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Project Overview

* Focus on material response modeling of non-charring
ablative materials

* Provide high-fidelity estimates of the thermal environment in
new light-weight anisotropic TPS materials under realistic

hypersonic flow conditions

—  full 3D capability

- model radiative heat transport within ablative materials
— couple material response with external flow solver

* Predict thermal stresses Introduced due to thermal gradients
* Provide maximum operating temperatures for a given
material selection
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Material Response Code

Material Response: control volume finite element (CVFEM) code
for modeling ablation phenomena:

Solves energy equation for 2D/Axisymmetric geometries
Handles non-charring anisotropic ablative materials

Implicit time integration (Backward Euler -> 15t order in time)
Newton’s Method with preconditioned GMRES for linear system
Can be loosely coupled to a CFD code through an aerodynamic
heating boundary condition
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Domain Discretization E&=1p'
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Dual mesh formed from initial triangular mesh
Linear shape functions used to interpolate nodal data
Global sensitivity matrix assembled element by element
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Boundary Conditions =1’

 Supported boundary conditions
- Specified temperature
- Specified heat flux
— Radiation

qf:",ad — EG(TEjlnd o vales)
- Aerodynamic heating
qgh — peuech(hﬂw - hr)
* Thermochemical ablation model
ngl = psShy
mgbl = pPsS = peueCmBé
- B’, is determined from user generated thermochemistry table

- The surface recession rate determines a nodal velocity along the
boundary, which can be used to calculate new nodal position
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Mesh Deformation

* Treat the mesh as a linear elastic solid and solve equilibrium

equations with zero body force (Lynch et. al. 1980) (Hogan et. al. 1996) (Dec 2010)

—  Equilibrium equations can be written in terms of displacements by
using constituitive equations and strain definitions

- Poisson’s ratio is only necessary material property and it can be
arbitrarily chosen (taken as 0.0 for this work)

— Boundary displacements from thermochemical ablation model

- GMRES used to solve system of equations

Equilibrium equations Boundary conditions
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Mesh Deformation Cont. E=Iy
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 To advance the solution a time step the method of Hogan,

Blackwell, and Cochran is used (Hogan et. al. 1996)

-~ Move the mesh based on &’

- Update temperatures

— Calculate §*+! based on new temperatures

— Compute average change of temperature between 1 and i1+1 for
ablating nodes to determine temperature and recession rate
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Coupling with CFD

LeMANS solution

* Current coupling implementation from previous
. trajectory point
— The material response code and CFD preeee s egenn e o yp
rovide boundary conditions for each : ; ’
P Y - oo [Flow field
other NG

— Boundary values are interpolated :

between codes

- After material response has converged, @
the flow field mesh is adjusted and the

CFD code is run with updated boundary
values
Nlo
Material [ |
: Response|
. LeMANS :
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Coupling Continued PD

LeMANS: finite volume Navier-Stokes solver for hypersonic
flows developed at the University of Michigan (martin et. al. 2012)

Handles 2D, 3D, and axisymmetric configurations

Can compute weakly ionized flow with thermal (trans/rot/vib) and
chemical nonequilibrium

Time integration using a point or line implicit method

Can move mesh for 2D/axisymmetric geometries if modeling
ablation

Has previously been coupled to the 1D material response code,
MOPAR (Martin et. al. 2009)
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Coupling Continued
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Shepard’s Method for code-to-code interpolation (Franke 1982)
- Inverse distance weighting method that works in both 2D and 3D
- A minimum number of points within a radius, R, are used for

weighting
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IRV-2
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Well documented re-entry simulation (Hassan et. al. 2001)
Non-charring carbon-carbon ablator

Will allow comparison to 1D MOPAR results (Martin et.
al. 2009)
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IRV-2 Conditions

Two simulations performed

- Norecession (i.e. B’, = 0), radiative boundary

— Recession included, radiative boundary

Procedure

— Run trajectory point 0 with no material response

— Run trajectory point 1 with the flow field initialized to the point O
solution, and the solid initialized to 300 K

— Call material response every 100 flow iterations

— Monitor convergence of flow field residual

5 species air chemistry model

Trajectory Time Altitude Velocity Temperature Density
point [s] [m] [m/s] [K] [kg/m?]

0 0.00 66700 6780 228 1.25x 104

1 4.25 56000 6790 258 5.05x 104

2/29/2012 14



IRV-2 Results
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IRV-2 Results Cont.
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IRV-2 Results Cont.  [E=1»

Internal temperatures are much higher than published 1D data

Grid deformation scheme appears robust and maintains a smooth
surface profile

Wall temperatures calculated by LeMANS and the material
response code show good convergence
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Summary

* A multidimensional material response code is being developed
at the University of Michigan

 The material response code has been loosely coupled to the
hypersonic CFD code, LeMANS

* Preliminary results for an axisymmetric coupled simulation of the
IRV-2 vehicle have been shown
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Future Work

 Continue code verification and validation
- |RV-2
— PANT
 Extend material response and CFD coupling to 3D

* Include thermal stress calculations in the material response code

Questions?
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