
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Theses and Dissertations--Mathematics Mathematics 

2015 

Combinatorial Potpourri: Permutations, Products, Posets, and Combinatorial Potpourri: Permutations, Products, Posets, and 

Pfaffians Pfaffians 

Norman B. Fox 
University of Kentucky, bradfox87@gmail.com 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Fox, Norman B., "Combinatorial Potpourri: Permutations, Products, Posets, and Pfaffians" (2015). Theses 
and Dissertations--Mathematics. 25. 
https://uknowledge.uky.edu/math_etds/25 

This Doctoral Dissertation is brought to you for free and open access by the Mathematics at UKnowledge. It has been 
accepted for inclusion in Theses and Dissertations--Mathematics by an authorized administrator of UKnowledge. For 
more information, please contact UKnowledge@lsv.uky.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/232566543?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/math_etds
https://uknowledge.uky.edu/math
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu


STUDENT AGREEMENT: STUDENT AGREEMENT: 

I represent that my thesis or dissertation and abstract are my original work. Proper attribution 

has been given to all outside sources. I understand that I am solely responsible for obtaining 

any needed copyright permissions. I have obtained needed written permission statement(s) 

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing 

electronic distribution (if such use is not permitted by the fair use doctrine) which will be 

submitted to UKnowledge as Additional File. 

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and 

royalty-free license to archive and make accessible my work in whole or in part in all forms of 

media, now or hereafter known. I agree that the document mentioned above may be made 

available immediately for worldwide access unless an embargo applies. 

I retain all other ownership rights to the copyright of my work. I also retain the right to use in 

future works (such as articles or books) all or part of my work. I understand that I am free to 

register the copyright to my work. 

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE 

The document mentioned above has been reviewed and accepted by the student’s advisor, on 

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of 

the program; we verify that this is the final, approved version of the student’s thesis including all 

changes required by the advisory committee. The undersigned agree to abide by the statements 

above. 

Norman B. Fox, Student 

Dr. Richard Ehrenborg, Major Professor 

Dr. Peter Perry, Director of Graduate Studies 



Combinatorial Potpourri: Permutations, Products, Posets, and Pfaffians

ABSTRACT OF DISSERTATION

A dissertation submitted in partial
fulfillment of the requirements for
the degree of Doctor of Philosophy
in the College of Arts and Sciences

at the University of Kentucky

By
Norman Bradley Fox
Lexington, Kentucky

Director: Dr. Richard Ehrenborg, Professor of Mathematics
Lexington, Kentucky 2015

Copyright c© Norman Bradley Fox 2015



ABSTRACT OF DISSERTATION

Combinatorial Potpourri: Permutations, Products, Posets, and Pfaffians

In this dissertation we first examine the descent set polynomial, which is defined in
terms of the descent set statistics of the symmetric group Sn. Algebraic and topolog-
ical tools are used to explain why large classes of cyclotomic polynomials are factors
of the descent set polynomial. Next the diamond product of two Eulerian posets is
studied, particularly by examining the effect this product has on their cd-indices.
A combinatorial interpretation involving weighted lattice paths is introduced to de-
scribe the outcome of applying the diamond product operator to two cd-monomials.
Then the cd-index is defined for infinite posets, with the calculation of the cd-index
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Using a sign-reversing involution on a set of weighted, oriented partitions, we prove
an extension of Torelli’s Pfaffian identity that results from applying the hyperpfaffian
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Chapter 1 Introduction

Chapter 1 introduces many mathematical ideas that are used throughout this disser-
tation. References to earlier work in these topics will be provided for further reading
in these areas.

Chapter 2 includes an examination of the descent set polynomial, which is a poly-
nomial defined by Chebikin, Ehrenborg, Pylyavskyy, and Readdy [10] in terms of
the descent set statistics involving permutations in the symmetric group Sn. Re-
sults are provided to explain the existence of large classes of cyclotomic polynomials
that are factors of this descent set polynomial. The proofs rely on several different
combinatorial, algebraic, and topological tools.

In Chapter 3 we investigate the diamond product of posets, an important op-
eration that corresponds to the Cartesian product of polytopes. In particular we
explore the effect of this product on the cd-indices of Eulerian posets. Using recur-
sive formulas that were introduced by Ehrenborg and H. Fox [13], a combinatorial
interpretation for the diamond product operator applied to cd-monomials is provided
involving weighted lattice paths.

Continuing with the study of the cd-index, Chapter 4 introduces an extension of
this polynomial for infinite posets. As an example of an infinite poset that maintains
the Eulerian condition on each interval, we examine the cd-index of the Bruhat order
of the universal Coxeter group, which is generated by involutions with no relations
among the generators.

In Chapter 5 we provide an extension of the Pfaffian of a skew-symmetric matrix
called the hyperpfaffian. When the hyperpfaffian is evaluated at a skew-symmetric
polynomial of a particular degree, we obtain an extension of a classical Pfaffian result
by Torelli that involves the Vandermonde determinant. The proof of this formula
uses a sign-reversing involution on weighted, oriented partitions.

1.1 Permutations

A permutation is a bijection π : [n] −→ [n] where [n] denotes the set {1, 2, . . . , n}.
Under the composition operation, the set of permutations can be viewed as group,
called the symmetric group and denoted Sn. The symmetric group is an example
of a finite Coxeter group, which will be defined in Section 1.8. The notation used
for a permutation in this dissertation will be one-line notation π = π1π2 · · · πn where
πi = π(i).

There are many sets and statistics associated with permutations that have been
well-studied, including descents, excedances, and inversions. For a permutation
π ∈ Sn, the descent set, excedance set, and inversion set are defined as follows:

Des(π) = {i ∈ [n− 1] : πi > πi+1},
Exc(π) = {i ∈ [n] : πi > i},
Inv(π) = {(i, j) ∈ [n]× [n] : i < j, πi > πj}.

1



From these sets, three permutation statistics, or functions from the symmetric group
to the nonnegative integers, arise. They are defined as des(π) = |Des(π)|, exc(π) =
|Exc(π)|, and inv(π) = | Inv(π)|. Furthermore, the inversion statistic is used to
define the sign or signature of a permutation π, which we will denote by (−1)π,
where (−1)π = (−1)inv(π).

A classical result in permutation theory is that descents and excedances are
equidistributed; i.e., the number of permutations in Sn with k descents is the same
as those with k excedances. See [9, Theorem 1.36]. The Eulerian number A(n, k)
represents the number of permutations in Sn with k − 1 descents, or likewise, k − 1
excedances.

Focusing our attention on the descent set of a permutation, the descent set statis-
tic βn(S), defined for each set S ⊆ [n− 1], is given by

βn(S) = |{π ∈ Sn : Des(π) = S}|.

Previous results regarding the descent set statistics include work by De Bruijn [11] and
Niven [39] that showed the descent set statistics are maximized by the set consisting
of either all even positions or all odd positions. These sets correspond to alternating
permutations. Also, Ehrenborg and Mahajan [18] showed how to determine the
maximum descent set statistic given subsets of a certain size and length. Later
on Chebikin, Ehrenborg, Pylyavskyy, and Readdy [10] studied properties of descent
set statistics, such as the proportion of odd entries when examining the statistics for
each subset of [n]. This proportion, defined as

ρ(n) =
|S ⊆ [n− 1] : βn(S) ≡ 1 mod 2}|

2n−1
,

was found to only depend on the number of 1’s in the binary expansion of the integer n.
In particular, ρ(n) = 1/2 when n has 2 or 3 binary digits, and ρ(n) = 1 when n is a
power of 2.

There are several useful methods for calculating descent set statistics. First,
MacMahon’s Multiplication Theorem [36, Article 159] is a formula used to calculate
descent set statistics of sets that differ by a single element and is in the form of a
recursion using descent set statistics for shorter permutations. Before we state it, we
need to define some terminology. We let the interval [i, j] be the set {i, i+ 1, . . . , j},
let 4 be the symmetric difference of two sets, i.e., S4T = S ∪ T − S ∩ T , and let
S − k denote the shifting of S by k, which is the set {s − k : s ∈ S}. Now we can
state the theorem as

βn(S) + βn(S4{k}) =

(
n

k

)
· βk(S ∩ [k − 1]) · βn−k(S ∩ [k + 1, n− 1]− k).

A second way to calculate βn(S) is through the use of a triangular array that is
formed recursively. This method was introduced by de Bruijn [11] and Viennot [49]
with a focus on alternating permutations and later generalized as the boustrophedon
transform by Millar, Sloane, and Young [37]. A triangular array ti,j(S) is set up
where S ⊆ [n], 0 ≤ i ≤ n, and 0 ≤ j ≤ i. The initial values are given by t0,0 = 1

2



and ti,0 = 0 for i > 0. The remaining values in the array are calculated using the
recursion

ti,j =

{
ti,j−1 + ti−1,j−1 if i− 1, i ∈ S or i− 1, i /∈ S,
ti,j−1 + ti−1,i−j otherwise.

.

Informally, the recursive pattern involves adding across the rows of the triangular
array, where the entries in S determine along which direction to add. If i is in the set
S, addition is performed along the ith row from right to left, whereas we add from
left to right if i /∈ S. The descent set statistic βn(S) is equal to the sum of the bottom
row of the array; that is,

βn(S) =
n∑
k=0

tn,k.

Example 1.1.1. For n = 6 and S = {3, 4}, the descent set statistic β6(S) is cal-
culated using the following triangular array. Note that the entries in row 3 and 4,
corresponding to the set S, are written in reverse order to make the recursive addition
more natural.

1
0 1

0 0 1
1 1 1 0

3 2 1 0 0
0 3 5 6 6 6

By adding the bottom row, we attain β6({3, 4}) = 0 + 3 + 5 + 6 + 6 + 6 = 26.

A third method used to compute βn(S) is through the use of the flag f -vector of
the Boolean algebra. This will be explained in Section 1.6.

There are two polynomials of note that encode information relating to the descent
set statistics. First, there is a generating function with the descent set statistics as
the coefficients, called the Eulerian polynomial, which is defined as

An(t) =
∑

S⊆[n−1]

βn(S) · t|S|+1.

Chebikin et al. [10] defined the nth descent set polynomial, where the descent set
statistics are instead the exponents of the polynomial, as

Qn(t) =
∑

S⊆[n−1]

tβn(S).

The degree of the latter polynomial is given by nth Euler number, which has faster
than exponential growth. This leads to quite large degree polynomials for relatively
small values of n.

3



1.2 Cyclotomic polynomials

The nth cyclotomic polynomial is defined by

Φn(t) =
∏

1≤k≤n
gcd(k,n)=1

(t− e2iπ k
n ),

with the root of each linear factor being a root of unity. It can also be viewed as
the unique irreducible polynomial with integer coefficients that divides tn − 1, but
not tk − 1 for any k < n. Finally, another definition is for Φn(t) to be the minimal
polynomial over the field of rational numbers of the primitive nth root of unity e2iπ/n.

The cyclotomic polynomials have many interesting properties and uses within the
areas of algebra and combinatorics. Some of these properties stated by Lang in [33]
include that Φn(t) has integer coefficients with 1 as the leading coefficient, and that
the degree is given by the Euler’s totient function, which is the number of positive
integers less than or equal to n that are relatively prime to n. Additionally, [33]
provides several recursions for the cyclotomic polynomials, including the following:

• For an odd integer n > 1, Φ2n(t) = Φn(−t),

• For a prime p that does not divide a positive integer n, Φpn(t) = Φn(tp)/Φn(t),

• For a prime p and positive integer n in which p|n, Φpn(t) = Φn(tp).

As an example of an application of cyclotomic polynomials, see [38] for a description
of how these polynomials can be used to prove Dirichlet’s Prime Number Theorem,
which states that there are infinitely many prime numbers p ≡ 1 mod n for every
integer n ≥ 1.

As the minimal polynomial of the primitive nth root of unity e2πi/n, determining
whether Φn(t) is a factor of another polynomial with rational coefficients only requires
checking if the polynomial is zero at that particular root of unity. This is described
more generally in the following well-known fact from algebra.

Fact 1.2.1. If f(t) is a polynomial in Q[t] with e2πi/n as a root of multiplicity r then
the nth cyclotomic polynomial Φn(t) is a factor of order r of f(t).

1.3 Simplicial complexes and the Euler characteristic

A simplicial complex is a combinatorial structure that can be viewed as an abstract
or geometric object. Abstractly, a simplicial complex ∆ is a finite collection of sets
satisfying if X ∈ ∆ and Y ⊆ X, then Y ∈ ∆ as well. The elements of ∆ are
called faces and maximal faces are known as facets. From a geometric perspective,
a simplicial complex ∆ is a set of simplices, where a simplex is the convex hull of
affinely independent points, such that any face of a simplex in ∆ is also in ∆, and
the intersection of any two simplices in ∆ is a face in ∆.

An important tool in the topological study of simplicial complexes is the Euler
characteristic, denoted χ(∆). We first define the f-vector of a simplicial complex

4



to be the set of values {fi} which count the number of i-dimensional faces of the
complex ∆. The Euler characteristic is the alternating sum

χ(∆) = f0 − f1 + f2 − · · · .

Oftentimes, the reduced Euler characteristic χ̃(∆) is used. It includes the empty set
in the sum; that is, the reduced Euler characteristic is given by the sum

χ̃(∆) = −f−1 + f0 − f1 + f2 − · · · = χ(∆)− 1,

where f−1 = 1 represents the empty face.
When applied to polyhedra, the Euler characteristic always equals 2, resulting in

Euler’s famous polyhedron formula relating the number of vertices, edges, and faces by
f0−f1 +f2 = 2. In general, the Euler-Poincaré formula gives the Euler characteristic
in terms of an alternating sum of the Betti numbers, where the ith Betti number,
denoted as bi, is the dimension of the ith homology group of a simplicial complex.
Informally, bi counts the number of i-dimensional holes of the simplicial complex.
The relation between the f -vector and Betti numbers is

f0 − f1 + f2 − · · · = b0 − b1 + b2 − · · · .

1.4 Posets

A partially ordered set (or poset) P is a set of elements and an order relation ≤
satisfying the reflexivity, antisymmetry, and transitivity properties shown below.

• For all x ∈ P , x ≤ x.

• If x ≤ y and y ≤ x, then x = y.

• If x ≤ y and y ≤ z, then x ≤ z.

We say that y covers x, denoted x ≺ y, if x ≤ y and there is no z ∈ P in which
x < z < y. The relation between x and y in this case is known as a cover relation.
The Hasse diagram of a poset is a graph whose vertices are the elements of P and
whose edges are the cover relations drawn so that if x < y then y is drawn above x.
See Figure 1.1 for an example using the Boolean algebra, the poset of all subsets of [n]
ordered by inclusion. We use 0̂ and 1̂ to denote the unique minimal and maximal
elements of the poset, respectively, if such elements exist. The interval [x, y] is defined
as the set [x, y] = {z ∈ P : x ≤ z ≤ y}. It can be viewed as a subposet of P using
the induced order of P . A length n chain in the poset is a set of n+1 distinct, totally
ordered elements in P , meaning that x0 < x1 < · · · < xn. Such a chain is considered
saturated in the interval [x, y] if x = x0 ≺ x1 ≺ · · · ≺ xn = y. If every saturated
chain of P , that is, every chain from a minimal element to a maximal element, has
the same length n, then P is said to be of rank n. In such a ranked poset, there is
a rank function ρ : P → {0, 1, . . . , n} with the rank of x, denoted ρ(x), defined as
the length of any saturated chain from a minimal element of P to x. We also write
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Figure 1.1: The Hasse diagram of the Boolean algebra on three elements.

ρ(x, y) = ρ(y)− ρ(x) to denote the rank difference of x and y. A ranked poset with
unique minimal and maximal elements is called a graded poset. A poset P is finite
if the set of elements is finite, whereas if we only assume every interval of P is finite,
then P is said to be locally finite. For further terminology and examples of posets,
see [43, Chapter 3].

An important class of posets are called lattices. First, the join or the least upper
bound of two elements s, t ∈ P is defined to be the element u ∈ P such that s, t ≤ u
and for any other element v ≥ s, t, we have v ≥ u as well. The join is unique by
definition, if it exists, and is denoted by s ∨ t. The meet or greatest lower bound of
two elements is defined similarly by uniformly exchanging ≤ and ≥ in the definition
of join, and it is denoted by s ∧ t. A lattice is a poset in which each pair of elements
has a meet and a join. For the Boolean algebra, see Figure 1.1, the join and meet
correspond to the union and intersection of sets, respectively.

The Möbius function µ is a function defined recursively on intervals of P by
µ(x, x) = 1 and for x 6= y,

µ(x, y) =
∑
x≤z<y

µ(x, z).

When this function is applied to the divisor lattice Dn, which is a poset whose ele-
ments are the positive integer divisors of n and where i ≤ j if i divides j, the Möbius
function becomes the number theoretic Möbius function, with µ(x, y) = µ(y/x). Ad-
ditionally, on the divisor lattice the meet and join of two elements correspond to the
least common multiple and greatest common factor functions, respectively.

A poset P is Eulerian if it is finite, graded, and if for every interval [x, y], we
have µ(x, y) = (−1)ρ(x,y). Equivalently, every nontrivial interval in an Eulerian poset
has the same number of elements of even rank as it does of odd rank. An important
example of an Eulerian poset is one associated to a polytope, or the convex hull of a
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finite set of points. The face lattice of a convex polytope, denoted L(P ), is a poset
formed by using the faces in the polytope as the elements, and the partial order is
determined by containment of faces. The face lattice of a polytope is graded with
rank function given by ρ(x) = dim(x) + 1. It is an Eulerian poset as well as a lattice.
See Figure 1.2 for an example of the face lattice of a pentagonal prism, where 0̂
represents the empty face and 1̂ is the entire polyhedron.

There are many operations that are essential to build more complicated posets
from simpler posets, such as the Cartesian product, diamond product, star product,
pyramid, and prism. For finite posets P and Q, with both posets having unique
minimal and maximal elements for the diamond and star products, we define the
following:

Cartesian product of P and Q: P ×Q = {(p, q) : p ∈ P and q ∈ Q}
with the order relation given by (p1, q1) ≤P×Q (p2, q2) if p1 ≤P p2 and q1 ≤P q2.

Diamond product of P and Q: P �Q = (P − {0̂P})× (Q− {0̂Q}) ∪ {0̂}.
Star product of P and Q: P ∗Q = (P − {1̂P}) ∪ (Q− {0̂Q})

with the order relation given by x ≤P∗Q y if (i) x, y ∈ P and x ≤P y,
(ii) x, y ∈ Q and x ≤Q y, or (iii) x ∈ P and y ∈ Q.

Pyramid of P : Pyr(P ) = P ×B1.

Prism of P : Prism(P ) = P �B2.

Recall for the last two definitions that Bn is the Boolean algebra on n elements.
The pyramid and prism operations on posets are analogous to the pyramid and prism
operations on polytopes. The Cartesian and diamond products correspond to poly-
tope operations as well. For an m-dimensional polytope V and n-dimensional poly-
tope W , we define the Cartesian product of the polytopes V and W as the (m+ n)-
dimensional polytope

V ×W = {(x1, . . . , xm+n) ∈ Rm+n : (x1, . . . , xm) ∈ V, (xm+1, . . . , xm+n) ∈ W}.

We define the free join of polytopes V and W by first embedding V and W in Rm+n+1

by
V ′ = {(x1, . . . , xm, 0 . . . , 0︸ ︷︷ ︸

n

, 0) ∈ Rm+n+1 : (x1, . . . xm) ∈ V }

and likewise by

W ′ = {(0, . . . , 0︸ ︷︷ ︸
m

, x1, . . . , xn, 1) ∈ Rm+n+1 : (x1, . . . , xn) ∈ W}.

Then the free join V > W is the (m + n + 1)-dimensional polytope defined as the
convex hull of V ′ and W ′. The following proposition from [28] displays the connection
between the Cartesian product of posets with the free join of polytopes, along with
the connection between the diamond product of posets with the Cartesian product
of polytopes.
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Figure 1.2: The pentagonal prism and its corresponding face lattice.
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Proposition 1.4.1 (Kalai). For two convex polytopes V and W , we have

L(V >W ) = L(V )× L(W )

L(V ×W ) = L(V ) � L(W ).

1.5 The cd-index

The cd-index is a non-commutative polynomial which is associated to an Eulerian
poset that efficiently encodes enumerative data on chains through that poset. We
begin by assuming P is a graded poset of rank n + 1 with rank function ρ. Recall
that this implies P has a unique minimal element 0̂ and unique maximal element 1̂.

We want to consider all chains c in the poset P that contain both 0̂ and 1̂;
hence, they are written as c = {0̂ = x0 < x1 < · · · < xk = 1̂}. For each subset
S = {s1 < · · · < sk−1} ⊆ [n], define fS(P ) = fS to be the number of chains in the
poset P whose elements x1, . . . , xk−1 have ranks that are exactly the elements of the
set S; that is, {ρ(x1), . . . , ρ(xk−1)} = S. The 2n values of fS are collectively known
as the flag f -vector of P . The flag h-vector is defined using the relation

hS =
∑
T⊆S

(−1)|S−T | · fT ,

which by the Möbius inversion theorem is equivalent to

fS =
∑
T⊆S

hT .

Let a and b be non-commutative variables. For a subset S of {1, . . . , n}, define
the ab-monomial uS = u1 · · ·un where ui = a if i /∈ S and ui = b if i ∈ S. Define the
ab-index Ψ(P ) of the poset P to be the ab-polynomial

Ψ(P ) =
∑
S

hS · uS,

where S ranges over all subsets of {1, . . . , n}.
An alternative approach to the definition of the ab-index of a graded poset P is

through a summation of weighted chains. For each chain c = {0̂ = x0 < x1 < · · · <
xk = 1̂} in P , we assign a weight w(c) = z1 · · · zn, where we define

zi =

{
b if i ∈ {ρ(x1), . . . , ρ(xk−1)}
a− b otherwise.

The ab-index of P is then defined as

Ψ(P ) =
∑
c

w(c),

where c ranges over all chains in P from 0̂ to 1̂.
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S fS hS uS c3 dc cd
∅ 1 1 aaa 1 0 0
{1} 10 9 baa 1 8 0
{2} 15 14 aba 1 8 5
{3} 7 6 aab 1 0 5
{1, 2} 30 6 bba 1 0 5
{1, 3} 30 14 bab 1 8 5
{2, 3} 30 9 abb 1 8 0
{1, 2, 3} 60 1 bbb 1 0 0

Table 1.1: The flag f -vector, flag h-vector, uS monomials, and cd-monomials needed
for calculating the ab- and cd-indices for the face lattice of the pentagonal prism.

Example 1.5.1. Let P be the face lattice of the pentagonal prism, as illustrated in
Figure 1.2. We calculate the flag f -vector and the flag h-vector in Table 1.1. The
ab-index of the poset is therefore given by Ψ(P ) = aaa+9 ·baa+14 ·aba+6 ·aab+
6 · bba + 14 · bab + 9 · abb + bbb.

Calculating the ab-index of an n-dimensional polytope can also be stated in terms
of counting flags of faces in the polytope. The flag f -vector entry fS where S ⊆
{0, . . . n− 1} counts chains of faces of increasing dimension F1 ⊂ F2 ⊂ · · · ⊂ Fk with
dim(Fi) = si. From this perspective, flag vector entries for singleton sets are the
standard f -vector of the polytope.

The following result was conjectured by Fine and later proved by Bayer and
Klapper [3]. Stanley also gave an elementary proof in [44].

Theorem 1.5.2 (Bayer–Klapper). The ab-index Ψ(P ) of an Eulerian poset P is a
non-commutative polynomial in c = a + b and d = a · b + b · a.

When written in terms of the non-commutative variables c and d, with deg(c) = 1
and deg(d) = 2, we call Ψ(P ) the cd-index of the poset P . Observe the same notation
is used for the ab-index and the cd-index. The existence of the cd-index is equivalent
to the fact that the flag f -vector of an Eulerian poset satisfies the generalized Dehn–
Sommerville relations, due to Bayer and Billera in [2]. In [44] Stanley showed that
the coefficients of the cd-index are nonnegative for face lattices of polytopes, and
more generally, regular CW-complexes. For further examples and information on the
cd-index of posets, see [43, Section 3.17].

An interesting observation that can be made from the example in Table 1.1 is the
symmetry that exists within the flag h-vector. In fact, for any Eulerian poset, hS = hS
where S denotes the complement of S within [n]. One advantage of this symmetry
is that half of the flag h-vector entries are redundant, allowing data on chains in the
poset to be encoded using 2n−1 entries rather than the original 2n entries of the flag
f -vector. The cd-index goes much further with its efficiency. As seen in the following
example, only three coefficients are needed to define the cd-index of the pentagonal
prism, which we notice is the fourth Fibonacci number f4. We are using the recursive
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definition for the nth Fibonacci number as fn = fn−1 + fn−2 where f1 = f2 = 1. In
general, there are fn terms in the cd-index of a rank n poset, a much more efficient
encoding of the chain data.

Continuing Example 1.5.1, the final three columns of Table 1.1 show the number of
each cd-monomial needed to write that particular ab-monomial in terms of c and d.
Note that the sum of these columns is the flag h-vector column. Thus, the cd-index
of the pentagonal prism, equivalently its associated face lattice, is

Ψ(P ) = c3 + 8 · dc + 5 · cd.

In general, the cd-index of the prism of an n-gon for n ≥ 2 is

Ψ(prism of an n-gon) = c3 + (2n− 2) · dc + n · cd.

It has recently been shown in [16] using a more general Euler flag enumeration theory
of Whitney stratified spaces that the previous formula holds for n ≥ 1.

1.6 Descent set statistics and the flag vectors

A third and final method for computing the descent set statistics is via the flag
f -vector of the Boolean algebra. For S = {s1 < s2 < · · · < sk} ⊆ [n − 1], let
co(S) = ~c = (c1, c2, . . . , ck+1) be the associated composition of n. This is a list of
positive integers whose sum is n where ci = si − si−1, and where we let s0 = 0 and
sk+1 = n. The flag f -vector entry fS of the Boolean algebra Bn is given by the
multinomial coefficient

fS =

(
n

~c

)
=

(
n

c1, c2, . . . , ck+1

)
,

and the descent set statistics are given by inclusion-exclusion

βn(S) =
∑
T⊆S

(−1)|S−T | · fT . (1.6.1)

In other words, the descent set statistics are identical to the flag h-vector for the
Boolean algebra Bn.

An efficient encoding of all the flag f -vector entries of the Boolean algebra is ob-
tained by using quasi-symmetric functions. This important class of functions consists
of degree-bounded power series in which the coefficient of the monomial xa1i1 ·x

a2
i2
· · ·xakik

is the same for all sets of increasing indices {i1 < i2 < · · · < ik}. For a composition
~c = (c1, c2, . . . , ck) let M~c denote the monomial quasi-symmetric function defined by

M~c =
∑

1≤i1<i2<···<ik

xc1i1 · x
c2
i2
· · · xckik .

The algebra of quasi-symmetric functions is the linear span of the monomial quasi-
symmetric functions. Multiplication of monomial quasi-symmetric functions is de-
scribed in Lemma 3.3 in [12]. Now the quasi-symmetric function of the Boolean
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algebra is given in [12] by

F (Bn) = (x1 + x2 + · · · )n = Mn
(1) =

∑
~c

(
n

~c

)
·M~c.

Here the flag f -vector entry fS is the coefficient of the monomial quasi-symmetric
function for the associated composition of S. The descent set statistic βn(S) can be
calculated using equation (1.6.1).

1.7 Coalgebras

To motivate the definition of a coalgebra, we first define an algebra over the field k.
An algebra A is a vector space with a product A × A −→ A, denoted by ·, and an
element 1 in A such that for all a, b, c ∈ A,

(i) the product is distributive: a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c,

(ii) the product is associative: a · (b · c) = (a · b) · c, and

(iii) the element 1 is the unit, meaning 1 · a = a · 1.

A more compact way to define an algebra is to say that it is a vector space with
a linear map ∇ : A⊗A→ A, where A⊗A is the tensor product of A with itself, and
a unit η : k → A. There are also the requirements that ∇ ◦ (1 ⊗ ∇) = ∇ ◦ (∇ ⊗ 1)
and ∇◦ (η⊗ 1) = 1 = ∇◦ (1⊗ η), where 1 represents the identity map on A. Hence,
we have ∇(a ⊗ b) = a · b and η(c) = c · 1. With this definition, the distributive law
follows from linearity of the map ∇.

A coalgebra is the dual of an algebra. It consists of a vector space V and two
linear maps: a coproduct ∆ : V → V ⊗ V and a counit ε : V → k. The analogous
two conditions are that (1⊗∆) ◦∆ = (∆⊗ 1) ◦∆ and (1⊗ ε) ◦∆ = 1 = (ε⊗ 1) ◦∆.
The first equation states that the coproduct ∆ is coassociative.

When applying a coproduct to an element v ∈ V , we represent each pair of
elements as v

(i)
(1) and v

(i)
(2), resulting in the coproduct of v being ∆(v) =

∑
i v

(i)
(1) ⊗ v

(i)
(2).

Heyneman and Sweedler [26] introduced the commonly used Sweedler notation to
denote the coproduct of v as ∆(v) =

∑
v v(1) ⊗ v(2).

If a vector space V with an associative product∇ and a coassociative coproduct ∆
satisfies the following property, we call the triple (V,∇,∆) a Newtonian coalgebra:

∆ ◦ ∇ = (1⊗∇) ◦ (∆⊗ 1) + (∇⊗ 1) ◦ (1⊗∆).

Using Sweedler notation for the coproduct and the standard · to denote the product,
this condition can be rewritten as

∆(v · w) =
∑
v

v(1) ⊗ (v(2) · w) +
∑
w

(v · w(1))⊗ w(2),

for all v, w ∈ V . Notice that this is a generalization of the Leibniz rule for derivatives.
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An example of a Newtonian coalgebra involves the vector space P spanned by all
types of graded posets of rank ≥ 1, where the type P of a poset P is the collection of
all posets that are isomorphic to P . For the product, we use the previously defined
star product P ∗Q. The coproduct on P that gives the Newtonian structure is defined
as

∆(P ) =
∑

0̂<x<1̂

[0̂, x]⊗ [x, 1̂].

For the original formulation and study of Newtonian coalgebras, see Joni and
Rota [27]. See Ehrenborg and Readdy [19] for further examples relating to posets
and the cd-index. Finally, Ehrenborg and Readdy also studied the homology of
certain Newtonian coalgebras in [20].

1.8 Coxeter groups

A Coxeter group W is a group generated by a set S with the following relations
among the generators:

• All generators are involutions; that is, s2 = 1 for all s ∈ S,

• For each pair of generators s and t, there is a nonnegative integer m(s, t) with
2 ≤ m(s, t) ≤ ∞ for which (st)m(s,t) = 1.

If m(s, t) = ∞, this means the element st has infinite order, implying there is no
relation between s and t. The group W paired with the not necessarily unique
generating set S is called a Coxeter system. All finite Coxeter groups are Euclidean
reflection groups, such as the symmetry groups of regular polytopes. Not all Coxeter
groups are finite. The universal Coxeter group is an infinite Coxeter group. It is
defined by setting m(s, t) = ∞ for all generators s 6= t. We denote the universal
Coxeter group by Ur where r is the size of the generating set S.

A primary example of a finite Coxeter group is the symmetric group Sn. A
generating set is given by S = {s1, s2, . . . , sn−1}, where si = (i, i+1). It is known that
any permutation can be written as the product of transpositions, more specifically,
the adjacent transpositions in S. It is clear that these adjacent transpositions are
involutions, satisfying the first set of required relations among the generators. One
can easily calculate the values m(si, sj) depending on the difference between i and j.
If |i− j| ≥ 2, then m(si, sj) = 2, whereas m(si, si+1) = 3.

For additional examples and further information regarding Coxeter groups and
their combinatorial aspects, see Björner and Brenti [7].

1.9 The Pfaffian and the exterior algebra

The Pfaffian is a polynomial related to the determinant of a skew-symmetric matrix.
Recall that a skew-symmetric matrix is a square matrix A whose transpose is its
negative; that is, −A = AT . If A is an n × n matrix with A = (ai,j)1≤i,j≤n, then
A being skew-symmetric implies that ai,j = −aj,i for all i and j. The determinant
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of such a matrix is a square of a polynomial in the matrix entries, which is defined
as the Pfaffian, Pf(A). More explicitly, for a skew-symmetric matrix A, we have
Pf(A)2 = det(A). Since the determinant is 0 for any n × n skew-symmetric matrix
with n being odd, the Pfaffian of that matrix is also 0. Therefore, from this point we
assume that n is even.

There is an alternative but equivalent definition of the Pfaffian that resembles
the Leibniz formula for calculating determinants since it can be viewed as a sum
over all perfect matchings of the complete graph. For a skew-symmetric matrix
A = (ai,j)1≤i,j≤n with n even, the Pfaffian is defined as

Pf(A) =
1

2nn!

∑
σ∈Sn

(−1)σ ·
n∏
i=1

aσ(2i−1),σ(2i),

where (−1)σ is the sign of the permutation σ.
There is also a recursive definition for the Pfaffian in which we first assume the

Pfaffian of the 0 × 0 matrix is equal to 1. Define the Pfaffian of a skew-symmetric
n× n matrix A to be

Pf(A) =
n∑
i=2

(−1)i · a1,i · Pf(A1̂,̂i),

where A1̂,̂i is the matrix A with the first and ith rows and columns removed.
Finally, there is a fourth definition of the Pfaffian involving the exterior algebra

and wedge products. To define the exterior algebra, we begin with the tensor algebra,
defined as the direct sum of the tensor powers of a vector space V over a field k; that
is, T (V ) = k⊕V ⊕(V ⊗V )⊕(V ⊗V ⊗V )⊕· · · . Define the ideal I to be generated by all
elements of the form v⊗ v for v ∈ V . The exterior algebra, denoted by Λ(V ), is then
the quotient algebra of the tensor algebra by the ideal I; that is, Λ(V ) = T (V )/I.

The wedge product of two elements in the exterior algebra is x∧ y = x⊗ y mod I.
Due to taking the quotient with the ideal I, the wedge product has the property
x ∧ x = 0 for all x ∈ V . Using this fact for the element x + y, we have 0 =
(x + y) ∧ (x + y) = x ∧ y + y ∧ x, which implies the anticommutativity property
x ∧ y = −y ∧ x for all x, y ∈ V . More generally, if we permute the order of a wedge
product of elements, we multiply by the sign of that permutation, as follows. For
t1, t2, . . . , tn ∈ V we have

tπ1 ∧ tπ2 ∧ · · · ∧ tπn = (−1)π · t1 ∧ t2 ∧ · · · ∧ tn.

It possible to use wedge products to define the Pfaffian of an n×n skew-symmetric
matrix where n is even. Consider the following sum of wedge products with the entries
from A as coefficients ∑

1≤i<j≤n

ai,j · ti ∧ tj.

Since any occurrence of the same variable cancels, raising this sum to the (n/2)th
power results in a polynomial in the ai,j’s multiplied by t1 ∧ t2 ∧ · · · ∧ tn. We define
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the Pfaffian of A as this polynomial divided by (n/2)!, as seen below:( ∑
1≤i<j≤n

ai,j · ti ∧ tj

)n/2

= (n/2)! · Pf(A) · t1 ∧ · · · ∧ tn.

This formulation of the Pfaffian is easy to use in order to extend the Pfaffian to the
hyperpfaffian. This will be done in Chapter 5.

The Pfaffian has many useful applications, most notably its use in counting per-
fect matchings in planar graphs. Research in this area was motivated by counting
dimer coverings on a graph, which are equivalent to perfect matchings and represent
configurations of diatomic molecules. Temperley and Fisher [46], and independently
Kasteleyn [29], developed a method for counting such arrangements on lattice graphs,
and later Kasteleyn [30] generalized this for any planar graph by a method now known
as the FKT algorithm.

Assuming that G is a finite planar graph, the algorithm described in [30] creates
a skew-symmetric matrix D such that the Pfaffian of D is a generating function
for dimer coverings. The matrix D is defined as a weighted adjacency matrix of G
with edges oriented to provide the skew-symmetric property. Kasteleyn provides a
way of orienting these edges, called an admissible orientation, so that every term of
the Pfaffian has the same sign. Hence, |Pf(A)| is the number of perfect matchings
in G once the weights are all set to be one since each non-zero term of the Pfaffian
corresponds to a perfect matching. This provides an efficient method for enumerating
perfect matchings since the Pfaffian can be calculated by taking the square root of
the determinant of D.

1.10 Set partitions, integer partitions, and compositions

A set partition (or partition, if the context is clear) π = {B1, B2, . . . , Bk} of [n] is a
collection of subsets, called blocks, such that

• Bi 6= ∅,

• Bi ∩Bj = ∅ for i 6= j,

• [n] =
k⋃
i=1

Bi.

Set partitions of [n] into k blocks are counted by the Stirling numbers of the second
kind, denoted by S(n, k). These numbers can be enumerated by the following explicit
formula

S(n, k) =
1

k!

k∑
j=0

(−1)k−j
(
k

j

)
jn,

or by using the recursion

S(n, k) = k · S(n− 1, k) + S(n− 1, k − 1),
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with initial conditions S(0, 0) = 1 and S(n, 0) = S(0, k) = 0 for n, k > 0. See [43,
Section 1.9].

The set of all set partitions of [n] forms a poset called the partition lattice Πn

using the order relation π ≤ τ if every block of π is contained in a block of τ . In
this case we call π a refinement of τ . In the partition lattice, the unique minimal
element 0̂ is the set partition consisting of all singleton blocks {{1}, . . . , {n}} and the
unique maximal element 1̂ is the set partition containing only one block, namely [n].

Not to be confused with set partitions, an integer partition (or simply partition)
λ = (λ1, λ2, . . . , λk) of a positive integer n is a list of positive integers, called parts,
for which n = λ1 + λ2 + · · ·+ λk. In this situation, the order of the λi parts does not
matter. For example, (1, 3) and (3, 1) are considered to be the same partition of 4.

If we instead consider partitions having the same parts in different order to be
distinct, we call these compositions. We will write compositions as a vector ~r =
(r1, r2, . . . , rk), and again refer to each ri as a part. Enumerating the compositions of
n with exactly k parts is given by the binomial coefficient

(
n−1
k−1

)
. See [43, Section 1.2]

A special type of composition is a weak composition. This again is a way of
writing n as a sum of ordered parts, but where we only require these parts to be
nonnegative. To avoid having an infinite number of weak compositions, we require
rk > 0. The number of weak compositions of n with exactly k parts is also given by
a binomial coefficient

(
n+k−1
k−1

)
. Once again, see [43, Section 1.2].

1.11 Sign-reversing involutions

A final combinatorial tool to be discussed are sign-reversing involutions. One begins
with a signed set X, meaning each element x ∈ X has a positive or negative sign
attached to it by a function w : X → {1,−1}. A sign-reversing involution φ : X → X
is a function satisfying φ ◦ φ = idX and for all x ∈ X, either φ(x) = x or w(x) =
−w(φ(x)). In other words, φ either has x as a fixed point or it reverses the sign
of x. The usefulness of sign-reversing involutions is that when you sum over the
weights of all the elements of X, only the weights of the fixed elements remain; that
is,
∑

x∈X w(x) =
∑

x∈F w(x), where F = {x ∈ X : φ(x) = x}.
The function w can also be much more complicated than simply assigning a 1 or

−1 to an element, as long as the sign is part of the function definition, and φ must
only change the sign. This makes sign-reversing involutions a great tool to narrow
down the sum of the weights to a smaller subset of the signed set since the weights
of the non-fixed elements will all cancel out.

The following example of a sign-reversing involution was introduced by Gessel and
Viennot [25]. They proved that the number of k-tuples of non-intersecting lattice
paths (w1, . . . , wk), with wi having only east and south steps from (0, ai) to (bi, bi)
where 0 ≤ a1 < · · · < ak and 0 ≤ b1 < · · · < bk, is given by the binomial determinant(

a1, . . . , ak
b1, . . . , bk

)
= det

((
ai
bj

))
1≤i,j≤k

.

Here the signed set X consists of pairs (σ; (w1, . . . , wk)) of a permutation σ ∈ Sk

and a k-tuple of paths such that wi is a path from (0, ai) to (bσ(i), bσ(i)). The sign
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function is given by w((σ; (w1, . . . , wk))) = (−1)inv σ. An involution φ is constructed
that fixes elements in X with non-intersecting paths, but if any paths intersect, a
pair (i, j) is strategically selected in which wi and wj intersect at a point p. The
paths are altered by φ so that w′i follows wi from (0, ai) to p then follows wj to
(bj, bj) and likewise for w′j. The other paths are not changed, that is, w′l = wl
for l 6= i, j. The resulting permutation is σ ◦ (i, j), which causes the weight of
φ(σ; (w1, . . . , wk)) = (σ ◦ (i, j); (w′1, . . . , w

′
k)) to be the negative of the weight of the

original pair. By adding all weights of elements in X, Gessel and Viennot were able
to cancel out the k-tuples with intersecting paths and prove their result.

Copyright c© Norman Bradley Fox, 2015.
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Chapter 2 Cyclotomic Factors of the Descent Set Polynomial

2.1 Introduction

For a permutation π in the symmetric group Sn, recall that the descent set of π is
the subset of [n− 1] = {1, 2, . . . , n− 1} given by Des(π) = {i ∈ [n− 1] : πi > πi+1}.
The descent set statistics βn(S) are defined for subsets S of [n− 1] by

βn(S) = |{π ∈ Sn : Des(π) = S}| .

Chebikin, Ehrenborg, Pylyavskyy and Readdy [10] defined the nth descent set poly-
nomial to be

Qn(t) =
∑

S⊆[n−1]

tβn(S).

They observed that this polynomial has many factors that are cyclotomic polynomials.
The most common of these cyclotomic polynomials is Φ2 = t + 1. It is direct that
having Φ2 as a factor implies that the number of subsets of [n − 1] having an even
descent set statistic is the same as the number of subsets having an odd descent set
statistic. Consider the proportion of odd entries among the descent set statistics in
the symmetric group Sn, that is,

ρ(n) =
|{S ⊆ [n− 1] : βn(S) ≡ 1 mod 2}|

2n−1
.

Chebikin et al. showed that this proportion depends only on the number of 1’s in the
binary expansion of n. We quote their paper with Table 2.1. Only the values 2k − 1
are included in the table since ρ(2k−1) is the same as ρ(n) if n has k 1’s in its binary
expansion.

Hence when n has two or three 1’s in its binary expansion we obtain Φ2 as a factor
in the descent set polynomial Qn(t), as shown in [10, Theorem 6.1(i)]. Note that the
proportion is not known for six or more 1’s in the binary expansion.

Chebikin et al. gave more results for cyclotomic factors in the descent set polyno-
mial:

(i) If n = 2j ≥ 4, then Φ4 divides Qn(t). [10, Theorem 6.1(ii)]

(ii) If q = pr is an odd prime power with two or three 1’s in its binary expansion
and q 6= 3 or 7, then Φ2p divides Qq(t). [10, Theorem 6.1(iii)]

(iii) If q = pr is an odd prime power with two or three 1’s in its binary expansion,
then Φ2p divides Q2q(t). [10, Theorem 6.1(iv)]

They also found cases when there were double factors in the descent set polynomial:

(iv) If the binary expansion of n has two 1’s in its binary expansion and n > 3, then
Φ2 is a double factor of Qn(t). [10, Theorem 7.3]
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n 1 3 7 15 31
ρ(n) 1 1/2 1/2 29/26 3991/213

Table 2.1: The proportion ρ(n).

(v) If n = 2j ≥ 4 then Φ4 is a double factor of Qn(t). [10, Theorem 7.4]

(vi) If q = pr is an odd prime power and q has two 1’s in its binary expansion, then
Φ2p is a double factor of Q2q(t). [10, Theorem 7.5]

We continue their work in explaining cyclotomic factors occurring in these poly-
nomials. In Section 2.2 we review some preliminary notions and tools that will help in
developing our results. We introduce a simplicial complex in Section 2.3 that deter-
mines the parity of the descent set statistics. Namely, the reduced Euler characteristic
of an induced subcomplex gives the descent set statistics modulo 2. In Section 2.4
we determine when Φ4s is a factor of Qn(t) with n being a power of 2 and s is an
odd integer. In Section 2.5 we determine when Φ2s is a factor of Qn(t) with n having
two non-zero digits in its binary expansion and s being an odd integer . We prove a
multitude of cases in this section when we set s to be a prime number p. Similarly,
when n has three non-zero digits in its binary expansion, we develop cases when Φ2s,
and likewise Φ2p, is a factor of Qn(t) in Section 2.6.

We also continue the work on double factors occurring in the descent set poly-
nomial Qn(t) in Sections 2.7 through 2.9. In fact, the two results (iv) and (vi) both
need the condition that the number of 1’s in the binary expansion of n is exactly
two. Furthermore, the result (vi) applies only (so far) to the five Fermat primes and
the prime power 32, whereas our results apply when there are two or three 1’s in the
binary expansion. First, we show in Theorem 2.7.2 that if Φ2 is a factor of Q2n(t),
then it is a double factor. In Theorems 2.8.1 and 2.9.1, we find the double factor
Φ2p in Q2q(t) and Qq+1(t) where q = pr is an odd prime power. The corresponding
proofs in [10] depend on substituting values for the variables in the ab-index of the
Boolean algebra, whereas our proofs rely on evaluating a more general linear function;
see Proposition 2.7.1. The underlying reason for these results is that the descent set
statistic is straightforward to compute modulo the prime p; see Lemma 2.8.2 and
equation (2.9.1).

A summary of cyclotomic factors of Qn(t) that Chebikin et al. found, as well as
which ones were explained by their and our results, can be found in Table 2.6. We
end with open questions in the concluding remarks.

A version of this chapter appears in [15].

2.2 Preliminaries

One of the primary tools that we will use to study descent set statistics is MacMahon’s
Multiplication Theorem [36, Article 159], which relates the descent set statistics of
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two sets that differ by only one element, stated as

βn(S) + βn(S4{k}) =

(
n

k

)
· βk(S ∩ [k − 1]) · βn−k(S ∩ [k + 1, n− 1]− k).

This result is usually written with the assumption k 6∈ S and the left-hand side as
βn(S) +βn(S ∪{k}), whereas we find it more convenient to work with the symmetric
difference.

Recall that the descent set statistics can also be calculated using the quasi-
symmetric function of the Boolean algebra

F (Bn) = (x1 + x2 + · · · )n = Mn
(1) =

∑
~c

(
n

~c

)
·M~c.

Here the multinomial coefficient
(
n
~c

)
is the flag f -vector of the Boolean algebra for

the set associated to the composition ~c, and the descent set statistic for this set is
given by

βn(S) =
∑
T⊆S

(−1)|S−T | · fT . (2.2.1)

The purpose of quasi-symmetric functions is to allow efficient computations of the
flag f -vector modulo a prime p using the classical relation (x+ y)p ≡ xp + yp mod p.
Finally, using the inclusion-exclusion in equation (2.2.1), we obtain information about
the descent set statistics. Below is a lemma, adapted from Lemma 3.2 in [10], to
compute the quasi-symmetric function of the Boolean algebra F (Bn) = Mn

(1) modulo
a prime.

Lemma 2.2.1. For p prime and n = d1p
j1 + d2p

j2 + · · · + dkp
jk with j1 > · · · >

jk ≥ 0, the quasi-symmetric function of the Boolean algebra Bn modulo p is given by
F (Bn) ≡

∏k
i=1 M

di
(pji )

mod p.

Proof. The congruence (x + y)p
m ≡ xp

m
+ yp

m
mod p extends to monomial quasi-

symmetric functions as Mpm

(1) ≡M(pm) mod p. Hence the quasi-symmetric function of
Boolean algebra Bn is evaluated as follows:

F (Bn) = Md1pj1+d2pj2+···+dkpjk
(1) =

(
Mpj1

(1)

)d1
·
(
Mpj2

(1)

)d2
· · ·
(
Mpjk

(1)

)dk
≡Md1

(pj1 )
·Md2

(pj2 )
· · ·Mdk

(pjk )
mod p.

Chebikin et al. defined essential elements in the case of base 2, and we extend this
notion to base p for any prime p.

Definition 2.2.2. Let p be a prime and 1 ≤ k ≤ n−1. We say k is essential for n in
base p if we expand both n and k in base p, that is, n =

∑
i≥0 ni ·pi and k =

∑
i≥0 ki ·pi

where 0 ≤ ki, ni < p, and the inequality ki ≤ ni holds for all indices i. Otherwise we
say k is non-essential for n in base p.
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A different way to state that k is essential for n in base p is that when adding k
and n − k in base p there are no carries. Directly from this interpretation we have
the following natural symmetry:

Lemma 2.2.3. The element k is essential for n in base p if and only if n − k is
essential for n in base p.

An alternative interpretation is as follows:

Lemma 2.2.4. The element k is essential for n in base p if and only if
(
n
k

)
6≡ 0 mod p.

Proof. By Lucas’ theorem, see [34, Chapter XXIII, Section 228], we have that(
n

k

)
≡
∏
i≥0

(
ni
ki

)
mod p.

Observe that for 0 ≤ ki, ni ≤ p − 1 we have that
(
ni

ki

)
6≡ 0 mod p if and only if

ki ≤ ni.

Note that for an element k which is non-essential for n in base p, the previous
lemma implies that p divides

(
n
k

)
. This allows the following lemma to apply for this

integer k when we set the integer m to be the prime p.

Lemma 2.2.5. Let m and k be positive integers such that 1 ≤ k ≤ n − 1 and m
divides

(
n
k

)
. For a subset S of [n− 1] the following holds:

βn(S) ≡ −βn(S4{k}) mod m.

Proof. By MacMahon’s multiplication theorem we have that

βn(S) + βn(S4{k}) =

(
n

k

)
· βk(S ∩ [k − 1]) · βn−k(S ∩ [k + 1, n− 1]− k),

and the result follows by the assumption that
(
n
k

)
≡ 0 mod m.

For 0 ≤ j ≤ m− 1 define am,j to be the number of subsets S ⊆ [n− 1] such that
βn(S) ≡ j mod m. Note that we suppress the dependency on n. Furthermore, if m
is clear from the context, we simply write aj.

Lemma 2.2.6. Let m be a positive integer and 1 ≤ k ≤ n− 1. If m divides
(
n
k

)
then

the equality am,j = am,−j holds for all j.

Proof. By Lemma 2.2.5 we have that βn(S) ≡ −βn(S4{k}) mod m. Hence the map
sending S to the symmetric difference S4{k} yields a bijection between the sets
counted by am,j and am,−j.
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The following are consequences of Theorem 2.1 in [10], which gives information
about the proportion of even or odd descent set statistics βn(S) depending on the
number of 1’s in the binary expansion of n. We apply their result to achieve equalities
involving am,j.

Theorem 2.2.7 (Chebikin et al.). (a) If n has only one 1 in its binary expansion,
i.e., n = 2a, then βn(S) ≡ 1 mod 2 for all subsets S ⊆ [n− 1].

(b) If n has either two or three 1’s in its binary expansion, then there is an identical
number of even descent set statistics as there is of odd descent set statistics.

In terms of the proportion introduced in the introduction, we have ρ(2a) = 1,
ρ(2b + 2a) = 1/2 and ρ(2c + 2b + 2a) = 1/2 for nonnegative integers c > b > a. As a
direct corollary we have

Corollary 2.2.8. Let s be an odd positive integer.

(a) If n has only one 1 in its binary expansion, then for j even a2s,j = 0 holds.

(b) If n has either two or three 1’s in its binary expansion, then

2s−2∑
j=0
j even

a2s,j =
2s−1∑
j=0
j odd

a2s,j.

We end with a well-known fact from algebra.

Fact 2.2.9. If f(t) is a polynomial in Q[t] with e2πi/j as a root of multiplicity r then
the jth cyclotomic polynomial Φj(t) is a factor of order r of f(t).

This follows since the cyclotomic polynomial is the minimal polynomial of e2πi/j

over the rational field Q.

2.3 The simplicial complex ∆n

We now introduce a simplicial complex which will encode the descent set statistics
modulo 2 via the reduced Euler characteristic. Let ∆n be a simplicial complex whose
vertex set is a subset of [n− 1]. Let F be a face of ∆n if there are no carries in base 2
when adding the entries of the associated composition co(F ) = (c1, c2, . . . , ck+1), that
is, the sum c1 + c2 + · · ·+ ck+1 = n.

Notice that {i} is a vertex of ∆n if and only if i is an essential element of n in
base 2. In fact, the simplicial complex ∆n is completely described by the number
of 1’s in the binary expansion of n. For n with k 1’s in its binary expansion, the
complex ∆n is the barycentric subdivision of the boundary of a (k − 1)-dimensional
simplex. A different way to describe it is that ∆n is the boundary of the dual of the
(k − 1)-dimensional permutahedron.
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Theorem 2.3.1. The quasi-symmetric function of Bn modulo 2 is given by

F (Bn) ≡
∑
F∈∆n

Mco(F ) mod 2.

Proof. Write n as a sum of 2-powers, that is, n = 2j1 + 2j2 + · · ·+ 2jk where j1 > j2 >
· · · > jk. By Lemma 2.2.1 we have have the identity

F (Bn) ≡M2j1 ·M2j2 · · ·M2jk mod 2.

Now when expanding these k monomial quasi-symmetric functions we obtain a sum
over monomial quasi-symmetric functions where the indexing composition has parts
consisting of sums of the 2-powers 2j1 , 2j2 , . . . , 2jk . Furthermore, each 2-power can
only appear in exactly one part and only once in that part. Also note no composition
can be created in two different ways. In the language of the article [21], the partition
{2j1 , 2j2 , . . . , 2jk} is a knapsack partition. Finally, translating the compositions of n
into subsets of [n− 1] proves the result.

In other words, the flag f -vector entry fS(Bn) is odd if and only if S is a face
of the complex ∆n. Let ∆nS denote the simplicial complex ∆n restricted to vertex
set S, that is,

∆nS = {F ⊆ S : F ∈ ∆n}.

Theorem 2.3.2. The descent set statistic βn(S) modulo 2 is given by the reduced
Euler characteristic of the induced subcomplex ∆nS, that is,

βn(S) ≡ χ̃(∆nS) mod 2.

Proof. By a direct computation we have

βn(S) ≡
∑
T⊆S

(−1)|S−T | · fT (Bn)

≡
∑
T⊆S

(−1)|T |−1 · fT (Bn)

≡
∑

T⊆S, T∈∆n

(−1)|T |−1

≡ χ̃(∆nS) mod 2.

2.4 One binary digit

In this section we explore cyclotomic factors in the descent set polynomial Qn(t)
where n is a power of 2; that is, n has one 1 in its binary expansion. First we have a
result showing conditions on the values of am,j when we have a cyclotomic factor in
the general nth descent set polynomial. Note that we abbreviate am,j as aj.
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Lemma 2.4.1. Let m be an even positive integer. The cyclotomic polynomial Φm is
a factor of the descent set polynomial Qn(t) if the following equations hold:

aj = a−j, (2.4.1)

aj = am/2−j, (2.4.2)

for all integers j.

Proof. Consider the primitive mth root of unity ω = e2iπ/m. In order for Φm to be a
factor of Qn(t), we must have Qn(ω) = 0. Since ωm = 1, we need to show

Qn(ω) =
∑

S⊆[n−1]

ωβn(S) = a0 + a1 · ω + a2 · ω2 + · · ·+ am−1 · ωm−1

is zero. By reflection in the real and imaginary axes in the complex plane, we have
ω−j + ωj + ωm/2−j + ωm/2+j = 0, from which the result follows.

Assume that s is an odd positive integer. We consider which values of s such that
the 4sth cyclotomic polynomial Φ4s divides the descent set polynomial Qn(t) when n
is a power of 2.

Theorem 2.4.2. Let n = 2a where a ≥ 2. Assume that s is an odd integer such that s
divides the central binomial coefficient

(
n
n/2

)
and s divides

(
n
k

)
for some k 6= n/2. Then

the cyclotomic polynomial Φ4s(t) divides the descent set polynomial Qn(t).

Proof. Observe that there is one carry in the addition n/2+n/2 = n in base 2. Hence
by Kummer’s theorem [32, Pages 115–116] 2 is the largest 2-power dividing

(
n
n/2

)
. In

other words,
(
n
n/2

)
≡ 2 mod 4. Combining this with the fact that s divides this central

binomial coefficient, we have
(
n
n/2

)
≡ 2s mod 4s. MacMahon’s multiplication theorem

gives that

βn(S) + βn(S4{n/2}) =

(
n

n/2

)
· βn/2(S ∩ [1, n/2− 1])

· βn/2(S ∩ [n/2 + 1, n− 1]− n/2).

Since βn/2 only takes odd values as shown in Theorem 2.2.7(a), we obtain that

βn(S) + βn(S4{n/2}) ≡ 2s mod 4s.

Thus, the statement βn(S) ≡ j mod 4s is equivalent to βn(S4{n/2}) ≡ 2s − j
mod 4s. In other words, the map S 7−→ S4{n/2} yields a bijection that proves
aj = a2s−j for all j.

Next since the addition k + (n − k) = n in base 2 has at least two carries, we
obtain that 22 = 4 divides the binomial coefficient

(
n
k

)
. Hence, 4s divides

(
n
k

)
and

by Lemma 2.2.6 the equality aj = a−j holds for all j. We now have that both equa-
tions (2.4.1) and (2.4.2) from Lemma 2.4.1 hold. Thus, the cyclotomic polynomial Φ4s

divides Qn(t).
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n s k Chebikin et Our
al. statement statement

4 1 1 Thm. 3.5 Thm. 2.4.2
8 1 1 Thm. 3.5 Thm. 2.4.2
8 7 2 Thm. 2.4.2
16 1 1 Thm. 3.5 Thm. 2.4.2
16 5, 11, 13, 55 7 Thm. 2.4.2

65, 143, 715
16 3, 15 5 Thm. 2.4.2
16 39 2 Thm. 2.4.2
32 all the divisors 15 Rem. 2.4.3

of 17678835

Table 2.2: Examples of cyclotomic factors of Qn(t) of the form Φ4s where n = 2a.

Remark 2.4.3. The case n = 32 = 25 and k = 15 is particularly nice. We have that(
32
16

)
= 2 · 32 · 5 · 17 · 19 · 23 · 29 · 31 and

(
32
15

)
= 16/17 ·

(
32
16

)
. Hence, for any of the

96 divisors s of 32 · 5 · 19 · 23 · 29 · 31, we obtain the cyclotomic factor Φ4s of Q32(t).
Furthermore, we do not obtain any more cyclotomic factors by changing k; that is,
all the the odd divisors of

(
32
k

)
for k ≤ 14 are divisors of

(
32
15

)
.

See Table 2.2 for examples of cyclotomic factors of Q2a(t) that are explained by
Theorem 2.4.2, along the k value for which s divides

(
2a

k

)
.

2.5 Two binary digits

Now we state the result that lets us deduce cases when the cyclotomic polynomial Φ2s,
where s is an odd positive integer, is a factor of the descent set polynomial Qn(t)
when n has two 1’s in its binary expansion.

Theorem 2.5.1. Let n = 2b + 2a, where b > a, and assume s is an odd positive
integer which divides

(
n
2a

)
. Furthermore, assume there is an integer k which is non-

essential for n in base 2 (that is, k 6= 2a, 2b) and such that s divides
(
n
k

)
. Then the

cyclotomic polynomial Φ2s is a factor of Qn(t).

Proof. Since there are no carries in the addition 2b + 2a = n in base 2, by Kummer’s
theorem we know that

(
n
2a

)
is odd. Combining this fact with the congruence modulo s,

we obtain
(
n
2a

)
≡ s mod 2s. Therefore, by MacMahon’s multiplication theorem, we

have that

βn(S) + βn(S4{2a}) =

(
n

2a

)
· β2a(S ∩ [2a − 1]) · β2b(S ∩ [2a + 1, n− 1]− 2a)

≡ s mod 2s, (2.5.1)
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since both β2a and β2b are odd according to Theorem 2.2.7. Hence, we use the bijective
map S 7−→ S4{2a} to conclude that aj = as−j for all j.

Since the addition k + (n − k) has at least one carry in base 2, the binomial
coefficient

(
n
k

)
is even. Hence

(
n
k

)
is divisible by 2s. By Lemma 2.2.6 the inequality

aj = a−j holds for all j. Combining these two equalities using Lemma 2.4.1, the
result follows.

We begin with two remarkable examples.

Remark 2.5.2. Consider the case n = 18 = 24 + 21 and k = 4. Note that(
18
2

)
= 32 · 17 = 153. Furthermore note that

(
18
4

)
= 22 · 5 ·

(
18
2

)
. Hence for any

divisor s of 153 we obtain that the cyclotomic polynomial Φ2s divides the descent set
polynomial Q18(t). This argument explains all the cyclotomic factors found in the
descent set polynomial Q18(t). See Table 2.6.

Remark 2.5.3. Consider the case n = 20 = 24 + 22 and k = 6. Now we have(
20
4

)
= 3 · 5 · 17 · 19 = 4845 and

(
20
6

)
= 23 ·

(
20
4

)
. Hence for any divisor s of 4845 the

cyclotomic polynomial Φ2s is a factor in the descent set polynomial Q20(t), explaining
all the 16 known cyclotomic factors. See the longest row in Table 2.6.

We now continue to study the case when the integer s is an odd prime p. Recall
from Lemma 2.2.4 that k being a non-essential element for n in base p implies that p
divides

(
n
k

)
. Hence, to satisfy the assumptions in Theorem 2.5.1 for this case, we need

to show that 2a and k are non-essential for n in base p and that k is also non-essential
for n in base 2.

Note however that for two relative prime integers p and q, a carry in the addition
k + (n − k) = n in base p · q does not imply a carry for this addition in both base
p and q. As an example consider the sum 12 + 3 = 15. In base 15 there is a carry,
whereas in base 3 there is no carry. Hence it is difficult to lift results for two primes
p and q to their product p · q.

The following lemma is useful in determining when 2a is non-essential for n in
base p for p prime in order to apply Theorem 2.5.1. Although rarely cited during the
subsequent arguments since we often need the actual value of i+ j mod p instead of
only the fact that it is at least p, it provides reasoning for finding particular values
of n.

Lemma 2.5.4. For n = 2a + 2b, if 2a ≡ i mod p and 2b ≡ j mod p where 1 ≤ i, j ≤
p− 1 and i+ j ≥ p, then 2a is non-essential for n in base p.

Proof. Since i, j ≤ p− 1 and i+ j ≥ p, we have i > i+ j mod p. Therefore, the last
digit of the base p expansion of 2a is larger than the last digit of the base p expansion
of n, causing 2a to be non-essential for n in base p.

The following theorems provide conditions for the prime p, the multiplicative
order g of 2 in Z∗p, and the exponents a and b that allow Theorem 2.5.1 to be applied
to show that Φ2p is a factor of Qn(t).
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Theorem 2.5.5. Assume that 2 has order g in the multiplicative group Z∗p where g
is even. Let n = 2b + 2a where we assume b > a and n ≥ 9. If we have {a, b} ≡
{0, g/2} mod g, then 2a is non-essential for n in base p. Furthermore, the element 7
is non-essential for n in both base 2 and base p. Hence Φ2p is a factor of Qn(t).

Proof. Since 2g/2 6≡ 1 mod p and (2g/2 − 1) · (2g/2 + 1) = 2g − 1 ≡ 0 mod p we
know that 2g/2 ≡ −1 mod p using that p is a prime. Hence the last digits of 2a

and 2b in their base p expansions are 1 and p − 1, in some order. Thus we have
n = 2b + 2a ≡ 1 + (p − 1) ≡ 0 mod p; that is, the last digit in the base p expansion
of n is 0. Hence 2a is non-essential in base p.

Notice that 7 has three non-zero digits in its binary expansion compared to only 2
such digits for n, making 7 non-essential for n in base 2. Since the order of 2 in Z∗7
is 3, which is odd, we have p 6= 7. Finally, the last digit of the base p expansion of 7
is non-zero for all odd primes p 6= 7. Hence 7 is also non-essential for n in base p,
completing the result.

Remark 2.5.6. The assumption in Theorem 2.5.5 of n ≥ 9 was needed in order for 7
to always be a non-essential element. Note that the theorem can still be applied when
n = 6 if p = 3. The element 5 is instead chosen as the non-essential element in base 2
and in base p.

Theorem 2.5.7. Assume that 2 has order g in the multiplicative group Z∗p where
g is even. Let n = 2b + 2a where we assume b > a and n > 2p − 1. If we have
a ≡ b ≡ g/2 mod g, then 2a is non-essential for n in base p. Furthermore, the
element 2p− 1 is non-essential for n in both base 2 and base p. Hence Φ2p is a factor
of Qn(t).

Proof. Similar to part of the previous proof, we have in this case that 2a ≡ 2b ≡
2g/2 ≡ p− 1 mod p. Therefore, n = 2a + 2b ≡ (p− 1) + (p− 1) ≡ p− 2 mod p. Thus,
the last digit of the base p expansion of n is p−2 while the last digit of the expansion
of 2a is p− 1, making 2a be non-essential for n in base p.

Since 2p− 1 is odd, the last digit in its base 2 expansion is 1, but the last digit of
the base 2 expansion of n is 0 because a, b 6= 0. Hence 2p− 1 is non-essential for n in
base 2. Additionally, 2p − 1 ≡ p − 1 > p − 2 mod p, thus it is non-essential for n in
base p as well.

Remark 2.5.8. The equivalence conditions on the exponents in Theorems 2.5.5
and 2.5.7 are not the only such conditions that make the theorem hold true when g
is even. There are many such conditions, especially if 2 is a generator of Z∗p since
the powers of 2 contain every possible non-zero value as the last digit, and all that
is needed is for the argument in the proof of 2a being non-essential for n = 2b + 2a

in base p is for the sum of these digits to be at least p, as shown in Lemma 2.5.4. In
this case of 2 being a generator of Z∗p for p = 2r+ 1, there are exactly r · (r+ 1) pairs
of possible exponents modulo g that will work. One still needs to find an integer k
that is non-essential in base 2 and in base p. Finding this value of k is easy if given a
particular pair of n and p values, but this step causes a further generalization of the
proof to be difficult.
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p g {a, b} mod g

3 2 {0, 1}, {1, 1}
5 4 {0, 2}, {1, 2}, {1, 3}, {2, 2}, {2, 3}, {3, 3}
11 10 {0, 5}, {1, 5}, {1, 6}, {2, 3}, {2, 5}, {2, 6}, {2, 7}, {3, 4}, {3, 3}, {3, 5},

{3, 6}, {3, 7}, {3, 8}, {3, 9}, {4, 5}, {4, 6}, {4, 7}, {4, 9}, {5, 5}, {5, 6},
{5, 7}, {5, 8}, {5, 9}, {6, 6}, {6, 7}, {6, 8}, {6, 9}, {7, 7}, {7, 9}, {9, 9}

17 8 {0, 4}, {1, 4}, {1, 5}, {2, 4}, {2, 5}, {2, 6}, {3, 4}, {3, 5}, {3, 6}, {3, 7},
{4, 4}, {4, 5}, {4, 6}, {4, 7}, {5, 5}, {5, 6}, {5, 7}, {6, 6}, {6, 7}, {7, 7}

Table 2.3: Examples of equivalency conditions for small prime numbers.

Table 2.3 includes all of the equivalence conditions modulo the order g for four
odd primes that lead to 2a being non-essential for n in base p. For examples of finding
the non-essential k value, see Table 2.4.

Remark 2.5.9. If 2 has multiplicative order g in Z∗p, then its order G in Z∗
p l

is a

divisor of p l−1 · g. The order g gives the length of the repeating sequence of the
last digit of the base p expansions of the powers 2a. Likewise, the order G gives the
length of the repeating sequence of the last l digits of those powers of 2. Similar
reasoning to Lemma 2.5.4 applies when adding together any pair of digits together,
not just the last digit. Thus, there are equivalences modulo G that cause 2a to be
non-essential for n = 2b + 2a in base p because of a carry in one of the last l digits.
As an example, when p = 3 the order of 2 in Z∗9 is 6, hence the last two digits of 2a

cycle through the six values 01, 02, 11, 22, 21 and 12 as a increases. Therefore, when
{a, b} ≡ {2, 4} mod 6, the last two digits of n in base 3 are 11 + 21 ≡ 02, so the
second digit from the right is larger for 2a than for n, making it non-essential for n
in base p.

Theorem 2.5.10. Let n = 2b+2a where we assume b > a and n ≥ 5, and also assume
that p > 3. If we have a, b ≡ g − 1 mod g where g is the multiplicative order of 2,
then 2a is non-essential for n in base p. Furthermore, the element 3 is non-essential
for n in both base 2 and base p. Hence Φ2p is a factor of Qn(t).

Proof. If the multiplicative order of 2 is g, then g is the smallest integer for which
2g ≡ 1 mod p. Thus, 2a ≡ 2b ≡ 2g−1 > 1 mod p, and n = 2a + 2b ≡ 2g−1 + 2g−1 ≡
2g ≡ 1 mod p. Hence 2a is non-essential for n in base p because the last digit in its
base p expansion is larger than that of n.

The element 3 is non-essential for n in base 2 since our assumption of n ≥ 5
implies that b ≥ 2. Because of our assumption that p > 3, the element 3 is also
non-essential in base p since the last digit of the base p expansion for n is 1 < 3,
concluding the result.

Note that we omitted p = 3 from the previous result because this case was already
proven in Theorem 2.5.7 due to the order of 2 being g = 2, making g/2 = g − 1.
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n s {a, b} mod g k Chebikin et Our
al. statement statement

6 3 {0, 1} 5 Thm. 5.6 Rem. 2.5.6
6 5 {1, 2} 3 Rem. 2.5.8
9 3 {0, 1} 7 Thm. 5.5 Thm. 2.5.5
9 9 2 Thm. 2.5.1
10 3 {1, 1} 5 Thm. 2.5.7
10 5 {1, 3} 1 Thm. 5.6 Rem. 2.5.8
10 9 5 Thm. 2.5.1
10 15 3 Thm. 2.5.1
12 3 {0, 1} 7 Thm. 2.5.5
12 5 {2, 3} 3 Rem. 2.5.8
12 11 {2, 3} 2 Rem. 2.5.8
12 55 3 Thm. 2.5.1
12 9, 33, 99 5 Thm. 2.5.1
17 17 {0, 4} 7 Thm. 5.5 Thm. 2.5.5
18 17 {1, 4} 3 Rem. 2.5.8
18 9, 51, 153 4 Rem. 2.5.2
20 3 {2, 4} mod 6 3 Rem. 2.5.9
20 5 {0, 2} 7 Thm. 2.5.5
20 17 {2, 4} 5 Rem. 2.5.8

15, 19, 51, 57, 85,
20 95, 255, 285, 323, 6 Rem. 2.5.3

969, 1615, 4845

72 3 {0, 1} 7 Thm. 2.5.5
528 31 {4, 4} 3 Thm. 2.5.10
1088 5 {2, 2} 9 Thm. 2.5.7

Table 2.4: Examples of cyclotomic factors of Qn(t) of the form Φ2s, where the binary
expansion of n has two 1’s.

Remark 2.5.11. Assuming p > 3, if p is a Mersenne prime; that is, p has the form
2q − 1 implying that q is also a prime number, the equivalence condition on the
exponents in Theorem 2.5.10 is the only such condition modulo g for which Φ2p is a
factor of Qn(t). The first examples of Mersenne primes after 3 are p = 7, 31 and 127.

Table 2.4 summarizes particular values of n and s for which Φ2s is a factor of
Qn(t) with n having two binary digits. The fourth column displays an element k
that is non-essential for n in base 2 and so that s divides

(
n
k

)
. The fifth and sixth

columns give references to the statement explaining why it is a factor. For the cases
in which s is a prime p, the set of exponents modulo the multiplicative order g of 2
is also listed in the third column. The top portion includes factors that were known
by Chebikin et al., although many were left unexplained in their work. The bottom
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portion displays just a few examples within the infinite classes of factors that are
explained by our results that were previously unknown.

2.6 Three binary digits

We now continue to explore cyclotomic factors Φ2s, where s is an odd positive integer,
in the descent set polynomial Qn(t) where n has three 1’s in its binary expansion.

Theorem 2.6.1. Let n = 2c + 2b + 2a, where c > b > a, and assume s is an
odd positive integer which divides the three binomial coefficients

(
n
2a

)
,
(
n
2b

)
, and

(
n
2c

)
.

Assume furthermore that there is an element k which is non-essential for n in base 2,
that is, k 6∈ {2a, 2b, 2a + 2b, 2c, 2c + 2a, 2c + 2b}, and that s divides

(
n
k

)
. Then the

cyclotomic polynomial Φ2s is a factor of the descent set polynomial Qn(t).

Proof. Since there is an element k which is non-essential for n in base 2, we know
that 2 divides

(
n
k

)
. Thus 2s divides

(
n
k

)
, and Lemma 2.2.6 gives that aj = a−j for

all j.
Next, our major goal is to show that aj = as−j. We do that by constructing an

involution φ on all subsets of [n− 1] such that βn(S) + βn(φ(S)) ≡ s mod 2s. Hence
for every contribution to aj there is a corresponding contribution to as−j. The form
of the involution φ will be φ(S) = S4X where the subset X depends on how S
intersects the four element set {2a, 2b, 2c + 2a, 2c + 2b}.

Since the elements 2c and 2b + 2a are both essential for n in base 2, we apply
MacMahon’s theorem to get

βn(S) + βn(S4{2b + 2a}) =

(
n

2b + 2a

)
· β2b+2a(S ∩ [1, 2b + 2a − 1])

· β2c(S ∩ [2b + 2a + 1, n− 1]− (2b + 2a))

≡

{
0 if |S ∩ {2a, 2b}| = 1,

1 if |S ∩ {2a, 2b}| = 0 or 2
mod 2,

βn(S) + βn(S4{2c}) =

(
n

2c

)
· β2c(S ∩ [2c − 1]) · β2b+2a(S ∩ [2c + 1, n− 1]− 2c)

≡

{
0 if |S ∩ {2c + 2a, 2c + 2b}| = 1,

1 if |S ∩ {2c + 2a, 2c + 2b}| = 0 or 2
mod 2,

since the two binomial coefficients
(

n
2b+2a

)
=
(
n
2c

)
are both odd and the descent set

statistics involving β2c are also odd by Theorem 2.2.7 (a). Therefore, the sums of
these descent set statistics are determined by the values for β2b+2a , which we ex-
amine by considering the complex ∆2b+2a and using Theorem 2.3.2. This complex
consists of only of two isolated vertices at 2b and 2a. Thus, the induced subcomplex
∆n|S∩[1,2b+2a−1] is a single vertex if |S ∩ {2a, 2b}| = 1 with a reduced Euler character-
istic of 0. Otherwise, it is two isolated vertices or the empty complex, both of which
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s s
s s

s s2b + 2a 2a

2b

2c + 2b 2c

2c + 2a

Figure 2.1: The complex ∆n for n = 2c + 2b + 2a. Note that the essential elements
are 2a, 2b, 2b + 2a, 2c, 2c + 2a, 2c + 2b in base 2, corresponding to the vertices.

have a reduced Euler characteristic of 1 mod 2. The reasoning behind the second sum
is identical once the set S is shifted down by 2c.

Since s divides
(
n
2c

)
=
(

n
2a+2b

)
, we have by Lemma 2.2.5 that

βn(S) + βn(S4{2b + 2a}) ≡ βn(S) + βn(S4{2c}) ≡ 0 mod s.

Combining this with the modulo 2 sums, we have the following results modulo 2s:

βn(S) + βn(S4{2b + 2a}) ≡

{
0 if |S ∩ {2a, 2b}| = 1,

s if |S ∩ {2a, 2b}| = 0 or 2
mod 2s, (2.6.1)

βn(S) + βn(S4{2c}) ≡

{
0 if |S ∩ {2c + 2a, 2c + 2b}| = 1,

s if |S ∩ {2c + 2a, 2c + 2b}| = 0 or 2
mod 2s.

(2.6.2)

We now begin to construct the involution φ. Assume that |S ∩ {2a, 2b}| = 0 or 2.
Then by equation (2.6.1), βn(S) + βn(S4{2b + 2a}) ≡ s mod 2s. Hence in this case,
let the involution be given by φ(S) = S4{2b + 2a}.

The symmetric case is as follows. Assume that we have |S ∩ {2a, 2b}| = 1 and
|S∩{2c+2a, 2c+2b}| = 0 or 2. By equation (2.6.2), βn(S)+βn(S4{2c}) ≡ s mod 2s.
Thus, let the involution be given by φ(S) = S4{2c}.

The case that remains is when the set S satisfies |S ∩ {2a, 2b}| = 1 and |S ∩ {2c +
2a, 2c + 2b}| = 1. By equations (2.6.1) and (2.6.2), and by equation (2.6.1) again, we
have the following string of congruences:

βn(S) ≡ −βn(S4{2b + 2a}) ≡ βn(S4{2b + 2a, 2c}) ≡ −βn(S4{2c}) mod 2s.

Observe that these four descent set statistics all have the same parity. In order to
determine this parity, we need to consider the complex ∆n, displayed in Figure 2.1,
and then apply Theorem 2.3.2.

We now have four subcases to consider.

– First consider sets S such that S ∩ {2a, 2b, 2c + 2a, 2c + 2b} = {2a, 2c + 2a}.
Note that the four induced subcomplexes ∆nS, ∆nS4{2b+2a}, ∆nS4{2c} and
∆nS4{2b+2a,2c} are all contractible and therefore have reduced Euler characteris-
tic 0. Hence in this case βn(S), βn(S4{2b+ 2a}), βn(S4{2c}) and βn(S4{2b+
2a, 2c}) are all even.
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– Second, when S ∩ {2a, 2b, 2c + 2a, 2c + 2b} = {2b, 2c + 2b}, by considering the
reverse sets of the previous case, the four sets S, S4{2b + 2a}, S4{2c} and
S4{2b + 2a, 2c} have even descent set statistics because their corresponding
induced subcomplexes are contractible.

– Third, consider sets S such that S∩{2a, 2b, 2c+2a, 2c+2b} = {2a, 2c+2b}. Now
the four induced subcomplexes ∆nS, ∆nS4{2b+2a}, ∆nS4{2c} and ∆nS4{2b+2a,2c}
are all homotopy equivalent to two points and hence have reduced Euler char-
acteristic 1. Hence in this case the descent set statistics of the four sets S,
S4{2b + 2a}, S4{2c} and S4{2b + 2a, 2c} are all odd.

– The fourth and last case is when S∩{2a, 2b, 2c+2a, 2c+2b} = {2b, 2c+2a}. Again,
the four induced subcomplexes ∆nS, ∆nS4{2b+2a}, ∆nS4{2c} and ∆nS4{2b+2a,2c}
are all homotopy equivalent to two points and hence have reduced Euler charac-
teristic 1. Therefore, the descent set statistics of the four sets S, S4{2b + 2a},
S4{2c} and S4{2b + 2a, 2c} are all odd.

From these four subcases above we know that βn(S) ≡ 1 + βn(S4{2a, 2b}) mod 2.
Next, since 2a and 2b both satisfy

(
n
2a

)
≡
(
n
2b

)
≡ 0 mod s, we have that βn(S) ≡

−βn(S4{2a}) ≡ βn(S4{2a, 2b}) mod s. Combining these two statements and using
that 2s divides

(
n
k

)
we conclude that

βn(S) ≡ s+ βn(S4{2a, 2b}) ≡ s− βn(S4{2a, 2b, k}) mod 2s.

Thus, the third and final case of the definition of φ is φ(S) = S4{2a, 2b, k} when
|S ∩ {2a, 2b}| = 1 and |S ∩ {2c + 2a, 2c + 2b}| = 1. This proves the equality aj = as−j
holds, and hence the theorem follows by Lemma 2.4.1.

One might ask if it is possible for Φ2s to be a factor of Qn(t) if the binary expansion
of n has more than three binary digits. Although the equations within Lemma 2.4.1
are only sufficient conditions and not necessary conditions for this cyclotomic polyno-
mial to be a factor, it is easy to see why this lemma cannot be used. This is because
equal numbers of even and odd descent set statistics are required, as this is implied
by the combination of equations (2.4.1) and (2.4.2). Chebikin et al. showed that
there are not equal numbers when the binary expansion of n has 4 or 5 digits. It is
not known if there is an integer k > 3 for which this condition is true when n has k
binary digits.

Similar to Remark 2.5.2 and 2.5.3, we have the next remark about n = 21 and 22.

Remark 2.6.2. Consider n = 21 = 24 + 22 + 1 and k = 2. Observe that
gcd

((
21
16

)
,
(

21
4

)
,
(

21
1

))
= 21. Furthermore, observe that

(
21
2

)
is a multiple of 21. Hence

we obtain for each divisor s of 21 that the cyclotomic polynomial Φ2s divides Q21(t).
Similarly, for n = 22 = 24 + 22 + 21 and k = 3, we have that gcd

((
22
16

)
,
(

22
4

)
,
(

22
2

))
= 77

divides
(

22
3

)
. Hence for each divisor s of 77 we conclude that Φ2s divides Q22(t).

We continue to consider the case when the integer s is an odd prime p. The
following theorems give conditions for p and the exponents a, b and c that provide
the assumptions made for applying Theorem 2.6.1.
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Theorem 2.6.3. Let n = 2c + 2b + 2a where we assume c > b > a, n ≥ 11, and
that the order g of 2 in the multiplicative group Z∗p is even. If we have {a, b, c} ≡
{1, g/2, g/2} mod g, then 2c, 2b, and 2a are non-essential for n in base p. Further-
more, the element 7 is non-essential for n in both base 2 and base p. Hence Φ2p is a
factor of Qn(t).

Proof. Using the same congruences as in the proof of Theorem 2.5.5, we have

n = 2c + 2b + 2a ≡ 2g/2 + 2g/2 + 21 ≡ (p− 1) + (p− 1) + 2 ≡ 0 mod p.

Hence the last digit in the base p expansion of n is 0. This makes 2c, 2b, and 2a be
non-essential for n in base p since the last digit for these powers of 2 are each greater
than 0.

The assumption that n ≥ 11 implies that c ≥ 3, hence the number 7 is non-
essential for n in base 2. Additionally, the last digit of the base p expansion of 7
is non-zero except when p = 7. This case is not included for this theorem since the
order of 2 in Z∗7 is odd. Therefore, 7 is non-essential in base p as well, which concludes
the proof of the theorem.

Theorem 2.6.4. Let n = 2c + 2b + 2a where c > b > a, and assume that p is an odd
prime greater than or equal to 5. If {a, b, c} ≡ {g − 2, g − 2, g − 1} mod g where g
is the multiplicative order of 2 in Z∗p, then 2c, 2b, and 2a are non-essential for n in
base p. Furthermore, the element 3 is non-essential for n in both base 2 and base p.
Hence Φ2p is a factor of Qn(t).

Proof. We have

n = 2c + 2b + 2a ≡ 2g−2 + 2g−2 + 2g−1 ≡ 2g ≡ 1 mod p,

hence the last digit of the base p expansion of n is 1. Since we assume p ≥ 5, we must
have g ≥ 3, hence 2g−1 > 2g−2 > 1 mod p. Thus, 2c, 2b, and 2a are non-essential for n
in base p since the last digit of their base p expansions is larger than 1.

Also, since we assume p ≥ 5, the last digit of the base p expansion of 3 is greater
than 1 as well, making it non-essential for n in base p. The element 3 is also non-
essential for n in base 2 since the fact that g ≥ 3 implies that 2a 6= 1.

Remark 2.6.5. When n has two binary digits, there were many equivalences mod-
ulo m on the exponents a and b beyond what could be shown in results that held
for all p or for all p with m being even. Likewise, many such equivalences exist in
the three binary digit case that cause each of 2c, 2b, and 2a to be non-essential for
n = 2c + 2b + 2a in base p. Examples of these equivalences include the following:

• {a, b, c} ≡ {0, 0, 0} mod 2 when p = 3 since the final digit of n in base 3 is
1 + 1 + 1 ≡ 0 mod 3,

• {a, b, c} ≡ {1, 2, 4} mod 10 when p = 11 because the last digit of n is 2+4+16 ≡
0 mod 11,
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• {a, b, c} ≡ {1, 2, 3} mod 12 when p = 13 since the last digit of n in base 13 is
2 + 4 + 8 ≡ 1 mod 13.

Of course, to show that Qn(t) has Φ2p as a factor, one still needs to find an element k
that is non-essential for n in base 2 and p. This is shown for these examples for
particular values of n in Table 2.5.

Remark 2.6.6. As with Remark 2.5.9, we can also find equivalences modulo G for
the exponents a, b and c when n has three binary digits. As an example, when p = 3
there are equivalences such as {a, b, c} ≡ {3, 4, 5} mod 6 that cause 2c, 2b, and 2a

to be non-essential for n in base p. This exists because the last two digits of n are
22 + 21 + 12 ≡ 02, whereas the second to last digit of 2c, 2b and 2a is each greater
than 0.

Theorem 2.6.7. Let n = 2c + 2b + 2a where c > b > a and n > 7, and assume that
p = 2e+2d+1 where e > d. If {a, b, c} ≡ {0, d, e} mod g where g is the multiplicative
order of 2 in Z∗p, then 2c, 2b, and 2a are non-essential for n in base p. Furthermore,
at least one of the elements 7 or 13 is non-essential for n in both base 2 and base p.
Hence Φ2p is a factor of Qn(t).

Proof. We have

n = 2c + 2b + 2a ≡ 2e + 2d + 1 ≡ p ≡ 0 mod p,

making the last digit in the base p expansion of n be 0. This causes 2c, 2b, and 2a to
be non-essential for n in base p since their last digits are 1, 2d, or 2e, all of which are
greater than 0 mod p.

First consider when p 6= 7. In this case, the element 7 is non-essential for n in
base p because the last digit in its base p expansion is greater than 0, which is the
last digit for n. Since we assume n > 7 with three binary digits, the element 7 is
also non-essential for n in base 2 since 7 also has three digits in its binary expansion,
completing the result in this case.

If we instead assume p = 7, then the element 13 is non-essential in base 7 since
its base 7 expansion has a 6 as its final digit. The assumption of n > 7, the fact
that d = 1 and e = 2, and that {a, b, c} ≡ {0, d, e} mod 3 where the 3 is the order
of 2 in Z∗7, result in the smallest such value for n being 14. Since n and 13 each have
three binary digits with n > 13, we have that 13 is also non-essential for n in base 2,
concluding the proof of the theorem.

The following proposition explains the occurrence of another cyclotomic factor of
the form Φ2p which is an outlier compared to other such factors. When n = 11 and
p = 3, observe from the base 2 and base 3 expansions of 11 = 23 + 2 + 1 = 32 + 2 · 1
that both 2 and 1 are essential for 11 in base p. Therefore, Theorem 2.6.1 is not
applicable. However, Φ6 is still a factor of the descent set polynomial for n = 11,
as shown in Proposition 2.6.9. We first need the following lemma to obtain certain
descent set statistics modulo 3.
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Lemma 2.6.8. Let R be a subset of the interval [3, 8]. Then we have the following
four evaluations of descent set statistics:

β11(R ∪ {1, 9}) ≡ β11(R ∪ {2, 10}) ≡ (−1)|R| mod 3,

β11(R ∪ {1, 10}) ≡ β11(R ∪ {2, 9}) ≡ −(−1)|R| mod 3.

In particular, all of these values are non-zero modulo 3.

Proof. We consider the quasi-symmetric function ofB11 modulo 3. Using Lemma 2.2.1,
we have

F (B11) ≡M(9) ·M2
(1)

≡M(9) · (M(2) + 2M(1,1))

≡M(11) +M(9,2) +M(2,9) + 2M(9,1,1) + 2M(10,1)

+ 2M(1,9,1) + 2M(1,10) + 2M(1,1,9) mod 3,

where the second and third steps are expanding a product of monomial quasi-symmetric
functions; see [12, Lemma 3.3]. Reading off the coefficients of the monomial quasi-
symmetric functions, we have the following values for the flag f -vector:

fS ≡


1 if S = ∅, {9}, or {2},
2 if S = {9, 10}, {10}, {1, 10}, {1}, or {1, 2},
0 otherwise,

mod 3.

Observe that only eight entries are non-zero modulo 3. Using inclusion-exclusion, the
descent set statistic is given by

β11(R ∪ {1, 9}) ≡
∑

T⊆R∪{1,9}

(−1)|R∪{1,9}−T | · fT

≡ (−1)|R∪{1,9}| · f∅ + (−1)|R∪{9}| · f{1} + (−1)|R∪{1}| · f{9}
≡ (−1)|R| mod 3.

The three descent set statistics β11(R∪{1, 10}), β11(R∪{2, 9}), and β11(R∪{2, 10})
can be computed similarly.

Proposition 2.6.9. The cyclotomic polynomial Φ6 is a factor of the descent set
polynomial Q11(t).

Proof. Observe from the base 2 and base 3 expansions of 11 that 4 is non-essential
for 11 in base 2 and in base 3. Therefore, Lemma 2.2.6 implies that aj = a−j for all j,
or a1 = a5 and a2 = a4. We next focus on showing a0 = a3 before proving aj = a3−j
for all other j.

Similarly to equations (2.6.1) and (2.6.2), since 8 and 3 are essential for 11 in
base 2 but non-essential for 11 in base 3, we have

β11(S) + β11(S4{3}) ≡

{
0 if |S ∩ {1, 2}| = 1,

3 if |S ∩ {1, 2}| = 0 or 2
mod 6,
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n s {a, b, c} mod g k Chebikin et Our
al. statement statement

11 3 — 4 Prop. 2.6.9
11 11 {0, 1, 3} 7 Thm. 5.5 Thm. 2.6.7
13 13 {0, 2, 3} 7 Thm. 5.5 Thm. 2.6.7
14 7 {0, 1, 2} 13 Thm. 5.6 Thm. 2.6.7
14 13 {1, 2, 3} 3 Rem. 2.6.5
14 91 3 Thm. 2.6.1
19 19 {0, 1, 4} 7 Thm. 5.5 Thm. 2.6.7
21 3 {0, 0, 0} 2 Rem. 2.6.5
21 7 {0, 1, 2} 13 Thm. 2.6.7
21 21 2 Rem. 2.6.2
22 7 {1, 1, 2} 3 Thm. 2.6.4
22 11 {1, 2, 4} 7 Thm. 5.6 Rem. 2.6.5
22 77 3 Rem. 2.6.2

56 3 {3, 4, 5} mod 6 3 Rem. 2.6.6
4,108 13 {0, 2, 3} 7 Thm. 2.6.7
16,576 17 {6, 6, 7} 3 Thm. 2.6.4
32,802 11 {1, 5, 5} 7 Thm. 2.6.3

Table 2.5: Examples of cyclotomic factors of Qn(t) of the form Φ2s where the binary
expansion of n has three 1’s.

β11(S) + β11(S4{8}) ≡

{
0 if |S ∩ {9, 10}| = 1,

3 if |S ∩ {9, 10}| = 0 or 2
mod 6.

Assume S ⊆ [10] in which β11(S) ≡ 0 mod 3. As in Theorem 2.6.1, if |S∩{1, 2}| =
0 or 2, or if |S ∩ {9, 10}| = 0 or 2, the descent set statistics β11(S), β11(S4{3}),
β11(S4{8}), and β11(S4{3, 8}) contribute evenly between a0 and a3.

On the other hand, if |S ∩ {1, 2}| = 1 and |S ∩ {9, 10}| = 1, then S is one of the
four sets in Lemma 2.6.8. Therefore, the descent set statistic of the set S is non-zero
modulo 3, and does not contribute to either a0 or a3. In conclusion, the only possible
sets that do contribute to a0 and a3 do so evenly, hence a0 = a3.

It remains to show a1 = a2 and a4 = a5. Since 11 has three digits in its binary
expansion, Corollary 2.2.8 gives that a0 + a2 + a4 = a1 + a3 + a5. Combining this
equality with a0 = a3, a1 = a5, and a2 = a4, it follows that a1 = a2 and a4 = a5.
Thus, Lemma 2.4.1 implies that Φ6 is a factor of Q11(t).

This result is particular to n = 11. Attempts to generalize to values of n of the
form 2c + 2 + 1 = pr + 2 have so far failed. For these n one can similarly show that
a0 = ap. Unfortunately, this does not imply aj = ap−j, which is in fact not true for
all j.
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Table 2.5 summarizes particular values of n and s for which Φ2s is a factor of
Qn(t) with n having three binary digits. This was done in Table 2.4 for n with two
binary digits.

2.7 The double factor Φ2 in the descent set polynomial

Our next results are about the occurrence of double factors in the descent set poly-
nomial Qn(t). Here we sharpen techniques of Chebikin et al. to explain more double
factors.

We begin by recalling the ab- and the cd-index of the Boolean algebra. Let
Z〈a,b〉 denote the polynomial ring in the non-commutative variables a and b. For S
a subset of [n − 1] define the ab-monomial uS = u1u2 · · ·un−1 where ui = a if i 6∈ S
and ui = b if i ∈ S. The polynomial Ψ(Bn) given by

Ψ(Bn) =
∑

S⊆[n−1]

βn(S) · uS

is the ab-index of the Boolean algebra. Recall that it can be written in terms of the
non-commutative variables c = a + b and d = ab + ba since the Boolean algebra is
an Eulerian poset. For ways to compute Ψ(Bn), refer to Sections 1.5 and 1.6. Also,
see [6, Proposition 8.2], which introduces a linear map ω that maps ab-monomials into
c-2d-monomials in order to calculate Ψ(Bn). Finally, see [43, Theorem 1.6.3], which
uses equivalence classes of min-max trees to generate the cd-index of the Boolean
algebra.

Define a linear function L from Z〈a,b〉 to Z by

L(uS) = (−1)βn(S),

where S is a subset of [n− 1] and uS is the associated ab-monomial of degree n− 1.
For an ab-monomial u of degree n−1, we write βn(u) instead of βn(S), where u = uS.

Proposition 2.7.1. Let w be a cd-monomial of degree 2n − 1 having j d’s. Then
the following evaluation holds:

L(w) = 22n−j−1 · (1− 2 · ρ(n)).

Proof. Let u = u1u2 · · ·u2n−1 be an ab-monomial in the expansion of w. Let v
be the ab-monomial formed by taking the letters in even positions from u, that is,
v = u2u4 · · ·u2n−2. By Theorem 2.3.2 we have that

β2n(u) ≡ χ̃(∆2nS) ≡ χ̃(∆nT ) ≡ βn(v) mod 2,

since the two complexes ∆2nS and ∆nT are identical where u = uS and v = uT .
Furthermore, observe that every ab-monomial of degree n− 1 appears this way.

Given an ab-monomial v of degree n− 1, how many corresponding monomials u
can we find within the expansion of the cd-monomial w? There are n odd positions
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in u to fill in. If an odd position is covered by a d in w, there is a unique way to fill
it in. Note that there are n − j odd positions in u associated with c’s in w. Hence
there are 2n−j ways to fill in v to obtain an ab-monomial u in the expansion of w.
Now

L(w) =
∑
u

(−1)β2n(u)

= 2n−j ·
∑
v

(−1)βn(v)

= 2n−j ·Qn(−1)

= 22n−j−1 · (1− 2 · ρ(n)),

where the first sum is over all ab-monomials u occurring in the expansion of w and
the second sum is over all ab-monomials v of degree n− 1.

Theorem 2.7.2. If Φ2 is a factor of Q2n(t) then Φ2 is a double factor of Q2n(t).

Proof. Observe that

Q′2n(t) =
∑
S

β2n(S) · tβ2n(S)−1.

Hence evaluating Q′2n(t) at t = −1, we obtain

Q′2n(−1) = −
∑
S

β2n(S) · (−1)β2n(S)

= −L

(∑
S

β2n(S) · uS

)
= −L(Ψ(B2n)).

Now if Φ2 is a factor of Q2n(t), we have ρ(n) = 1/2. Since Ψ(B2n) can be expressed
in terms of the two variables c and d, we conclude that L(Ψ(B2n)) = 0. Thus −1 is
a double root of Q2n(t), yielding the conclusion.

Extending Theorem 7.3 in [10] we have the next result.

Corollary 2.7.3. If the binary expansion of n has three 1′s then Φ2
2 divides Q2n(t).

2.8 The double factor Φ2p in Q2q(t)

Throughout this section, assume q is an odd prime power; that is, q = pr where p is
prime and r is a positive integer.

Observe that by Theorem 6.1, part (iv) in [10] the cyclotomic polynomial Φ2p is
a factor of the descent set polynomial Q2q(t). Hence we concentrate on extending
Theorem 7.5 from [10] to show in this section that Φ2p is a double factor.
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Theorem 2.8.1. If ρ(q) = 1/2, then the cyclotomic polynomial Φ2p is a double factor
of the descent set polynomial Q2q(t).

In order to prove this theorem we introduce two new linear functions C and S
from ab-polynomials of degree 2q − 1 to the real numbers R by

C(uS) = cos(π/p · β2q(S)), (2.8.1)

S(uS) = sin(π/p · β2q(S)). (2.8.2)

Our goal is to show that C(w) = S(w) = 0 for any cd-monomial w of degree 2q − 1.
We do this by a series of lemmas. First from Corollary 5.3 in [10], we have the
following result.

Lemma 2.8.2. The descent set statistic β2q modulo p is given by

β2q(S) ≡ (−1)|S−{q}| mod p.

Proof. Using the fact from Lemma 2.2.1 that (x1 + x2 + · · · )2q ≡ (xq1 + xq2 + · · · )2 ≡
M(2q) + 2M(q,q) mod p, it is straightforward to show the result upon inspection of the
flag f -vector values and through the use of the inclusion-exclusion formula (2.2.1) for
the descent set statistics.

Lemma 2.8.3. For any ab-monomial u of degree 2q−1, we have C(u) = − cos(π/p) ·
(−1)β2q(u).

Proof. According to Lemma 2.8.2 there are only four possible values for β2q(u) mod
2p. When β2q(u) is odd the only two values for β2q(u) modulo 2p are ±1, in which
case C(u) is cos(π/p). Similarly, when β2q(u) is even it can only take the values p± 1
modulo 2p, and hence C(u) is − cos(π/p).

Lemma 2.8.4. If ρ(q) = 1/2, then for a cd-monomial w of degree 2q − 1 we have
C(w) = 0.

Proof. Assume that the cd-monomial w has j d’s. By the previous lemma and
Proposition 2.7.1, we have

C(w) =
∑
u

C(u)

= − cos(π/p) ·
∑
u

(−1)β2q(u)

= − cos(π/p) · L(w)

= − cos(π/p) · 22q−j−1 · (1− 2 · ρ(q)).

Since ρ(q) = 1/2, we obtain the conclusion C(w) = 0.
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Lemma 2.8.5. Let u and v be two ab-monomials such that deg(u)+deg(v) = 2q−2,
both deg(u) and deg(v) are even, and both deg(u) and deg(v) differ from q− 1. Then
S(u · c · v) = 0.

Proof. Since deg(u) + 1 is non-essential for 2q both in base 2 and in base p, we have
by Lemma 2.2.5 that

β2q(u · a · v) ≡ −β2q(u · b · v) mod 2p.

Since sine is an odd function, this identity directly implies S(u·a·v) = −S(u·b·v).

Lemma 2.8.6. Let w be a cd-monomial of degree 2q−1 different from the monomial
d(q−1)/2cd(q−1)/2. Then S(w) = 0.

Proof. The monomial w has q odd positions and q − 1 even positions. Since a d
covers both an odd position and an even position, there will always be a c in an
odd position. Unless w is the monomial d(q−1)/2cd(q−1)/2 we can find a c in an odd
position different from q. By the previous lemma we know S(u · c · v) = 0 for all
ab-monomials u and v, and hence by linearity we conclude S(w) = 0.

Lemma 2.8.7. If ρ(q) = 1/2 then S(d(q−1)/2cd(q−1)/2) = 0.

Proof. If u is an ab-monomial occurring in the expansion of w = d(q−1)/2cd(q−1)/2

then it has q − 1 or q b’s. In fact, it has q − 1 b’s in the positions different from the
position q since this is the position of the c in w.

Lemma 2.8.2 implies that β2q(u) ≡ (−1)q−1 ≡ 1 mod p by using the fact that q
is odd. Hence we have that β2q(u) ≡ 1 or p + 1 mod 2p; that is, the value of β2q(u)
modulo 2p only depends on the value modulo 2. Hence, using similar reasoning to
the proof of Lemma 2.8.3, we have the sum

S(w) =
∑
u

S(u)

=
∑
u

sin(π/p · β2q(u))

=
∑
u

− sin(π/p) · (−1)β2q(u)

= − sin(π/p) · L(w)

= − sin(π/p) · 2q · (1− 2 · ρ(q)).

Since ρ(q) = 1/2, we obtain S(w) = 0.

Proof of Theorem 2.8.1. Observe that

eπ·i/p ·Q′2q(eπ·i/p) =
∑
S

β2q(S) · eπ·i/p·β2q(S)

=
∑
S

β2q(S) · (C(uS) + i · S(uS))
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= (C + i · S)

(∑
S

β2q(S) · uS

)
= (C + i · S)(Ψ(B2q)),

which vanishes based on the previous lemmas. Hence eπ·i/p is a root of Q′2q, so eπ·i/p

is a double root of Q2q.

2.9 The (double) factor Φ2p in Qq+1(t)

Let q = pr be an odd prime power; that is, p is an odd prime and r a positive integer.
Now we study the case of the cyclotomic factor Φ2p in Qq+1(t).

Theorem 2.9.1. If ρ(q) = 1/2 then the cyclotomic polynomial Φ2p divides the descent
set polynomial Qq+1(t). Furthermore, if q ≡ 3 mod 4, then Φ2p is a double factor in
Qq+1(t).

We start by explicitly expressing the flag f -vector of the Boolean algebra Bq+1

modulo p:

F (Bq+1) ≡ (M(1))
q ·M(1) ≡M(q) ·M(1) ≡M(q+1) +M(q,1) +M(1,q) mod p.

Hence the flag f -vector f(S) ≡ 1 mod p if S is equal to ∅, {1}, or {q}, and zero
otherwise. By inclusion-exclusion we obtain that the descent set statistic βq+1(S)
modulo p is given by

βq+1(S) ≡


(−1)S if |S ∩ {1, q}| = 0,

0 if |S ∩ {1, q}| = 1,

−(−1)S if |S ∩ {1, q}| = 2,

mod p. (2.9.1)

In terms of ab-monomials, this result can be stated as βq+1(a ·v ·b) ≡ βq+1(b ·v ·a) ≡
0 mod p and βq+1(a·v ·a) ≡ −βq+1(b·v ·b) ≡ (−1)j mod p where v is an ab-monomial
of degree q − 2 having j b’s.

Similar to the previous section, we use two linear functions from ab-polynomials
of degree q to the real numbers R defined by

C(uS) = cos(π/p · βq+1(S)), (2.9.2)

S(uS) = sin(π/p · βq+1(S)). (2.9.3)

Note that these differ slightly from definitions (2.8.1) and (2.8.2) by replacing the
descent set statistic β2q by βq+1.

Lemma 2.9.2. Let w be a cd-monomial of degree q beginning or ending with the
letter c. If ρ(q + 1) = 1/2 then C(w) = 0.
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Proof. It is enough to consider the case when w begins with a c. Let u = u1u2 · · ·uq
be an ab-monomial in the expansion of w. If u1 differs from uq, we have by (2.9.1)
that βq+1(u) ≡ 0 mod p. Hence C(u) = cos(π/p · βq+1(u)) = (−1)βq+1(u). In the case
in which the first and last letter of u are the same, we have that βq+1(u) ≡ ±1 mod p
by (2.9.1). Hence βq+1(u) takes one of the four values ±1, p ± 1 modulo 2p, and
therefore, C(u) = cos(π/p · βq+1(u)) takes one of the two values ± cos(π/p). Note
that if βq+1(u) is even, then βq+1(u) ≡ p ± 1 mod 2p and hence C(u) = − cos(π/p).
Similarly, if βq+1(u) is odd we have C(u) = cos(π/p). To summarize these two cases
when u1 = uq, we have that C(u) = − cos(π/p) · (−1)βq+1(u).

Then we have the sum

C(w) =
∑

u : u1 6=uq

(−1)βq+1(u) − cos(π/p) ·
∑

u : u1=uq

(−1)βq+1(u),

where both summations are over all ab-monomials u in the expansion of w. Let
overline denote the involution defined by a = b and b = a. In each of the sums,
also include the term u1u2 · · ·uq. Since 1 is non-essential for q + 1 in base 2, we have
βq+1(u1u2 · · ·uq) ≡ βq+1(u) mod 2. Hence both sums will double to give us

C(w) =
1

2
·
∑
u

(−1)βq+1(u) − cos(π/p) · 1

2
·
∑
u

(−1)βq+1(u)

=
1

2
· (1− cos(π/p)) · L(w),

where both sums are over all u occurring in the expansion of w. This works since w
begins with the letter c. By the assumption ρ(q+1) = 1/2, this expression will vanish
by Proposition 2.7.1.

Lemma 2.9.3. Let w be a cd-monomial of degree q beginning or ending with the
letter d. If ρ(q + 1) = 1/2 and q ≡ 3 mod 4 then C(w) = 0.

Proof. Assume that w begins with a d. The proof is the same as the proof of the
previous lemma, except that q ≡ 3 mod 4 implies that 2 is non-essential for q + 1
in base 2. In the end of the proof when we extend the two sums ranging over u =
u1u2u3 · · ·uq, also include the terms u1u2u3 · · ·uq. Then both sums become L(w) and
the result follows.

Lemma 2.9.4. Let u and v be two ab-monomials such that deg(u) + deg(v) = q− 1,
both deg(u) and deg(v) are even, and both deg(u) and deg(v) differ from zero. Then
S(u · c · v) = 0.

Proof. Since deg(u) + 1 is non-essential for q + 1 both in base 2 and in base p, we
have by Lemma 2.2.5 that

βq+1(u · a · v) ≡ −βq+1(u · b · v) mod 2p.

Since sine is an odd function, this identity directly implies S(u·a·v) = −S(u·b·v).
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Lemma 2.9.5. Let w be a cd-monomial of degree q different from the monomials
cd(q−1)/2, d(q−1)/2c, and cdicdjc where i+ j = (q − 3)/2. Then S(w) = 0.

Proof. A monomial w of odd degree q has (q+ 1)/2 odd positions and (q− 1)/2 even
positions. Since a d covers both an odd position and an even position, the number of
c’s in odd positions will be one more than the number of c’s in even positions. If the
monomial w has a c in an odd position i, where 2 ≤ i ≤ q − 1, then S(w) vanishes
by the previous lemma. Hence, assume that w is a cd-monomial with no c’s in any
odd position between 2 and q − 1.

Thus, w has either one or two c’s in odd positions, that is, in the first position 1 or
the last position q. If there is only one c in an odd position in w, then w is either the
monomial cd(q−1)/2 or the monomial d(q−1)/2c. If there are two c’s in odd positions
in w, then there is exactly one c in an even position. Thus the monomial w is of the
form cdicdjc.

Lemma 2.9.6. Let w be a cd-monomial of degree q beginning and ending with the
letter c. Then S(w) vanishes. In particular, S(cdicdjc) = 0 for i+ j = (q − 3)/2.

Proof. Let u be an ab-monomial occurring in the expansion of w. Observe that if u
has the form a · v · b or b · v · a then βq+1(u) ≡ 0 mod p by (2.9.1). This implies
that S(u) = sin(π/p · βq+1(u)) = 0. Hence we have only to consider ab-monomials
in the expansion of w that begin and end with the same letter. Again by (2.9.1)
observe that βq+1(a · v · a) ≡ −βq+1(b · v · b) mod p. Since positions 1 and q are
non-essential for q + 1 in base 2, we have βq+1(a · v · a) ≡ βq+1(b · v · b) mod 2.
Combining these two congruences to one statement modulo 2p, we have βq+1(a·v·a) ≡
−βq+1(b · v · b) mod 2p. This implies that S(a · v · a) = −S(b · v · b) and proves the
lemma.

Lemma 2.9.7. If ρ(q+1) = 1/2 and q ≡ 3 mod 4, then S(d(q−1)/2c) and S(cd(q−1)/2)
vanish.

Proof. The congruence relation on q implies that 4 divides q+1. Hence the element 2
is a non-essential element for q+ 1 in base 2. We will use this fact, together with the
facts that 1 and q are also non-essential elements.

By symmetry it is enough to prove the lemma for w = d(q−1)/2c. Let u be an
ab-monomial occurring in the expansion of w. Similar to the previous lemma, if u
begins and ends with different letters, we have that S(u) = 0. Hence we have that u
has the form ab·v ·a or ba·v ·b. Next we have that βq+1(ab·v ·a) ≡ −βq+1(bb·v ·b) ≡
βq+1(ba ·v ·b) mod p by (2.9.1). Furthermore, since the three elements 1, 2, and q are
non-essential for q+ 1 in base 2, we have that βq+1(ab · v ·a) ≡ βq+1(ba · v ·b) mod 2.
That is, we have βq+1(ab · v · a) ≡ βq+1(ba · v · b) mod 2p.

Hence these two cases ab · v · a and ba · v · b are the same, that is,

S(w) = 2 ·
∑
ab·v·a

sin(π/p · βq+1(ab · v · a)).
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The monomial u = ab · v · a has (q − 1)/2 b’s, so βq+1(u) ≡ (−1)(q−1)/2 mod p by
equation (2.9.1). By considering the four values ±1, p ± 1 of βq+1(u) modulo 2p we
have that

sin(π/p · βq+1(u)) = −(−1)(q−1)/2 · sin(π/p) · (−1)βq+1(u).

Hence S(w) is given by

S(w) = −2 · (−1)(q−1)/2 · sin(π/p) ·
∑
ab·v·a

(−1)βq+1(u).

Again since the elements 1, 2, and q are non-essential for q+1 in base 2, we can switch
the letters in these places without changing the descent set statistic βq+1 modulo 2.
Hence we have

S(w) = −1

2
· (−1)(q−1)/2 · sin(π/p) ·

∑
u

(−1)βq+1(u),

where the sum is over all ab-monomials u in the expansion of w. By the assumption
that ρ(q + 1) = 1/2 and Proposition 2.7.1, this last sum is zero.

Proof of Theorem 2.9.1. Observe that

Qq+1(eπ·i/p) =
∑
u

eπ·i/p·βq+1(u)

=
∑
u

(cos(π/p · βq+1(u)) + i · sin(π/p · βq+1(u)))

= (C + i · S)(cq),

since the first two sums are over all ab-monomials of degree q, that is, all the ab-
monomials in the expansion of cq. Finally, the last expression vanishes by Lem-
mas 2.9.2 and 2.9.5.

With the added assumption q ≡ 3 mod 4, Lemmas 2.9.2 and 2.9.3 imply that C
applied to any cd-polynomial of degree q vanishes. Similarly, with the assumption,
Lemmas 2.9.5 through 2.9.7 imply that S applied to any cd-polynomial of degree q
vanishes. Now we have that

eπ·i/p ·Q′q+1(eπ·i/p) =
∑
u

βq+1(u) · eπ·i/p·βq+1(u) = (C + i · S)(Ψ(Bq+1)) = 0,

since Ψ(Bq+1) can be written in terms of the variables c and d. Thus eπ·i/p is a double
root of Qq+1(t).

2.10 Concluding remarks

By considering Table 2.6 one sees that there are two unexplained cyclotomic factors.
They are Φ4 and Φ28, both dividingQ14(t). Here it is straightforward to see a4,1 = a4,3;
that is, Q14(i) is a real number. But it remains to find an argument demonstrating
that a0 = a2. Since 4 is a square, the Chinese Remainder Theorem cannot be applied.
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n degree cyclotomic factors of Qn(t)
3 2 Φ2

4 5 Φ2
4

5 16 Φ2
2 ·Φ10

6 61 Φ2
2 ·Φ2

6 ·Φ10

7 272 Φ2

8 1385 Φ2
4 ·Φ28

9 7936 Φ2
2 ·Φ6 ·Φ18

10 50521 Φ2
2 ·Φ6 ·Φ2

10 ·Φ18 ·Φ30

11 353792 Φ2 ·Φ6 ·Φ22

12 2702765 Φ2
2 ·Φ6 ·Φ10 ·Φ18 ·Φ2

22 ·Φ66 ·Φ110 ·Φ198

13 22368256 Φ2 ·Φ26

14 1.993 · 108 Φ2
2 · Φ4 ·Φ2

14 ·Φ26 · Φ28 ·Φ182

15 1.904 · 109 −
16 1.939 · 1010 Φ2

4 ·Φ12 ·Φ20 ·Φ44 ·Φ52 ·Φ60 ·Φ156 ·Φ220·
Φ260 ·Φ572 ·Φ2860

17 2.099 · 1011 Φ2
2 ·Φ34

18 2.405 · 1012 Φ2
2 ·Φ2

6 ·Φ18 ·Φ34 ·Φ102 ·Φ306

19 2.909 · 1013 Φ2 ·Φ38

20 3.704 · 1014 Φ2
2 ·Φ6 ·Φ10 ·Φ30 ·Φ34 ·Φ2

38 ·Φ102 ·Φ114 ·Φ170·
Φ190 ·Φ510 ·Φ570 ·Φ646 ·Φ1938 ·Φ3230 ·Φ9690

21 4.951 · 1015 Φ2 ·Φ6 ·Φ14 ·Φ42

22 6.935 · 1016 Φ2
2 ·Φ14 ·Φ2

22 ·Φ154

23 1.015 · 1018 −

Table 2.6: Cyclotomic factors of Qn(t). This table is from Chebikin et al. [10], but the
explained factors have been updated. These factors occur in boldface. Furthermore
the factor Φ2860 in Q16(t) has been included, which was missing in the original table.
Note that the two factors Φ4 and Φ28 in Q14(t) are still unexplained.

Note that these factors seem to be isolated to n = 14 and do not occur among other
n with three 1’s in their binary expansion up to n = 23. Do any other outliers exist
beyond this value of n?

Further consideration of Table 2.6 shows that all cyclotomic factors that appear
in table with multiplicity have now been explained. Are there other square factors
appearing beyond n = 23 that have not yet been explained?

Do Theorems 2.8.1 and 2.9.1 apply to infinitely many prime powers? There are
only 6 prime powers with two 1’s in their binary expansion, but there seems to be an
infinite number of primes with three 1’s in their binary expansion. See the sequence
A081091 in The On-Line Encyclopedia of Integer Sequences. However, this seems to
be a hard number theory problem.

Chebikin et al. calculated the proportion for the number of odd entries in the
descent set statistics βn for n = 1, 3, 7, 15, 31, that is, for any integer with at most
five 1’s in its binary expansion. See Table 2.1. Could the topological perspective
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of Theorem 2.3.2 help to calculate the next case n = 63? From this topological
viewpoint, is there a classification of simplicial complexes ∆ such that exactly half of
the induced subcomplexes ∆S have an odd Euler characteristic?

In [10] Chebikin et al. also consider the signed descent set polynomial. This
polynomial is defined in terms of signed permutations, which are of the form π =
π1 · · · πn ∈ S±n where each πi ∈ {±1, . . . ,±n} and |π1| · · · |πn| is a permutation. The
descent set of a signed permutation π is defined as {i : πi−1 > πi} with π0 assumed
to be 0. Then β±n (S) denotes the number of signed permutations in S±n with descent
set S. Finally, the nth signed descent set polynomial is defined to be

Q±n (t) =
∑
S⊆[n]

tβ
±
n (S).

Chebikin et al. found this polynomial also contains many cyclotomic polynomials.
However, they were able to explain the existence of an even smaller percentage of
them compared to the descent set polynomial, as seen in Table 3 in [10]. One suc-
cessful tool they used to examine the descent set statistics for signed permutations
was a quasi-symmetric function that encodes the flag f -vector of the cubical lat-
tice Cn, whereas the standard descent set statistics were associated with the Boolean
algebra Bn. The cubical lattice is actually obtained by applying the diamond product
successively to the Boolean algebra on two elements, that is, Cn = B�n2 . This quasi-
symmetric function technique was used, for instance, to explain why the cyclotomic
polynomial Φ4p for an odd prime p divides Q±p (t). Since that approach was useful for
the signed descent set polynomial, can any of our techniques be extended to explain
other cyclotomic factors in this polynomial?

Copyright c© Norman Bradley Fox, 2015.
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Chapter 3 Lattice Path Interpretation of the Diamond Product

3.1 Introduction

The cd-index is a polynomial in the non-commutative variables c and d that efficiently
encodes the flag f -vector of an Eulerian poset. One primary family of Eulerian posets
consists of the face lattices of convex polytopes. The cd-index is a useful invariant
for computations, as explicit formulas have been developed to calculate the effect
that poset and polytope operations have on the cd-index. Polytope operations, or
their associated poset operations, that have been studied in [19] include the prism,
pyramid, free join, Cartesian product, and truncation of a vertex.

Ehrenborg and Readdy used coalgebraic techniques in [19] to generate expressions
for the cd-index of polytopes under operations such as the prism of a polytope, or
more generally the Cartesian product of polytopes. The corresponding poset oper-
ation to this product is the diamond product. Unfortunately, the expressions that
were developed were rather complicated and required the use of auxiliary variables a
and b. Ehrenborg and H. Fox [13] (no relation to author) improved upon the earlier
work by developing recursive formulas for the bilinear operator that corresponds to
the diamond product of posets.

The diamond product operator is nonnegative on cd-indices, thus leading to the
study of combinatorial interpretations of the resulting coefficients. Slone [42] exam-
ined the specific case of the diamond product of two butterfly posets, whose cd-indices
are simply powers of c. He found that one can interpret the polynomial as a weighted
sum of lattice paths. In this chapter, a generalization of Slone’s lattice path inter-
pretation is given for the diamond product of any two cd-monomials in addition to
a lattice path interpretation for the product of ab-monomials.

In Section 3.2 we discuss the cd-index of Eulerian posets and its underlying coal-
gebraic structure. Section 3.3 includes the definition of the diamond product of two
posets, in addition to formulas given by Ehrenborg and Readdy [19] and by Ehren-
borg and H. Fox [13] to describe the resulting ab- and cd-indices when the diamond
product is applied. In Section 3.4 we introduce a lattice path interpretation of this
product as applied to ab-monomials, with Section 3.5 including the corresponding
interpretation for cd-monomials. Finally, an open problem regarding the Cartesian
product of posets is stated in Section 3.6.

A version of this chapter can be found in [23].

3.2 The cd-index and coproducts

Let P be a graded poset of rank n + 1 with rank function ρ, minimal element 0̂,
and maximal element 1̂. We recall that the flag f -vector of a poset P consists of
entries fS for S ⊆ [n], which count the number of chains in the poset whose elements
x1, . . . , xk−1 have ranks that are exactly the elements of the set S. Then the flag
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h-vector is defined as
hS =

∑
T⊆S

(−1)|S−T | · fT .

The ab-indexΨ(P ) of the poset P is the polynomial in the non-commutative variables
a and b given by

Ψ(P ) =
∑
S

hS · uS,

where S ranges over all subsets of [n] and uS = u1 · · ·un where ui = a if i /∈ S and
ui = b if i ∈ S.

For an Eulerian poset, that is, a poset whose Möbius function satisfies the relation
µ(x, y) = (−1)ρ(y)−ρ(x) for all nontrivial intervals [x, y] in P , the ab-index can be
written as a cd-index in terms of the non-commutative variables c and d. This is
expressed in the following result that was conjectured by Fine and proved by Bayer
and Klapper [3].

Theorem 3.2.1 (Bayer–Klapper). The ab-index Ψ(P ) of an Eulerian poset P can
be rewritten as a non-commutative polynomial in c = a + b and d = a · b + b · a.

We now briefly discuss the coalgebraic structures of the ab-index and the cd-index
that were introduced in [19]. It is straightforward to verify that the two coalgebras
that are described are both Newtonian.

First, let Z〈a,b〉 denote the polynomial ring in the non-commutative variables
a and b, where the degree of each variable is one. For the empty word 1, we let
∆(1) = 0. Then for an ab-monomial u = u1 · · ·un with n ≥ 1, define

∆(u) =
n∑
i=1

u1 · · ·ui−1 ⊗ ui+1 · · ·un,

and extend linearly to Z〈a,b〉. As examples, ∆(a) = ∆(b) = 1⊗ 1 and ∆(abba) =
1⊗ bba + a⊗ ba + ab⊗ a + abb⊗ 1.

Next consider the subring Z〈c,d〉 of Z〈a,b〉 generated by the variables c and d
as defined in Theorem 1.5.2. Once one calculates ∆(c) = ∆(a + b) = 2 · 1 ⊗ 1 and
∆(d) = ∆(a · b + b · a) = 1 ⊗ c + c ⊗ 1, it can be verified that Z〈c,d〉 is also a
Newtonian coalgebra.

We now define two linear operators on these coalgebras. Define the derivation
G : Z〈a,b〉 −→ Z〈a,b〉 given by the rules

G(a) = b · a, G(b) = a · b,

and the product rule
G(u · v) = G(u) · v + u ·G(v).

Since G(c) = d and G(d) = c ·d, the operator G becomes a linear operator on Z〈c,d〉
as well. Let Pyr : Z〈c,d〉 −→ Z〈c,d〉 be the linear operator defined by

Pyr(u) = u · c +G(u).

48



3.3 The diamond product of posets

Given two graded posets P and Q, the diamond product of P and Q is defined in terms
of a Cartesian product as the graded poset P �Q = (P − {0̂P})× (Q− {0̂Q}) ∪ {0̂}.
This product corresponds to the Cartesian product of polytopes. Kalai showed this
in [28], where he stated that the face lattice of the Cartesian product of two polytopes
corresponds to the diamond product of their face lattices, that is, L(V × W ) =
L(V ) �L(W ). The diamond product specifically appears when studying the prism of
a polytope, defined as Prism(V ) = V × I, where I is the unit interval. As stated in
Proposition 4.1 of [19], L(Prism(V )) = L(V ) �B2.

Because of the importance of the prism operation and the Cartesian product in
the study of polytopes, one needs to understand how these operations affect the
ab- and cd-indices of polytopes, and likewise, their associated posets. This leads
to the investigation of the cd-index of the diamond product of two Eulerian posets.
Ehrenborg and Readdy [19] developed a bilinear operator for this purpose. In order
to state the formula for this operator, we need to define the mixing operator, which
was used in [19] in a formula to calculate the ab-index of the Cartesian product of
two graded posets. First define the index set

I = {(r, s, n) : r, s ∈ {1, 2}, n ≥ 2, n ≡ r + s+ 1 mod 2}.

The mixing operator Mr,s(u, v, n) is then defined for ab-monomials u and v and
(r, s, n) ∈ I by the recursion

M1,2(u, v, 2) = u · a · v,
M2,1(u, v, 2) = v · b · u,

M1,s(u, v, n+ 1) =
∑
u

u(1) · a ·M2,s(u(2), v, n),

M2,s(u, v, n+ 1) =
∑
v

v(1) · b ·M1,s(u, v(2), n).

Next define the algebra map κ : Z〈a,b〉 −→ Z〈a,b〉 by assigning κ(a) = a − b and
κ(b) = 0. Using the mixing operator, the map κ, and coproducts, Ehrenborg and
Readdy introduced the following formula to calculate the ab-index of the diamond
product of two graded posets. Properties, examples, and recurrences for this operator
are in Section 6 of [13] and Section 10 of [19].

Proposition 3.3.1 (Ehrenborg–Readdy). Given two graded posets P and Q, let
u = Ψ(P ) and v = Ψ(Q). The ab-index of P �Q is given by

Ψ(P �Q) = κ(u) · κ(v) +
∑
u

κ(u(1)) · κ(v) · b · u(2) +
∑
v

κ(u) · κ(v(1)) · b · v(2)

+
∑
u

∑
v

κ(u(1)) · κ(v(1)) · b ·

 ∑
(r,s,n)∈I

Mr,s(u, v, n)

 .
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The formula described in Proposition 3.3.1 is denoted by the bilinear operator
N(u, v) in the paper [13]. We use the diamond product u�v to simplify the notation.
Note that for two polytopes V and W , the ab-index of the Cartesian product V ×W
can also be expressed using this operator as

Ψ(V ×W ) = Ψ(V ) �Ψ(W ).

The following statements made by Ehrenborg and H. Fox in [13] give useful
properties and a recursive formula for calculating the diamond product of two ab-
polynomials, as well as extending the operator for cd-polynomials. Proposition 3.3.3
is a reformulated version of Proposition 7.6 in [13]. Likewise, Proposition 3.3.4 is a
reformulation of Theorem 7.1 in [13], as was shown in Corollary 2.3.7 in [42].

Corollary 3.3.2 (Ehrenborg–H. Fox). For any ab- or cd-polynomials u, v, and w,
the following identities are satisfied:

u � 1 = u,

u � v = v � u,
u � (v � w) = (u � v) � w.

Proposition 3.3.3 (Ehrenborg–H. Fox). For any ab-polynomials u and v, the dia-
mond product satisfies the following recursions:

u � (v · a) = (u � v) · a +
∑
u

(u(1) � v) · a · b · u(2), (3.3.1)

u � (v · b) = (u � v) · b +
∑
u

(u(1) � v) · b · a · u(2). (3.3.2)

Proposition 3.3.4 (Ehrenborg–H. Fox). For any cd-polynomials u and v, the dia-
mond product satisfies the following recursions:

u � (v · c) = (u � v) · c +
∑
u

(u(1) � v) · d · u(2), (3.3.3)

u � (v · d) = (u � v) · d +
∑
u

(u(1) � v) · d · Pyr(u(2)). (3.3.4)

3.4 Lattice path interpretation for ab-monomials

Before introducing the lattice path interpretation for the diamond product of cd-
monomials, we first introduce a similar interpretation for the diamond product of two
ab-monomials. Define the set of lattice paths Ω as words in the non-commutative
letters D, R, and U, where D is degree 2, and R and U are each degree 1. The
letters correspond to the lattice path steps as follows

Right : R = (1, 0), Up : U = (0, 1), and Diagonal : D = (1, 1).

Let Ω(p, q) be the set of lattice paths using only these 3 steps from (0, 0) to (p, q)
which do not contain UR as a contiguous subword, that is, as a factor.
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Figure 3.1: The lattice path UDRRD ∈ Ω(4, 3) labeled by the words u = abab and
v = bba.

For a given pair of ab-monomials u and v of degrees p and q, respectively, consider
lattice paths in Ω(p, q) in which the axes are labeled by the words u and v, as shown
by the example in Figure 3.1. We now define a weight function for such paths based
on this labeling.

Definition 3.4.1. For p′ ≤ p and q′ ≤ q, define wtu,v : Ω(p′, q′) −→ Z〈a,b〉 to
be the multiplicative map, taking concatenation to be the product, determined by the
following rules:

wtu,v(R) =

{
a if above an a label

b if above a b label,

wtu,v(U) =

{
a if to the right of an a label

b if to the right of a b label,

wtu,v(D) =

{
a · b if to the right of an a label

b · a if to the right of a b label.

For the example path in Figure 3.1, we have wtabab,bba(UDRRD) = bbabaab.
For a given ab-monomial u of degree p, define τ(u) ∈ Ω(p, 0) as the word τ(u) =

Rdeg(u). Now that we have notation for creating horizontal paths, we give the inter-
pretation for the diamond product of two ab-monomials as a sum of weighted lattice
paths.

Theorem 3.4.2. For any two ab-monomials u and v of degree p and q, respectively,
the ab-polynomial u � v is given by the sum

u � v =
∑

P∈Ω(p,q)

wtu,v(P ).

Proof. To keep the notation simpler, we will leave out the dependency on u and v
of the weight function. The proof of this theorem is by induction on the degree q of
the monomial v. For the base case, we assume that q is 0, making v = 1, and that
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Figure 3.2: Illustrations of the lattice paths described in Case 1.

the degree p of u is any nonnegative integer. The diamond product u � 1 is u, and
the only lattice path in Ω(p, 0) is the horizontal path τ(u) of length p. The weight
of this path τ(u) is wt(τ(u)) = u since it is only R steps along the labels of u. Thus
the base case of the theorem is true.

Suppose the statement is true for any two words of degree p′ and q′ where p′ ≤ p
and q′ < q. The proof is split into two cases depending on the last letter of v.

Case 1: We first assume that the last letter of v is a, or v = w · a. According to
Equation (3.3.1), we have

u � (w · a) = (u � w) · a +
∑
u

(u(1) � w) · a · b · u(2).

By induction, the first term is

(u � w) · a =
∑

P∈Ω(p,q−1)

wt(P ·U). (3.4.1)

Since the final U step is to the right of an a label, a is the correct weight for this
step. Figure 3.2 gives an illustration of the lattice paths in equation (3.4.1) as well
as the next equation.

For the terms that result from the coproduct, we observe that the cases of u being
broken apart by the coproduct at either an a or a b are identical. We assume that
either u = y ·a·z or u = y ·b·z where y is of degree i. Hence, we have u(1)⊗u(2) = y⊗z
in each case since ∆(a) = ∆(b) = 1⊗ 1. This gives the term

(y � w) · a · b · z =
∑

P∈Ω(i,q−1)

wt(P ·D · τ(z)). (3.4.2)

Notice that the weight of a D step does not depend on the label below that step.
Rather, it only depends on the label on the vertical axis. Since this D step is to the
right of the a label that ends the word v, its weight is a · b, which matches the left
side of equation (3.4.2).

Since we only consider lattice paths without consecutive UR steps, every lattice
path in Ω(p, q) must end in a U step or end in a D step followed by a horizontal
path. The paths contained within equation (3.4.1) correspond to the paths ending
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Figure 3.3: Illustrations of the lattice paths described in Case 2.

in U, and the remaining possible paths with the D step are found in equation (3.4.2).
Thus Ω(p, q) decomposes into a disjoint union of lattice paths as

Ω(p, q) ={P ·U : P ∈ Ω(p, q − 1)}
∪̇{P ·D · τ(z) : P ∈ Ω(i, q − 1), u = y · a · z or u = y · b · z},

completing the proof if v ends with the letter a.
Case 2: If we instead assume that v = w · b, then Equation (3.3.2) gives us

u � (w · b) = (u � w) · b +
∑
u

(u(1) � w) · b · a · u(2).

This second situation follows nearly identically to the first case from this point. This
is because the lattice paths ending in U would have b as the weight for this final step
since it would be to the right of a b label. Additionally, the D step in lattices paths
ending in a D step followed by a horizontal path will contribute a weight of b · a
since this step will also be to the right of the final b label. Illustrations of the lattice
paths for this case are shown in Figure 3.3. This second case concludes the proof of
the theorem.

3.5 Lattice path interpretation for cd-monomials

To try to give a better understanding of the recursive formulas given in (3.3.3)
and (3.3.4) that Ehrenborg and H. Fox developed for the diamond product of two cd-
polynomials, Slone examined in [42] the specific case of the diamond product of the
form cp � cq. He was able to interpret the coefficients of the resulting cd-polynomial
using weighted lattice paths.

Concentrating on the diamond product of powers of c, or cp � cq, Slone defined
the set of lattice paths Λ as words in the non-commutative letters D, R, and U,
in which D has degree 2 whereas R and U both have degree 1. As defined in the
ab-index case, these letters correspond to lattice path steps as follows:

Right : R = (1, 0), Up : U = (0, 1), and Diagonal : D = (1, 1).
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Let Λ(p, q) be the set of lattice paths using only these 3 steps from (0, 0) to (p, q)
which do not contain UR as a contiguous subword. Note that labeling the axes, as was
done in the ab-index case, is not necessary here since each letter in the cd-monomials
is a c. Define wt : Λ(p, q) −→ Z〈c,d〉 to be the multiplicative map, taking concate-
nation to be the product, determined by wt(D) = 2d and wt(R) = wt(U) = c.
The main result of Slone’s work on the diamond product is the following statement,
which is Proposition 2.4.2 in [42].

Proposition 3.5.1 (Slone). For any nonnegative integers p and q, the cd-polynomial
cp � cq is given by the sum

cp � cq =
∑

P∈Λ(p,q)

wt(P ).

Now we extend Slone’s interpretation to look beyond the case of cd-monomials
consisting of powers of c to the diamond product of any two cd-monomials. Define
the set of lattice paths Γ as words in the non-commutative letters R, U, D, R, and U.
We consider R and U to be degree 1, and D, R, and U to be degree 2. The letters
correspond to the steps

Right: R = (1, 0), Up: U = (0, 1), Diagonal: D = (1, 1),

Double Right: R = (2, 0), and Double Up: U = (0, 2).

Let Γ(p, q) be the set of all lattice paths from the origin to (p, q) using the 5 steps
described above and which do not contain consecutive UR, UR, UR, or U R steps.

We now restrict this set to a particular subset Γ(u, v) given two cd-monomials
u and v with the degrees of the monomials being p and q, respectively. This subset
within Γ(p, q) requires that the word and its corresponding lattice path adhere to the
following four rules, where we label the horizontal axis by the word u and likewise
label the vertical axis by v, as shown in Figure 3.1. This is similar to the labels used
earlier with ab-monomials except that the d label covers two units on the axis. In
the example, we have u = ddcc and v = cdc; hence, the degrees are p = 6 and q = 4,
with the lattice path DRRDDU being shown.

The rules for a word P ∈ Γ(p, q) to be in Γ(u, v) are as follows:

1. No U step is allowed at the bottom of a d label on the vertical axis.

2. Although an R step is allowed along the first part of a d label on the horizontal
axis, two consecutive R steps along such a d label are not allowed.

3. A U step is only allowed at the bottom of a d label on the vertical axis, and
similarly, an R step is only allowed at the left of a d label on the horizontal
axis.

4. If a D step is at the bottom of a d label on the vertical axis, then the steps DR
above a d label on the horizontal axis and within the top half of this d label on
the vertical axis are not allowed.
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Figure 3.1: The lattice path DRRDDU ∈ Γ(ddcc, cdc).

The following definition gives the method of weighting the steps of the lattice
paths in Γ(u, v) for cd-monomials u and v to obtain the cd-index of the diamond
product, albeit the choice of coefficient for weight of the D steps becomes complicated.

Definition 3.5.2. For u′ an initial subword of u, that is, u can be factored as u =
u′ · u′′, and v′ an initial subword of v, define wtu,v : Γ(u′, v′) −→ Z〈c,d〉 to be the
multiplicative map determined by

wtu,v(R) = wtu,v(U) = c, wtu,v(R) = wtu,v(U) = d, wtu,v(D) = kd,

where depending on the location of a diagonal step D, the scalar k is given by

k =



2 if above a c label and to the right of either a c label or the

bottom of a d label

2 if above the first part of a d label, to the right of a c label,

and followed by a U step, a U step, or a D step

2 if above the first part of a d label, to the right of the bottom

of a d label, and followed by a U step

1 otherwise.

Note that this weight function matches Slone’s weight function when we restrict our
view to lattice paths in Γ(cp, cq) = Λ(p, q), because the coefficient of a D step will
always be 2 in this situation.

Example 3.5.3. One can compute the diamond product of cd and dc as

cd � dc = 3cddc + ccdcc + ccdd + cdcc + 2cdcd

+ 2ddcc + 4dcdc + 2dccd + 4ddd.

There are 13 lattice paths in Γ(cd,dc), which are shown in Figure 3.2. Note that
none of the paths begin with U as required by rule 1 since the word dc begins with d.
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Figure 3.2: The lattice paths in Γ(cd,dc).

Path RR UU RRDUU RRUD RDRUU RDDU
Weight cddc ccdcc ccdd cdccc cddc

Path RDUD RUDR DRUU DRDU
Weight 2cdcd cddc 2ddcc 2dcdc

Path DRUD DDD DUDR UDR
Weight 2dccd 2ddd 2dcdc 2ddd

Table 3.1: The weights of the lattice paths in Γ(cd,dc)

Additionally, due to rule 4, the path DDRU is omitted. The terms of cd � dc can
be obtained by adding the weights of the paths as defined in Definition 3.5.2. Some
of the paths, such as DRDU and DUDR, give the same term of cd �dc, leading to
only 9 terms from the 13 lattice paths. The paths are shown in Figure 3.2, and their
corresponding weights are given in Table 3.1.

Before we state the main result, we first define a map to create horizontal paths
that will be useful in its proof, as was done with the map τ in the ab-index case.
Define π such that for a given cd-monomial u, π(u) is the word in Γ(u, 1) resulting
from replacing each c in u with the step R and each d with the step R. This map
will be important in the proof of Theorem 3.5.4 since rules 2 and 3 imply that π(u)
is the only valid horizontal path along a portion of the horizontal axis labeled by u.

Theorem 3.5.4. For any two cd-monomials u and v, the cd-polynomial u � v is
given by the sum

u � v =
∑

P∈Γ(u,v)

wtu,v(P ).
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Figure 3.3: Illustrations of the lattice paths described in Subcases (i) and (ii) of
Case 1.

Proof. Again to simplify notation, the dependency of the weight function on the
words u and v will be omitted. We will prove this result using induction on the
degree q of v. For the base case when q = 0 and the degree of u is any nonnegative
integer p, we have that v = 1. The diamond product u � 1 is simply u, and the only
lattice path in Γ(u, 1) is π(u), the horizontal path along the labels from u. The fact
that wt(π(u)) = u shows that the base case is true.

Suppose the statement is true for any two words of degree p′ and q′ where p′ ≤ p
and q′ < q. We will break up the proof for u � v according to the final letter of v.

Case 1: Assume v = w · c. Due to equation (3.3.3), we have

u � (w · c) = (u � w) · c +
∑
u

(u(1) � w) · d · u(2).

We now examine four subcases, each of which has a set of lattice paths that
corresponds to either the first term of the previous equation or to a collection of
terms from the coproduct.

Subcase (i): By induction, the first term is

(u � w) · c =
∑

P∈Γ(u,w)

wt(P ·U). (3.5.1)

An illustration of the lattice paths in equation (3.5.1) as well as the next equation
can be seen in Figure 3.3.

For the remaining terms that result from the coproduct, we must separately ex-
amine the subcases of u being broken apart by the coproduct at either a c or d.

Subcase (ii): If the coproduct breaks up the monomial u at a c, we assume
u = y · c · z; thus, u splits such that u(1) ⊗ u(2) = 2 · y ⊗ z. This gives the term

(y � w) · 2d · z =
∑

P∈Γ(y,w)

wt(P ·D · π(z)). (3.5.2)

Since the D step is above the c label that is between y and z and to the right of a c
label at the end of the word v, the weight of this step is correctly 2d.
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Figure 3.4: Illustrations of the lattice paths described in Subcases (iii) and (iv) of
Case 1.

If u is instead broken up at a d, we assume u = y · d · z; thus, u splits as
y ⊗ c · z + y · c⊗ z. This leads to two terms that represent our last two subcases.

Subcase (iii): The first of these terms is

(y � w) · d · c · z =
∑

P∈Γ(y,w)

wt(P ·D ·R · π(z)). (3.5.3)

Although the D step is above the first part of a d label and to the right of a c label,
1 is the correct coefficient of the weight of this D step since it is not followed by a
U, U, or D step. The lattice paths described in equation (3.5.3) and the following
equation can be seen in Figure 3.4.

Subcase (iv): The other term we get is

(y · c � w) · d · z =
∑

P ′∈Γ(y·c,w)

wt(P ′) · d · z =
∑

P∈Γ(y·d,v)
P ends with D

wt(P · π(z)). (3.5.4)

First, note that the D step that is appended to P ′ to create P has the correct
coefficient 1 since it is above the second half of a d label. As we switch labels from
y ·c to y ·d, it is important to notice that the coefficient of a D step above this c label
does not change. The only scenario in which it could change is if it was to the right
of the bottom of a d label and was not followed by a U step, but this is impossible
because a U step would be required to move vertically through the top half of the d
label, concluding this final subcase.

To avoid the subwords UR and UR, every lattice path in Γ(u,w · c) must either
end in a U step, which is described in Subcase (i), or end in a D step followed by
a horizontal path to the point (p, q). The paths within the three types of terms
resulting from the coproduct in Subcases (ii), (iii), and (iv) cover all possible ways
for this D step to occur, either above a c label or above one of the two parts of a d
label. Thus Γ(u,w · c) decomposes as the disjoint union

Γ(u,w · c) = {P ·U : P ∈ Γ(u,w)} (3.5.5)

∪̇ {P ·D · π(z) : P ∈ Γ(y, w), u = y · c · z} (3.5.6)

∪̇ {P ·D ·R · π(z) : P ∈ Γ(y, w), u = y · d · z} (3.5.7)
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Figure 3.5: Illustrations of the lattice paths described in Subcases (i) and (ii) of
Case 2.

∪̇ {P · π(z) : P ∈ Γ(y · d, v), P ends in D, u = y · d · z}, (3.5.8)

where the set (3.5.5) is from equation (3.5.1), (3.5.6) from (3.5.2), (3.5.7) from (3.5.3),
and (3.5.8) from (3.5.4). This concludes the proof for this case.

Case 2: Assume v = w · d. By applying equation (3.3.4), we have

u � (w · d) = (u � w) · d +
∑
u

(u(1) � w) · d · Pyr(u(2)).

We again break down the terms in this equation into four subcases and describe
the sets of lattice paths corresponding to those terms.

Subcase (i): The first term, by induction, gives us

(u � w) · d =
∑

P∈Γ(u,w)

wt(P ·U). (3.5.9)

See an illustration of the lattice paths in equation (3.5.9) and the next equation in
Figure 3.5.

As was done in Case 1, we separate the remaining terms from the coproduct
depending on whether u is broken up at a c or d.

Subcase (ii): If the monomial u is broken up at a c, we assume u = y · c · z;
hence, u splits into u(1) ⊗ u(2) = 2 · y ⊗ z as it did in Case 1. This gives the term

(y � w) · 2d · Pyr(z) =
∑

P∈Γ(y,w),Q∈Γ(c·z,d)
Q begins with D

wt(P ·Q). (3.5.10)

The 2d is the weight of the D step that it is above the c label since it is to the right
of the bottom of a d label, so it remains to show that Pyr(z) gives the weights of the
steps that follow the D step in the path Q. Since this step is at the bottom part of
a d label on the vertical axis, rule 4 causes any path with DR along any d label to be
invalid. Due to consecutive UR and UR steps not being allowed, there also cannot
be any path with a U step, except possibly as the final step. Thus these paths only
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Figure 3.6: Illustrations of the lattice paths Q within Subcase (ii) of Case 2.

have horizontal steps with a U step at the end, or they only have horizontal steps
with the exception of one D step, either above a c label or following an R step along
a d label.

Recall that
Pyr(z) = z · c +G(z).

The first term is
z · c = wt(π(z) ·U),

corresponding to the horizontal path with U appended to the end. Illustrations for
this and the following two descriptions of the possible options for the path Q are
shown in Figure 3.6.

Since G is a derivation, we apply the product rule to z = z1 · · · zi to get

G(z) =
i∑

j=1

z1 · · · zj−1 ·G(zj) · zj+1 · · · zi.

If zj = c, we have

z1 · · · zj−1 ·G(zj) · zj+1 · · · zi = z1 · · · zj−1 · d · zj+1 · · · zi
= wt(π(z1 · · · zj−1) ·D · π(zj+1 · · · zi)),

corresponding to the paths where the D step is above a c label. The weight of this
step has coefficient 1 since it is along the top half of a d label on the vertical axis.
On the other hand, if zj = d, we have

z1 · · · zj−1 ·G(zj) · zj+1 · · · zi = z1 · · · zj−1 · c · d · zj+1 · · · zi
= wt(π(z1 · · · zj−1) ·R ·D · π(zj+1 · · · zi)),

corresponding to the paths with RD steps above the d label, where the coefficient of
the weight of the D step is again 1 by the same reasoning. Therefore, Pyr(z) gives the
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Figure 3.7: Illustrations of the lattice paths described in Subcases (iii) and (iv) of
Case 2.

correct paths that combine with the initial D step to make up the paths Q, proving
equation (3.5.10) and concluding Subcase (ii).

If u is broken up by the coproduct at a d, we assume u = y · d · z, and we have
that u splits as y⊗ c · z+ y · c⊗ z. This gives two terms, each representing a subcase
of Case 2.

Subcase (iii): The first of the two terms is

(y � w) · d · Pyr(c · z) =
∑

P∈Γ(y,w),Q∈Γ(d·z,d)
Q begins with D

wt(P ·Q). (3.5.11)

The d is the correct weight of the first D step in Q since it cannot be followed by
a U step. Otherwise, the path would be invalid since it would have UR or UR
as a subword. Pyr(c · z) gives the weights of the steps following this D step in the
paths Q due to an argument analogous to the one used in the previous subcase,
because treating the second half of the d label on the horizontal axis as a c label
does not change any of the weights of these paths. Illustrations of the lattice paths
in equation (3.5.11) and the following equation can be found in Figure 3.7.

Subcase (iv): The second term from this situation is

(y · c � w) · d · Pyr(z) =

 ∑
P ′∈Γ(y·c,w)

wt(P ′)

 · d · Pyr(z)

=
∑

P∈Γ(i+1,q−2),Q∈Γ(p−i−2,1)
P ·D·Q∈Γ(y·d·z,w·d)

wt(P ·D ·Q). (3.5.12)

Here, we are assuming the degree of y is i; hence, the degree of z is p − i − 2. Note
that the path P ′ does not have its weight changed as it becomes the path P when
the c label is switched to become the first half of a d label. This is true since the
only possible difference could be the coefficient of a D step above the final c label.
However, this coefficient will not change since it must be followed by a U or U step
if the D step is not the final step in P ′, or it is followed by a D step if it is the final
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step in P ′. The coefficient of 1 is correct for the D step between the paths P and Q
since it is above the second part of a d label. Although it is not possible to partition
the labels in order to have the correct weights when writing P and Q as elements of
Γ(x, x′) for some cd-monomials x and x′ as was done in the previous cases, it is still
clear that the contribution that Q makes to the weight is Pyr(z), similarly to the last
two subcases. This concludes the final subcase of Case 2.

The lattice paths in Γ(u,w · d) must either end in a U step, as described in
Subcase (i), or by rule 1 and the restriction of avoiding consecutive UR and UR
steps, there must be two D steps to the right of the last d label of v = w · d with
horizontal paths between and after these steps. The three types of terms from the
coproduct consist of all ways for these D steps to occur, with the three types being
distinguished by whether the first D step is above a c label in Subcase (ii), the first
part of a d label in Subcase (iii), or the second part of a d label in Subcase (iv).
Therefore, Γ(u,w · d) decomposes as the disjoint union

Γ(u,w · d) = {P ·U : P ∈ Γ(u,w)} (3.5.13)

∪̇ {P ·Q : P ∈ Γ(y, w), Q ∈ Γ(c · z,d), Q begins with D,

u = y · c · z} (3.5.14)

∪̇ {P ·Q : P ∈ Γ(y, w), Q ∈ Γ(d · z,d), Q begins with D,

u = y · d · z} (3.5.15)

∪̇ {P ·D ·Q : P ∈ Γ(i+ 1, q − 2), Q ∈ Γ(p− i− 2, 1),

P ·D ·Q ∈ Γ(y · d · z, w · d), u = y · d · z}, (3.5.16)

where the set (3.5.13) is from equation (3.5.9), (3.5.14) is from (3.5.10), (3.5.15) is

from (3.5.11), and (3.5.16) is from (3.5.12). This decomposition gives us the proof
for the case of v ending in a d, concluding the proof of the theorem.

3.6 Concluding remarks

The effect on the cd-index of a second important operation on posets was studied in
[13] and [19]. This operation is the Cartesian product of posets, which we recall from
Section 1.4 to be defined for posets P and Q as P ×Q = {(p, q) : p ∈ P and q ∈ Q}.
As the diamond product of posets is related to the Cartesian product of polytopes,
the Cartesian product of posets is connected to the free join of polytopes, for which
we recall the following definition. If V is an m-dimensional polytope and W is an
n-dimensional polytope, then embed V and W in Rm+n+1 by

V ′ = {(x1, . . . , xm, 0 . . . , 0︸ ︷︷ ︸
n

, 0) ∈ Rm+n+1 : (x1, . . . xm) ∈ V }

and likewise by

W ′ = {(0, . . . , 0︸ ︷︷ ︸
m

, x1, . . . , xn, 1) ∈ Rm+n+1 : (x1, . . . , xn) ∈ W}.
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Then the free join V > W is the (m + n + 1)-dimensional polytope defined as the
convex hull of V ′ and W ′. Kalai [28] observed that the face lattice of the free join of
two polytopes is the Cartesian product of the two face lattices, i.e., for two polytopes
V and W we have L(V >W ) = L(V )×L(W ). Ehrenborg and Readdy [19] introduced
a bilinear operator from Z〈a,b〉 × Z〈a,b〉 to Z〈a,b〉, called the mixing operator M ,
which was defined in Section 3.3, in order to study the ab-index of the Cartesian
product of posets, or likewise the ab-index of the free join of polytopes. The following
proposition describes how to calculate this ab-index using the mixing operator.

Proposition 3.6.1 (Ehrenborg–Readdy). Let P and Q be two posets. Then

Ψ(P ×Q) =
∑

(r,s,n)∈I

Mr,s(Ψ(P ),Ψ(Q), n).

As with the diamond product operator, Section 6 of [13] and Section 10 of [19] give
properties and recurrences for this operator. By reformulating Theorem 5.1 in [13],
we have the following recursions for the Cartesian product of posets.

Proposition 3.6.2 (Ehrenborg–H. Fox). For any cd-polynomials u and v, the Carte-
sian product satisfies the following:

u× (v · c) = (u× v) · c + v · d · u+
∑
u

(u(1) × v) · d · u(2),

u× (v · d) = (u× v) · d + v · d · Pyr(u) +
∑
u

(u(1) × v) · d · Pyr(u(2)).

The recurrence is very similar to that of the diamond product; however, the degree
of M(u, v) is one higher than the degree of u � v, and there is an additional term that
does not occur within the diamond product recursion. Is there a similar lattice path
interpretation for this product? Even a good interpretation for the easier case of
cm × cn or the Cartesian product of ab-monomials is currently unknown.

Recently Carl Lee (personal communication) found an equation that relates the
free join and Cartesian product of polytopes, which also involves the pyramid and
prism operations. It is stated in the following lemma in terms of the analogous poset
operations. Together with Ehrenborg, the author used a chain counting argument to
show it is true for the cd-indices of the posets.

Lemma 3.6.3 (Lee). For two posets P and Q, we have

Ψ(P ×Q) = Ψ(Pyr(P ) �Q) + Ψ(P � Pyr(Q))−Ψ(Prism(P �Q)).

If one could develop lattice path interpretations for the three simpler terms on the
right-hand side of 3.6.3, it would allow us to have an interpretation for the Cartesian
product P ×Q.

A different approach to studying how flag f -vectors change during poset opera-
tions such as the Cartesian product and diamond product is by using quasi-symmetric
functions. The quasi-symmetric function of a poset is multiplicative with respect to
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Cartesian product; see [12, Proposition 4.4]. Similarly, the type B quasi-symmetric
function of a poset is multiplicative with respect to the diamond product; see [22,
Theorem 13.3]. Could this approach be helpful in gaining a better understanding of
these product operators?

Copyright c© Norman Bradley Fox, 2015.
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Chapter 4 The Infinite cd-index and the Universal Coxeter Group

4.1 Introduction

The cd-index is a polynomial that encodes data on chains through an Eulerian
poset P , which is finite, graded, and the Möbius function applied to each nontrivial
interval [x, y] is given by µ(x, y) = (−1)ρ(x,y). This polynomial has been well-studied,
but the focus of previous work has been with only finite posets. The cd-index can
be extended to infinite posets which are locally finite, Eulerian, and have an upper
bound for each pair of elements. A class of this type of poset, called level Eulerian
posets, was introduced and studied by Ehrenborg, Hetyei, and Readdy [17].

Our focus will be on a second example of an infinite Eulerian poset, known as the
universal Coxeter group. In general, Coxeter groups are generated by involutions,
often with a relation between each pair of generators s and t in which (st)m(s,t) = 1
for some positive integer m(s, t). If each of these exponents m(s, t) is finite, then the
group itself is finite. However, when we remove these relations or make m(s, t) =∞
for every pair, the group is known as a universal Coxeter group. This group is infinite,
but there is a partial order that can be placed on it that results in each interval having
the Eulerian property, and hence allows us to study its cd-index.

In Section 4.2 we extend the flag vectors and the ab-index for infinite, but locally
finite posets. We continue in Section 4.3 by introducing and proving the existence
of an extension of the cd-index to Eulerian infinite posets. Section 4.4 contains
the definition of the k-vector of a poset, which will be helpful in calculating the
coefficients of cd-monomials. We reintroduce in Section 4.5 the definitions of Coxeter
groups and the universal Coxeter group, along with describing the strong Bruhat
order that generates a partial order on the words in that group. Section 4.6 includes
an in-depth study of universal Coxeter group under the Bruhat order, including the
development of generating functions that contain enumerative data on the number
of words for which a particular element is a subword. We compute the coefficients
of some monomials in the cd-index of the universal Coxeter group in Section 4.7
and conclude the chapter by making a conjecture about the coefficients of a general
monomial.

4.2 Infinite posets

Recall that a poset P is locally finite if for all x, y ∈ P such that x ≤ y, we have
that the interval [x, y] has a finite cardinality. We call a ranked, locally finite poset P
Eulerian if the Möbius function is given by µ(x, y) = (−1)ρ(x,y) for every nontrivial
interval [x, y]. Lastly, we call a poset confluent if for all pairs x, y ∈ P there exists
exists an upper bound z, that is, an element z such that x, y ≤ z.

Let P be an infinite, locally finite, and ranked poset with minimal element 0̂
and rank function ρ : P −→ N such that ρ(0̂) = 0. Our interest is to study flag
or chain enumeration in infinite posets. We first need the extra condition that for
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all positive integers k, the number of elements of rank k is finite. In other words,
the preimage ρ−1(k) is finite. We denote the cardinality of ρ−1(k) by fk. Note that
this condition implies that the poset is locally finite. In what follows we restrict our
attention to infinite posets that have a finite set of elements at each rank.

We extend the classical notion of the flag f -vector as follows. For S = {s1 < s2 <
· · · < sk} a finite subset of the positive integers P, define fS to be the number of
chains in P that visit the ranks in S, that is,

fS = {(x1, x2, . . . , xk) : ρ(xi) = si}.

Observe that the cardinality of fS is indeed finite since it has the upper bound of
fs1 · fs2 · · · fsk . Define the flag f -vector to be the infinite vector (fS)S where S ranges
over all finite subsets of the positive integers. Similarly define the flag h-vector
entry hS for S a finite subset of P by the inclusion-exclusion formula and its inverse

hS =
∑
T⊆S

(−1)|S−T | · fT and fS =
∑
T⊆S

hT .

The flag h-vector is the infinite vector (hS)S where S ranges over all finite subsets of
the positive integers.

Example 4.2.1. Let P be the infinite butterfly poset, which is the poset with fk = 2
for all positive integers k and where each element covers all the elements in the rank
below. This poset is also described as the strong Bruhat order of the infinite dihedral
group. Here the flag f -vector and the flag h-vector are given by

fS = 2|S| and hS = 1.

Our next goal is to extend the notion of the ab-index to infinite posets. For S a
subset of the positive integers P, we define the infinite ab-monomial uS = u1u2 · · · ,
where ui = b if i ∈ S and ui = a otherwise.

When we would like to describe a finite ab-monomial of degree n, we let u
(n)
S

denote the finite product u1u2 · · ·un. In order to write infinite words, we let the
power v∞ denote the infinite product v · v · · · .

Let AB denote the set of all infinite monomials in the non-commutative variables
a and b, and let AB=∞ denote the set of all monomials with an infinite number
of b’s. Let Z[AB] and Z[AB=∞] denote all formal sums of monomials in AB, and
respectively, in AB=∞. Finally, define the quotient A = Z[AB]/Z[AB=∞]. In effect,
we are setting each monomial with an infinite number of b’s to be zero. A linear
basis of A is given by all the monomials in AB with a finite number of b’s.

Define the ab-index of an infinite poset P to be

Ψ(P ) =
∑
S

hS · uS,

where the sum is over all finite subsets S of P. Observe that Ψ(P ) lies within the
space A since each set S being finite implies there is a finite number of b’s in each
monomial.
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Example 4.2.2. The sum
∑

S uS, where S ranges over all finite subsets of the positive
integers P, factors as follows: ∑

S

uS = (a + b)∞ = c∞.

Hence the infinite butterfly poset of Example 4.2.1 has the ab-index c∞ since hS = 1
for this poset.

This last example is our motivating example for defining the cd-index for infinite
Eulerian posets.

4.3 Extending the cd-index to infinite posets

First we define the extension of polynomials in the variables c = a + b and d =
ab + ba. Similar to the definitions of AB and AB=∞, we define the sets of infinite
monomials CD and CD=∞ in the variables c and d. Note that we restrict our
attention to monomials with only a finite number of d’s. Now define C to be the
quotient Z[CD]/Z[CD=∞]. We embed C into A by the map c 7−→ a + b and d 7−→
ab + ba.

The following theorem is an extension of the classical result of Bayer–Klapper [3].

Theorem 4.3.1. The ab-index of an Eulerian confluent infinite poset belongs to the
image of the quotient space C = Z[CD]/Z[CD=∞].

Proof. We begin by creating an infinite chain {wo < w1 < · · · } in the poset P .
First we set w0 = 0̂. For each rank k ≥ 1, since P is confluent, we can find an
element wk that is greater than all the elements of rank k and the element wk−1.
Note that {w0 < w1 < w2 < · · · } is indeed a chain. Now we want a particular chain
{z0 ≺ z1 ≺ z2 ≺ · · · } such that ρ(zj) = j. To create this chain, for each wk of rank
ρ(wk) = j, we set zj := wk. We then fill in the remaining elements in the z-chain with
elements at each rank between every pair wk and wk+1. This can be done since P is
Eulerian and hence ranked.

Let S be a finite subset of positive integers such that max(S) = k. Consider the
sequence of flag f -vector entries

fS([0̂, zj]) j = k + 1, k + 2, . . . . (4.3.1)

This sequence will stabilize and become constant since the interval [0̂, zj] will contain
all the elements of rank k once we reach zj = wk. Similarly, the sequence of flag
h-vectors

hS([0̂, zj]) j = k + 1, k + 2, . . . (4.3.2)

will stabilize since it is a linear combination of sequences of the form (4.3.1).
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Now consider a cd-monomial w of degree k that ends with the variable d. Yet
again, we consider a sequence as j tends to infinity, but this time it is a sequence of
cd-coefficients

[w · cj−1−k]Ψ([0̂, zj]) j = k + 1, k + 2, . . . . (4.3.3)

Recall that the coefficient of the cd-monomial w · cj−1−k is a linear combination of
flag h-vectors hS entries where max(S) ≤ k − 1. (Note that the maximum of the
empty set is considered to be −∞.) Hence the sequence in (4.3.3) will stabilize.

Define an infinite cd-polynomial by setting

Φ = c∞ +
∑
w

(
lim
j−→∞

[w · cj−1−deg(w)]Ψ([0̂, zj])

)
· w · c∞, (4.3.4)

where the sum is over all finite cd-monomials ending with the variable d. We claim
that the cd-polynomial Φ when expanded into an infinite ab-polynomial will be the
ab-index of the infinite poset P .

If S is the empty set then uS = a∞. Note that the only contribution to the
term a∞ is 1 from the monomial c∞, which is equal to h∅ = 1. Next consider the
case where we assume S is non-empty and max(S) = k. Now the coefficient of the
infinite monomial uS is given by

[uS]Φ = 1 + [uS]
∑
w

(
lim
j−→∞

[w · cj−1−deg(w)]Ψ([0̂, zj])

)
· w · c∞. (4.3.5)

Since w ends with a d, when expanding w · c∞ there will be either a b in position
deg(w)− 1 or in position deg(w). Hence, if deg(w) > k there will be no contribution
to the term uS. Thus the sum in (4.3.5) reduces to a finite sum, allowing us to change
the order between the sum and the limit, as follows.

[uS]Φ = 1 + [uS]
∑

w:deg(w)≤k

(
lim
j−→∞

[w · cj−1−deg(w)]Ψ([0̂, zj])

)
· w · c∞z

= lim
j−→∞

[u∅]c
∞ + [uS]

∑
w:deg(w)≤k

[w · cj−1−deg(w)]Ψ([0̂, zj]) · w · c∞


= lim
j−→∞

[uS]
∑

v:deg(v)=k

[v · cj−1−k]Ψ([0̂, zj]) · v · c∞, (4.3.6)

where the last sum is over all cd-monomials v of degree k. The monomial v = ck

comes from [u∅]c
∞, whereas the other monomials are formed as v = w · ck−deg(w).

We can now restrict our attention to the first j − 1 letters in the infinite monomials.
Recall that u

(m)
S is an ab-monomial of degree m. Then we have

[uS]Φ = lim
j−→∞

[u
(j−1)
S ]

∑
v:deg(v)=k

[v · cj−1−k]Ψ([0̂, zj]) · v · cj−1−k. (4.3.7)
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Since the ab-monomial u
(j−1)
S factors as ukS · aj−1−k, we can extend the sum to all

cd-monomials y of degree j− 1, not only those of the form v · cj−1−k. Hence the sum
expands as follows, which can be simplified

[uS]Φ = lim
j−→∞

[u
(j−1)
S ]

∑
y:deg(v)=j−1

[y]Ψ([0̂, zj]) · y

= lim
j−→∞

[u
(j−1)
S ]Ψ([0̂, zj])

= lim
j−→∞

hS([0̂, zj]). (4.3.8)

But this limit stabilizes to be hS(P ), thus proving that the expansion of Φ is indeed
the ab-index of the infinite poset P . Therefore, we have that the cd-index exists.

4.4 Explicit formulas for coefficients

In order to calculate the cd-index for an infinite Eulerian poset, we will define a
third vector associated to P , which we call the k-vector. Before doing so, we first
need some additional definitions relating sets and cd-monomials in C. First, we call
a set S sparse if {i, i+ 1} 6⊆ S for all i. The idea of using the sparse k-vector is due
to Billera, Ehrenborg, and Readdy [5].

Definition 4.4.1. For sparse subsets S = {s1 < s2 < · · · < sm} and T = {t1 < t2 <
· · · < tm} of P, we define the following four notions:

(a) Define w(T ) as the cd-monomial w(T ) = ct1−1dct2−t1−2d · · ·dctm−tm−1−2c∞.

(b) For a cd-monomial w = ci1dci2d · · ·dcimdc∞, we say w covers S, denoted by
w ∼ S, if

S ⊆ {j1, j1 + 1, j2, j2 + 1, . . . , jm, jm + 1}
where j1 = i1 + 1 and jk+1 = jk + ik+1 + 2 for k = 1, . . . ,m− 1.

(c) Define the relation S � T if 1 ≤ s1 ≤ t1 and tk−1 + 1 < sk ≤ tk for all
k = 2, . . . ,m. Note that this relation is not a partial order as it is not transitive.

(d) Let ΣT denote the sum of the elements of T , that is,
∑m

k=1 tk.

Definition 4.4.2. For an infinite poset P and a sparse subset S of size m, define
the k-vector of P at S by

kS =
∑
w∼S

[w]Ψ(P ),

where we sum over all cd-monomials that cover S.

Note that not only can we define a cd-monomial w(T ) for each sparse set T , but
we can also write any cd-monomial w as w(T ) for some sparse set T . Hence, we could
alternatively define the k-vector as

kS =
∑

w(T )∼S

[w(T )]Ψ(P ).
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Also, using the definitions above, observe that if w(T ) ∼ S, then for each k =
1, . . . ,m, we get tk = sk or sk − 1.

Theorem 4.4.3. The coefficients of the cd-monomials with m d’s can be expressed
by the following alternating sum of k-vectors kU where |U | = m

[w(T )]Ψ(P ) =
∑
U�T

(−1)ΣT−ΣU · kU

Proof. It suffices to show

kS =
∑

w(T )∼S

[w(T )]Ψ(P ) =
∑

w(T )∼S

∑
U�T

(−1)ΣT−ΣU · kU .

If U = S, then S is the largest (in terms of �) sparse set of size m for which w(S)
covers S. Hence T = S, and we get that the coefficient of kS on the right-hand side
is 1.

If S = {1, 3, 5, . . . , 2m − 1}, S is the only set such that w(S) ∼ S, and S is also
the only set in which S � S. Then in this case, the only term in the sum is kS,
completing this case.

If S is not the minimal sparse set, we need to show that the coefficient for kU is 0
for all U 6= S. In this situation, ui < si for some i. We wish to consider the smallest
such i. For each T in which w(T ) ∼ S and U � T , if ui+1 − si > 1, then T can still
be a sparse set with the choice of ti = si or si − 1. This choice gives a 1 and −1 as
the coefficient for kU for each T since the ΣT values would differ by 1. These two
terms will cancel then, leaving a coefficient of 0 for kU .

If ui+1− si ≤ 1, then if some j exists in which uj+1− sj > 1, we get a choice of tj
as either sj or sj − 1, once again giving the coefficient for kU as 0.

If no such j value exists, then um 6= sm. Otherwise, um − sm−1 > 1 since S
is sparse. In this final case, there is a choice for tm as sm or sm − 1, causing the
coefficient on kU to be 0.

There are the following relations connecting the k-vector and the f -vector, as
stated by Billera, Ehrenborg, and Readdy as equations (6.1) and (6.2) in [5]

fS =
∑
U⊆S

2|S−U | · kU , (4.4.1)

kS =
∑
U⊆S

(−2)|S−U | · fU , (4.4.2)

where S is a sparse subset of P.
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4.5 Coxeter groups and the strong Bruhat order

Recall that a Coxeter system (S,W ) is a pair with S a set of generators, W the group
generated by S, and having the following relations:

• All generators have order 2; that is, s2 = 1 for all s ∈ S,

• For every pair of generators s and t, there exists a nonnegative integer m(s, t)
with 2 ≤ m(s, t) ≤ ∞ such that (st)m(s,t) = 1.

Note that if m(s, t) = ∞, this means that the element st has infinite order, or in
other words, there is no relation between s and t.

Elements in a Coxeter group W are written as words with the letters being gen-
erators from S. The length of a word w ∈ W , denoted by `(w), is the smallest k such
that w can be written as a product s1 · s2 · · · sk. A word s1s2 · · · sk is called a reduced
expression if `(s1s2 · · · sk) = k.

The strong Bruhat order, also known as simply the Bruhat order, is an order
relation defined on a Coxeter group as follows. Let v and w be two elements in the
Coxeter group. Define v ≤ w if there is a reduced word s1s2 · · · sk for w such that v
is the product of a subword of this expression; that is, one can write v = si1si2 · · · sij
where 1 ≤ i1 < i2 < · · · < ij ≤ k. Observe that the identity element 1, or the empty
product, is the minimal element 0̂ of the Bruhat order, and that the rank function is
provided by the length of each word.

We will investigate the class of Coxeter groups known as the universal Coxeter
group in which m(s, t) = ∞ for all s 6= t. We assume that there are r generators,
i.e., |S| = r, and we will denote this group by Ur. Since there are no relations on the
generators other than the fact that each is an involution, we only consider reduced,
or valid, words which are of the form v = s1s2 · · · sk where each si ∈ S and every pair
of consecutive generators is distinct, that is, si 6= si+1 for 1 ≤ i ≤ k − 1.

The Bruhat order of a Coxeter group is an Eulerian poset, as shown by Verma [48].
This implies that the cd-index can be calculated for the Bruhat order of finite Cox-
eter groups, which has been previously studied by Reading [40]. A more general
nonhomogeneous polynomial called the complete cd-index has also been computed
by Blanco [8] for certain Coxeter groups, including the dihedral Coxeter group.

4.6 The Bruhat order of Ur

Consider the universal Coxeter group Ur with generating set S of cardinality r. To
examine the flag f -vector of the Bruhat order of this group, we define ηn(v) to be the
number of words w of length n having the word v as a subword.

Example 4.6.1. We have that ηn(1) is given by r · (r − 1)n−1 for n ≥ 1 and 1 for
n = 0. This is true since we are simply enumerating the number of words of length n
with no consecutive repeated letters.

Lemma 4.6.2. Assume that we have a universal Coxeter group with at least three
generators, i.e., r ≥ 3. Given words v = s1 · · · si−1 · t · si+1 · · · sk and w = s1 · · · si−1 ·
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u · si+1 · · · sk in Ur with t 6= u, we have the equality ηn(v) = ηn(w) for all n > k;
that is, the number of words of length n containing v equals the number of words of
length n containing w.

Proof. Let z be a word of length n > k that contains v.
Assume that i 6= 1, n. Find the first si−1 in z such that z = α · si−1 · β where α

contains s1 · · · si−2. Within β, find the first si+1 after the first t such that β = γ ·si+1 ·ζ
with ζ containing si+2 · · · sk. Within γ, which contains at least one t, uniformly
exchange the t’s and u’s. We call the resulting word γ̄.

Then define z̄ := α · si−1 · γ̄ · si+1 · ζ. This is a valid word because the only way
two letters could repeat is if the first or last letters of γ̄ are si−1 or si+1, respectively.
However, this would mean that the first or last letters of γ are also si−1 or si+1.
However, since si−1, si+1 6= t or u, this implies that z = α · si−1 · γ · si+1 · ζ would
also not be a valid word, which is a contradiction. Therefore, z̄ is a word of length n
containing w since γ̄ now contains at least one u.

Assume now that i = 1; that is, the first letters of v and w are t and u, respectively.
Find the first s2 in z such that z = α · s2 · β where β contains s3 · · · sk. Then we can
define z̄ := ᾱ · s2 · β where we create ᾱ by uniformly exchanging the t’s and u’s. As
in case 1, since s2 6= t or u, the word z̄ is still valid, has length n, and contains w.

The last case is i = n, which means that t is the last letter of the word v. The
argument is symmetric to the second case, and hence is omitted.

Applying the analogous process to the word z̄ containing w will reverse the swaps
that were made to give back the word z which contains v. This gives a bijection
between words of length n containing v and words of length n containing w. Thus,
we have ηn(v) = ηn(w).

Lemma 4.6.3. Assume that we have a universal Coxeter group with at least three
generators, that is, r ≥ 3. Let v and w be words of length k. Starting with v, we can
change one letter at a time to transform v into w with every intermediate step being
a valid word.

Proof. We will use induction on the length k. The induction base is k = 1, which is
straightforward.

Assume now that k ≥ 2. For our induction hypothesis, we assume any word of
length k−1 can be transformed one letter at a time to any other word of length k−1.

Let v = x1 · x2 · · ·xk and w = y1 · y2 · · · yk. Using our induction hypothesis, the
word x2 · · ·xk can be transformed into y2 · · · yk. To transform v to w, we perform the
same steps starting with v instead of x2 · · ·xk with some additional steps inserted
along the way. For each intermediate word z = s · t · z3 · · · zk in which the next step
is to change the second letter from t to s, we must first insert a step to change the
first letter from s to u, where u 6= s, t. Note that such a u exists as long as r ≥ 3.
This will make every intermediate word a valid word. After reaching s · y2 · · · yk, we
must also add the final step of swapping the first letter s to y1 if s 6= y1. This results
in the word w.

Proposition 4.6.4. Given any two words v and w of length k in Ur, ηn(v) = ηn(w)
for any length n > k.
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Proof. Observe that the result is direct for r = 2. For r ≥ 3 it follows by combining
Lemmas 4.6.2 and 4.6.3.

In order to determine ηn(v), it is more practical to consider the number of words of
length n not having the word v as a subword. We will also describe these as words w
that avoid v. To do this, define the generating function F (v) by

F (v) =
∑
v 6≤w

x`(w).

Therefore, [xn]F (v), which denotes the coefficient of xn in F (v), is the number of
words of length n that do not have v as a subword. Hence ηn(v) is given by

ηn(v) = r · (r − 1)n−1 − [xn]F (v). (4.6.1)

Example 4.6.5. For a generator s of the group Ur, we have

F (s) = 1 + (r − 1) · x · 1

1− (r − 2)x
=

1 + x

1− (r − 2)x
.

Either we have the empty word 1, or we are selecting a word using the alphabet
S − {s}, which consists of r − 1 letters. Then we use the same argument as in
Example 4.6.1.

Directly from Proposition 4.6.4 and equation (4.6.1), we have the next result.

Corollary 4.6.6. For any words v and w of the same length, we have F (v) = F (w).

In order to find an explicit expression for the generating function F (v), we in-
troduce the generating function F (v, s) which restricts the sum in F (v) to words
beginning with the generator s, that is,

F (v, s) =
∑
w

x`(w),

where the sum is over all words w such that v 6≤ w and w begins with the letter s.
Note that this definition can also be stated as

F (v, s) =
∑
v 6≤sw

x`(sw) = x ·
∑
v 6≤sw

x`(w), (4.6.2)

where w ranges over all words not beginning with s.

Example 4.6.7. For two different generators s and t of the group Ur we have

F (s, t) = x · 1

1− (r − 2)x
,

since the first letter is t, and because we have r− 2 choices for each of the remaining
letters.
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Now we introduce recurrence relations that are satisfied by the generating func-
tions F (v) or F (v, s). These will be essential in developing an explicit expression
for F (v), and hence ηn(v).

Proposition 4.6.8. The generating functions F (v) and F (v, s) satisfy the recur-
rences

F (v) = 1 +
∑
s∈S

F (v, s), (4.6.3)

F (sv, s) = F (v, s), (4.6.4)

F (sv, t) = x ·

1 +
∑

q∈S−{t}

F (sv, q)

 . (4.6.5)

Proof. The recurrence (4.6.3) is straightforward to verify since a word is either empty
or begins with one of the generators in S. The second recurrence (4.6.4) follows since
a word starting with s, say sw, avoids a valid word sv if and only if sw avoids v.
The final recurrence (4.6.5) is due to the fact that a word tw avoids sv if and only
if w is the empty word 1 or w both avoids sv and begins with a letter different
from t. The factor of x comes from concatenation of t to the beginning of w. See
equation (4.6.2).

The following equality will be useful in the proof of an upcoming improvement to
the recursion formula for F (sv, t).

Lemma 4.6.9. The following identity holds between the given two r − 1 by r − 1
determinants:

det


1 −x · · · −x
−x 1 · · · −x

...
...

. . .
...

−x −x · · · 1

 = (1− (r − 2) · x) · det


1 −x · · · −x
1 1 · · · −x
...

...
. . .

...
1 −x · · · 1

 .

Proof. Use column reduction on the first determinant by adding columns 2 through
r− 1 to the first column. Then every entry in the first column is now 1− (r− 2) · x,
which can be factored out.

Proposition 4.6.10. For two generators s and t with s 6= t, we have the recurrence

F (sv, t) =
x · (1 + F (v, s))

1− (r − 2)x
.

Proof. For each generator t ∈ S − {s}, we have from the recurrence (4.6.5) that

F (sv, t) = x ·

1 +
∑

q∈S−{t}

F (sv, q)

 .
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giving us a system of r−1 equations. By reordering terms, we have for each t ∈ S−{s}

F (sv, t)− x ·
∑

q∈S−{s,t}

F (sv, q) = x · (1 + F (sv, s)).

We can write this system in matrix form as Ay = b where the rows and columns are
indexed by the set S−{s}. The matrix A is the first matrix occurring in Lemma 4.6.9.
The column vector y has entries F (sv, q) for q ∈ S−{s}. Finally, the column vector b
has x · (1 + F (sv, s)) in every entry.

By Cramer’s Rule,

F (sv, t) =
det(At)

det(A)
,

where At is the matrix A where we replace the column corresponding to the gen-
erator t with the column vector b. Without loss of generality we may assume
that t corresponds to the first column. Since each entry of b is the same, we
can factor this entry out from the first column of the determinant of At to ob-
tain det(At) = x · (1 + F (sv, s)) · det(B), where B is second matrix occurring in
Lemma 4.6.9. Hence, applying Lemma 4.6.9 gives us

F (sv, t) =
x · (1 + F (sv, s))

1− (r − 2)x
.

To complete the proof, use equation (4.6.4).

Corollary 4.6.11. For any word v not beginning with s, we have the recurrence

F (sv) =
(x+ 1) · (1 + F (v, s))

1− (r − 2)x
.

Proof. We have

F (sv) = 1 + F (sv, s) +
∑
t6=s

F (sv, t)

= 1 + F (v, s) +
∑
t6=s

x · (1 + F (v, s))

1− (r − 2)x

= 1 + F (v, s) + (r − 1) · x · (1 + F (v, s))

1− (r − 2)x
,

where the first step is recurrence (4.6.3), and second step is recurrence (4.6.4) and
Proposition 4.6.10. The result follows by simplifying.

In order to use this recurrence to find a simple closed form for the generating
function F (v), we need to introduce a change in variables. We substitute the variable z
which is given by

z =
x

1− (r − 2)x
.
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Proposition 4.6.12. Let v be a word of length k such that v starts with s, and
assume t is a generator different from s. Then the following equations hold for the
generating functions:

F (v) = (1 + (r − 1) · z) · 1− zk

1− z
, (4.6.6)

F (v, s) = z · 1− zk−1

1− z
, (4.6.7)

F (v, t) = z · 1− zk

1− z
. (4.6.8)

Proof. We prove these three identities by induction on the length k. In the base case
of k = 1, Equations (4.6.6) and (4.6.8) are Examples 4.6.5 and 4.6.7, respectively.
Finally, equation (4.6.7) states that 0 = 0, completing the induction basis.

Next we do the induction step. Assume that the three identities hold for words
of length less than k. Write the word as v = su, where u has length k− 1 and begins
with a letter different from s. From the final step of the proof of Corollary 4.6.11,

F (su) = 1 + F (u, s) + (r − 1) · x · (1 + F (u, s))

1− (r − 2)x

=

(
1 + (r − 1) · x

1− (r − 2)x

)
· (1 + F (u, s))

= (1 + (r − 1) · z) · 1− zk

1− z
,

where in the last step we used 1 + F (u, s) = (1− zk)/(1− z) by applying (4.6.8) to
the length k − 1 word u.

Next we have

F (su, s) = F (u, s) = z · 1− zk−1

1− z
,

by (4.6.8) applied to the word u.
Lastly,

F (su, t) =
x · (1 + F (u, s))

1− (r − 2)x

= z · (1 + F (u, s))

= z · 1− zk

1− z
,

completing the induction step.

Observe that when we expand (4.6.6) as a formal power series, it simplifies to the
following polynomial in the variable z:

F (v) = 1 + r · z + r · z2 + · · ·+ r · zk−1 + (r − 1) · zk. (4.6.9)
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Using this closed form expression for F (v), we can now determine a formula for the
coefficients of F (v). We begin by introducing the sequence

ai =
r(r − 2)i − (−1)i

r − 1
,

which is also given by the second order recursion ai = (r − 3) · ai−1 + (r − 2) · ai−2

with initial conditions a1 = r− 1 and a0 = 1. Also observe that ai + ai+1 = r(r− 2)i.

Theorem 4.6.13. For any word v of length k, the number of words of length n > k
not containing v as a subword is given by

[xn]F (v) = (r − 2)n−k ·
k∑
i=1

ai ·
(

n

k − i

)
.

Proof. We use the explicit expression (4.6.9) for F (v), replacing z with x/(1−(r−2)x)
and expanding each term as

zk =

(
x

1− (r − 2)x

)k
=
∑
i≥k

(
i− 1

k − 1

)
· (r − 2)i−k · xi.

We get an xn term from the expansion of each term rz, rz2, . . . , rzk−1, and (r− 1)zk.
Collecting these terms gives that

[xn]F (v) = r

[(
n− 1

0

)
(r − 2)n−1 +

(
n− 1

1

)
(r − 2)n−2 + · · ·

+

(
n− 1

k − 2

)
(r − 2)n−k+1

]
+ (r − 1)

(
n− 1

k − 1

)
(r − 2)n−k.

We now show that the proposed coefficient is equivalent to this coefficient. By ap-
plying Pascal’s identity, we have

(r − 2)n−k ·
k∑
i=1

ai ·
(

n

k − i

)
= (r − 2)n−k ·

k∑
i=1

ai ·
((

n− 1

k − i

)
+

(
n− 1

k − i− 1

))

= (r − 2)n−k ·

(
a1 ·

(
n− 1

k − 1

)
+

k−1∑
i=1

(ai + ai+1)

(
n− 1

k − i− 1

))

Using ai + ai+1 = r · (r − 2)i and a1 = r − 1, we get

= (r − 2)n−k

(
(r − 1)

(
n− 1

k − 1

)
+

k−1∑
i=1

r(r − 2)i
(

n− 1

k − i− 1

))

= (r − 1) ·
(
n− 1

k − 1

)
· (r − 2)n−k + r ·

k−1∑
i=1

(r − 2)n−k+i ·
(

n− 1

k − i− 1

)

77



= (r − 1) ·
(
n− 1

k − 1

)
· (r − 2)n−k + r ·

[(
n− 1

k − 2

)
· (r − 2)n−k+1

+

(
n− 1

k − 3

)
· (r − 2)n−k+2 + · · ·+

(
n− 1

0

)
· (r − 2)n−1

]
Reordering the terms gives us the same formula as calculated by expanding the closed
formula for F (v).

4.7 The cd-index of Ur

We wish to calculate the coefficients of the cd-index, but we first must consider
if Ur has the necessary properties for Theorem 4.3.1 to imply the existence of this
polynomial. First, Ur is locally finite since the number of elements of rank n was
shown to be r · (r− 1)n−1 in Example 4.6.1. It is also has the Eulerian property with
regards to its Möbius function, as shown by Verma [48]. Finally, we need to show
this poset is confluent by providing an upper bound for any two words v and w in Ur.
If the last letter of v and the first letter of w differ, then the word v · w gives an
upper bound. If these two letters are each s, then the word v · t ·w for some generator
t 6= s is an upper bound. Thus, Ur is confluent, and hence the cd-index exists by
Theorem 4.3.1.

In order to compute the cd-index of the Bruhat order of the universal Coxeter
group Ur, we will use Theorem 4.4.3 and equation (4.4.2), but we first need to compute
the flag f -vector. We take advantage of the fact that the number of elements of rank n
above a particular element only depends on the length of that element, as shown by
ηn(v) = ηn(w) from Lemma 4.6.4. To count chains in the Bruhat order of Ur, we
successively multiply formula (4.6.1) with the coefficients of F (v) being supplied by
Theorem 4.6.13. This can be seen in the following equation. If S = {s1 < s2 < · · · <
sm}, then

fS = r · (r − 1)s1−1

m∏
j=2

(
r · (r − 1)sj−1 − (r − 2)sj−sj−1

(
sj−1∑
i=1

ai ·
(

sj
sj−1 − i

)))
.

(4.7.1)
We next use the previous equation to calculate the coefficients of the cd-index

Ψ(Ur) for certain monomials with only 1 or 2 d’s.

Example 4.7.1. (a) For the cd-monomial cndc∞ in Ψ(Ur), we have cndc∞ =
w(T ) in which T = {n+ 1}; thus,

[cndc∞] =
n+1∑
i=1

(−1)n+1−i · ki

=
n+1∑
i=1

(−1)n+1−i · (fi − 2)

=

(
n+1∑
i=1

(−1)n+1−i · fi

)
− 1 + (−1)n+1
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=

(
n+1∑
i=1

(−1)n+1−i · r · (r − 1)i−1

)
− 1 + (−1)n+1

= r · (r − 1)n+1 − (−1)n+1

(r − 1)− (−1)
− 1 + (−1)n+1

= (r − 1)n+1 − 1

(b) For the cd-monomial dcndc∞ in Ψ(Ur), we have dcndc∞ = w(T ) in which
T = {1, n+ 3}; therefore,

[dcndc∞] =
n+3∑
i=3

(−1)n+3−i · k1,i

=
n+3∑
i=3

(−1)n+3−i · (f1,i − 2fi − 2f1 + 4)

=
n+3∑
i=3

(−1)n+3−i ·
[
r ·
(
r · (r − 1)i−1 − (r − 2)i−1 · a1

(
i

0

))
− 2r · (r − 1)i−1 − 2r + 4

]
=

(
n+3∑
i=3

(−1)n+3−i · (r2 − 2r) · (r − 1)i−1

)

−

(
n+3∑
i=3

(−1)n+3−i · r · (r − 1) · (r − 2)i−1

)
+O(1)

= r · (r − 2) · (r − 1)2

(
(r − 1)n+1 − (−1)n+1

(r − 1)− (−1)

)
− r · (r − 1) · (r − 2)2

(
(r − 2)n+1 − (−1)n+1

(r − 2)− (−1)

)
+O(1)

= (r − 2) · (r − 1)n+3 − (−1)n+1 · (r − 2) · (r − 1)2 − r · (r − 2)n+3

+ (−1)n+1 · r · (r − 2)2 +O(1)

= (r − 2) · (r − 1)n+3 − r · (r − 2)n+3 +O(1)

where the Big O notation is used with regards to r being a fixed constant and n
varying.
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(c) For the cd-monomial cdcndc∞, in Ψ(Ur), we have cdcndc∞ = w(T ) in which
T = {2, n+ 4}; therefore,

[cdcndc∞] =
2∑
i=1

(−1)2−i ·
n+4∑
j=4

(−1)n+4−jki,j

=
n+4∑
j=4

(−1)n+4−j · k2,j −
n+4∑
j=4

(−1)n+4−jk1,j

=
n+4∑
j=4

(−1)n+4−j · (f2,j − 2fj − 2f2 + 4)

−
n+4∑
j=4

(−1)n+4−j · (f1,j − 2fj − 2f1 + 4)

=
n+4∑
j=4

(−1)n+4−j ·
[
r · (r − 1) ·

(
r · (r − 1)j−1 − (r − 2)j−2

·
(
a1 ·

(
j

1

)
+ a2 ·

(
j

0

)))
− 2r · (r − 1) + 4

]
−

n+4∑
j=4

(−1)n+4−j ·
[
r ·
(
r · (r − 1)j−1 − (r − 2)j−1 · a1 ·

(
j

0

))
− 2r + 4

]

=

(
n+4∑
j=4

(−1)n+4−j · (r2 · (r − 2)) · (r − 1)j−1

)

−

(
n+4∑
j=4

(−1)n+4−j · r · (r − 1) · (r − 2)j−2

·
(

(r − 1) · j + (r − 3) · (r − 1) + (r − 2)
))

+O(1)

+

(
n+4∑
j=4

(−1)n+4−j · r · (r − 1) · (r − 2)j−1

)
+O(1)

= r · (r − 2) · (r − 1)n+4 − (−1)n+1r · (r − 2) · (r − 1)3

−

(
n+4∑
j=4

(−1)n+4−j · r · (r − 1)2 · (r − 2)j−2 · j

)
− ((r − 3) · (r − 1) + (r − 2)) · r · (r − 2)n+3

− (−1)n+1 ((r − 3) · (r − 1) + (r − 2)) · r · (r − 2)2 − r · (r − 2)n+4

+ (−1)n+1r · (r − 2)3 +O(1)

= r · (r − 2) · (r − 1)n+4 − r · (r − 1) · (r − 3) · (r − 2)n+3 − 2r · (r − 2)n+4
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−

(
n+4∑
j=4

(−1)n+4−j · r · (r − 1)2 · (r − 2)j−2 · j

)
+O(1)

= r · (r − 2) · (r − 1)n+4 − r · (r − 1) · (r − 3) · (r − 2)n+3 − 2r · (r − 2)n+4

− r · (r − 1) · (r − 2)n+3 · (n+ 5) + r · (r − 2)n+4 +O(1)

where the final line comes from the following:

n+4∑
j=4

(−1)n+4−j · r · (r − 1)2 · (r − 2)j−2 · j

=
r · (r − 1)2

(r − 2)

(
n+4∑
j=4

(−1)n+4−j(r − 2)j−1 · j

)

=
r · (r − 1)2

(r − 2)

(
d

dr

(
n+4∑
j=4

(−1)n+4−j(r − 2)j

))

=
r · (r − 1)2

(r − 2)

(
d

dr

(
(r − 2)n+5

r − 1
+O(1)

))
=
r · (r − 1)2

(r − 2)

(
(r − 1) · (n+ 5) · (r − 2)n+4 − (r − 2)n+5

(r − 1)2

)
+O(1)

= r · (r − 1) · (r − 2)n+3 · (n+ 5)− r · (r − 2)n+4 +O(1)

From these examples, we see that the order of the coefficients is a power of r− 1.
If we write the general cd-monomial that contains m d’s as cα1dcα2d · · ·dcαmdc∞,
we hope to determine the order of the coefficients in terms of the exponents αi. We
currently have the following conjecture regarding this order.

Conjecture 4.7.2. In the Bruhat order of the universal Coxeter group Ur, there is
a constant C depending upon r such that the order of the coefficients of the infinite
cd-index is given by

[cα1dcα2d · · ·dcαmdc∞] = C · (r − 1)α1+···+αm +O((r − 2 + ε)α1+···+αm).

Copyright c© Norman Bradley Fox, 2015.
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Chapter 5 The Hyperpfaffian and Extending Torelli’s Identity

5.1 Introduction

The Pfaffian of a skew-symmetric matrix is commonly defined as the square root of
its determinant. Note that if the order of this matrix is odd, then the determinant
vanishes, and the Pfaffian is zero. Hence we assume that the order is even. Similar
to the determinant (of any square matrix) being expressed as a sum over all perfect
matchings of the complete bipartite graph, the Pfaffian has an explicit expression as
a sum over all perfect matchings of the complete graph.

Barvinok [1] extended the notion of the Pfaffian to the hyperpfaffian. Instead of
considering matchings of the complete graph, consider set partitions of the set [n] =
{1, 2, . . . , n} into blocks of equal size k. Let Πn,k denote the set of such partitions.
Furthermore, let k be an even integer and n a multiple of k. Let f be a k-ary skew-
symmetric function defined on the set [n]k. Note that these functions are extensions
of matrices since an n × n matrix is a 2-ary function defined on [n]2, where the
input into the function gives the row and column of the matrix. For a k-element
subset B = {b1 < b2 < · · · < bk} of [n] write f(B) = f(b1, b2, . . . , bk). Lastly, define
the sign (−1)τ of a partition τ = {B1, B2, . . . , Bn/k} in Πn,k to be the sign of the
permutation b1,1, b1,2, . . . , b1,k, b2,1, . . . , b2,k, b3,1, . . . , bn/k,k, where the ith block is given
by Bi = {bi,1 < bi,2 < · · · < bi,k}. Then the hyperpfaffian is defined by

Pf(f) =
∑
τ

(−1)τ ·
n/k∏
i=1

f(Bi), (5.1.1)

where the sum is over all partitions τ = {B1, B2, . . . , Bn/k} in Πn,k; see [1, Section 3].
In the case when the function f is a skew-symmetric polynomial in k variables of

degree k/2 · (n−1), we can evaluate the hyperpfaffian; see Theorem 5.4.1. The result
is the Vandermonde product multiplied by an expression of the coefficients of the
polynomial f . We prove this using a sign-reversing involution that cancels all of the
terms except those corresponding to the Vandermonde determinant. The proof can
be made completely combinatorial by combining the last step with Ira Gessel’s sign-
reversing involution in his proof of the Vandermonde identity [24]. In the classical
Pfaffian case, that is, when k = 2, our identity yields a nice expression, generalizing
an identity due to Torelli [47].

In the last section we state some open questions about the hyperpfaffian, among
them what other identities it satisfies.

A version of this chapter appears in [14].

5.2 The hyperpfaffian in connection with the exterior algebra

To give more motivation for the hyperpfaffian, we introduce the exterior algebra.
Recall that f is a skew-symmetric function if for all permutations σ in Sk we have
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that
f(iσ(1), iσ(2), . . . , iσ(k)) = (−1)σ · f(i1, i2, . . . , ik),

where (−1)σ denotes the sign of the permutation σ. Observe that if two of the entries
i1, i2, . . . , ik are equal then f(i1, i2, . . . , ik) = 0.

Let Λ denote the exterior algebra in the variables t1, t2, . . . , tn. For S = {s1 <
s2 < · · · < sm} a subset of [n], let tS denote the exterior or wedge product tS =
ts1 ∧ ts2 ∧ · · · ∧ tsm . Observe that for two sets S and T that share at least one element
we have that tS ∧ tT = 0. Also note that if at least one of the two sets S and T has
even cardinality, then the elements tS and tT commute, that is, tS ∧ tT = tT ∧ tS.
Furthermore, let f(S) denote the function value f(s1, s2, . . . , sk).

Luque and Thibon expressed the hyperpfaffian in terms of the exterior algebra [35,
Equation (79)]. We include a proof for completeness.

Proposition 5.2.1 (Luque–Thibon). The hyperpfaffian of the skew-symmetric func-
tion f defined on the set [n]k is the unique scalar given by the equation(∑

S

f(S) · tS

)n/k

= (n/k)! · Pf(f) · t[n], (5.2.1)

where the sum is over all k-element subsets of the set [n].

Proof. Begin by noting that the sign of a partition τ = {B1, B2, . . . , Bn/k} is the
unique scalar (−1)τ such that tB1 ∧ tB2 ∧ · · · ∧ tBn/k

= (−1)τ · t[n]. Now expand the
power in equation (5.2.1) to obtain that(∑

S

f(S) · tS

)n/k

=
∑
B1

· · ·
∑
Bn/k

f(B1) · · · f(Bn/k) · tB1 · · · tBn/k
,

where each sum on the right-hand side is over all k-element subsets of [n]. Observe
that the product in the exterior algebra is zero if two of the sets have a common
element. Hence the sum reduces to sum over all ordered partitions of [n]. Ordered
here refers to the set of blocks having a linear order. Given a partition in Πn,k, there
are (n/k)! ways to obtain an ordered partition. Hence the sum reduces to (n/k)! · t[n]

times the right-hand side of equation (5.1.1), proving the result.

Lemma 5.2.2. Let f be a skew-symmetric function on the set [n]k, and let σ be a per-
mutation on the set [n]. Then the function g(i1, i2, . . . , ik) = f(σ(i1), σ(i2), . . . , σ(ik))
is skew-symmetric, and the two hyperpfaffians differ by the sign (−1)σ, that is,
Pf(g) = (−1)σ · Pf(f).

Proof. It is straightforward to observe that g is skew-symmetric. It is enough to prove
the identity for the adjacent transposition σ = (j, j + 1). Let ui = tσ(i), that is, a
reordering of the basis of the exterior algebra. We claim that g(σ(S))·uσ(S) = f(S)·tS.
If neither j and j + 1 belong to the set S, there is nothing to prove. If only one of
them belongs to S, then yet again there is nothing to prove. Finally, if both j and
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j+ 1 belong to S, we have that g(σ(S)) = −f(S) and uσ(S) = −tS, and the two signs
cancel. Hence the two sums

∑
S g(S) · uS and

∑
S f(S) · tS are equal. Now the result

follows from the definition of the hyperpfaffian and that u[n] = −t[n].

For more information regarding the hyperpfaffian and its applications, see Re-
delmeier [41].

5.3 Preliminaries

A weak composition ~r of an integer m is a vector (r1, r2, . . . , rk) whose entries are
nonnegative integers and their sum is m. The entries are called parts. For a compo-
sition ~r into k parts we let x~r denote the monomial xr11 x

r2
2 · · ·x

rk
k . Furthermore, let

the symmetric group Sk act on compositions into k parts by reordering the parts.
Let f(x1, x2, . . . , xk) be a homogeneous polynomial of degree k/2 · (n − 1). The

polynomial f can be expressed as

f(x1, x2, . . . , xk) =
∑
~r

a~r · x~r,

where the sum is over all weak compositions ~r of k/2·(n−1) into k parts. Furthermore,
assume that the polynomial f is skew-symmetric, which implies that the coefficients
satisfy the equation aσ◦~r = (−1)σ · a~r.

Let Γn,k denote the set of increasing weak compositions of k/2 · (n − 1) into k
distinct parts; that is, the set Γn,k is given by

Γn,k =

{
(r1, r2, . . . , rk) ∈ Nk : 0 ≤ r1 < r2 < · · · < rk,

k∑
i=1

ri = k/2 · (n− 1)

}
.

Hence we can write the skew-symmetric polynomial f on the form

f(x1, x2, . . . , xk) =
∑
~r∈Γn,k

∑
σ∈Sk

(−1)σ · a~r · xσ◦~r. (5.3.1)

We define an oriented partition to be a partition where each block is endowed with
a linear order. Let Tn,k denote the set of all oriented partitions ρ of the set [n] where
each block has cardinality k; that is, for an oriented partition ρ = {C1, C2, . . . , Cn/k},
each block Ci is an ordered list Ci = (ci,1, ci,2, . . . , ci,k).

Observe that the number of oriented partitions is given by |Tn,k| = (k!)n/k ·|Πn,k| =
n!/(n/k)!. This can be directly observed by taking a permutation on n elements and
dividing into n/k blocks of size k. Permuting the n/k blocks yields the same oriented
partition. Also observe that since k is even, all the (n/k)! permutations yielding the
same oriented partition have the same sign. We define this sign to be the sign of the
oriented partition, denoted (−1)ρ. More explicitly, the sign of ρ is given by the sign
of the permutation

π(ρ) = c1,1, . . . , c1,k, c2,1, . . . , c2,k, c3,k, . . . , cn/k,k. (5.3.2)
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By removing the linear order on each block from the oriented partition ρ, we
obtain a partition τ . We note that the sign of the oriented partition ρ and the sign
of the partition τ are related by

(−1)ρ = (−1)τ · (−1)σ1 · (−1)σ2 · · · (−1)σn/k , (5.3.3)

where σi is the permutation on the set {ci,1, ci,2, . . . , ci,k} that orders the ith block,
that is, σi(ci,1) < σi(ci,2) < · · · < σi(ci,k).

Let Rn,k denote the collection of sets of size n/k of compositions in Γn,k, where
all the parts of the compositions are distinct. Let β = {~r1, . . . , ~rn/k} denote such
a set in Rn,k. Observe that the sum of all the entries of the compositions is given
by n/k · k/2 · (n − 1) which is the sum 0 + 1 + · · · + (n − 1). Hence we conclude
that the underlying parts of the compositions of β are the integers 0 through n− 1.
Thus we view β as an oriented set partition of the elements {0, . . . , n − 1} into n/k
blocks of size k in which each block is a composition in Γn,k. Define the sign of
β = {~r1, . . . , ~rn/k} ∈ Rn,k with ~ri = (ri,1, . . . , ri,k), denoted by (−1)β, to be the sign
of the permutation

π(β) = r1,1, . . . , r1,k, r2,1, . . . , r2,k, r3,k, . . . , rn/k,k,

where π(β) is a permutation of the elements {0, 1, . . . , n− 1}.

5.4 Main Theorem

Using the skew-symmetric polynomial given in equation (5.3.1), we have the following
identity.

Theorem 5.4.1. The hyperpfaffian Pf(f(xS)) of order n is the Vandermonde product
multiplied by a signed sum of products of coefficients a~r:

Pf(f(xS))
S∈([n]

k ) =

∑
β

(−1)β ·
n/k∏
i=1

a~ri

 · ∏
1≤i<j≤n

(xj − xi),

where the sum ranges over all partitions β in Rn,k.

Example 5.4.2. When n = 12 and k = 4, there are 32 oriented partitions in R12,4.
The coefficient in Theorem 5.4.1 is in this case given by

a0,1,10,11a2,3,8,9a4,5,6,7 + a0,1,10,11a2,4,7,9a3,5,6,8 + a0,1,10,11a2,5,6,9a3,4,7,8

+a0,1,10,11a2,5,7,8a3,4,6,9 + a0,2,9,11a1,3,8,10a4,5,6,7 + a0,2,9,11a1,4,7,10a3,5,6,8

+a0,2,9,11a1,5,6,10a3,4,7,8 − a0,2,9,11a1,6,7,8a3,4,5,10 + a0,3,8,11a1,2,9,10a4,5,6,7

+a0,3,8,11a1,4,7,10a2,5,6,9 + a0,3,8,11a1,5,6,10a2,4,7,9 + a0,3,8,11a1,5,7,9a2,4,6,10

+a0,3,9,10a1,2,8,11a4,5,6,7 − a0,3,9,10a1,4,6,11a2,5,7,8 − a0,3,9,10a1,6,7,8a2,4,5,11

+a0,4,7,11a1,2,9,10a3,5,6,8 + a0,4,7,11a1,3,8,10a2,5,6,9 + a0,4,7,11a1,5,6,10a2,3,8,9

+a0,4,8,10a1,3,7,11a2,5,6,9 + a0,4,8,10a1,5,7,9a2,3,6,11 + a0,5,6,11a1,2,9,10a3,4,7,8

+a0,5,6,11a1,3,8,10a2,4,7,9 + a0,5,6,11a1,4,7,10a2,3,8,9 + a0,5,6,11a1,4,8,9a2,3,7,10

−a0,5,7,10a1,2,8,11a3,4,6,9 + a0,5,7,10a1,4,6,11a2,3,8,9 + a0,5,7,10a1,4,8,9a2,3,6,11

+a0,5,8,9a1,3,7,11a2,4,6,10 + a0,5,8,9a1,4,6,11a2,3,7,10 + a0,5,8,9a1,4,7,10a2,3,6,11

−a0,6,7,9a1,2,8,11a3,4,5,10 − a0,6,7,9a1,3,8,10a2,4,5,11.
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Let Wn,k be the set of oriented partitions ρ = {C1, C2, . . . , Cn/k} on the set [n]
with a composition ~wi = (w(ci,1), . . . , w(ci,k)) ∈ Γn,k, referred to as the weight vec-
tor, assigned to each block Ci = (ci,1, . . . , ci,k). We define the following notions for
such a weighted oriented partition ρ. Let (−1)ρ be the sign of ρ, defined as in the
previous section by the sign of the permutation π(ρ) from equation (5.3.2). Let the

coefficient c(ρ) denote the product
∏n/k

i=1 a~wi
determined by the weight vectors of ρ.

Lastly, let w(ρ) denote the monomial
∏n/k

i=1 x
~wi
Ci

where x~wi
Ci

=
∏k

j=1 x
w(ci,j)
ci,j .

Lemma 5.4.3. The following expansion holds for the hyperpfaffian:

Pf (f(xS))
S∈([n]

k ) =
∑

ρ∈Wn,k

(−1)ρ · c(ρ) · w(ρ).

Proof. By applying equation (5.3.1) to equation (5.1.1), we have

Pf (f(xS))
S∈([n]

k ) =
∑
τ∈Πn,k

(−1)τ ·
n/k∏
i=1

 ∑
~r∈Γn,k

∑
σ∈Sk

(−1)σ · a~r · xσ◦~rBi

 .

Using the distributive law, expand the above product. We obtain an oriented,
weighted partition ρ for each term by orienting the elements in each block Bi ∈ τ
by increasing size of the exponents of their associated variables. The composition ~r
corresponds to the choice of weight vector for each block, and the permutation σ will
undo the orientation of the block to properly assign the weights as exponents. Multi-
plying the sign of σ for each block with the sign of τ gives the sign of ρ as described
in equation (5.3.3) because for the block Bi, we have σ = σ−1

i .

Let W r
n,k denote the subset of Wn,k with repeated weights, and let W d

n,k denote the
complement, that is, partitions with distinct weights. We now create a sign-reversing
involution φ for the set W r

n,k to narrow our focus to only partitions with distinct
weights. Given a partition ρ in W r

n,k, let (i, j) be the lexicographically smallest pair
of elements in [n] in which w(i) = w(j). Define φ(ρ) by swapping i and j, while
leaving the weight vector for each block and the orientation unchanged.

Lemma 5.4.4. The function φ is a sign-reversing involution on the set W r
n,k which

does not change the coefficient nor the monomial. That is, for an oriented par-
tition ρ ∈ W r

n,k we have that φ2(ρ) = ρ, c(φ(ρ)) = c(ρ), w(φ(ρ)) = w(ρ), but

(−1)φ(ρ) = −(−1)ρ.

Proof. By definition, it follows that φ is an involution, and that it leaves the coef-
ficient and the monomial of ρ unchanged. To see that φ is sign-reversing, consider
the consequences of swapping i and j within the permutation π(ρ). We get that
π(φ(ρ)) = (i j) ◦π(ρ); hence, the transposition changes the sign of the corresponding
permutation as φ is applied. Thus (−1)φ(ρ) = −(−1)ρ.
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s s s s s s s s s s s s
1 2 3 4 5 6 7 8 9 10 11 12

(1, 4, 5, 12)

(0, 1, 7, 14) (2, 4, 6, 10)

Figure 5.1: The oriented partition {(9, 1, 2, 4), (5, 3, 8, 10), (11, 12, 7, 6)}. Note that it
has a negative sign. The labels yields the monomial x1
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4
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and the coefficient a1,4,5,12 · a0,1,7,14 · a2,4,6,10.

Observe that the weighted oriented partition in Figure 5.1 has non-distinct powers
for the pair of variables x1 and x12 and the pair x3 and x9, of which the pair (1, 12)
is lexicographically least. Hence this weighted oriented partition cancels with the
oriented partition {(9, 12, 2, 4), (5, 3, 8, 10), (11, 1, 7, 6)} with the same weight vector.

We now concentrate on weighted oriented partitions where the weights are distinct,
that is, the set W d

n,k. Note that this implies that the weights are 0 through n − 1,
allowing us to narrow our focus to weight vectors that make up an oriented partition
in Rn,k.

For a weighted oriented partition ρ in W d
n,k, let σ be the unique permutation

such that w(ρ) = xσ1−1
1 xσ2−1

2 · · · xσn−1
n . Furthermore, let β ∈ Rn,k be the set of

weight vectors assigned to the blocks of ρ. Observe that this describes a bijection
between W d

n,k and the Cartesian product of the symmetric group Sn and the weight
vectors Rn,k.

Lemma 5.4.5. The sign of a weighted oriented partition ρ in W d
n,k factors as (−1)ρ =

(−1)β · (−1)σ.

Proof. Define the permutation π(β)′ on [n] such that π(β)′i = π(β)i + 1. Since
(−1)π(β)′ = (−1)π(β), it is enough to observe that the permutation π(β)′ factors
as σ ◦ π(ρ).

Proof of Theorem 5.4.1. By combining Lemmas 5.4.3 through 5.4.5, we have that

Pf (f(xS))
S∈([n]

k ) =
∑

ρ∈W d
n,k

(−1)ρ · c(ρ) · w(ρ)

=

∑
β

(−1)β ·
n/k∏
i=1

a~ri

 · ∑
σ∈Sn

(−1)σ · xσ1−1
1 · · ·xσn−1

n ,

where the last sum is the Vandermonde determinant, which is equal to the Vander-
monde product.
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An algebraic proof of Theorem 5.4.1 is as follows. Note that when setting two of
the variables xi and xj equal, the hyperpfaffian vanishes by Lemma 5.2.2. Hence as
a polynomial in x1 through xn, the Vandermonde product divides the hyperpfaffian.
However, the two sides have same degree n/k · k/2 · (n − 1) =

(
n
2

)
, and hence are

equal up to a constant. By considering the coefficient of the term x2 · · ·xn−2
n−1x

n−1
n , we

obtain the constant
∑

β(−1)β ·
∏n/k

i=1 a~ri .
Finally, observe that when the polynomial f is replaced with a polynomial of

degree less than k/2 · (n − 1), the hyperpfaffian will be zero. This can be seen
in two ways. The only polynomial of degree less than

(
n
2

)
which is divisible by

the Vandermonde product is the zero polynomial. Alternatively, the sign-reversing
involution has no fixed points; that is, it cancels all the terms.

5.5 Application to the classical Pfaffian

Let us now focus on the k = 2 case. In this case the oriented partitions devolve into
directed matchings, and the compositions in Γn,2 have two parts with the sum n− 1.
Hence, they have the form (i, n− 1− i) from i = 0, 1, . . . , n/2− 1. This leads to the
skew polynomial f having the following form:

f(x, y) =
n−1∑
i=0

ai · xiyn−1−i,

where an−1−i = −ai. Here we abbreviate the coefficients ai,n−1−i as simply ai. Since
the only oriented partition in Rn,2 is {(0, n− 1), (1, n− 2), . . . , (n/2− 1, n/2)}, which

has the sign (−1)2(n/2
2 ) = 1, Theorem 5.4.1 reduces to the following corollary.

Corollary 5.5.1. The Pfaffian Pf(f(xi, xj)) of order n is the product of the first n/2
of the coefficients ai multiplied by the Vandermonde product:

Pf (f(xi, xj))1≤i<j≤n =

n/2−1∏
i=0

ai ·
∏

1≤i<j≤n

(xj − xi).

As a corollary we have the following identity due to Torelli [47]; see also [31,
Equation (4.6)].

Corollary 5.5.2 (Torelli). When the skew-symmetric polynomial is the function
f(x, y) = (y − x)n−1, the Pfaffian is given by

Pf (f(xi, xj))1≤i<j≤n = (−1)(
n/2
2 ) ·

n/2−1∏
i=0

(
n− 1

i

)
·
∏

1≤i<j≤n

(xj − xi).

It is enough to observe that ai = (−1)i ·
(
n−1
i

)
.
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5.6 Counting with the hyperpfaffian

Let G be a planar graph on the vertex set [n]. For k even and that divides n, we
define a k-covering of G to be to be a spanning subgraph of G with each component
consisting of k vertices which is able to be covered with a 2-covering, also known
as a dimer covering or a perfect matching. We can represent a k-covering by a
partition τ ∈ Πn,k so that for each block B = {i1, . . . , ik}, the subgraph of G induced
by the vertices in B is connected, and this subgraph admits a perfect matching
MB = {{ij1 , ij2}, . . . , {ijk−1

, ijk}} such that each pair is an edge in G. Define Nk(G)
to be the number of k−coverings of G.

When focusing on the k = 2 case in which the partitions τ are perfect matchings
of G, the problem at hand has been well-studied and is known as the dimer problem.
By Kasteleyn’s Theorems 1 and 2 in section 2V of [30], it is possible to orient the
edges of G and assign to it a skew-symmetric matrix D in which Pf(D) = N2(G).
Note that these theorems are stated using |Pf(D)|. However, Kasteleyn goes on to
describe a way to reorient certain edges to avoid the need for the absolute value
operation. Once this orientation is placed on G to create the directed edge set E(G),
the matrix D is defined as a (−1, 0, 1)-matrix with the following entries

Di,j = s(i, j) :=


1 if e = i→ j ∈ E(G),
−1 if e = j → i ∈ E(G),
0 otherwise.

In order for Pf(D) =
∑
M

(−1)π(M)
∏

(i,j)∈M

s(i, j) = N2(G), where the sum is over

all perfect matchings M of G, we have

(−1)π(M)
∏

(i,j)∈M

s(i, j) = 1, (5.6.1)

for each perfect matching M .
For a general k, we wish to create a similar matrix whose hyperpfaffian is equal to

the number of k-coverings. First, we define the sign of a block B = {i1, . . . , ik} with
matching MB as described above as s(B) = (−1)B · s(ij1 , ij2) · · · s(ijk−1

, ijk) where

(−1)B is the sign of the permutation π(B) =

(
i1 i2 · · · ik
ij1 ij2 · · · ijk

)
∈ Sk. We have

the following result relating the signs of the permutations that correspond to the
partition and matchings.

Lemma 5.6.1. For a partition τ ∈ Πn,k in which each block B admits a matching MB

which together form the matching M on [n], the following equation holds:

(−1)π(M) = (−1)τ ·

(∏
B∈τ

(−1)B

)
.
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Proof. If we label the blocks B1, . . . , Bn/k, then for each block we define the permuta-
tion π∗(Bi) ∈ Sn by applying π(Bi) to the elements in the block Bi and the identity
permutation on the other n− k elements. Since (−1)π(Bi) = (−1)π

∗(Bi), it is enough
to observe that π(M) = π∗(B1) ◦ · · · ◦ π∗(Bn/k) ◦ π(τ).

Define the k-dimensional n× · · · × n matrix A by defining the entry AB = s(B).
Note that this matrix is skew-symmetric because for every σ ∈ Sk, since πσ(B) =
π(B) ◦ σ, we have s(σ(B)) = (−1)σs(B). Applying the hyperpfaffian to this matrix
A gives the following theorem.

Theorem 5.6.2. For a planar graph G, the Pfaffian of the associated k-dimensional
matrix A gives the number of k-coverings of G, that is,

Pf(A) = Nk(G).

Proof. By definition,

Pf(A) =
∑
τ

(−1)τ ·

(∏
B∈τ

s(B)

)
,

where the sum is over all partitions τ ∈ Πn,k. Notice that blocks in which the induced
subgraph of G on those vertices is not connected, as well as blocks that do not admit
a matching of edges in E(G), create a zero as the corresponding matrix entry. Thus,
the sum can be viewed as only being over partitions τ where each block B generates
a connected induced subgraph and admits a matching MB; hence, each τ corresponds
to a k-covering. This gives

Pf(A) =
∑
τ

(−1)τ ·
∏
B∈τ

(−1)B ·
∏

(i,j)∈MB

s(i, j)


=

∑
τ

(−1)τ ·

(∏
B∈τ

(−1)B

) ∏
(i,j)∈M

s(i, j)

 ,

where M = {MB}B∈τ is a matching of [n]. Then we have

Pf(A) =
∑
τ

(−1)τ ·

(∏
B∈τ

(−1)B

)
· (−1)M ·

(−1)M ·
∏

(i,j)∈M

s(i, j)


=

∑
τ

(−1)τ ·

(∏
B∈τ

(−1)B

)
· (−1)M ,

due to equation (5.6.1). By Lemma 5.6.1, we see that these signs multiply to be one,
giving us the desired result.
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The previous theorem allows the hyperpfaffian to be used to count k-coverings of
planar graphs, similar to how the Pfaffian is used to count perfect matchings. The
downside, however, is that the Pfaffian of a skew-symmetric matrix can be calculated
efficiently using the determinant, but there is not an efficient way to calculate the
hyperpfaffian of a k-dimensional skew-symmetric matrix.

5.7 Concluding remarks

Benjamin and Dresden [4] gave a combinatorial proof of the Vandermonde identity
differing from that of Gessel [24]. Their combinatorial interpretation involved count-
ing rows of cards that each possess a particular value and suit, where the suit for each
row is determined by a permutation. They used a sign-reversing involution on the
opposite side than Gessel. Is it possible to prove Corollary 5.5.1 or more generally,
Theorem 5.4.1, by a similar technique?

What other identities does the hyperpfaffian satisfy? See Knuth [31] and Tan-
ner [45] for the expansion for products of two overlapping Pfaffians, and for applica-
tions of this identity. Can any of these results be generalized for hyperpfaffians? One
such example is the following identity for compositions of the hyperpfaffians, proved
by Luque and Thibon [35].

Theorem 5.7.1 (Luque–Thibon). Let k, n, and p be three even positive integers such
that n is a multiple of k and p is a multiple of n. Let f be a skew-symmetric k-ary
function on the set [p]. Define an n-ary function g by the hyperpfaffian of order n,
that is,

g(ii, . . . , in) = Pf(f)(i1,...,in).

Then the hyperpfaffian of order p of the function g is given by a constant times the
hyperpfaffian of f order p, that is,

Pf(g) =
1

(p/n)!
·
(

p/k

n/k, . . . , n/k

)
· Pf(f),

where there are p/n instances of n/k in the multinomial coefficient.
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