5th Ablation Workshop Lexington, Kentucky – 29 February 2012

Aerothermal Characterization of Silicon Carbide-Based TPS in High Enthalpy Airflow

F. Panerai O. Chazot

von Karman Institute for Fluid Dynamics, Belgium

Atmospheric Reentry and Gas-Surface Interaction

[NASA TM-101055, 1989] ENTHALPY, MJ/kg

Intermediate eXperimental Vehicle (IXV) Gas-surface interaction is

characterized by highly exothermic chemistry which impose the use of a Thermal Protection System.

For reusable TPS we need to account for:

1. recombination reactions

(catalysis)

- 2. oxidation
- 3. radiative heat transfer

Gas Surface Interaction Phenomena

Oxidation

PASSIVE: formation of protective silica layer $SiC_{(s)}+3/2O_{2(g)} \rightarrow SiO_{2(s)}+CO_{(g)}$ ACTIVE: formation of gaseous silicon products $SiC_{(s)}+O_{2(g)} \rightarrow SiO_{(g)}+CO_{2(g)}$

Background and Objectives

ESA project for a LEO lifting reentry demonstrator Main mission objectives are:

- advancement on TPS technologies
- study aerothermodynamic phenomena during the reentry

Our Goal

Contribute, through ground testing, to the Aerothermal Database of the IXV mission proving assessment of the oxidative, catalytic and radiative behavior of the CMC Thermal Protection System

Outline

- The VKI Plasmatron facility
- Methodology and Instrumentation
- Test overview and operating conditions
- Results:
 - In-situ emissivity measurements
 - Room temperature reflectivity measurements
 - Oxidation assessment
 - Catalycity determination
 - Gas phase radiative signature
- Summary and outlook

The VKI Plasmatron Facility

The VKI Plasmatron Facility, contd.

How it works: electromagnetic induction

Local Heat Transfer Simulation (LHTS):

$$H_e^f = H_e^t \quad p_e^f = p_e^t \quad \beta_e^f = \beta_e^t$$

under thermochemical equilibrium

Kolesnikov, Fluid Dynamics 28 (1) (1993) 131-137 Barbante and Chazot, JTHT 20 (3) (2006) 493–499

Instrumentation

Plasmatron Experiments Overview

25 SPS C/SiC and 6 MTA C/SiC samples tested at different temperatures and pressures

Procedures:

- Sample exposure to plasma stream at target steady state conditions
- Sample ejection and flow calibration (heat flux and dynamic pressure measurements)

Test Conditions

Target conditions:

- Static pressure: 1300 5000 Pa
- Wall temperature: 1200 2000 K
- Test time: 300 sec at steady state

Flow Measurements:

- Cold wall heat flux: 160 1600 kW/m²
- Dynamics pressure: 25 300 Pa

Rebuilding (BL edge conditions):

- Enthalpy: 5 35 MJ/kg
- Temperature: 3000 6000 K

In-situ Emissivity Measurements

Good radiative behavior ($\epsilon > 0.7$)

[Alfano et al., JECS, 29 (2009) 2045-2051]

- Emissivity increases up to T_w=1600 K and decreases at higher T
- Good comparison with literature data

Room Temperature Reflectivity Measurements

Relative strengths of the SiO_2 and SiC spectral features can be used as markers for passive/active oxidation of ceramics

[Marschall and Fletcher, JECS 30 (2010) 2323-2336]

Variation of the 9 µm SiO₂ Feature with P and T

SPS C/SiC

Passive ox. (formation of glassy silica): high P, low T Active ox. (volatilization of silica): low P, high T The 9 µm feature correlates the predicted oxidation behavior of a SiC surface:

- SiO₂ thickness increases with pressure and temperature up to 1800 K
- At 1800 K and low pressure SiO₂ starts to volatilize
- At 2000 K only few SiO₂ at high pressure

Variation of the 9 µm SiO₂ Feature with P and T

Passive ox. (formation of glassy silica): high P, low T Active ox. (volatilization of silica): low P, high T The 9 µm feature correlates the predicted oxidation behavior of a SiC surface:

- SiO₂ thickness increases with pressure and temperature up to 1800 K
- At 1800 K and low pressure SiO₂ starts to volatilize
- At 2000 K only few SiO₂ at high pressure

Variation of the 9 µm SiO₂ Feature with T and P, contd.

MTA C/SiC

SiO₂ features grow with decreasing temperature and increasing pressure

Passive/Active Oxidation Assessment

Catalycity Coefficients

- Catalycity coefficients between 10⁻³ and 10⁻¹
- ~50% reduction with respect to the fully catalytic condition
- γ increases with in increasing surface temperature and decreasing pressure
 [Balat and Bêche., ASS. 256 (2010) 4906–4914]

Gas Phase Radiative Signature by OES

- Si emission appears during C/SiC testing
- Si at 252 and 288 nm observed by several authors
- Si as indicator of PAT (SiO₂ volatilization)

[Hirsch et al., HTHP. 31 (1999) 455–465] [Altmann et.al., HTHP. 32 (2000) 573–579] [Jentschke et al., RSI 70 (1999) 336–339] [Herdrich et al., JSR, 42 (2005) 817–824.]

Si (λ =252 nm) Emission History

Si emission correlates the passive/active oxidation behavior found by reflectivity measurements:

SiO₂ volatilization decreases with pressure and increases with temperature

Summary and Outlook

- **1.** Charactarization of the the catalytic, radiative and oxidation behavior of the IXV TPS materials
- 2. Silica features found on the reflectivity spectra of plasma exposed specimens
- **3.** Silica features intensity varies with P and T according to the predicted passive/active oxidation behavior for SiC
- 4. Si emission in front of the test specimens well correlates the predicted SiO_2 volatilization due to oxidation

- Extrapolation to flight...
- Uncertainty quantification...
- Very high heat fluxes...
- GSI models validation benchmark

Thanks for your attention...

... questions?

panerai@vki.ac.be

Thanks to:

Emissivity Measurement Techniques

Room temperature measurements*

 $r(\lambda)$ is measured by:

MIR spectrometer (2.1 µm – 40 µm)

UV/VIS/NIR spectrometer (0.25 µm – 2.5 µm)

*performed at ESA ESTEC, Noordwijk, The Netherlands

 $\int_{\varepsilon}^{40\mu m} (1 - r(\lambda)) E(\lambda, T) d\lambda$ $\varepsilon(T) = \frac{0.25\mu m}{10}$

$$\int_{0.25\mu m}^{40\mu m} E(\lambda,T) d\lambda$$

Catalycity Determination Procedure

Catalycity Determination Procedure, contd.

We Determine an Effective, Apparent Catalycity

Effective catalycity:

$$\gamma_{eff} = \gamma \beta$$

where:

$$\beta = \frac{q_{rec}}{D}$$
$$\gamma = \frac{M_r}{M_{\downarrow}}$$

Energy accommodation coefficient

Recombination efficiency

Apparent catalycity:

$$\gamma_{app} = \frac{S_{wet}}{S_{geom}} \gamma_{intrinsic}$$
 where: $\frac{S_{wet}}{S_{geom}}$ Roughness $\gamma_{intrinsic}$ True catalycity

Boundary Layer Rebuilding

Edge mass fractions

Stagnation line species at 3000 Pa

Extrapolation to Flight

LHTS is valid if:

Extrapolation to Flight, contd.

von Karman Institute - F. Panerai: panerai@vki.ac.be

1.8 MW/m² Heat Flux Test

von Karman Institute – F. Panerai: panerai@vki.ac.be

1.8 MW/m² Heat Flux Test - Gas Phase Radiative Signature

