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Outline 
• Background of Ultrasonic Thermometry 

• Applications 
– Regenerative Combustors  

– Extreme Temperature 

– Thermal gradients 

• Re-Entry Applications: 
– Challenges  

– Recession Measurement Concept 

– Scoping studies 
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Problem Statement  

  

 Auto ignition or “cook-off” 
is one of the most serious 
safety concerns when firing 
large caliber guns.  

 NETS -  Non-intrusive 
Erosion & Temperature 
Sensor 

Background 
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Ultrasonic  Sensors 
 

High Speed Data Acquisition 
 

High Bandwidth Ultrasonic Instrumentation 
 

High Speed Data transfer/Storage 
 

Independent Temperature Sensor /Normalization 
 

Cooperative/Characterized Materials  
 

Relevant Property Data over Operating  Range 

Ultrasonic 

Sensor

Initialization 

Thermocouple

Harsh Thermal or 

Chemically 

Reacting 

Environment

Key Components Background 



Background 
Overarching integral relationship: 
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 G = Ultrasonic ToF 

 𝐿 = Length of Propagation 

 𝜉 = Velocity-Expansion coefficient 

 𝑉0 = Velocity of Sound at reference temperature 𝑇0  
 𝜃 𝑥  = 𝑇(𝑥) - 𝑇0 
 

Under isothermal thermal conditions, 
Δ𝐺

𝐺
=  𝜉(𝑇 − 𝑇0) 
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Layered Structural Echoes 

Step Structural Echoes 

Backscatter Structural Echoes 

Sound Propagation 

Layer 
Interface 

Back Wall 

Step Wall 

Back Wall 

Grain 
Backscatter 

Echo Returns 

Echo Returns 

Echo Returns 

Sound Propagation 

Sound Propagation 

Back Wall 
Transducer 

Transducer 

Transducer 

Localization Region 
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Background:  Localization 



Propulsion Applications 
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Propulsion Applications 
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Extreme Temperatures 
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Backscatter:   Copper 
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Backscatter:   Copper 



Inversion and Heat Flux 
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Re-Entry Applications 
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Re-Entry Applications 
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Backwall 

Echo 

Internal  Echoes 

Challenges: 
 
High Attenuation 
 
Significant Backscatter 
 
Anisotropy 
 
Recession/Temperature 



Re-Entry Applications: 
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Anisotropy 
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Re-Entry Applications 
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Carbon Phenolic  2 
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Re-Entry Applications 
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Recession Measurement Concept 

Δ𝐺(𝑡) = 𝜕𝐺
𝜕𝐿 Δ𝐿(𝑡) + 𝜕𝐺

𝜕θ  Δθ(𝑡)   

• Determine frequency & configuration 

• Understand echo origin & Measure ultrasonic properties 

• Track & measure D G for eroding surface  

• Use non-eroding, internal, backscatter echoes to 

estimate temperature and material property effects 



Re-Entry Applications 
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Trans  Rec 
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Re-Entry Applications 
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• Ultrasonic Thermometry: 

– Model-independent local temperature measurement 

– Only material property needed for temperature measurement is the 

Velocity-Expansion Coefficient 

– Material structure becomes the sensor 
• Non-destructive, Non-Intrusive 

• Remote mounting away from harsh, chemically reactive environments 

• Does not disrupt thermal transport 

• Rapid Response 

– Backscatter useful for correcting recession data.   

Summary 
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• Continue Scoping Experiments 

• Velocity-expansion Coefficient 

• Real-time Studies 

• Backscatter Temperature Analysis 

• Need Teaming Partners  for Phase II 

programs 
 

Next Steps 
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Back-up Slides 

I N D U S T R I A L  M E A S U R E M E N T  S Y S T E M S ,  I N C .  



Background 
• Maximum probe operation: ~500°C 

– But probes can be mounted remotely 

• Fast Response: 5000Hz 

– 50 kHz under development 

• Heat Flux measurement not limited by thermal 

mass 

– 2 - 170,000 KW/m2 have been demonstrated to date 
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Instrumentation 
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One Dimensional Model & Heat Flux  
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Change in the time-of-flight from one pulse to the next 
is really a measure of the stored energy in the system 
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