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ABSTRACT OF THESIS 
 

 

 A LONG-TERM INVESTIGATION OF THE FEDERALLY THREATENED DESERT 
TORTOISE (GOPHERUS AGASSIZII) AT A WIND ENERGY FACILITY IN 

SOUTHERN CALIFORNIA 

 

With the recent increase in utility-scale wind energy development and current 
climate variation in the desert southwest US, researchers have become increasingly 
concerned with the reaction of wildlife and critical habitat. Understanding the 
relationships among monitoring efforts, climate, industrial landscapes and wildlife is 
critical to effective management. Given the need for information available on how these 
potential stressors affect terrestrial wildlife, my objective was to determine how climate 
variation, wind energy facilities (WEF) and monitoring efforts by researchers influence 
behavior and survivorship in a population of the federally threatened desert tortoise 
(Gopherus agassizii). Data were collected via surveys, motion-sensor camera trapping 
and radio-telemetry during the span of two decades at a WEF in California. Using 
capture-mark-recapture survivorship analysis and generalized linear mixed-effects 
models, I acquired long-term estimates of survivorship, activity, and levels of stress 
response to researchers and climate. From this study I found that researchers as well as 
abiotic effects influence the probability of voiding, a possible stress induced behavior in 
desert tortoises. Additionally, we found that tortoise activity and survival is constrained 
by winter precipitation and habitat types. Further research is needed on proximate 
mechanisms of wind turbines (noise and vibration) and their effects on desert tortoise 
behavior.   
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CHAPTER ONE 

GENERAL INTRODUCTION 

It is well established that overexploitation and habitat loss are the primary causes 

for declines of reptile biodiversity (Gibbons et al., 2000; Ilhow et al., 2012). However, 

anthropogenic-driven global climate change and renewable energy development have the 

potential to create new conservation challenges and lead to species extinctions (Lovich et 

al., 2011a,b). Although extinction is part of a “natural order,” scientific evidence 

indicates that the current rate of extinction is occurring at a higher rate than in the past 

(Ihlow et al., 2012). Turtles are considered among the most imperiled vertebrate taxa; 

approximately half (58%) of the 335 species are threatened with extinction (Turtle 

Taxonomy Working Group, 2014).  Of the 31 tortoise species known globally, 13 are 

vulnerable, 7 are near threatened and 11 are critically endangered (IUCN, 2013). Thus, 

understanding how climate variability, researchers, and anthropogenic disturbance (wind 

energy development) are explicitly related to survivorship of the desert tortoise has broad 

implications for population persistence, and ultimately, species extinction.  

The desert tortoise  

 Native to the southwestern U.S., Agassiz’s desert tortoise (Gopherus 

agassizii) (Cooper, 1863) is a long lived herbivore that inhabits a region where surface air 

temperatures frequently exceed 38° Celsius (McGinnis and Voigt, 1971; Woodbury and 

Hardy, 1948), and resources are temporally and spatially variable (Lovich et al., 2012). 

Geographically, G. agassizii is found north and west of the Colorado River (Murphy et 

al., 2011), inhabiting both the Mojave and Sonoran deserts. Due to its diminished 

populations and range, it is protected under the federal Endangered Species Act and 
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California’s Endangered Species Act (U.S. Fish and Wildlife Service, 1994), and is listed 

as vulnerable by the IUCN, 2013. Declines in desert tortoise populations have been 

attributed to climatic variation (Barrows, 2011; Lovich et al., 2013; Zylstra et al., 2012), 

drought and disease (Peterson, 1994; Turner et al., 1984), and a variety of anthropogenic 

influences (Lovich et. al, 2011a, b; U.S. Fish and Wildlife Service, 1994). 

Effects of long-term research  

In a 6 year study conducted on species closely related to G. agassizii, Morafka’s 

Desert tortoise (Gopherus morafkai) (Murphy et al., 2011), it was found that there is 

limited empirical information available on the effects of long-term research on desert 

tortoises, and that consideration of investigator effects is critical part to the enigma when 

assessing survivorship in desert tortoises (Averill-Murray, 2002). It is also suggested that 

researchers could potentially compromise tortoise survival with standard handling and 

research manipulation techniques (Averill-Murray, 2002), such as the measuring, 

weighing and restraint of individuals. Berry et al. (2002) also noted that during drought-

like conditions (below average precipitation), handling tortoises during field research 

could lead to death. 

During handling and research manipulation of tortoises, voiding is a behavior 

exhibited by some individuals (Jacobson et al., 1993; Longshore et. al, 2003; Peterson, 

1996a, b), where the contents of a tortoise’s bladder (urea, uric acid, and/or feces) are 

excreted, potentially placing the animal at risk of dehydration and possible death. This 

may be a predator-deterrent behavior, as Bjurlin and Bissonette (2004) witnessed female 

tortoises voiding on nests, and Patterson (1971) reported it puckered the mouth of a kit 

fox. 



3 
 

For desert animals, efficient water regulation is essential to life (Vorhies, 1945). 

The desert tortoise conserves water efficiently by controlling its energy metabolism and 

remaining inactive in burrows. In stressful climate conditions such as drought, Agassiz’s 

desert tortoise may utilize its urinary bladder as a water reservoir by concentrating waste 

and subsequently reabsorbing the remaining water (Nagy and Medica, 1986). Some 

studies have documented that protracted drought periods have been linked to dehydration 

and starvation, resulting in declines of desert tortoise populations (Peterson, 1994; 

Longshore et. al, 2003). 

Effects of localized climate variation 

 Gibbons et al. (2000) and Ilhow et al. (2012) both examined how climate 

variation is suspected to create new conservation challenges for reptiles globally and 

found that predicted climate change can lead to an array of species extinctions. As a 

result, several studies have examined how climate warming affects desert tortoise 

populations (Lovich et al., 2013). In a study carried out at Joshua Tree National Park 

(JTNP) in California, Barrows (2011) found that in the event of a mean climate shift of 

+2°C and -50 mm of annual rainfall, current suitable habitat for desert tortoises will 

diminish by 88% and 68% in the Sonoran desert and Mojave desert expanses 

respectively. Another study at JTNP revealed that desert tortoise survival decreased with 

persistent drought, more specifically a three year moving average of estimated winter 

precipitation (Lovich et al., 2013). Future climate modeling also indicates that the desert 

southwestern U.S. is expected to have more frequent droughts (below average 

precipitation) and rising average temperatures, which could be detrimental to desert 

tortoise populations. In a 22-year analysis of Sonoran desert tortoises, survival of adults 
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decreased with severity of droughts (Zylstra et al., 2012). In conclusion, spatial and 

temporal variations in drought conditions, further understanding of thermal niche, and 

activity windows in the southwestern U.S. are important when assessing survival of 

desert tortoises.  

Effects of utility scale wind energy development  

Several studies have noted that existing wind energy development of new sites 

cause mortality of wildlife and excessive habitat damage (Lovich et al., 2011b). Lovich 

and Ennen (2012; 2013) noted in their assessments of wind energy development impacts 

on wildlife, that operation and maintenance of large scale facilities causes “habitat 

fragmentation and barriers to gene flow, increased noise, electromagnetic field 

generation, microclimate alteration, pollution, water consumption, and fire.” Lovich et al. 

(2011a) noted that turbine caused fires have long-term effects on spatial ecology and 

reproduction in desert tortoises. Daily activity of desert tortoises may also be altered by 

constant ground vibrations from turbines. 

 In a 14 year study of the effects of wind energy production on growth, 

demography and survivorship of G. agassizii at a wind farm in the southwestern U.S., 

high annual survivorship was documented in female desert tortoises (Lovich et al., 

2011b). However, the study concluded that the stability of the population at the wind 

farm should not be considered as proof that tortoise populations adjust well to utility 

scale renewable energy development in all cases. 

Thesis objectives 

I had three specific research objectives: (i) to examine the effects of common 

research practices applied in tortoise mark-recapture studies, (ii) to examine surface 
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activity windows of desert tortoises and to better define the relationship between activity 

and variable environmental temperatures, and (iii) to understand post-construction 

impacts of industrial wind energy facilities on survivorship of desert tortoises. 
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CHAPTER TWO 
 

THE EFFECT OF RESEARCH ACTIVITIES AND WINTER PRECIPITATION ON 
VOIDING BEHAVIOR OF AGASSIZ’S DESERT TORTOISES (GOPHERUS 

AGASSIZII) 
 

Introduction 

Understanding stress responses of wildlife to handling and research manipulation 

has become an important issue in wildlife monitoring and management. Both single-event 

handling and repeated handling of wildlife have been documented to be a significant 

stressor as these activities can result in stress-related physiological and behavioral 

responses (e.g., Cabanac and Aizawa 2000; Cabanac and Bernieri 2000; Clinchy et al. 

2001; Holding et al. 2013; Oers and Carere 2007). Likewise, research manipulation, 

capture, and captivity are known to promote stress responses in both terrestrial and 

aquatic vertebrates (Kenagy and Place 2000; Mazeaud et al. 1977). Furthermore, both 

long-term survival and the ability to respond to future stressors are adversely influenced 

by handling and research manipulation (Berry et al. 2002; Lynn et al. 2010; Sigismondi 

and Weber 1988). The diversity of species that exhibit stress responses to handling and 

research manipulation accentuates the importance of understanding the short- and long-

term effects of such duress on the well-being of study animals, especially imperiled 

species.  

Agassiz’s desert tortoise, a threatened species, is actively monitored by both state 

and federal agencies throughout its range in the Sonoran and Mojave deserts, USA 

(USFWS 1990; 2011).  Monitoring often involves handling (e.g., weighing, examining, 

or marking individuals with coded shell notches) and other forms of research 

manipulation (e.g., affixing radios for telemetry, X-radiography of mature females, etc.).  

The desert tortoise inhabits an environment where summer temperatures consistently 
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exceed its thermal maxima (43.1°C; Hutchison et al. 1966), and climate is predicted to 

become increasingly arid (Seager et al. 2007) with negative consequences for tortoises 

(Lovich et al. 2014).  Tortoises compensate for high temperatures by constructing deep 

burrows and limiting activity to air temperatures of 25 to 30° C (Bulova 1994; Nagy and 

Medica 1986; Zimmerman 1994). Similar to other desert vertebrates, the desert tortoise 

has exaptations and adaptations (Morafka and Berry 2002) to survive in the desert and 

conserve water. Notably, the desert tortoise uses its bladder as a water reservoir by 

concentrating waste and subsequently reabsorbing the remaining water (Averill-Murray 

2002; Minnich 1977; Nagy and Medica 1986, Peterson 1996a; see also review in Ernst 

and Lovich 2009).   

During research handling of tortoises, it is not uncommon for tortoises to excrete 

the contents of their bladder (urea, uric acid) in a process known as voiding (Jacobson et 

al. 1993; Longshore et. al 2003; Peterson 1996a, b; Pike et al. 2005). Although voiding 

may be a predator-deterrent defensive behavior (Bjurlin and Bissonette 2004; Patterson 

1971) or natural behavior (Ernst and Lovich 2009), there could be immediate and long-

term costs associated with this behavior (Averill-Murray 1998, 2002), as the animal is 

then potentially subjected to dehydration in a water-limited environment. Ultimately, by 

releasing stored water in a response to handling by researchers, voiding may potentially 

place desert tortoises at risk of dehydration and possible death (see Averill-Murray 2002), 

although this has not been demonstrated empirically.   

To minimize negative investigator effects and defensive behavior leading to 

potential stress in desert tortoises during processing, it is essential to consider how 

handling and environmental variables affect the probability of voiding and long-term 
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apparent survivorship. Specifically, we examined the effects of common research 

practices applied in turtle mark-recapture studies, by paying close attention to measured 

handling (restraint) time, individual number of captures, sex, and abiotic conditions 

(precipitation) on the probability of voiding in a natural population of Agassiz’s desert 

tortoise in the western Sonoran Desert of California. Secondly, we measured the effects 

of yearly winter precipitation and individual voiding occurrence or non-occurrence on 

annual apparent survivorship in the same population of desert tortoises.    

Materials and methods 

Study site 

Our study was conducted at a wind energy generation facility near Palm Springs in 

Riverside County, California, known locally as Mesa. Monitoring of tortoise populations 

has been ongoing at this site since the mid 1990s. The study site is located at the western 

edge of the Sonoran Desert and is roughly bordered on the north and west by the San 

Gorgonio Wilderness Area (see Lovich and Daniels 2000; Lovich et al. 2011a). Long-

term average winter precipitation (October to March) was 15.2 cm at Mesa (RAWS 

Weather Station: WWAC1; accessed via the MesoWest website 

(http://mesowest.utah.edu/index.html).  

Field techniques 

This study began as an investigation of the reproductive ecology of the desert tortoise 

(Lovich et al. 1999, 2011b, 2012). However, data were collected secondarily on tortoise 

voiding that allow for a post hoc analysis of the frequency and determinants of that 

behavior. Voiding behavior in desert tortoises at Mesa was evaluated during capture 

events over seven study periods (2000, 2001, 2009, 2010, 2011, 2012, 2013) spanning 13 

http://mesowest.utah.edu/index.html�
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years, during which desert tortoises were repeatedly handled for various lengths of time 

(1.2 min – 157 min) throughout several research studies (Agha et al. 2013; Ennen et al. 

2012; Lovich et al. 2011a, b, 2012), including our long-term survivorship analysis (see 

below). In these studies, the methodology for tortoise processing was consistent between 

sexes and juveniles. All tortoises were initially located using intensive time-area 

constrained searches (Crump and Scott 1994), by radio-telemetery, or by thread trailing.  

Description of radio-attachment and application of thread-trailers are available in Lovich 

et al. (2011a) and Agha et al. (2013). After a tortoise was located, the researcher would 

tap the tortoise from its burrow (Medica et al. 1986), or if it was close to the entrance, 

they would retrieve the tortoise by hand. During each capture event, the researcher would 

record start and stop times (time of day) of the data collection process, which included 

determining the sex, weighing, measuring, and/or marking of tortoises, as required. The 

researcher would also record environmental variables including air temperature (making 

sure to abide by standard state and federal permit handling protocols including a 35°C 

temperature limit).  Additionally, adult females were scanned for gravidity using X-

radiography (Hinton et al. 1997; Lovich et al. 2012) on a 7 to 10 day schedule from April 

to July (Lovich et al. 2011b), excluding study year 2012 when data were collected in the 

fall. In some years, tortoises were thread trailed daily (Agha et al. 2013). During handling 

or the restraint period for each individual, it was noted if a tortoise voided. Finally, after 

mark-recapture practices and or x-radiography were completed, the tortoise was returned 

to the exact location where it was retrieved. 

Capture-mark-recapture data were collected from April to July in ten study 

seasons (1997, 1998, 1999, 2000, 2009, 2010, 2011, 2012, 2013 and 2014) over the span 



10 
 

of 18 years, as part of an ongoing study of long-term apparent survivorship in desert 

tortoises. Surveys were performed by groups of 2-4 individual researchers aligning 

themselves parallel to one another (equally spaced and < 25 m apart), allowing for visual 

search overlap, and then proceeding to walk along transects through the study area to 

visually detect tortoises. Site-specific searches were repeatedly conducted throughout 

each study year to fully assess the population.  Sampling effort varied from full searches 

to incidental captures during a radio telemetry study.  Capture events used in this study 

include only the first capture of an individual in each study year (indicating pooled 

result), and therefore are a subsample of the total number of individual tortoise captures 

at this site.  

Researcher handling analysis 

We used a generalized linear mixed-effects model (GLMM; Bates et al. 2012; Crawley 

2013) to assess the effects of both research manipulation and abiotic conditions on 

probability of voiding. GLMMs used in our analysis also took into account temporal and 

spatial pseudo-replication resulting from repeated measurements on the same individuals. 

We included categorical random effects: individual identification number (ID) and year 

(YR), and fixed effects: handling time (HT), sex, number times captured (TC), and winter 

precipitation (PPT). Using ID and YR as random effects, we accounted for individuals 

who were more likely to void than others and year-to-year variation in voiding, 

respectively. We included the covariate HT because we expected that the probability of 

voiding would increase with increased handling time. We added sex to the model since 

gravid females were X-radiographed on multiple occasions for assessment of 

reproductive condition and output (leading to extended handling periods), and past 
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studies have documented that gravid females maintain water balance in drought and wet 

conditions (Averill-Murray 2002; Henen 1997). Therefore, our model would account for 

females that may or may not be conserving water to benefit reproduction. We also 

decided to incorporate TC since it has been correlated with lowered survivorship 

estimates (but not empirically demonstrated mortality) in G. morafkai (Averill-Murray 

2002). Finally, the food resources of desert tortoises are related to the timing, quantity, 

and spatial distribution of winter rainfall (Beatley 1974; Bowers 2005; Lovich et al. 

2012), hence winter PPT (October to March) was integrated into the model as it is pivotal 

to water balance in the desert tortoise (Henen et al. 1998; Henen 2002 a, b), and if more 

water is available, tortoises might be more likely to void during handling and 

manipulation. Mesa does not receive substantial rainfall during the summer months, and 

therefore they were not included in our analysis. We then coded the response variable 

“VOID” (=1) if the tortoise voided during a handling occasion and “VOID” (=0) if the 

tortoise did not void during handling. Lastly, records were categorized into three separate 

and distinct groups of individuals based on carapace length (CL) and secondary sexual 

characteristics (Ernst and Lovich 2009): juveniles (≤ 180 mm CL), adult males (≥ 180 

mm CL), and adult females (≥ 180 mm CL). The ID and YR were separated to attain 

individual intercept and slopes and to accommodate for variation in the number of 

captures for each individual tortoise.   

Using program R (R Development Core Team 2013), we built random effects and 

fixed effects into our model with the use of a “glmer” function and (lme4) package (Bates 

et al. 2012; Crawley 2013). Subsequently, we evaluated a series of 45 biologically 

relevant models corresponding to all possible combinations of fixed and random effects 
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about voiding occurrence; a priori we predicted that the likelihood of tortoise voiding 

would be higher the longer a tortoise was handled due to potential stress levels 

experienced by the tortoise while data were being collected. We also predicted that below 

average precipitation prior to the individual being captured would lead to lower 

probabilities of voiding behavior, since the tortoise would have limited accessibility to 

hydrating resources and a potentially compromised osmotic condition. Lastly, we 

projected that as handling of the individual increased, it would be more accustomed to 

contact by researchers and would therefore have a lower probability of voiding. We then 

evaluated all 45 models using a multi-model inference. We used Akaike Information 

Criterion (AIC) corrected for small sample size (AICc) to identify the ‘best’ model 

(Burnham and Anderson 1998). To accommodate for multiple models with similar 

Akaike weights, we calculated covariate parameters by averaging across all models 

within a given model set that included the covariate. 

Survivorship analysis 

We used Program MARK (Version 4.3, 2006; White and Burnham 1999) to model 

apparent survival of adult desert tortoises in this population (carapace length ≥ 18 cm; 

Ernst and Lovich 2009) with Cormack-Jolly-Seber models. Individuals equipped with 

radio transmitters had perfect detectability, so an individual, time-varying covariate was 

used to indicate occasions during which each turtle was equipped with a radio transmitter.  

This is essentially equivalent to setting capture probabilities equal to one for these 

individual/occasion combinations as the parameter estimate of radioed individuals 

converges near one (p[RADIO]). In addition to the effects of radioed individuals, we 

included the effect of year-specific temporal variation (T) on capture probability 
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(p[T+RADIO]). The covariates that potentially influence survival: PPT (winter 

precipitation), sex, and VOID (coded ‘1’ or ‘0’ indicating pooled result of voiding 

occurrence or non-occurrence in each year during handling, respectively), and all 

combinations of these parameters were then fitted as group covariates into a set of time-

varying capture probability models (candidate model set). The candidate model set was 

then ranked using AICc (Burnham and Anderson 1998), and using a delta AICc of <2 we 

distinguished the top model. Confidence intervals on supported effect sizes were obtained 

from model averaging the top models within the candidate set. In all survivorship models, 

the variance was estimated using central difference approximations to the second partial 

derivative (i.e. 2nd part; Burnham and Anderson 2002). 

Results 

During our seven study periods, we used data from 1008 total desert tortoise captures 

involving 62 juveniles (57 juveniles were initially captured in YR 2000 and 2001), 20 

adult males and 23 adult females. Of the 62 juveniles and the 43 adults, 8 (13%) and 40 

(93%) were recaptured at least once, respectively. However, some adults were captured 

over 100 times during the study period. Of the 1008 total capture events, voiding was 

recorded on 83 (8.2%) occasions in 42 different individuals. The handling time of 

individuals in our study varied greatly (1.2 min – 157 min, Mean: 20.82 min, SD: 23.57 

min) due to variation in the distance researchers had to traverse over mountainous terrain 

and the number of procedures required to process each animal. 

The top six models predicting voiding behavior included fixed variables HT, PPT, 

SEX, TC, and ID and YR as random variables (Table 2.1). The combined Akaike weight 

of the top six models was 0.98 and Akaike weight demonstrated that no one single model 
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was clearly superior to others within the set (Table 2.1). Consequently, we used model 

averaging of the top six models to calculate the parameter estimates for each fixed and 

random effect (Burnham and Anderson, 2002) (Table 2.2.). Our top models indicated that 

increases in HT led to significantly higher probabilities of voiding for juveniles, females, 

and males (Figure 2.1; Table 2.2). Similarly, increases in PPT resulted in significantly 

higher probabilities of voiding for juveniles and females, but not for males (Figure 2.1; 

Table 2.2). Tortoise capture frequency (TC) was negatively correlated with voiding 

occurrence, however not significantly (Table 2.2). 

Over 10 study years, data was used from 230 capture-mark-recapture events, 

which included 54 different adult individuals (31 males and 22 females). Juveniles were 

excluded from the survival analysis as there was insufficient data. Model averaged 

capture probability varied from 0.50 ± 0.13 (yr 2009) to 0.77 ± 0.13 (yr 2000), and was 

equal to ‘one’ when all tortoises were radio-telemetered between years. Our top model 

included the covariate PPT, however, delta AICc did not demonstrate that the top model 

was the most parsimonious within the candidate set (Table 2.3); therefore model 

averaging was used for all models within 7 AICc units of the top model(Burnham and 

Anderson, 2002). Model average parameter estimates of PPT suggested a weak negative 

effect on survivorship (not significantly different from zero) (Table 2.4). Parameter 

estimates of SEX and VOID were deemed uninformative (Arnold et al. 2010) (Table 2.4), 

and exhibited little to no effect on annual apparent survivorship. Overall, model average 

annual apparent survivorship ranged from 0.91 ± 0.06 (yr 2011) to 0.95 ± 0.02 (yr 2000). 

Discussion 
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This study demonstrated that both research activities and abiotic conditions influence 

voiding, a possible sign of stress or a natural ‘non-stressful’ response, in desert tortoises. 

The top six models predicting voiding occurrence, the most influential variable was HT.  

The significant probability of a voiding response (potential increase in stress level) to HT 

found in our study is consistent with other studies on G. agassizii (Drake et al. 2012) and 

on other turtles (Cash et al. 1997; Gregory et al. 1996; Ott et al. 2000).  Drake et al. 

(2012) and others (Romero and Reed, 2005; Wingfield and Romero 2001) also suggest 

that the act of capturing the tortoise and the tortoise’s ability to resist extraction increases 

HT and acute stress levels. Kahn et al. (2007) described increases of plasma 

corticosterone occurring within minutes of capture and handling of tortoises, while Drake 

et al. (2012) specified that plasma corticosterone increased significantly in G. agassizii 

approximately 20 minutes after research activities had been initiated.  

Our findings suggest that sensitivity to handling as assessed by voiding frequency 

varies between adult female, male and juvenile desert tortoises. Juvenile tortoises appear 

to be most likely to void, followed by adult females and lastly males. Wilson et al. (2001) 

revealed that regardless of the mechanism by which body water is lost, juveniles lose 

water at an extremely rapid rate (0.85% of body mass/day) opposed to adults (0.165% of 

body mass/day), which underscores potential enhanced susceptibility to researcher 

handling.  Thus, research activities may complicate osmoregulation for adult female and 

juvenile tortoises if animals void more frequently due to handling. However, we found 

that as PPT increased, the probability of voiding also increased significantly for both 

adult females and juveniles, but not in males. Averill-Murray (2002) and Henen (1997) 

indicated that internal water balance is important for reproduction in female desert 
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tortoises. Females may store body water through the winter months and draw on their 

reserves to aid reproduction in the ensuing spring (Henen 1997; Nagy and Medica 1986; 

Turner et al. 1984). Correspondingly, Loehr et al. (2011) found that reproduction (gravid 

vs. non gravid) in female Namalqauland speckled tortoises (Homopus signatus signatus) 

was correlated with the quantity of precipitation in the months preceding nesting. In 

drought years, handling-induced voiding in reproductive females may affect clutch size 

and frequency and survival (Lovich et al. 2014).    

From our study, we found that long-term effects of voiding behavior on apparent 

survivorship are negligible in adult tortoises at Mesa. However, due to the extreme 

temporal and spatial variability of precipitation in the southwestern United States, access 

to water resources is unpredictable and sporadic (MacDonald 2010; Noy-Meir 1973, 

Seager and Vecchi 2010); therefore excessive handling and manipulation at other study 

sites that have been subject to stochastic trends in precipitation may have negative 

consequences for survivorship and population size of tortoises, especially during times of 

drought (Lovich et al. 2014). These consequences may disproportionally affect juveniles 

and gravid females in the short-term.  

 Populations of the desert tortoise (Gopherus agassizii) have declined throughout 

the range due to a variety of natural perturbations, including droughts (U.S. Fish and 

Wildlife Service, 1994). Although temporally and spatially stochastic, winter rainfall 

(Oct-March) in the Mojave and western Sonoran desert regions of the U.S. is 

characteristically the antecedent for successful annual plant production in the spring 

(Beatley 1974; Bowers 2005). For most reptilian herbivores in the Mojave and Sonoran 

deserts annual plant productivity is vital to water homeostasis. In Agassiz’s desert 
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tortoise, obtaining and conserving water is the difference between survival and 

presumably death (Henen 1997; Henen et al. 1998; Longshore et al. 2003; Medica et al. 

1980; Peterson 1994; Zylstra et al. 2013). Our study at Mesa suggested that lower totals 

of winter precipitation leads to lower annual estimates in apparent survivorship (Table 

2.3, 2.4). In addition, Lovich et al. (2014) revealed that specifically three year moving 

average winter rainfall (Oct-March) strongly influenced adult survivorship in a 

population of desert tortoises in the Sonoran desert. 

It is important to note that we do not know the extent to which long-term wind 

turbine operation at the site contributed to chronically elevated stress and voiding 

behavior in tortoises, although that remains as a research question that needs additional 

investigation. Wind energy generation produces chronic noise, vibration and shadow 

flicker, electromagnetic fields, macro- and micro-scale climate changes, predator 

attraction, and increased fire risk, all with potentially negative effects to wildlife 

including desert tortoises (Lovich and Ennen 2013). In addition, construction and long-

term maintenance at the site contribute to direct mortality of tortoises and environmental 

impacts due to destruction and modification of habitat, including the impacts of a dense 

network of roads associated with the facility. It is possible that these factors contributed 

to voiding behavior of tortoises but the degree to which that may be is currently 

unknown. 

Currently, recovery permits issued by the U.S. Fish and Wildlife Service to 

conduct research on desert tortoises state the following, “The permittee shall make every 

effort, when handling desert tortoises, to release each tortoise within one-half hour of its 

capture.” We made a good faith effort to abide by both the letter and the spirit of our 
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permit requirements for handling time, but the terrain and logistics sometimes required 

longer handling times than anticipated. The range we experienced provided a unique 

opportunity to empirically test the effect of variance in handling time on voiding 

probability of tortoises, and our analyses should be useful to resource managers for 

evaluating the efficacy of permit requirements in recovery of the desert tortoise. 

Implications for wildlife management 

Our research suggests that in order to minimize the effect of research activities on studied 

desert tortoise populations, defined procedures or protocols must be followed by the 

investigators to reduce the contact period with a specimen to the extent feasible (Berry 

and Christopher 2001; Berry et al. 2002; Drake et al. 2012), and these protocols might 

need to be modified depending on age class or sex of the animals. When processing a 

tortoise, investigators can attempt to minimize probability of voiding to a safe level by 

regulating time spent restraining the individual (based on age class and sex). Our results 

suggest that to remain under a 10% probability of voiding during a research handling 

event, juveniles should be held for a maximum of 25 min, females for 40 min and males 

for 70 min. However, current handling guidelines appear to adequately minimize 

probability of voiding in adults. Three important factors make research procedures of G. 

agassizii difficult for resource management to address: (1) most research projects require 

some degree of handling or manipulation (Averill-Murray 2002), (2) duration of droughts 

are gradually increasing in arid-environments of the Desert Southwest (Cayan et al. 2010; 

Seager et al. 2007), and (3) although negative effects of voiding on annual apparent 

survivorship were not seen at Mesa, research handling and drought conditions are 

associated with decreased survivorship in desert tortoise populations in other areas of the 
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Mojave and Sonoran desert (Averill-Murray 1998, 2002; Berry et al. 2002; Longshore et 

al. 2003; Lovich et al. 2014; Peterson 1994; Zylstra et al. 2012). Negative effects of 

voiding may be mitigated by rehydration through soaking the individual, creating access 

to artificial water catchments, or providing electrolytes or dextrose solution (McLuckie et 

al. 1999), yet further research on rehydration effectiveness and its impact on stress levels 

must be empirically assessed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



20 
 

Table 2.1.The top six models (explaining 98% of the data) determining voiding behavior 
in Agassiz’s desert tortoise. Voiding behavior (VOID) based on 45 combinations of fixed 
effects: handling time (HT), preceding winter precipitation (PPT), Sex (SEX), total 
number of captures (TC), and random effects: identification number (ID) and year (YR). 
All models are ranked by corrected AICc and listed with number of model parameters 
(K), negative log likelihood (NLL), difference in AICc relative to the best model 
(ΔAICc), and Akaike weight (WAICc). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GLMM Formula K NLL AICc ΔAICc WAICc 

VOID ~ HT + PPT 

+ SEX + TC 

+ (1 | ID) 

5 198.22 412.86 0.00 0.29 

VOID ~ HT + PPT 

+ SEX + TC 

+ (1 | YR) 

5 198.43 413.36 0.50 0.22 

VOID ~ HT + PPT 

+ SEX + TC 

+ (1 | ID) + (1 | YR) 

6 197.3 413.48 0.62 0.21 

VOID ~ HT + SEX + TC 

+ (1 | YR) 
4 200.41 414.89 2.00 0.11 

VOID ~ HT + SEX + TC 

+ (1 | ID) + (1 | YR) 
5 199.5 415.48 2.61 0.08 

VOID ~ HT 

+ PPT+ SEX + (1 | ID) 
4 200.86 415.79 2.93 0.07 
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Table 2.2. Model average parameter estimates, standard error and confidence intervals 
from top 6 models. GLMMs incorporate HT, PPT, SEX, and TC as fixed effect variables 
and ID and YR as random effects. SEX: FEMALES are implicit within the INTERCEPT. 
* Effects with 95% confidence interval (CI) not overlapping zero were significant at P 
<0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fixed Effects 
Parameter 

Estimates 
Standard Error 95% CI 

INTERCEPT -3.71 0.93 -1.89, -5.53* 

HT 2.43 0.32 3.06, 1.8* 

PPT 0.16 0.05 0.26, 0.06* 

SEX: 

JUVENILES 
1.56 0.50 

2.55, 0.58* 

SEX: MALES -0.97 0.52 0.04, -1.98  

TC -0.14 0.14 0.12, -0.41  
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Table 2.3. Summary of apparent survivorship model testing for desert tortoises marked at 
Mesa Wind Site. Models are sorted by increasing AICc weights (Wi) > 0.01 are listed. 
Symbols reflect different factors in the model (  = apparent survivorship, PPT = winter 
precipitation (Oct-March), RADIO = capture probability = 1.0 for individuals radioed 
between capture occasions, T = time, K = number of parameters). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Model AICc ΔAICc Wi 
Model 

Likelihood 
K Deviance 

(PPT) 
p(RADIO + T) 

340.05 0.00 0.26 1.00 11 316.78 

(.) 
p(RADIO + T) 

340.12 0.08 0.25 0.96 10 319.07 

(SEX + PPT) 
p(RADIO + T) 

342.13 2.08 0.09 0.35 12 316.62 

(SEX) 
p(RADIO + T) 

342.15 2.10 0.09 0.35 11 318.88 

(VOID) 
p(RADIO + T) 

342.16 2.11 0.09 0.35 11 318.89 

(VOID+PPT) 
p(RADIO + T) 

342.22 2.17 0.08 0.34 12 316.72 

(.) 
p(RADIO) 

342.77 2.72 0.07 0.26 2 
 

338.72 

(SEX + VOID) 
p(RADIO + T) 

344.36 4.3 0.03 0.12 12 318.85 

(SEX +VOID + PPT) 
p(RADIO + T) 

344.39 4.3 0.03 0.11 13 316.62 
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Table 2.4. Survivorship model average parameter estimates on the logit scale. Standard 
error and confidence intervals from top competing models including covariates winter 
precipitation (PRECIP), sex and voiding occurrence (VOID).  

Parameter 
Effects 

Parameter 
Estimate 

95% CI Standard 
Error 

PRECIP -0.014 -0.23, 0.20 0.11 
SEX -0.038 -0.42, 0.34 0.19 

VOID  0.045 -0.49, 0.58 0.27 
(Intercept) 2.98 2.12, 3.83 0.43 
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CHAPTER THREE 
 

USING MOTION-SENSOR CAMERA TECHNOLOGY TO INFER SEASONAL 
ACTIVITY AND THERMAL NICHE OF THE DESERT TORTOISE (GOPHERUS 

AGASSIZII) 
 
Introduction 

 
Understanding the thermal sensitivity of wildlife (e.g., optimal temperature range) 

is fundamental to effective wildlife and habitat management, as climate shifts can alter 

thermal niches and cause species extinctions (Sinervo et al. 2010). Knowledge about the 

interactions between abiotic attributes and the ecology of wildlife once remained obscure, 

in part due to difficulty collecting unbiased, empirical data required to document 

physiological sensitivities of species and their respective ecological critical thresholds 

(Huey and Stevenson 1979).  Recently, however, estimating and comparing thermal 

performance of animals has become a major focal point of research programs, especially 

for ectotherms, as their behavior and physiological stability are uniquely tied to their 

ability to regulate exposure to thermal stimuli (Angilletta et al. 2002, 2010; Hertz et al. 

1982; Huey et al. 2012). Because ectotherms produce minimal metabolic heat, they must 

employ various behaviors (e.g., basking, foraging, restricted activity, shade seeking) and 

select suitable habitat to maintain ecological and physiological performance (Bulte and 

Blouin-Demers 2010).  

Accurately assessing ectotherm activity and behavior can be difficult using direct 

methods. For instance, direct observations by investigators during research activities (i.e., 

active surveys) can provide biased information as the study subject may alter its behavior 

or activity when followed by the researcher (Bridges and Noss 2011; Cutler and Swann 

1999; Horne et al. 2007; Johnson 2002). Thus, researchers have increasingly used 
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indirect methods to document wildlife activity, such as motion-sensor camera traps (see 

O’Connell et al. 2010 for a review). Researchers suggest that camera traps provide a 

more accurate empirical documentation and quantification of wildlife behavior and 

activity patterns than historical trapping and observational methods (Dillon and Kelly 

2007; Meek et al. 2012). For example, camera traps provided a rare insight into specific 

partitioning of activity timing in small mammals that was previously unknown (Meek et 

al. 2012), of extended activity in amphibians (Hoffman et al. 2010), and of the first 

known evidence of nocturnal activity in a presumptive diurnal primate (Tan et al. 2013).    

Documenting activity and behavior in desert wildlife via camera traps may be 

particularly beneficial to further understanding enigmatic species. Due to the harsh desert 

climate, activity periods of most desert wildlife are temporally and spatially limited both 

seasonally and daily (Porter et al. 1973; Grant and Dunham 1988; Huey et al. 1977). 

Thus, researchers studying desert wildlife often restrict their research efforts to times 

when their study organisms are presumed active. Additionally, climate change is 

expected to result in restricted activity windows, population declines and extinction of 

many desert species (Sinervo et al. 2010), including the desert tortoise (Gopherus 

agassizii; Lovich et al. 2014b), a species listed as threatened under the US Endangered 

Species Act (USFWS 2011). Desert tortoises inhabit an extreme environment where 

ambient temperatures frequently exceed the tortoise’s critical thermal maximum (43.1°C; 

Hutchinson et al. 1966; 38.6 - 45.1°C; Naegle 1976). Several studies of the desert tortoise 

have used direct observational methods to examine daily and seasonal timing of activity 

(Averill-Murray et al. 2002; Luckenbach 1982; Nagy and Medica 1986; Osario and Bury 

1982; Ruby et al. 1994), air temperature activity ranges (Berry and Turner 1986; 
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Brattstrom 1965; McGinnis and Voigt 1971; Woodbury and Hardy 1948; Zimmerman et 

al. 1994), and temperature thresholds for activity (Hutchison et al. 1966; Naegle 1976). 

However, few studies use indirect methods and constant activity temperature monitoring 

to examine activity patterns (i.e., thermal models, ibutton sensors) (Bulova 1994; Nussear 

et al. 2007; Zimmerman et al. 1994). 

In this study, we used passive infrared (PIR) motion-sensor camera traps to 

examine activity of desert tortoises and to better define the relationship between activity 

and environmental temperature. We had three specific objectives: (i) to assess the daily 

thermal niche of a western Sonoran Desert population of desert tortoises over one field 

season by testing the effect on activity of air temperature, sex, time of year, and 

biologically relevant interactions of these parameters, (ii) to identify temporal 

partitioning (patterns) of activity over calendar days of the year during the activity 

season, and (iii) to identify patterns of activity during hours of the day over the activity 

season. 

Materials and methods 

Study area 

Our study was conducted at a wind energy generation facility, known as Mesa, 

near Palm Springs in Riverside County, California, USA. This tortoise population has 

been studied since the early 1990s. Located at the western edge of the Sonoran Desert, 

the study site (approximately 6.25 km2) is bounded on the north and west by the San 

Gorgonio Wilderness Area (see Lovich et al. 2011a).  

Field Techniques 
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Tortoises have been studied at Mesa for over 20 years resulting in publications on 

growth, demography, reproduction and various other aspects of their ecology and 

behavior (Lovich et al. 2011a, b; Lovich et al. 2012; Ennen et al. 2012, Agha et al. 2013). 

When a tortoise was captured, we recorded sex (based on secondary sexual 

characteristics) and marked each animal with a unique identification code by cutting 

shallow notches into the marginal scutes of the carapace using a triangular metal file 

(Cagle 1939). In addition to carapace notching, clear epoxy tags (with the corresponding 

identification number) were glued to the fourth left pleural scute. Lastly, tortoises were 

measured for straight-line carapace length (CL) with tree calipers (see Lovich et al. 2011a 

for detailed field methods). 

From June 1 to November 14, 2013, we used 48 Reconyx and Wildgame trail 

cameras (models HC500, PC800 and W8E) placed at active burrows to monitor desert 

tortoises (Lovich et al. 2014) (Figure 3.1). All cameras were programmed to take 1-5 

high definition photographs (camera trap events) when triggered (0.2 sec trigger speed) 

by movement of wildlife (Rovero et al. 2010, 2013). For each camera trap event, sex and 

unique identification code of the individual were recorded (determined by carapacial 

notching or epoxy tag). Also, we determined whether the tortoise was alert or not alert 

(eyes closed), basking (based on posture), foraging, walking, copulating, digging, 

fighting, or nesting. We also recorded proximity of these behaviors to the tortoise burrow 

(see Zimmerman et al. 1994 and Ruby and Niblick 1994 for basking posture). In the case 

that a tortoise on the surface was captured on camera prior to sunrise, having spent the 

night outside, activity was considered when the tortoise started to walk (Bulova 2002; 

Zimmerman et al. 1994). Camera detection range varied, but typically we could see the 
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entrance to the burrow and the surrounding landscape in a radius of approximately 2-4 

m2.  

Cameras were monitored and checked on a weekly to monthly basis to retrieve 

photos. During 2013, surface air temperature readings were collected every 30 minutes 

from a Remote Automated Weather Station (RAWS) at the site and accessed via the 

MesoWest website (http://mesowest.utah.edu/index.html) and White Water Station 

(WWAC1). These temperature readings were then associated to each individual camera 

trap event for all 48 cameras.  

Statistical Analysis 

Because cameras frequently took multiple pictures of the same individual during 

an event, the active records exhibited strong temporal correlation (a concern noted by 

previous camera trap investigations; Cutler and Swann 1999; Hughson et al. 2010). To 

remove this pattern, we randomly subsampled active records to retain a maximum of one 

active record per individual per activity period (sunrise to sunset). Photos captured before 

sunrise and after sunset, as determined by U.S. Naval Observatory Astronomical 

Applications Department (http://aa.usno.navy.mil/data/docs/RS_OneYear.php), were 

removed. Nocturnal activity was not considered due to lack of data and that our study 

was strongly focused on quantifying daytime activity. In addition, we removed images 

that yielded partial views of tortoises that could not be unambiguously identified or given 

an activity classification.  

To determine environmental factors that most influence probability of tortoise 

activity, we used Resource Selection Functions, which compare used to available 

resource units (i.e., air temperature) to produce “values proportional to the probability of 

http://mesowest.utah.edu/index.html�
http://aa.usno.navy.mil/data/docs/RS_OneYear.php�
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use of resource units” (RSF; Manly et al. 2002). RSFs with an exponential link function 

are mathematically equivalent to binomial generalized linear models (GLMs) with the 

logit link function (McDonald 2013). Further, binomial GLMs can be extended to 

account for correlation within individuals and still allow for population-level inference 

using Generalized Estimating Equations (GEEs, Hardin 2005, Koper and Manseau 2009). 

Therefore, we used binomial GEEs to assess the effect of covariates on the relative 

probability of adult desert tortoise daily activity during the warmest part of the year (June 

to November) at Mesa.   

Models were fit in the program R (R Development Core Team, 2013), using the 

‘geepack’ package (Yan 2004). Available resource units were produced by randomly 

generating 300 day-hour combinations per individual, with a corresponding RAWS 

record during the duration camera traps were deployed. Covariates of interest in this 

analysis were temperature (linear and quadratic, T and T2) and sex (SEX). Changing 

activity patterns or the activity budget across the active season were also of interest, but 

preliminary analysis revealed complex patterns that would be difficult to model 

completely in a regression context. However, we did include calendar days from January 

1 (hereafter DOY) in the RSF models because T linearly correlated with DOY (P < 0.05). 

We also accounted for variable activity levels across individuals by using an 

exchangeable correlation structure in the GEE models. Subsequently, we tested all 

possible combinations of T (linear and quadratic), SEX, DOY (linear and quadratic). All 

two-way interactions were considered a priori plausible and so were all fit using the 

‘MuMIn’ package (Barton 2011). Models were ranked using the quasi-likelihood 

criterion under the independence model, QIC (I) (hereafter QIC; Pan 2001), and any 
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models within 7 QIC units of the top model were considered competitive (Burnham and 

Anderson 2002). Within this model set, parameter estimates and standard errors were 

obtained by refitting the models using the exchangeable correlation structure, and then 

averaged following Burnham and Anderson (2002). 

By applying quadratic temperature effects in the RSF, we estimated the operative 

temperature at which activity peaked, separating SEX in models with a temperature-by-

sex interaction. To obtain confidence intervals on these maxima, we used nonparametric 

bootstrapping in the model fitting and averaging process. Ninety-five percent intervals 

were calculated from the bootstrap distributions composed of 200 resamples. Also of 

interest was the maximum temperature at which tortoises were observed to be active 

outside the burrow, which we summarized by the mean and range (separated by SEX). 

Mixture Models 

To investigate temporal partitioning of activity across DOY, we used normal 

mixture models (Benaglia et al. 2009; Connette et al. 2014; Owen-Smith et al. 2012). 

These models allowed us to parse out periods of activity during the active season for 

desert tortoises, and compare them between sexes. These models adequately represent 

multi-modal frequency distributions of activity levels across DOY that are not feasibly 

modeled in a regression context. Our data were not described well by available count 

models in which the variance depends on the mean and were therefore approximated by 

normal distributions. We fit sex-specific normal mixture models with 1-4 mixture 

components (hereafter activity periods) using the R package ‘Mixtools’ (Young et al. 

2009), and subsequently selected the top models for each sex using the Akaike 

Information Criterion (AIC). We used parametric bootstrapping to produce 95% 
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confidence intervals for the parameters of the top models (B=1,000). Because some 

bootstrap distributions were skewed, basic intervals were used, as they are less biased in 

this scenario than percentile intervals (Efron 1979). Parameters ‘π’, ‘μ’ and ‘σ’ are 

provided for each activity period for both males and females. Parameters reflect different 

factors of the mixture model: (π) indicates the percent of total activity taking place in 

each activity period, (μ) corresponds to mean of the activity period, and (σ) corresponds 

to the temporal duration of the activity period (unit: DOY). 

Lastly, to identify patterns of activity over hours of the day (HOD) in the active 

season, we again used normal mixture models. We fit sex-specific normal mixture 

models with 1-2 activity periods, as a maximum of 2 activity periods (two distinct major 

activity peaks) was deemed to be biologically important when assessing desert tortoise 

activity throughout a day. Parametric bootstrapping was used to produce 95% confidence 

intervals for the parameters of the top models (B=1000). 

R esults 

In study year 2013 at Mesa, we obtained 2,754 tortoise camera trap events, of 

which 993 (680 male and 313 female) were randomly selected for further analysis. We 

identified 23 individuals (13 male and 10 female) in these pictures. Individual males 

averaged 52.3 (16 - 78), active tortoise camera trap events, and females averaged 31.3 (12 

- 53). Active tortoises were observed above ground at surface temperatures ranging from 

8.33° C and 41.67° C. Although above-ground ambient temperatures often appeared 

favorable at night, very few tortoises were active (camera trap, researcher observed) 

above ground past sunset during the study. Nocturnal activity was noted on 23 occasions. 
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The daily mean maximum temperature at which individual turtles were observed to be 

active was 37.25° C (range 32.77° C – 41.67° C). 

The top RSF model included the covariates SEX, T, T2, DOY, DOY2, SEX*DOY, 

and SEX*T (Table 3.1). Parameter estimates within the relative probability of activity 

model for females was: y = -15.39+0.06*DOY-0.0001*DOY2 + 0.42*T-0.007*T2, and 

for males: y =-15.39+0.08*DOY-0.0001*DOY2 + 0.38*T-0.007*T2. We found strong 

support for models including all covariates (at least ΔQIC >15.94 for all non-competing 

models) except for models including the interaction between SEX and T which had 

almost equal support as the second ranked model (ΔQIC=1.36) (Table 3.2). Relative 

probability of activity was higher for males than for females (Figure 3.2). The 

temperature at which desert tortoises were estimated to have the highest relative 

probability of activity (> 0.9) was 30.7°C (95% CI; 28.44-33.9) for females and 29.08°C 

(95% CI; 27.54-30.9) for males. 

Model selection supported DOY mixture models with 3 activity periods for both 

males and females (Table 3.3), which largely matched up in timing and duration (Figure 

3.3). The mean (μ) and duration (σ) of each activity period overlapped between sexes for 

activity periods 2 and 3 (Table 3.4). The confidence intervals for the σ overlapped 

between sexes for activity period 1; however, the μ for males was significantly smaller 

than females, indicating a peak in activity earlier in the year for males. Females allocate 

significantly more activity to period 1 (non-overlapping confidence intervals for π), but 

no significant differences were detected in the other two activity periods. Although not 

significant, females in the sample tended to spend less time active later in the year 

relative to males. 
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Model selection supported HOD mixture models with 2 distinct activity periods 

for females (Table 3.5). Although model selection determined HOD mixture models with 

3 distinct activity periods were best for males (Table 3.5), we selected 2 periods due to 

daily temperature trends (Figure 3.4). Male and female activity periods from sunrise to 

sunset matched well in timing and in duration, which was supported by overlapping 

confidence intervals for σ, μ and π parameters (Table 3.6).  

Discussion 

The behavior, physiology and fitness of ectotherms are largely determined 

through interactions with environmental variables (i.e., air temperature, wind speed, 

humidity) (Angilletta et al. 2010; Grant and Dunham 1988; Porter et al. 1973). 

Consequently, it is not surprising that an ectothermic organism’s performance or 

tolerance is highly related to thermal sensitivity as well (Huey and Stevenson 1979). 

Through the application of an unbiased, enhanced field research method (i.e., camera 

trapping), our study supports previous research showing that abiotic variables (i.e., 

temperature) influence probability of activity (performance) in desert tortoises (Bulova 

2002; McGinnis and Voigt 1971; Zimmerman et al. 1994). Our study also demonstrated 

that camera traps provide novel insights into G. agassizii ecology, such as nocturnal 

activity, higher than previously known activity-temperature thresholds and a tri-modal 

seasonal activity pattern.  Furthermore, our RSF temperature activity curve follows a 

characteristic unimodal shape, which suggests that G. agassizii has a limited surface 

operative temperature window. Decreased activity when air temperatures exceed an 

average of 37.25°C suggested that tortoises actively avoided the risk of overheating. This 

finding is similar to Walde et al. (2003) for desert tortoises elsewhere, and Hailey and 
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Coulson (1996) for Speke's hinge-back tortoise (Kinixys spekii). In addition, daylight 

observations of the Mediterranean spur-thighed tortoise (Testudo graeca) suggested that 

activity is influenced linearly by air temperature, and that the interaction varies between 

sexes (Lambert 1981). Temperature-influenced differences in activity between males and 

females have also been found in the turtles Trachemys scripta (Hammond et al. 1988), 

Chrysemys picta (Lefevre and Brooks 1995), and Emydoidea blandingii (Millar et al. 

2012). Our findings at Mesa suggest that tortoises are highly sensitive to fine-scale 

variation in temperature, and therefore rely on their familiarity with the micro-

environment to behaviorally thermoregulate (Bulova 2002; Chelazii and Calzolai 1986). 

When temperatures exceeded the upper thermal threshold for activity found at Mesa, 

tortoises were seen retreating to their burrows almost immediately, ostensibly to reduce 

body temperature.    

Because restricted activity behaviors make this species exceedingly difficult to 

monitor (i.e., field survey; Freilich et al. 2000), it is most profitable and proficient to 

conduct investigations with indirect techniques (camera trapping) within their selected 

habitat, along with operative temperature models (Zimmermann et al. 1994) to capture 

micro-environmental variation in activity and habitat use. Although previous studies 

noted technological difficulties for quantitative assessments using camera traps (Cutler 

and Swann 1999; Hughson et al. 2010), camera trap technology – when used correctly – 

provides a non-invasive tool for conservation of wildlife. Motion-sensor cameras can also 

allow researchers to assess how climate patterns affect the behavior of desert tortoises 

(e.g., foraging) based on periods that desert tortoises remain above ground. Furthermore, 

hatchling emergence from nests within burrows could be effectively documented via 
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motion-sensor camera technology. Objective monitoring of the activity and thermal 

ecology of desert tortoises at all life history periods is critical to better understanding this 

imperiled species.  

Our results suggested that sex of the individual plays a large role in determining 

probability of tortoise activity, similar to the findings of Lambert (1981) for the tortoise 

T. graeca. At Mesa, male tortoises were more active than females across the entire 

optimal operative temperature range. These findings may reflect sexual size dimorphism 

of desert tortoises, as males are significantly larger than females (Gibbons and Lovich 

1990; Lovich et al. 2011a) and thus have greater thermal inertia. We suspect that with a 

smaller surface to volume ratio than females, male tortoises exhibit higher activity rates 

(spending prolonged periods at the surface) to maintain an optimal body temperature. 

However, further research is needed to determine why each sex selects a unique upper 

temperature threshold for activity. Increased activity in males may also be linked to 

active searching of mates (Rostal et al. 1994) or reproduction (Morreale et al. 1984; 

Aresco 2005). Strong selective forces may act upon male tortoises to increase mate 

searching activity (Bonnet et al. 2001). Male desert tortoises also increase burrow 

searching during the mating season (Bulova 1994) and use larger home ranges (Duda et 

al. 1999). Increased activity in males, especially at suboptimal and supraoptimal 

temperatures, needs to be considered in future research monitoring of the desert tortoise, 

as increased anthropogenic-based hazards may occur outside of the optimal activity 

season in tortoises. Although males were more active than females, females had slightly 

higher optimal activity temperatures (Figure 3.2). Females may be optimizing or 

displaying peak activity at temperatures identified in our study because thermoregulation 
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is related to their reproductive physiology and clutch phenology (i.e., specifically heat 

unit accumulation; Lovich et al. 2012). 

Mixture models allowed us to divide the activity season into early, middle and 

late periods of activity, as well as identify an activity gap during mid-day. These models 

also allowed us to quantify patterns that were not feasible in a regression context. 

Tortoises at Mesa displayed a tri-modal (seasonal) activity pattern over the span of the 

study period, as indicated by the strong effect of T and T2 across DOY. Over the course 

of an activity season, tortoises budget their activity to take advantage of reproduction-

related processes (i.e., mating) as well as resource availability (Medica et al. 2012). 

Males and females were equally active during most of the study but did differ during 

reproductively important periods of the year. Male tortoises at Mesa appeared to be more 

active during the third activity period (Table 3.4, Figure 3.3), potentially searching for 

mates or taking advantage of necessary resources prior to hibernation. In contrast, 

females were more active during the first period, when gravidity of several females was 

documented at the site through weekly X-radiography (Lovich et al., in press). Such 

evidence suggests that the first activity period for females may directly relate to a critical 

phenological stage related to first clutch appearance (Lovich et al. 2012). While not 

statistically significant, females allocated less activity to the last period, although further 

research with increased data may suggest otherwise. Desert tortoise activity modeled 

throughout a twenty-four hour span (Figure 3.4) suggested that both male and female 

desert tortoises become active prior to noon (period 1), decrease activity levels at mid-

day, and then subsequently become active again in the afternoon (period 2) (Figure 3.4). 
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The gap in activity during the middle of the day generally reflects restriction of activity 

when environmental temperatures are often extreme.      

The desert tortoise evades lethal temperatures by retreating to their burrows which 

provide a cooler retreat (Brattstrom 1961; Voigt 1975; Ruby et al. 1994; Woodbury and 

Hardy 1948). Motion-sensor cameras provided evidence that burrows are of critical 

importance to the thermal ecology of desert tortoises. Consequently, reducing 

anthropogenic habitat modification and disruption of soil during periods of the year when 

air temperatures exceed ~37.25°C is prudent (~35°C; Walde et al. 2003). In addition, 

particular attention should be paid to timing of the main activity season (Activity period 

2; Figure 3.3) and operative temperature thresholds (~37.25°C) when the probability of 

human-caused desert tortoise mortality above and below ground may be greatest 

(Jacobson 1994; Zimmerman et al. 1994). 

Desert ectotherms rely on behavioral thermoregulation (e.g., basking and shade-

seeking) and selection of suitable habitat to maintain their ecological and physiological 

performance (Bulte and Blouin-Demers 2010; Grant and Dunham 1988) and survival 

(Huey and Tewksbury 2009). Behavior, physiological stability, and survival of desert 

ectotherms is uniquely tied to their ability to regulate exposure to thermal stimuli 

(Angilletta et al. 2002; Angilletta 2006; Kearney et al. 2009) as well as time spent above 

ground. To critically assess these impacts, a next step in research would be to compare 

results of observed behavior as documented here and results from the behavior predicted 

from operative environmental temperature modeling (Zimmermann et al. 1994), as well 

as biophysical models of ectotherm activity (Kearney et al. 2009). Such studies could 

resolve the magnitude of the thermal constraints imposed on desert tortoises and potential 
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impacts of hours of restriction in foraging on demography and extinction risks (Sinervo et 

al. 2010).  

 Our work confirms previous research demonstrating that environmental 

temperatures significantly affect activity in natural desert tortoise populations. However, 

we reexamine the subject of temperature-based activity using novel field methodology 

and resource selection functions. From this study, we learn that desert tortoises budget 

their activity into three distinct periods based on preferred air temperatures, as well as 

timing that is congruent with their physiology and reproductive phenology. Thermal 

constraints and how they vary over time are fundamental to understanding impacts on 

reproductive success (Lovich et al. 2012; Lovich et al., in press), temperature dependent 

sex-determination (Hulin et al. 2009; Spotila et al. 1994), food and water availability 

(Wallis et al. 1999; Zhao and Running 2010), and energy and water relations (Henen 

1997; Henen et al. 1998; Peterson 1996). Since climate models suggest that this region in 

the southwestern desert US will be subjected to warmer and more arid conditions (Cayan 

et al. 2010; Seager et al. 2007), optimal windows or thermal niches available to activity, 

as well as natural habitat, may in fact diminish, resulting in possible population declines 

(Lovich et al. 2014) and species extinctions (Quintero and Wiens 2013; Sinervo et al. 

2010). Therefore directed research on climate variation, tortoise activity and habitat 

modification is needed to better aid in conservation of the desert tortoise. 
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Table 3.1. Generalized estimating equation models of Agassiz’s desert tortoise activity 
based on fixed effects: temperature (T), squared temperature (T2) and gender (SEX), and 
random effects: identification code (ID), calendar days since January 1 (DOY), and 
calendar days since January 1 squared (DOY2). Models are sorted by increasing QIC 
weights (Wi). Symbols and abbreviations reflect different properties of each model (K = 
number of parameters, Δ = Difference from best model, W = QIC weight). Models that 
were not judged as competing according to Arnold (2010) were not included in Wi 
calculation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Activity Model K Negative quasi log 

likelihood 

ΔQIC Wi 

T + T2 + SEX + SEX*T 

+ DOY + 

DOY2+DOY*SEX 

8 2868 0.00 0.66 

     

T + T2 + SEX + DOY + 

DOY2+DOY*SEX 

7 2870 1.36 0.34 
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Table 3.2. Averaged parameter estimates on the logit scale, and confidence intervals from 
the top two generalized estimating equation models. Abbreviations represent different 
factors including temperature (T), squared temperature (T2), gender (SEX), calendar days 
from January 1 (DOY), intercept (INT) and calendar days from January squared (DOY2), 
DOY*SEX interaction, SEX*T interaction. LB and UB correspond to lower bound and 
upper bound of 95% confidence intervals, respectively.  
 

Parameter Est. 95% LB 95% UB 

INT* -15.3932 -20.8287 -9.9578 

DOY* 0.0647 0.0272 0.1021 

DOY2* -0.0001 -0.0002 -0.0001 

T* 0.4166 0.2533 0.5799 

T2* -0.0067 -0.0095 -0.0041 

SEX(Male) -1.3414 -4.0298 1.3469 

DOY*SEX(Male)* 0.0106 0.0018 0.0194 

SEX(Male)*T -0.0324 -0.0797 0.0149   

*Effects with 95% confidence interval (CI) not overlapping zero were significant at P 

<0.05. 
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Table 3.3. Mixture model selection for assessing desert tortoise activity across day of the 
year (DOY). Symbols and abbreviations reflect different properties for each model (K = 
number of parameters, Log Lik = Log likelihood, ΔAIC = Akaike’s information criterion 
difference value from best model. 
    Female Male 

Components K 
Log 
Lik AIC ΔAIC 

Log 
Lik AIC ΔAIC 

1 2 -1613 3230 68 -3465 6934 86 
2 5 -1579 3168 6 -3439 6888 40 
3 8 -1573 3162 0 -3416 6848 0 
4 11 -1571 3164 2 -3414 6850 2 
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Table 3.4. Mixture model parameter estimates for assessing desert tortoise activity across 
days of the year (DOY). Symbols and abbreviations reflect different factors: (π) indicates 
significance of each component (activity period), (μ) corresponds to mean peak of 
activity period, and (σ) is the duration of activity period (unit: DOY). LB and UB 
correspond to lower bound and upper bound of 95% confidence intervals, respectively.  
    Female Male 

Par Period Est. 95% 
LB 

95% 
UB Est. 95% 

LB 
95% 
UB 

π 
1 0.224* 0.151 0.284 0.050* 0.026 0.069 
2 0.691* 0.612 0.868 0.755* 0.685 0.852 
3 0.085 -0.064 0.136 0.195* 0.107 0.262 

μ 
1 172.525 169.415 175.035 163.564 161.090 165.741 
2 236.217 230.611 245.261 236.123 231.494 241.715 
3 296.107 288.824 312.008 293.242 289.885 297.887 

σ 
1 8.312 5.756 10.540 4.832 2.441 6.865 
2 29.351 25.043 38.718 30.211 27.068 35.087 
3 10.166 1.045 17.028 11.762 8.234 15.242 

* π estimates with 95% confidence interval (CI) not overlapping zero were significant at 
P <0.05. 
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Table 3.5. Mixture model selection for assessing desert tortoise activity across ‘hour of 
the day’. Symbols and abbreviations reflect different properties for each component 
(activity period) (K = number of parameters, Log Lik = Log likelihood, ΔAIC = 
Difference from best model. 
    Female Male 

Periods K 
Log 
Lik AIC ΔAIC 

Log 
Lik AIC ΔAIC 

1 2 -809.5 1623 72 -1806 3615 206 
2 5 -770.6 1551 0 -1708 3426 17 
3 8 -766.5 1549 2 -1697 3409 0 
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Table 3.6. Mixture model parameter estimates for assessing desert tortoise activity across 
‘hour of the day’. Symbols and abbreviations reflect different factors: (π) indicates 
significance of each component (activity period), (μ) parameter corresponds to mean 
peak of activity period, and (σ) is the duration of activity period (unit: hour of the day). 
LB and UB correspond to lower bound and upper bound of 95% confidence intervals, 
respectively. 
    Female Male 

Par Period Est. 95% 
LB 

95% 
UB Est. 95% 

LB 
95% 
UB 

π 1 0.472* 0.387 0.528 0.529* 0.482 0.577 
2 0.528* 0.472 0.613 0.471* 0.423 0.518 

μ 1 9.850 9.554 10.164 9.800 9.595 10.011 
2 15.281 14.700 15.760 15.847 15.560 16.120 

σ 1 1.225 1.008 1.442 1.499 1.344 1.662 
2 2.072 1.704 2.492 1.819 1.618 2.048 

* π estimates with 95% confidence interval (CI) not overlapping zero were significant at 
P <0.05. 
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CHAPTER FOUR 

TURBINES AND TERRESTRIAL VERTEBRATES: VARIATION IN TORTOISE 
SURVIVORSHIP BETWEEN A WIND ENERGY FACILITY AND AN ADJACENT 

UNDISTURBED WILDLAND AREA IN THE DESERT SOUTHWEST (USA) 
 
I ntr oduction 

 Technological advancements in clean energy production coupled with a rapidly 

increasing global human population have bolstered a resurgence of utility-scale 

renewable energy development (USRED) (Lund 2007). Installation and operation of 

utility-scale renewable energy facilities offers the potential to address ongoing depletion 

of fossil fuels, while enhancing local economies (Bergmann et al. 2007; Krohn and 

Damborg 1999; Wei et al. 2010). One form of USRED, wind energy, is quickly 

expanding worldwide (EIA 2013; Leung and Yang 2012), and by 2020 is predicted to 

yield 5% of the world’s total energy (Joselin et al. 2007). In the United States, production 

of industrial wind power facilities is flourishing with approximately 60 Gigawatt (GW) 

installed capacity at the third-quarter of 2013 (AWEA 2013). However, these industrial 

wind energy facilities (WEF) produce environmental impacts (Leung and Yang 2012); in 

fact, wind energy development has one of the largest footprints (i.e., disturbance area) per 

GW ratings compared to other forms of renewable energy generation (Kiesecker et al. 

2011; McDonald et al. 2009; AWEA 2013). Among future areas of industrial 

development, wind energy impact to North American (US and Canada) shrublands will 

be most severe, converting upwards of an estimated 5.6 million ha of shrubland to 

industrial wind power facilities by the year 2030 (Pocewicz et al. 2011).  

Until recently, the direct and indirect impacts of USRED to flora and fauna have 

been relatively unknown (Kuvlesky 2007; Lovich and Ennen 2011, 2013b). With 

increasing energy demand, consumption, and USRED development (Hoogwijk, de Vries 
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and Turkenburg 2004), researchers have become concerned about the response of wildlife 

and conservation of critical habitat (Carrette et al. 2013; Kiesecker et al. 2011; Masden et 

al. 2010; Northup and Wittemyer 2013; Parsons and Battley 2013). It is well-documented 

that wind turbines are a significant source of mortality to volant wildlife (i.e., birds and 

bats; Erickson et al. 2001; Kunz et al. 2007). Furthermore, there is a growing body of 

evidence that anthropogenic infrastructure associated with USRED such as power lines, 

roads, and turbine pads, negatively impact a variety of terrestrial vertebrates (Fahrig and 

Rytwinski 2009; Groot et al.1996; Harte and Jassby 1978; Langen et al. 2009; Lovich and 

Bainbridge 1999; Santos et al. 2010). In addition, wildland fires can be ignited by wind 

turbines and malfunctioning machinery, and the long- and short-term effects of these fires 

on terrestrial vertebrate populations may be significant (Lovich et al. 2011c; Lovich and 

Ennen 2013b). 

Although initial construction of new WEF can cause considerable impacts to 

wildlife and their habitat, it is also argued that the facilities themselves may assist in 

conservation of some species since public access, mineral extraction, and intensive 

cultivation are greatly limited (Kelcey 1975; Lovich and Daniels 2000). A recent study 

reported that there was little evidence of wildlife population declines during the period of 

post-construction (maintenance and operation; Pearce-Higgins et al. 2012), supporting a 

claim that many USREDs may enable wildlife populations to persist (Kelcey 1975). 

However, a general paucity of research exists documenting the long-term effects of 

USRED on terrestrial wildlife populations.  

Agassiz’s desert tortoise (Gopherus agassizii), a long lived, semi-fossorial turtle 

species, has experienced significant population declines largely due to habitat 
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degradation caused by a variety of human activities throughout their range in the North 

American desert southwest (Lovich and Bainbridge 1999; USFWS 2011; Wilshire et al. 

2008). The growth of USRED in the desert southwest can cause further fragmentation of 

desert tortoise habitat (Vandergast et al. 2013) and possibly stress populations  through 

increased fire frequency, vibration, noise and regional climate change (Lovich and Ennen 

2011, 2013b). Although threats to desert tortoises associated with USRED were 

identified over 30 years ago (Pearson 1986), only recently have studies emerged focusing 

on the impacts of USRED on this species (Lovich and Daniels 2000; Lovich et al. 2011a, 

b, c; Ennen et al. 2012a, b). 

To understand the post-construction impacts of industrial WEFs on threatened 

terrestrial vertebrates (USFWS 1990; USFWS 2011), we used a long-term capture-mark-

recapture dataset to examine activity centers and survivorship of a natural population of 

Agassiz's desert tortoises at a WEF in southern California (USA). We tested two 

predictions: (i) desert tortoises within or immediately adjacent to the footprint of an 

operating WEF would have a higher probability of being affected by anthropogenic 

features and operations, and would therefore have lower estimates of apparent survival in 

comparison to tortoises near a wilderness area (NWA), and (ii) individual activity areas 

would be smaller within the boundaries of the WEF due to modified habitat (i.e., 

potentially increased resource availability from artificial rain catchments on turbine pads 

and edge enhancement of vegetation along roads; see Lovich and Daniels 2000). 

Materials and Methods 

Our study site, known as Mesa, is near Palm Springs in Riverside County, 

California and located on federal lands (i.e., Bureau of Land Management). Detailed 
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monitoring of tortoise populations has been ongoing at this site since 1997. Mesa is 

situated on the western edge of the Sonoran desert, with an elevation range of 600-900 m 

and long-term average winter precipitation of 15.2 cm (range 2.9 – 44.1 cm) (estimated 

using WestMap PRISM data; http://www.cefa.dri.edu/Westmap/; Lovich et al., in press). 

Vegetation at Mesa includes a variety of plant species typical of the Mojave and Sonoran 

deserts along with plants from coastal southern California (see Lovich and Daniels 2000; 

Lovich et al. 2011b). Several fires have altered the plant community since the wind 

facility became operational after 1983 (Lovich et al. 2011b, c). The Pacific Crest Trail 

runs through Mesa and roughly divides the study site into “disturbed (i.e., WEF)” and 

“undisturbed (i.e., NWA)” landscapes (Figure 4.1). To the east and south of the Pacific 

Crest Trail, the site is bounded by an operating utility-scale WEF (including 460 turbines, 

51 electrical transformers, and an extensive network of roads; Lovich and Daniels 2000). 

To the north and west of the Pacific Crest Trail, the site is not modified by industrial 

activities (i.e., NWA) and adjacent to the San Gorgonio Wilderness. The footprint of the 

NWA study area was 152.8 ha and the footprint of the WEF study area was 185.81 ha 

(area analysis presented below). In our study, the Pacific Crest Trail is used as a dividing 

line for the two habitat types at Mesa and does not inhibit desert tortoise movement.  

Field Techniques 

Desert tortoise surveys at Mesa were conducted from early April to late July over 

ten field seasons (1997-2000, 2009-2014) spanning 18 years. Due to limited funding, 

surveys in 2012 were only conducted from October to December. During all study 

periods, we used intensive time-area constrained searches (Crump and Scott 1994; 

Walker 2012) to detect desert tortoises, making sure to explore all available disturbed and 

http://www.cefa.dri.edu/Westmap/�
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undisturbed habitats at Mesa. Surveys were performed by groups of 2-4 individual 

researchers aligning themselves parallel to one another (equally spaced and < 25 m 

apart), allowing for visual search overlap, and then proceeding to walk along transects 

through the study area to visually detect tortoises. Over each study period, the study site 

was repeatedly sampled to ensure full assessment of the population. When a tortoise was 

located, we recorded their location using a GPS device (accurate to within about 3m). 

Upon hand capture of the individual, sex was determined using secondary sexual 

characteristics (Ernst and Lovich 2009). If it was a sexually mature adult, we recorded 

weight (g) using a Pesola® spring scale, and straight-line carapace length (mm). If it was 

a first capture event, the individual would be given a unique mark on the marginal scutes 

and upper shell or carapace (Cagle 1939), using a triangular metal file. In addition to 

notching the carapace, epoxy tags were applied to the fourth left pleural scute with the 

corresponding identification code. Properly marking an individual allowed us to 

determine a recapture event in a subsequent study year. Tortoises were kept for no longer 

than 30 minutes, on average, and released at the point of capture.  

Additionally, our study coincided with research on movements and reproductive 

ecology; therefore, numerous individuals in the population were located using radio-

telemetry throughout portions of the study at Mesa (Lovich et al. 1999; Lovich et al. 

2011a, b, c; Lovich et al. 2012; Ennen et al. 2012a, b; Agha et al. 2013). Sampling effort 

varied from full searches to incidental captures during a radio telemetry study (specified 

in survival analysis below). The number of tortoises that were monitored via radio 

telemetry varied from year to year during the study (mean ~ 8 per year). Thus, capture 

events used in this survival analysis include only the first capture of an individual in each 
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study year (i.e., including telemetered and non-telemetered individuals), and therefore are 

a subsample of the total number of captures at this site. We handled all animals following 

approved field methods and under permits from the United States Fish and Wildlife 

Service, Bureau of Land Management and the California Department of Fish and 

Wildlife. 

Activity Area and Survival Analysis  

Boundaries for San Gorgonio Wilderness and Pacific Crest Trail were acquired 

from resource management agencies including the Bureau of Land Management and U.S. 

Forest Service (USFS), respectively. Using ArcGIS 10.1.1 (ESRI 2014) and yearly first 

captures for all individual tortoises in the study we created 100% minimum convex 

polygons (MCP), and then estimated activity area values for each individual based on a 

10-m digital elevation model (DEM). We created a separate MCP including yearly first 

capture locations for all individual tortoises in the study to determine the footprint of each 

study area in hectares (NWA = 152.8 ha, WEF = 185.81 ha). Due to the linearly 

dependent relationship between number of captures and accurate estimations of activity 

areas, and because several of the tortoises in this study had relatively small number of 

relocations (Mares et al. 1980), we performed a linear regression of number of locations 

vs. activity area size ( = 0.05). Although most tortoises in the study had a low number 

of recaptures, linear regressions were not significantly different from zero (p = 0.869), 

demonstrating that our activity area estimates were not adversely affected by the number 

of tortoise relocations (Harless et al. 2010). Since some tortoises moved between the 

NWA and WEF, we generated polygon centroid points for each individual’s overall 

tortoise activity area. For tortoises with only one to three capture occasions, we plotted 
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their location and categorized them as NWA or WEF relative to the Pacific Crest Trail. 

We performed a non-parametric Kolmogorov-Smirnov Test to assess overall activity area 

differences between NWA tortoises and WEF tortoises (two-sample K-S test;  0.05; 

SAS Version 9.3, SAS Institute 2011). 

We used Program MARK (Version 4.3, 2006; White and Burnham 1999) to 

model apparent survival of adult desert tortoises in this population (carapace length ≥ 18 

cm; Ernst and Lovich 2009) with Cormack-Jolly-Seber models, using pooled results 

within years (Freilich et al. 2000). Individuals equipped with radio transmitters had 

perfect detectability by design, so an individual, time-varying covariate was used to 

indicate occasions during which each turtle was equipped with a radio transmitter. This is 

essentially equivalent to setting capture probabilities equal to one for these 

individual/occasion combinations as the parameter estimate of radioed individuals 

converges near one (not exactly one since parameters were estimated on the logit scale) 

and MARK automatically reduces the parameter count to exclude this parameter. Prior to 

conducting the survival analysis, we first constructed candidate models that varied in 

capture probability (p) to find the best-fit model for desert tortoise detection. Candidate 

models included: constant capture probability including radio effects (p[RADIO]), time 

(T) varying capture probability including radio effects (p[T+RADIO]), time varying and 

determined by habitat type ((HT): NWA or WEF) (p[T+HT+RADIO]), time varying and 

determined by HT and gender (SEX) (p[T+HT+SEX+RADIO]), constant and determined 

by HT (p[HT+R]), and constant and determined by HT and SEX (p[HT+SEX]). Constant 

capture probability models were used only for comparison since such a parameterization 

is “an unrealistic assumption for desert tortoises” (Freilich et al. 2005). Using a group 
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within a group input structure in Program MARK (Cooch and White 2006), we coded 

four groups: (1) adult male WEF tortoises (inferring that the individual’s activity area 

was located east of the Pacific Crest Trail, (2) adult male NWA tortoises (inferring that 

the individual’s activity area was located west of the Pacific Crest Trail), (3) adult female 

WEF tortoises, and (4) adult female NWA tortoises.    

The top model for capture probability was identified using the survival constant 

model .) and ranking all combinations of capture probability parameters (T, HT, SEX 

and RADIO) using AIC (Akaike 1973; Burnham and Anderson 2002). The covariates of 

interest (HT and SEX) were then fitted as group covariates in the survival analysis to the 

most parsimonious capture probability model, and we used AIC to determine the weight 

of the top models. The inclusion of the individual, time-varying covariates precluded the 

estimation of goodness-of-fit and the estimation of the overdispersion parameter, c, so we 

assumed no overdispersion was present. Confidence intervals on supported effect sizes 

were obtained from the most parsimonious model. In all mark-recapture models, the 

variance was estimated using central difference approximations to the second partial 

derivative (2nd part; Burnham and White 2002).  

Results 

We used data from 234 tortoise capture events of 54 different individuals (13 

male and 14 female within the boundaries of the WEF and 19 male and 8 female within 

the boundaries of the NWA) over the 10 field seasons. Mean activity area (including 

standard error) of individuals in the WEF portion of the site was 6.25 ± 2.13 ha, and 

mean activity area of individuals in the NWA portion of the site was 4.13 ± 1.23 ha. 

Mean overall activity area for adult male and female individuals combined was 5.48 ± 



53 
 

0.05 ha (range 0.06 to 43.98 ha). The two sample K-S test identified that the 100% MCP 

size of the two populations (WEF and NWA) were not significantly different (KS: 0.097, 

D: 0.202, p = 0.913).   

Capture probability of the top model varied from year to year based on new and 

repeat tortoise captures (Figure 4.2) and was equal to ‘one’ only when all tortoises 

captured in one year were radioed continuously until the next year of sampling. The top 

weighted parameterization of capture probability included the effects of HT, T and Radio. 

Parameter estimate for ‘HT’ was 0.60 ± 0.38, suggesting greater capture probability in 

WEF than in NWA. Over the entire study period, capture probability estimates on the 

WEF ranged from 0.48 ± 0.1 (yr 2012) to 0.84 ± 0.07 (yr 2000), and on the NWA side 

ranged from 0.33 ± 0.1 (yr 2012) to 0.74 ± 0.11 (yr 2000) (excluding 1.00 capture 

probabilities; Figure 4.2). Overall, the average, annual capture probability for both adult 

male and females combined was 0.56 ± 0.05.   

The top ranked apparent survival model included HT effects on apparent survival 

(Table 4.1). With an AICC difference of 2.25 units from the (.) model (i.e., null model), 

and an AICC weight of 0.51, the top model (  (HT)) was considered to have weak to 

moderate support (Arnold 2010; Table 4.1). The null model had an AICC weight of 0.16 

and a likelihood of 0.32. Model estimates of HT and SEX effect size, apparent survival, 

and capture probability are presented with unconditional standard errors (See Table 4.2). 

The top model effect size of HT indicated that survival was greater for WEF tortoises, 

and the top model HT estimate was significantly different from zero (Table 4.2). The 

effect size of SEX, in the highest ranking model where it occurred, suggested that it was 

an uninformative parameter (Arnold 2010), and that there was negligible difference in 
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survivorship between sexes (Table 4.2). Our top model indicated that annual apparent 

survival of WEF tortoises (0.96 ± 0.01) was significantly different from that of NWA 

tortoises (0.92 ± 0.02). Overall constant apparent survival from the null model was 0.94 ± 

0.01 for both adult male and female tortoises in the study.   

Discussion 

Our results indicate that long-term tortoise survivorship within the WEF (96.7%) 

was significantly higher than in the nearby NWA (92.1%); thus rejecting our first 

hypothesis that survivorship would be lower at the WEF. Furthermore, size of activity 

areas were larger (although not significantly) within the WEF than in the adjacent NWA, 

which did not support our second prediction that individual activity areas would be 

smaller within the boundaries of the WEF. Despite the variation in survivorship between 

site types, our survival estimates are at the high end in comparison to previous estimates 

based on adult females (91.6%) at the same site (Lovich et al. 2011b), and conspecific 

undisturbed populations in nearby regions of the Mojave and Sonoran desert (Freilich et 

al. 2000; Riedle et al. 2010; Zylstra et al. 2013). These high survivorship estimates 

contrast with other studies that found lower survivorship often attributed to persistent 

drought, disease and predation (Berry, 1997; Esque et al. 2010; Longshore et al. 2003; 

Lovich et al. 2014; Peterson 1994).  

Larger activity areas within the WEF in comparison to the NWA may suggest that 

tortoises can traverse the modified landscape with little difficulty. This assumption is 

based on tortoise sightings as they moved along dirt roads (J. E. Lovich, personal 

observation), as has been documented in other turtle species in modified environments 

(Nieuwolt 1996). Overall, activity area estimates at Mesa were less than those presented 
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in previous research studies (see Harless et al. 2010 for a recent review) on Agassiz’s 

desert tortoise (sensu Murphy et al. 2011). Low activity area estimates in our study may 

be attributed to our limited number of relocations per individual used to create each 

activity area, and site fidelity toward highly productive pockets of landscape at Mesa. 

Due to the variable topography and spatial arrangement of plant assemblages at Mesa, 

desert tortoises may prefer specific habitat along ecotones (Lovich and Daniels 2000). 

Patterns of space use by desert tortoises at Mesa can also be influenced by roadside plant 

productivity within the study site (Lovich and Daniels 2000), sex of the individual, social 

interactions and sampling regime (Harless et al. 2010).  

Overall, average capture probability of desert tortoises (not including radio-

telemetered individuals) within the WEF and NWA were higher than previously 

conducted long-term mark-recapture studies (Zylstra et al. 2013: 0.41 for all 

populations). Annual capture probabilities for desert tortoises fluctuated greatly, similar 

to the findings of Lovich et al. (2014a) from nearby Joshua Tree National Park. The 

NWA section of Mesa had lower annual capture probability estimates than did the WEF, 

which may have resulted from the precipitous terrain in the NWA which made it difficult 

to find tortoises during our initial surveys. Over extended study periods (i.e., multi-year 

studies), enhanced capture probability of desert tortoises is associated with precipitation 

and subsequent germination of annual food plants (Lovich et al. 2014a; Freilich et al. 

2000); however, lower estimates in 2012 may be attributed to reduced effort and timing 

of those surveys (October – December).  

Altered resource availability facilitated by the WEF may be the cause for disparity 

in survivorship between the NWA and WEF landscapes at Mesa. Lovich and Daniels 
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(2000) and Lovich et al. (2011b) hypothesized that tortoises at Mesa benefited from edge 

enhancement of vegetation (food resources), turbine pads (artificial rain catchments), 

reduced subsidized predators and low traffic. Previous studies have documented that 

desert tortoise populations removed from areas developed by humans and exposed to dirt 

roads with lower volumes of vehicle traffic exhibit little decline (Berry and Medica 1995; 

Nafus et al. 2013). Furthermore, Lovich and Daniels (2000) noted that burrow locations 

for Agassiz’s desert tortoise at Mesa were located closer to dirt roads and turbine 

structures than expected, which may also be due to roadside water collection and 

subsequent increased plant production. An investigation of desert tortoises inhabiting 

areas near roads in the Mojave Desert reported adult tortoises gathering at the sides of 

roads during rainstorms (B. Todd and M. Peaden, personal communication).  

Desert tortoise activity, detection and survival within the WEF may be linked to 

the spatial dynamics (geographic placement and distance between turbines) of turbines 

and maintained dirt road structures. Since Mesa was constructed in the mid-1980s, it uses 

closely-spaced, lattice-style turbines. Modern wind farms tend to use more widely-

spaced, monopoles with larger turbines. The differences between these layouts and their 

associate road structure, as far as tortoises are concerned, are currently unknown.  

Grandmaison and Frary (2012) found that probability of desert tortoise detection 

was highest on maintained gravel roads. Furthermore, roads and culverts may cause 

mortality in adult tortoise populations (Berry et al. 2006; Boarman and Sazaki 1996; 

Lovich et al. 2011a; Nafus et al. 2013), and they may also facilitate increased movement 

(Diemer 1992; McRae et al. 1981; Nieuwolt 1996). It appears that conditions at Mesa are 

suitable for desert tortoise populations (Brooks 2000; Lovich et al. 2011b), although 



57 
 

some mortality has been documented in the past (Lovich et al. 2011a, c). Tortoise 

mortality has been attributed to livestock grazing; direct impacts include burrow collapse 

(Agha et al., in press; Ernst and Lovich 2009; Nicholson and Humphreys 1981), while 

indirect effects may be competition and loss of food resources and therefore a reduction 

in the quantity and quality of suitable habitat.  

Predator populations may be lower at the Mesa WEF than in adjacent NWA, 

which may result in variation in survivorship of desert tortoises between landscapes. 

During the 2013 field season at Mesa, 48 motion sensor cameras were placed at the 

mouth of tortoise burrows, and recorded several occurrences of large terrestrial predators 

at various locations throughout the study site (i.e., both WEF and NWA). On two 

different occasions a potential predation event was recorded on camera: once where black 

bears (Ursus americanus), a known predator of turtles, investigated a tortoise burrow on 

the NWA section of the site (Lovich et al. 2014b), and another instance where a bobcat 

approached a sleeping tortoise also on the NWA section (D. Delaney, personal 

observation). Additionally, it is not unusual for large birds of prey (family Accipitridae) 

to consume turtles (Clark 1982; Means and Harvey 1999). However, rarely have volant 

predators (i.e. golden eagles; Aquila chrysaetos) of desert tortoises (Ernst and Lovich 

2009) been documented at the WEF in recent decade, which may be attributed to high 

mortality caused by turbines shortly after construction (Lovich, in press). Among bird 

species, increased mortality caused by wind facility development has been well-

documented (Desholm and Kahlert 2006; Drewitt and Langston 2006). Furthermore, in 

some cases golden eagles have been recorded to avoid wind energy farms altogether 

(Chamberlain et al. 2006; Walker et al. 2005). Conservation of the desert tortoise may 
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rely on further understanding of predator-prey relationships (Esque et al. 2010) within 

landscapes modified by USRED.  

Turbine-caused fires were documented at the Mesa WEF on two separate 

occasions in 2012. Desert fires directly impact terrestrial vertebrates and cause loss of 

vegetation cover (Esque et al. 2003); however, annual survivorship estimates at Mesa did 

not dramatically decrease post-fire in 2013 (Lovich et al. 2011c). Due to high 

precipitation and elevated plant productivity at Mesa (Lovich et al. 2011c), desert 

tortoises may have been buffered from potential indirect effects of fire (Esque et al. 

2003). 

Populations appear to be stable at Mesa in comparison to other populations of this 

threatened species (Berry, 1997; Esque et al. 2010; Longshore et al. 2003; Lovich et al. 

2014; Peterson 1994). This is likely due in large part to favorable environmental 

conditions (i.e., above average precipitation) at the site and the associated ability of 

females to produce extraordinary numbers of eggs annually (Lovich et al., in press). 

However, since tortoises are long-lived animals, populations can be comprised largely of 

old adults for many years, despite a lack of recruitment (Mortimer 1995), giving the 

illusion of population stability.  New adult and sub-adult tortoises have seldom been 

documented at Mesa in the last decade suggesting the possibility of limited recruitment 

into the adult population. Despite the relative productivity at Mesa, lower recruitment 

may be due to recent drought conditions that have caused adult mortality in other 

populations of the desert tortoise (Lovich et al. 2014a; Morafka 1994). 

Conclusion 
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Our study detected high (>0.92) annual apparent survivorship estimates of 

federally threatened Agassiz’s desert tortoises in southwestern California, with WEF 

tortoises exhibiting slightly greater, significantly different, survivorship than those in in 

the adjacent NWA. Wind energy facility estimates are opposite of what we predicted 

based on known and potential negative effects of wind energy on wildlife (Lovich and 

Ennen 2013b). Our findings call attention to the potential importance of spatial dynamics 

(turbine and road placement) within wind facilities, post-disturbance operation and 

maintenance, and how a “protection factor” might contribute to high estimates of desert 

tortoise survival. More research is needed on the mechanisms responsible for high 

survivorship within the WEF at Mesa, which may lead to useful information to mitigate 

negative effects in other wind facilities. Lastly, future work including pre- and post-

disturbance demographic data, including data on population recruitment, may better 

reveal the full impact of USRED on terrestrial vertebrates. Such studies are by necessity 

long-term since desert tortoises are long-lived animals with generation times as high as 

25 years (Lovich et al. 2014a). Despite several studies regarding renewable energy 

effects on wildlife, true pre- and post-construction evaluations of wildlife utilizing the 

“before-after-control-impact” (BACI) study design are scarce (Kuvlesky et al. 2007; 

Lovich and Ennen 2011, 2013). Studies like these could better address conservation 

issues associated with renewable energy, endangered species and compliance with 

legislation protecting such species (Ruhl 2012).  
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Table 4.1. Summary of model testing for desert tortoises marked at Mesa. Models are 
sorted by increasing AICC weights (Wi) > 0.01 are listed. Subscripts reflect different 
factors in the model (  = apparent survivorship, Habitat Type (HT) = NWA individuals 
vs. WEF individuals, RADIO = capture probability = 1.0 for individuals radioed between 
capture occasions, T = time, K = number of parameters.  

 
 
 

 

 

 

 

 

 

Model AICC ΔAICC Wi 
Model 

Likelihood K Deviance 

(HT) 
p(RADIO+HT+T) 

348.17 0.00 0.51 1.00 12 322.71 

(HT+SEX) 
p(RADIO+HT+T) 

350.41 2.25 0.16 0.32 13 322.70 

(.) 
p(RADIO+HT+T) 

350.86 2.69 0.13 0.26 11 327.63 

(.) 
p(RADIO+T) 

352.69 4.53 0.05 0.10 10 331.67 

(.) 
p(RADIO+HT+SEX+T) 

352.89 4.72 0.05 0.09 12 327.43 

(SEX) 
p(RADIO+HT+T) 

352.90 4.73 0.05 0.09 12 327.44 

(.) 
p(RADIO+HT) 

354.37 6.20 0.02 0.04 3 
 348.26 

(.) 
p(RADIO+SEX+T) 

354.90 6.73 0.02 0.03 11 331.67 
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Table 4.2. Top model parameter estimates on the logit scale. Standard error and 
confidence intervals from top model including covariate habitat type (HT) and top model 
including covariate (SEX).  

Parameter 
Effects 

Parameter 
Estimate 

95% CI Standard 
Error 

HT* 0.94 0.08 – 1.81 0.44 
SEX -0.03 -0.88 – 0.82 0.44 

(Intercept) 2.46 1.92 – 2.99 0.27 
*95% CI non-overlapping with zero indicate significant parameter estimate (p < 0.05).   
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Appendix A 

 

Figure 2.1. Mean probabilities of voiding in juvenile, female, and male Agassiz’s desert 
tortoises in 10 minute intervals using GLMM that incorporates HT, PPT, SEX, and TC as 
fixed effect variables and ID as random effect (model averaging of top 6 models). 
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Figure 2.2. Probability of voiding in juvenile, female, and male Agassiz’s desert tortoises 
in 50 mm intervals of average winter precipitation (Oct.-Mar.) GLMM that incorporates 
HT, PPT, SEX, and TC as fixed effect variables and ID as random effect (model 
averaging of top 6 models).  
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Figure 2.3. A radio-telemetered adult male desert tortoise walking just above its burrow 
at Mesa. 
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Appendix B 

 

Figure 3.1. Motion sensor camera placed at the mouth of desert tortoise burrows at Mesa. 
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Figure 3.2. Relative probability of activity in male and female Agassiz’s desert tortoises 
using model average of top two generalized estimating equation models. Light grey 
shading represents unconditional standard error. Dark grey shading represents 
unconditional standard error overlap between males and females.    
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Figure 3.3. Normal mixture models assessing patterns of activity in desert tortoises across 
calendar days from January 1 (day 150 to 318). Histogram bars represent probability 
density of the number of active tortoise records per day. Gaussian components (peaks in 
histogram) are fitted with an Iterative expectation maximization algorithm. The three 
solid lines in each graph represent the exact density of the three-period mixture 
distribution. The dashed line is the nonparametric density estimate drawn from this 
mixture distribution.  
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Figure 3.4. Normal mixture models assessing patterns of activity in desert tortoises across 
hour of day (hour 0 to 24). Histogram bars represent probability density of the number of 
active tortoise records per hour. Gaussian components (peaks in histogram) are fitted 
with an iterative expectation maximization algorithm. The two solid lines in each graph 
represent the exact density of the two-period mixture distribution. The dashed line is the 
nonparametric density estimate drawn from this mixture distribution.  
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Appendix C 

 

Figure 4.1. Minimum convex polygon (MCP) centroids for individuals captured during 
the study period at Mesa. Dark circles represent WEF tortoises and light circles represent 
NWA tortoises, separated by the Pacific Crest Trail.      
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Figure 4.2. Capture probability of desert tortoises for all study years (using the top 
parameterization of p(Radio+HT+T)) at Mesa. One-hundred percent capture probabilities 
correspond to years when all tortoises in the previous year were radioed tracked 
continuously until the following year. Error bars denote unconditional standard error.   
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