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Summary
Salamander limb regeneration is dependent upon tissue

interactions that are local to the amputation site.

Communication among limb epidermis, peripheral nerves,

and mesenchyme coordinate cell migration, cell proliferation,

and tissue patterning to generate a blastema, which will form

missing limb structures. An outstanding question is how

cross-talk between these tissues gives rise to the regeneration

blastema. To identify genes associated with epidermis-nerve-

mesenchymal interactions during limb regeneration, we

examined histological and transcriptional changes during

the first week following injury in the wound epidermis and

subjacent cells between three injury types; 1) a flank wound

on the side of the animal that will not regenerate a limb, 2) a

denervated limb that will not regenerate a limb, and 3) an

innervated limb that will regenerate a limb. Early,

histological and transcriptional changes were similar

between the injury types, presumably because a common

wound-healing program is employed across anatomical

locations. However, some transcripts were enriched in limbs

compared to the flank and are associated with vertebrate

limb development. Many of these genes were activated before

blastema outgrowth and expressed in specific tissue types

including the epidermis, peripheral nerve, and mesenchyme.

We also identified a relatively small group of transcripts that

were more highly expressed in innervated limbs versus

denervated limbs. These transcripts encode for proteins

involved in myelination of peripheral nerves, epidermal cell

function, and proliferation of mesenchymal cells. Overall, our

study identifies limb-specific and nerve-dependent genes that

are upstream of regenerative growth, and thus promising

candidates for the regulation of blastema formation.

� 2012. Published by The Company of Biologists Ltd. This is

an Open Access article distributed under the terms of the

Creative Commons Attribution Non-Commercial Share Alike

License (http://creativecommons.org/licenses/by-nc-sa/3.0).
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Introduction
All animals regenerate some of their tissues by physiological

turnover, yet only a select few can regenerate appendages.
Vertebrates accomplish this feat by generating a blastema, a mass
of lineage-restricted progenitor cells at the end of an amputation

stump (Kragl et al., 2009). The cellular and molecular processes
that coordinate blastema formation are poorly understood, likely
because it is a complex process, requiring tissues of an
anatomically complex amputation stump to coordinate wound

healing, progenitor cell recruitment, cell proliferation, and tissue
patterning. A major hurdle towards understanding appendage
regeneration is to identify the necessary processes for

regeneration and the molecular mechanisms by which these
processes regulate blastema formation. For example, some
cellular processes like inflammation, epidermal migration, and

cell proliferation are common to all injury types, so it is
necessary to devise experimental strategies that can distinguish
pathways specific to general injury processes from those required

for appendage regeneration.

The blastema of a regenerating salamander limb is a classic
paradigm for studying appendage regeneration because it is an

accessible experimental system that regenerates a

morphologically complex structure. A critical tissue interaction

that is necessary for blastema formation occurs between the

wound epithelium (WE), which forms from rapid migration of

adjacent epidermis, and the underlying mesenchymal stump cells.

Blastema formation is inhibited if the WE is disrupted, either by

suturing full thickness skin over the amputation stump (Mescher,

1976; Tassava and Garling, 1979), irradiation (Thornton, 1958),

surgical removal (Thornton, 1957), or implantation of the limb

stump into the body cavity (Goss, 1956) or dorsal fin to disrupt

epidermal migration (Stocum and Dearlove, 1972). The WE

gradually thickens after amputation to generate the apical

epithelial cap (AEC). The AEC is a signaling center which

supports mesenchymal cell proliferation (Boilly and Albert,

1990; Globus and Vethamany-Globus, 1985), promotes tissue

histolysis (Singer and Salpeter, 1961), and regulates cell

migration (Thornton, 1960b; Thornton, 1960a; Thornton and

Steen, 1962; Thornton and Thornton, 1965). Molecules expressed

in the AEC include; the transcription factors msx2, dlx3, id2, id3,

hes1, sp9 (Satoh et al., 2008), the secreted signaling molecules

wnt5a, wnt5b (Ghosh et al., 2008), fgf1, fgf2, fgf8, fgf10, the
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extracellular matrix molecules collagen type XII, collagen type

IV, lamb1, and the enzymes mmp3/10b, mmp9 (Campbell and

Crews, 2008). However, these studies were not designed to

uncover molecules that are vital to the early function of the WE
or that regulate its relationship with peripheral nerves and

blastemal cells.

Innervation of the limb stump is necessary for regeneration.

Transecting the spinal nerves that innervate the forelimb just
prior to or shortly after limb amputation will block blastema

formation (Singer, 1952). It is unknown why denervation leads to
loss of regeneration in axolotls, but the favored hypothesis is that

nerves provide trophic factors that support cell proliferation of
the blastema, which is lost upon denervation. Several factors

have been proposed as the trophic factor (Dungan et al., 2002;

Globus et al., 1991; Mescher et al., 1997; Mullen et al., 1996;
Satoh et al., 2008; Wang et al., 2000), but none have been clearly

demonstrated to be the factor (Stocum, 2011). Furthermore, it is
unclear if the nerve exerts its effects on the mesenchyme,

epidermis, or Schwann cells. Part of the difficulty in identifying
the exact mechanism of the nerve’s influence is because nerve

fibers quickly invade throughout the distal mesenchyme and
wound epidermis after amputation (Singer, 1949; Taban, 1949;

Thornton, 1954). Limbs containing only motor nerves that do not

innervate the epidermis can regenerate, demonstrating that direct
innervation of the epidermis is not necessary for limb

regeneration (Sidman and Singer, 1960; Thornton, 1960b).
Taken together, nerves need to invade the amputation stump to

support cell proliferation, but the exact relationship between the
nerves with the mesenchyme and epidermis is unclear.

Identification of the downstream targets of the nerve during
limb regeneration may reveal the relationship of the nerve with

the amputation stump.

Although we do not yet understand the relationship between the

epidermis, nerve, and mesenchymal cells at the molecular level, it

is clear that the function of each tissue is dependent upon the
presence of the other tissues and these interactions take place

locally at the amputation plane. For this reason, the goal of this
study was to identify a specific set of genes that are expressed in

the WE and cells directly beneath the WE of the amputated limb
stump early after injury. Our strategy was to use a custom

microarray platform developed for the axolotl (Huggins et al.,
2012) to compare gene expression differences over the first week

after injury between an injured tissue that will not form a limb

(flank wound), an example of aborted limb regeneration
(denervated limb), and a regenerating limb (Fig. 1A–C). Using

statistical approaches to identify significant transcript abundance
differences between regenerating limbs and non-regenerating

tissues (Fig. 1D), we were able to identify a regeneration-
specific gene expression profile. A flank injury located outside

the limb field was chosen because site-specific differences in the
skin are known to mediate limb and flank morphology (Rinn et al.,

2006; Satoh et al., 2007; Tank, 1984; Tank, 1987). Denervated

limbs were chosen because they are an example of aborted limb
regeneration – they present limb-specific gene expression patterns

but do not generate a blastema. Lastly, gene expression during the
first seven days after injury was chosen to identify genes expressed

at the onset of AEC formation and blastema cell proliferation. In
the following paragraphs we describe histological changes that

Fig. 1. Experimental design of the microarray analysis.
(A) Cartoon showing where the limb was amputated in

denervated limbs. Denervated nerve tracks are represented
by a dashed red line. The bottom cartoon shows the
regressing limb around the bone. (B) Cartoon showing an
innervated limb with a solid line representing the nerves.
The bottom cartoon shows the innervation of the
amputation stump, thickening of the WE, and the beginning
of cell accumulation underneath the WE. (C) Cartoon

showing where the flank wound was administered on the
flank of the animal. The bottom cartoon shows how deep
the flank wound enters into the axolotl flank. (D) Schematic
showing the 16 contrasts made in the analysis of the
microarray. Notice that comparisons were performed over
time and between treatments.
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take place over the first seven days in each injury type and then

overlay transcriptional patterns of limb-enriched and nerve-

dependent genes in the amputation stump.

Results
Histology and BrdU analysis of injured innervated limbs,
denervated limbs, and flank wounds

We histologically characterized normal innervated limbs (NL),

denervated limbs (DL), and flank wounds (FW) over the first

seven days post injury (dpi) in order to examine differences

between each injury response at the cellular level (Fig. 2).

Masson’s Trichrome staining revealed that the structure of the

uninjured skin in NL, DL, and FW were similar with one another

(data not shown). Uninjured epithelium consisted of an outer

apical layer of epithelial cells, an interstitial layer of mucous

secreting Leydig cells interspersed with keratinocytes, and a

basal layer of germinative basal keratinocytes (Fox, 1986; Kelly,

1966). The underlying uninjured dermis consisted of mucous and

granular glands interspersed with a loose network of fibroblasts

that overlies muscle (Seifert et al., 2012).

For all three injury types, the wound re-epithelialized within

24 hours after injury by migration of surrounding epidermis,

generating a WE comprised of Leydig cells and keratinocytes

(Fig. 2A–F). Underneath the WE was an accumulation of plasma

and blood cells, with more blood in NL and DL versus FW,

possibly because amputation severed major vasculature in the

limb (Fig. 2B,D,F). Additionally, the FW was almost exclusively

composed of muscle, while the limbs included bone, peripheral

nerves, vasculature and muscle. In all three cases, the WE

appeared to behave similarly during the first 24 hours after

injury, although the extent of the hemostatic response and

complexity of the underlying tissue is greater in the amputated

limb compared to the flank.

By 7 dpi, the WE had thickened in all three injury types, but a

distinct mound of epidermal cells was apparent in the middle of

NL and DL WE, which was not present in FW (Fig. 2G–L). The

epidermal mound may represent the maturation of the WE into

the AEC, which was likely due to continuous cell migration from

the wound margins rather than cell proliferation within the WE

because BrdU-positive cells were evident at the margins of NL

Fig. 2. Histology of NL, DL, and FW. Masson’s
trichrome staining of sections of NL, DL, and FW at 1 dpi

(A–F) and 7 dpi (G–L). Area of magnified images on right
are boxed in images on left. (A,B) Denervated limb at 1 dpi
showing injury closure by the WE and the hemostatic
response under the WE. (C,D) Innervated limb 1 dpi
showing high similarity to the denervated limb. Normal
epidermis and dermis can be seen outside the wound

margins (WM). (E,F) FW at 1 dpi showing that the WE has
closed the wound directly over the muscle and that a small
hemostatic response is taking place. (G–L) Injuries at 7 dpi
showing the thickening of the WE in DL (G,H), NL (I,J),
and FW (K,L). Scale bar in A,C,E,G,I,K 5 200 mm.
Scale bar in B,D,F,H,J,L 5 100 mm.
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and DL (Fig. 3A,D), but not within the center of the WE
(Fig. 3B,E) (Chalkley, 1954; Hay and Fischman, 1961). The WE

of the FW was in direct contact with the subjacent muscle with
little muscle dedifferentiation (Fig. 2K,L). In contrast, muscle

fibers and peripheral nerves were becoming disorganized due to
degeneration in both NL and DL (Fig. 2G,I). Limbs also had

more plasma, red blood cells, and inflammatory cells. All
together, these results suggest similar processes were taking place

in each injury type, but tissue histolysis was more complete by

seven days after injury in limbs versus FW.

Taken together our data show that both limbs exhibited a

hemostatic response and were histologically similar, containing a
thickened WE, osteoclasts surrounding the bone, and histolysed

tissues (Fig. 2A,C,G,I). The WE was lying directly over the bone
in DL, while cells were present between the WE and bone in NL,

suggesting that blastema growth was beginning within NL. BrdU
analysis showed that DNA synthesis was taking place within the

WE margin and mesenchyme (Fig. 3A,C,D,F) of both NL and

DL, which is in accordance with previous studies showing that
mesenchymal cells and epidermal cells enter S phase and divide

in both denervated and innervated limbs (Maden, 1978). Loss of
cell cycling in the mesenchyme of denervated limbs likely takes

place after 7 dpi in the large-sized animals used in this study.
These findings demonstrate that the time frame chosen for our

study encompassed blastema formation rather than blastema

outgrowth.

Commonly changed genes following injury

In order to characterize transcription during regeneration,

transcript abundances were estimated from total RNA collected

from the WE and a few subjacent cells from all three treatments
(Fig. 1A–C). A total of 6684 probe sets yielded expression

estimates that differed significantly as a function of RNA source
and sample time (supplementary material Table S1). These genes

were parsed to identify similarities and differences between
injury types. First, probe sets that changed significantly from

baseline to 1 dpi, 1 dpi to 3 dpi, or from 3 dpi to 7 dpi in each

injury were identified to examine the commonalities between the
injuries. We found that transcription was more similar between

NL, DL, and FW than it was different with 1840 genes up-
regulated and 1667 genes down-regulated in all three injuries

(Fig. 4A,B). This high degree of similarity suggested the
presence of a general wound-healing response regardless of

whether or not a limb will regenerate. The list of genes that

presented higher transcript abundances above baseline was

significantly enriched for genes that annotate to gene ontology

terms associated with processes known to take place during

mammalian skin wound healing including immune system

response (n5187), macrophage activation (n536), and response

to stimulus (n5124) (supplementary material Table S2).

Down-regulated genes belonged to ontology categories including

lipid metabolic process (n5110), chromosome segregation

(n530), metabolic process (n5604), and response to stress

(n548). These results suggest that many of the same processes

that take place during mammalian wound healing also occur in

the axolotl following injury. Indeed, our histological analysis

supports this result as well as an in-depth study on flank wound

healing in the axolotl, which demonstrated that inflammation and

a hemostatic response occurs in axolotls, but is dampened

Fig. 3. BrdU staining of sections of injured limbs.

(A–C) BrdU staining of NL at 7 dpi. (A,D) Cell
proliferation is present in the epidermis near the wound
edge in both NL and DL. (B,E) Little DNA synthesis is
present in the WE in NL and DL. (C,F) Some DNA
synthesis is present in the limb mesenchyme of both NL
and DL at 7 dpi. Scale bar in A–F 5 100 mm.

Fig. 4. Summary of differentially regulated genes during limb

regeneration. (A,B) Venn diagram showing the number of probe sets that

measured significantly higher (A) and lower (B) transcript abundances in
injured tissues at either 1 dpi versus baseline, 3 dpi versus 1 dpi, or 7 dpi
versus 3 dpi. The total number of differentially regulated genes is represented
for each injury type. (C) A schematic representing the progression from the
total number of probe sets with higher transcript abundance in injured NL
tissues compared with baseline (red circle in A) to the identification of limb-

specific and nerve-dependent genes during the first 7 dpi. Numbers outside
parentheses represent the total number of probe sets identified and the numbers
within parentheses represent unique probe sets that have presumptive
human orthologs.
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compared to mammals (Seifert et al., 2012). Although the set of

genes common to all three injuries provides insight about wound

closure, inflammation, and immunity, we focus in the following

paragraphs on gene expression patterns that associate specifically

with limb regeneration.

Limb-enriched gene expression patterns

Overall, 2941 probe sets measured higher transcript abundances

above baseline during the first seven days in NL (supplementary

material Table S1). This list was filtered to identify genes with

higher transcript levels in NL versus FW at 0, 1, 3, or 7 dpi; this

yielded a list of 570 injury-induced, limb-enriched genes, of

which 377 annotate to unique presumptive human orthologs

(Fig. 4C; supplementary material Table S1). Annotation of gene

ontologies for these probe sets identified a substantial number

of genes involved in biological processes linked to limb

development including developmental process (n5125),

mesoderm development (n570), and ectoderm development

(n570) (supplementary material Table S3). In fact, mutations

in 31 of these unique limb-enriched genes manifest human or

mouse developmental limb defects when genetically disrupted,

strongly suggesting that these genes play pivotal roles in

vertebrate limb formation (Table 1). Furthermore, comparing

our list to other genomic screens of limb regeneration (Campbell

et al., 2011; Monaghan et al., 2009) we identified 73 genes that

were commonly identified as highly expressed in amputated

limbs (supplementary material Table S1).

Key regulatory genes involved in signaling pathways known to

be necessary for limb development and limb regeneration were

found in the limb-enriched list including genes integral to

b-catenin-independent Wnt/planar cell polarity signaling

(prickle1, prickle2, wnt5a, fzd2, fzd8, and ror2) (Stoick-Cooper

et al., 2007), retinoic acid signaling (aldh1a3, crabp1, crabp2,

and rdh10) (Blum and Begemann, 2012), insulin growth factor

signaling (ctgf [igfbp8], cyr61 [igfbp10], igfbp2, igfbp3, htra1,

and kazald1 [igfbp-rP10]) (Chablais and Jazwinska, 2010), FGF

signaling (dusp6, fgfr1, and pdlim7) (Lee et al., 2009), and BMP

signaling (bmp2, id3, bmp2r) (Guimond et al., 2010). Overall,

this list supports the hypothesis that some gene expression

programs used in development are re-deployed during limb

regeneration (Muneoka and Sassoon, 1992). Surprisingly, genes

associated with limb patterning and growth were up-regulated

before considerable increases in cell proliferation and blastemal

outgrowth, suggesting that patterning of the limb blastema may

occur in parallel or prior to blastema growth.

Limb-enriched and nerve-dependent gene expression patterns

To identify nerve-dependent genes, limb-enriched genes were

filtered to identify probe sets that measured higher transcript

levels in NL versus DL at 1, 3, or 7 dpi. This strategy identified a

short list of 56 genes (41 unique transcripts with presumptive

human orthologs) that were up-regulated after injury, had higher

transcript abundance in NL versus FW, and had higher transcript

abundance in NL versus DL (Fig. 4C; supplementary material

Table S1). This list was significantly enriched for genes

that annotate to developmental process (n519), ectoderm

development (n56), cell cycle (n58), and neurological system

process (n57) ontology terms (supplementary material

Table 1. List of up-regulated, limb-enriched genes that cause limb defects in humans or mice when mutated. Each of the 377 up-
regulated, limb-enriched genes was queried against OMIM and Pubmed to identify published examples demonstrating that gene

mutations cause congenital limb defects. Fold change differences between NL and FW are shown on the right.

Gene Deformity NL0/FW0 NL1/FW1 NL3/FW3 NL7/FW7

AUTS2 Clubfoot 0.96 1.16 2.29 1.41
B3GALTL Peters plus syndrome 1.00 1.13 1.55 0.97
BMP2 Brachydactyly type A2 1.39 2.30 2.42 2.35
BMPR2 Lethal 0.81 0.78 1.78 1.51
CHD7 CHARGE syndrome 0.86 0.86 1.59 1.21
CHSY1 Temtamy syndrome 1.22 1.19 1.48 1.62
COL11A1 Stickler/Marshal Syndrome 5.04 1.13 0.67 0.79
COL1A2 Osteogenesis imperfecta 0.46 1.99 0.91 0.77
CTGF Skeletal dysmorphism 0.72 3.20 0.55 0.51
DUSP6 Abnormal limb development 1.17 1.11 1.55 1.47
EMX2 Missing scapula 10.30 6.23 13.02 17.48
ETV4 Polydactyly 1.11 1.09 1.86 2.39
FBN2 Contractural arachnodactyly 0.63 2.42 2.12 1.40
FGFR1 Limb patterning defects 1.02 1.53 1.62 1.27
FHL1 Clubfoot 0.50 8.91 0.78 0.37
FLRT3 Kabuki Syndrome 0.99 1.53 1.87 1.06
FOXC1 Axenfeld-Rieger syndrome 2.29 1.44 4.43 6.48
HSPG2 Silverman-Handmaker type 0.51 2.52 1.23 0.99
IGFBP2 Hypodactyly 1.79 1.39 1.72 1.47
JAG2 Syndactyly 0.81 1.08 1.36 1.99
KREMEN1 Ectopic postaxial digits 1.20 1.24 2.26 1.12
MMP13 Pyle disease 1.05 0.99 1.62 2.20
MYCN Feingold syndrome 2.11 1.67 1.87 4.24
PCSK5 AP limb malformation 0.83 0.97 1.67 1.23
RDH10 Defective limb outgrowth 1.35 1.82 1.77 2.14
ROR2 Brachydactyly type B 0.91 3.40 3.26 1.74
SALL4 Duane-radial Ray Syndrome 0.84 3.31 2.63 2.05
SEMA3E CHARGE syndrome 1.30 1.75 0.91 5.85
SLC35D1 Schneckenbecken dysplasia 1.00 1.07 1.66 1.35
TP63 Ectrodactyly 0.82 1.11 1.59 1.24
WNT5A Robinow syndrome 0.44 4.07 15.19 11.98
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Table S4). Further annotation through PubMed searches showed

that 14 of the 40 genes are important in epithelial function

(Table 2), including genes important in maintaining the structure

of the epithelia (krt8, kera, krt15, cldn19, col29a1, eppk1, and

tgm1), epithelial cell growth factors (ereg), and transcription

factors involved in keratinocyte growth and differentiation

(zfp36l2, ifit5), suggesting that these genes are necessary for

the maturation of the WE into the AEC. We also identified 9 out

of 40 genes that are highly expressed in the peripheral nervous

system of vertebrates including four genes that are highly

abundant in peripheral nervous system myelin Schwann cells

(mbp, pmp22, gldn, and mpz) (Table 2). Overall, this list of genes

suggests that denervation affects maturation of the WE and

behavior of Schwann cells within the first week of regeneration.

Localization of up-regulated, limb-enriched, and nerve-

dependent transcripts

In situ hybridization was used to localize mRNA expression of

limb-enriched and nerve-dependent genes at 7 dpi. The results

show considerable variation in the location of transcripts among

WE keratinocytes, blastema cells, and peripheral nerves (Fig. 5).

For example, a putative S-adenosylmethionine-dependent

methyltransferase (axo23458-r) was expressed in keratinocytes

of the WE and not the underlying mesenchyme of 7 dpi limbs

(Fig. 5A,B). This methyltransferase-like gene was highly

expressed in each injury type at 1 dpi, but expression was

sustained at higher levels in NL and DL at 7 dpi (Fig. 5C). This

gene was identified in other genomic screens of limb

regeneration (supplementary material Table S1), making it a

promising candidate for its involvement in WE function after

injury.

A transcript highly similar to human krt5 was expressed in WE

keratinocytes and the underlying mesenchyme and cartilage cells

(Fig. 5D,E). In mice, krt5 and its binding partner krt15, are

markers for salivary gland epithelial progenitor cells, which show
decreased cell proliferation and krt5 expression upon removal of

parasympathetic innervation (Knox et al., 2010). In our study,
krt15 was limb-enriched and nerve-dependent, and krt5 was eight
times higher in NL versus DL at 7 dpi (Fig. 5F), although highly
variable estimates among replicates yielded a p-value below our

statistical cutoff (P50.019). This strongly suggests that krt5 and
krt15 are limb-specific and nerve-dependent gene candidates. In
support of these results, a newt type II cytokeratin that is highly

similar to our presumptive krt5 (blastn; 83% identical), is
transcribed in the mesenchyme and WE of regenerating newt
limbs (Ferretti et al., 1991; Ferretti and Ghosh, 1997). Together,

these data suggest important roles for krt5 and krt15 in the
blastema and more generally, nerve-mesenchyme-epidermis
interactions that typify a normal regenerative response.

In situ hybridization also showed that genes associated with

retinoic acid signaling were expressed in regenerating limbs
(Fig. 5G–L). Aldh1a3, a retinaldehyde dehydrogenase that
synthesizes retinoic acid during development and adulthood,

was exclusively expressed in a subset of cells within peripheral
nerve bundles 7 dpi (Fig. 5G,H) and did not rise above baseline
levels in FW (Fig. 5I), likely because nerve bundles are only

present in the limb samples. We also found that crabp1, an
intracellular retinoic acid binding protein that regulates RA
nuclear signaling, was up-regulated from baseline exclusively in

the mesenchyme of the limb blastema and was both limb-specific
and nerve-dependent (Fig. 5J–L). These expression patterns may
explain why RA is necessary for appendage regeneration (Blum
and Begemann, 2012; Maden, 1998) and can re-specify pattern

in the regenerating axolotl limb (Maden, 1982). Further
investigation is needed to identify whether aldh1a3 expressing
cells are producing RA, signal to crabp1-expressing blastemal

cells, and if this process is necessary for regeneration. Overall,
our ISH analyses show that the genes identified in our study are
expressed in three tissues that mediate blastema formation; the

epidermis, mesenchyme, and peripheral nerve. It also suggests
that each of these tissues is affected by denervation prior to
blastema formation.

Differential expression between innervated and
denervated limbs

Previous studies have shown that gene expression between

innervated and denervated limbs is often quantitatively changed
rather than absolutely (Monaghan et al., 2009). In order to
address this possibility, differentially regulated genes were

identified between innervated and denervated limbs regardless
of expression changes from baseline at 1, 3, and 7 dpi.
Comparing NL and DL at 1 dpi identified a small list of 25
unique genes (supplementary material Table S1) that presented

higher transcript abundances in NL and were significantly
enriched for genes that annotate to developmental, neurological,
and systems process ontology terms (Table 3). This list includes

genes associated with microvascular morphogenesis (krit1),
blood coagulation (f5), retinoic acid binding (crabp1), extra-
cellular matrix structure (col29a1), myelin synthesis and

structure (mbp, pmp22, mpz), axon guidance (reln, homer1),
and axon development (gldn). The genes that presented higher
transcript abundances in denervated limbs included three genes,

xdh, alox12b, and alox15b, that enriched 2 ontology terms,
respiratory electron chain transport and generation of precursor
metabolites and energy. Other genes in this list are predicted to

Table 2. List of up-regulated, limb-enriched, and nerve-

dependent genes (n541) that play a role in epithelial function

(n514) or peripheral nerve development or myelination

(n59). Only one of four significant probe sets that represent

EPPK1 is shown.

Probeset Gene PNS Epidermis

axo02656-r GLDN Yes
axo02097-r GLUL Yes
axo00151-r MBP Yes
axo06839-f MPZ Yes
axo11014-r MYCN Yes
axo04891-f PMP22 Yes
axo10713-f RELN Yes
axo05676-f UGT8 Yes
axo00180-f HK2 Yes Yes
axo05468-r CLDN19 Yes
axo01795-f COL29A1 Yes
axo00028-f COL4A5 Yes
axo19553-f EPPK1 Yes
axo07260-f EREG Yes
axo09194-f HMGA2 Yes
axo13200-f IFIT5 Yes
axo07343-r IGFBP2 Yes
axo12644-f KERA Yes
axo08053-f KRT15 Yes
axo08049-f KRT8 Yes
axo05362-f TGM1 Yes
axo12531-f ZFP36L2 Yes
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function in the regulation of apoptosis (btg3), neurogenesis and

pluropotency (rbbp9), and neurodegeneration (yars). These

results show that denervation significantly alters transcription

as early as 24 hours post amputation and we note that several of

these differentially expressed genes were also found in our lists

of limb-enriched and nerve-dependent genes.

More genes were differentially expressed at Day 3 than Day 1
(n552 unique genes) (supplementary material Table S1) and

these enriched different biological process terms between

innervated and denervated limbs (Table 3). Genes that were

expressed more highly in innervated limbs enriched carbohydrate

metabolism, transport, hematopoeisis, and B-cell immunity

biological process terms. In addition, this list included genes

associated with: (1) Schwann cells and neurons (gfpt2, tuba1a,

glul, lnx1,marveld2), (2) extracellular matrix structure and synthesis

(ugdh, slc23d2), (3) regulation of epithelial-mesenchymal transition

(EMT) (fam3c, hmga2), (4) regulation of skeletal development

(wsb1, tpp3), (5) FGF-signaling of angiogenesis (cav1) and limb

development (pdlim7), and (6) regulation of epidermal cell

differentiation and proliferation (tgm1, ovol2, lmo7, ehf, ereg,

sorbs3, eppk1). The results show that a diverse group of

developmentally important genes are differentially regulated

between innervated and denervated limbs by 3 dpi.

The largest number of differentially expressed genes was

discovered for 7 dpi (n5103 unique genes) (supplementary

material Table S1), and again, these enriched different biological

Fig. 5. In situ hybridization (ISH) of limb-enriched

genes in NL 7 dpi limbs. (A,B) ISH staining of

methyltransferase-like (axo23458-r) showing specific
staining in the WE. Close-up of boxed area can be seen in
B. (C) Transcriptional profile of methyltransferase-like
showing strong up regulation in all injury types, but
sustained expression in limbs. Y axis is the raw microarray
value with error bars indicating 6 SEM. Grey diamond

indicates FW. Black circle indicates DL. White triangle
indicates NL. (D,E) ISH of krt5 (axo06032-f) showing
expression in the WE and underlying mesenchyme.
(F) Transcriptional profile of krt5 showing expression only
in innervated limbs. (G,H) ISH of aldh1a3 (axo07976-r)
showing specific staining in cells surrounding and within
peripheral nerve bundles. (I) Transcriptional profile of

aldh1a3 showing that mRNA expression is only in limbs.
(J,K) ISH of crabp1 (axo10015-r) showing strong staining
in mesenchymal cells throughout the early blastema.
(L) Transcriptional profile of crabp1 showing that mRNA
expression is only expressed in innervated limbs. Scale bar
in A,D,G,J 5 200 mm. Scale bar in B,E,H,K 5 50 mm.
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process terms between innervated and denervated limbs

(Table 3). Approximately 50% of the 103 genes that were

expressed more highly in innervated limbs annotated to cell cycle

and mitosis-related gene ontologies. These genes encode

regulators of the cell cycle (ccna2, ccnb1, ccnb2, ccnb3, cdc2,

tk1, ube2c, uhrf1), chromosome condensation and DNA repair

(smc2, smc4, ncpag, c16orf75, pcna), genome replication (mcm2,

mcm3, mcm4, mcm6, mcm7), and chromosome segregation

(fbxo5, mad2l1, aurka, aurkb, aspm, kif11). In addition, 36 genes

significantly enriched the nucleic acids metabolic process term,

and the developmental process term was also enriched with genes

associated with cell proliferation and differentiation (bcn1, zfhx4,

krt15, krt8, crabp1, lingo1, lnx1, hmgb3, tk1). This strong

signature of cell proliferation and DNA synthesis was missing in

the list of genes that were significantly up-regulated .1.5 fold

from baseline levels in NL (supplementary material Table S2).

This suggests that cell cycle components are affected in a

quantitative manner by denervation and they only begin to

increase above baseline levels at 7 dpi in NL. This is in support

of our histological analysis (Fig. 3), which showed that cell

proliferation was present in both DL and NL at 7dpi, suggesting

that proliferation dynamics are just beginning to diverge at this

time (Fig. 3). Overall, the results show that denervation has a

major effect on the transcription of proliferation-associated genes

that are likely required for blastema growth.

Technical and biological replication of microarray results

To validate and extend the Affy microarray results, expression

values were estimated using the nCounter platform. This analysis

used 24 RNA samples from the Affymetrix analysis plus a

newly generated set of 24 biological replicates. Custom

Nanostring capture probes were designed for 50 genes

(supplementary material Table S5) and fold change estimates

were obtained between Day 0, 1, and 7 time points for innervated

and denervated limbs. The correlation of fold change for the

technical replicate samples was uniformly high across times and

treatments (r50.95–0.97) (supplementary material Table S6).

Thus, the Affy and nCounter platforms yielded precise estimates

of fold change when the same RNA samples were processed.

Precise estimates of fold change were also obtained between the

Affy and nCounter platforms for biological replicates, and also

between the two sets of 24 samples processed on the nCounter

instrument. However, relative to the high correlation between

technical replicates, the correlations between biological replicates

were relatively lower for the Day1 and Day7 comparisons

(r50.80–0.87) and lower still for all comparisons to Day 0

(r50.59–0.72). These results suggest that more variation is

present between biological replicates than technical replicates

and that the abundance of transcripts is most variable among

samples that were collected at the time of limb amputation. This

may be because animals were at different stages of the molting

cycle at the time of collection. Overall, replication of the

microarray results was high using the nCounter platform,

demonstrating the reliability of each platform.

Discussion
A recent comparison of transcription between innervated and

denervated limbs of the Mexican axolotl provided the first global,

transcriptional description of the limb regeneration program

(Monaghan et al., 2009). That study used a small format

microarray (,4500 probes with 3271 presumptive human

orthologs) to detail gene expression of whole blastemas at 5

days and 14 days after limb amputation. However, a more

comprehensive analysis of gene expression was needed in concert

with an earlier and more precise tissue-sampling scheme to

thoroughly investigate the transcriptomics of blastema formation.

To this end, we investigated transcription within axolotl

epithelium and subjacent cells during the first week of limb

regeneration with the primary goal of identifying a core set of

genes that are likely to be necessary for limb regeneration. To

meet this goal, we devised a strategy that allowed us to subtract

out genes common to all injury responses as well as to identify

genes that are uniquely expressed in limbs. We further selected

genes specific to limbs that regenerate (NL) rather than regress

(DL) to identify genes associated with blastema formation. Our

study is the most detailed molecular analysis of limb regeneration

to date and is the first to identify genes specific to the limb

regeneration process by comparing the general wound healing

response outside a limb field. Overall, the genes identified here

will be useful as tissue specific markers for regenerating limbs

and candidates for regulating blastema formation.

At both histological and transcriptional levels, we show that

the initial injury response is similar between NL, DL, and FW.

The time to re-epithelialization was within 1 dpi and many of the

same genes were differentially regulated in NL, DL, and FW.

Interestingly, many of these injury-response genes are similarly

Table 3. List of statistically over-represented biological

process terms identified from genes with higher transcript

abundance in NL versus DL. The numbers reference the

observed number of genes in each process.

Biological Process NL1 NL3 NL7

developmental process 12 – 26
cellular component morphogenesis 6 – –
anatomical structure morphogenesis 6 – –
cellular process 15 – –
ectoderm development 6 – –
neurological system process 7 – –
cellular component organization 6 – –
skeletal system development 3 – –
nervous system development 5 – –
system process 7 – –
signal transduction 10 – –
cell surface receptor linked signal transduction 6 – –
system development 6 – –
carbohydrate metabolic process – 9 –
hemopoiesis – 3 –
B cell mediated immunity – 3 –
transport – 15 –
muscle contraction – 4 –
chromosome segregation – – 11
cell cycle – – 43
cellular process – – 68
mitosis – – 24
nucleobase, nucleoside, nucleotide and nucleic

acid metabolic process
– – 36

cellular component organization – – 26
establishment or maintenance of chromatin

architecture
– – 9

organelle organization – – 9
cellular component morphogenesis – – 17
anatomical structure morphogenesis – – 17
meiosis – – 7
tricarboxylic acid cycle – – 3
dorsal ventral axis specification – – 3
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regulated in mammals, suggesting conservation of some aspects
of wound healing among tetrapods.

Previous studies have shown that there are fundamental

differences between limb skin and flank skin. When forelimb
skin is replaced with grafts of flank skin in newts and axolotls,
limb regeneration is defective (Tank, 1984; Tank, 1987). We

compared gene expression differences between NL and FW and
identified transcripts with limb-specific expression patterns. For
example, the homeobox-containing transcription factor, emx2,

was highly expressed in uninjured limb skin and was
up-regulated after injury only in limb samples (supplementary
material Table S1). Mouse emx2 null mutants fail to form a

scapula during development (Table 1) (Capellini et al., 2010;
Pellegrini et al., 2001) and newt emx2 is expressed in a graded
proximodistal manner mainly in the epidermis of regenerating
newt limbs (Beauchemin et al., 1998). Emx2 and other limb-

specific genes identified in our study (supplementary material
Table S1) may regulate limb-specific patterning events during
regeneration.

Our analysis also identified a connection between salamander
limb-enriched genes and orthologs that are associated with limb
deformities in mammals (Table 1). For example, numerous genes

involved in the Wnt/Planar cell polarity (PCP) signaling pathway
were up-regulated in DL and NL, but remained at baseline levels
in FW. Activation of PCP signaling by Wnt5 ligand through
Vangl and Ror2 activation regulates limb bud elongation during

mammalian development (Gao et al., 2011) and Wnt5a activity is
necessary for axolotl limb regeneration (Ghosh et al., 2008).
WNT/PCP signaling is thought to stabilize cellular polarity in

epithelium of developing limbs, organize directional cell
migration, and regulate directional cell proliferation (Wang et
al., 2011). Overall, it is clear that activation of Wnt signaling

through Wnt5a is necessary for limb outgrowth, but the key
problem is to identify the property of salamander limbs that
allows this pathway to re-activate after injury while not being

induced after a flank injury. It is possible that sustained
expression of genes like emx2 into post-embryonic and larval
stages allows accessibility of this important signaling pathway in
adult axolotls.

Genes involved in other important signaling pathways were
also up-regulated specifically in limb samples. For example,
genes associated with retinoic acid (RA) signaling were

dynamically expressed in limbs after injury. Retinoic acid is an
important signaling molecule involved in the development and
regeneration of limbs; disruption of this pathway disrupts limb

formation (Blum and Begemann, 2012; Kikuchi et al., 2011;
Maden, 1998; Maden, 2007). We found that crabp1 was only up-
regulated in NL and was expressed exclusively in the limb
mesenchyme. In contrast, we found that crabp2 was up-regulated

in NL, DL, and FW at 7 dpi. Our findings are in accordance with
previous studies showing that CRABP protein is up-regulated
during regeneration, although it is unclear whether these studies

were detecting CRABP1 or CRABP2 (Maden et al., 1989;
McCormick et al., 1988). CRABPs are intracellular RA binding
proteins that are thought to shuttle RA to the nucleus to regulate

RA-mediated transcription, which may explain why we observe
their expression during limb regeneration (Noy, 2000). We also
found that aldh1a3 and rdh10, enzymes involved in the synthesis

of RA during development, were up-regulated in NL and DL at
1 dpi and aldh1a3 was expressed specifically in cells resembling
perineural fibroblasts in peripheral nerve bundles. Altogether, our

data suggest that RA signaling is a dynamic process during limb
regeneration and identifies the genes that may mediate the

necessity of RA during epimorphic regeneration (Blum and
Begemann, 2012; Kikuchi et al., 2011).

Beyond signaling pathways, structural proteins showed very
specific transcriptional profiles in regenerating tissues. Numerous

keratins (krt5, krt8, krt15, and krt13) and keratin-associated
molecules (eppk1, tgm1, kera) were up-regulated after injury and
were enriched in limbs. Furthermore, some genes like krt8 and

krt15 were highly nerve-dependent. Keratins are components of
intermediate filaments that protect the structural integrity of cells,
but have recently been implicated in other cellular processes

including cell motility, cell signaling, cell growth, and cancer
metastasis (Karantza, 2011; Windoffer et al., 2011). Although
previous studies in newts have identified keratins NvKII, krt8,
and krt18 in mesenchymal and WE cells during limb regeneration

(Ferretti et al., 1991; Ferretti and Ghosh, 1997) and knockdown
of krt8 and krt18 in newt blastemal cells in vitro decreased DNA
synthesis (Corcoran and Ferretti, 1997), our understanding of

these proteins during regeneration remains poor. Functional
testing is necessary to determine if keratin proteins play solely a
supportive, structural role during regeneration or whether they

are mediating cell signaling to promote growth or patterning.
Together, the highly limb-specific and nerve-dependent
expression patterns of the keratin genes strongly suggest that

they are integral to the formation of the blastema.

Other limb-enriched genes were more quantitatively different
than FW rather than being expressed exclusively in the limb. For
example, two possible salamander-specific genes, sodefrin-like

(axo22108-r) and methyltransferase-like (axo23458-r), were up-
regulated in NL, DL, and FW, exclusively in the epidermis
(Fig. 5A,B; data not shown), but expression was only maintained

in NL and DL. This suggests that these molecules are not limb-
specific, although sustained expression in the limb WE may
impose some necessary function to the WE during limb

regeneration. Regardless, the fact that these genes seem to be
unique to salamanders (Campbell et al., 2011) and show strong
and specific expression in the WE warrants further functional
studies.

A surprising result was the observation that myelin-associated
genes were up-regulated and both limb-specific and nerve-
dependent. Myelinated peripheral nerves permeate throughout

the uninjured limb, but only naked sensory nerve fibers are found
in uninjured epidermis of animals (Boulais and Misery, 2008).
Hence, our tissue collection scheme did not sample myelinated

nerve fibers in uninjured samples, yet injured NL and DL
samples contained transected nerve bundles located just proximal
to the WE. This likely explains why mRNA levels of myelin-
associated genes increased above baseline in NL at 1 dpi. The

fact that myelin-associated gene mRNA did not increase in DL
suggests that expression of these genes was lost following
denervation. A similar phenomenon takes place in mammals,

where peripheral nerve fiber transection down-regulates
expression of myelin-associated genes in distal Schwann cells
(Hall, 2005). This result is interesting because it suggests that

Schwann cells are affected early after denervation, which may
have detrimental effects on downstream blastema formation. In
newts, the protein Anterior Gradient 2 is expressed in Schwann

cells after limb amputation and supplemental Anterior Gradient 2
can partially rescue regeneration in the denervated state (Kumar
et al., 2007). Others have shown that denervation in axolotls
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induces peripheral nerves to become inhibitory to limb

regeneration, suggesting that they may secrete inhibitory

factors (Irvin and Tassava, 1998; Tassava and Olsen-Winner,

2003). It will be critical in future experiments to determine if the

response of Schwann cells to denervation is the cause of a loss of

blastema formation.

The proliferation of blastema cells is known to be a target of

the nerve during limb regeneration (Stocum, 2011). In order to

increase our sensitivity for identifying proliferation-associated

genes during regeneration, we directly compared NL to DL

without comparing samples to baseline or FW. This analysis

showed that by 7 dpi, approximately 50% of the genes that were

higher in NL versus DL were associated with the cell cycle,

supporting the notion that the cell cycle is the primary target of

denervation. Most of these genes were only different at 7 dpi,

suggesting that our study identified the genes likely upstream of

the cell proliferation effect of denervation. This result highlights

that the limb-enriched and nerve-enriched genes we identified in

our study are excellent candidates for regulating the increase in

cell proliferation that is characteristic to limb regeneration.

Overall, our study used a focused approach to identify the genes

that are likely necessary for limb regeneration and showed that

many of these genes are expressed in specific tissues and before

considerable outgrowth takes place in the limb. The identification

of these genes is an important advance in our ability to tease apart

the cellular and molecular mechanisms that drive regeneration

and will be a useful resource for regeneration researchers that

may be looking for specific genes to analyze during early

blastema formation.

Materials and Methods
Animals and surgical procedures
Axolotls were obtained from the Ambystoma Genetic Stock Center, Lexington,
KY and raised to 7–10 cm snout to vent length. Animal care and use procedures
were approved by the University of Florida IACUC (Application Number
201101534). Denervations were performed by anesthetizing animals in 0.01%
benzocaine, making a small incision at the shoulder to expose the brachial nerves
entering each forelimb, and severing the nerve bundles with surgical scissors.
Limb amputations were performed at the mid-stylopod and the humerus was
trimmed to make the amputation plane flush. Full thickness excisional wounds
were performed along the flank of anesthetized animals using a 4 mm biopsy
punch tool.

Histology and BrdU analysis
Tissues were processed for paraffin embedding, sectioned at 5 mm, and stained
according to previous methods (Seifert et al., 2012) except that limb samples were
decalcified in 10% EDTA for 3 days with daily changes at 4 C̊ before histological
processing. For DNA synthesis analysis, animals were injected with
bromodeoxyuridine (BrdU) (conc. 5 100 mg/g) 24 hours before tissue
collection, harvested 24 hours later, and processed for paraffin embedding. After
sectioning, sections were de-paraffinized, blocked for endogenous peroxidase
activity in 3% H2O2 in methanol for 10 mins, rehydrated, treated for antigen
retrieval in pH 6.0 sodium citrate buffer in a microwave for 25 mins, rinsed in
water, incubated in 37 C̊ 2N HCl for 15 mins, rinsed thoroughly in water, rinsed
with TBS, blocked with rabbit serum, blocked for endogenous avidin and biotin,
incubated with primary antibody rat anti-BrdU (1:500, Accurate Scientific),
washed, incubated with biotinylated secondary anti-rat (1:400, Vector Scientific),
washed and visualized using Vector ABC horseradish peroxidase and DAB
reagents according to manufacturer’s instructions. Tissue sections were
counterstained with Hematoxylin (Vector).

Tissue collection for microarray analysis
One day prior to limb amputation, 12 axolotls were anesthetized and their
forelimbs denervated. Approximately 24 hours later, these same axolotls with
denervated limbs and 16 additional axolotls with innervated limbs were
anesthetized and administered amputations at the mid-stylopod of both forelimbs
(Fig. 1A,B). The epidermis adjacent to the amputation plane was taken from the
arms of each of four individuals that were not denervated the day before; these

served as Day 0 samples for the innervated and denervated limbs. To obtain a
sufficient amount of RNA for microarray analysis, both forelimb samples from
each individual were pooled to yield independent, replicate samples. An additional
16 axolotls were then anesthetized and a full thickness excisional wound was
performed along the flank of each animal (Fig. 1C). After 1, 3, and 7 days post
injury, the wound epithelium was removed and any cells that were adhered to the
epithelium were included in the sample. Two tissues were pooled from each
individual to obtain 4 replicate samples for each time point and tissue type.

RNA isolation and microarray analysis
Total RNA was isolated from all 44 samples and each was processed for
hybridization to 44 independent and custom A. mexicanum (Amby_002) Affymetrix
GeneChips (Huggins et al., 2012). Microarray results from FW samples are
summarized in a different manuscript (Seifert et al., 2012), but the entire dataset can
be found at the Gene Expression Omnibus (Accession number GSE37198). This
Amby_002 GeneChip contains approximately ,20,000 perfect match probesets.
The probesets were designed using A. mexicanum expressed sequence tag contigs
from Sal-Site (Smith et al., 2005). The GeneChips were processed by the University
of Kentucky Microarrray Core Facility and expression values were extracted using
RMA (Irizarry et al., 2003) and Affymetrix Expression Console software. The
resulting data were subjected to one way Analysis of Variance using JMP Genomics
version 4.1 and statistical estimates were defined to make 16 comparisons between
groups (Fig. 1D). A gene was identified as differentially expressed if it passed a false
discovery rate of # 0.05 and had a fold change of > 2, or passed a false discovery
rate # 0.001 and a fold change of > 1.5. Genes that were defined as differentially
expressed were analyzed further using pair-wise comparisons at a significance
threshold of P,0.003 and a fold change cutoff of 1.5 for the comparison of interest.
This threshold was determined using a Bonferroni correction to adjust for 16
pairwise comparisons at an alpha level of 0.05. The R package, VennDiagram was
utilized to generate Venn diagrams (Chen and Boutros, 2011). Significant genes
were annotated with gene ontology information from Panther (http://www.
pantherdb.org) and gene lists were compiled and compared to identify biological
processes that were statistically over-represented. For all analyses, the 11,131
probesets on the Ambystoma GeneChip that could be mapped to human orthologs in
the Panther database were used to generate expected values (i.e., as the background).
The count threshold was set to three and the significance threshold was set to
P,0.05. The lists of significant biological process terms were manually inspected to
remove redundant terms.

Cloning and RNA probe production
Axolotl genes were cloned using gene-specific primers designed using sequences
collected from the Ambystoma Gene Collection (Smith et al., 2005). Total RNA
was isolated from 7 dpi limb tissue and used to make cDNA template (iScript;
BioRad). Genes were amplified as follows: krt5 primers were 59 GAG GGA GCA
GGT TCT GTG AG 39 and 59 ATC ACC CAG CCA GAA GAA TG 39; aldh1a3
primers were 59 CCT GCA TTG TGT TTG CTG AC 39 and 59 TGT CAG AGC
CGG ATA ATT CA 39; crabp1 primers were 59 AGG AGT CCC CTG ACT TGG
AG 39 and 59 TGC CAC CAC AAA TGA TGA GT 39. PCR products were gel
isolated, cloned into pGEM-T Easy Vectors (Promega), and sequence verified.
methyltransferase-like primers 59 TAA TAC GAC TCA CTA TAG GGA GAC
AGC TCT GTG GAT CTG GTC A 39 and 59 ATT TAG GTG ACA CTA TAG
AAG AGT CTC TAA GGT GCG GCT TGT T 39 were used to make a PCR
template that was used to generate a digoxygenin-labelled RNA probe using a
Roche RNA labeling kit.

In situ hybridization
Limbs were collected 7 dpi and fixed overnight in 4% PFA at 4 C̊, mounted in
optimal cutting medium, sectioned at 20 mm, dried for two hours, and processed
for in situ hybridizations on the same day according to previously published
methods (David Parichy, personal communication). Proteinase k treatment
consisted of 10 minutes at 10 mg/ml concentration. Probe concentration was
0.5 mg/ml in hybridization solution at 55 C̊ overnight. Anti-DIG antibody was
incubated at 1:5000 dilution at 4 C̊ overnight. Stained sections were mounted in
80% glycerol and images captured on a Nikon Eclipse 6600 upright compound
microscope using a Cool-Snap Pro true color camera.

Nanostring nCounter development and analysis
Transcript abundance estimates obtained from the Ambystoma Affy GeneChip
were compared to estimates obtained from the Nanostring nCounter System. The
nCounter is a moderate throughput gene expression analysis instrument that
estimates the number of RNA transcripts from samples of total RNA or lysed
tissues. Nanostring staff designed capture probes for 50 genes from the Affy
GeneChip (supplementary material Table S5) and processed 48 RNA samples.
Twenty-four of the RNA samples corresponded to the same replicate Day 0, Day 1,
and Day 7 RNA samples that were used in the Affymetrix experiment. The second
group of 24 samples corresponded to a new set of replicate D0, D1, and D7
samples. The count data for all genes were normalized to the counts of two capture
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probes that were consistently expressed across the innervated and denervated
treatments. Technical correlation of gene expression was examined between the
Affymetrix and Nanostring platforms by calculating Pearson’s correlation
coefficient (r) across all 50 genes for fold change estimates obtained using the
same RNA samples. Biological correlation of gene expression was examined
between the Affymetrix and Nanostring platforms, and between the two sets of
replicates processed on the Nanostring platform. Again, Pearson’s correlation
coefficient (r) was calculated across all 50 genes for fold change estimates
obtained between different RNA samples.
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