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Project Overview 
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• Focus on material response modeling of non-charring 
ablative materials 

• Provide high-fidelity estimates of the thermal environment in 
new light-weight anisotropic TPS materials under realistic 
hypersonic flow conditions 
− full 3D capability 
− model radiative heat transport within ablative materials 
− couple material response with external flow solver 

• Predict thermal stresses Introduced due to thermal gradients 
• Provide maximum operating temperatures for a given 

material selection 



Material Response Code 
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• Material Response: control volume finite element (CVFEM) code 
for modeling ablation phenomena: 
− Solves energy equation for 2D/Axisymmetric geometries 
− Handles non-charring anisotropic ablative materials 
− Implicit time integration (Backward Euler -> 1st order in time) 
− Newton’s Method with preconditioned GMRES  for linear system 
− Can be loosely coupled to a CFD code through an aerodynamic 

heating boundary condition 
 



Domain Discretization 
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• Dual mesh formed from initial triangular mesh 
• Linear shape functions used to interpolate nodal data 
• Global sensitivity matrix assembled element by element 
 



 Boundary Conditions 
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• Supported boundary conditions 
− Specified temperature 
− Specified heat flux 
− Radiation 

 
− Aerodynamic heating 

 
 
 
 

• Thermochemical ablation model 
 
 

 
− B’c   is determined from user generated thermochemistry table 

− The surface recession rate determines a nodal velocity along the 
boundary, which can be used to calculate new nodal position 



 Mesh Deformation 
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• Treat the mesh as a linear elastic solid and solve equilibrium 
equations with zero body force (Lynch et. al. 1980) (Hogan et. al. 1996) (Dec 2010) 

− Equilibrium equations can be written in terms of displacements by 
using constituitive equations and strain definitions 

− Poisson’s ratio is only necessary material property and it can be 
arbitrarily chosen (taken as 0.0 for this work) 

− Boundary displacements from thermochemical ablation model 
− GMRES used to solve system of equations 

 Equilibrium equations Boundary conditions 



 Mesh Deformation Cont. 
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• To advance the solution a time step the method of Hogan, 
Blackwell, and Cochran is used (Hogan et. al. 1996)  

− Move the mesh based on  
− Update temperatures 
− Calculate           based on new temperatures 
− Compute average change of temperature between i and i+1 for 

ablating nodes to determine temperature and recession rate 
convergence 

  



Coupling with CFD 
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• Current coupling implementation 
− The material response code and CFD 

provide boundary conditions for each 
other 

− Boundary values are interpolated 
between codes 

− After material response has converged, 
the flow field mesh is adjusted and the 
CFD code is run with updated boundary 
values 

 



Coupling Continued 
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• LeMANS: finite volume Navier-Stokes solver for hypersonic 
flows developed at the University of Michigan (Martin et. al. 2012) 

− Handles 2D, 3D, and axisymmetric configurations 
− Can compute weakly ionized flow with thermal (trans/rot/vib) and 

chemical nonequilibrium 
− Time integration using a point or line implicit method 
− Can move mesh for 2D/axisymmetric geometries if modeling 

ablation 
− Has previously been coupled to the 1D material response code, 

MOPAR (Martin et. al. 2009) 



Coupling Continued 
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• Shepard’s Method for code-to-code interpolation (Franke 1982) 

− Inverse distance weighting method that works in both 2D and 3D 
− A minimum number of points  within a radius, R, are used for 

weighting 
 



IRV-2 
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• Well documented re-entry simulation (Hassan et. al. 2001) 

• Non-charring carbon-carbon ablator 
• Will allow comparison to 1D MOPAR results (Martin et. 

al. 2009) 



IRV-2 Mesh 
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• Flow mesh: 8448 cells 
• Solid mesh: 1106 nodes 

2/29/2012 



IRV-2 Conditions 
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• Two simulations performed 
− No recession (i.e. B’c  = 0), radiative boundary 
− Recession included, radiative boundary 

• Procedure 
− Run trajectory point 0 with no material response 
− Run trajectory point 1 with the flow field initialized to the point 0 

solution, and the solid initialized to 300 K 
− Call material response every 100 flow iterations 
− Monitor convergence of flow field residual   

• 5 species air chemistry model 

Trajectory 
point 

Time 
[s] 

Altitude 
[m] 

Velocity 
[m/s] 

Temperature 
[K] 

Density 
[kg/m3] 

0 0.00 66700 6780 228 1.25 x 10-4 

1 4.25 56000 6790 258 5.05 x 10-4 



IRV-2 Results 
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IRV-2 Results Cont. 
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IRV-2 Results Cont. 
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• Internal temperatures are much higher than published 1D data 
• Grid deformation scheme appears robust and maintains a smooth 

surface profile 
•  Wall temperatures calculated by LeMANS and the material 

response code show good convergence 
 

 
 

 



Summary 
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• A multidimensional material response code is being developed 
at the University of Michigan 

• The material response code has been loosely coupled to the 
hypersonic CFD code, LeMANS 

• Preliminary results for an axisymmetric coupled simulation of the 
IRV-2 vehicle have been shown 



Future Work 
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• Continue code verification and validation 
− IRV-2 
− PANT 

• Extend material response and CFD coupling to 3D 
• Include thermal stress calculations in the material response code 

Questions? 
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