
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Mathematics Mathematics

2015

Analysis and Constructions of Subspace Codes Analysis and Constructions of Subspace Codes

Carolyn E. Troha
University of Kentucky, cetroha@gmail.com

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Troha, Carolyn E., "Analysis and Constructions of Subspace Codes" (2015). Theses and Dissertations--
Mathematics. 26.
https://uknowledge.uky.edu/math_etds/26

This Doctoral Dissertation is brought to you for free and open access by the Mathematics at UKnowledge. It has been
accepted for inclusion in Theses and Dissertations--Mathematics by an authorized administrator of UKnowledge. For
more information, please contact UKnowledge@lsv.uky.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Kentucky

https://core.ac.uk/display/232566553?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/math_etds
https://uknowledge.uky.edu/math
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained needed written permission statement(s)

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing

electronic distribution (if such use is not permitted by the fair use doctrine) which will be

submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and

royalty-free license to archive and make accessible my work in whole or in part in all forms of

media, now or hereafter known. I agree that the document mentioned above may be made

available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s thesis including all

changes required by the advisory committee. The undersigned agree to abide by the statements

above.

Carolyn E. Troha, Student

Dr. Heide Gluesing-Luerssen, Major Professor

Dr. Peter Perry, Director of Graduate Studies

Analysis and Constructions of Subspace Codes

DISSERTATION

A dissertation submitted in partial
fulfillment of the requirements for
the degree of Doctor of Philosophy
in the College of Arts and Sciences

at the University of Kentucky

By
Carolyn E. Troha

Lexington, Kentucky

Director: Dr. Heide Gluesing-Luerssen, Professor of Mathematics
Lexington, Kentucky 2015

Copyright c� Carolyn E. Troha 2015

ABSTRACT OF DISSERTATION

Analysis and Constructions of Subspace Codes

Random network coding is the most e�cient way to send data across a network,
but it is very susceptible to errors and erasures. In 2008, Kotter and Kschischang
introduced subspace codes as an algebraic approach to error correcting in random
network coding. Since this paper, there has been much work in constructing large
subspace codes, as well as exploring the properties of such codes. This dissertation
explores properties of one particular construction and introduces a new construction
for subspace codes. We begin by exploring properties of irreducible cyclic orbit codes,
which were introduced in 2011 by Rosenthal et al. As the name implies, irreducible
cyclic orbit codes are the orbits of a group action of the general linear group on
subspaces. By studying the stabilizers of this action, we formalize the notion of the
stabilizer subfield of a subspace and utilize it to gain information about cardinality
and distance of the code. Additionally, I define the linkage construction, which is
recursive, and compare it to other subspace code constructions. In particular, we use
the linkage construction to generalize some constructions of partial spreads. Finally,
we address situations for which the linkage construction is e�ciently decodable.

KEYWORDS: algebraic coding theory, random network coding, subspace codes, or-
bit codes, recursive construction

Author’s signature: Carolyn E. Troha

Date: May 1, 2015

Analysis and Constructions of Subspace Codes

By
Carolyn E. Troha

Director of Dissertation:Heide Gluesing-Luerssen

Director of Graduate Studies: Peter Perry

Date: May 1, 2015

Dedicated to Sheri Rhine.

ACKNOWLEDGMENTS

First, I would like to thank my advisor, Dr. Heide Gluesing-Luerssen for all her

help throughout all of my studies. I am thankful for her patience and for constantly

pushing me to better than I ever thought I could be. I would not have complete this

entire process if her excellent teaching had not captivated me, during my first year

of study. I am also grateful to all the other members of my committee, Drs. Nagel,

Enochs, Yoshida and Thompson, for their help throughout this process as well.

I would also like to thank all the professors who have given me great guidance

throughout my studies, particularly Drs. Braun, Jensen, and Ponto, who have allowed

me to complain and ask many silly questions. I could not have managed all the stress

of graduate school without such great faculty support.

Now, I would like to thank many of my friends. First, I must thank Jay who kept

me from dropping out of graduate school my first semester; I am not sure how I will

ever repay him. Also, I thank Brad and Devin for making my o�ce a place in which

I enjoy being. Next, I thank Cli↵, Rob and Robert for being my source of sanity and

Sav’s in a very crazy part of my life. Finally, I thank Sarah for everything you do

but mostly for your love, kindness, warmth and hugs. I would not be at this point

without the strength and support all my friends have provided. I will not soon forget

the wonderful times shared playing Super Smash Brothers, attending Bible study or

hiking and climbing.

Lastly, I must thank my parents for their undying love and support. Thank you to

my father who has always been proud of me just for being myself. Your laugh, smile

and proud thoughts have helped me stay strong through this whole process. Thank

you for showing me the practical parts of life and keeping me grounded, without

you I might just get lost in my mind. To my mother, thank you for always being

iii

just a phone call away. You have dried my tears, laughed at my ridiculousness and

understood me even when I don’t understand myself. I am so very grateful that I am

your spitting image because I cannot think of a better person to be. I really have no

words to express how much both of you have made this dissertation possible.

iv

TABLE OF CONTENTS

Acknowledgments . iii

Table of Contents . v

List of Figures . vi

Chapter 1 Introduction . 1
1.1 Random Network Coding . 1
1.2 History of Subspace Codes . 2
1.3 Thesis Outline . 4

Chapter 2 Preliminaries . 6
2.1 Subspace Codes . 6
2.2 Finite Fields . 8
2.3 Rank Metric Codes and Lifted Rank Metric Codes 9
2.4 Spread and Partial Spread Codes . 10

Chapter 3 Cyclic Orbit Codes and Stabilizer Subfields 12
3.1 �-Cyclic Orbit Codes . 12
3.2 Stabilizer Subfield and Cardinality of �-Cyclic Orbit Codes 14
3.3 The Subspace Distance of Cyclic Orbit Codes 19

Chapter 4 A Linkage Construction . 27
4.1 Linkage Construction Theorem . 27
4.2 Partial Spread Linkage Codes . 32
4.3 Decoding of the Linkage Construction 37

Bibliography . 49

Bibliography . 49

Vita . 52

v

LIST OF FIGURES

1.1 Information flow on the butterfly network, using network coding. 1

vi

Chapter 1 Introduction

1.1 Random Network Coding

The purpose of algebraic coding theory is to use algebraic techniques to add math-

ematical redundancy to data, in order to account for errors and erasures that occur

during the transmission of said data. Traditionally, coding theory was used for situa-

tions where there was one channel with only one input and output. In this situation,

the appropriate mathematical redundancy to add is to encode a shorter data vector

as a longer data vector. Thus codes are vector spaces and codewords are vectors.

However, in many modern uses, we have data that needs to travel from multiple

sources to multiple sinks. Thus, we need to transmit data across a network rather than

a single channel. Originally, data was transmitted through the process of routing,

where a node would just send on one packet of data at a time. This is an ine�cient way

to send data, since only one route can be used at one time. In 2000, Ahlswede et. al.

introduced the idea of network coding, which maximizes information flow across the

network [1]. In this method, rather than having each node passing on the same

packet, each node combines packets of data and sends on the combination of the data

toward the sinks. Figure 1.1 gives an example of the butterfly network, a network

for which network coding is more e�cient, as well as, the packets and how each node

combines the packets.

Figure 1.1: Information flow on the butterfly network, using network coding.

b

a

a+ b

a+ b

a+ b

a

b
b

a

b

a

b

a

As we see in the butterfly network example, we take each packet a and b and

send along the sum of the two packets when they come together. As we see, each

1

sink receives both a + b and either a or b, so the sink can retrieve the original data,

a and b. The idea of sending along information as a linear combination was introduced

as linear network coding by Li, Yeung and Cai [24]. In this encoding scheme, which

is now called random network coding, each node creates random linear combinations

of the packets, with coe�cients in a finite field. This scheme allows close to optimal

throughput, i.e., the rate of successful message delivery over a communication channel.

With a large field size the linear combinations have a high probability of being linearly

independent, and thus containing unique data. All of these factors make random

network coding a good encoding scheme for network coding.

1.2 History of Subspace Codes

While random network coding is a good choice of scheme for network coding, it is

more susceptible to error propagation. Since one error will be combined into other lin-

ear combinations, errors are disseminated to many final sinks. Additionally, erasures

are common when packets of data do not get correctly combined in the linear combi-

nations. Thus, an algebraic approach to error correction for random network coding

is required. In 2008, Kötter and Kschischang designed such an approach for error

correcting in random network coding [23], which uses subspaces as the codewords.

This approach makes sense, since the data needed at the sinks is the linear combina-

tions of packets rather than the packets themselves. Since Kötter and Kschischang’s

paper there has been a great deal of activity studying collections of subspaces, known

as subspace codes. Additionally, constant dimension codes can also be considered

q-analogs of packing designs, and have been investigated in that context as well, see

[5, 4]. The following will try to summarize many of the constructions and much of

the literature on subspace codes.

In order to use collections of subspaces as codes, Kötter and Kschischang intro-

duced the subspace distance as a metric on the projective geometry, that is, the set

of all subspaces. Other metrics for the projective geometry were studied in [28] and

bounds for these codes were studied in [21]. Improvements on some of these bounds

were found in [12], as well as, providing additional constructions. Many constructions

have been considered in attempts to find codes which attain these bounds. However,

in most cases, such codes are not known and there continues to be activity in the

area to try and make improvements on lower bounds for subspace codes.

In [29], Silva et al. introduced a type of subspace code, which is based on lifting

rank metric codes, a type of matrix code, to subspace codes. Their construction re-

2

lied on a type of matrix code that had been introduced and studied by Gabidulin in

[13]. For more information on these codes see Section 2.3 of this thesis. This lifting

construction generalized the original construction given by Kötter and Kschischang

[23] and provided an e�cient decoding algorithm. While these lifted codes do not

attain any of the known bounds, they are asymptotic to the bounds, which lead to

further consideration of this construction. Eztion and Silberstein in [10], introduced

the multilevel construction, which unions a lifted rank metric code with other modi-

fied lifted rank metric codes. This construction, called the multilevel construction or

the lifted Ferrer’s diagram rank metric code construction, improves on the cardinality

of lifted MRD codes and is e�cient to decode and so continues to be studied. The

first improvement on Ferrer’s diagram codes were given by Trautmann and Rosenthal

in [34] and Etzion and Silberstein published other improvements in [11]. Recently,

Silberstein and Trautmann have discovered some refinements to the multilevel con-

struction which allow for even larger codes [27]. Additionally, Gorla and Ravagnani

[17] and Wachter-Zeh and Etzion [36] have recently explored the underlying Ferrer’s

diagram rank metric codes and have found additional classes of maximal codes. This

progress on the underlying rank metric codes may lead to better Ferrer’s diagram

subspace codes.

Skachek took a di↵erent approach to extending lifted rank metric codes, instead of

trying to layer multiple lifted codes as Eztion and Silberstein did, he used a recursive

process in [30]. While being decodable, these extended MRD codes are not as large the

multilevel Ferrer’s diagram codes constructed by Silberstein and Etzion and have not

been studied further. Gorla et. al. completely left behind lifting matrix codes, and

instead explored combinatorial spreads as subspace codes [16]. For more information

on spread codes, see Section 2.4.

Trautmann et al. introduced a di↵erent construction of constant dimension codes,

which generalized the idea of spread codes [33]. Their construction uses the orbits of

a natural group action of GLn(Fq) on the projective geometry as a subspace codes.

These codes are aptly named orbits codes. Rosenthal and Trautmann studied and

classified the case where the matrix group is a(n) (irreducible) cyclic group in [26].

In Chapter 3, we will explore properties of such codes using a new technique. While

cyclic orbit codes are small, there is some promise for encoding and decoding these

codes, which can be found in [31], and they are the building blocks for cyclic codes,

which have much better cardinality.

The idea of a cyclic subspace code was introduced in [12, Exa. 1-3]. Cyclic codes

are subspace codes which are closed under the appropriate cyclic shift. For a more

3

precise definition see section 3.1, where we show that these codes are comprised of

unions of cyclic orbit codes. The largest cyclic subspace codes beat many known

lower bounds given by the multilevel construction, but are found mostly by computer

search. In [2], Ben-Sasson et. al. explore a more algebraic approach to creating cyclic

subspace codes. They use specific linearized polynomials to help create such codes,

by exploiting the fact that the roots of a linearized polynomial are a subspace.

Kohnert and Kurz also created cyclic subspace codes by computer search, see [22].

However, they did not use the notion of cyclic codes, instead they found these codes

by reducing and solving a linear programming problem. The major advance that

Kohnert and Kurz made was to reduce the problem by prescribing the automorphism

group of the entire code. In most cases, the group that they use is that of a singer

cycle, i.e. an element of GLn(Fq) whose order is q

n � 1. In the cases when the

automorphism group is generated by singer cycle, the authors get a cyclic code. In

all cases, the codes are unions of orbit codes, but not always cyclic. Braun and

Reichelt, in [5], used the same method, but they reduced the problem slightly less.

Instead of prescribing the automorphism for the entire code, they only require part

of the code to have the whole automorphism group; the rest of the code may only

admit a subgroup as its automorphism group. By lessening the restriction, they are

able to create codes very close to the known bounds, but their codes are not cyclic.

Additionally, because there is not much structure to these codes, there are no known

decoding algorithms for any computer search codes. Thus, most current research is

moving away from strict computer search and looking for constructions with more

algebraic structure.

So, we see that there are many di↵erent types of constructions for subspace codes.

We will rely on many of these know constructions in later chapters, particularly

Chapter 4. In this thesis, we will both analyze cyclic orbit codes, as well as, introduce

a new construction. As we have seen, there are reasons to study cyclic orbit codes,

as the building blocks of cyclic subspace codes and our new construction will be both

recursive and decodable (in certain situations).

1.3 Thesis Outline

This thesis is organized as follows. Chapter 2 will introduce preliminary ideas we will

use through the thesis. Specifically, we will formally define subspace codes and the

tools to work with them. Then, we will discuss rank metric codes, a type of matrix

code heavily used in subspace coding and two basic constructions of subspace codes,

4

lifted rank metric codes and spread codes.

In chapter 3, we will carefully analyze the construction of cyclic orbit codes. We

will begin by defining the notion of �-cyclic orbit codes and showing the relationship

between these codes and the codes introduced by Trautmann et. al. in [33]. Next, we

will look at and define the notions of the stabilizer subfield, friends and best friends,

as well as their relationship to the cardinality of a cyclic orbit code. We will conclude

the chapter by looking at how the best friend can be used to consider the distance of

a cyclic orbit code.

In chapter 4, we will introduce a recursive construction for subspace codes, called

the linkage construction. We will give examples of this construction and compare it to

some of the other methods mentioned above in terms of cardinality and other proper-

ties. We will show how the linkage construction nicely generalizes two constructions

of partial spread codes and can be used to create both maximum and maximal par-

tial spreads. Finally, we look into the decoding of linkage codes. While there are

challenges to decoding in the general case, we show two cases that can be decoded.

Copyright c� Carolyn E. Troha, 2015.

5

Chapter 2 Preliminaries

In this chapter, we will go through some of the mathematical preliminaries we will

need throughout this thesis. We start by fixing a finite field Fq, where q is a power of

a prime. We consider all vectors as row vectors. Thus Fn
q = {(a0, . . . , an�1) | ai 2 Fq}.

Because of this, we always work with row spaces of matrices and we will denote the

row space of a matrix M 2 Fk⇥n
q by

im (M) := {vM | v 2 Fk
q}.

Lastly, we use Fk⇥n
q to denote the set of k by n matrices with entries in Fq and

GLn(Fq) ⇢ Fn⇥n
q to denote the general linear group, that is, the group invertible

matrices.

2.1 Subspace Codes

For a Fq-vector space W of dimension n, we define the projective geometry, denoted

PG(W), as the set of subspaces of W . Most often people work with W = Fn
q , in which

case we denote PG(W) = PG(q, n). However, in Chapter 3, we will let W = Fqn . We

define the Grassmannian, denoted Gq(n, k), as the set of k-dimensional subspaces of

W . Thus

PG(W) =
n[

k=0

Gq(n, k).

While not necessary to our discussion, we should note that the cardinality of the

Grassmannian is given by the Gaussian binomial coe�cient, i.e., |Gq(n, k)| =
"
n

k

#

q

.

Because of this fact, there are many connections between network coding and q-

analogs in combinatorics, some of which we will explore later.

For any two subspace U ,V 2 PG(W), we define the subspace distance between

them as

dS(U ,V) := dimU + dimV � 2 dim(U \ V). (2.1)

Equivalently, dS(U ,V) = dim(U + V) � dim(U \ V). From our discussion in the

introduction, we can think of the subspace distance as the number of insertions and

deletions needed to transform a basis of U into a basis of V . We see that two spaces

are close together if they intersect greatly, which is to say that both have bases that

di↵ers by very few vectors. Notice that we must subtract twice the dimension of the

6

intersection so that dS(U ,U) = 0. It can be shown that the subspace distance is a

metric, see [23, Lemma 1], which makes it useful in decoding. However, the subspace

distance is not the only distance in use.

The other major distance is the injection distance, which is defined as

dI(U ,V) := max{dim(U), dim(V)}� dim(U \ V),

for U ,V 2 PG(W). It is easy to see that dS(U ,V) 2dI(U ,V) and if dim(U) =

dim(V) then dS(U ,V) = 2dI(U ,V). Because of this relationship, we will choose to

work with the subspace distance throughout this thesis.

Now we move on to formally defining a subspace code.

Definition 1. A subspace code of length n is a nonempty subset of PG(W). A

code is called constant dimension if all subspaces have the same dimension, i.e., it is

contained in a single Grassmannian. The subspace distance of a subspace code C is

defined as

dS(C) := min{dS(U ,V) | U , V 2 C, U 6= V}.
We call a subspace code of length n, with cardinality N and distance d a (n,N, d)q-

subspace code. If it is of a constant dimension k, we call it a (n,N, d, k)q-subspace

code.

Throughout this thesis we will work most commonly with constant dimension sub-

space codes. Thus, we make the following observations about the subspace distance

for these codes. If dimU = dimV = k, then

dS(U ,V) = 2(k � dim(U \ V)) = 2
�
dim(U + V)� k

�
.

Hence, if C is a constant dimension code of dimension k then

dS(C) min{2k, 2(n� k)}. (2.2)

As with traditional error correcting codes, there is a notion of a dual code. The

dual of a subspace code C is defined as

C? := {U? | U 2 C}. (2.3)

It is easy to see that dS(U?
,V?) = dS(U ,V), and therefore dS(C) = dS(C?). Addi-

tionally, the length of the code remains unchanged. However, the dimension of each

subspace is changed to be n�k. Thus, we can easily assume, without loss of general-

ity, that our (n,N, d, k)q-codes satisfy, k n
2 . Otherwise, we can take the dual code

which will have the same distance.

7

When we let W = Fn
q , we say two subspace codes C, C 0 of length n are linearly

isometric if there exists an Fq-linear isomorphism : Fn
q �! Fn

q such that C 0 =

{ (U) | U 2 C} (see also [32, Def. 2.9]). We know that this linear isomorphism

preserves dimensions of subspaces and thus preserves the distance between any two

subspaces. Hence, linearly isometric codes have the same subspace distance and even

the same distance distribution, i.e., the list of all distances between any two distinct

subspaces in C coincides up to order with the corresponding list of C 0. Thus we

consider linearly isometric codes to be the same. Multiplying by an invertible matrix

is a type of linear isometry, so often we look for this type of transformation to show

codes are linearly isometric.

2.2 Finite Fields

Since we will be working with Fqn in Chapter 3, we will go over some basic facts about

Fqn that we will rely on later. First, we note that Fqn is a n-dimensional vector space

over Fq, since it is a degree n field extension. We denote the multiplicative identity

of Fq as 1 and the multiplicative group of Fqn as F⇤
qn = Fqn\{0}.

Recall that F⇤
qn is a cyclic group and we call any ↵ which generates F⇤

qn a primitive

element. For an element � 2 F⇤
qn , we denote its order by |�| and the cyclic group

generated by � as h�i := {�i | i = 0, . . . , |�| � 1}. Thus if ↵ is primitive then

h↵i = F⇤
qn . Also it should be noted that {1,↵,↵2

, . . . ,↵

n�1} is a basis for Fqn as

Fq-vector space.

We will use the following Fq-isomorphism:

' : Fqn �! Fn
q ,

n�1X

i=0

ai↵
i 7�! (a0, . . . , an�1). (2.4)

Since ↵ is primitive we know that its minimal polynomial has degree n. Let

f = f0 + f1x + · · · + fn�1x
n�1 + x

n be the minimal polynomial of ↵, which we will

refer to as a primitive polynomial, since it has a primitive root. Let Mf 2 GLn(Fq)

be the companion matrix of f , thus

Mf =

0

BBBBB@

0 1
1

. . .
1

�f0 �f1 �f2 . . . �fn�1

1

CCCCCA
. (2.5)

8

Note that this companion matrix is the transpose of the classical companion matrix,

since we use row vectors instead of column vectors. Additionally, we can define Mf

for any irreducible polynomial of degree n, not just for primitive polynomials.

Finally, recall that if r|n then there is exactly one subfield of Fqn with cardinality

q

r and any subfield of Fqn is of the form Fqr where r|n. This fact about subfields will
play a large role in Chapter 3.

2.3 Rank Metric Codes and Lifted Rank Metric Codes

In this section, we define a type of matrix code which is greatly used in network

coding. We will use Fk⇥n
q to denote the space of k by n matrices with entries in Fq.

We begin be defining the rank distance for two matrices X, Y 2 Fk⇥n
q as

dR(X, Y) := rank (X � Y).

It is shown in [13] that this is indeed a metric on this matrix space.

Definition 2. A rank metric code, C, is a non-empty subset of Fk⇥n
q endowed with

the rank metric. We define the distance of C as

dR(C) := min{dR(X, Y) | X, Y 2 C, X 6= Y }.

Notice that k n or vice versa, but for the purposes of this thesis we will be

concerned only with the former case. It is well known that rank metric codes satisfy

a version of the Singleton bound (see [13, 7]). This bound states that for a code

C ⇢ Fk⇥n
q with distance d and k n we have

|C| q

n(k�d+1)
.

Codes which meet this bound are called maximum rank distance codes, which we

abbreviate as MRD codes. A well studied class of MRD codes are the Gabidulin

codes presented in [13]. While these codes are originally given as vector codes, we can

easily convert them to matrix codes. One reason this class of codes is well studied is

that Gabidulin presents an e�cient decoding algorithm for them in [13]. Other types

of MRD codes have been found by de la Cruz et al. [6] and Hernandez/Sison [19]

but as of yet do not have decoding algorithms. We will use MRD codes in Chapter

4, but they are also used to construct subspace codes.

To construct a subspace code from a rank metric code, we use the process of lifting

which Kötter and Kschischang utilized in their seminal paper [23]. For X 2 Fk⇥n
q we

9

define its lifting as the subspace

⇤(X) := im (Ik | X),

where im (Y) is used to denote the row space of Y . We extend this lifting process to

an entire rank metric code C by

⇤(C) := {⇤(X) | X 2 C}.

We call ⇤(C) a lifted rank metric code and observe that it is always a constant

dimension code. In [29], Silva, Kschischang, and Kötter show that for X, Y 2 Fk⇥n
q ,

dS(⇤(X),⇤(Y)) = 2dR(X, Y),

so we know that dS(⇤(C)) = 2dR(C), for any rank metric code C ⇢ Fk⇥n
q . Additionally,

they provide an e�cient decoding algorithm for lifted rank metric codes, where C is a

Gabidulin code. Many other constructions of subspace codes, such as the multilevel

construction [11], are based on the idea of lifting rank metric codes.

2.4 Spread and Partial Spread Codes

A Pq(t, k, n) q-packing design is a selection of k-subspaces of Fn
q such that each

t-subspace is contained in at most one element of the collection. These packing

designs are the q-analogs of traditional packing designs, which have been studied in

combinatorics. It is easy to see that a Pq(t, k, n) q-packing design with cardinality N

is a (n,N, d, k)q subspace code, where d � 2(k � t + 1). Hence, we can use packing

designs as codes, and codes as packing designs. If we make the restriction that each

1-subspace is contained in at most one element of the collection we get what we

call a partial spread. When considered as a code a partial spread is a (n,N, 2k, k)q

constant dimension code. If we require that each 1-subspace is contained in exactly

one subspace then the partial spread is called a spread. Another characterization of

spreads is that they are collections of subspaces of the same dimension which partition

Fn
q . We will use the following definition of spread codes and partial spread codes.

Definition 3. A subspace code C of constant dimension, k, is a partial spread code

if dS(C) = 2k. A partial spread code C which also satisfies
S

U2C U = Fn
q is called a

spread code.

It is well known that a spread exists only if k divides n, see [20]. When spreads

exist they are optimal subspace codes, meeting the Singelton bound for subspace

10

codes, [25]. Spreads were originally studied as subspace codes in [25], and later the

same authors devise a decoding algorithm for a specific type of spread codes [16].

Unlike spread codes, partial spread codes are not very well studied. Beutelspacher

studied partial spreads in [3] and more recently El-Zanati et. al. found maximum

partial spreads for the case q = 2, k = 3 [9]. Additionally, Etzion and Vardy give a

construction of a partial spread code in [12, Thm. 11], as do Gorla and Ravagnani in

[18]. Currently little is known about the maximum sizes of these codes and so they

have been less well studies than spread codes. We will explore partial spread more

in depth in Section 4.2.

Copyright c� Carolyn E. Troha, 2015.

11

Chapter 3 Cyclic Orbit Codes and Stabilizer Subfields

In this chapter, we will explore the cardinality and distance of cyclic orbit codes,

which were introduced in [26]. We will begin by defining the orbit codes that we will

explore more in depth.

3.1 �-Cyclic Orbit Codes

First, we consider the field extension Fqn . For the majority of this chapter, we will

consider our subspace codes as being subsets of PG(Fqn). Recall from Section 2.2

that Fn
q
⇠= Fqn as vector spaces of Fq. Later, we will translate between these two

situations more explicitly.

As the name suggests, cyclic orbit codes arise from the orbits of the following

group action on PG(Fqn) by Fqn . Since elements of PG(Fqn) are subspaces of Fqn ,

vectors are just elements of the field Fqn . Let U 2 PG(Fqn) and � 2 Fqn , then

U� := {u� | u 2 U},

where u� is just the standard multiplication in Fqn . As we can see, dim(U) =

dim(U�). Now we have the tools to define cyclic orbit codes.

Definition 4. Fix an element � of F⇤
qn . Let U be a subspace of the Fq-vector

space Fqn . The �-cyclic orbit code generated by U is defined as the set

Orb�(U) := {U�i | i = 0, 1, . . . , |�|� 1}. (3.1)

If � is primitive, thus h�i = F⇤
qn , we drop the specifier � and simply write Orb(U)

instead of Orb�(U) and call the code a cyclic orbit code. If the specific value of �

does not matter we will also simply call the code in (3.1) a cyclic orbit code.

A cyclic orbit code is a constant dimension code, because as we noted before,

the group action does not a↵ect dimension. We should also mention that when � is

primitive we may indeed drop the � notation because any other choice of primitive

element will lead to the same code under the isomorphism. Certain �-cyclic orbit

codes were introduced as irreducible cyclic orbit codes in [26, 33]. However, the

authors consider these codes as subspaces of Fn
q . Here we explore the relationship

between the two.

12

In [26, 33] the authors introduce orbit codes in Fn
q with respect to a subgroup

of GLn(Fq). They use the following group action on PG(q, n) by GLn(Fq) defined as

UM := {uM | u 2 U}.

If we write U = im (U) for some U 2 Fk⇥n
q , then UM = im (UM). The orbit of a

subgroup under this action is called an orbit code. An orbit code is called cyclic if the

subgroup is cyclic and irreducible if the subgroup is irreducible (see [33, Def. 20] for

irreducibility of groups and matrices). As it turns out, every irreducible cyclic matrix

group is conjugate to a group of the form hMfi, where Mf is the companion matrix

of an irreducible polynomial, (again see [33]). As we will see, under the isomorphism

' in (2.4), a restriction of our �-cyclic orbit codes are exactly these codes.

To see this, we let � 2 F⇤
qn be an irreducible element, i.e. an element such that

its minimal polynomial has degree n. In other words Fq[�] = Fqn . (Note this is a

restriction on � and that all primitive � are also irreducible.) We write the minimal

polynomial of � as f = x

n+
Pn�1

i=0 fix
i 2 Fq[x]. Recall from Section 2.2, that Fqn

⇠= Fn
q ,

by the isomorphism ' (2.4). We notice that multiplication by � in Fqn is the same

as multiplication by Mf in Fn
q under our isomorphism '.

Additionally, for any subspace U of Fqn , we can write '(U) as '(U) = im (U) for a

suitable matrix U 2 Fk⇥n of rank k. Our group action becomes '(U�) = im (UMf),

where Mf is as in (2.5), which is the same action as in [26, 33]. Thus, under the

isomorphism (2.4) the orbit code Orb�(U) simply becomes

{im (UM

i
f) | 0 i |�|� 1}, (3.2)

which is exactly an irreducible cyclic orbit code by the definition in [26, 33]. In other

words, the action of the cyclic group h�i F⇤
qn on subspaces in Fqn turns into the

action of the cyclic group hMfi GLn(Fq) on subspaces in Fn. Thus it makes sense

to study our �-cyclic orbit codes in greater depth as they have been characterized in

[26].

Though cyclic orbit codes are in general larger than �-cyclic orbit codes, we believe

that is worth studying the latter as well because they provide us with a larger pool

of codes.

We also wish to mention that in [12, p. 1170], Etzion and Vardy study codes that

are closely related to those introduced in Definition 4. They define a cyclic subspace

code in Fqn to be a subspace code that is invariant under cyclic shifts, that is, if U 2 C
then U� 2 C for a primitive � 2 Fqn . We note that Orb(U) includes all cyclic shifts of
U , but Orb�(U) does not include all cyclic shifts, if � is not primitive. Hence, using

13

our definitions, a cyclic subspace code is simply a union of cyclic orbit codes, i.e.,

C =
ST

t=1
· Orb(Ut). In [12] the authors do not require that C be a constant dimension

code, hence U1, . . . ,UT may have di↵erent dimensions. Obviously, cyclic subspace

codes are more general than cyclic orbit codes.

We close this section with the following simple fact.

Remark 5. The dual (in the sense of (2.3)) of an orbit code is an orbit code again. In-

deed, for any subspace U 2 Fn
q and matrix A 2 GLn(Fq) we have (UA)? = U?(AT)�1.

Moreover, AT = SAS

�1 for some S 2 GLn(Fq), since A and A

T have the same char-

acteristic polynomial [26]. Therefore Orb�(U)? is linearly isometric to Orb�(U?); see

also [33, Thm. 18].

As a consequence, we may and will restrict ourselves to orbit codes generated by

a subspace U with dimU n/2.

3.2 Stabilizer Subfield and Cardinality of �-Cyclic Orbit Codes

In this section, we explore the cardinality of a �-cyclic orbit code. We begin by fixing

an element � of F⇤
qn\{1} and a k-dimensional subspace U of Fqn . Consider its �-cyclic

orbit code Orb�(U). We will mainly restrict ourselves to subspaces U that contain

the identity 1 2 Fqn , which will simplify later considerations of the cardinality of

the orbit code. Notice if 1 62 U then for any nonzero element u 2 U the subspace

Ũ := Uu�1 contains 1. If � is primitive then u

�1 2 h�i and Ũ 2 Orb(U), so we

could choose Ũ and not change the code. Thus 1 2 U is not a restriction at all in

this case. However, if � is not primitive, we have a linear isometry between Orb�(U)
and Orb�(Ũ) given by multiplication by u

�1, because Ũ�i = U�i
u

�1 = Uu�1
�

i.

Recall that the stabilizer of the subspace U under the action induced by h�i is

defined as

Stab�(U) := {� 2 h�i | U� = U} = {� 2 h�i | U� ✓ U}. (3.3)

The stabilizer is clearly a subgroup of h�i. So, there must exist a minimal N 2 N
such that Stab�(U) = h�Ni. By the properties of cyclic groups, N divides |�|. Then,
by the orbit-stabilizer theorem for group actions,

(
|Stab�(U)| = |�|

N ,

Orb�(U) = {U�i | i = 0, . . . , N � 1}, |Orb�(U)| = N.

(3.4)

Since F⇤
q is in the stabilizer of any subspace U , we have |Orb�(U)| qn�1

q�1 , and this

upper bound is achieved if and only if � is primitive and Stab�(U) = F⇤
q. We will

14

obtain more information about the cardinality based on the given subspace U with

the help of the following notion.

Definition 6. Let Stab+
� (U) be the smallest subfield of Fqn containing Fq and the

group Stab�(U). We call Stab+
� (U) the stabilizer subfield of U with respect to �.

Note that Stab+
� (U) is the field extension Fq[�N], where N is such that

h�Ni = Stab�(U). If � 2 Stab+
� (U) then � =

Pl
i=0 ai�i, where �i 2 Stab�(U) and

ai 2 Fq. Then U� = UPl
i=0 ai�i ⇢

Pl
i=0 Uai�i =

Pl
i=0 U = U . Hence, U is a vector

space over Stab+
� (U).

We will drop the subscript � from the stabilizer and the stabilizer subfield and

simply write Stab(U) and Stab+(U) when � is primitive to be in line with our notation

for Orb(U) in this case. The identities in (3.3) and (3.4) then read as

(
Stab(U) = {� 2 F⇤

qn | U� = U},
Orb(U) = {U�i | i = 0, . . . , L� 1}, where L = qn�1

|Stab(U)| .
(3.5)

In this case, both the stabilizer and the orbit do not depend on the choice of the

primitive element �. This case turns out to be much easier to handle than the case

of general �-cyclic orbit codes because of the following result about Stab+(U).

Lemma 7. Let U be a subspace of Fqn such that 1 2 U . Then Stab+(U) = Stab(U)[{0}
and Stab+(U) is contained in U . Moreover, U is a vector space over Stab+(U) with

scalar multiplication being the multiplication of the field Fqn.

Proof. We know that Stab(U) = {� 2 F⇤
qn | U� = U} is a subgroup of F⇤

qn and

contains F⇤
q. Thus, for the first statement it remains to show that Stab(U) [{0} is

closed under addition. Let �, �0 2 Stab(U), i.e., U� = U = U�0. If � + �

0 = 0,

then � + �

0 2 Stab(U) [{0}, and we are done. Now let � + �

0 6= 0. In this case

U(� + �

0) ✓ U� + U�0 = U + U = U , so � + �

0 2 Stab(U). All of this shows that

Stab(U)[{0} ⇢ Fqn is closed under multiplication and addition, making it a subfield,

and in fact the smallest subfield containing Stab(U). So Stab+(U) = Stab(U) [{0}.
Since 1 2 U , we know for �i 2 Stab(U) that 1�i 2 U�i = U , so Stab+(U) is contained
in U . Also u�

i 2 U�i = U so U is a vector space over Stab+(U). ⌅

Note that as a result of this statement, if Stab(U) is the trivial group, then the

stabilizer subfield Stab+(U) = {0, 1} = F2, which is only possible if q = 2. This also

follows from the fact that F⇤
q is contained in the stabilizer of any subspace U .

Another case that we know from this theorem is when n is prime. Then the only

proper subfield of Fqn is Fq. Thus, we have the following corollary.

15

Corollary 8. If n is prime, then Stab(U) = F⇤
q, and thus |Orb(U)| = qn�1

q�1 for every

proper subspace U ⇢ Fqn.

Now we will return to general � 2 F⇤
qn\{1}. Since h�i ⇢ Fqn , we have the

following containments Stab�(U) ✓ Stab(U) ✓ Stab+(U), which lead immediately to

the following situation for the general case.

Corollary 9. For any � 2 Fqn\{1}, the stabilizer subfield Stab+
� (U) is contained in

Stab+(U). Hence, if 1 2 U then Stab+
� (U) is contained in U and U is a vector space

over this field.

The next example shows that the containment Stab+� (U) ✓ Stab+(U) may be

strict.

Example 10. Consider Fq = F3 and Fqn = F34 . Fix the primitive element ↵ with

minimal polynomial x4 + x + 2. Consider � := ↵

16, which has order 5. Let U be

the subfield F32 (considered as a subspace of F34). Then clearly Stab+(U) = F32 .

Moreover, since 1 2 U , any � satisfying U� = U is already in U . But then the

relative primeness of the orders of the groups h�i and F⇤
32 show that Stab�(U) = {1}.

As a consequence, Stab+
� (U) = F3. Thus we see that Stab+

� (U) (Stab+(U).

We have the following results pertaining to the cardinality of a �-cyclic orbit code.

Proposition 11. Let � 2 F⇤
qn and let U be a k-dimensional subspace of Fqn such that

1 2 U . Then |�|
gcd(|�|, qk � 1)

divides |Orb�(U)|.

Assume now that k divides n, and thus Fqk is a subfield of Fqn.

(a) If F⇤
qk ✓ h�i then |�|

qk�1 divides |Orb�(U)|.

(b) |Orb�(U)| = |�|
qk�1 if and only if U = Fqk .

Proof. From Corollary 9 we know that Stab+
� (U) = Fqr for some r and that U is a

vector space over Fqr . Thus r divides k and so q

r � 1 divides q

k � 1. Additionally,

since Stab�(U) is a subgroup of F⇤
qr \ h�i, its order divides qr � 1 as well as |�|. All

of this shows us that |Stab�(U)| divides gcd(|�|, qk � 1), and now the first statement

follows from the identities in (3.4).

For (a) note that by assumption, qk � 1 divides |�|. Thus the statement is just a

special case of the previous part.

16

For (b) set D := |�|
qk�1 .

“)”

With the notation as in (3.4), we have D = N . Since |�N | = |�|
gcd(N,|�|) =

|�|
N = q

k � 1,

the uniqueness of subgroups of a cyclic group gives us h�Ni = F⇤
qk . Now the fact that

h�Ni = Stab�(U) along with Corollary 9 implies Stab+
� (U) = Fqk ✓ U . Thus Fqk = U

due to dimension.

“(”

Let u 2 F⇤
qk . Then (u�D)q

k�1 = u

qk�1
�

D·(qk�1) = 1 · 1 = 1. Since the nonzero

elements of Fqk are exactly the roots of xqk�1 � 1 in Fqn , we obtain Fqk�
D = Fqk .

Hence |Orb�(Fqk)| D. Let 0 i < j < D and let � 2 Fqk�
i \ Fqk�

j with � 6= 0.

Then � = �i�
i = �j�

j, for some �i, �j 2 F⇤
qk . But then �

j�i = �i�
�1
j 2 F⇤

qk . So

j � i ⌘ 0 mod D, which is impossible. Thus Fqk�
i \ Fqk�

j = {0}. ⌅

The last part of the proof along with (2.1) shows the well-known fact

dS(Orb�(Fqk)) = 2k.

Corollary 12. Let U be a k-dimensional subspace of Fqn such that 1 2 U . Then

|Orb(U)| = q

n � 1

q

k � 1
() U = Fqk .

Furthermore, dS(Orb(Fqk)) = 2k.

Note that k divides n because otherwise (qn�1)/(qk�1) is not an integer and Fqn

does not contain a subfield of size q

k.

Remark 13. Recall spread codes from Section 2.4. The previous result shows

that Orb(Fqk) is a k-dimensional spread, and Orb�(Fqk) is a partial spread for any

� 2 F⇤
qn\{1}. This result is also found in [26, Thm. 11, Cor. 12].

In Lemma 7 we have seen that U is a vector space over the stabilizer subfield

Stab+(U), so it makes sence to look at all the subfields of Fqn over which U is a

vector space. We introduce some convenient terminology.

Definition 14. Let U be a subspace of Fqn . A subfield Fqr of Fqn is called a friend of

U if U is a vector space over Fqr with scalar multiplication being the multiplication

in the field Fqn . The largest friend of U (with respect to cardinality) is called the best

friend of U .

Note that since U is a subspace of the Fq-vector space Fqn , the field Fq is a friend

of U , and thus U also has a best friend.

17

Remark 15. For any subspace U of Fqn and any friend Fqr of U we have

1 2 U () Fqr ✓ U .

Proposition 16. Let U be a subspace of Fqn with 1 2 U . Then the stabilizer subfield

Stab+(U) is the best friend of U . Furthermore, any friend of U is contained in the

best friend.

Proof. We know from Lemma 7 that Stab+(U) is a friend of U . Moreover, if Fql is a

friend of U , then U� = U for all � 2 F⇤
ql by closure of the scalar multiplication. This

implies F⇤
ql ✓ Stab(U), hence Fql ✓ Stab+(U). Thus, Stab+

� (U) is the largest friend

and therefore the best friend of U . ⌅

As a consequence, all subspaces in Orb(U) have the same best friend, say Fqr ,

and we may therefore call Fqr the best friend of the cyclic orbit code. While stabilizer

subfield is the more technical terminology for the best friend, we prefer the term best

friend, since we will use the term friend frequently.

Example 10 shows that, unfortunately, we do not have an analogous characteri-

zation for Stab+
� (U), when � is not primitive. This makes understanding the general

case more di�cult, and shows that the primitive case has additional benefits other

than just cardinality concerns.

The identities in (3.4) now read as follows.

Corollary 17. Let Fqr be the best friend of U . Then

|Orb(U)| = q

n � 1

q

r � 1
and |Stab(U)| = q

r � 1.

This allows us to design of cyclic orbit codes with a prescribed cardinality: we

simply have to take a k-dimensional subspace with prescribed best friend, say Fqr .

These spaces can be written as
Pt

i=1 ↵iFqr , where t = k/r and ↵1, . . . ,↵t 2 Fqn are

linearly independent over Fqr . However, being able to be written in this form only

guarantees that Fqr is a friend not the best friend. Choosing ↵1, . . . ,↵t at random

will most likely lead to the desired best friend, but does not guarantee that Fqr is the

best friend. If we choose certain ↵1, . . . ,↵t, a larger subfield may become a friend,

thus changing the best friend and cardinality of the cyclic orbit code. One should

also note that the dimension, r, of the best friend has to divide gcd(k, n), which often

allows one to easily infer the best friend for a given subspace U . We illustrate this

with the following examples.

18

Example 18. The subspace U defined below is taken from [12, Ex. 1], where the

distance and cardinality of the resulting cyclic orbit code have been determined

by straightforward testing and enumeration. Consider Fq = F2 and the field F26

with primitive element ↵ having minimal polynomial x6 + x + 1 2 F[x]. Let U :=

{0,↵0
,↵

1
,↵

4
,↵

6
, ↵

16
,↵

24
,↵

33}. It is straightforward to check that this is a vec-

tor space over F2 (generated by, for instance, {1,↵,↵4}). Using the isomorphism

' :
P5

i=0 ai↵
i 7�! (a0, . . . , a5) between the vector spaces F26 and F6

2, see (2.4), the

subspace '(U) is given by

'(U) = im

0

@
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0

1

A
,

where im (A) := {xA | x 2 Fk} denotes the row space of the matrix A 2 Fk⇥n.

Since dim(U) = 3 it is clear that U is not a vector space over the subfield F22 .

Furthermore, U does not coincide with the subfield F23 because ↵9 2 F23 , but ↵9 62 U .
All of this shows that F2 is the best friend of U and thus |Orb(U)| = 26 � 1 = 63 by

the last corollary.

Example 19. Consider the field F212 and the primitive element ↵ with minimal

polynomial x12 + x

7 + x

6 + x

5 + x

3 + x+ 1 2 F2[x].

(a) Since the minimal polynomial of ↵ over F22 has degree 6, it is clear that U :=

F22 + ↵F22 + ↵

3F22 is a direct sum, and thus U is a 6-dimensional subspace of

the F2-vector space F212 . Obviously F22 is a friend of U . Additionally, U 6= F26

because ↵ 2 U , but ↵ 62 F26 . Along with Proposition 16, all of this shows that

F22 is the best friend of U and thus |Orb(U)| = (212 � 1)/(22 � 1) = 1365.

(b) Similarly W := F24 + ↵F22 is a 6-dimensional subspace of F212 with best friend

F22 . Thus |Orb(W)| = 1365.

3.3 The Subspace Distance of Cyclic Orbit Codes

In the previous section we determined the cardinality of a cyclic orbit code in terms

of the best friend. Now we turn to finding the minimum distance of these codes,

again making use of the best friend.

Since we have a better understanding of the stabilizer when � is primitive, we

restrict ourselves to cyclic orbit codes, that is, orbit codes with respect to the entire

cyclic group F⇤
qn . We begin by fixing a primitive element ↵ 2 F⇤

qn and letting U

19

be a k-dimensional subspace of Fqn . Recall that the orbit code Orb(U) = Orb↵(U)
contains a subspace U 0 such that 1 2 U 0. Therefore, we may assume without loss of

generality that 1 2 U .
We use dimFql

(U) for the dimension of a vector space U over the field Fql . We

also set dimU := dimFq U . Finally, let Fqr be the best friend of U , and define

t := dimFqr
(U) = k

r

.

From Corollary 17 we know that the cardinality of Orb(U) is given by N := qn�1
qr�1 . A

nice property of orbit codes is that we can compute their distance more e�ciently.

Since (U↵l
,U↵m) = (U ,U↵m�l), we know

dS(Orb(U)) = min{(U , U↵j) | 1 j < |Orb(U)|}.

Despite this being a more e�cient way to compute the distance, we would like

to know other ways to compute distance based on the chosen subspace U . In the

following subsections we will look at di↵erent ways to take the best friend into account

when computing the distance of a subspace code.

Bounds on the Subspace Distance via the Stabilizer

We start with a lemma that restricts the possibilities for our distance, based on

knowing that U and all element of its orbit are Fqr vector spaces.

Lemma 20. Define s := max1j<N dimFqr
(U \ U↵j). Then

dS(Orb(U)) = 2(k � sr) = 2r(t� s). (3.6)

As a consequence,

2r dS(Orb(U)) 2k.

Recall that the upper bound dS(Orb(U)) 2k is true for all constant dimension

codes of dimension k n/2.

Proof. Let 1 j < N . Clearly, U↵j and thus U \U↵j are vector spaces over Fqr . Let

sj := dimFqr
(U\U↵j). Since 1 j < N , we know U 6= U↵j, and therefore 0 sj < t.

Thus, dS(U ,U↵j) = 2(k � dim(U \ U↵j)) = 2(k � sjr) � 2r(t� s) � 2r. ⌅

From this lemma, we observe the usual trade-o↵ between the cardinality of a

cyclic orbit code and its (potential) distance: the larger the best friend, the smaller

the code, but the better the lower bound for the distance. The most extreme case,

namely the best possible distance, is dealt with in the following result.

20

Corollary 21. For any cyclic orbit code Orb(U) with best friend Fqr we have

dS(Orb(U)) = 2k () r = k () U = Fqk .

If any (hence all) of these properties are true, then Orb(U) is a spread code.

Proof. If U = Fqk then obviously, r = k. Using the fact that 1 2 U , we see that

if r=k then Fqk ⇢ U , but they must be equal by their dimensions. The implication

“(=” of the first equivalence has been dealt with in Corollary 12. As for “=)”,

note that Lemma 20 implies that U↵j \ U = {0} for all j, hence Orb(U) is a partial

spread. Since |Orb(U)| = (qn � 1)/(qr � 1), the union of all subspaces in the orbit

results in (qk � 1)(qn � 1)/(qr � 1) distinct nonzero points in Fqn . Since r k, this

implies r = k. ⌅

Now we look as some examples which show examples of how to acheive the best

non-spread distance for cyclic orbit codes. We see that according to lemma 20 and

corollary 21 the best distance a non-spread cyclic orbit code may achieve is 2(k� r).

Example 22. (a) The code in Example 18 is optimal among all non-spread cyclic

orbit codes: in [12, p. 1170] the distance has been found as 4, and this is 2(k�1).

(b) Consider the code in Example 19(a). In this case k = 6 and r = 2. One can verify

that dimF22
(U \ U↵j) 1 for all 1 j < 1365 = |Orb(U)|. Hence lemma 20

yields dS(Orb(U)) = 2(k � r) = 8, which means the code is optimal among all

non-spread cyclic orbit codes with the same length, dimension, and best friend.

There is a specific case where we can always guarantee that a non-spread cyclic

orbit code has distance 2(k � r).

Example 23. Let dimFqr
(U) = t = 2, hence k = 2r. Then 2r = 2(k � r), and thus

dS(Orb(U)) = 2(k � r) due to Lemma 20. Thus any such code is optimal among all

non-spread cyclic orbit codes with best friend Fqr .

However, we would like to allow t > 2 so we want to find other methods to

guarantee non-spread optimal distance. It turns out that this is very di�cult but we

can find conditions that will lead to a distance less than 2(k � r). We begin with a

specific construction of ”bad” subspaces.

Proposition 24. Suppose U is of the form U =
Lt�1

i=0 ↵
liFqr for some 1 l <

qn�1
qr�1 ,

and where Fqr is the best friend of U . Then (Orb(U)) = 2r.

21

Proof. Since ↵lU =
Lt

i=1 ↵
liFqr we have

Lt�1
i=1 ↵

liFqr ✓ U \ ↵lU . Moreover,

l < |Orb(U)| yields dimFqr
(U \ ↵lU) t � 1 = dimFqr

(
Lt�1

i=1 ↵
liFqr). So U \ ↵lU =

Lt�1
i=1 ↵

liFqr , and dimFqr
(U\↵lU) = t�1, which is the maximum possible intersection

between any two distinct subspaces in the cyclic orbit code. Hence in the notation of

Lemma 20 we have s = t� 1, and dS(Orb(U)) = 2r. ⌅

Notice that in the previous lemma we added the requirement that Fqr be the best

friend of U because this does not follow from the form of U , as we have mentioned

before. Indeed, U =
Lt�1

i=0 ↵
liFqr only implies that Fqr is a friend of U , but it may

not be the best friend. As an example, in F26 with primitive element ↵ we have

F22 = F2 � ↵

21F2, hence the best friend is F22 , despite being able to write it as a

direct sum of F2. Notice, however, that we can always write a larger subfield as the

direct sum of smaller subfields. The next result shows that this is essentially the only

case where we write U as a direct sum of shifts of Fqr , but Fqr is not the best friend.

Proposition 25. Let U =
Lt�1

i=0 ↵
ilFqr for some l, where t > 1. Denote by f 2 Fqr [x]

the minimal polynomial of ↵l over Fqr . Then deg(f) � t and

U=Fqrt () deg(f)= t () ↵

lU=U () Fqr is not the best friend of U .

In other words, Fqr is the best friend of U if and only if U is not a field.

Proof. First, the directness of the sum implies immediately the inequality deg(f) � t.

As for the chain of equivalences we argue as follows.

1) Assume U = Fqrt . Then U is a field and the form of U shows that U = Fqr [↵l].

This implies deg(f) = dimFr
q
(U) = t.

2) deg(f) = t yields dimFqr
Fqr [↵l] = t, and since U is contained in this field, we have

U = Fqr [↵l], by dimensions. This implies ↵lU = U .
3) If ↵lU = U , then ↵l 2 Stab(U) and hence ↵l is contained in the best friend. Since

due to the directness of the sum, ↵l is not in Fqr , we conclude that Fqr is not the best

friend of U .
4) Assume that the best friend of U is Fqr0 for some r

0
> r. Set dimF

qr
0 U = t

0. Then

rt = k = r

0
t

0. We show that ↵lU = U . Assume to the contrary that ↵lU 6= U . Then
dimF

qr
0 (U \ ↵

lU) t

0 � 1. On the other hand we have
Lt�1

i=1 ↵
ilFqr ✓ (U \ ↵

lU).
Considering dimensions over Fq we obtain the inequality r(t � 1) r

0(t0 � 1), and

using rt = r

0
t

0 this yields r � r

0, a contradiction. Thus ↵lU = U , and this implies

that ↵lt =
Pt�1

i=0 ai↵
li for some ai 2 Fqr . But this means that deg(f) = t and

U = Fqr [↵l] = Fqrt . ⌅

22

Of course, there are also subspaces that are not of the form in Proposition 24 and

yet generate cyclic orbit codes with distance as low as 2r. The following example

shows one.

Example 26. Consider F212 with primitive element ↵ as in Example 19. Let W =

F24 +↵F22 . In Example 19(b) we saw that the best friend is F22 . One can check that

dS(Orb(W)) = 4 = 2r.

In this example we see that F24 is a subspace of W and that the best friend of F24

is itself, which is larger than the best friend of W , F22 . It turns out that all spaces of

this type lead to non-optimal cyclic orbit codes.

Proposition 27. Suppose there exists a subspace V of U with best friend Fqr0 for

some r

0
> r. Then dS(Orb(U)) 2(k � r

0) < 2(k � r).

Proof. Since Fqr0 is the best friend of V , Corollary 17 yields

|Orb(V)| = q

n � 1

q

r0 � 1
<

q

n � 1

q

r � 1
= |Orb(U)|.

So there exists some j such that V↵j = V , while U↵j 6= U . Then V ⇢ U \ U↵j, so

dimFqr
(U \ U↵j) � dimFqr

(V) � r0

r . Hence s := max1j<N dimFqr
(U \ U↵j) � r0

r ,

and Lemma 20 implies s � dimFqr
(U \ U↵j) � r0

r , and dS(Orb(U)) = 2(k � sr)
2(k � r

0) < 2(k � r). ⌅

We would like to stress that the condition in Proposition 27 is not necessary for

the distance to be less than 2(k � r). As we saw before, codes as in Proposition 24

do not have to have subspace with larger best friends but lead to a distance of 2r.

A specific example of this is the subspace U of F27 generated by 1, ↵, ↵2 (where ↵

is a primitive element of F27) has distance dS(Orb(U)) = 2r = 2 < 2(k � r). But

since F2 is the only subfield of F27 , every subspace of U has best friend F2, and the

assumption of Proposition 27 is not satisfied.

Unfortunately, we do not know any general construction of cyclic orbit codes with

cardinality (qn�1)/(qr�1) and distance 2(k�r), i.e., the best non-spread code case.

In [33, p. 7396] it is conjectured that for any n, k, q there exists a cyclic orbit code of

cardinality (qn�1)/(q�1) and distance 2(k�1). In the same paper the conjecture is

also verified for randomly chosen sets of (n, k, q) 2 {4, . . . , 100}⇥{1, . . . , 10}⇥{2, 3}.
However for certain extreme cases the conjecture does not hold true.

Example 28. By exhausting all possible 4-dimensional subspaces in F8
2 via their

row echelon form we could verify that no cyclic orbit code exists with parameters

23

(n, k, r, q) = (8, 4, 1, 2), hence with cardinality 255, and distance 6. While there

exists such a code for (n, k, r, q) = (6, 3, 1, 2) and distance 4, it remains open whether

there is a cyclic orbit code with parameters (2k, k, 1, q) and distance 2(k � 1) for

any k > 4. The usual bounds, see e.g. [37], do not rule out the existence of such

codes.

From Lemma 20 we know that there does not exist a cyclic orbit code with

parameters (n, k, r, q) = (8, 4, 2, 2), hence with cardinality 85, and distance 6. In fact,

it turns out that the largest orbit code of length 8, dimension 4 and with distance 6

is a �-cyclic orbit code for some � 2 F⇤
28 such that |�| = 51. The orbit code then also

has cardinality 51. Note that this cardinality is not attained by any cyclic orbit code

due to Corollary 17.

Example 29. Let us consider cyclic orbit codes in F212 of dimension k = 6 and with

best friend F2. Due to Corollary 17, such a code has cardinality 212 � 1 = 4095.

Because of the above discussion, we have doubts that there exists such a code with

distance 2(k � 1) = 10, but we did not perform an exhaustive search. The best

code we could find with a random search has distance 8 and is generated by U =

F2 + ↵F2 + ↵

4F2 + ↵

10F2 + ↵

10
�F2 + ↵

8
�

2F2, where ↵ and � are primitive elements

of F212 and F26 , respectively.

We close this section with the following positive observation.

Example 30. It can be verified that for q = 2 and all n 2 {6, . . . , 20}, the cyclic

orbit code Orb(U) of dimension k = 3 and cardinality 2n � 1 with

U = F2 + ↵

2F2 + ↵

3F2 ✓ F2n , where h↵i = F⇤
2n ,

has distance 4 = 2(k� 1). The same is true (maximal cardinality and distance 4) for

q = 3, 5, 7 and n 2 {6, 7, 8} and the analogous subspace U . We did not explore larger

values of q and n.

Computing the Subspace Distance via Multisets

In this section, we use multisets to compute distance, rather than computing all

subspaces in the code. This idea goes back to Kohnert/Kunz [22, Lem. 1] who made

use of it in their search for codes with distance 2(k � 1), but Rosenthal/Trautmann

extended it in [26, Thm. 15, Prop. 16] to the general case. We refine it further by

including the use of the best friend, which will allow us to work with a smaller multiset

than in [26], and we do not have to distinguish between orbits of size q

n � 1 (which

can occur only if q = 2) and those of smaller size.

24

As before let U have best friend Fqr . Lemma 7 yields

Stab(U) = h↵Ni = F⇤
qr , where N =

q

n � 1

q

r � 1
. (3.7)

Now we consider a new group action Fqn ⇥ h↵Ni �! Fqn given by (v, �) 7! v�.

For each v 2 F⇤
qn the orbit of v is

O(v) := {v, v↵N
, v↵

2N
, . . . , v↵

(qr�2)N},

and |O(v)| = |h↵Ni| = q

r � 1, since all elements of the orbit must be distinct. Now

we rewrite v = ↵

b and get that

O(v) = {↵b
,↵

b+N
, . . . ,↵

b+N(qr�2)}.

We can see that using modular arithmetic with modulus qn � 1 there is exactly one

element in this orbit whose exponent is non-negative and strictly less than N . Hence

F⇤
qn =

N�1[

b=0

· O(↵b).

Since U is an Fqr -vector space, the orbit O(u) is in U for every u 2 U . This shows

that
8
>><

>>:

U\{0} =
S[

i=1

· O(↵bi) for S =
q

k � 1

q

r � 1
and

suitable non-negative integers b1, . . . , bS < N.

(3.8)

Note that b1, . . . , bS are uniquely determined by U , and if ↵c 2 U and 0 c < N ,

then c 2 {b1, . . . , bs}.
Now we will use this group action and observations to prove our multiset remark.

Recall that a multiset is a collection of elements where each element is allowed to

appear more than once. We will denote multisets by double braces {{. . .}} and the

multiplicity of an element m(J), i.e., the number of times J appears in the multiset.

Theorem 31. Let U be as above and b1, . . . , bS be as in (3.8). Define the multiset

D := {{bl � bm modN | 1 l, m S, l 6= m}},

and for J 2 D denote by m(J) the multiplicity of J in D. Furthermore, set M :=

max1J<N{m(J)}. If D = ;, we define M := 0. Then dim(U\U↵J) = logq(m(J)(qr�
1) + 1) and

dS(Orb(U)) = 2(k � L), where L = logq(M(qr � 1) + 1).

25

Proof. We begin by considering the case where D = ;. This happens only if S = 1,

hence r = k and U = Fqk . In this case dS(Orb(U)) = 2k as we know from Corollary 21.

Now suppose D 6= ;. Fix J 2 {1, . . . , N � 1}. For all l 2 [S] := {1, . . . , S} we

have ↵bl+J 2 U↵J , and thus O(↵bl+J) ⇢ U↵J . Hence (U↵J)\{0} =
S

l2[S]
· O(↵bl+J).

Since U \ U↵J is an Fqr -vector space contained in U , we have

(U \ U↵J)\{0} =
[

l2LJ

· O(↵bl),

where

LJ = {l 2 [S] | O(↵bl) = O(↵bm+J) for some m 2 [S]}
= {l 2 [S] | ↵bl = ↵

bm+J
↵

�N for some m 2 [S] and � 2 Z}.

Note that ↵bl = ↵

bm+J
↵

�N is equivalent to bl ⌘ bm + J + �N mod (qn � 1). Since N

is a divisor of qn � 1, we conclude

LJ ✓ {l 2 [S] | bl � bm ⌘ J modN for some m 2 [S]}.

By assumption there are m(J) pairs (bl, bm) so that bl � bm ⌘ J modN . Thus, we

obtain that (U \ U↵J)\{0} is the union of at most m(J) orbits. This shows that

|U \ U↵J | m(J)(qr � 1) + 1.

To show equality, note that there are m(J) pairs (bl, bm) such that bl � bm ⌘
J modN . Pick such a pair (bl, bm) and write bl = bm + J + �N for some � 2 Z.
Then O(↵bl) = O(↵bm+J+�N) = O(↵bm+J), and so this orbit is in U \ U↵J . This

shows that there are at least m(J) orbits in the intersection, and we conclude that

|U \ U↵J | = m(J)(qr � 1) + 1. Thus dim(U \ U↵J) = logq(m(J)(qr � 1) + 1).

Finally, dS(Orb(U)) = 2(k �max0<J<N{dim(U \ U↵J)}), which leads to the de-

sired result. ⌅

Copyright c� Carolyn E. Troha, 2015.

26

Chapter 4 A Linkage Construction

This chapter will present a new way to build constant-dimension subspace codes,

called the linkage construction. These linkage codes are recursive, and therefore use

other types of constant-dimension subspace codes as seeds. The main idea of this

construction is to link two constant-dimension subspace codes by concatenating their

underlying matrices in such a way as to not change the distance of the resulting codes.

This process creates a longer, larger code without compromising distance. Since the

linkage construction relies heavily on the matrices which represent the subspace code,

the following definition will be very helpful in our discussion.

Definition 32. A matrix M 2 Fk⇥n is called a matrix representation of the subspace

U ✓ Fn if U = im (M). A set of matrices M ✓ Fk⇥n is called SC-representing if

rank (M) = k for all M 2 M and im (M) 6= im (M 0) for all M 6= M

0. We will denote

the induced constant-dimension code C(M) := {im (M) | M 2 M}.

Notice that for any subspace U 2 Gq(n, k) there exist many matrix representations

and we can always find a SC-representing set for any constant-dimension subspace

code. For example, we could choose the matrix in Row Reduced Echelon Form.

Additionally, we will often want to project into either the first components of

a vector or the last components so the following maps will be helpful. Define the

projections

⇡1 : Fn1+n2 ! Fn1
, (a, b) 7! a and ⇡2 : Fn1+n2 ! Fn2

, (a, b) 7! b.

For a subspace U = im (U1 | U2) ✓ Fn1+n2 , we define Ui = ⇡i(U), so Ui = im (Ui).

4.1 Linkage Construction Theorem

Now we formalize the idea of the linkage construction. It generalizes the construction

in [14, Thm 5.1]. We will present the linkage construction as a theorem. We see in

the theorem how to glue the constituant codes together in three components of the

linkage code.

27

Theorem 33. For i = 1, 2 let Mi ⇢ Fk⇥ni be SC-representing sets of cardinality Ni.

Thus Ci = C(Mi) is a (ni, Ni, k)q-code. Additionally, let CR be an k ⇥ n2 linear rank

metric code such that |CR| =: NR. Define the subspace code eC of length n := n1 + n2

as eC = eC1 [eC2 [eC3, where
eC1 = {im (U | 0k⇥n2) | U 2 M1},
eC2 = {im (0k⇥n1 | U) | U 2 M2},
eC3 = {im (U | M) | U 2 M1,M 2 CR\{0}}.

Then eC is a (n,N, d, k)q code, where N = N2+N1NR and d = min{dS(C1), dS(C2), 2dR(CR)}.
We write eC = C1 ⇤CR C2 for the resulting linkage code and call eC the code obtained by

linking C1 and C2 through CR.
Proof. The cardinality of eC is clear, since the sets eCi are pairwise disjoint and

N1 +N2 +N1(NR � 1) = N2 +N1NR.

It remains to show that dS(eC) = d. It is obvious that dS(eCi) = dS(Ci), for i = 1, 2.

Additionally, each subspace in eC2 intersect trivially with each subspace in eC1 and eC3,
because of the placement of the zero matrix. Thus dS(U1,U2) = 2k for all U1 2 eC2 and
U2 2 eC1 [eC3. Since 2k is the maximum distance of a constant dimension k code, we

see that dS(eC2, eC1 [eC3) is greater than min{dS(C1), dS(C2), 2dR(CR)}. Thus we must

check the distance of eC3, where we combine the codes, and the distance between eC1
and eC3.

We check the distance between eC1 and eC3 by letting

U = im (U | 0) 2 eC1 and V = im (U 0 | M) 2 eC3,
for some U 2 M1, U 0 2 M1 and M 2 CR\{0}. If rankM = k then dS(U ,V) =

2k, because of the placement of the zero matrix. So assume rankM < k but

rankM � dR(CR), by the linearity of the code. By the rank-nullity theorem we

get dim(ker(M)) k � dR(CR). We want to relate this to the subspace distance by

relating it to the dimension of the intersection of U and V .
Let v 2 U \ V . Thus

v = w (U | 0) = w

0 (U 0 | M) ,

which gives us w

0
M = w0 = 0 and wU = w

0
U

0. So we see that w

0 2 ker(M) and

wU 2 U1 \ V1. So we have shown that for every element of U \ V we get a element

of ker(M) as well as an element of U1 \ V1. So we have shown that

dim (U \ V) min{dim(U1 \ V1), dim(ker(M))}.

28

Since U1, V1 2 C1 and using (2.1) we see that,

dS(U ,V) � max{dS(C1), 2dR(CR)} � min{dS(C1), dS(C2), 2dR(CR)}.

Lastly, let

U = im (U | M) 2 eC3 and V = im (U 0 | M 0) 2 eC3,

for some U,U 0 2 M1 and M,M

0 2 CR\{0}. Since we do not want U to be equal to V
we have U 6= U

0 or M 6= M

0. Now, we want to compare dim(U \V) with dR(M,M

0).

Let v 2 U \ V , then
v = w (U | M) = w

0 (U 0 | M 0) .

So we get

wU = w

0
U

0 2 U1 \ V1 and wM = w

0
M

0 2 im (M) \ im (M 0).

Now we have two cases. If U 6= U

0, then dim(U \ V) dim(U1 \ V1), as before.

Thus in this case we have

dS(U ,V) � dS(C1) � min{dS(C1), dS(C2), 2dR(CR)}.

If U = U

0, then w = w

0, since U and U

0 are full rank. Also M 6= M

0, which means

that dR(M,M

0) = rank (M�M

0) � dR(CR). Hence dim(ker(M�M

0)) k�dR(CR).
But then we have wM = wM

0 and hence w 2 ker(M �M

0). This shows us that, in

this case, every element of U \ V gives an element of ker(M �M

0). Thus

dim(U \ V) dim(ker(M �M

0)) k � dR(CR),

which implies that dS(U ,V) � 2dR(CR). Thus in both cases dS(U ,V) � min{dS(C1), dS(C2), 2dR(CR)},
which finishes our proof.

⌅

The following example shows how the linkage construction works.

Example 34. For this example, we will work over F2. Let

M1 = M2 =

8
<

:

0

@
1 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 1

1

A
,

0

@
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

1

A

9
=

; ✓ F3⇥6

29

and let

M0
1 =

8
<

:

0

@
1 0 1 1 0 1
1 1 0 1 0 0
0 0 1 0 0 1

1

A
,

0

@
1 1 1 0 0 0
0 1 1 0 0 0
1 0 1 0 0 0

1

A

9
=

; ✓ F3⇥6
.

Notice that C(M1) = C(M0
1). Finally, let

CR =

8
<

:0,

0

@
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

1

A
,

0

@
0 1 0 0 0 0
0 0 1 0 0 0
1 1 0 0 0 0

1

A
,

0

@
1 1 0 0 0 0
0 1 1 0 0 0
1 1 1 0 0 0

1

A

9
=

; ✓ F4⇥8
.

A quick check gives us that C(M1) = C(M0
1) = C(M2) is a (6, 2, 4, 3)2 code

and that CR is a linear rank metric code, with dR(CR) = 3 and NR = 4. If we let

C1 = C(M1) and C2 = C(M2) then C1 ⇤CR C2 is a (12, 10, 4, 3)2 code. It turns out that

C1 ⇤CR C2 has 5 pairs of codewords (U ,V) with distance dS(U ,V) = 4. However, if we

use M0
1 as the SC-representing set for C1 then C1⇤CR C2 is still a (12, 10, 4, 3)2 code but

now we can check that 3 pairs of codewords (U ,V) have distance dS(U ,V) = 4. Thus

we see that the choice of SC-representing sets gives us di↵erent codes. M1 ⇤CR M2

may be a more accurate notation, but since the linkage code inherits its properties

from the subspace codes, we prefer the notation C1 ⇤CR C2, which will rarely cause any

confusion.

This example indicates that there may be an optimal way to choose the matrix

representations for the distance distribution for our linkage code. However, at this

point in time we do not know what this would be. Since this choice only a↵ects the

distance distribution and not any basic of the properties of the code, we will ignore

this choice of SC-representing sets in most cases.

It should be noted that the linkage construction should be used for n � 4k, since

we want each ni � 2k. Nevertheless, this construction allows us to create codes of

large size, as long as there are known codes for n = 2k, . . . , 4k � 1. The following

example explores the cardinality of the linkage construction in comparison to codes

generated by other constructions.

Example 35. Since many codes are known in the case q = 2, k = 3 and subspace

distance 4, we will construct linkage codes in the case of n = 12, 13, and 14. We

could continue to construct linkage codes of longer lengths but we don’t have codes

30

to compare to in longer lengths. This is one strength of the linkage constructions,

since we can generate a linkage code quickly once a few shorter lengths are known.

In this case we will need the largest codes of size 6,7 and 8, which have cardinality

77, 329, and 1312 respectively, see [5, Tables I and II]. In order to create codes of

the largest size, we use an MRD code in F3⇥n2 of rank distance 2, since these are

optimal rank metric codes of the appropriate size (see Section 2.3). These codes have

size NR = 2n2(3�2+1) = 22n2 . Since we can break up n = 13, 14 in multiply ways, we

show the following table of sizes of linkage codes. The bolded entries are the largest

cardinality for each size.

n n1 n2 N1 N2 NR Linkage

12 6 6 77 77 4096 315,469

13 6 7 77 329 16384 1,261,897

13 7 6 329 77 4096 1,347,661

14 7 7 329 329 16384 5,390,665

14 6 8 77 1312 65536 5,047,584

14 8 6 1312 77 4096 5,374,029

Now we compare the linkage construction to other large constructions. The con-

structions listed are the multilevel (ML) construction [10], the modified multilevel

(MML) construction [11] and the largest codes constructed via computer search [5, 4].

n Linkage ML MML Largest Known

12 315,469 298,139 305,324 385,515

13 1,347,661 1,192,587 1,221,296 1,597,245

14 5,390,665 4,770,411 4,885,184 5,996,178

Both the multilevel and modified multilevel constructions contain a lifted MRD

code. However, the linkage codes created in the table do not contain a lifted MRD

code. We also note that the code of length 13 which has 1,597,245 is optimal, since

it is a Steiner structure (see [4]).

As we can see the linkage construction beats the multilevel and modified multilevel

constructions but does not beat the best known lower bounds.

Despite being smaller than the best known codes, the linkage construction still

has many advantages over other constructions, the main one being that it does not

require us to generate an entirely new code from scratch for each length. Additionally,

cardinality gains can be made without having to start over in each length. When a

31

gain is made in a smaller length, a gain is also made in the longer linkage codes.

Notice that if the cardinality of the seed code C1 increases by c, then the cardinality

of the linkage code increases by cNR, which can be quite large.

There is another specific linkage case that improves on cardinality of decodable

codes. In this case the linkage construction is also decodable and we will explore that

later. Here we present this case.

Example 36. Let C1 be a lifted MRD code of subspace distance 2d and let CR
be a MRD code of rank distance d. Let C2 be any decodable subspace code with

subspace distance 2d. (Notice we could choose C2 to be a lifted MRD code.) Construct

C1 ⇤CR C2 as in Theorem 33. We will see later on that C1 ⇤CR C2 is decodable. Since

N1 = q

(n1�k)(k�d+1) and NR = q

n1(k�d+1), we know that

|C1 ⇤CR C2| = N2 + q

(n1�k)(k�d+1)
q

n2(k�d+1) = N2 + q

(n�k)(k�d+1)
.

We know that q(n�k)(k�d+1) is the cardinality of of a lifted MRD code of dimen-

sion k and length n, so the linkage construction will beat the cardinality of such a

code in all cases. However, this case is always smaller than the best cardinalities in

Example 35. If C2 is a lifted MRD code then |C2| = q

(n2�k)(k�d+1) and

|C1 ⇤CR C2| = q

(n2�k)(k�d+1) + q

(n�k)(k�d+1)
.

So we see that unlike in Example 35 we always get the largest cardinality when n2 is

the largest. The following table compares linking two lifted MRD codes (LinkMRD),

linking a lifted MRD code with the largest possible code (Linklargest), a lifted MRD

code and the extended lifted MRD construction in [30]. This last construction is

included since it is a recursive code, which extends a lifted MRD code without com-

promising distance and seems to be a suitable comparison.

n n1 n2 LinkMRD Linklargest Lifted MRD Extended Lifted MRD

12 6 6 262,208 262,221 262,144 266,304

13 6 7 1,048,832 1,048,905 1,048,576 1,065,216

14 6 8 4,195,328 4,195,616 4,194,304 4,260,864

4.2 Partial Spread Linkage Codes

The linkage construction can be used to construct optimal partial spread codes, as

well as, to generalize other partial spread constructions. In this section we will explore

how to do this. We begin by refining the linkage construction to a special case which

is useful to our discussion.

32

Remark 37. Let f be a primitive polynomial of degree n over Fq and Mf be its

companion matrix. Fix a full rank matrix V 2 Fk⇥n. We define the rank metric code

Cf,V := {VM

i
f | i = 0, . . . qn � 2} [{0}.

We see that dR(Cf,V) = k and |Cf | = q

n since hMfi [{0} ⇠= Fqn . We also note that

Cf,V \{0} is a SC-representing set of an irreducible cyclic orbit code. Finally, notice

that for two subspace codes C1 and C2 we have dS(C1 ⇤Cf,V C2) = min{dS(C1), dS(C2)},
because dS(C1), dS(C2) 2k.

Recall the concept of spreads and partial spreads from Section 2.4. The remark

shows that if we link spreads or partial spreads by a rank metric code Cf,V , we obtain
again a (partial) spread. Using this special case we are able to generalize two di↵erent

constructions in the following example.

Example 38. 1. We begin by writing n = lk + c for 0 c < k and letting

n1 = n � (k + c) and n2 = k + c. Using the standard map from Fqn1 ! Fn1
q ,

let C1 = OrbFqk ✓ Fn1
q , which is a k-spread as we saw in Remark 13. Next,

let M2 = {(Ik | 0k⇥c)}, which is a partial k-spread. Finally, we set CR = Cf,V
where V = (Ik | 0k⇥c) and f is a primitive polynomial for Fqn2 . Then C1 ⇤CR C2
is a partial spread in Fn

q and is exactly the partial spread given in [12, Thm.

11]. We have that |C1 ⇤CR C2| = 1 + q

n2 qn1�1
qk�1 = qn�qc

qk�1 � q

c + 1.

2. As in (a) let n = lk+c for 0 c < k, n1 = (l�1)k and n2 = k+c. Let p 2 Fq[x]

be an irreducible polynomial of degree k and Mp be the companion matrix of p.

Let M1 = {(A1 | . . . | Al�1)|Ai 2 Fq[Mp], not all Ai’s zero}. Then C1 = C(M1)

is a spread called a Desarguesian spread [16]. LetM2 = {(Ik|0k⇥c)} and CR = Cf
where V = (0k⇥c|Ik) and f is a primitive polynomial for Fqn2 . Again the code

C1 ⇤CR C2 is a partial spread in Fn
q . This is the spread constructed in [18, Thm.

13]. As in (a) we have that |C1⇤CR C2| = 1+q

n2 qn1�1
qk�1 = qn�qc

qk�1 �q

c+1. We can see

that the only di↵erence between these constructions is the choice of spread used

in the first component. However, in [18], Gorla and Ravagani give a decoding

algorithm which makes use of the choice of the Desarguesian spread, where as

Etzion and Vardy in [12] do not present a decoding algorithm.

Since we know that the linkage construction generalizes these constructions of

partial spreads, we will explore it more in this context. Before we do so we will

establish some definitions and facts that we be useful in this discussion.

33

Definition 39. We say that a partial spread, C, is maximal if it is maximal with

respect to inclusion. That is, C is not properly contained in any other partial spread.

We say that C is maximum if it has the largest possible cardinality.

In most cases the size of a maximum partial spread is unknown except when

c = 0, 1, where c ⌘ n (mod k), or when q = 2 and k = 3. We will denote the the size

of the largest partial k-spread in Gq(n, k) by

µq(n, k).

While we do not know µq(n, k) is most cases, we do have the following bounds.

Theorem 40 ([3]). Let n ⌘ c mod k. Then

q

n � q

c

q

k � 1
� (qc � 1) µq(n, k).

Additionally, if c = 0 or c = 1 then we get equality, i.e., qn�qc

qk�1 � (qc � 1) = µq(n, k).

We also have an upper bound for µq(n, k).

Theorem 41 ([8]). Let n ⌘ c mod k. Define ✓ by

✓ =

p
1 + 4qk(qk � q

c)� (2qk � 2qc + 1)

2
.

Then

µq(n, k) q

n � q

c

q

k � 1
� b✓c � 1.

Notice that both constructions in Example 38 meet the lower bound for µq(n, k).

We know that for c = 0, 1 that the lower bound is sharp; hence, these partial spread

constructions are maximal in those cases. However, we know the lower bound is not

sharp in one specific case, as seen in the following theorem.

Theorem 42 ([9], Thm. 5). Let k = 3 and n � 8. Let n ⌘ c mod k. Then the

maximum cardinality of a partial 3-spread of Fn
2 is

2n � 2c

7
� c.

This theorem is proven by giving a construction, but the linkage construction gives

an alternative construction. The following example will be helpful to us in finding

maximum spreads.

Example 43. Let q = 2, k = 3 for all the following examples.

34

(a) For n = 6, 9, k divides n so we can construct a spread, namely the orbit code of

F23 in F26 or F29 .

(b) For n = 7, there is a spread of size 17, see Example 38.

(c) For n = 8 there is a partial 3-spread in F8
2 with cardinality 34, which was found

by computer search and is given in [9, Ex. 2].

Since we have maximum partial spread codes to link in this case, we use the

linkage construction to construct maximum partial spreads of longer lengths.

Corollary 44. Let n � 10 and write n = 3l+n2 for some l � 1 and n2 � 7. Let n ⌘
c mod 3, thus n2 ⌘ c mod 3. Let C1 be a 3 spread in F3l

2 . Hence |C1| = N1 = 23l�1
7 .

Moreover, let C2 be a maximum partial 3-spread in Fn2
2 , hence |C2| = N2 =

2n2�2c

7 � c.

Finally, let f be a primitive polynomial for Fqn2 , V 2 Fk⇥n2 be full rank and CR = Cf,V .
Then C1 ⇤CR C2 is a maximum partial 3-spread in Fn

2 .

Proof. The resulting code is a partial spread, since dS(C1 ⇤CR C2) = min{2k, 2k, 2k} =

2k. Its cardinality is given by

2n2
23l � 1

7
+

2n2 � 2c

7
� c =

2n � 2c

7
� c,

which is optimal by Theorem 42. ⌅

Using Example 43 and Corollary 44, we can construct an optimal partial spread

for all n � 6, when q = 2 and k = 3. However, we would still like to know what

happens in other cases.

By Theorems 40 and 41, we see that µq(n, k) =
qn�qc

qk�1 �aq(n, k), for some aq(n, k) 2
Z�1. We notice that if we link two maximum partial spreads of lengths n1 ⌘ c1 mod k

and n2 ⌘ c2 mod k by some Cf,V , we will always get a cardinality of

q

n � q

c2 � q

n2(qc1 � 1)

q

k � 1
� aq(n1, k)� aq(n2, k).

If we choose c1 = 0 meaning that k | n1 and C1 is an spread then, n ⌘ n2 ⌘
c mod k. Thus, if aq(n2, k) and aq(n, k) only depend on c then we will get a maximum

partial spread, since our cardinality is

q

n � q

c

q

k � 1
� aq(n2, k) =

q

n � q

c

q

k � 1
� aq(n, k).

Because we don’t know anything about maximum spreads in most cases, the best we

can do is find a maximal spread. It turns out that if we link a spread code with a

maximal partial spread by Cf,V , we will always return a maximal partial spread.

35

Proposition 45. Let C1 be a spread code in Fn1
q , C2 be a maximal partial spread in

Fn2
q and CR = Cf,V for some primitive polynomial f and full rank V 2 Fk⇥n2. Then

C1 ⇤CR C2 is a maximal partial spread in Fn
q .

Proof. We know that C1⇤CRC2 is a partial spread since dS(C1⇤CRC2) = min{2k, 2k, 2k} =

2k. Thus we only need to show it is maximal. Let U 2 Gq(n, k)\(C1 ⇤CR C2), and write

U = im (X | Y), for some X 2 Fk⇥n1
q and Y 2 Fk⇥n2

q . We want to show that in

all cases dS(U , C1 ⇤CR C2) < 2k, by showing that U intersects nontrivially with some

codeword.

Case 1: Y = 0

Since Y = 0, we want to construct an element of eC1, which will intersect with U . Since
C1 is a spread and must contain every one dimensional subspace in some element of the

spread, we know im (X) \ im (U1) for some U1 2 M1. Thus dim(U \ im (U1 | 0)) 6= 0

and dS(U , C1 ⇤CR C2) < 2k.

Case 2: X = 0

In this case, since X = 0, we want to construct an element of eC2 which will intersect

with U . Since C2 is a maximal partial spread, all other subspace must intersect an

element of C2. Hence we can find some U2 2 M2 such that im (Y) \ im (U2). Thus

dim(U \ im (0 | U2)) 6= 0 and dS(U , C1 ⇤CR C2) < 2k.

Case 3: X 6= 0 and Y 6= 0

We know that {VM

i
f | i 2 {0, . . . , qn2 � 2}} [{0} is a MRD code with distance k.

Thus if rank (Y) = k we must have dR(Y, V M

i
f) < k for some i, otherwise we could

add Y to our code which contradicts the singleton bound. Thus rank (Y �VM

i
f) < k

and there is v 2 Fk
q such that vY = vVM

i
f . We also know that vX 2 im (U1) for

some U1 2 M1, since C1 is a spread. Thus v(X | Y) 2 U \ im (U1 | VM

i
f), and so

dS(U , C1 ⇤CR C2) < 2k.

Now if rank (Y) < k then there exists v 2 Fk
q such that vY = 0. As before,

we have vX 2 im (U1) for some U1 2 M1. Thus v(X | Y) 2 U \ im (U1 | 0), and
dS(U , C1 ⇤CR C2) < 2k.

So we see that in all cases dS(U , C1 ⇤CR C2) < 2k. Thus U cannot be added to the

partial spread without compromising the distance, which proves the construction is

maximal. ⌅

36

We would like to use this proposition on the partial spreads in Example 38, but

we must verify that C2 = {im (Ik | 0k⇥c} is a maximal partial spread. However,

this is trivial, since k > n2/2. Thus we see that both of these constructions from

before are maximal partial spreads. Hence, this proposition helps by showing that the

construction by Etzion and Vardy in Example 38 (1) is a maximal construction, which

they do not show in [12]. Also it is a new abbreviation to the proof of maximality

given by Gorla and Ravagnani in [18], for their spreads as seen in Example 38 (2).

So we see that linkage partial spread codes nicely generalize all known results on the

construction of maximal and maximum partial spreads.

4.3 Decoding of the Linkage Construction

In this section, we want to explore the decodability of the linkage construction. The

idea is to utilize the structures of the underlying codes and the structure of the linkage

code to decode received words e�ciently. We know that if a subspace is close enough

to our codeword, that is dS(V , C) < dS(C)
2 , minimum distance decoding will work, see

[29]. So the goal is to find an algorithm that will produce the unique closest codeword

without having to check the distance between the received word and all codewords.

To begin this discussion, we make the following definition.

Definition 46. A subspace V is decodable with respect to the code C if dS(V , C)
d�1
2 .

For any decodable V there exists an unique subspace U 2 C such that dS(V ,U)
d�1
2 , since dS is a metric. Our goal for this section is to find an e�cient algorithm to

find U 2 C1 ⇤CR C2 for any decodable V .
The natural idea for an e�cient algorithm is to decode each projection Vi in the

appropriate seed code and glue it back together. However, in most cases this will not

work, because we must make use of both the rank metric and the subspace metric.

In order to use the rank metric (which is a matrix metric) we must make a choice of

which matrix representation to use for our received subspace. This lemma shows us

the relationship of the rank metric and the possible choices.

Lemma 47. Let U 2 Gq(n,K) such that U = im (U), U 2 FK⇥n
q and let V 2

Gq(n, k) = im (V), V 2 FK⇥n
q and K � k, such that dS(U ,V) = d. Then dR(U, V) �

K�k
2 + d

2 and there exists Ṽ 2 FK⇥n
q such that V = im (Ṽ) and dR(U, Ṽ) = K�k

2 + d
2

37

Proof. Since dS(U ,V) = d, we know that dim(U \ V) = K+k
2 � d

2 =: `. Let A 2

GLn(Fq), be a product of elementary matrices, such that AU =

U1

U2

!
, where

U1 2 F`⇥n
q , U2 2 F(K�`)⇥n

q and im (U1) = U \ V . (Note: this can be done since

U \ V ⇢ U , and we can perform a change of basis with row operations.) Then we

have

dR(U, V) = rank (U � V)

= rank (AU � AV)

= rank

U1

U2

!
�

V

0
1

V

0
2

!!

= rank

U1 � V

0
1

U2 � V

0
2

!

First we know that V = im (AV) = im

V

0
1

V

0
2

!
, since A is a product of elementary

matrices. Thus im (V 0
1) ⇢ V . Next, rank (U2 � V

0
2) = K � ` = K�k

2 + d
2 , otherwise

we would have xU2 = xV

0
2 2 U \ V , for some x 2 FK�l

q . This is not possible since

the rows of U1 are a basis for the intersection. Thus, dR(U, V) � K�k
2 + d

2 , since

rank (U1 � V

0
1) � 0.

Next we show there exists Ṽ such that V = im (Ṽ) and dR(U, Ṽ) = K�k
2 + d

2 . We

begin by extending U1 to a matrix V =

U1

V2

!
2 FK⇥n such that V = im

U1

V2

!
,

which is possible since im (U1) = V \ U ⇢ V . Let Ṽ = A

�1
V , where A is as before.

We see that im (Ṽ) = V , since A is a product of elementary matrices. Then we have

dR(U, Ṽ) = rank (U � Ṽ)

= rank (AU � V)

= rank

0

U2 � V2

!

= K � `

=
K � k

2
+

d

2
,

since im (U2 � V2) must not contain any elements of the intersection as before. ⌅

38

However, we notice that K�k
2 + d

2 may be larger than dR(CR)�1
2 , which can lead

to problems. This is not the only time we run into problems; the following shows

an example of where we see that even if only erasures occur we still cannot decode

through projections.

Example 48. For this example, we will work over F2. Let

M1 = M2 =

8
>>>><

>>>>:

0

BBBB@

1 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

1

CCCCA
,

0

BBBB@

1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

1

CCCCA

9
>>>>=

>>>>;

✓ F4⇥8

and let

CR =

8
>>>><

>>>>:

0,

0

BBBB@

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

1

CCCCA
,

0

BBBB@

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0

1 0 0 0 0 0 0 0

1

CCCCA
,

0

BBBB@

1 1 0 0 0 0 0 0

0 1 1 0 0 0 0 0

0 1 1 1 0 0 0 0

1 0 0 1 0 0 0 0

1

CCCCA

9
>>>>=

>>>>;

✓ F4⇥8
.

Let C1 = C2 = C(M1) = C(M2). It is easy to check that dS(C1) = dS(C2) = 6 and

dR(CR) = 4. Then C = C1 ⇤CR C2 has distance 6.

Our goal is to create a decodable subspace V , for which decoding by projecting

into each component and decoding in the constituent codes does not work. To be

more specific, I want to find a V with closest codeword U = im (U1 | M) such

that for any matrix representation of V , (V1 | V2), we cannot decode in CR, i.e.,

dR(V2,M) > dR(CR)�1
2 . This means that if we projected into the second component,

no matter how we chose and appropriate matrix for V2, closest codeword decoding in

CR will not work.

Let

V = im

0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

!
.

39

We can check that dS(V , C1 ⇤CR C2) = 2 6�1
2 and that

U = im

0

BBBB@

1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

1

CCCCA
,

is the unique closest codeword to V . So we see that V is a decodable subspace. Next,

let

M =

0

BBBB@

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

1

CCCCA
2 CR

be the matrix from the second component of the closest codeword. For all matrix

representations (V1 | V2) 2 F4⇥16 of V we can check that dR(V2,M) > 4�1
2 . Hence we

cannot use closest codeword decoding in CR to find M . Thus, we have a decodable

subspace which cannot be decoded by decoding in each separate component.

As we can see there are subspaces where no matrix representation allows for

decoding with the rank metric in CR. The following proposition shows that this is a

problem for many linkage codes.

Proposition 49 ([15]). Let C be as in Theorem 33 and assume d � dR(CR)+2. Then

there exists a subspace U = im (U1 | U2) 2 C and a received word V ✓ Fn such that

1. dS(U ,V) d�1
2 (that is, V is decodable),

2. V ✓ U (hence only erasures occurred during transmission),

3. for any V2 2 Fk⇥n2 such that im (V2) = ⇡2(V) we have

rank (V2 � U2) >
dR � 1

2
.

In other words, it is not possible to decode V by making use of the rank metric for the

code CR.

As we can see, for many linkage codes, particularly for codes where d = 2dR(CR),
there is a subspace which cannot be decoded by projecting into components. The

issue seems to be integrating the rank metric with the subspace metric. By restricting

40

to a case where we only use the subspace distance, we would be able to eliminate

this di�culty. The following proposition gives a di↵erent linkage construction, which

only uses subspace codes.

Proposition 50. For i = 1, 2 let Mi ✓ Fk⇥ni be a SC-representing set such that

Ci = C(Mi) is a (ni, Ni, dS(Ci), k)q-code. Let M3 ✓ Fk⇥n2 be a SC-representing set

such that C3 = C(M3) is a (n2, N3, dS(C3), k)q-code. Define the subspace code eC of

length n := n1 + n2 as eC = eC1 [eC2 [eC3, where

eC1 = {im (U | 0k⇥n2) | U 2 M1},
eC2 = {im (0k⇥n1 | U) | U 2 M2},
eC3 = {im (U1 | U3) | U1 2 M1, U3 2 M3}.

Then eC is a (n,N, d, k)q code, where N = N2+N1(N3+1) and d = min{dS(C1), dS(C2), dS(C3)}.
We denote such a linkage code, C1 ⇤C3 C2.

Proof. As in the proof of Theorem 33, dS(eC1) = dS(C1) and dS(eC2) = dS(C2). Also,

since rank (U3) = k for all U3 2 M3, we know that dS(eC1, eC2) = dS(eC1, eC3) =

dS(eC2, eC3) = 2k. So we must only check the distance of eC3.
Let

U = im (U1 | U3) 2 eC3 and V = im (U 0
1 | U 0

3) 2 eC3,
for some U1, U

0
1 2 M1 and U3, U

0
3 2 M3. Since we do not want U to be equal to V

we have U1 6= U

0
1 or U3 6= U

0
3. As before we see, for any v 2 U \ V ,

v = w (U1 | U3) = w

0 (U 0
1 | U 0

3)) wU1 = w

0
U

0
1 and wU2 = w

0
U

0
2.

So, we get an element of U1 \ V1, as well as, an element of U2 \ V2. Thus,

dim(U \ V) dim(U1 \ V1), and dim(U \ V) dim(U2 \ V2). So we have

dS(U ,V) � min{dS(C1), dS(C3)}.

Thus we see that d = min{dS(C1), dS(C2), dS(C3)}. ⌅

Notice that we can set easily set M2 = M3 and reduce the number of subspace

codes needed without changing the distance. This case is worth studying because

as we will see shortly it is decodable, but it is also tremendously smaller that the

standard linkage construction. As we can see in the following chart the best sizes we

get are:

41

n Subspace Linkage Standard Linkage

12 6,083 315,469

13 25,739 1,347,661

14 102,413 5,390,665

However, we cannot e�ciently decode in the largest cases, since the links them-

selves are not e�ciently decodable. First, we will show how to decode codes from

Proposition 50 then we will explore a larger case of decodable linkage codes.

We begin with a useful lemma.

Lemma 51. Let C = C1 ⇤C3 C2 be as in Proposition 50, and V = im (V1 | V2) 2
Gq(n,K), with (V1 | V2) 2 FK⇥n

q . Let dS(V , C) d�1
2 , so there exists a unique U =

im (U1 | U2) 2 C, such that dS(V ,U) d�1
2 . Then following are equivalent:

(1) rank (Vi) K�1
2

(2) Ui = 0

for i = 1, 2.

Proof. (1)) (2)

Assume Ui 6= 0, to get a contradiction, then rank (Ui) = k. Note that ⇡i|U : U !
im (Ui) and ⇡i|V : V ! im (Vi) are surjective. Also dim(U) = dim(im (Ui)) = k so

⇡i|U is an isomorphism. Thus:

dim(U \ V) = dim(⇡i(U \ V)) dim (⇡i(U) \ ⇡i(V)) dim (Vi) = rank (Vi).

But, rank (Vi) K�1
2 , so

dS(V ,U) = K + k � 2 dim(V \ U)

� K + k � 2

✓
K � 1

2

◆

= k + 1

>

d� 1

2
,

since d 2k. This is a contradiction.

(2)) (1), i = 1

Assume U1 = 0, then rank (U2) = k since U 2 C. Since dS(U ,V) d�1
2 < k, we have

42

K + k � 2 dim(U \ V) < k) dim(U \ V) > K

2
.

Now by using the following matrix

0 U2

V1 V2

!
, we have

k + rank (V1) rank

0 U2

V1 V2

!

= dim(U + V)
= K + k � dim(U \ V)
< K + k � K

2

= k +
K

2
.

Hence rank (V1) <
K
2 K�1

2 .

For i = 2 the proof follows similarly, using the matrix

U1 0

V1 V2

!
.

⌅

Remark 52. 1. This lemma and proof is very similar to the proof of Lemma 22

in [18], just applied to the linkage construction instead of their partial spread

codes.

2. Note that we only need C to be as in Proposition 50 so that the matrices Ui are

full rank. Hence, rank (V1) K�1
2 , U1 = 0 is true for any linkage code, since

rank (U1) = k for all U1 2 M1.

Theorem 53. Let C = C1 ⇤C3 C2 be as in Proposition 50. Let V 2 Gq(n,K) be a

decodable subspace, such that V = im (V1 | V2).

1. If dim(V1) K�1
2 then V2 is decodable with respect to C2. Additionally if

im (U2) 2 C2 is the unique closest codeword to V2 then U = im (0 | U2) 2 C
is the unique closest codeword to V.

2. If dim(V2) K�1
2 then V1 is decodable with respect to C1. Additionally if

im (U1) 2 C1 is the unique closest codeword to V1 then U = im (U1 | 0) 2 C
is the unique closest codeword to V.

3. If dim(V1) >
K�1
2 and dim(V2) >

K�1
2 then both V1 and V2 are decodable with

respect to C1 and C3 respectively. Additionally if im (Ui) 2 Ci is the unique

43

closest codeword to Vi for i=1,3 then U = im (U1 | U3) 2 C is the unique closest

codeword to V.

Proof. First note that these 3 cases are clearly mutually exclusive, since dim(V) = K.

Next let U = im (U1, U2) 2 C be the closest codeword to V , i.e., dS(U | V) d�1
2 ,

which must exist since V is decodable. So we see that Ui = im (Ui) for i = 1, 2.

Case 1: dim(V1) K�1
2

By Lemma 51, U1 = 0 and U = im (0 | U2) for some U2 2 M2. Notice:

im

U1 U2

V1 V2

!
= im

0

B@
0 U2

V11 V21

0 V22

1

CA

where rank (V11) = rank (V1) K�1
2 . Then we have

dim(U \ V) = dim (im (U2) \ im (V22)) dim (im (U2) \ im (V2)) = dim(U2 \ V2.

Hence

dS(U ,V) = K + k � 2 dim(U \ V)
� K + k � 2 dim(U2|{z}

dim=k

\ V2|{z}
dimK

)

� dim(U2) + dim(V2)� 2 dim(U2 \ V2)

= dS(U2,V2).

Since V is decodable, we have dS(U2,V2) dS(U ,V) d�1
2 dS(C2)�1

2 . Hence

U2 2 C2 is the closest codeword to V2. So V2 is decodable with respect to C2, and
the unique closest codeword U2 = im (U2) 2 C2 leads to the unique closest codeword

im (0 | U2) 2 C.
Case 2: dim(V2) K�1

2

This follows from a similar argument to Case 1.

Case 3: dim(V1) >
K�1
2 and dim(V2) >

K�1
2

By Lemma 51 U1 6= 0 and U2 6= 0, so rank (U1) = rank (U2) = k by the definition of

our code. Thus, ⇡i|U : U ! U1 is an isomorphism. Thus:

dim(U \ V) = dim(⇡i(U \ V)) dim (⇡i(U) \ ⇡i(V)) = dim(Ui \ Vi).

44

So we have

dS(U ,V) = k +K � 2 dim(U \ V)
� k +K � 2 dim(Ui|{z}

dim=k

\ Vi|{z}
dimK

)

� dimUi + dimVi � 2 dim(Ui \ Vi)

= dS(Ui,Vi).

Since V is decodable, we have dS(Ui,Vi) dS(U ,V) d�1
2 . So we see that Vi is

decodable for i = 1, 2. Also, by the uniqueness of the closest codeword, we have that

if im (Ui) 2 Ci is the unique closest codeword to Vi for i=1,2 then U = im (U1 | U2) 2 C
is the unique closest codeword to V . ⌅

This theorem shows us that the following algorithm will be accurate and e�cient

as long C1, C2 and C3 have e�cient decoding algorithms.

Algorithm 1: Decoding Algorithm for Special Case from Proposition 50

Data: a decodable K-dimension subspace V = im (V1, V2), (V1, V2) 2 FK⇥n
q

Result: the unique U 2 C1 ⇤C3 C2 such that dS(V ,U) d�1
2 .

if rank (V1) K�1
2 then

decode im (V2) in C2 to im (U2);

return U = im (0 | U2).

else

if rank (V2) K�1
2 then

decode im (V1) in C1 to im (U1);

return U = im (U1 | 0).
else

decode im (V1) in C1 to im (U1);

decode im (V2) in C3 to im (U3);

return U = im (U1 | U3).

end

end

Since using a subspace codes to link greatly reduces the size of our linkage codes,

we would like to be able to e�ciently decode larger linkage codes. As we have seen

already, we will need to find a special case, where we can harness the structure of the

underlying codes, instead of just projecting into compents, as we did in Theorem 53.

Recall the special case in Example 36 where we link a lifted rank metric code with

any subspace code by a rank metric code. We refine this situation by requiring

that C2 be an e�ciently decodable code. In this situation, we can use the structure

45

of the lifted rank metric code to help us decode. Recall, from Section 2.3, that

for a rank metric code CR ✓ Fk⇥(n�k)
q , we denote a lifted rank rank metric code

⇤(CR) = {im (Ik | M) | M 2 CR} ✓ Gq(n, k). The following theorem will show us how

to find the unique closest codeword in this case.

Theorem 54. Let C 0
R ✓ Fk⇥(n1�k)

q be a rank metric code and

M1 = {(Ik | M)|M 2 C 0
R}, M2 ✓ Fk⇥n2

q an SC-representing set, and CR ⇢ Fk⇥n2
q

a rank metric code. Let C = C1 ⇤CR C2 be as in Lemma 33. Let V 2 Gq(n,K) be a

decodable subspace, such that V = im (V1 | V2 | V3), where V1 2 Fk⇥k
q , V2 2 Fk⇥(n1�k)

q

and V3 2 Fk⇥n2
q .

1. If rank (V1 | V2) K�1
2 then V2 = im (V3) is decodable with respect to C2.

Additionally, if im (U3) 2 C2 is the unique closest codeword to V2 then U =

im (0 | 0 | U3) 2 C is the unique closest codeword to V.

2. If rank (V1 | V2) >
K�1
2 then V1 = im (V1 | V2) is decodable with respect to C1 and

im (V1 | V3) is decodable with respect to ⇤(CR). Additionally, if im (Ik | M1) 2 C1
is the unique closest codeword to V1 and im (Ik | M2) is the unique closest

codeword to im (V1 | V3) then U = im (Ik | M1 | M2) 2 C is the unique closest

codeword to V.

Proof. Let U = im (U1 | U2 | U3) 2 C be the closest codeword to V , i.e., dS(U ,V)
d�1
2 , which must exist since V is decodable. Note we partition the matrix of U as we

partition the matrix of V .
Case 1: dim(im (V1 | V2)) K�1

2

As noticed in Remark 52, (U1 | U2) = 0 if and only if dim(V1) = dim(im (V1 | V2))
K�1
2 still holds for this code. Hence, (U1 | U2) = 0 and U3 2 M2. So we see that this

case is the same as case 1 in Theorem 53 and

dS(im (U3), im (V3)) dS(U ,V) dS(C2)� 1

2
.

Thus we see that V2 = im (V3) is decodable with respect to C2, with closest codeword

im (U3). And we see that the closest codeword to V is im (0 | 0 | U3) 2 C by the

uniqueness of the closest codeword.

Case 2: dim(im (V1 | V2)) >
K�1
2

First, we observe that U1 = im (U1 | U2), V1 = im (V1 | V2). Then because dim(U1) >
K�1
2 , U1 2 C1 and (U1 | U2) 2 M1. Thus (U1 | U2) = (Ik | U2) and dim(U1) =

dim(U) = k. We also know dim(V1) dim(V) and dim(U1 \ V1) � dim(U \ V). So

46

we have

dS(U1,V1) = dim(U1) + dim(V1)� 2 dim(U1 \ V1)

 dim(U) + dim(V)� 2 dim(U \ V)
= dS(U ,V)
 d� 1

2

 dS(C1)� 1

2

Hence V1 is decodable in C1 and im (Ik | U2) is the unique closest codeword to V1.

Let Ũ2 = im (Ik | U3) 2 ⇤(CR) and Ṽ2 = im (V1 | V3). Then by the same argument

as before

dS(Ũ2, Ṽ2) d� 1

2
 2dR(CR)� 1

2
.

Hence Ṽ2 is decodable in ⇤(CR) and im (Ik | U3) is the unique closest codeword to

Ṽ2. Thus, we see that U = im (Ik | U2 | U3) must be the closest codeword by

uniqueness. ⌅

By this theorem, we can use the following algorithm to decode such linkage codes.

Algorithm 2: Decoding Algorithm for Special Case from Example 36

Data: a decodable K-dimension subspace V = im (V1 | V2 | V3),

(V1 | V2 |) 2 FK⇥n
q

Result: the unique U 2 C1 ⇤CR C2 such that dS(V ,U) d�1
2 .

if rank (V1 | V2) K�1
2 then

decode im (V3) in C2 to im (U3);

return U = im (0 | 0 | U3).

else
decode im (V1 | V2) in C1 to im (Ik | U2);

decode im (V1 | V3) in ⇤(CR) to im (Ik | U3);

return U = im (Ik | U2 | U3).

end

Recalling that lifted Gabidulin codes can be e�ciently decoded, see [35, 29], we

can use them to create an e�ciently decodable linkage code. This theorem shows

that if we link a lifted Gabidulin code with an e�ciently decodable C2 by a Gabidulin

code, we have an e�ciently decodable linkage code. As we saw in Example 36, we can

construct these lifted MRD linkage codes, which have decent cardinality in comparison

to other decodable constructions and are larger than standard lifted Gabidulin codes.

47

So we see that the linkage construction is a useful recursive construction. It allows

us to create large and sometimes e�ciently decodable codes. Additionally, it nicely

generalizes two partial spread constructions and provides a nice framework to study

maximum and maximal partial spreads. The linkage construction also leaves room

for cardinality improvement, since the linkage construction will improve as other

constructions improve.

Copyright c� Carolyn E. Troha, 2015.

48

Bibliography

[1] Rudolf Ahlswede, Ning Cai, Shuo-Yen Robert Li, and Raymond W. Yeung. Net-
work information flow. IEEE Trans. Inform. Theory, 46(4):1204–1216, 2000.

[2] Eli Ben-Sasson, Tuvi Etzion, Ariel Gabizon, and Netanel Raviv. Subspace poly-
nomials and cyclic subspace codes. arXiv:1404.7739.

[3] Albrecht Beutelspacher. Partial spreads in finite projective spaces and partial
designs. Math. Z., 145(3):211–229, 1975.

[4] Michael Braun, Tuvi Etzion, Patroc Österg̊ard, Alexander Vardy, and Alfred
Wassermann. Existence of q-analogs of steiner systems. arXiv:1304.1462v2.

[5] Michael Braun and Jan Reichelt. q-analogs of packing designs. J. Combin. Des.,
22(7):306–321, 2014.

[6] Javier de la Cruz, Michael Kiermeier, Alfred Wassermann, and Wolfgang
Willems. Algebraic structures of mrd codes. arXiv: 1502.02711.

[7] Ph. Delsarte. Bilinear forms over a finite field, with applications to coding theory.
J. Combin. Theory Ser. A, 25(3):226–241, 1978.

[8] David A. Drake and J. W. Freeman. Partial t-spreads and group constructible
(s, r, µ)-nets. J. Geom., 13(2):210–216, 1979.

[9] S. El-Zanati, H. Jordon, G. Seelinger, P. Sissokho, and L. Spence. The maximum
size of a partial 3-spread in a finite vector space over F2. 54:101–107, 2010.

[10] Tuvi Etzion and Natalia Silberstein. Error-correcting codes in projective spaces
via rank-metric codes and Ferrers diagrams. IEEE Trans. Inform. Theory,
55(7):2909–2919, 2009.

[11] Tuvi Etzion and Natalia Silberstein. Codes and designs related to lifted MRD
codes. IEEE Trans. Inform. Theory, 59(2):1004–1017, 2013.

[12] Tuvi Etzion and Alexander Vardy. Error-correcting codes in projective space.
IEEE Trans. Inform. Theory, 57(2):1165–1173, 2011.

[13] È. M. Gabidulin. Theory of codes with maximal rank distance. Probl. Inf.
Transm., 21:1–12, 1985.

[14] Heide Gluesing-Luerssen, Katherine Morrison, and Carolyn Troha. Cyclic orbit
codes and stabilizer subfields. Adv. Math. Commun., 9(2):177–197, 2015.

[15] Heide Gluessing-Luerssen. Private Communications.

[16] Elisa Gorla, Felice Manganiello, and Joachim Rosenthal. An algebraic approach
for decoding spread codes. Adv. Math. Commun., 6(4):443–466, 2012.

49

[17] Elisa Gorla and Alberto Ravagnani. Spaces of matrices with bounded rank and
given shape. arXiv:1405.2736.

[18] Elisa Gorla and Alberto Ravagnani. Partial spreads in random network coding.
Finite Fields Appl., 26:104–115, 2014.

[19] Bryan Hernandez and Virgilio Sison. Grassmannian codes as lifts of matrix codes
derived as images of linear block codes over finite fields. arXiv: 1502.04210.

[20] J. W. P. Hirschfeld. Projective geometries over finite fields. Oxford Mathematical
Monographs. The Clarendon Press, Oxford University Press, New York, second
edition, 1998.

[21] Azadeh Khaleghi, Danilo Silva, and Frank R. Kschischang. Subspace codes.
Cryptography and Coding, LNCD 5921:1–21, 2009.

[22] Axel Kohnert and Sascha Kurz. Construction of large constant dimension codes
with a prescribed minimum distance. In Mathematical methods in computer
science, volume 5393 of Lecture Notes in Comput. Sci., pages 31–42. Springer,
Berlin, 2008.

[23] Ralf Kötter and Frank R. Kschischang. Coding for errors and erasures in random
network coding. IEEE Trans. Inform. Theory, 54(8):3579–3591, 2008.

[24] Shuo-Yen Robert Li, Raymond W. Yeung, and Ning Cai. Linear network coding.
IEEE Trans. Inform. Theory, 49(2):371–381, 2003.

[25] Felice Manganiello, Elisa Gorla, and Joachim Rosenthal. Spread codes and
spread decoding in network coding. In Information Theory, 2008. ISIT 2008.
IEEE International Symposium on, pages 881–885, July 2008.

[26] Joachim Rosenthal and Anna-Lena Trautmann. A complete characterization
of irreducible cyclic orbit codes and their pl ucker embedding. Designs Codes
Cryptography, 66:275–289, 2013.

[27] Natalia Silberstein and Anna-Lena Trautmann. Subspace codes based on graph
matchings, ferrers diagrams and pending blocks. arXiv:1404.6723.

[28] Danilo Silva and Frank R. Kschischang. On metrics for error correction in net-
work coding. IEEE Trans. Inform. Theory, 55(12):5479–5490, 2009.

[29] Danilo Silva, Frank R. Kschischang, and Ralf Kötter. A rank-metric approach
to error control in random network coding. IEEE Trans. Inform. Theory,
54(9):3951–3967, 2008.

[30] Vitaly Skachek. Recursive code construction for random networks. IEEE Trans.
Inform. Theory, 56(3):1378–1382, 2010.

[31] Anna-Lena Trautmann. Message encoding for spread and orbit codes.
arXiv:1401.0615.

50

[32] Anna-Lena Trautmann. Isometry and automorphisms of constant dimension
codes. Adv. Math. Commun., 7(2):147–160, 2013.

[33] Anna-Lena Trautmann, Felice Manganiello, Michael Braun, and Joachim Rosen-
thal. Cyclic orbit codes. IEEE Trans. Inform. Theory, 59(11):7386–7404, 2013.

[34] Anna-Lena Trautmann and Joachim Rosenthal. New improvements on the
echelon-ferrers construction. In Proceeding of the 19th International Symposium
on Mathematical Theory of Networks and Systems -MTNS (Budapest, Hungary),
pages 405–408, Jul 2010.

[35] Antonia Wachter-Zeh, Valentin Afanassiev, and Vladimir Sidorenko. Fast de-
coding of Gabidulin codes. Des. Codes Cryptogr., 66(1-3):57–73, 2013.

[36] Antonia Wachter-Zeh and Tuvi Etzion. Optimal ferrers diagram rank-metric
codes. arXiv:1405.1885.

[37] Shu-Tao Xia and Fang-Wei Fu. Johnson type bounds on constant dimension
codes. Des. Codes Cryptogr., 50(2):163–172, 2009.

51

Vita

Carolyn E. Troha

Education

• University of Kentucky, Lexington Kentucky
M.A. in Mathematics, August 2011

• College of William and Mary, Williamsburg, VA
B.S., Mathematics and Classical Studies, with high honors, magna cum laude

Teaching Experience

• Teaching Assistant, University of Kentucky August 2009-May 2015

Publications

• (with H. Gluesing-Luerssen and K. Morrison) Cyclic Orbit Codes and Stabilizer
Subfields. In Advances in Mathematics of Communications. Vol. 9, No. 2, pp.
177-197, 2015.

Awards and Fellowships

• University of Kentucky, Lexington Kentucky

– Edgar Enochs Algebra Scholarship, May 2014

– Van Meter Fellowship, August 2009 - May 2012

– Graduate Fellowship for Selected Areas, Spring 2010

• College of William and Mary, Williamsburg, VA

– Phi Beta Kappa, Alpha of Virginia, inducted Fall 2008

52

	Analysis and Constructions of Subspace Codes
	Recommended Citation

	Abstract
	Title Page
	Acknowledgments
	Dedication
	Table of Contents
	List of Figures
	1 Introduction
	1.1 Random Network Coding
	1.2 History of Subspace Codes
	1.3 Thesis Outline

	2 Preliminaries
	2.1 Subspace Codes
	2.2 Finite Fields
	2.3 Rank Metric Codes and Lifted Rank Metric Codes
	2.4 Spread and Partial Spread Codes

	3 Cyclic Orbit Codes and Stabilizer Subfields
	3.1 -Cyclic Orbit Codes
	3.2 Stabilizer Subfield and Cardinality of -Cyclic Orbit Codes
	3.3 The Subspace Distance of Cyclic Orbit Codes

	4 A Linkage Construction
	4.1 Linkage Construction Theorem
	4.2 Partial Spread Linkage Codes
	4.3 Decoding of the Linkage Construction

	Bibliography
	Bibliography
	Vita

