

Ultrasonic Thermometry for Recession Measurements in Ablative Materials

5th Ablation Workshop: University of Kentucky : February 28, to March 1 2012 Joseph A. Lloyd and Donald E. Yuhas, PhD.

Outline

- Background of Ultrasonic Thermometry
- Applications
 - Regenerative Combustors
 - Extreme Temperature
 - Thermal gradients
- Re-Entry Applications:
 - Challenges
 - Recession Measurement Concept
 - Scoping studies

- Auto ignition or "cook-off" is one of the most serious safety concerns when firing large caliber guns.
- NETS Non-intrusive
 Erosion & Temperature
 Sensor

Ultrasonic

Sensor

Harsh Thermal or Chemically Reacting Environment

Key Components

➤Ultrasonic Sensors

➢ High Speed Data Acquisition

High Bandwidth Ultrasonic Instrumentation

High Speed Data transfer/Storage

Initialization

Thermocouple > Cooperative/Characterized Materials

Relevant Property Data over Operating Range

Overarching integral relationship:

$$G = 2 \int_0^L \frac{1}{V(T(x))} dx \approx \frac{2}{V_0} \int_0^L [1 + \xi \theta(x)] dx$$

G = Ultrasonic ToF *L* = Length of Propagation ξ = Velocity-Expansion coefficient *V*₀ = Velocity of Sound at reference temperature *T*₀ $\theta(x) = T(x) - T_0$

Under isothermal thermal conditions, $\frac{\Delta G}{G} = \xi (T - T_0)$

Background: Localization

Layered Structural Echoes

Propulsion Applications

Propulsion Applications

Extreme Temperatures

Backscatter: Copper

Backscatter: Copper

Inversion and Heat Flux

Re-Entry Applications

Re-Entry Applications

Challenges:

High Attenuation

Significant Backscatter

Anisotropy

Recession/Temperature

Anisotropy Re-Entry Applications:

Carbon Phenolic 1

Re-Entry Applications

Carbon Phenolic 2

Re-Entry Applications Recession Measurement Concept $\Delta G(t) = \left[\frac{\partial G}{\partial L}\right] \Delta L(t) + \left[\frac{\partial G}{\partial \theta}\right] \langle \Delta \theta(t) \rangle$

- Determine frequency & configuration
- Understand echo origin & Measure ultrasonic properties
- Track & measure Δ G for eroding surface
- Use non-eroding, internal, backscatter echoes to estimate temperature and material property effects

Re-Entry Applications

Re-Entry Applications

Summary

- Ultrasonic Thermometry:
 - Model-independent local temperature measurement
 - Only material property needed for temperature measurement is the Velocity-Expansion Coefficient
 - Material structure becomes the sensor
 - Non-destructive, Non-Intrusive
 - Remote mounting away from harsh, chemically reactive environments
 - Does not disrupt thermal transport
 - Rapid Response
 - Backscatter useful for correcting recession data.

Next Steps

- Continue Scoping Experiments
- Velocity-expansion Coefficient
- Real-time Studies
- Backscatter Temperature Analysis
- Need Teaming Partners for Phase II programs

ACKNOWLEDGEMENTS:

Co-conspirators

Mark Mutton, Jack Remiasz, Carol Vorres Dr. Joseph Koo Dr. Greg Walker and Michael Myers

Sponsors & Supporters

Dr. Chuck Boyer (NAVSEA) Dr. Douglas Talley (Edwards AFB) Dr. Michael Kendra (AFOSR) Dr. Ruth Sikorski (AFRL) Mr. John Feie (AFRL) Mr. David Adamczak (AFRL) Capt. John Heaton (AFRL) Dr. Mairead Stackpoole (ERC Inc.) Dr. Martin Bacigalupo (BAE)

IMS Inc. University of Texas Vanderbilt University

INDUSTRIAL MEASUREMENT SYSTEMS, INC. Back-up Slides

- Maximum probe operation: ~500°C
 But probes can be mounted remotely
- Fast Response: 5000Hz
 50 kHz under development
- Heat Flux measurement not limited by thermal mass

- 2 - 170,000 KW/m² have been demonstrated to date

- Maximum probe operation: ~500°C
 But probes can be mounted remotely
- Fast Response: 5000Hz
 50 kHz under development
- Heat Flux measurement not limited by thermal mass

- 2 - 170,000 KW/m² have been demonstrated to date

Instrumentation

One Dimensional Model & Heat Flux 📶

SIGNIFICANCE OF ΔG

$$q_0'' = \frac{\rho c_p}{\Delta t} \frac{c_0 \Delta G}{2\xi} + q_L''.$$
$$q_0'' = \frac{L\rho c_p}{\xi} \left(\frac{\Delta G}{G_o}\right) \frac{1}{\Delta t} + q_L''.$$

Change in the time-of-flight from one pulse to the next is really a measure of the stored energy in the system

Contact

Donald E. Yuhas DYuhas@imsysinc.com (630) 236-5901

INDUSTRIAL MEASUREMENT SYSTEMS, INC.

2760 Beverly Drive #4 Aurora, IL 60502 www.imsysinc.com