Coupled Computation of Fluid and **Material Response for Non-charring** Ablative Materials in Hypersonic Flow Jonathan E. Wiebenga and Iain D. Boyd University of Michigan 5<sup>th</sup> Ablation Workshop Lexington, Kentucky 2/29/2011

Funded through the Air Force Research Laboratory







# Outline



- Project overview
- 2D/Axisymmetric material response code
- Fluid and material response coupling
- IRV-2 results
- Future Work





- Focus on material response modeling of non-charring ablative materials
- Provide high-fidelity estimates of the thermal environment in new light-weight anisotropic TPS materials under realistic hypersonic flow conditions
  - full 3D capability
  - model radiative heat transport within ablative materials
  - couple material response with external flow solver
- Predict thermal stresses Introduced due to thermal gradients
- Provide maximum operating temperatures for a given material selection





- Material Response: control volume finite element (CVFEM) code for modeling ablation phenomena:
  - Solves energy equation for 2D/Axisymmetric geometries
  - Handles non-charring anisotropic ablative materials
  - Implicit time integration (Backward Euler -> 1<sup>st</sup> order in time)
  - Newton's Method with preconditioned GMRES for linear system
  - Can be loosely coupled to a CFD code through an aerodynamic heating boundary condition

$$\int_{cs} \dot{\mathbf{q}}'' \cdot d\mathbf{A} - \int_{cs} \rho h \mathbf{v}_{cs} \cdot d\mathbf{A} + \frac{d}{dt} \int_{cv} \rho e dV = 0$$
  
Conduction grid convection Energy Content





- Dual mesh formed from initial triangular mesh
- Linear shape functions used to interpolate nodal data
- Global sensitivity matrix assembled element by element





## **Boundary Conditions**



- Supported boundary conditions
  - Specified temperature
  - Specified heat flux
  - Radiation

$$\dot{q}_{rad}^{\prime\prime} = \epsilon \sigma (T_{bnd}^4 - T_{res}^4)$$

Aerodynamic heating

$$\dot{q}_{ah}^{\prime\prime} = \rho_e u_e C_h (h_w - h_r)$$

Thermochemical ablation model

$$\dot{q}_{abl}^{\prime\prime} = \rho_s \dot{s} h_w$$
$$\dot{m}_{abl}^{\prime\prime} = \rho_s \dot{s} = \rho_e u_e C_m B_c^\prime$$

- $B'_c$  is determined from user generated thermochemistry table
- The surface recession rate determines a nodal velocity along the boundary, which can be used to calculate new nodal position





- Treat the mesh as a linear elastic solid and solve equilibrium equations with zero body force (Lynch et. al. 1980) (Hogan et. al. 1996) (Dec 2010)
  - Equilibrium equations can be written in terms of displacements by using constituitive equations and strain definitions
  - Poisson's ratio is only necessary material property and it can be arbitrarily chosen (taken as 0.0 for this work)
  - Boundary displacements from thermochemical ablation model
  - GMRES used to solve system of equations



Boundary conditions

$$\begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} \dot{s}\Delta tn_x \\ \dot{s}\Delta tn_y \\ \dot{s}\Delta tn_z \end{bmatrix}$$

2/29/2012





- To advance the solution a time step the method of Hogan, Blackwell, and Cochran is used (Hogan et. al. 1996)
  - Move the mesh based on  $\dot{s}^i$
  - Update temperatures
  - Calculate  $\dot{s}^{i+1}$  based on new temperatures
  - Compute average change of temperature between *i* and *i*+1 for ablating nodes to determine temperature and recession rate convergence

$$\epsilon = \frac{1}{M} \sum_{j=1}^{M} |T_j^{i+1} - T_j^i|$$



## Coupling with CFD

- Current coupling implementation
  - The material response code and CFD provide boundary conditions for each other
  - Boundary values are interpolated between codes
  - After material response has converged, the flow field mesh is adjusted and the CFD code is run with updated boundary values













- LeMANS: finite volume Navier-Stokes solver for hypersonic flows developed at the University of Michigan (Martin et. al. 2012)
  - Handles 2D, 3D, and axisymmetric configurations
  - Can compute weakly ionized flow with thermal (trans/rot/vib) and chemical nonequilibrium
  - Time integration using a point or line implicit method
  - Can move mesh for 2D/axisymmetric geometries if modeling ablation
  - Has previously been coupled to the 1D material response code, MOPAR (Martin et. al. 2009)



# **Coupling Continued**



- Shepard's Method for code-to-code interpolation (Franke 1982)
  - Inverse distance weighting method that works in both 2D and 3D
  - A minimum number of points within a radius, *R*, are used for weighting





IRV-2



- Well documented re-entry simulation (Hassan et. al. 2001)
- Non-charring carbon-carbon ablator
- Will allow comparison to 1D MOPAR results (Martin et. al. 2009)







## IRV-2 Mesh







# **IRV-2** Conditions



- Two simulations performed
  - No recession (i.e.  $B'_c = 0$ ), radiative boundary
  - Recession included, radiative boundary
- Procedure
  - Run trajectory point 0 with no material response
  - Run trajectory point 1 with the flow field initialized to the point 0 solution, and the solid initialized to 300 K
  - Call material response every 100 flow iterations
  - Monitor convergence of flow field residual
- 5 species air chemistry model

| Trajectory<br>point | Time<br>[s] | Altitude<br>[m] | Velocity<br>[m/s] | Temperature<br>[K] | Density<br>[kg/m³]      |
|---------------------|-------------|-----------------|-------------------|--------------------|-------------------------|
| 0                   | 0.00        | 66700           | 6780              | 228                | 1.25 x 10 <sup>-4</sup> |
| 1                   | 4.25        | 56000           | 6790              | 258                | 5.05 x 10 <sup>-4</sup> |



#### **IRV-2** Results







### IRV-2 Results Cont.









- Internal temperatures are much higher than published 1D data
- Grid deformation scheme appears robust and maintains a smooth surface profile
- Wall temperatures calculated by LeMANS and the material response code show good convergence





## Summary



- A multidimensional material response code is being developed at the University of Michigan
- The material response code has been loosely coupled to the hypersonic CFD code, LeMANS
- Preliminary results for an axisymmetric coupled simulation of the IRV-2 vehicle have been shown





- Continue code verification and validation
  - IRV-2
  - PANT
- Extend material response and CFD coupling to 3D
- Include thermal stress calculations in the material response code

# Questions?



## References



- 1. Lynch, D. R. and O'Neill, K., "Elastic Grid Deformation for Moving Boundary Problems in Two Space Dimensions," *Finite Elements in Water Resources*, Vol. 2, 1980, pp.7.111 – 7.120.
- Hogan, R. E., Blackwell, B. F., and Cochran, R. J., "Application of Moving Grid Control Volume Finite Element Method to Ablation Problems," *Journal of Thermophysics and Heat Transfer*, Vol. 10, No. 2, April-June, 1996.
- 3. Dec, John A., "Three Dimensional Finite Element Ablative Thermal Response Analysis Applied to Heatshield Penetration Design," *Ph.D. Thesis,* Georgia Institute of Technology, 2010.
- 4. Franke, Richard, "Scattered Data Interpolation: Tests of Some Methods", *Mathematics of Computation*, Vol. 38, No. 157, January, 1982.
- Hassan, B., Kuntz, D. W., Salguero, D. E., Potter, D. L., "A coupled Fluid/Thermal/Flight Dynamics Approach for Predicting Hypersonic Vehicle Performance", 35<sup>th</sup> Thermophysics Conference, June 11-14, 2001, Anaheim, California, AIAA Paper 2001-2903.
- 6. Martin, A., Boyd, I. D., "Strongly Coupled Computation of Material Response and Nonequilibrium Flow for Hypersonic Ablation", *41st AIAA Thermophysics Conference*, June 22-25, 2009, San Antonio, Texas, AIAA Paper 2009-3597.
- 7. Martin, A., Scalabrin, L.C., and Boyd, I.D., "High Performance Modeling of Atmospheric Re-entry Vehicles," *Journal of Physics: Conference Series,* Vol. 341, 2012, Article 012002.