lysates were subjected to SDS-
PAGE as described above. After transfer of proteins, blots were
incubated with mouse antilectin mAb 1G7, generously provided
by Dr. W. Petri and Dr. L. Lockhart (University of Virginia,
Charlottesville, VA), which has been shown previously to recog-
nize the cysteine-rich extracellular domain of the Gal/GalNAc
lectin of 

 

E. histolytica

 

 (28, 29). Membranes were further incubated
with HRP-conjugated anti–mouse secondary antibody and pro-
teins were visualized as described above.

 

Immunoprecipitation Studies.

 

After coincubation of 

 

L. pneumo-
phila

 

 and 

 

H. vermiformis

 

 for 5 min, 10

 

8

 

 cells were lysed with cold
lysis buffer as described above. Lysates were precleared with pro-
tein A beads (Repligen Corp., Cambridge, MA) for 2 h at 4

 

8

 

C on
a rocker platform. After preclearing, rabbit antiserum to 170-kD
Gal lectin (kindly provided by Dr. E. Tannich, Bernhared Nocht
Institute, Hamburg, Germany) (30) was added to the supernatant
and incubated for 2 h at 4

 

8

 

C. Immune complexes were collected
by incubation with protein A beads for 1 h at 4

 

8

 

C. The beads
were washed extensively with lysis buffer, and proteins were re-
solved on 7.5% SDS-PAGE under reducing conditions. After
transfer, proteins were visualized as described above.

 

Inhibition of L. pneumophila Uptake by Sugars.

 

Infection of 

 

H.
vermiformis

 

 with 

 

L. pneumophila

 

 was performed exactly as de-
scribed previously (31). To analyze the effect of different sugars
on invasion of 

 

H. vermiformis

 

 by 

 

L. pneumophila

 

, infections were
performed in triplicate in the presence of the following sugars:
galactose, 

 

N

 

-acetyl-

 

d

 

-galactosamine, glucose, mannose, and lac-
tose (Sigma Chemical Co.). Solutions of these sugars were pre-
pared in medium 1034 (American Type Culture Collection)
without serum or in assay medium and stored at 4

 

8

 

C until further
use (18).

The effect of sugars on invasion was investigated by gentami-
cin protection assays. In these assays, 

 

H. vermiformis

 

 was suspended
in serum-free medium at concentration of 10

 

7

 

/ml. Amebas were
incubated in triplicate in the presence of different sugars for 15
min prior to infection. 

 

L. pneumophila

 

 was added to a final con-
centration of 10

 

8

 

/ml. The samples were incubated at 378C for 4 h
followed by addition of 50 mg/ml gentamicin for 1 h. Gentami-
cin does not penetrate eukaryotic cells and kills extracellular bac-
teria. Intracellular bacteria which successfully invaded and were
internalized were protected from this antibiotic. The amebas
were washed with sterile medium and lysed by addition of a mild
detergent (0.04% Triton X-100). Lysis of the amebas was moni-
tored microscopically, and was complete within 1 min. This treat-
ment had no effect on viability of the bacteria (data not shown).
Dilutions were plated on BCYE plates for colony enumeration.
The percentage of invasion was calculated by dividing the num-
ber of CFU in the presence of sugars by the number of CFU in
the absence of sugars.

The effect of sugars on invasion of H. vermiformis by L. pneumo-

phila was also performed by examination of growth kinetics of L.
pneumophila in H. vermiformis in the presence of sugars. Sugars
were added and the flasks were incubated for 15 min prior to in-
fection with L. pneumophila. At several time intervals after infec-
tion (1, 3, 5, and 7 d), amebas were lysed as described above, and
samples were diluted and plated on BCYE plates for colony enu-
meration. The percentage of invasion was calculated by dividing
the number of CFU in the presence of sugars by the number of
CFU in the absence of sugars.

Inhibition of Invasion of H. vermiformis by Anti–170 kD Lectin An-
tibodies. Cultures of H. vermiformis were incubated overnight in
serum-free axenic medium. The cells were pelleted and resus-
pended in fresh serum-free medium at 107 CFU/ml. The amebas
were incubated in triplicate on ice in the presence of the mAbs
1G7, H85, BC6, 7F4, 8C12 (28, 32, 33), or a nonspecific mouse
IgG mAb for 45 min, followed by 15 min at 378C. Prewarmed L.
pneumophila was added to amebas, and the infection was allowed
to proceed for 2 h at 378C. At the end of this incubation period,
the monolayers were washed three times with saline, and extra-
cellular bacteria were killed by gentamicin, as described above.
Amebas were lysed with a mild detergent (0.04% Triton X-100)
to release intracellular bacteria, which were plated on BCYE
plates for colony counts. The percentage of invasion was calcu-
lated by dividing the number of CFU in the presence of antibod-
ies by the number of CFU in the absence of antibodies.

Slot Blot Hybridization. Chromosomal DNA of H. vermiformis
was isolated using a DNAZol solution according to the manufac-
turer’s recommendation (MRC, Cincinnati, OH). 20 mg of H.
vermiformis DNA and 10 ng of the 170-kD lectin encoding gene
were denatured by boiling and applied to a nylon membrane in a
slot blot format. The 170-kD lectin encoding gene was labeled
using an ECL random priming kit (Amersham Corp., Arlington
Heights, IL). High stringency hybridization and chemilumines-
cence detection were performed according to manufacturer’s rec-
ommendations (Amersham Corp.). Autoradiography was per-
formed using Kodak film X-OMAT AR (Eastman Kodak Co.,
Rochester, NY).

Results

Attachment and Invasion of H. vermiformis by L. pneumophila
Induces Tyrosine Dephosphorylation of Host Cell Proteins.
To understand the host cell processes which are activated
following adherence of L. pneumophila to protozoa, we in-
vestigated the involvement of host tyrosine phosphoryla-
tion. H. vermiformis were coincubated with L. pneumophila
for various time intervals, and amebal proteins were visual-
ized by immunoblots probed with a recombinant antiphos-
photyrosine antibody. Several tyrosine phosphorylated pro-
teins of apparent molecular mass (in kilodaltons) including
200, 170, 150, 130, 90, 80, 60–65, 45–50, 40, 30–35, and
28 were detected in uninfected H. vermiformis (Fig. 1 A and
B, lane 6). Following coincubation, dephosphorylation of
all of the most strongly tyrosine phosphorylated proteins,
including those with molecular masses of 170, 130, and 60–
65 kD, was evident as early as 5 min, and was complete by 15
min for the 170-kD protein (Fig. 1 B). The antiphosphoty-
rosine antibody did not bind any L. pneumophila proteins
(data not shown). Although the level of dephosphorylation
at each time interval varied slightly in multiple experiments,
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and occasionally was very prominent at 5 min (data not
shown), this pattern of time-dependent tyrosine dephos-
phorylation was consistently observed. Identical protein ty-
rosine phosphorylation patterns were obtained using an-
other antiphosphotyrosine antibody, clone 4G10 (data not
shown), thus confirming the specificity of the RC-20 anti-
body.

To confirm the specificity of protein tyrosine dephos-
phorylation in response to attachment of L. pneumophila to
H. vermiformis, several controls were included. H. vermifor-
mis were incubated with L. pneumophila supernatants, heat-
or formalin-killed L. pneumophila, equivalent numbers of
the Escherichia coli strain HB101, or equivalent numbers of
latex beads. None of the above conditions induced any de-
phosphorylation of H. vermiformis protein substrates (data
not shown). To examine the possibility that L. pneumophila
may secrete proteins which would trigger host signals into
the medium after contact with the host cell, supernatants
from 30 min of coincubation were added to fresh H. vermi-
formis cultures. This treatment did not induce any dephos-
phorylation of host cell proteins (data not shown). These
findings indicated that tyrosine dephosphorylation of host
cell proteins was specific, and was mediated by physical
contact of H. vermiformis with viable L. pneumophila within
a few minutes of contact. Furthermore, the dephosphoryla-
tion process required continuous contact, and was com-
pletely reversible. When the extracellular bacteria were
washed away after 30 min of coincubation, the pattern of
tyrosine phosphorylated proteins reverted to that of unin-
fected cells within 15 min after removal of extracellular
bacteria (Fig. 1 B, compare lanes 1 and 7). These data
showed that tyrosine dephosphorylation of the three ame-
bal proteins (170-, 130-, and 60–65 kD species) was medi-
ated by attachment of the bacterium.

Tyrosine Dephosphorylation of H. vermiformis Proteins by L.
pneumophila Is Blocked by a Tyrosine Phosphatase Inhibitor.
To analyze whether the tyrosine dephosphorylation of host
proteins was mediated by increased tyrosine phosphatase ac-
tivity, amebas were preincubated with a phosphatase inhib-
itor, sodium orthovanadate, for 30 min prior to infection.

Presence of this inhibitor did not alter the pattern of ty-
rosine phosphorylated proteins in resting cells (Fig. 2 A,
lane 1). Bacterial-induced tyrosine dephosphorylation was
at least partially blocked when either bacteria (lane 2) or
more effectively, when amebas (lane 3) were preincubated
with the inhibitor. Since the inhibitor was present during
the infection, our data did not determine whether the ty-
rosine phosphatase was due to a protozoan or bacterial ac-
tivity.

Figure 1. Attachment and invasion of
H. vermiformis by L. pneumophila induces
tyrosine dephosphorylation of different
host proteins. H. vermiformis cell extracts
were prepared from uninfected cells (A)
or from cells infected with L. pneumo-
phila for 1, 3, 5, 15, and 30 min (B, lanes
1–5), subjected to SDS-PAGE, and
probed with antiphosphotyrosine anti-
body using the enhanced chemilumines-
cence kit as described in Materials and
Methods. Lane 6 is a cell extract from
uninfected cells incubated at 378C for 30
min. Lane 7 represents samples prepared
from H. vermiformis infected for 30 min
following which the extracellular bacte-
ria were washed away and cells were in-
cubated at 378C for 15 min.

Figure 2. L. pneumophila–induced tyrosine dephosphorylation of H.
vermiformis proteins can be blocked by a tyrosine phosphatase inhibitor (A)
but not by a tyrosine kinase inhibitor (B). (A) Lane 1, Uninfected H. ver-
miformis pretreated with 1 mM sodium orthovanadate for 30 min at 378 C;
lane 2, untreated H. vermiformis infected with L. pneumophila pretreated
with sodium orthovanadate; lane 3, orthovanadate pretreated amebas in-
fected with untreated bacteria. (B) Effect of preincubation of H. vermifor-
mis with 100 mM genistein for 30 min at 378C (lane 1, uninfected) on
bacterial-induced tyrosine dephosphorylation (lane 2, infected). Infections
of amebas were performed for 30 min in the presence of the inhibitors.
Western blots of amebal lysates were probed with antiphosphotyrosine
antibody RC-20 as described in Materials and Methods.
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In contrast, treatment of H. vermiformis with tyrosine ki-
nase inhibitors, genistein (Fig. 2 B, lanes 1 and 2), or herbi-
mycin A (data not shown) showed no detectable effect on
the L. pneumophila–induced tyrosine dephosphorylation. None
of these inhibitors affected the viability of bacteria or ame-
bas (data not shown). These data indicated that tyrosine de-
phosphorylation of amebal proteins was mediated by ty-
rosine phosphatase activity.

Identification of the 170-kD Protein of H. vermiformis Which
Is Dephosphorylated upon Contact and Invasion by L. pneumo-
phila. One of the prominent amebal proteins which was
dephosphorylated upon contact with L. pneumophila was
z170 kD in molecular mass (Fig. 1 A, arrow). Search of the
literature on other amebal species indicated that a 170-kD
Gal/GalNAc–specific lectin is involved in adherence of E.
histolytica to host epithelial cells (32, 33). This adherence
can be blocked by antilectin antibodies (32–34). To test
whether the 170-kD dephosphorylated protein in H. vermi-
formis is similar to the 170-kD lectin of E. histolytica, we
performed immunoprecipitation studies using a rabbit anti-
serum generated against the E. histolytica Gal/GalNAc lec-
tin (30). Following coincubation with L. pneumophila, ame-
bal proteins were immunoprecipitated with anti–170-kD
antibody and then immunoblotted with antiphosphoty-
rosine antibody (see Materials and Methods). The results in
Fig. 3 B showed that the antiserum immunoprecipitated a
170-kD protein which was tyrosine dephosphorylated after
5 min of infection. The identity of the 170-kD lectin was
further confirmed by Western blotting of total amebal lysates
using a mouse mAb which recognizes the Gal/GalNAc

lectin of E. histolytica (28). The mAb bound to a 170-kD
protein of H. vermiformis (Fig. 3 A). These findings sug-
gested that the 170-kD Gal lectin of H. vermiformis and E.
histolytica shared similar conserved epitopes. The tyrosine
dephosphorylation of the 170-kD lectin suggested that this
lectin may be posttranslationally modified by signaling pro-
cesses following attachment of L. pneumophila.

Uptake of L. pneumophila by Amebas Is Inhibited by Gal and
GalNAc. Previous work with E. histolytica showed a de-
crease in 170-kD lectin-mediated adherence to colonic
mucosa in the presence of the monovalent sugars, Gal and
GalNAc (35, 36). To investigate the functional relevance of
involvement of 170-kD lectin in the invasion process, we
performed blocking experiments using various sugars, H.
vermiformis cultures were infected with L. pneumophila in the
presence of various sugars and the levels of invasion were
measured using two different assays. First, we used a gen-
tamicin protection invasion assay in which 4 h following
infection the extracellular bacteria were killed by treatment
with gentamicin and intracellular bacteria were plated on
BCYE plates for colony enumeration. Our results showed
that both Gal and GalNAc decreased invasion of amebas in
a dose-dependent manner. While 100 mM of GalNAc and
Gal inhibited invasion by 83 and 75%, respectively (Fig. 4 A),
other sugars like glucose, mannose, and lactose, showed lit-
tle or no effect on invasion of amebas by L. pneumophila at
any concentration tested (Fig. 4 A). These data are similar
to the inhibition of adherence of E. histolytica in the pres-
ence of identical concentrations of Gal and GalNAc (35, 36).

In the second assay, the effect of sugars on attachment
and invasion was investigated in long-term cocultures to ex-
amine growth kinetics of L. pneumophila within amebas.
The addition of Gal or GalNAc had a dramatic effect on
invasion of amebas (Fig. 4 B). These sugar monomers caused
no detectable increase in the number of L. pneumophila
during the 7-d coculture. In contrast, glucose, mannose, or
lactose did not affect intraamebic bacterial growth (Fig. 4
B). Furthermore, there was no increase in the number of L.
pneumophila in the culture medium in the presence of sug-
ars used in these experiments, indicating that the increase in
bacterial number was due to intracellular replication. Re-
moval of Gal or GalNAc after a 2-d coculture was followed
by invasion and a subsequent increase in the number of
bacteria, indicating that the sugars were not toxic and that
the inhibition of invasion by the sugars was reversible (data
not shown). These results indicated that the Gal/GalNAc
lectin was involved in the attachment and invasion of H.
vermiformis by L. pneumophila.

Inhibition of Invasion of H. vermiformis by Anti–170-kD
Lectin Antibodies. To test that the Gal/GalNAc lectin was
used for L. pneumophila entry, H. vermiformis were preincu-
bated with various antilectin mAbs prior to infection. The
number of intracellular bacteria was determined after gen-
tamicin treatment to kill extracellular bacteria, followed by
lysis of amebas and plating of intracellular bacteria for col-
ony enumeration. Three mAbs, BC6, H85, and 1G7, in-
hibited invasion by 62, 59, and 49%, respectively (Fig. 5 A).
These results are similar to the blocking effect of various

Figure 3. Identification of the 170-kD protein of H. vermiformis which
is dephosphorylated upon contact and invasion by L. pneumophila. (A) Ex-
tracts of 107 cell equivalents were subjected to SDS-PAGE and probed
with antilectin mAb (1G7) followed by incubation with HRP-conjugated
anti–mouse secondary antibody. (B) Lysates of 108 cell equivalents were
prepared from uninfected H. vermiformis (lane 1) or infected with L. pneu-
mophila for 5 min (lane 2). Samples were immunoprecipitated with rabbit
antiserum of the 170-kD lectin of E. histolytica. Following SDS-PAGE,
proteins were probed with antiphosphotyrosine (anti-ptyr) antibody and
visualized with an enhanced chemiluminescence kit as described in Mate-
rials and Methods. H is heavy chain of immunoprecipitating antibody.
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antilectin mAbs on the adherence of E. histolytica to epithe-
lial cells and colonic mucins (32–34). In contrast, normal
mouse IgG had no effect on invasion of H. vermiformis by
L. pneumophila. The H85 and 1G7 mAbs have been shown
to be specific for the surface-exposed cysteine-rich epitope
of the 170-kD lectin, and both mAbs inhibit adherence of
E. histolytica to human epithelial cells (28, 33). Moreover,
the E. histolytica 170-kD–specific mAb 7F4, which does not
inhibit adherence of E. histolytica to epithelial cells, did not
have any detectable effect on invasion of H. vermiformis by
L. pneumophila (Fig. 5 A). These data indicated a high level
of antigenic conservation in the surface-exposed epitopes of
the 170-kD Gal lectin in both protozoa. One of the mAbs
(8C12), which inhibits adherence of E. histolytica to epithe-
lial cells, did not have any detectable effect on the ability of
L. pneumophila to invade H. vermiformis. These data indi-
cated that although the 170-kD Gal lectin was antigenically
conserved, certain epitopes may be different in the two
protozoa.

To further confirm the specificity of the antilectin mAbs
to inhibit invasion of H. vermiformis by L. pneumophila, in-
vasion was examined in presence of several concentrations

of the H85 mAb. H85 was chosen because it is specific for
a surface-exposed cysteine-rich domain of the 170-kD lec-
tin and it inhibits adherence of E. histolytica to epithelial
cells (28, 32, 33). Invasion was inhibited by 62, 47, 17.7,
and 3.1% in the presence of 50, 10, 1, and 0.1 mg/ml of
H85 (Fig. 5 B). This dose-dependent inhibition of invasion
by an mAb specific for the surface-exposed cysteine-rich
epitope further confirmed our observations on the role of
the 170-kD Gal lectin in the invasion of H. vermiformis by
L. pneumophila. These data suggested that the 170-kD lectin
was involved in invasion of H. vermiformis by L. pneumo-
phila, and is probably the receptor of H. vermiformis which
allows attachment of L. pneumophila.

L. pneumophila–induced Tryosine Dephosphorylation of H.
vermiformis Proteins Is Inhibited by Gal and GalNAc. Our data
showed a role for the 170-kD lectin in attachment and
invasion of H. vermiformis by L. pneumophila. The initial con-
tact between L. pneumophila and H. vermiformis was associ-
ated with tyrosine dephosphorylation of multiple proteins
including the 170-kD Gal lectin, detectable within the first
few minutes of adherence. We next determined whether
dephosphorylation of amebal proteins by L. pneumophila

Figure 4. Inhibition of invasion of H. vermiformis by L. pneumophila in
the presence of different sugar monomers. (A) Invasion of H. vermiformis
by L. pneumophila in the absence or presence of various sugars at 10 and
100 mM concentrations. Amebas were infected with L. pneumophila for 4 h,
followed by gentamicin treatment to kill extracellular bacteria. Intracellu-
lar bacteria were released by mild lysis of the amebas (0.04% Triton X-100),
and plated for colony enumeration. The percentage of invasion was de-
rived from the relative number of intracellular bacteria in the presence of
sugars compared to untreated cultures. Values are the means of triplicate
samples, and error bars represent standard deviations. (B) Growth kinetics
of L. pneumophila in cocultures with H. vermiformis in the absence or pres-
ence of sugars at 100 mM concentrations. At several time intervals of the

infection, the number of bacteria in the cocultures was determined following growth on agar plates. The bacteria do not replicate extracellularly in the
coculture and thus the increase in the number of bacteria is due to intracellular replication.
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can be blocked by the same sugars that inhibited attach-
ment and invasion. In these experiments, H. vermiformis and
L. pneumophila were coincubated in the presence or ab-
sence of sugars. Mannose, which did not block invasion,
was used as a control in these experiments. Western blots
of amebal cell lysates probed with antiphosphotyrosine an-
tibodies showed that Gal and GalNAc blocked L. pneumo-
phila–induced tyrosine dephosphorylation of all the three
(170-, 130-, and 60–65-kD) amebal proteins (Fig. 6, lanes
4–7). In contrast, mannose which did not inhibit invasion
had no detectable effect on tyrosine dephosphorylation of
amebal proteins by L. pneumophila (Fig. 6, lanes 2 and 3).
These studies indicated that contact-dependent tyrosine
dephosphorylation of amebal proteins was mediated by ad-
herene of L. pneumophila to the 170-kD Gal lectin.

The 170-kD Lectin Encoding Gene Is Present in H. vermifor-
mis. Our data clearly showed the involvement of the
170-kD lectin homologue of E. histolytica in adherence and
invasion by L. pneumophila. Furthermore, there was a high
level of antigenic conservation between the 170-kD lectin
of both protozoa. Thus, it was important to confirm that a
homologous gene was also present in H. vermiformis. High
stringency slot blot hybridization probed with the E. his-
tolytica 170-kD Gal lectin cDNA showed hybridization of
the probe to H. vermiformis chromosomal DNA (data not
shown), confirming the presence of a highly similar gene in
H. vermiformis.

Discussion

In this study, we demonstrate the importance of a 170-kD
Gal/GalNAc lectin in the attachment and invasion of the
protozoan host H. vermiformis by the Legionnaire’s disease
bacterium, L. pneumophila. We present evidence for a con-

Figure 5. (A) Invasion of H. vermiformis by L. pneumophila in the presence of anti–170-kD Gal lectin mAbs. Amebas were preincubated with the 50
mg/ml of anti–170-kD Gal lectin mAbs, and infected with L. pneumophila for 2 h, followed by gentamicin treatment to kill extracellular bacteria. Intra-
cellular bacteria were released by mild lysis of the amebas (0.04% Triton X-100), and plated for colony enumeration. The percentage of invasion was
derived from the relative number of intracellular bacteria in the presence of mAbs compared to untreated cultures. Values are the means of triplicate sam-
ples, and error bars represent standard deviations. (B) Invasion of H. vermiformis by L. pneumophila in the presence of increasing concentrations of the anti–
170-kD Gal lectin mAb, H85. The number of intracellular bacteria and percentage of invasion were obtained exactly as in Fig. 3.

Figure 6. Dephosphorylation of H. vermiformis proteins by L. pneumo-
phila is inhibited by Gal and GalNAc. H. vermiformis was perincubated for
15 min with 50 mM of mannose (lanes 2 and 3), galactose (lanes 4 and 5),
or N-acetyl galactosamine (lanes 6 and 7) and coincubated further with L.
pneumophila for 20 min. Cell extracts were prepared and probed with an-
tiphosphotyrosine antibody and visualized as described above. 
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tact-dependent L. pneumophila–induced tyrosine dephos-
phorylation of host proteins.

Adherence of L. pneumophila to H. vermiformis is required
for the tyrosine dephosphorylation of multiple amebal pro-
teins. Since killed bacteria or culture supernatants from in-
fections do not induce tyrosine dephosphorylation, contact
of viable bacteria with amebas was required to induce ty-
rosine dephosphorylation of amebal proteins.

Our studies show that tyrosine dephosphorylation of ame-
bal proteins by L. pneumophila can be effectively blocked by
a tyrosine phosphatase inhibitor but not by tyrosine kinase
inhibitors. Tyrosine dephosphorylation of amebal proteins
can be mediated either by an endogenous amebal tyrosine
phosphatase or by a Legionella tyrosine phosphatase which
may be vectorially translocated into the host cell upon con-
tact. In this regard, tyrosine phosphatase (YopH) of Yersinia
is vectorially injected by Yersinia into the host cell upon
contact with macrophages, which results in preventing
phagocytosis (37, 38). Future work will determine whether
tyrosine dephosphorylation of amebal proteins was medi-
ated by H. vermiformis or by an unidentified L. pneumophila
tyrosine phosphatase.

We have identified the 170-kD protein of H. vermiformis
as a homologue of the Gal/GalNAc lectin of E. histolytica.
The 170-kD lectin which binds the antilectin mAb is also
immunoprecipitated from amebal cell lysates. Using high
stringency slot blot hybridizations, we show that the 170-
kD lectin gene of E. histolytica hybridizes to the chromo-
somal DNA of H. vermiformis. These data confirm the pres-
ence of a Gal/GalNAc lectin homologue in H. vermiformis.

Our data show that the 170-kD lectin is a potential re-
ceptor used by L. pneumophila for attachment and invasion
of H. vermiformis. First, the monovalent sugars Gal and Gal-
NAc, but not glucose, mannose, or lactose, inhibited up-
take of L. pneumophila by H. vermiformis. Similarly, adher-
ence of E. histolytica to host epithelial cells and colonic
mucins is mediated by the cysteine-rich domain of 170-kD
lectin in E. histolytica and adherence is inhibited by Gal or
GalNAc monomers (34, 35). Second, inhibition of inva-
sion of H. vermiformis by L. pneumophila in the presence of
Gal and GalNAc is associated with inhibition of tyrosine
dephosphorylation of H. vermiformis proteins. Third, three
mAbs specific for the cysteine-rich extracellular domain of
the 170-kD lectin specifically inhibit L. pneumophila inva-
sion of H. vermiformis. These mAbs have been shown to in-
hibit adherence of E. histolytica to epithelial cells (28, 32).
These findings indicate that binding of a bacterial ligand to
the 170-kD Gal lectin of H. vermiformis is associated with
tyrosine dephosphorylation of multiple host proteins in-
cluding the 170-kD lectin.

Inhibition of invasion of H. vermiformis by L. pneumophila
is not complete using either monovalent sugars Gal and
GalNAc or antilectin monoclonal antibodies. Our results
are comparable to the previous reports of inhibition of ad-
herence of E. histolytica to epithelial cells by these same re-
agents (32–36). There are several possible reasons for the
inability of these reagents to completely inhibit bacterial in-
vasion. First, the affinity of the bacterial ligand may be

stronger than the sugars or the blocking antibodies. This is
strongly supported by the findings that complex polyvalent
GalNAc has a 140,000-fold higher affinity for the 170-kD
lectin of E. histolytica compared to the monovalent sugar
(35). Moreover, the affinity of Yersinia invasin for b1 inte-
grins is much higher than that of any known integrin
ligands (3). This may offer a selective advantage for bacte-
rial binding to host cell receptors for efficient entry. Sec-
ond, although the Gal lectin plays a major role in invasion,
other protozoan receptors using different mechanisms of
invasion of H. vermiformis by L. pneumophila may be in-
volved. The other two H. vermiformis proteins (130 and
60–65 kD) which also underwent tyrosine dephosphoryla-
tion upon attachment of L. pneumophila may potentially
play a role in invasion.

The 170-kD Gal lectin of E. histolytica is a transmem-
brane protein containing cysteine-rich and cysteine-poor
extracellular domains, a transmembrane domain, and a 42–
amino acid cytoplasmic tail (30, 39). The extracellular do-
main shares sequence similarities with the human CR1 and
b integrins, and is recognized by antibodies specific for the
human b2 integrin, indicating the presence of conserved
domains in these proteins (39, 40). The cytoplasmic do-
main of the 170-kD Gal lectin contains a stretch of 11–
amino acid residues which are potential phosphorylation
sites, including three tyrosine phosphorylation sites (30).
Mann et al. have hypothesized that tyrosine phosphoryla-
tion of the cytoplasmic tail may be involved in controlling
the adhesive capacity of E. histolytica to different surfaces
(39). Our data show that dephosphorylation of tyrosine res-
idues of multiple proteins, including the 170-kD lectin is
associated with attachment and invasion of H. vermiformis
by L. pneumophila. We predict that the phosphorylated ty-
rosine residues of the 170-kD lectin are located in the cyto-
plasmic tail of the lectin. It will be interesting to examine
the status of tyrosine phosphorylation of the Gal/GalNAc
lectin of E. histolytica, and whether this has any role in ad-
herence of the protozoa to epithelial cells.

It is intriguing that H. vermiformis, which is a nonpatho-
genic protozoan, possesses a Gal lectin that is present in the
pathogenic protozoan, E. histolytica. In contrast to the role
of the 170-kD lectin of E. histolytica in adherence to mam-
malian cells, the lectin in H. vermiformis is involved in ad-
herence to and invasion by the Legionnaire’s disease bacte-
rium. Currently we are investigating the presence of a
similar Gal lectin on human-derived macrophages, and po-
tential roles of host protein tyrosine phosphorylation, to
examine whether L. pneumophila uses similar mechanisms
to invade the two evolutionarily distant host cells. It will be
interesting to determine whether L. pneumophila is able to
attach to and invade E. histolytica and whether this mode of
uptake is associated with tyrosine dephosphorylation of E.
histolytica proteins and subsequent intracellular bacterial sur-
vival.

Clustering of integrins by their ligands leads to tyrosine
phosphorylation of residues in the cytoplasmic tail (41).
This allows recruitment of several binding proteins and
leads to localized cytoskeletal rearrangements (41). In Yer-
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sinia sp., invasin–integrin interaction results in the uptake of
the bacterium by epithelial cells (4, 42). In contrast, our
data show that the 170-kD lectin is basally tyrosine phos-
phorylated, and is dephosphorylated within a few minutes
of contact with L. pneumophila. We propose three possibili-
ties for the role of tyrosine dephosphorylation of the 170-kD
lectin in bacterial invasion. First, dephosphorylation of the
lectin may prevent its interaction with the underlying cy-
toskeleton and serve to inhibit shedding of attached bacte-
ria. This is supported by the observations that uroid forma-
tion in E. histolytica leads to shedding of ligand bound
receptors (43, 44). Uroids are specialized appendages formed
in the posterior end of E. histolytica as a response to binding
of ligands (43, 44). Within the uroids, the Gal/GalNAc
lectin of E. histolytica colocalizes with myosin II (44), and is
involved in resistance to complement or antilectin antibod-
ies by shedding of ligand bound receptors (43). The me-
chanical contraction for membrane shedding of the capped
ligands in E. histolytica is provided by myosin II, a-actinin,
and p125FAK (43). Thus, dephosphorylation of the 170-kD
lectin of H. vermiformis upon contact with L. pneumophila
may allow adherence and prevent shedding of the bacte-
rium. Second, dephosphorylation of the lectin may be a
mechanism to increase the efficiency of uptake. This is sup-
ported by the observations that substitution of Y788F in
the cytoplasmic domain of b1 integrin of host cells results in
an efficient uptake of antiintegrin antibody-coated Staph-
ylococcus aureus (45). Furthermore, substitution of the NPIY
motif in the cytoplasmic domain to PPGY results in en-
hanced uptake of coated bacteria. Similar substitutions of
residues in the cytoplasmic tail of the low density lipopro-
tein receptor result in the rapid endocytosis of the receptor
(46). These studies suggest that mutations which disrupt as-
sociation between the receptor and cytoskeletal compo-

nents favor efficient internalization of the receptor (45).
The cytoplasmic tail of the Gal/GalNAc lectin of E. histo-
lytica contains a NAEY motif (30, 39) which could be in-
volved in interactions with the underlying cytoskeleton.
Thus, tyrosine dephosphorylation of the cytoplasmic motif
of the 170-kD lectin may cause a transient disruption of
its association with cytoskeletal proteins to favor bacterial-
directed receptor-mediated endocytosis (25). Third, dephos-
phorylation of the 170-kD lectin and other host-cell pro-
teins may be a signal to traffic the internalized bacteria
through a specialized route to a safe replicative vacuole
other than the classical route of endosomal maturation
through the endosomal–lysosomal degradation pathway.
Further studies are focused towards cloning of the 170-kD
Gal lectin of H. vermiformis to identify amino acid residues
in the extracellular and cytoplasmic domains and their role
in attachment, tyrosine dephosphorylation, and protozoan
invasion by L. pneumophila.

In summary, we show the occurrence of tyrosine de-
phosphorylation of H. vermiformis proteins, including the
170-kD Gal-GalNAc lectin, during attachment and inva-
sion by L. pneumophila. The dephosphorylation process is
specific for L. pneumophila, is dependent on contact by via-
ble L. pneumophila, and can be blocked by a tyrosine phos-
phatase inhibitor. The two monovalent sugars, Gal and
GalNAc, inhibit bacterial uptake, which is associated with
inhibition of tyrosine dephosphorylation of H. vermiformis
proteins. In addition, invasion is specifically blocked by an-
tilectin mAbs. We conclude that contact of L. pneumophila
with the lectin is involved in uptake of L. pneumophila by
H. vermiformis. Our data show that the 170-kD Gal/GalNAc
lectin is a potential receptor used by L. pneumophila to at-
tach to and invade a natural protozoan host.
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