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           ABSTRACT OF THESIS 

CONSERVATION AGRICULTURE IN KENTUCKY:  
INVESTIGATING NITROGEN DYNAMICS AND LOSS IN CORN SYSTEMS 

FOLLOWING WHEAT AND HAIRY VETCH COVER CROPS 

Unintentional nitrogen (N) loss from agroecosystems produces greenhouse gases, induces 
eutrophication, and is costly for farmers; therefore, adoption of conservation agricultural 
management practices, such as no-till and cover cropping, has increased. This study 
assessed N loss via leaching, NH3 volatilization, N2O emissions, and N retention in plant 
and soil pools of corn conservation agroecosystems across a year.  Three systems were 
evaluated: 1) an unfertilized organic system with cover crops Vicia villosa, Triticum 
aestivum, or a mix of the two; 2) an organic system with a Vicia cover crop employing 
three fertilization schemes (0 N, organic N, or a cover crop N-credit approach); 3) a 
conventional system with a Triticum cover crop and three fertilization techniques (0 N, 
urea N, or organic N). During cover crop growth, species affected N leaching but gaseous 
emissions were low across all treatments.  During corn growth, cover crop and fertilizer 
approach affected N loss.  Fertilized treatments had greater N loss than unfertilized 
treatments, and fertilizer type affected gaseous fluxes temporally and in magnitude.  
Overall, increased N availability did not always indicate greater N loss or yield, 
suggesting that N conserving management techniques can be employed in conservation 
agriculture systems without sacrificing yield.         

KEYWORDS: Ammonia volatilization, Conservation agriculture, Cover crops, Nitrogen 
leaching, Nitrous oxide emissions 
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 : Introduction Chapter 1

 Human Alteration of the Nitrogen Cycle 1.1.
Nitrogen (N) is a critical nutrient, governing the dynamics of ecosystems, as the 

quantity of biologically available N is often a limiting factor for net primary productivity 

(Vitousek et al., 2002; Galloway et al., 2004).  Globally, there are several large N pools 

that are relatively unavailable to plants and microbes.  The largest pool of N is 

atmospheric N2 which can be transformed into a small pool of biologically available N 

via the natural fixation processes of lightning (abiotic N fixation) and conversion by 

microorganisms (biological N fixation, often in symbiosis with leguminous plants) 

(Vitousek et al., 1997; Galloway et al., 2004).  However, over the past 200 years, humans 

have drastically altered the global N cycle, and it is estimated that anthropogenic 

activities have more than doubled the amount of N in biologically available forms 

(Berendse et al., 1993; Vitousek et al., 1997).  The anthropogenic activities primarily 

responsible for these changes are N fertilizer synthesis and application, fossil fuel 

combustion, utilization of N fixing crops (legumes), and N mobilization via biomass 

burning, land clearing and conversion, and the drainage of wetlands (Vitousek et al., 

1997; Galloway et al., 2004).  

Agricultural production and agroecosystem management are major contributors to 

the alteration of the global N cycle through such practices as N fertilization, fossil fuel 

combustion associated with tractor usage and other farm implements, incorporation of N 

fixing crops, land clearing, and the drainage of wetlands.  It is estimated that 

agroecosystems receive approximately 75% of the bioavailable N created by human 

activities (Galloway et al., 2004).  Arguably, agriculture plays the largest role in human 
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alteration of the N cycle (Mosier et al., 1998). 

In addition to adding large quantities of biologically available N into the global N 

cycle, humans have uncoupled the N cycle from the carbon cycle and increased turnover 

rates of both.  Carbon (C) and N cycling are typically coupled in unmanaged ecosystems 

as biological N-fixation often occurs with C-fixation.  However, application of synthetic 

N fertilizer adds N without adding C; thus agricultural practices have been identified as 

largely responsible for the uncoupling of these two cycles (Woodmansee, 1984).  Tillage 

and regular disturbance of the soil also adds to the uncoupling of C and N cycling.  

Tillage influences soil structure and porosity, thereby affecting the interaction between 

soil, water, and gaseous exchange, which subsequently affects C and N transformations 

(Abdollahi et al., 2014; Plaza-Bonilla et al., 2014).  Using tillage to incorporate organic 

residues, particularly those of legumes, can result in rapid decomposition of the residues, 

releasing N more quickly than occurs in undisturbed soils or soils with unincorporated 

organic matter (Drinkwater et al., 2000).  Disturbing soil by plowing at deeper depths 

results in less C accumulation in the soil profile (Zikeli et al., 2013). 

Lastly, not only do agricultural practices add N into the environment, uncouple 

the N cycle from the C cycle, and speed up the rate of nutrient cycling, but they further 

modify nutrient cycling by removing large quantities of N from the environment during 

crop harvest.  It is largely due to repeated harvests that significant quantities of N and 

other nutrients must be added back into the system, often as synthetic fertilizer, prior to 

each cropping season.  In fact, very little N accumulates within agroecosystems.  

According to Smil (1999), 50% of the N applied is removed via crop harvest and 

approximately only 2-5% of the applied N accumulates in agroecosystem soil.  Similarly, 
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Van Breemen et al. (2002) calculated that only 10% of added N is stored within the 

system.  Though a large portion of the added N is taken up by the crop and lost from the 

system during harvest, the N use efficiency of most cropping systems is very low, with N 

also leaving agroecosystems via other loss pathways (Smil, 1999; Watson et al., 2002).  

Models have predicted that approximately half of the N applied to agroecosystems in the 

form of mineral and organic fertilizers and via symbiotic N fixation is “lost” to the 

environment (Velthof et al., 2009). 

These N loss pathways include volatilization via the abiotic process of ammonium 

(NH4
+) conversion to gaseous ammonia (NH3), denitrification via an anaerobic microbial-

driven biotic transformation of nitrate (NO3
-), to nitrite (NO2

-) to the gaseous N forms of 

nitric oxide (NO), nitrous oxide (N2O), and dinitrogen (N2), nitrification via an aerobic 

microbial-driven biotic transformation of NH4
+ to NO2

- during which N2O and NO are 

produced as intermediates, and loss via runoff and leaching.  These loss pathways 

contribute to environmental issues such as the greenhouse effect, acid deposition, and 

eutrophication of coastal regions and other aquatic systems, impacting the productivity of 

both terrestrial and marine ecosystems (Galloway et al., 2004).  Approximately 25% of 

the N in agroecosystem soils is emitted annually to the atmosphere (Smil, 1999), and 

~74% of U.S.  nitrous oxide emissions, a potent greenhouse gas, are attributed to 

agricultural soil management (EPA, 2015).  Nitrous oxide has a global warming potential 

approximately 298 times that of carbon dioxide (Forster et al., 2007), and though the 

United States contains 11.5% of the world’s arable land and 8.3% of the world’s 

agricultural land use area, according to world development indicators produced by the 

(World, 2014), in 2010 the United states emitted 10.6% of global nitrous oxide (N2O) 
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emissions (FAOSTAT, 2014).   

Excess fertilization in agriculture is one of the two largest sources of nonpoint 

pollution to the surface waters of the United States (Carpenter et al., 1998).  Regression 

models have shown that 70% of the nitrate concentration in streamflow can be explained 

by the amount of fertilizer N used in that river basin (Boyer et al., 2002).  Approximately 

20% of applied N accumulates in our water resources via nitrate leaching (Smil, 1999), 

and N loading of water sources is linked to algal blooms and disrupted aquatic ecosystem 

services (Suddick et al., 2013). 

These N losses are, in part, a consequence of maintaining N-saturated systems and 

management practices that do little to lessen or slow the cycling of N, such as N 

application timing that is not well synced with crop N uptake, frequent soil disturbance, 

and leaving soil bare during the non-growing season (Mohr et al., 1999; Drinkwater and 

Snapp, 2007; Jan et al., 2011).  Altering farm management practices and minimizing N 

losses will not only impact the environment but also farm economics.  Within the last 

decade, there has been growing public concern in the American Midwest about N loss 

from cropping systems (Crandall et al., 2005).  Because the cost of N fertilizer has 

substantially increased in the last decade (USDA-ERS, 2013b), unintentional off-farm 

losses negatively affect farmers’ profit (they pay for something they are not able to 

capture and turn into profit/increased crop production).  Therefore, for both 

environmental and economic reasons, it is critical to improve agroecosystem N use 

management so that N supply is well-coordinated with crop N demand (Fageria and 

Baligar, 2005). 

1.2 Nitrogen Conservation and Loss in Agroecosystems 
Research on agricultural systems to decrease N loss has shown that there is 
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considerable variance in N loss pathways, spatially, temporally, and across different 

management practices and crops.  Variability in nitrate (NO3) leaching, N2O emissions 

and NH3 volatilization are widely acknowledged, and it is known that the driving factors-

soil temperature, water filled pore space, soil aggregate structure, pH, and available C 

and N- depend on a combination of climatic conditions and the plant-soil environment 

(Six et al., 2002).  Some of these factors cannot be controlled (e.g. spatial variability in 

soil conditions, inter and intra-annual climate variability); however, by altering land 

management practices, such as the timing and form of nutrient inputs and optimizing soil 

structure by changing tillage practices, conditions can be modified to mitigate these 

losses.  A particular combination of management practices, known as conservation 

agriculture, is one agricultural approach widely employed to decrease N loss (Scopel et 

al., 2013; FAO, 2015). 

Conservation agriculture has fairly well-defined goals and practices.  The primary 

goals are to reduce inputs and to conserve soil and water.  These goals are achieved 

through reducing tillage, maintaining living or non-living organic residues on the soil 

surface, and practicing crop rotation and/or intercropping (Scopel et al., 2013), and can 

be applied in either organic or conventional systems.  Reducing inputs should directly 

reduce N loss through leaching, volatilization, and denitrification.  Improved 

understanding of these loss pathways and their controlling environmental parameters 

should help inform management practices so that more N is retained within the soil or 

living biomass of the agroecosystem, thus decreasing the amount of N that must be added 

into the system each cropping season.  This interest in improving N retention has resulted 

in a growing body of research that compares N loss between agroecosystems that use 
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conservation agriculture practices and those that do not, but results are often 

contradictory and inconclusive. 

Studies comparing N2O and carbon dioxide (CO2) emissions between systems 

with varying amounts of tillage have been particularly prominent in this field.  Initially, it 

was hypothesized that no-till systems would reduce global warming potential compared 

to conventional tillage.  This was predicted because no-till reduces soil C turnover which 

would increase C sequestered in the soil and reduce CO2 emissions (Parkin and Kaspar, 

2006).  However, several studies have found that there is little-to-no difference in 

emissions across tillage systems (Kessavalou et al., 1998; Robertson et al., 2000; Grandy 

et al., 2006; Parkin and Kaspar, 2006), and other studies have found evidence that soil C 

does increase under no-till, but that N2O and/or CO2 emissions also increase, negating a 

lower global warming potential (MacKenzie et al., 1997; Six et al., 2002; Baggs et al., 

2003; Venterea et al., 2011).  Interestingly, a long-term study by Six et al. (2004) found 

that in a conventional tillage vs. a no-tillage system, N2O emissions were greater in the 

no-till system for the first five years, but emissions began to decrease after ten years, and 

then eventually became lower than the conventional tillage system twenty years after 

establishment.  Clearly, the global warming potential of tilled versus no-till systems and 

the mechanisms controlling greenhouse gas production within these systems remains 

somewhat unknown.  By continuing to study the effects of different tillage systems in 

other regions and climates of the world, we can continue to improve our understanding of 

how tillage impacts emissions and how those emissions are related to soil structure and 

soil C and N pools. 

Organic residue management is also a primary management practice in 
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conservation agriculture and likely to impact N loss pathways.  Organic residues can be 

living or non-living, kept on the soil surface or incorporated, but the common goal is to 

leave more residues in the field so that less N is exported from the system.  Non-living 

organic residues may be the residue from terminated crops or residue that is brought in to 

use as mulch, such as straw.  Living organic residues are also known as cover crops.  

Cover crops are grown after the cash crop, or in any off-season, to prevent N 

export via leaching and/or runoff.  They stabilize the soil surface and take up N that 

remains in the soil system after harvest (McCracken et al., 1994; Drinkwater and Snapp, 

2005; Zhou et al., 2012).  When the cover crop is terminated prior to establishing the next 

cash crop, the residues are either left on the soil surface or incorporated so that they may 

decompose and release N to the cash crop.  Incorporating the residue rather than leaving 

it on the soil surface is commonly practiced in tillage systems, and is known to stimulate 

rates of decomposition and nutrient cycling (Beare et al., 1993; Varco et al., 1993).  

However, no-till conservation agriculture systems promote keeping the residues on the 

soil surface, which is achieved by mowing, rolling down, or killing cover crops with 

herbicide. To increase complexity, even if the residue is left on the surface, its 

mineralization rate is influenced by the type of termination employed: studies have found 

that rolling down the cover crop results in slower mineralization than if it were flail 

mowed (Dabney et al., 1991).  N dynamics and loss from cover crops will clearly vary 

depending upon the specific combination of management practices employed. 

Though conservation agriculture may, or may not, increase N retention in the 

agroecosystem, some N must be added as there will always be N exported from the 

system in the form of the harvested crop.  Thus, not only does research continue to 
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explore the best combination of practices for N retention in the form of tillage and 

residue management, but also with the type of fertilizer, how it is applied, and how it 

interacts with tillage and residues.  Synthetic fertilizer is commonly applied as urea, 

ammonium nitrate, solutions of urea and ammonium nitrate, or injected as anhydrous 

ammonia, with urea being the most readily volatilized as ammonia (Battye et al., 1994).  

Organic fertilizers are applied in many different forms with varying concentrations and 

ratios of C and N.  Common forms are fresh manure, composted manure, green plant 

material, composted plant material, and blood/feather/meat meal (USDA-AMS, 2015).  

Biotically mediated N transformation pathways are strongly influenced by type of 

fertilizer, as fertilizers that provide a C source often stimulate heterotrophic microbial 

activity (Fairchild et al., 1999; Mitchell et al., 2013).  Along with environmental factors, 

the type of fertilizer plays a role in dictating the timeline of when N is available for plant 

uptake, but so does the timing of the application and the method of application (Venterea 

et al., 2011).  Fertilizer can be applied pre-planting, at-planting, split between planting 

and another time in a crop’s life cycle when its N demand is at its peak, or applied only at 

peak N demand.  It can be applied by broadcasting, with or without incorporation, 

banding, with or without incorporation, or injecting it directly into the soil.  All of these 

fertilizer management strategies play a role in determining N loss via biotic and abiotic 

gaseous loss and leaching, and they also interact with the presence or absence of organic 

residues and tillage regime, making it difficult to isolate which combination of practices 

is best for reducing N loss. 

Many studies suggest that, in addition to C and N substrate availability, microbial 

respiration and activity are influenced by both soil temperature and soil moisture (Feng et 
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al., 2003).  The previously discussed conservation management practices - tillage and 

cover crop termination - have important effects on N loss because they directly influence 

environmental factors that control N transformations in the soil environment, such as soil 

moisture, soil temperature, and soil structure (aggregate structure and porosity), which 

then indirectly affect the microbial community and conditions for N loss pathways.  

Tilled systems leave greater soil surface area exposed, allowing for increased sun 

exposure that heats the soil and evaporates soil moisture (Licht and Al-Kaisi, 2005; 

Salem et al., 2015).  This could affect microbial activity because increased temperature 

has a pronounced positive effect on microbial activity and denitrification (DeKlein and 

VanLogtestijn, 1996).  In contrast, no-till systems have been promoted for their ability to 

retain soil moisture, particularly when the soil is covered with an organic residue that 

prevents evaporative loss (Das et al., 2015), and for eliminating the physical soil 

disturbance that tillage introduces.  However, these conditions also create a cooler soil 

environment longer into the growing season which can impact soil respiration rates 

(lesser CO2 released) and N transformation rates (DeKlein and VanLogtestijn, 1996; 

Soane et al., 2012; Hu et al., 2013).  Commonly, environmental conditions in no-till 

systems result in an overall positive correlation between nitrification, denitrification, and 

soil moisture (Hu et al., 2013).   

In a Kentucky Maury silt loam, Rice and Smith (1982) found that there was 

greater denitrifying activity (N2O is a byproduct of denitrification) in a no-till compared 

to a conventional till system and attributed the difference to soil moisture conditions.  

Doran (1980) also found that denitrification potential was higher in no-till systems, but 

that mineralization and nitrification potential were higher in conventional till systems.  
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Alternatively, some studies have found that the nitrification of ammonium was more 

rapid in no-till soils because of more favorable moisture conditions (Rice and Smith, 

1983) and that decreases in soil water potential decreased rates of ammonification and 

nitrification (Chen et al., 2011).  

The physical structure and organic matter content of the soil are also affected by 

tillage, and these factors influence soil moisture and substrate availability, thus impacting 

gaseous diffusion from the soil to the atmosphere.  Soil aggregate stability and size 

distribution typically influences water holding capacity, diffusion of gases and water, C 

occlusion, and habitats for soil organisms (Mangalassery et al., 2013; Al-Kaisi et al., 

2014; Bandyopadhyay and Lal, 2014; Du et al., 2015; Guo et al., 2015; Salem et al., 

2015).  Compared to conventional tillage practices, reducing tillage has been found to 

improve soil structure by increasing soil organic matter, reducing soil bulk density and 

increasing the proportion of larger aggregates (Daraghmeh et al., 2009; Al-Kaisi et al., 

2014).  Research has found that no-till systems have more macro-aggregates and that 

these macro-aggregates contain an increased number of micro-aggregates holding soil 

organic C, especially when mulch is part of the no-till system (Liang et al., 2011; Al-

Kaisi et al., 2014; Andruschkewitsch et al., 2014).  However, systems in which more C is 

contained within macro-aggregates rather than micro-aggregates, may have increased C 

and N gaseous emissions, as substrates within macro-aggregates are more labile and 

subject to mineralization (Elliott, 1986; Drury et al., 2004; Manna et al., 2006; 

Bandyopadhyay and Lal, 2014).  It is clear that there are differences in soil moisture, soil 

temperature, and soil structure across different tillage and residue management regimes, 

and further research is needed to characterize the relationships between these variables 
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and N transformation and loss within different systems.   

It is important to determine the influence of tillage and organic residues on 

microbial processes so that the biotically mediated N pathways are better understood.  

However, the abiotic pathways affected by soil temperature, soil moisture, and other 

environmental conditions must also be taken into account as ammonia volatilization is 

one of the primary N loss pathways of N applied as fertilizer (Bouwman et al., 2002; 

Vitousek et al., 2009).  A study by Fan et al. (2011) found that an increase in temperature 

from 20 to 30 degrees C increased cumulative NH3 volatilization loss and that a loam soil 

had less volatilization than a sandy soil.  A supporting study also found that ammonia 

volatilization from urea was decreased in clay soils compared to sandy soils and, 

additionally, was greater in systems with organic residues present (Francisco et al., 

2011).  Volatilization in a sandy soil may be attributed to decreased ability to fix 

ammonium (due to lesser cation exchange capacity) (Harrison and Webb, 2001) and, 

despite increasing moisture retention and decreasing soil temperature (Baggs et al., 2003; 

Das et al., 2015), conditions typically associated with reduced volatilization, organic 

residues may increase volatilization as they can act as a barrier between the applied urea 

and the soil surface, preventing assimilation of the urea into the soil profile (Rochette et 

al., 2009).  Additionally, Mohr et al. (1998) found that systems in which organic residues 

are left on the soil surface without any applied fertilizer are subject to increased levels of 

ammonia volatilization compared to systems in which the residue is incorporated, 

possibly because residues are a C source thus stimulating the growth of urease producing 

bacteria and fungi (Deng and Tabatabai, 1996; Hamido and Kpomblekou-A, 2009).  

Despite strong correlations between nitrification, ammonification, and 
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denitrification with soil moisture and temperature, some studies of CO2 and N2O 

emissions have shown very weak or no correlation with soil moisture or temperature (Liu 

et al., 2002; Dyer et al., 2012), indicating that there may be other regional or land-use 

factors influencing environmental interactions and the production and emission of these 

gases.  Stange and Neue (2009) suggested that temperature sensitivity of nitrification 

differs between sites and with site history.  Additionally, C and N substrate availability is 

a critical factor in determining the fate of N in agroecosystems.  Conclusively, this body 

of prior work illustrates the complexity of developing and issuing recommendations that 

are best for all regions, climates, and soil types; thus, to predict soil N dynamics and 

develop management strategies to improve agroecosystem N retention, site specific 

research is needed. 

In Kentucky, there is some existing research quantifying N loss pathways in no-

till, conservation agriculture systems.  Parsons et al. (1991) studied the denitrification 

rates of two central Kentucky soils - a Lanton silt loam and a Maury silt loam. They 

found that water filled pore space and soil respiration were correlated with N gas loss and 

indicative of denitrifier activity, but that this relationship was stronger for the Lanton soil 

than the Maury soil, as the Maury soil N2O emission rates were very low.  These low 

rates were attributed to the superior drainage qualities of the Maury soil.  Rice and Smith 

studied denitrification in a Kentucky Maury silt loam in tilled and no-till systems.  In 

1982, they found higher denitrifying activity in no-till corn systems with a rye cover crop 

and attributed it to higher soil moisture, but in 1984, they found no consistent trend for 

the effect of tillage on N lost (Rice and Smith, 1982, 1984).  Though they did not study 

specific N loss pathways, they concluded that leaching and denitrification may be of less 
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importance than N immobilization in determining tillage effects on fertilizer N 

availability.  The findings of Kitur et al. (1984) supported this theory and also determined 

that immobilization in rye residue seemed to be the most important sink for fertilizer N in 

no-till systems with a rye cover crop. 

McCracken et al. (1994) studied no-till corn systems with different cover crops 

and found that rye cover crops had less nitrate leachate than vetch cover crops.  Stoddard 

et al. (2005) found that no-till systems with manure and fertilizer applied tended to have 

higher NO3 concentrations in leachate (collected at 90 cm) than tilled systems with the 

same fertilizer treatments.  However, very few studies have looked at leaching and 

gaseous loss simultaneously in no-till corn systems.  One study by Fairchild et al. (1999) 

studied a Kentucky Zanesville silt loam containing a fragipan.  The study found that 

denitrifiers may indirectly help reduce NO3
 leaching via denitrifcation and the release of 

N2O and, in preliminary studies, found that NO3 removal at the fragipan layer was 

stimulated by C input and suppressed by a winter wheat cover crop, but this study was 

specific to soils with a fragipan layer.  No Kentucky study to date, that I am aware of, has 

compared no-till corn systems and simultaneously assessed N dynamics in biomass and 

the soil, while quantifying a variety of N loss pathways, including gaseous, aqueous, and 

solid phases. 

1.3 Organic vs. Conventional Management Effects 
Though some work has been done to produce site-specific recommendations for 

Kentucky (Bitzer et al., 2000; Murdock and Ritchey, 2014), recommendations for both 

organically managed and conventionally managed conservation agriculture systems are 

needed.  Specifically, it is critical to address corn (Zea mays L.) systems as corn is the 

dominant row crop in Kentucky (Bitzer et al., 2000)  and the dominant cash crop 
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(KyCGA, 2014) covering 1,520,000 acres of Kentucky in 2014 (USDA-NASS, 2015). 

No-till operations are increasing (Horowitz et al., 2010); in 2001, ~37% of corn acres in 

Kentucky were managed as no-till operations that kept more than 30% of the soil surface 

covered in residue, and by 2010, this percentage had increased to approximately 47% of 

Kentucky corn acres (USDA-ERS, 2014).  In Kentucky, corn systems are primarily 

conventionally managed.  However, organic acreage has been increasing over the last 

decade.  In 2005, the USDA reported that only 159 acres in Kentucky were utilized for 

organic corn production; however, by 2011, production had increased to cover 1,123 

acres (USDA-ERS, 2013a).  This trend will likely continue in Kentucky, as it has 

nationwide.  Conventional and organic systems have different primary management 

concerns and to achieve systems that are economically realistic, goals and strategies for 

reducing N loss may differ.  These management differences are often manifested in the 

type of N fertilization, the species of cover crop planted, and the timing of cover crop 

planting and termination. 

1.3.1 Type of Fertilizer 
First, the type of fertilizer used in these systems typically differs.  In conventional 

no-till systems, common fertilizers include anhydrous ammonia, urea applied with urease 

and/or nitrification inhibitors, polymer coated urea, manure, or a urea ammonium nitrate 

(UAN) solution applied alone or with urease and/or nitrification inhibitors.  Inhibitors 

and polymer coatings often enhance the efficiency of fertilizer N, i.e. improve crop N 

retention, as N is released more slowly throughout the season rather than solely at 

application. In terms of N2O emissions, these fertilizers release less N at initial 

application but then have higher fluxes throughout the season after rainfall events 

(Hatfield and Venterea, 2014; Parkin and Hatfield, 2014).  In a no-till system with a clay 
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loam soil, Halvorson et al. (2014) found that a polymer coated urea fertilizer, ESN, 

reduced N2O emissions by 42% compared to urea and 14% compared to UAN, while 

applying UAN with AgrotainPlus, a urease and nitrification inhibitor, reduced emissions 

by 61% compared to urea and 41% compared to UAN alone.  On a Crider silt loam in 

Bowling Green, Kentucky, Sistani et al. (2011) found that applying poultry litter with 

AgrotainPlus to a no-till corn system produced greater N2O emissions than urea, UAN, 

and SuperU (urea nitrogen granule with nitrification and urease inhibitors) fertilizers.  

Though several studies have examined N2O emissions released from enhanced efficiency 

fertilizers, results have yet to identify one that consistently emits the least N2O.  In central 

Kentucky, the most commonly used fertilizers are urea and UAN with and without 

inhibitors (Edwin Ritchey, personal communication, 28 January 2014), but additional 

research is needed in this region to determine N losses using these products in 

conventional no-till corn systems. 

In organic systems, N is typically added to the system via N fixation by legumes, 

as Chilean nitrate, in animal manure, in compost, or in the form of animal/plant 

byproducts (Teasdale, 2012).  Unlike conventional sources that have readily available N, 

these fertilizers are often naturally slow in releasing N and do not require additional 

inhibitors or coatings.  Also, similar to manure in conventional systems, adding N in one 

of these forms (excluding Chilean nitrate) also adds C to the system.  Despite the slow 

release nature of these sources, this added C may be largely responsible for increasing N 

loss from systems using these organic N sources.  Mitchell et al. (2013) conducted a 

series of soil incubations with soil collected from fertilizer bands in a field planted with a 

corn crop following a rye winter cover crop.  The results showed that mineralizable C 
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limited N2O emissions rather than NO3 availability.  Additionally, (Cavigelli et al., 2009) 

found that an organic system amended with poultry litter produced significantly more 

N2O than a conventional no-till system, and the organic system had greater soil C 

content.  Overall, there is limited research on N loss from organic, no-till systems and 

much is unknown about the interaction of soil C and applied N in these settings.  

However, it is understood that in organic C rich systems heterotrophic nitrification and 

denitrification is stimulated as heterotrophic microbial populations are reliant on 

obtaining C from organic C sources, whereas, in contrast, autotrophic bacteria are reliant 

on atmospheric CO2 for meeting carbon requirements rather than organic C and thus 

autotrophic nitrification and denitrification does not require organic C if inorganic N 

sources are available (Subbarao et al., 2007). 

1.3.2 Cover Crop Species 
Second, the cover crop species used in these corn-cropping systems is often 

affected by whether the system is organically or conventionally managed.  Three primary 

considerations when choosing a species are: 1) the potential N contribution, 2) the ability 

to re-capture and retain N in the soil, and 3) biomass production capability.  Leguminous 

species are valued for potential N fixation and subsequent contribution and, thus, may 

reduce input costs for the following summer crop, increasing profit potential compared to  

grass cover crop species (Roberts et al., 1998).  Because organic farmers depend more  

on alternative N sources compared to those that are chemically synthesized, this increases 

incentives to plant a leguminous cover crop.  However, the legume is typically not used 

as the only source of N in organic systems, as legumes are only profitable when they 

increase the yield of the following crop, which, in most cases, requires additional N 

(Allison and Ott, 1987). 
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Commonly used winter legumes include Vicia villosa (hairy vetch), Trifolium 

incarnatum (crimson clover), and Pisum sativum (austrian winter pea), with hairy vetch 

being the most commonly used cover crop in the United States (Baldwin and Creamer, 

2009).  Vetch is a winter hardy legume, produces approximately 297 kg ha-1 of biomass 

for every 100 growing degree days, and can provide up to 179 kg ha-1of N (Teasdale, 

2012).  Additionally, research at the University of Kentucky found the benefits of hairy 

vetch to be greater than that of crimson clover or big flower vetch in terms of yield 

advantage beyond that of legume N contribution (Bitzer et al., 2000).  Hairy vetch   

improves soil structure, soil water holding capacity, and increases the effectiveness of 

additional applied N for the subsequent crop (Hanson et al., 1993; Lichtenberg et al., 

1994). 

If the primary reason for planting a cover crop is to re-capture N left in the soil 

profile from the preceding growing season and prevent nitrate leaching over the winter 

months, cereal grass cover crops such as Triticum aestivum (winter wheat), Secale 

cereale (winter rye), and Avena sativa (oat) are recommended.  These species are 

preferred for N retention as they establish more quickly than legume monocultures, and 

their root growth remains active in cooler temperatures (Ranells and Wagger, 1997).  As 

a result, cereal grasses often produce as much as 6,720 kg ha-1 of biomass but the N 

concentration is low, between 1-2% N (Baldwin and Creamer, 2009).  In Kentucky, 

winter wheat is the most common winter cover crop grown in conventional corn systems 

(Lee and Knott, 2014). 

Biomass production by the cover crop is of concern for both organic and 

conventional farmers.  Both systems benefit from the organic matter building potential 
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provided by more biomass, but conventional farmers may prefer to plant high biomass 

grass cover crops as they tend to grow more vigorously than legumes during the winter, 

resulting in greater soil N uptake and reduced soil erosion.  In contrast, organic farmers 

value cover crop biomass production for its contribution to weed control during the 

summer growing season, as well as additional N input.  With a legume cover crop, an 

organic farmer may benefit in terms of N contribution, but it may not provide the biomass 

production needed for weed control.  Typically, biomass production greater than 8,960 kg 

ha-1 is needed for weed suppression, and the maximum production of hairy vetch is only 

approximately 5,600 kg ha-1 (Teasdale, 2012).   

In addition to insufficient biomass production, legume biomass decomposes more 

quickly than cereal grasses, as it has a lower C:N ratio.  If the C:N ratio of biomass is less 

than 20 to 25 to 1, the N contained within the material is typically released rather than 

immobilized and breakdown occurs quickly (Wagger, 1989).  The C:N ratio of hairy 

vetch is generally between 10 and 20 to 1, whereas that of a cereal grass terminated in 

mid to late May can be as high as 50:1 (Baldwin and Creamer, 2009).  In a no-till system, 

Wagger (1989) monitored the release of N from cover crop residue and found that 87% 

of hairy vetch N and 86% of crimson clover N was released within 16 weeks following 

termination, but that only 47% of that contained in rye residue was released.  

Additionally, the quantity of N initially found in the rye residue was much lower.  The 

increased biomass production, high C content, and slow decomposition rate of cereal 

grasses is beneficial for weed suppression, but does not provide the N contribution like 

that of a leguminous cover crop.  One benefit is often sacrificed for the other; however, a 

compromise may be achieved by growing a cover crop mixture. 
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Growing legumes and cereal grasses together in a bi-culture cover crop can be 

more beneficial than growing either in monoculture.  Growing legumes in bi-culture with 

cereal grasses may increase legume winter hardiness and result in a quantity of biomass 

greater than if either of the species were grown in monoculture; more biomass results in 

increased weed suppression and greater N and organic matter contribution (Teasdale and 

Abdul-Baki, 1998; Snapp et al., 2005).  In addition, mixing a cereal grass species with a 

legume decreases the C:N ratio of the biomass, resulting in increased residue 

decomposition and N release (Snapp et al., 2005).  The C:N ratio is decreased not only 

because the legume species has an innately lower C:N ratio, but some research has found 

that the C:N ratio of the rye component of a rye-vetch mixture was lower than when rye 

is grown alone (Salon, 2012).  However, (Clark et al., 1997) and Rosecrance et al. (2000) 

both found that vetch alone still released more N than a rye-vetch bi-culture and that N 

immobilization still occurred in the rye-vetch bi-culture.  Finally, it is theorized that 

because non-legumes more efficiently scavenge N from the soil than legumes, in bi-

cultures the non-legume may deplete soil N promoting increased N fixation and 

nodulation in the legume species (Snapp et al., 2005; Salon, 2012).  Overall, growing bi-

cultures over the winter may be beneficial for weed suppression and N contribution in 

organic systems. 

1.3.3 Cover Crop Management and Timing 
Third, the timing of cover crop planting and termination may differ between 

organic and conventional systems.  In Kentucky corn systems, the cover crop is typically 

planted in the fall between late September and early November and terminated in spring 

between April and May.  In conventional systems, the cover crop is typically terminated 

at least two to three weeks prior to the ideal corn planting date (early May) via herbicide 
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burn down using glyphosate or paraquat (Lee and Knott, 2014).  However, organic 

farmers terminate via rolling or mowing the cover crop, and the species they plant may be 

influenced by the kill effectiveness of these technologies.  If rolling the cover crop in the 

spring, they must wait to terminate the cover crop until a certain stage of physiological 

maturity is reached.  For effective kill and reduced re-growth, vetch is terminated when 

the crop is at 50% flower and wheat is terminated at soft dough stage (Bowman et al., 

2012).  The weather conditions are also critical in determining when termination can 

occur; if the soil is too moist rolling the crop will result in unwanted soil compaction.  

Additionally, an organic farmer may choose to terminate later than a conventional farmer 

in order to achieve maximum biomass production and N-fixation prior to termination. 

It is difficult to provide a single set of recommendations to reduce N loss that are 

suitable for all systems due to management constraints, like those required for organic 

certification, and naturally varying edaphic and climatic conditions.  On top of the 

previously mentioned factors controlling N loss, even the type of corn variety planted can 

affect N use (Caviglia et al., 2014).  However, it is possible to determine practices that 

reduce N loss within organic and conventional conservation agriculture systems in 

Kentucky with research that examines the N dynamics specific to each of these 

agroecosystems.  Significant economic and environmental concerns justify the need for 

this type of research.   

Corn production covers more area in the United States than any other crop, 

including ~6% of Kentucky’s total land area (KyCGA, 2014; USDA-NASS, 2015).  In 

Kentucky, total corn acres harvested increased by 17% and the number of Kentucky 

farmers selling corn for grain increased by 36% from 2007 to 2012 (KyCGA, 2014).   
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Economically it is important to mitigate N loss as the average price received for corn 

grain is declining while the cost of fertilizer N continues to increase (USDA-ERS, 

2013b).  In 2012, the price received for corn grain was $6.67 per bushel with 

conventional fertilizer N cost averaging $588 per short ton (USDA-ERS, 2013b; NASS, 

2014).  However, in 2013 fertilizer N costs increased to an average of $606 per short ton, 

and USDA projected corn grain prices for 2014-2015 were expected to fall within the 

range of $3.65 to $4.35 per bushel (Thiesse, 2014).   

Environmentally, agricultural systems are a significant human alteration of the 

global N cycle, contributing to increases in atmospheric N2O and NH3 and eutrophication 

of water bodies.  However, because agricultural systems are managed systems, they 

present great opportunity for manipulation that can reduce N loss and increase economic 

and environmental sustainability. 

1.4 Objectives and Hypotheses 
    This project addresses several research gaps in the current literature.  It will 

quantify N loss for conservation agriculture systems in Kentucky that leave cover crop 

residue on the soil surface, and assess how soil N dynamics are affected by cover crop 

species across the entirety of the year as opposed to solely post-termination of the cover 

crop.  It will also contribute to data on organic, no-till systems as organic corn production 

is increasing, but to date, there is little research to provide cover crop recommendations 

for no-till systems using organic production practices.  The primary objective of this 

research is to generate data aimed at improving recommendations for best systemic on-

farm management practices that reduce N loss in Kentucky conservation agricultural 

systems, both conventional and organic.  This will be achieved by measuring N loss via 

leaching, NH3 volatilization, and N2O emissions and N retention in plant and soil pools in 
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both types of system throughout a full year.  To fulfill the primary objective, three 

secondary objectives were identified: 1) quantify the effects of cover crop type (winter 

wheat vs. hairy vetch vs. a bi-culture of the two species) on N loss and dynamics in an 

organic corn system; 2) quantify the effects of fertilizer approach (full application of 

organic fertilizer vs. a fertilizer N-credit approach that reduces the applied fertilizer by 

taking into account the N contribution of the cover crop) on N loss and dynamics in an 

organic corn system planted with a hairy vetch cover crop; and 3) quantify N loss and 

dynamics between two fertilizer types (urea with a urease inhibitor vs. an organic slow-

release pellet) in a conventional corn system planted with a winter wheat cover crop.  

     For the organic management systems, I hypothesized that: 1) N loss would be 

greater in systems planted with a legume only (hairy vetch) cover crop in comparison to 

the grass only (wheat) or the bi-culture (hairy vetch-wheat) treatment, because legumes 

grow less vigorously during the winter, and thereby take up less residual soil N, making it 

more available for loss, and at maturity, legumes have a lower C:N ratio, providing an 

organic residue that is N rich and decomposes rapidly; 2) in treatments with a hairy vetch 

cover crop, I hypothesized that as the quantity of organic N fertilizer applied increased, N 

loss would also increase.  For the conventional management systems with wheat cover 

crops, I hypothesized that 3) N loss would be greater in treatments receiving fertilizer vs. 

those without and that the dominant gaseous N loss pathways (NH3 volatilization, N2O 

emissions) would differ between treatments with different types of fertilizer N sources 

due to dissimilar rates of N release. 
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 : Materials and Methods Chapter 2

2.1 Research Site 
This experiment was established in October 2013, and was conducted at the 

University of Kentucky’s Horticulture Research Farm in Fayette County, Kentucky in an 

organic field (37°58'25"N, 84°32'9 "W) and a conventional field (37°58'28"N, 

84°32'10"W), located within 100 m of one another (Fig. 2.1).  The organic field was 

certified organic according to USDA National Organic Program guidelines by the 

Kentucky Department of Agriculture in 2009.  It was kept fallow with a weed cover and 

tilled once per year for the three years prior to plot establishment.  The conventional field 

was similiarly managed, but was planted with a fall strawberry crop one year prior to plot 

establishment.  Both field sites had been in production for the past 35 years and had not 

been under no-till management.  The soil series at the research site is a Maury silt loam 

(well drained, fine, mixed, active, mesic Typic Paleudalfs). 

The climate of the site is warm, moist, and temperate with a mean annual 

temperature of 13.1 °C and precipitation of 114.7 cm.  The mean daily maximum 

temperature in the summer is 29.4 °C with a low of 18.1 °C,  while in the winter the 

mean daily maximum is 6.3 °C with a low of -2.8 °C (NOAA).  Precipitation is typically 

distributed equally throughout the year.  The year of the study, October 2013 to 

November 2014, was cooler (mean temperature of 11.5°C) and wetter (143.7 cm 

precipitation) than the historic average.  Specifically, temperatures were cooler than 

average in January through March and in July, and precipitation was notably higher in 

December, April, and August (Fig. 2.2).  
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2.2 Experiment Design     
In October 2013, fifteen and nine, 25 m2 plots (5 m by 5 m) were established in 

the organic and conventional fields, respectively.  In the organic field, the plots were 

assigned to one of five treatments, each with three replicates, and in the conventional 

field, the plots were assigned to one of three treatments, also with three replicates (Figs. 

2.3, 2.4).  The treatments in both fields were arranged in a completely randomized 

design.  Treatments were designed to measure N loss within organic and conventional 

conservation agriculture corn systems and incorporated cover crop species and fertilizer 

types commonly found within the Kentucky landscape.  Both fields were spaded with an 

Imants Rotary Spader (Imants BV, Reusel, Netherlands) in September 2013, and winter 

cover crop treatments were broadcast planted the first week of October and terminated 20 

May 2014.  On 28 May 2014 a summer corn (Zea mays indenata) crop was planted by 

hand to simulate a no-till planter (91.44 cm between row spacing, 15.24 cm within row 

spacing).  Each plot was 5 m wide and 5 m long, and contained five rows of corn.  

Fertilizer N was broadcast applied to selected treatments the same day as corn planting.  

The corn crop was hand harvested on 6 October 2014 (Table 2.1).       

2.2.1 Organic Field Treatments 
 In the organic field, five treatments were designed to compare: 1) the effect of 

cover crop species on N loss and 2) the effect of fertilizer approach on N loss within 

systems using a hairy vetch cover crop.  To compare the effect of cover crops, three 

different cover crop species were planted: hairy vetch (Vicia villosa) seeded at 33.6 kg 

ha-1, winter wheat (Triticum aestivum) seeded at 134.5 kg ha-1, and a mix of hairy vetch 

and winter wheat seeded at 22.4 and 67.3 kg ha-1, respectively (Fig. 2.3).  To capture the 
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effect of cover crop species alone, each of the three cover crop treatments were compared 

under no fertilizer conditions.  

To quantify the effect of fertilizer approach on N loss, only a hairy vetch cover 

crop treatment was examined because it is a leguminous species and is capable of N-

fixation, and I was interested in comparing N loss from systems receiving the 

recommended application of organic fertilizer in addition to the leguminous N versus 

those that account for the N contribution of the cover crop residue as a N source.  Two 

different organic N fertilizer application treatments were compared to the hairy vetch no 

fertilizer added treatment.  One fertilizer treatment received 168 kg ha-1 N of pelleted 

Nature Safe 13-0-0 organic N (Griffin Industries LLC, Cold Spring, Ky), and a cover 

crop N credit approach was taken with the other fertilizer treatment.  The organic N 

fertilizer was 40% C and 13% N (0.19% ammoniacal N, 12.04% water insoluble N, and 

0.77% water soluble N) with a pH of 5.5 (Kirk Carls, Nature Safe Natural and Organic 

Fertilizers, personal communication, 14 March 2015). 

For the cover crop N credit approach, the quantity of N contained in the cover 

crop is measured and the quantity of fertilizer N is reduced to account for the N 

contribution of the cover crop.  Five days prior to cover crop termination, a cover crop 

biomass sample was taken to determine biomass yield per hectare and multiplied by 3.5% 

to estimate the quantity of N per hectare (Sarrantonio, 2012).  Due to the atypically cold 

winter, the shoot biomass yield of the hairy vetch was low, (1741 kg ha-1 dry wt), and the 

N content averaged 61 kg ha-1.  To mimic a more typical year, the hairy vetch cover crop 

was supplemented with hairy vetch cuttings from an adjacent field to bring the N content 

of the cover crop up to 112 kg ha-1 (Smith et al., 1987; Cline and Silvernail, 2002).  Then, 
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an additional 56 kg ha-1 of organic fertilizer was applied, so that the N added to the 

system was equal to 168 kg ha-1, the recommended rate of N for corn (Murdock and 

Ritchey, 2014).  However, after lab analysis of the cover crop biomass samples, it was 

determined that the actual N content of the cover crop was less than 3.5%.  The cover 

crop in the treatments was 2.98% (±0.13%) N, and the added cover crop was 3.44% N.  

Additionally, because N-credit calculations were conducted four days prior to cover crop 

termination, the biomass N content of the hairy vetch had increased by the time of 

termination; thus, in total, the combined N content of the hairy vetch and the fertilizer 

was 232 kg N ha-1 in the N-credit treatment, 242 kg N ha-1 in the organic fertilizer 

treatment, and 78 kg N ha-1 in the unfertilized treatment.   

The cover crops were terminated via flail mowing on 20 May 2014 (when hairy 

vetch was at 50% flowering) and were weed whacked prior to corn planting on 28 May 

2014.  The corn variety used was 71T77cnv from BlueRiver Organics (114 day, untreated 

conventional, non-GMO).  Between row weed pressure was managed as needed with four 

mowing events using a BCS flail-mower (13 & 25 June, 10 July, 22 August 2014) and 

within-row weed pressure was managed with one hand cultivation event on 2 July 2014.  

No weed biomass was removed from the plots.  Pest pressure was managed with three 

applications of Bt (Javelin®) and Spinosad (Entrust®) using a spreader sticker (Nu-film 

17) (Table 2.1). 

2.2.2 Conventional Field Treatments 
In the conventional field, three treatments were designed to compare the effect of 

two different fertilizers on N loss in conventional systems seeded with a winter wheat 

(Triticum aestivum) cover crop at 134.5 kg ha-1.  Winter wheat was chosen for the 

conventional systems as it is a cereal grass and is the most commonly planted cover crop 
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in Kentucky conventional corn systems (Lee and Knott, 2014).  The N treatments were 0 

N, 168 kg ha-1 N applied as urea 40-0-0 with a urease inhibitor (AgrotainUltra®), and 168 

kg ha-1 N applied as the same fertilizer used in the organic treatments (Nature Safe 13-0-

0, Griffin Industries LLC, Cold Spring, Ky) (Fig. 2.4).  Urea applied with or without 

inhibitors is commonly used as a fertilizer in the central region of Kentucky (Edwin 

Ritchey, personal communication, 28 January 2014) and a urease inhibitor is 

recommended for surface application of urea after 1 May (Bitzer et al., 2000).  The 

organic fertilizer was used to represent systems that add N in a biological form, a N 

source that releases more slowly than inorganic fertilizer.  On farms, slow release N may 

be in the form of manure or chicken litter, but the packaged source of organic fertilizer 

was used in this study in order to eliminate adding additional phosphorus and/or 

potassium to the treatment.   

The cover crop was terminated via flail mowing followed by glyphosate 

application (Roundup Pro; Monsanto, St Louis, MO, U.S.A.) on 20 May 2014.  Corn was 

planted and fertilizer applied on 28 May 2014.  The corn variety used in the conventional 

field was REV24BHR93 from Terral Seed, Inc. (114 day, corn borer resistant, rootworm 

resistant, round-up ready, gluphosinate tolerant), a variety that had performed well in the 

University of Kentucky’s 2013 variety trials (Kenimer et al., 2013).  Weeds were 

managed with one additional application of glyphosate on 10 July 2014 and no pest 

management was deemed necessary (Table 2.1).             

2.3 Measured Parameters 

2.3.1 Gaseous Emissions 
 The static chamber method was employed to measure gaseous emissions (Parkin 

and Venterea, 2010).  In each of the 24 plots (8 treatments, 3 replicates), a rectangular 



28 
!

stainless steel chamber (16.35 x 52.70 x 15.24 cm) was inserted into the soil so that the 

top was nearly flush with the soil surface.  Chambers were inserted at random locations in 

each plot ten days after cover crop seed was broadcast at initiation of the experiment in 

the fall.  Chambers were removed prior to cover crop termination in order to avoid 

damage from heavy machinery.  The day of corn planting, the pans were re-inserted into 

the plots and were placed perpendicular to the corn rows so that they were between two 

corn plants and spanning soil surface area both within and between rows (Fig. 2.5).   

To measure nitrous oxide (N2O) and ammonia (NH3), a ‘cap’ made from an 

identical stainless steel chamber, equipped with a vent tube and lined with Teflon© tape 

(Bytac©, Saint Gobain Performance Plastics), was clipped to the pan to create a sealed 

chamber.  The chamber was connected to a photoacoustic spectroscopy gas analyzer 

(Innova Air Tech Instruments Model 1412, Ballerup, Denmark) via Teflon© tubing (Fig. 

2.6).  Measurements were taken continuously for ten minutes on the days of sampling and 

NH3, N2O, and CO2 concentrations (ppm) were recorded simultaneously.  Gaseous flux 

was calculated using the equations described by Iqbal et al. (2013).  Annual fluxes were 

estimated by interpolating between sampling dates and calculating the area under the 

curve using the trapezoidal rule.  During sampling periods, additional environmental 

parameters were also recorded, including soil moisture at 5 cm depth (DELTA-T HH2 

moisture meter using a ML2x 6 cm theta probe, Delta-T Devices, Cambridge, England), 

soil temperature at 5 cm depth, and ambient air temperature (Taylor Digital Pocket 

Thermometer, Model 9878E, Taylor Precision Products, Oak Brook, IL).  

 Measurements commenced on 28 October 2013 and continued until 29 October 

2014. Sampling intensity varied throughout the experiment, with increased intensity 
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during periods when fluxes were expected to be high or affected by management 

practices.  During the cover crop growing season and prior to corn planting (28 October 

2013 – 13 May 2014) measurements were taken twice a month.  Following corn planting 

and fertilization (28 May 2014), measurements were taken daily for a week and then 

every other day until 12 June 2014, on which date fluxes from fertilized treatments 

appeared similar to those from unfertilized treatments.  During the rest of the corn 

growing season, measurements were taken every seven to ten days, returning to the twice 

a month sampling scheme in October.  Measurements were taken on all plots between 10 

am and 3 pm, and care was taken to change the starting position and the order in which 

the plots were sampled from one sampling date to the next.   

2.3.2 Nitrogen Leachate 
Ion exchange resin lysimeters were used to measure N leachate, after Susfalk and 

Johnson (2002).  Cation and anion exchange resins (25 g) (LANXESS NM-60, Klenzoid 

Equipment Company, Wayne, PA) were placed between Nitex® nylon cloth and sand 

layers that were enclosed in polyvinyl chloride tubes 5 cm in diameter.  Leachate was 

monitored for two measurement periods.  The first round of lysimeters were deployed 

during cover crop growth from 10 October 2013 until 16 May 2014 and the second round 

occurred during the summer corn growing season from 16 May 2014 until 20 October 

2014.  Two lysimeters were installed at 40 cm depth in each plot under an undisturbed 

soil profile.  The first round was placed randomly in each plot, but during the corn 

growing season, one lysimeter was placed within the cornrow and one was placed 

between rows.    

 When lysimeters were harvested, inorganic ammonium and nitrate was extracted 
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by shaking the resin in 100 ml of 2.0 N KCL for one hour.  The extract was then filtered 

(Slow flow, fine porosity, 12.5 cm diameter, Fisher Scientific, Pittsburgh, PA) and a 1 ml 

aliquot was taken for analysis.  Ammonium concentration was determined using a 

modification of the Berthelot reaction (Chaney and Marbach, 1962) and nitrate quantified 

via reduction to nitrite using a copperized cadmium reduction microplate device 

(ParaTechs Co., Lexington, KY) as described by Crutchfield and Grove (2011).  

Colorimetric analysis was conducted using a microplate reader (Molecular Devices, 

VERSAmax, Sunnyvale, CA). 

2.3.3 Soil Nutrients and Bulk Density 
 Prior to cover crop establishment, at the beginning of the study, soils were 

sampled to determine differences between and within fields.  Three cores (0-15 cm) were 

taken per plot, bulked for a single analysis, homogenized, air-dried, and analyzed by the 

University of Kentucky Regulatory Services Soil Testing Laboratory in Lexington, Ky.  

Soil P, K, Ca, Mg, and Zn were extracted with Mehlich III and analyzed by inductively 

coupled plasma spectroscopy (Varian, Vista Pro CCD, Palo Alto).  Total C and N were 

analyzed by combustion (LECO Corporation, St. Joseph), soil pH was measured with a 

glass electrode in 1:1 soil:water solution and calculated using an equation determined 

from an analysis of 240 soil samples in March of 2009 (soil-water pH = 0.91 x 1 N KCL 

soil pH + 1.34), and buffer pH was measured with a glass electrode using a Sikora buffer.  

Percent organic matter was calculated from percent total carbon (Nelson and Sommers, 

1982) (Appendix 1).  

To monitor soil N dynamics, three types of measurements were taken during the 

course of the year.  First, cation and anion exchange resin bags (LANXESS NM-60, 
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Klenzoid Equipment Company, Wayne, PA) were made with 10 g of resin tied in a 

porous material (Gibson et al., 1985).  Each month from November 2013 to November 

2014, three resin bags per plot were inserted at 15 cm depth, at the same time those from 

the prior month were removed for analysis of inorganic ammonium and nitrate.  There 

were two instances when the resin bags were deployed for six weeks as opposed to one 

month, as the ground was frozen and it was not possible to remove the resin bags.  These 

instances occurred January to mid-February and from mid-February to the first of April.  

After removal from the field, resin bags were rinsed with deionized water until free of 

soil and other debris and extracted with 40 mL 2.0 N KCL.  They were shaken in KCL 

for one hour and then filtered (Slow flow, fine porosity, 12.5 cm diameter, Fisher 

Scientific, Pittsburgh, PA).  Extract was stored overnight at 4 °C and analyzed 

colorimetrically as described above.   

  Soil samples were also taken five times during the course of the year and 

extracted for inorganic and potentially mineralizable N content.  Three 0-15 cm soil cores 

per plot were taken prior to cover crop termination (13 May 2014), at corn V6 growth 

stage (1 July 2014), at corn R1 growth stage (8 August 2014), at corn harvest (6 October 

2014), and post-harvest (3 November 2014).  For inorganic N extraction, soils were 

passed through a 2 mm sieve and extracted at field moist conditions within 24 hours of 

collection.  For the extraction, 5 g of soil was extracted with 20 mL of 1.0 N KCL, shaken 

for 1 hour, filtered, stored overnight and colorimetrically analyzed (as previously 

described).  Gravimetric moisture content was determined by drying a subsample of the 

soil at 55 °C until dry.  
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 A chemical method for assessing potentially mineralizable nitrogen (PMN), as 

described by Gianello and Bremner (1986), was used to determine PMN on the five soil 

samples in addition to the pre-planting soil sample collected on 1 November 2013.  This 

procedure is insensitive to air-drying (Gianello and Bremner, 1986) and, thus, was 

performed on samples after air-drying and storage. 20 mL of 2.0 N KCL was added to 3 g 

of soil in glass centrifuge tubes and placed in a block digester (Benchmark, Digital dry 

Bath II, BSH1004) to incubate for 4 hours at 100 °C.  Samples were then filtered and 

analyzed colorimetrically as described above.  Gravimetric moisture content was 

determined by drying a subsample of the soil at 55 °C until dry.  

  To calculate soil N content on a per hectare basis, a soil bulk density sample was 

taken from each plot in October 2014 using a slide hammer.  A non-compacted, 4.8 cm in 

diameter, soil core was taken from 0-15 cm and dried at 110 °C for 48 hours.  Bulk 

density was calculated as the weight of the dry soil divided by the volume.  

2.4 Plant Biomass Sampling 

       2.4.1 Cover Crop Biomass 
       Beginning in May 2014, cover crop biomass was sampled monthly through 

September.  The first sampling was conducted the day of cover crop termination after 

flail mowing.  During the months of June through September, the decomposing cover 

crop residue on the soil surface was collected.  In the organic plots, weed residue from 

mowing was also collected.  Two samples were collected randomly from each plot using 

a 25x25 cm quadrat, were dried at 55 °C for 48 hours, and then weighed.  The same 

location was never sampled twice.  Samples were processed on a grinding mill to pass 

through a 1 mm sieve (Cyclotec 1093, FOSSTM , Eden Prairie, MN), and sub-samples 

were then ground on a ball grinder (Cianflone Scientific Instrument Corporation, 
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Pittsburgh, PA) or a jar-mill (U.S.Stoneware, East Palestine, OH).  Cover crop biomass 

was analyzed for C and N content via flame combustion (Flash EA 1112 elemental 

analyzer, CE Elantech Inc., Lakewood, CA).   

Additionally, cation and anion exchange resin bags were placed beneath the cover 

crop residue, but above the soil surface, to qualitatively capture the ammonium and 

nitrate coming from the decomposing residue to the soil surface.  Resin bags contained 

10 g of resin beads (LANXESS NM-60, Klenzoid Equipment Company, Wayne, PA), 

and plastic mesh was used to slightly elevate resin bags off the soil surface.  These resin 

bags were collected monthly from late May through September and extracted and 

analyzed colorimetrically as previously described.    

           2.4.2 Corn Biomass 
     Corn biomass samples were collected three times over the course of the 

experiment.  Corn leaves were collected at corn R1 growth stage, entire corn plant 

samples and weed biomass were collected at corn maturity, and grain samples were 

collected for yield analysis at harvest.  At R1 growth stage, three corn plants from each 

plot were randomly selected, and from these plants, a mature, healthy leaf was collected.  

Samples were dried at 55 °C for 48 hours (Model SA-350, The Grieve Corporation, 

Round, Lake Illinois), weighed, ground, and analyzed via flame combustion for carbon 

and N content.  At corn maturity, a 0.25 m2 quadrat was randomly placed within one of 

the inner three cornrows in each plot and entire corn plants were cut at the base, flush 

with the soil surface.  Roots were not collected.  Additionally, any weed biomass growing 

within the quadrat was also collected.  Samples were dried at 55 °C for one week, and the 

corn plants were sub-divided into stalks, leaves, husks, tassels, cob and shank, and grain 
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and weighed.  Stalks and cobs were ground with a Thomas Model 4 Wiley mill (Thomas 

Scientific, Swedesboro, NJ) until they could pass through a 2 mm sieve.  Leaves, husks, 

tassels, and weeds were ground through a 1 mm sieve on a grinding mill (Cyclotec 1093, 

FOSSTM, Eden Prairie, MN), and grain was ground using an electric coffee grinder.  Sub-

samples of corn and weed biomass were analyzed for C and N content via flame 

combustion (Flash EA 1112 elemental analyzer, CE Elantech Inc., Lakewood, CA).   

     Corn was harvested by hand on 6 October 2014.  Yield was calculated from the 

grain produced by the inner three rows of each plot.  Additionally, to minimize edge 

effects, the two outermost corn plants of each of the three rows were not included in yield 

calculations.  Corn was dried at 55 °C for 48 hours and then allowed to air dry for five 

weeks.  Corn was shelled and weighed and a sub-sample was collected and dried at 55 °C 

for 24 hours to obtain moisture content so that yield data could be corrected for bushel 

weight at 15% moisture content. 

2.5 Nitrogen Balance Calculation 
! Using some of the measured parameters, a N balance calculation was computed 

for the post-fertilization time period (28 May 2014 – 1 November 2014) in each of the 

treatments to quantify whether the system experienced a net positive N gain or a net 

negative N loss.  The post-fertilization time period was analyzed rather than an annual 

budget because the N loss that occurred during the cover crop growing season (October 

2013 – 28 May 2014) was not representative of the fertilizer treatments, as fertilizer was 

not applied until the following May.  A N mass balance approach was used subtracting 

average N export from average N input: 

N Balance = (cover crop N + fertilizer N) – (gaseous N loss + corn grain N export) 
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Leaching data was not included in this equation as it was measured in ppm and was not 

scaled up to kg N ha-1 as that would require many assumptions about the drainage 

patterns of the field site.      

2.6 Statistical Analyses 
 This experiment was designed to investigate the effects of cover crop species and 

fertilizer on N loss in organically and conventionally managed corn systems.  From eight 

total treatments, three separate contrasts were developed that addressed the three specific 

objectives of the study.  Within the organic field, unfertilized plots differing in cover crop 

type were compared (hairy vetch vs. wheat vs. bi-culture), and treatments planted with 

hairy vetch, but receiving different fertilizer approaches (0 N vs. N-credit vs 168 kg ha-1 

organic N), were compared.  In the conventional field, the effect of fertilizer type was 

compared across treatments (0 N vs. 168 kg ha-1 organic N vs. 168 kg ha-1 urea).   

 General and mixed linear models (proc GLM, proc mixed) (9.3 SAS Institute Inc., 

Cary, NC) were utilized for the analyses.  Fixed effects were either cover crop species or 

fertilizer approach/type.  Replicate was also a fixed effect in the general models and a 

random effect in the mixed models.  For parameters that were measured at multiple times 

over the study year, time was included as a repeated effect (in GLM) or as a fixed effect 

(in mixed), with the repeated effect of the treatments over time specified using a subject 

option.  

 For parameters that were only measured once during the study, a general linear 

model (proc GLM) (9.3 SAS Institute Inc., Cary, NC), employing type 1 sums of squares 

and a least squares means statement to produce pairwise comparisons, was used to test 

for differences across treatments.  These parameters included: soil bulk density, corn 

yield, corn grain N export, N balance, leaching data for each of three different time 
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periods (pre-fertilization, post-fertilization, and the summed annual total), and N2O-N 

and NH3-N flux estimates  that were calculated over three distinct time periods (pre-

fertilization, post-fertilization, and annually).  All response variables and residuals were 

assessed for normality and transformed when necessary.     

 Parameters measured more than once during the study varied in their sampling 

frequency. For soil resin NO3-N and NH4-N concentrations, monthly data were analyzed 

for two time periods (pre-termination/fertilization; October – May and post-

termination/fertilization; May – November) using a repeated statement in GLM, as we 

anticipated treatment associated differences in this parameter would be strongly 

influenced by the fertilization event.  For parameters that included missing values or were 

better modeled using a more general co-variance structure than GLM provides, a mixed 

linear model (proc mixed) (9.3 SAS Institute Inc., Cary, NC) was used.  These 

parameters included: cover crop N content, %N, and C:N ratio analyzed monthly across 

five months (May-September); biomass resin N concentrations analyzed monthly across 

four months (June-September); soil inorganic N across four collection periods (corn V6 

growth stage, corn R1 growth stage, corn harvest, and one month post-harvest), hot KCL 

extracted N across five collection periods (November 2013, corn V6 growth stage, corn 

R1 growth stage, corn harvest, and one month post-harvest); and N2O-N emissions, NH3-

N emissions, soil moisture, and soil temperature measured at various frequencies over the 

course of the study (n=36 dates in total).  Similar to the soil resin N data, repeated 

measures tests for N2O-N emissions, NH3-N emissions, soil moisture, and soil 

temperature were performed separately for three distinct time periods that corresponded 

with major management activities: the pre-fertilization/termination period (28 Oct 2013 – 
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28 May 2014), the post-fertilization intensive measurement period (29 May – 12 June 

2014), and the post-fertilization period (19 June – 1 November 2014).   

For each analyzed parameter, the covariance-structure was modeled using either a 

first order auto-regressive (AR(1)) structure or a heterogeneous auto-regressive structure 

(ARH(1)), depending upon which best fit the error variability expressed in the dataset. 

All response variables and residuals were assessed for normality and, where possible, 

transformed to achieve normality.  Though normality of the data and/or the residuals is 

preferred for statistical accuracy, transformation to achieve normality for N2O-N and 

NH3-N datasets was not possible for all three of the analyzed contrasts.  However, 

assuming correct linearity of the model and independent and homoscedastic errors 

(achieved by using an appropriate covariance structure – ARH(1)), normality may be 

bypassed, as the central limit theorem applies due to a large sample size n > 30, and the 

smallest sample size we used was n=30 during the post-fertilization intensive 

measurement period.  Thus, the model estimates for each effect follow a normal 

distribution and the accuracy of the statistic is not compromised (Norman, 2010).  A least 

squares means statement was used to produce pairwise comparisons across treatments on 

each measurement date for all parameters when significant main effects were identified.   
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Table 2.1: Timeline of field management and sampling events. 

2013 

2014 
May 15 
        16 
        19 
        20 

 28 

        29-31 

Collected hairy vetch biomass samples for N-credit calculations from organic field 
Removed resin lysimeters and installed second round 
Cut and applied additional hairy vetch from adjacent field to N-credit treatments 
Terminated cover crops in organic field via flail mowing and in the conventional field 
via flail mowing and glyphosate application    
Collected cover crop biomass samples and install biomass resin bags (continue 
monthly through September) 
Collected soil samples (0-15 cm) for inorganic N and  Hot KCL extraction 
Weed-whacked organic field  
No-till hand planted corn and broadcast applied fertilizer in organic and conventional 
fields 
Daily Trace Gas Measurements 

June 1-4, 6, 9, 12 
 19 

 13 
 25 

Trace gas measurements 
Began weekly trace gas measurements until September when they were reduced to bi-
monthly 
Mowed organic field 
Mowed organic field 

July  1 
 2 

 10 

Collected soil samples (0-15 cm) at corn V6 growth stage 
Within row hand weeding of organic field 
Mowed organic field and applied glyphosate to conventional field 

August 8 
            22 
            25 
            29 

Collected corn leaf samples and soil samples at corn R1 growth stage 
Mowed organic field and applied Bt & spinosad 
Applied Bt & spinosad to organic field 
Applied Bt & spinosad to organic field 

September 3 
29 

Collected soil bulk density samples 
Collected final cover crop biomass samples and biomass resin bags 

October  6 

 20 
             26 
             29 

Hand harvested corn biomass and grain in organic and conventional fields, collected 
soil samples (0-15 cm)  
Removed resin lysimeters 
Mowed corn stover in organic and conventional fields 
Final trace gas measurement 

November 3 Final soil samples collected and trace gas rings removed 

!

!

Month Tasks 
September Constructed stainless steel pan bases for trace gas measurements 

Spaded field site and laid measurements for plot installation 

October 8-9 Collected soil samples, 0-15 cm 
Broadcast planted cover crops 
Installed lysimeters 
Began taking bi-monthly trace gas measurements and installed first round of monthly 
resin bags at 15 cm depth (resin bags continued monthly for entirety of project and 
trace gas measurements continued bi-monthly until corn planting and fertilization) 
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Figure 2.1: Site map of organic and conventional fields at the University of 
Kentucky’s Horticulture Research Farm located in Fayette County, Kentucky. 
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Figure 2.2: Temperature and precipitation the year of study at the experimental site at the 
University of Kentucky’s Horticulture Research Farm in Fayette County, Kentucky and 
historic temperature and precipitation data as recorded at the Lexington Bluegrass Airport. 
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Figure 2.3: Schematic of organic treatments.  A cover crop (vetch, wheat, or a mixture of the two) was 
planted in October 2013 and was terminated 20 May 2014. A corn crop was planted with or without fertilizer 
on 28 May 2014 and harvested 6 October 2014.  The quantities of applied fertilizer were added in addition to 
the pre-existing N content of the cover crop.  
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Figure 2.4: Schematic of conventional treatments. A cover crop (wheat) was planted in October 2013 and was 
terminated 20 May 2014. A corn crop was planted with or without fertilizer on 28 May 2014 and harvested 6 October 
2014. 
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Figure 2.5: Trace gas pan placed between corn plants and spanning soil surface 
area both within and between rows.   
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Figure 2.6: Field measurements of gaseous emissions taken using the static chamber 
method and a photoacoustic spectroscopy gas analyzer. 
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 : Results Chapter 3

3.1 Organic Field: Cover Crop Comparisons, 0 N Treatments 

3.1.1 Cover Crop Growing Season 
Biomass of the cover crops at termination was significantly greater in the vetch-

wheat bi-culture and wheat than the hairy vetch alone (p<0.0096, p<0.0118, respectively) 

with dry weights of 2791 (hairy vetch), 3590 (wheat), and 4968 kg ha-1 (bi-culture).  N 

content of biomass was 100 kg N ha-1 in the vetch-wheat bi-culture, 78 kg N ha-1 in hairy 

vetch alone, and 27 kg N ha-1 in the wheat (Fig 3.1A, Table 3.1).  During cover crop 

growth (Oct.-May), soil moisture varied from a low of 13% on 28 October 2013 to a high 

of 35% on 18 February 2014, but was comparable across treatments, differing slightly 

(<6%) at only three time points (Fig. 3.2A, Table 3.2).  Similarly, overall soil temperature 

did not differ between treatments, though there were slight differences (<5oC) at four 

time points, primarily in March and April (Fig. 3.3A, Table 3.3).   

Soil resin NO3-N concentrations were highest in the vetch treatments prior to 

cover crop termination in Jan./Feb. (Fig. 3.4A and Table 3.4).  Early in the growing 

season (e.g. Dec.), soil resin NO3-N concentration in the bi-culture treatment was more 

similar to vetch than wheat, but the bi-culture became more similar to wheat as the 

growing season progressed (e.g., Feb/Mar; Fig. 3.4A and Table 3.4).  N loss measured as 

NO3-N leachate differed between cover crop species, with hairy vetch > vetch-wheat > 

wheat (Table 3.5).  Though N2O-N fluxes were slightly higher in the wheat treatment on 

3 March and 17 & 29 April 2014, linear contrasts indicated there were no significant 

differences in either N2O-N or NH3-N loss across treatments when analyzed throughout 

the entire cover crop growing season (Table 3.5).  NH3 and N2O-N fluxes were quite low 

at this time of year (Figs. 3.5A, 3.6A, Tables 3.7, 3.8). 
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3.1.2 Corn Growing Season 
Post-termination of cover crops (May-November), soil temperature did not differ 

between treatments, but there were significant differences in soil moisture.  Soil moisture 

in the vetch-wheat and wheat alone treatments was greater than that in the vetch 

treatment, particularly in June (Fig. 3.2B, C, Table 3.2), though this general trend held 

throughout the post-fertilization period.  Nitrogen dynamics in the decomposing cover 

crop residue also differed across treatments.  After cover crop termination, the differences 

in C:N ratio of the cover crops (wheat > vetch-wheat > hairy vetch alone) largely 

reflected differences in %N as that with the highest %N had the lowest C:N (Fig. 3.1B, C, 

Table 3.1).  Overall, N content and %N of residue in hairy vetch and vetch-wheat 

declined during decomposition, whereas the N content of the wheat treatment stayed 

fairly constant at a low level, and %N of the residue slightly increased (Figs. 3.1B, C), 

indicating N mineralization was occurring in the hairy vetch and vetch-wheat and 

immobilization in the wheat.  These differences in cover crop residue N release were also 

apparent in the NO3-N and NH4-N concentrations extracted from the resins placed under 

the biomass.  NO3-N release was greatest from hairy vetch alone (hairy vetch > vetch-

wheat > wheat) and NH4-N release from hairy vetch and vetch-wheat was greater than 

from the wheat alone (Fig. 3.7A, B, Table 3.1). 

Soil N dynamics also differed between treatments post-termination and reflected 

the differences in N released by the decomposing cover crop residue (hairy vetch, vetch-

wheat > wheat) (Table 3.4).  In August, soil resin bags indicated that there was a 

significantly higher concentration of NO3-N in the hairy vetch and vetch-wheat soils 

compared to wheat alone (Fig. 3.4A).  Though not statistically significant, inorganic soil 

NO3-N extractions tended to be higher in the hairy vetch and vetch-wheat treatments at 
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corn growth stage V6 (1 July), and at R1 growth stage (8 August), hot KCL extracted 

NO3-N concentrations were higher in the vetch and vetch-wheat treatments (Fig. 3.8A,B, 

Table 3.9).   

Post-termination of cover crops, NO3-N leachate values were greater in the hairy 

vetch and vetch-wheat treatments than in wheat alone (Table 3.5, Fig. 3.9D).  When 

added to pre-fertilization leachate values, annual NO3-N leachate was two times greater 

in hairy vetch than vetch-wheat, and four times greater than that measured in wheat 

(Table 3.6).  During the post-fertilization intensive measurement period, repeated 

measures tests found that N2O-N emissions were greater in the hairy vetch and vetch-

wheat treatments than the wheat alone, but there were no detectable treatment differences 

after 12 June 2014 (Fig. 3.5B, C, Table 3.7).  However, when summed across the entire 

post-fertilization period (May 29 – November 1) and across the entire year, total N2O-N 

emissions did not differ between treatments (Table 3.5, 3.6).  Similarly, no significant 

differences between treatments were observed for NH3-N emissions (Figs. 3.6B, C, Table 

3.5, 3.6, & 3.8).  

3.1.3 N-balance and Yield 
Corn yield was significantly greater in hairy vetch (p<0.0173) and vetch-wheat 

(p<0.0067) treatments than in wheat alone (Fig. 3.10A).  A N balance calculation found 

that all 0 N cover crop treatments had a positive N balance, with that of the vetch-wheat 

treatment significantly greater than either the hairy vetch or wheat alone treatments (Fig. 

3.9A).  A lower net N balance in the hairy vetch treatment compared to the vetch-wheat 

treatment may be attributed to: 1) greater corn grain N export in hairy vetch (vetch > 

vetch-wheat > wheat; Fig. 3.9A); 2) greater N leachate loss (NO3-N and NH4-N 

combined) as patterns were similar to those observed in corn grain N (Fig. 3.9D); and 3) 
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as previously mentioned, N2O-N emissions were greater in the vetch treatment during the 

period immediately following cover crop termination (Fig. 3.5B).  A lower net N balance 

in the wheat treatment compared to the bi-culture is likely due to an initially low N input, 

as wheat had a much lower cover crop N content than either of the other N-fixing 

treatments (Fig. 3.1A, B).  The N-balance calculation suggests that by the end of the 

corn-growing season, more of the cover crop N remained in the vetch-wheat system.  

This N may be tied up in the remaining cover crop residue, as the %N content of the 

vetch-wheat residue slightly increased during August and September (Fig. 3.1B).  

3.2 Organic Field: Fertilizer Comparisons, Hairy Vetch Cover Crop 

! 3.2.1 Cover Crop Growing Season 
In May, at termination, biomass of the hairy vetch cover crop was significantly 

greater in the N-credit treatment than the unfertilized or organic fertilizer treatments 

(p=0.0441, p=0.0119, respectively) with 2791 (0 N, unfertilized treatment), 2306 (168 kg 

N ha-1 organic fertilizer treatment), and 4745 kg ha-1 (N-credit treatment after additional 

vetch was added).  Similarly, N content of the hairy vetch biomass in the N-credit 

treatment was greater than the other treatments with 176 kg N ha-1, 78 kg N ha-1 in the 

unfertilized, and 74 kg N ha-1 in the organic fertilizer treatment (Fig. 3.1D, Table 3.1).  

During cover crop growth (Oct-May), soil moisture and temperature were similar across 

all treatments (Figs. 3.2D & 3.3D, Tables 3.2 & 3.3), however, temperatures fell lower 

than the historic average (Fig. 2.2) and hairy vetch biomass production was lower than 

expected across all treatments.  Consequently, to better represent the hairy vetch biomass 

that may accumulate in an average year, extra hairy vetch biomass from an adjacent field 

was cut and added to the N-credit treatment.  This explains the significantly greater cover 
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crop biomass and biomass N content in the N-credit treatment immediately following 

termination (Fig. 3.1D).     

 As all treatments were planted with hairy vetch and fertilizers had not been 

applied yet, measured soil resin N concentrations (NO3-N and NH4-N), N leachate (NO3-

N and NH4-N), and gaseous N (N2O-N and NH3-N) loss parameters did not differ during 

the cover crop growing season (Figs. 3.4C, D, 3.5D, & 3.6D, Tables 3.4, 3.5, 3.7, & 3.8). 

Soil resin NO3-N tended to decrease during the latter half of the cover crop growing 

season (Feb/Mar-May), but soil resin NO3-N and NH4-N concentrations were low during 

this time of the year (Figs. 3.4C, D).  Though there were slight differences in NH3-N 

emissions on three dates, treatments were not significantly different across the entire 

measurement period (Fig. 3.6D, Tables 3.5 & 3.8) as gaseous N losses were low at this 

time.          

3.2.2 Corn Growing Season 
Post-termination of cover crops and post-fertilization of the N-credit and fertilized 

hairy vetch treatments (May-November), there were no soil temperature differences 

between treatments, but there were significant differences in soil moisture (Figs. 3.2E, F, 

& 3.3E, F, Tables 3.2 & 3.3).  During the post-fertilization intensive measurement period, 

soil moisture was consistently greater (by 2-6%) in the N-credit treatment than in either 

the unfertilized or fertilized treatments (p<0.0075 and p<0.0092, respectively), though 

means comparisons tests failed to identify specific days where this effect was significant 

within the time period (Fig. 3.2E, Table 3.2).  Additionally, soil moisture differed for 

several measurement dates during the longer-term post-fertilization measurement period 

(Fig. 3.2F, Table 3.2).   
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Nitrogen dynamics in the decomposing cover crop residue were similar across 

treatments.  Although initially N content was greatest in the N-credit treatment, reflecting 

that additional vetch material had been added to those plots, by June, there was no 

difference between treatments (Fig. 3.1D, Table 3.1).  N content and %N of residue 

declined in all treatments during decomposition, indicating N mineralization was 

occurring (Figs. 3.1D, E, Table 3.1).  However, the %N of the biomass residue in the 

organic N fertilized treatment tended to decline less rapidly than the other treatments.  

Though %N was greatest in the N-credit treatment in May, by June the N-credit and 

organic fertilizer treatments had equivalent %N, and in July and August %N was greatest 

in the organic treatment (Fig. 3.1E).  Biomass resin NO3-N concentrations found no 

significant differences between treatments for any month; however, NH4-N 

concentrations reflected trends in biomass %N, with greater N captured in the organic N 

fertilized treatment (fertilized > N-credit > unfertilized), particularly during the months of 

July and August when biomass %N was also significantly greater than the other 

treatments (Fig. 3.7D, Table 3.1). 

Post-fertilization, soil N dynamics also differed between treatments.  Overall, soil 

resin NO3-N and NH4-N tended to be greatest in the organic N fertilized treatment, 

followed by the N-credit treatment, and lowest in the unfertilized treatment (Fig. 3.4C, D, 

Table 3.4).  In June, soil resin NH4-N concentrations were more than 2x greater in the 

organic fertilized treatment vs. unfertilized  (Fig. 3.4D, Table 3.4), but in July, soil resin 

NO3-N and NH4-N concentrations were very low in all treatments, likely due to rapid 

corn growth, N demand, and N uptake.  In August, both soil resin NO3-N and NH4-N 

concentrations were significantly greater in the organic fertilized treatments than the 



unfertilized (168 organic, N-credit > unfertilized for NO3-N; 168 organic >N-credit, 

unfertilized for NH4-N) (Figs. 3.4C, D, Table 3.4).  Across all sampling dates, soil 

inorganic NO3-N extractions were greater in the organic fertilized treatment and the N- 

credit treatment than the unfertilized (p<0.0223 and p<0.0438, respectively), with the 

greatest differences occurring at stage R1 and harvest (Fig. 3.8C, Table 3.9). 

Despite observed treatment differences in soil resin and soil inorganic extracted N 

post-fertilization, there were no differences in NO3-N or NH4-N leachate values between 

treatments (Table 3.5, Fig. 3.9E).  However, there were differences in gaseous N 

emissions.  Repeated measures ANOVA found that across the post-fertilization intensive 

measurement period (May 29 – June 12), N2O-N emissions were greater in the N-credit 

treatment than the unfertilized treatment (p<0.0069) (Fig. 3.5E, Table 3.7).  Although 

means comparisons failed to identify specific dates where this significant difference 

occurred, N-credit N2O-N emissions were higher than the other treatments within the first 

week of fertilizer application, with fluxes from both fertilizer treatments becoming more 

similar towards the end of the intensive measurement period (Fig. 3.5E). During the 

remainder of the corn-growing season (June 19 – November 1), there were significantly 

greater emissions from the organic fertilized treatment compared to the N-credit or the 

unfertilized treatment (p<0.0028 and p<0.0046, respectively) (Fig. 3.5F, Tables 3.5 & 

3.7).  However, when annual N2O-N emissions were calculated, only marginally 

significant treatment differences were observed (p=0.0558), with organic fertilized 

having higher fluxes than unfertilized (Table 3.6). 

Treatment effects on gaseous NH3-N emissions were dissimilar to those observed 

for N2O-N. During the post-fertilization intensive period (May 29-June 12), repeated 
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measures ANOVA found that the organic fertilized treatment had significantly greater 

emissions than the N-credit and unfertilized treatments, with the greatest difference 

occurring on 6 June 2014, but no differences occurred during the remainder of the post-

fertilization period (June 19 – November 1) (Fig. 3.6E, F, Table 3.8).  In contrast, 

gaseous NH3-N emissions calculated across time for the entire post-fertilization period 

(May 29-November 1) differed between all treatments (organic N > N-credit > 

unfertilized); however, these post-fertilization differences were not strong enough to 

significantly influence annual calculations, where no difference between treatments was 

identified (Table 3.6).  

! 3.2.3 N-balance and Yield 
Corn yield and corn grain N export were significantly greater in the organic 

fertilized (p<0.0042) and N-credit treatments (p<0.0019) than in the unfertilized 

treatment (Fig. 3.9B & 3.10B).  All treatments had a positive N balance for the corn 

growing season (Fig. 3.9B), and, though no statistically significant differences in N 

balance were detected, the N-credit treatment had the largest positive net N gain (on 

average, 50-91 kg N ha-1 more than the other treatments), suggesting that a larger 

proportion of applied N remained in this system, possibly in either plant biomass (corn 

plant or weeds) or soil organic matter, as cover crop N content was equivalent across 

treatments by the end of the corn growing season (Fig. 3.1D).  Lower N retention in the 

organic fertilized treatment may be attributed to greater N2O-N and NH3-N emissions 

following fertilization (Table 3.5) and highest grain N loss, rather than enhanced losses 

via N leachate (Fig. 3.9E).  
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3.3 Conventional Field: Fertilizer Comparisons, Winter Wheat Cover Crop 

! 3.3.1 Cover Crop Growing Season 
At termination, wheat cover crop biomass was 6572 (unfertilized treatment), 6070 

(organic N treatment), and 6590 kg ha-1 (urea N treatment).  There were no significant 

differences across treatments in biomass or N content as all were planted with the same 

cover crop species (Fig. 3.1G, Table 3.1).  During cover crop growth (Oct-May), there 

were no differences in soil temperature, but, on average, soil moisture was 2% greater in 

the urea N vs. the organic N treatment (p<0.0080) (Figs. 3.2G & 3.3G, Tables 3.2 & 3.3), 

though a means comparisons test failed to identify specific dates where the treatment 

effect was significant.   

Soil NO3-N and NH4-N concentrations were similar across treatments during this 

time period, perhaps reflecting that all treatments were planted with a winter wheat cover 

crop and fertilization had not yet occurred (Figs. 3.4E, F, Table 3.4).  However, during 

Feb/Mar, soil NH4-N was slightly lower in the organic N fertilizer treatment (urea N, 

unfertilized > organic N) (Fig. 3.4F, Table 3.4).  There was no difference in N loss via 

leachate or N2O-N emissions, but differences in gaseous NH3-N loss did occur (Table 

3.5).  NH3-N emissions tended to be slightly elevated in the urea N and unfertilized 

treatments, but were only significant on a few dates during the measurement period (Figs. 

3.6G, Table 3.8), and may reflect slightly higher soil NH4-N in these treatments at those 

times (Fig. 3.4F, Table 3.4).  However, when pre-fertilization total NH3-N emissions 

were calculated, all three treatments differed from each other (urea N > unfertilized > 

organic N) (Table 3.5).  
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! 3.3.2 Corn Growing Season 
Post-termination of the winter wheat cover crop and post-fertilization of the 

organic N and urea N treatments (May-November), soil temperature and soil moisture 

differed across treatments (Figs. 3.2H, I, & 3.3H, I, Tables 3.2 & 3.3).  During the post-

fertilization intensive measurement period (May 29 - June 12), average soil temperature 

was slightly higher (<1oC) in the organic N treatment than the urea treatment (p<0.0057), 

but there were no treatment differences in soil moisture at that time (Figs. 3.2H & 3.3H, 

Tables 3.2 & 3.3).  During the longer-term post-fertilization measurement period (June 

19-November 1), average soil moisture was greater in the unfertilized treatment than in 

either the organic N or urea N treatments (p<0.0008 and p<0.0023, respectively), and soil 

temperature was similar.  

Nitrogen dynamics in the decomposing cover crop residue did not significantly 

differ between treatments.  N content of the residue fluctuated over the course of the 

season, likely due to microbial mediated movement of N in and out of the residue, and 

the %N of the residue increased in all treatments, indicating N immobilization was 

occurring (Figs. 3.1G, H, Table 3.1).  Though not significantly different, the temporal 

trends in organic fertilizer residue %N and N content differed somewhat from those 

observed in the other treatments: the %N and the N content increased in June in the 

organic fertilizer treatment whereas the other treatments experienced a decrease (Figs. 

3.1G, H).  

In support of differential patterns of residue decomposition and N release, 

biomass resin extractions differed between treatments.  Overall, significantly more NH4-

N was released from the wheat biomass in the organic N treatment than the unfertilized 

treatment (Fig. 3.7F).  Though there was no overall difference in NO3-N and NH4-N 
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extracted from the biomass resins in the urea N and organic N treatments, the timing of 

greatest seasonal concentrations were dissimilar (Figs. 3.7E, F, Table 3.1).  In June, 

greater concentrations of NO3-N and NH4-N were extracted from the resins in the urea N 

treatment, but in July and August a greater concentration of NH4-N was extracted from 

the resins in the organic N treatment (Figs. 3.7E, F). 

Soil N dynamics also differed between treatments post-fertilization.  In June, soil 

resin NO3-N concentrations were significantly different between all three treatments 

(urea N > organic N > unfertilized), and in July both fertilized treatments had greater 

NO3-N concentrations than the unfertilized treatment (Fig. 3.4E, Table 3.4).  On average, 

NH4-N tended to be greater in both fertilized treatments than in the unfertilized treatment, 

but means comparisons failed to identify specific months during which soil NH4-N 

differed, finding only that urea N was marginally greater than the unfertilized treatment 

for the month of June (p=0.0552).  Soil inorganic and hot KCL NO3-N extractions 

showed that across time soil NO3-N was highest in the urea N treatment (Fig. 3.8E, F, 

Table 3.9), though the effect was not significant on all dates.  

Post-fertilization, there were no differences between treatments in NH4-N 

leachate, but there were marginally significant differences in NO3-N leachate (p=0.0539), 

with the urea N treatment having more than 5x the concentrations measured in either the 

organic N or unfertilized treatments (Fig. 3.9F, Table 3.5).  There were also differences 

in gaseous N loss.  A repeated measures ANOVA found that across time during the post-

fertilization intensive measurement period (May 29-June 12), N2O-N emissions were 

greater in both the fertilized treatments vs. the unfertilized (Fig. 3.5H, Table 3.7).  On 6 

June 2014, N2O-N emissions were more than 8x greater in the urea N treatment than the 
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unfertilized treatment, and on 12 June 2014 they were more than 9x greater in the organic 

N treatment than the unfertilized treatment.  On several dates during the remainder of the 

corn growing season (June 19 – November 1), N2O-N emissions from the organic N 

treatment remained significantly higher than the other treatments (Fig. 3.5I, Table 3.7).  

However, these date-specific trends were not strong enough to significantly influence the 

entire post-fertilization N2O-N flux estimates (May 29-November 1), where no 

differences in N2O-N emissions between treatments were found (Table 3.5).    

Similarly, a repeated measures ANOVA found that during the post-fertilization 

intensive measurement period, NH3-N emissions from both fertilized treatments were 

greater than those from the unfertilized treatment (Fig. 3.6H, Table 3.8).  Temporally 

similar to N2O-N, the urea N treatment had greater emissions during the first part of the 

measurement period while the organic N treatment had greater emissions during the latter 

half of the measurement period.  Despite substantial fertilizer effects early on, treatment 

differences did not persist across the longer-term post-fertilization period (Fig. 3.6I, 

Table 3.8).  When summed across the entire post-fertilization period (May 29-November 

1), NH3-N emissions were significantly greater only in the organic N treatment compared 

to the unfertilized treatment (Table 3.5).  In contrast, when an annual NH3-N flux was 

calculated, only the urea N treatment had significantly greater NH3-N emissions than the 

unfertilized treatment, which was likely due to higher levels of NH3-N emissions from 

the urea N plots prior to fertilization (Table 3.6).     

!  3.3.3 N-balance and Yield 
Corn yield was significantly greater in the urea N treatment than the unfertilized 

treatment (p<0.0085), with the organic N treatment falling in between (Fig. 3.10C).  

Though treatment differences were not significant, the organic N fertilizer treatment had 
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the greatest positive N balance followed by the urea N treatment, while the unfertilized 

treatment actually had a negative N balance indicating net N export (Fig. 3.9C).  Though 

total N input was the same in both fertilizer treatments, pathways of N removal/loss 

differed.  The urea N treatments lost more N via NO3-N leachate (marginally significant, 

p=0.0539) and corn grain N export (p=0.0413), while the organic N treatment loss more 

N via N2O-N and NH3-N emissions (Fig. 3.9C, F, Table 3.5). 
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Table 3.1:!Repeated measures!ANOVA results for cover crop biomass residue N content (kg N ha-1), % N, and C:N ratio 
during the months of May-September 2014 and for cover crop biomass resin NO3-N and NH4-N concentrations during the 
months of June-September 2014. Bolding indicates significance.!

Effect Biomass N 
Content 

Biomass N (%) C:N Ratio NO3-N Resin 
Concentration 

NH4-N Resin 
Concentration 

Biomass 
DFn,d 

F P F P F P Resin 
DFn,d

F P F P 

Organic 
Unfertilized 
Treatments 
Cover Crop 2,4 34.06   0.0031 303.46 <0.0001 357.71 <0.0001 2,4 33.29   0.0032 57.46   0.0011 
Month 4,24 27.77 <0.0001 3.65   0.0186 6.37   0.0012 3,17 19.65 <0.0001 311.41 <0.0001 
Month*Cover 
Crop 

8,24 1.97   0.0949 4.26   0.0016 3.52   0.0079 6,17 9.15   0.0001 10.83 <0.0001 

Organic Vetch 
Treatments 
Fertilizer 2,4 9.18   0.0320 8.29   0.0378 4.76   0.0874 2,4 0.77   0.5230 18.76   0.0093 
Month 4,24 24.57 <0.0001 30.13 <0.0001 7.76   0.0004 3,17 14.96 <0.0001 190.48 <0.0001 
Month*Fertilizer 8,24 2.47   0.0412 2.56   0.0355 1.67   0.1567 6,17 1.65   0.1897 7.11   0.0005 

Conventional 
Treatments 
Fertilizer 2,4 3.47   0.1137 2.00   0.2503 1.00   0.4437 2,4 0.58   0.6022 8.70   0.0349 
Month 4,24 4.79   0.0055 12.87 <0.0001 17.53 <0.0001 3,17 78.43 <0.0001 344.75 <0.0001 
Month*Fertilizer 8,24 0.59   0.7731 1.82   0.1219 1.47   0.2201 6,17 3.26   0.0240 13.25 <0.0001 
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Table 3.2:!Repeated measures ANOVA results for soil moisture for all treatments during three measurement periods (pre-
fertilization only, intensive sampling period immediately following fertilization, and longer-term post-fertilization). Bolding 
indicates significance. 

Effect Pre-Fertilization Post-Fertilization Intensive Post-Fertilization 
DFn,d F P DFn,d F P DFn,d F P 

Organic Unfertilized 
Treatments 
Cover Crop 2,6 2.05   0.2044 2,6 15.84   0.0040 2,6 26.19   0.0011 
Date 12,72 113.49 <0.0001 9,54 41.24 <0.0001 12,66 290.29 <0.0001 
Date*Cover Crop 24,72 1.86   0.0235 18,54 1.97   0.0290 24,66 4.02 <0.0001 

Organic Vetch 
Treatments 
Fertilizer 2,6 4.26  0.2097 2,6 9.99   0.0123 2,6 4.92   0.0542 
Date 12,72 132.51 <0.0001 9,54 46.39 <0.0001 12,66 490.26 <0.0001 
Date*Fertilizer 24,72 1.88   0.0212 18,54 1.30   0.2233 24,66 3.01   0.0002 

Conventional 
Treatments 
Fertilizer 2,6 7.76   0.0217 2,6 2.00   0.2048 2,6 23.56   0.0014 
Date 12,72 78.32 <0.0001 9,54 11.52   0.0001 12,66 60.60 <0.0001 
Date*Fertilizer 24,72 1.52   0.0900 18,54 1.40   0.2676 24,66 1.74 <0.0001 
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Table 3.3: Repeated measures!ANOVA results for soil temperature for all treatments during three measurement periods (pre-
fertilization only, intensive sampling period immediately following fertilization, and longer-term post-fertilization). Bolding 
indicates significance. 

Effect Pre-Fertilization Post-Fertilization 
Intensive 

Post-Fertilization 

DFn,d F P DFn,d F P DFn,d F P 
Organic Unfertilized 
Treatments 
Cover Crop 2,6 1.77   0.2489 2,6 0.58   0.5876 2,6 3.25   0.1109 
Date 12,72 715.02 <0.0001 9,54 44.51 <0.0001 12,66 153.43 <0.0001 
Date*Cover Crop 24,72 4.11 <0.0001 18,54 0.85   0.6366 24,66 0.80   0.7236 

Organic Vetch 
Treatments 
Fertilizer 2,6 0.26   0.7802 2,6 2.08   0.2061 2,6 3.03   0.1230 
Date 12,72 3558.16 <0.0001 9,54 38.53 <0.0001 12,66 135.69 <0.0001 
Date*Fertilizer 24,72 1.04   0.4313 18,54 0.77   0.7276 24,66 1.43   0.1296 

Conventional 
Treatments 
Fertilizer 2,6 2.19   0.1933 2,6 8.92   0.0159 2,6 5.08   0.0511 
Date 12,72 5118.55 <0.0001 9,54 37.74 <0.0001 12,68 385.43 <0.0001 
Date*Fertilizer 24,72 1.53   0.0868 18,54 0.79   0.7036 24,68 1.43   0.1272 

!

!

!
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Table 3.4: Repeated measures!ANOVA results for NO3-N and NH4-N concentrations extracted from soil resin bags for two 
periods (pre-and post-fertilization) from November 2013 to October 2014. Bolding indicates significance.  

!

!

!

Pre-Fertilization Post-Fertilization 
Effect NO3-N 

(Nov-May) 
NH4-N 

(Nov-May) 
NO3-N 

( May-Oct) 
NH4-N 

(May-Oct) 
Organic Unfertilized Treatments DFn,d F P F P DFn,d F P F P 
Cover Crop 2,6 13.64   0.0059 4.13  0.0744 2,6 8.58   0.0174 2.66  0.1487 
Time 5,30 28.41 <0.0001 7.28  0.0001 4,24 15.36   0.0004 4.6  0.0067 
Time*Cover Crop 10,30 1.00   0.4641 0.67  0.7404 8,24 0.49   0.7456 1.48  0.2147 

Organic Vetch Treatments 
Fertilizer 2,6 0.21   0.8148 0.31  0.7440 2,6 15.84   0.0040 7.92   0.0207 
Time 5,30 21.25 <0.0001 7.40  0.0001 4,24 20.65 <0.0001 21.32 <0.0001 
Time*Fertilizer 10,30 1.57   0.1643 0.98  0.4826 8,24 0.63   0.7460 1.75   0.1383 

Conventional Treatments 
Fertilizer 2,6 1.64   0.2710 5.35  0.0464 2,6 4.37   0.0675 6.04  0.0366 
Time 5,30 48.29 <0.0001 15.16 <0.0001 4,24 58.71 <0.0001 5.44 0.0029 
Time*Fertilizer 10,30 1.11   0.3848 1.74   0.1168 8,24 3.82   0.0051 0.99  0.4711 
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Table 3.5: Average (±SE) N2O-N, NH3-N, NO3-N, and NH4-N lost as gas (as estimated by total flux calculation) or caught in 
lysimeters from treatments for the entire pre-fertilization and post-fertilization periods, and the corresponding p-values for 
contrasts comparing the organic, unfertilized treatments, the organic vetch treatments, and the conventional treatments. For 
significant contrasts, LS-means comparisons across treatments are provided (highlighted in red).  

Contrast 
N2O-N 

(kg N ha-1) 
NH3-N 

(kg N ha-1) 
NO3-N 
(ppm) 

NH4-N 
(ppm) 

N2O-N 
(kg N ha-1) 

NH3-N 
(kg N ha1) 

NO3-N 
(ppm) 

NH4-N 
(ppm) 

Organic Unfertilized 
Treatments 0.2668 0.5075 0.0015 

V> VW>W 0.1139 0.4637 0.2585 0.0010 
V, VW > W 0.0653 

Organic Vetch 
Treatments 0.2912 0.1475 0.1484 0.8479 

0.0096 
168 > 0 

168 > N-credit 

0.0264 
168 > 0, N-credit 

N-credit > 0 
0.5481 0.6923 

Conventional 
Treatments 0.0875 0.0051 

Urea > 0 > Organic 0.8145 0.2223 0.0648 0.0269 
Organic > 0 0.0539 0.6618 

Pre-Fertilization: October 28 - May 29 Post-Fertilization: May 29 – November 1 

Treatments N2O-N 
(kg N ha-1) 

NH3-N 
(kg N ha-1) 

NO3-N 
(ppm) 

NH4-N 
(ppm) 

N2O-N 
(kg N ha-1) 

NH3-N 
(kg N ha1)

NO3-N 
(ppm) 

NH4-N 
(ppm) 

Organic 
Wheat 

(0) 1.16 (±0.24) -4.40 (±3.78) 221.7 (±79.80) 2.85 (±0.39) 1.79 (±0.07) 7.27 (±1.37) 18.97 (±3.41) 8.99 (±0.75) 

Vetch-Wheat (0) 0.65 (±0.27) 28.09 (±35.58) 248.86 (±52.95) 2.09 (±0.09) 2.05 (±0.22) 18.91 (±5.29) 106.17 (±19.73) 13.08 (±2.39) 

Vetch 
(0) 0.79 (±0.08) -4.01 (±7.59) 442.82 (±102.19) 2.54 (±0.22) 2.13 (±0.23) 8.71 (±6.91) 217.36 (±70.59) 22.12 (±5.27) 

Vetch 
(N-credit) 1.99 (±0.30) 22.75 (±9.63) 467.69 (±122.01) 2.53 (±0.10) 3.10 (±0.59) 12.81 (±1.47) 249.41 (±155.81) 50.20 (±30.61) 

Vetch 
(168 organic N) 1.31 (±0.74) 7.62 (±0.81) 304.01 (±60.95) 2.65 (±0.14) 4.47 (±0.48) 39.09 (±3.35) 307.42 (±6.15) 28.73 (±9.23) 

Conventional 
Wheat 

(0) 1.97 (±0.23) 13.69 (±2.63) 263.45 (±75.87) 4.04 (±1.43) 1.83 (±0.13) -5.80 (±6.88) 62.59 (±25.08) 17.39 (±3.16) 

Wheat 
(168 urea N) 3.04 (±0.77) 36.95 (±9.96) 226.76 (±21.9) 2.11 (±0.13) 3.54 (±0.23) 24.29 (±8.97) 601.59 (±238.11) 43.85 (±21.63) 

Wheat 
(168 organic N) 0.86 (±0.28) -8.10 (±6.39) 153.94 (±32.63) 3.42 (±0.40) 5.05 (±1.03) 43.07 (±4.41) 107.66 (±41.32) 24.55 (±3.17) 

“V” = Hairy Vetch, “VW” = Vetch-Wheat mix, “W” = Wheat, “168” = vetch applied with 168 kg ha-1 organic N, “N-credit” = vetch N-credit treatment, “0” = unfertilized treatment, 
“urea” = conventional wheat cover crop treatment with 168 kg ha-1 urea N + urease inhibitor, and “Organic” = conventional wheat cover crop treatment with 168 kg ha-1 organic N. 
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Table 3.6: Average (±SE) N2O-N, NH3-N, NO3-N, and NH4-N lost as gas (as estimated by total flux calculation) or caught in 
lysimeters from treatments annually, and the corresponding p-values for contrasts comparing the organic, unfertilized 
treatments, the organic vetch treatments, and the conventional treatments.  For significant contrasts, LS-means comparisons 
across treatments are provided (highlighted in red). 

!

!

!
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!
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Annual Total 

Treatments N2O-N 
(kg N ha-1) 

NH3-N 
(kg N ha-1) 

NO3-N 
(ppm) 

NH4-N 
(ppm) 

Organic 

Wheat 
(0) 2.95 (±0.19) 2.86 (±3.31) 162.91 (±3.15) 11.85 (±1.10) 

Vetch-Wheat (0) 2.70 (±0.44) 46.88 (±40.68) 332.93 (±21.89) 15.17 (±2.49) 

Vetch 
(0) 2.92 (±0.27) 4.69 (±14.05) 660.18 (±121.56) 24.66 (±5.48) 

Vetch 
(N-credit) 5.08 (±0.66) 35.47 (±10.01) 717.09 (±133.46) 52.73 (±30.71) 

Vetch 
(168 organic N) 5.77 (±1.22) 46.58 (±3.79) 611.43 (±14.42) 31.38 (±9.34) 

Conventional 
Wheat 

(0) 3.78 (±0.37) 7.87 (±8.82) 311.45 (±44.68) 21.43 (±4.48) 

Wheat 
(168 urea N) 6.56 (±0.84) 61.08 (±1.00) 823.31 (±295.03) 45.96 (±21.51) 

Wheat 
(168 organic N) 5.89 (±1.22) 34.87 (±8.59) 371.11 (±80.40) 27.97 (±2.99) 

Contrast 
N2O-N 

(kg N ha-1) 
NH3-N 

(kg N ha-1) 
NO3-N 
(ppm) 

NH4-N 
(ppm) 

Organic Unfertilized 
Treatments 0.8365 0.4115 0.0007 

V > VW >W 0.3300 

Organic Vetch 
Treatments 0.0558 0.1101 0.7823 0.9917 

Conventional 
Treatments 0.1792 0.0222 

Urea > 0 0.2939 0.6941 

“V” = Hairy Vetch, “VW” = Vetch-Wheat mix, “W” = Wheat, “168” = vetch applied with 168 kg ha-1 organic N, “N-credit” = vetch N-credit treatment, “0” = 
unfertilized treatment, “urea” = conventional wheat cover crop treatment with 168 kg ha-1 urea N + urease inhibitor, and “Organic” = conventional wheat cover 
crop treatment with 168 kg ha-1 organic N 

63 
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Table 3.7: Repeated measures ANOVA results for N2O-N emissions for all treatments during three measurement periods (pre-
fertilization only, intensive sampling period immediately following fertilization, and longer-term post-fertilization). Bolding 
indicates significance. 

Effect Pre-Fertilization Post-Fertilization 
Intensive 

Post-Fertilization 

DFn,d F P DFn,d F P DFn,d F P 
Organic 
Unfertilized 
Treatments 
Cover Crop 2,6 2.12   0.2012 2,6 8.12   0.0197 2,6 0.08   0.9278 
Date 12,72 10.61 <0.0001 9,54 6.49 <0.0001 12,66 11.04 <0.0001 
Date*Cover Crop 24,72 2.28   0.0039 18,54 3.42   0.0002 24,66 0.60   0.9165 

Organic Vetch 
Treatments 
Fertilizer 2,6 2.44   0.1675 2,6 8.09  0.0198 2,6 17.46   0.0032 

Date 12,72 9.59 <0.0001 9,54 5.73  <0.0001 12,66 16.93 <0.0001 
Date*Fertilizer 24,72 1.16   0.3045 18,54 0.94  0.5417 24,66 4.79  <0.0001 

Conventional 
Treatments 
Fertilizer 2,6 1.66   0.2667 2,6 20.43   0.0021 2,6 7.50   0.0233 
Date 12,72 13.27 <0.0001 9,54 7.56 <0.0001 12,66 35.87 <0.0001 
Date*Fertilizer 24,72 0.67   0.8678 18,54 2.45   0.0059 24,66 5.38 <0.0001 

!
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Table 3.8: Repeated measures ANOVA results for NH3-N emissions for all treatments during three measurement periods (pre-
fertilization only, intensive sampling period immediately following fertilization, and longer-term post-fertilization). Bolding 
indicates significance.   

Effect Pre-Fertilization Post-Fertilization 
Intensive 

Post-Fertilization 

DFn,d F P DFn,d F P DFn,d F P 
Organic Unfertilized 
Treatments 
Cover Crop 2,6 0.67   0.5462 2,6 1.86 0.2356 2,6 0.30   0.7500 
Date 12,72 3.90 <0.0001 9,54 1.43 0.1191 12,66 1.99   0.0390 
Date*Cover Crop 24,72 1.46   0.1133 18,54 1.11 0.3666 24,66 1.48   0.1068 

Organic Vetch Treatments 
Fertilizer 2,6 2.50   0.1625 2,6 10.50 0.0110 2,6 2.85   0.1347 
Date 12,72 5.80 <0.0001 9,54 1.46 0.1852 12,66 4.24 <0.0001 
Date*Fertilizer 24,72 1.90   0.0192 18,54 2.21 0.0130 24,66 1.26   0.2250 

Conventional Treatments 
Fertilizer 2,6 4.38   0.0673 2,6 14.92 0.0047 2,6 0.08   0.9239 
Date 12,72 10.65 <0.0001 9,54 1.65 0.1254 12,68 11.06 <0.0001 
Date*Fertilizer 24,72 3.58 <0.0001 18,54 3.54 0.0002 24,68 1.22   0.2553 
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Table 3.9: Repeated measures!ANOVA results for soil inorganic and hot KCL NO3-N (µg g-1 soil). Bolding indicates 
significance. 

!

!

Effect Inorganic NO3-N Hot KCL NO3-N 
DFn,d F P DFn,d F P 

Organic 
Unfertilized 
Treatments 
Cover Crop 2,4 0.32   0.7435 2,4 3.59   0.1282 
Date 4,24 3.36   0.0255 5,30 16.58 <0.0001 
Date*Cover Crop 8,24 0.34   0.9421 10,30 2.25   0.0423 

Organic Vetch 
Treatments 
Fertilizer 2,4 7.36   0.0457 2,4 5.92   0.0638 
Date 4,24 9.18 <0.0001 5,30 16.75 <0.0001 
Date*Fertilizer 8,24 0.95   0.4937 10,30 1.31   0.2884 

Conventional 
Treatments 
Fertilizer 2,4 11.98   0.0205 2,4 18.00   0.0100 
Date 4,24 10.67 <0.0001 5,30 10.85 <0.0001 
Date*Fertilizer 8,24 2.27   0.0577 10,30 1.41   0.2254 
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Figure 3.1:!Average (±SE) aboveground cover crop biomass residue N content, percent N, and C:N ratio harvested from 
the soil surface from May to September 2014. Asterisks indicate points in time where significant effects between 
treatments were observed and double asterisks indicated points in time where all treatments significantly differed from   
one another. 0 N = no applied fertilizer, N-credit= 56 kg ha-1 organic fertilizer + additional hairy vetch, Organic N = 168 
kg ha-1 organic fertilizer, Urea N = 168 kg ha-1 urea + urease inhibitor.!
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Figure 3.2: Average soil moisture (±SE) at 5 cm depth for organic 0 N treatments (A-C), organic hairy vetch treatments (D-F), and 
conventional treatments (G-I) across three different time periods from October 2013 to November 2014. Asterisks indicate points in 
time where significant effects between treatments were observed during the measurement period. 0 N = no applied fertilizer, N-
credit= 56 kg ha-1 organic fertilizer + additional hairy vetch, Organic N = 168 kg ha-1 organic fertilizer, Urea N = 168 kg ha-1 urea + 
urease inhibitor.
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Figure 3.3: Average soil temperature (±SE) at 5 cm depth for organic 0 N treatments (A-C), organic hairy vetch treatments 
(D-F), and conventional treatments (G-I) across three different time periods from October 2013 to November 2014. 
Asterisks indicate points in time where significant effects between treatments were observed during the measurement 
period.  0 N = no applied fertilizer, N-credit= 56 kg ha-1 organic fertilizer + additional hairy vetch, Organic N = 168 kg ha-1 
organic fertilizer, Urea N = 168 kg ha-1 urea + urease inhibitor. 
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 Figure 3.4: Average (±SE) NO3-N and NH4-N concentrations extracted from soil resin bags (15 cm depth) from November 2013 
until October 2014 in the organic 0 N treatments (A & B), the organic hairy vetch treatments (C & D) and the conventional 
treatments (E & F).  Asterisks indicate points in time where significant effects between treatments were observed and the panels 
are split to indicate pre and post-fertilization.  Note that scales differ across graphs.  The dotted grey line illustrates that cover crops 
were terminated 20 May 2014 and the solid gray line illustrates that fertilizers were applied on 28 May 2014. 0 N = no applied 
fertilizer, Organic N = 168 kg ha-1 organic fertilizer, N-credit= 56 kg ha-1 organic fertilizer + additional hairy vetch, Urea N = 168 
kg ha-1 urea + urease inhibitor. 
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Figure 3.5: Average (±SE) N2O flux for organic 0 N treatments (A-C), organic hairy vetch treatments (D-F), and conventional 
treatments (G-I) across three different time periods from October 2013 to November 2014. Asterisks indicate points in time where 
significant effects between treatments were observed during the measurement period.  0 N = no applied fertilizer, N-credit= 56 kg ha-1 
organic fertilizer + additional hairy vetch Organic N = 168 kg ha-1 organic fertilizer, Urea N = 168 kg ha-1 urea + urease inhibitor. 
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Figure 3.6: Average (±SE) NH3 flux for organic 0 N treatments (A-C), organic hairy vetch treatments (D-F), and conventional 
treatments (G-I) across three different time periods from October 2013 to November 2014. Asterisks indicate points in time where 
significant effects between treatments were observed during the measurement period.  0 N = no applied fertilizer, N-credit= 56 kg 
ha-1 organic fertilizer + additional hairy vetch Organic N = 168 kg ha-1 organic fertilizer, Urea N = 168 kg ha-1 urea + urease inhibitor. 
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Figure 3.7: Average (±SE) NO3-N and NH4-N concentrations extracted from biomass residue resin bags during June-September 
2014 for the unfertilized organic treatments (A & B), the organic hairy vetch treatments (C & D), and the conventional treatments (E 
& F). Upper case letters signify treatment differences across all months, lower case letters signify treatment differences within each 
month, and no letters indicate that significant differences were not found. In panel F, the urea N treatment appears to have greater 
NH4-N release than either of the other two treatments across the entire period; however, the comparison was not significant as the 
error was very large.  0 N = no applied fertilizer, N-credit= 56 kg ha-1 organic fertilizer + additional hairy vetch Organic N = 168 kg 
ha-1 organic fertilizer, Urea N = 168 kg ha-1 urea + urease inhibitor. 
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Figure 3.8: Average (±SE) inorganic and hot KCL extracted soil NO3-N from the organic 0 N treatments (A & B), the organic 
hairy vetch treatments (C & D), and the conventional treatments (E &F). Asterisks indicate points in time where significant effects 
between treatments were observed.  Note differences in scale across graphs.  0 N = no applied fertilizer, N-credit= 56 kg ha-1 
organic fertilizer + additional hairy vetch, Organic N = 168 kg ha-1 organic fertilizer, Urea N = 168 kg ha-1 urea + urease inhibitor. 
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Figure 3.9: Average N input (cover crop N + fertilizer N), gaseous N loss as N2O and NH3, corn grain N export, N Balance (N input-
corn grain N export-gaseous N losses) (A, B, C) and N leachate loss (D, E, F) post-fertilization for all treatments.  Uppercase letters 
indicate significant differences for N balance and total N leachate calculations, while lowercase letters indicate differences in corn 
grain N export. Other significant treatment effects for the individual parameters are shown in Table 3.5.  0 N = no applied fertilizer, 
N-credit= 56 kg ha-1 organic fertilizer + additional hairy vetch, Organic N = 168 kg ha-1 organic fertilizer, Urea N = 168 kg ha-1 urea 
+ urease inhibitor. 
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Figure 3.10: Average (±SE) corn grain yield of organic 0 N treatments (A), organic hairy vetch treatments 
(B), and conventional treatments (C).  Letters indicate significant differences between treatments.  0 N = no 
applied fertilizer, N-credit= 56 kg ha-1 organic fertilizer + additional hairy vetch, Organic N = 168 kg ha-1 
organic fertilizer, Urea N = 168 kg ha-1 urea + urease inhibitor. 
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 : Discussion Chapter 4
This study found that agroecosystem management, specifically cover crop choice 

and fertilization approach, can be utilized to reduce N loss and improve N balance in 

organic and conventional systems.  While these results are consistent with prior work 

(e.g. Vitousek et al., 1997; Smil, 1999; Galloway et al., 2004), few studies have looked 

simultaneously at leaching and gaseous N loss in no-till corn systems; thus, this research 

improves understanding of N loss pathways in conservation agriculture systems and of 

the management strategies that may be implemented to mitigate these losses.   

4.1 Organic Field: Cover Crop Comparisons, 0 N Treatments 
My first hypothesis, that N loss would be greatest in systems using a legume only 

(hairy vetch) cover crop as opposed to a grass only (wheat) or bi-culture (hairy vetch-

wheat), was supported by the data.  N loss was greatest in the hairy vetch system during 

both the cover crop growing season and the corn-growing season.   

During cover crop growth, low soil temperatures and low N availability likely 

contributed to low gaseous loss for all treatments especially as temperatures were even 

lower than the historic average for the site.  Parsons et al. (1991) also found that N2O-N 

emissions from a Kentucky Maury Silt Loam were low during the fall and winter.  Thus, 

the primary N loss pathway during this time was NO3-N leaching, and the hairy vetch 

treatment had the greatest quantity of NO3-N captured in leachate, which is consistent 

with other work evaluating legume vs. grass cover crop effects on N leaching 

(McCracken et al., 1994; Ranells and Wagger, 1997).  Soil resin data showed that NO3-N 

concentrations were greatest in the vetch treatment throughout the winter growing season, 

suggesting vetch had lower N uptake than the wheat or bi-culture treatments.  Biomass 
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produced by the cover crops during this time period also supports lower N demand in the 

vetch treatment: vetch produced only 56-78% of the biomass of the other treatments.  

Additionally, vetch’s ability to fix N may have lowered its soil N demand, but it is 

unlikely that N fixation was the only source of N used for vetch growth and prevented 

soil N uptake, as other studies have found that vetch N fixation does not account for total 

plant N (Acosta et al., 2011).  In support of the existing body of research, my data 

indicate that a hairy vetch monoculture may not be effective for retaining soil N, and 

preventing NO3-N leaching loss, during winter growth.  

Also, consistent with the literature, this study found that growing cover crops in 

bi-culture increased biomass production and the winter hardiness of the legume (Teasdale 

and Abdul-Baki, 1998; Snapp et al., 2005; Teasdale, 2012).  Biomass accumulation in the 

vetch-wheat treatment was 4968 kg ha-1 (vs. 2791 and 3590 kg ha-1 for vetch and wheat 

alone, respectively), and the bi-culture had the highest N content.  Indicative of higher N 

demand and uptake in the bi-culture, less NO3-N leachate was measured in the vetch-

wheat treatment than in hairy vetch alone; however, more NO3-N leachate was captured 

in the bi-culture than in the wheat alone treatment.  Higher soil resin NO3-N 

concentrations in the bi-culture than the wheat monoculture from December – February 

indicate less N uptake occurred in the bi-culture during this time (Fig. 3.4A).  From field 

observations, it was clear that the bi-culture grew less vigorously than wheat alone at the 

beginning of the season, accumulating most of its biomass in April and May (Appendix 

2).  Reduced winter growth, resulting from the unusually cold temperatures, most likely 

reduced the bi-culture’s ability to capture and retain N at that time.  Overall, it seems 

possible that measured N leaching loss was high in this study, as cover crop growth and 
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biomass across all treatments was low due to historically low temperatures that induced 

cover crop kill and reduced growth.  Unfortunately, I was not able to compare my 

leaching data to that of similar systems, as the resin lysimeter protocol that was employed 

is not yet widely used.  

During the corn-growing season, N leachate concentrations continued to be 

significantly higher in the vetch and vetch-wheat systems, but overall, were lower than 

during the cover crop growing season.  However, N2O-N emissions were greater than 

during cover crop growth, likely due to a combination of increased N availability in the 

system after cover crop termination in combination with warmer soil temperatures and 

adequate soil moisture (Colbourn, 1993; DeKlein and VanLogtestijn, 1996).  Similar to 

the research of Wisal et al. (2011), who found that in soils amended with residues of 

varying C:N ratios lower C:N residue increased N2O-N emissions and decreased N 

immobilization into the residue, cover crop C:N appeared to influence gaseous N 

emissions.  

For example, N2O-N fluxes increased from 13 to 29 May 2014, after cover crop 

termination, for the vetch (from 57 to 232 µg N m-2 h-1) and vetch-wheat treatments (62 

to 155 µg N m-2 h-1), but emissions decreased in the wheat system at this time (from 70 to 

46 µg N m-2 h-1 ) , as the wheat cover crop biomass residue induced N immobilization 

rather than mineralization (Fig 3.1B,C).  These large differences in emissions occurred 

even though differences in soil temperature between these two dates was <1oC.  

Similarly, although others have shown that soil moisture is important in controlling N2O-

N emissions (Rice and Smith, 1982; Colbourn, 1993; Chen et al., 2011), and moisture 

may have been important during the post-fertilization intensive measurement period of 
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this study, it does not appear to explain the pronounced cover crop effects we observed 

during the three weeks following termination, as the wheat cover crop tended to have the 

greatest soil moisture, but the lowest N2O-N emissions.  

Although the wheat cover crop had the lowest N loss (both via N leaching and 

gaseous loss), its high C:N ratio caused N immobilization after termination (Wagger, 

1989; Wyland et al., 1995; Baldwin and Creamer, 2009) and resulted in corn yields that 

were significantly lower than either of the other treatments.  As N was immobilized in the 

cover crop residue and little N was exported in the corn grain, the net N balance for the 

wheat cover crop was small, but positive.  Calculated N gain was likely attributable to 

pre-existing soil N pools that were accessed by the wheat during growth and that were 

moved into the residue by microbial activity. Overall, using a wheat monoculture cover 

crop reduced N loss in this study (gaseous and leaching); however, it would require 

significant quantities of N fertilizer applied during the corn growing season to obtain the 

yields necessary for a viable production system, perhaps negating its N loss 

environmental benefit. 

Though there were no differences in post-termination leaching, gaseous N loss, 

corn grain N, or yield between vetch and the vetch-wheat bi-culture, there were 

significant differences in N balance: less N remained in the vetch system.  This difference 

may be attributed to dissimilar patterns of cover crop decomposition and corn N uptake 

(Schomberg et al., 1994; Clark et al., 1997; Rosecrance et al., 2000; Zhou et al., 2012).  

Biomass resins indicated that more total N was released from the hairy vetch cover crop 

than the bi-culture, especially in June and July.  The fact that the hairy vetch cover crop 

released N more rapidly at the beginning of the growing season than the bi-culture is 
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supported by studies that have found vetch capable of releasing more than half of its total 

N content within the first 30 days following its termination (Aita and Giacomini, 2003; 

Acosta et al., 2011).  Greater N availability during this time may have provided the corn 

plants with a greater quantity of “starter” N when they emerged, resulting in increased 

uptake and corn plant biomass N content that remained greater than the vetch-wheat 

treatment for the entirety of the growing season (Appendix 3) (Hadas et al., 2002; 

Pearson et al., 2004).  

In addition to disparate N release at the beginning of the corn-growing season, 

decomposition patterns during the latter half of the season also differed between cover 

crops. The N content of the hairy vetch only treatment decreased over the entire corn-

growing season, indicating N was being mineralized and lost from the material, but in the 

vetch-wheat system, residue N content began to increase in August, indicating microbial-

mediated immobilization was occurring (Clark et al., 1997; Rosecrance et al., 2000).  

Soil inorganic N levels in August were similar between the two systems, but by 

September and October inorganic N was lower in the vetch-wheat bi-culture than the 

vetch (Fig. 3.4 A, B).  The higher residue C:N ratio of the bi-culture residue may have 

stimulated competition between plants and microbes for available N, as microbes 

required it for continued decomposition of the cover crop residue (Han et al., 2007; 

Kuzyakov and Xu, 2013).  Because less N was made available to the corn plants in the 

bi-culture system, both early and late in the growing season, the vetch-wheat system had 

a greater net N balance than vetch alone.  

This research indicates that the bi-culture, legume-grass cover crop mixture has 

potential for reducing N loss in conservation agriculture systems in Kentucky.  The bi-
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culture grew more vigorously than the legume monoculture during the winter months, 

which resulted in reduced leaching.  Post-termination, it released N, making N available 

to the summer corn plants, albeit less effectively than vetch alone.  Although grain N 

content was less in the bi-culture than the vetch alone treatment, corn yields were 

equivalent in the two treatments, suggesting that attributes other than N retention and 

release helped sustain yields in the bi-culture.  The bi-culture had greater cover crop 

biomass which increased soil moisture retention (Fig. 3.2B, C), and, based on field 

observations, provided superior weed suppression compared to the vetch treatment 

(Sharma et al., 2010; Das et al., 2015).  However, further cover crop management 

research is essential as all treatments in this system were unfertilized and most likely N 

limited, as corn yields were half of those produced in the fertilized organic treatments 

also evaluated in this experiment.  

4.2 Organic Field: Fertilizer Comparisons, Hairy Vetch Cover Crop 
For these treatments, I hypothesized, and the data support, that as the quantity of 

organic N fertilizer applied increased, N loss would also increase.  While N loss as 

leachate was not affected by fertilizer approach, N2O-N and NH3-N emissions were 

greater in the organic fertilizer treatment (168 kg N ha-1 applied as organic fertilizer, 242 

kg N ha-1 total) than the N-credit treatment (only 56 kg N ha-1 applied as organic 

fertilizer, 232 kg N ha-1 total), and both fertilized systems had greater gaseous emissions 

than the unfertilized treatment (78 kg N ha-1 total).   

During the cover crop growing season, N leaching was the dominant N loss 

pathway, but there were no differences between treatments.  It is likely that the majority 

of leaching occurred from November to January/February as soil NO3-N levels began to 

decrease in February/March (Fig. 3.4C, D).  Additionally, there were no differences in N 
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gaseous emissions, during this time, as low soil temperatures kept fluxes low (Parsons et 

al., 1991; Colbourn, 1993; DeKlein and VanLogtestijn, 1996)  

During the corn-growing season, N loss pathways were influenced by the form 

(vetch biomass vs. organic fertilizer) and quantity of applied N.  By subtracting the 

unfertilized gaseous N emissions calculated over the corn growing season from the 

fertilized treatment and dividing by the total amount of N applied in the fertilized 

treatments, I estimated the percentage of the applied N that was diverted into N2O-N or 

NH3-N loss pathways (Parkin et al., 2006) (Table 4.1).  This approach estimated that 

1.4% of the applied N in the organic N treatment was lost as N2O-N, whereas only 0.6% 

of applied N was lost in the N-credit treatment via this pathway (Table 4.1).  However, 

the N-credit treatment had higher initial N2O-N emissions ( Fig. 3.5E), likely due to 

greater quantities of biomass residue being present that prevented evaporative loss from 

the soil surface, thus creating conditions of increased soil moisture, microbial activity, 

and N mineralization (Colbourn, 1993; Schomberg et al., 1994).  N released during moist 

soil conditions is likely to result in denitrification as anaerobic microsites are present 

(DeKlein and VanLogtestijn, 1996; Dobbie et al., 1999; Hu et al., 2013).   

After June, soil moisture was not consistently higher in the N-credit treatment, as 

the hairy vetch biomass underwent rapid decomposition (Hadas et al., 2002; Acosta et 

al., 2011).  However, periods of high soil moisture continued to induce denitrification 

throughout the growing season, as N2O-N gas flux peaks in all treatments were often 

linked with rain events, particularly in the organic N treatment (Figs. 3.2 E, F, & 3.5 E, 

F).  Following a rain event on 4 June 2014, emissions increased dramatically in the 

organic N treatment and then remained greater than emissions from the N-credit 
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treatment for the entirety of the season.  N in slow release, organic fertilizers, such as that 

applied in this study, commonly undergo mineralization followed by denitrification after 

rain events (Sistani et al., 2011; Venterea et al., 2011; Halvorson and Del Grosso, 2012, 

2013).  Nitrifying microbes compete with other microbes for NH4 and rapidly convert it 

to NO3, thus contributing to the production of N2O-N via both nitrification and 

denitrification (Inselsbacher et al., 2010).  While maintaining a source of available N 

over the course of the growing season is ideal for plant growth, temporal asynchrony 

between microbial activity and plant N uptake, such as can occur during wet-dry cycles, 

can result in significant N2O-N loss (Augustine and McNaughton, 2004; Schwinning and 

Sala, 2004; Dijkstra et al., 2012; Parkin and Hatfield, 2014). 

Additionally, NH3-N emissions were greatest in the organic fertilizer treatment.  I 

estimated that approximately 18.5% of the applied N was lost as NH3-N from the organic 

N treatment, whereas <3% of applied N was lost from the N-credit treatment (Table 4.1).  

Significant NH3-N emission fluxes occurred on 6 June and 12 June 2014, following rain 

events, in the organic fertilizer treatment.  Similar to rainfall effects on N2O-N fluxes, 

precipitation events most likely induced fertilizer mineralization, increasing soil NH3

concentrations and resulting in volatilization, as soil moisture declined following the 

event (Rochette et al., 2013).    

Interestingly, according to soil resins, residue biomass resins, and gaseous N loss 

data, more inorganic N was released in the organic fertilizer vs. the N-credit treatment, 

but yields, corn grain N export, and N balance of these two systems were equivalent.  

Though more inorganic N was released in the organic fertilizer treatment, it may not 

always have been accessible for corn plant uptake or, as other studies have shown, at a 
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higher level of N supply the corn in the organic fertilizer treatment may have used N less 

efficiently (Moll et al., 1982).   

For example, although the C:N ratio of the vetch cover crop in both treatments 

was approximately 13:1 (a ratio low enough that mineralization and N release should 

occur (Wagger, 1989)) and, according to the biomass resins, N moved from the residue to 

the soil surface in both treatments, the residue %N in the organic fertilizer treatment did 

not significantly decline between June and August (Fig. 3.1E & 3.7C, D).  It is possible 

that N captured in the biomass resins came directly from mineralization of the organic 

fertilizer, which was applied on top of the cover crop biomass, and that the presence of 

the N fertilizer increased N availability and may have inhibited residue decomposition, as 

previous research has shown (Craine et al., 2007; Milcu et al., 2011), causing residue %N 

to remain stable during this time period.  Alternatively, N released from the fertilizer may 

have stimulated microbial activity such that vetch N was mineralized and released while 

simultaneously available N from the soil and the fertilizer was immobilized in the 

residue, maintaining %N at relatively constant levels (Gentile et al., 2008).  Additional 

research would be required to evaluate which of these scenarios was occurring, but my 

data suggest some N, originating from either the vetch residue or fertilizer, was retained 

by the biomass residue in the organic fertilizer treatment during this time period, reducing 

N available for corn uptake. 

Later in the season (i.e. late July/August) fertilizer mineralization continued, but 

there was less residue to retain/immobilize N and soil inorganic N pools increased in the 

organic fertilizer treatment (Fig. 3.4C, D).  Theoretically, corn plant N uptake should 

have been stimulated at this point in the growing season as the R1 physiological growth 
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stage was reached in early August, and approximately 50% of corn N uptake occurs after 

this stage in development (Moll et al., 1982); however, as corn biomass N content and 

corn grain N were not different between treatments, greater inorganic N appeared to 

enhance N2O-N emissions rather than corn plant N uptake (Fig. 3.5F & 3.9B, Appendix 

3).  Overall, it appears that greater N availability in the organic fertilizer treatment later in 

the season stimulated gaseous emission losses and did not result in greater yield or corn 

N uptake and grain N export (Fig. 3.9B; 3.10B).  However, late season N release and 

emissions may be seasonally atypical in Kentucky as rainfall in August was nearly twice 

that of the historical average (Fig. 2.2).   

This research suggests that accounting for the N-contribution of the cover crop via 

an N-credit fertilization approach may decrease N loss and promote more efficient N use 

by better timing N release with corn plant demand compared to the organic fertilizer 

applications.  However, though potentially more environmentally beneficial from an N 

perspective, the N-credit technique requires that spring cover crop grab samples are taken 

and analyzed, N content calculations made, and fertilization application rates modified.  

These additional tasks, at a busy time of year, may limit widespread producer acceptance 

of this technique.  Yet, if fertilizer costs continue to rise and/or other N loss reduction 

incentives appear, producers may be motivated to conduct the extra analysis required to 

implement an N-credit cover crop approach. 

4.3 Conventional Field: Fertilizer Comparisons, Winter Wheat Cover Crop 
In the conventional system, I hypothesized that N loss would be greater in 

treatments receiving fertilizer than without and that gaseous N loss pathways would differ 

between urea and organic fertilizer treatments.  Data supported both hypotheses.  N2O-N 

and NH3-N emissions were greater in the fertilized treatments compared to the 
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unfertilized treatment, and gaseous N loss pathways in the fertilized treatments differed 

both temporally and in magnitude.   

During the cover crop growing season, there were no differences in N leachate 

between treatments, as all treatments were planted in wheat and no fertilization had 

occurred.  However, differences in NH3-N loss occurred at the end of the cover crop 

growing season.  Though soil NO3-N and NH4-N concentrations were equivalent at cover 

crop planting, soil resin data shows an increase in NH4-N concentration in all treatments 

prior to cover crop termination, but particularly in the urea N treatment in April and the 

unfertilized and organic N plots in May.  Increasing soil temperatures during this time 

most likely stimulated wheat growth and microbial activity in the soil, which may have 

affected NH4-N concentrations; however, these effects should have been consistent 

across the treatments.  The only visual difference apparent between treatments was the 

presence of volunteer big flower vetch: it was greatest in the urea treatment (average 

percent cover ~7%), followed by the organic fertilizer (~5%), and the unfertilized (~4%).  

Perhaps the presence of this weed or other unknown factors contributed to treatment 

differences at this time. 

Increased soil NH4-N concentrations may explain elevated NH3-N emissions at 

this time, particularly in the urea N treatment.  NH3-N emissions in the urea N treatment 

during the cover crop growing season were relatively high at 37 kg N ha-1, perhaps 

suggesting that NH3-N loss in wheat cover crops deserves more exploration, as it may not 

be typically accounted for in agroecosystem N balance calculations.  However, it seems 

unlikely that the wheat cover crop was directly responsible for stimulating these 

emissions, as NH3-N emissions from other similar treatments (e.g., the conventional 
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organic N plots, and from the wheat treatment in the organic field) were negative or near 

zero over the same time period (Table 3.5). 

Post-fertilization, gaseous N loss and leaching were affected by the quantity and 

type of fertilizer.  Though soil moisture was slightly increased in the unfertilized 

treatment (likely due to decreased corn plant water demand as corn plant biomass trended 

lesser compared to fertilized treatments (Appendix 3)), gaseous and leaching losses were 

minimal (Tables 3.5, 4.1) compared to those that received fertilizer.  Amongst fertilized 

treatments, gaseous N2O-N losses were significantly greater on several dates in the 

organic N treatment, gaseous NH3-N losses were similar in magnitude between the 

treatments but differed temporally, and leaching losses were greater (~5x) from the urea 

treatment (Table 3.5, Fig. 3.9F).  Some urea hydrolysis likely occurred prior to corn plant 

germination on 3 June 2014; thus, N may have leached down into the soil profile prior to 

corn plant establishment (Quisenberry and Phillips, 1976).  To reduce NO3 leaching loss 

associated with urea N applications, a split application or application after corn plant 

establishment might be necessary (Meisinger and Delgado, 2002).   

 Calculations assessing how much fertilizer N was lost as NH3-N emissions, made 

by comparing emissions from fertilized and unfertilized plots, indicated that only 17.9% 

of urea N was lost as NH3-N volatilization, whereas 29.1% of the organic fertilizer N was 

lost as NH3-N (Table 4.1).  Christianson et al. (2012) reported that up to 30% of N can be 

volatilized after broadcast urea N applications, and, in systems where organic residue is 

present, broadcast urea may be particularly vulnerable to volatilization as the residue acts 

as a barrier between the soil surface and the fertilizer (Mohr et al., 1998; Rochette et al., 

2009; Francisco et al., 2011).  The urease inhibitor was likely responsible for mitigating 
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volatilization prior to precipitation events that incorporated the fertilizer into the soil 

profile (a small rain event occurred the night following application, ~0.25 cm, in addition 

to a substantial rain event on 4 June 2014, ~4.72 cm).  After contact with the soil, the soil 

environment likely prevented volatilization, as the chemistry at this field site is typically 

not considered particularly susceptible to volatilization.  It has a pH less than 7 that can 

provide hydrogen ions to transform gaseous NH3 into its more stable aqueous form, NH4

(Bitzer et al., 2000; Rochette et al., 2013), and it has a high cation exchange capacity (15-

23 cmol (+) kg-1), making it more capable of fixing NH4 (Schnitze.M, 1965; Hunt, 1981; 

Evangelou et al., 1986; Harrison and Webb, 2001) (Appendix 1).  

Similarly, the organic fertilizer treatment lost a greater proportion of applied N 

(1.9%) as N2O-N emissions than the urea N treatment (1.0%) (Table 4.1).  This was not 

unexpected as the fertilizer was not only 13% N, but 40% C (Kirk Carls, Nature Safe 

Natural and Organic Fertilizers, personal communication, 14 March 2015).  Numerous 

studies have found that fertilizers that provide a C source in conjunction with N stimulate 

microbial activity and, subsequently, N loss (Limmer and Steele, 1982; Cavigelli et al., 

2009; Hayakawa et al., 2009; Chantigny et al., 2010; Sistani et al., 2011; Mitchell et al., 

2013).  N2O-N emissions calculated for this study in the organic fertilizer treatment were 

similar to those calculated by Sistani et al. (2011) in a Kentucky no-till corn system 

applied with poultry litter (Table 4.2). 

Gaseous fluxes also differed temporally between treatments (Hayakawa et al., 

2009).  As previously mentioned, NH3-N volatilization of urea N subsided after the rain 

event on 4 June 2014, whereas this same event caused a spike in NH3-N emissions in the 

organic N treatment.  However, NH3-N emissions in both fertilized treatments decreased 



90 
!

after 12 June 2014.  As urea hydrolyzes more readily than organic fertilizer sources, the 

soil in the urea N treatment was likely more enriched with N prior to the rain event on 4 

June; thus, urea N2O-N emissions were higher on 6 June 2014 than those from the 

organic fertilizer treatment as there was more inorganic N in the soil (Parkin and 

Hatfield, 2014), but, after this date, the slower N release nature of the organic fertilizer 

caused N2O-N emissions from the organic fertilizer to remain higher than that of the urea 

treatment for the rest of the corn-growing season.   

 Despite differences in N loss, corn yield and N balance were statistically 

equivalent between fertilized treatments.  Less N was exported in corn grain in the 

organic treatment, most likely due to increased gaseous loss (both NH3-N and N2O-N) 

and slightly greater N immobilization in cover crop residue between May and August in 

this treatment.  My study illustrates that significant amounts of N can be lost to the 

environment in systems using both urea and organic fertilizers, but N loss pathways 

differ.  It is difficult to suggest that one fertilizer treatment is more environmentally 

beneficial than the other as the organic fertilizer treatment had increased gaseous loss 

while the urea treatment had greater N leaching.  A nitrification inhibitor may be 

advantageous in both systems as it could reduce the quantity of NO3 vulnerable to 

leaching in the urea treatment and to denitrification in the organic fertilizer treatment.  

Understanding which fertilizer approach is more environmentally beneficial would 

require a full life cycle analysis of fertilizer production and corn grain N utilization, and 

will likely depend on how specific site factors, such as climate and soil conditions, 

impact N release, transformations, plant uptake and loss pathways (Skowronska and 

Filipek, 2014).
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Table 4.1:!Post-fertilization gaseous NH3-N, gaseous N2O-N, NO3-N leachate, and NH4-N leachate loss compared between 
fertilized and unfertilized treatments in the conventional and organic hairy vetch treatments.  The N loss of fertilized 
treatments was compared to the respective, unfertilized control treatment in order to estimate: 1) the percent increase of 
leachate loss when fertilizer N was applied, and 2) the percentage of the added N that was diverted into gaseous loss pathways 
as calculated by (emissions from fertilized treatment - emissions from unfertilized treatment)/fertilizer N added.   

Post-Fertilization: May 29 – November 1 

Treatments Gaseous Loss Leachate 

Field Cover 
Crop 

Fertilizer 
(kg N ha-1)

NH3-N 
(kg N ha-1) 

Percentage 
of fertilizer 

lost as 
NH3-N 

N2O-N 
(kg N ha-1) 

Percentage 
of fertilizer 

lost as 
N2O-N 

NO3-N 
(ppm) 

Percent 
NO3-N 
increase 

with 
fertilizer 

NH4-N 
(ppm) 

Percent 
NH4-N 
increase 

with 
fertilizer 

Organic 
Vetch 0 8.71 - 2.13 - 217.36 - 22.12 - 

Vetch 
154* 

(extra vetch 
+ 

organic N) 
12.81 2.66 3.11 0.64 249.41 14.74 50.20 126.97 

Vetch 164* 
(organic N) 

39.09 18.52 4.47 1.43 307.42 41.43 24.55 10.99 

Conventional 
Wheat 0 -5.80 - 1.83 - 62.59 - 17.39 - 

Wheat 168 
(urea N) 

24.29 17.92 3.54 1.02 601.59 861.22 43.85 152.07 

Wheat 168 
(organic N) 

43.07 29.09 5.05 1.92 107.66 72.02 24.55 41.12 

*Calculated by subtracting the N content of the hairy vetch cover crop in the unfertilized treatment (78 kg N ha-1) from the total N added (cover crop
N + fertilizer N) of each fertilized system (N-credit : 232 kg N ha-1; Organic fertilizer: 242 kg N ha-1). 

91



92 

!

!

Author Location Tillage/Cover Crop Crop Fertilizer 
(kg N ha-1) 

N2O 
(kg N2O-N ha-1 yr-1) 

NH3 
(kg NH3-N ha-1) 

Shelton 
(this study) 

Lexington, KY No-Till, Hairy Vetch Corn 0 2.92 (±0.27) 4.69 (±14.05) yr-1

N-credit 5.08 (±0.66) 35.47 (±10.01) yr-1 
168 organic N 5.77 (±1.22) 46.58 (±3.79) yr-1 

No-Till, Wheat 0 3.78 (±0.37) 7.87 (±8.82) yr-1 
168 urea + Agrotain® 6.56 (±0.84) 61.08 (±1.00) yr-1 
168 organic N 5.89 (±1.22) 34.87 (±8.59) yr-1 

       Venterea et al. 
(2011) 

Rosemount, MN Conventional Tillage Corn 146 urea 0.63 - 
No-Till 146 urea 0.75 - 

       Smith et al. (2013) Urbana, IL Conventional Tillage Corn 168 UAN 7.7 - 

       Parkin and Kaspar 
(2006) 

Ames, IA Conventional Tillage 
(Chisel Plow) 

Corn 13 starter N + 202 
UAN (split 
application) 

10.2 (±5.80)-11.3 (±3.73) - 

No-Till 7.87 (±3.87)- 11.3 (±2.41) - 
No-Till, Rye 7.62 (±2.17) -15.4 (±7.33) - 

       Campbell et al. 
(2014) 

Wooster, OH Minimum Tillage 
(Chisel Plow) 

Corn 202 UAN ~10.95 - 

No-Till for 50 years ~1.83 - 
       Sistani et al. (2011) Bowling Green, 

KY 
No-Till Corn 168 Urea 1.70-3.31 - 

168 Poultry litter 5.81-10.85 - 
      Keller and Mengel 
(1986) 

City, IN No-Till, corn residue on 
soil surface 

Corn 168 granular urea 
168 UAN 

50.9 in 120 hrs 
14.6 in 120 hrs 

       Thompson and 
Meisinger (2004) 

Beltsville, MA No-Till, 88% of soil 
surface covered with 
maize residue 

No 
crop 

137 cattle slurry - 36 over an eight 
day period 
following slurry 
application 

       Powell et al. (2011) Prairie du Sac, WI No-Till Corn 187 Dairy slurry, 
surface applied 

- 55 after 120 hours 

Table 4.2: A comparison of N2O and NH3 emissions from conventional and no-till corn systems throughout the United States. 
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 : Conclusions          Chapter 5
This thesis assessed the effects of cover crop species and fertilizer approach on N 

loss and dynamics in Kentucky corn conservation agriculture systems across an entire 

year.  I found that dominant N loss pathways varied by season, and that both cover crop 

species and type of fertilization affected N loss and availability.  During the cover crop 

growing season, NO3-N leaching was a dominant loss pathway, especially in treatments 

using leguminous monocultures, but during the corn-growing season, N2O-N and NH3-N 

emissions became the dominant N loss pathways, increasing after cover crop termination, 

following fertilizer application, and in conjunction with rain events.  Additionally, not 

only was gaseous N loss greater in fertilized treatments, but the type of N fertilizer 

(organic N vs. N-credit and urea N vs. organic N) also affected flux magnitude and 

temporal trends.  These results suggest that specific management strategies can be 

employed within both organic and conventional conservation agriculture systems to 

reduce N loss.    

Bi-culture cover crop systems warrant further investigation as this study indicates 

that they may be the most effective in preventing N loss while also contributing N to the 

summer crop.  Experiments designed to examine other legume and grass species in bi-

culture would help determine those with the most vigorous winter growth and greatest N 

contribution.  Importantly, the effect of growing season fertilizer applications on N loss 

pathways should be examined in bi-culture cover crop systems, as these systems will 

require fertilizer to improve yield, but this was beyond the scope of my study.   

My results support using an N-credit fertilization strategy with hairy vetch to 

minimize N loss while sustaining corn yields, but, because hairy vetch is not the only 
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leguminous cover crop utilized in this region, research that explores N loss in other 

leguminous cover crop systems that employ an N-credit fertilization technique is needed 

(e.g. Crimson clover, Austrian Winter Pea).  The results from the conventional system 

indicate that strategies to reduce N loss from organic and urea fertilizers require further 

investigation.  These strategies may include the application of a nitrification inhibitor, the 

evaluation of different corn varieties’ uptake and assimilation of NH4-N and NO3-N, or 

the assessment of fertilizer placement beneath cover crop residue rather than broadcast on 

top so that it is more readily incorporated into the soil profile.     

This study is unique as there is little research that simultaneously investigates 

NH3-N and N2O-N emissions in field studies, particularly in conservation agriculture 

systems or, in Kentucky (Table 4.2).  This research may be used to help guide future 

agroecosystem management options and recommendations for existing conservation 

agriculture systems.  Furthermore, they represent some of the first gaseous N loss data for 

organic, no-till systems.  While this type of agriculture is not yet common in Kentucky, it 

is increasingly important across the nation (USDA-ERS, 2013a), and research illustrating 

how organic and conventional N loss pathways differ is needed to help improve N 

efficiency across agricultural sectors.  More research is needed to determine cover crops 

that will provide both fertility benefits and weed control because ineffective weed 

management, in organic systems in particular, can prevent desired yields. Currently, 

cultivation in organic systems is crucial for weed suppression and prevents no-till 

implementation, but yields from this study suggest that, with further refinement, organic 

no-till systems may be achievable.   
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   While the annual gaseous emissions measured in the organic and conventional 

corn systems in this study are well within the range of N2O-N and NH3-N emissions 

found within the literature for similar systems (Table 4.2), significant variability exists, 

which highlights the need for this type of research across many geographic regions as 

site-specific factors play a critical role in N loss.  Although this research was an 

important first step in developing management strategies that reduce N loss, further 

investigation is needed because my data are limited to one site and one measurement 

year.  It would have been interesting to follow my study through several cover crop 

growth cycles to assess how N dynamics develop with time in the various systems and to 

have implemented my treatments at additional field sites, because understanding how N 

loss is influenced by climate, soil texture, pH, cation exchange capacity, organic matter 

content, and aggregate stability will contribute to more informed regional 

recommendations (Harrison and Webb, 2001; Six et al., 2002; Francisco et al., 2011; Al-

Kaisi et al., 2014; Bandyopadhyay and Lal, 2014).  Lastly, when considering the 

environmental impact of agriculture-associated N, it is critical that the N dynamics 

observed in a field study are not evaluated alone, but are contextualized within the global 

N cycle so that the origin and fate of N is understood. 
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Appendix 1: Average (± SE) soil nutrients, texture, structure, and pH of the organic and conventional fields prior to treatment 
establishment.   

     Field 
Soil-

Water 
pH 

P K Ca Mg Zn Total 
N % 

Total 
C % 

Organic 
Matter 

% 

Stable 
Aggregate 
Fraction 

% 

Bulk 
Density 
(g cm3) 

Soil Texture 

kg ha-1 Sand   
% 

Silt 
% 

Clay 
% 

Organic 6.84 
(±0.06) 

187.01 
(±3.64) 

553.08 
(±12.08) 

4580.07 
(±127.13) 

397.31 
(±4.42) 

6.05 
(±0.44) 

0.12 
(±0.00) 

1.25 
(±0.01) 

2.16 
(± 0.02) 

74.49 
(±3.13) 

1.35 
(±0.02) 

8.87 
(± 0.11) 

72.82 
(±0.21) 

18.31 
(±0.17) 

Conventional 6.33 
(±0.57) 

183.99 
(±16.56) 

570.10 
(±51.78) 

4292.61 
(±409.13) 

322.06 
(±32.07) 

4.6 
(±0.54) 

0.18 
(±0.02) 

1.79 
(±0.17) 

3.08 
(±0.29) 

81.81 
(±2.67) 

1.35 
(±0.01) 

10.66 
(±0.94) 

72.75 
(±6.26) 

16.59 
(±1.57) 
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Appendix 2: Progression of cover crop growth in organic field plots: A = 1 December 
2013;B = 1 April 2014;C = 29 April 2014; D =16 May 2014.  Cover crop biomass 
accumulation occurred primarily within the last two months of growth (April and May).
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Appendix 3: Total corn plant and weed biomass N content at harvest in the organic, unfertilized treatments (A), organic hairy 
vetch treatments (B), and conventional treatments (C).  Lower case letters signify significant differences between treatments (P 
< 0.05). 0 N = no applied fertilizer, Organic N = 168 kg ha-1 organic fertilizer, Urea N = 168 kg ha-1 urea + urease inhibitor.  
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Appendix 4: Average carbon dioxide fluxes (±SE) for organic 0 N treatments (A-C), organic hairy vetch treatments (D-F), and 
conventional treatments (G-I) across three different time periods from October 2013 to November 2014. 0 N = no applied 
fertilizer, N-credit= 56 kg ha-1 organic fertilizer + additional hairy vetch, Organic N = 168 kg ha-1 organic fertilizer, Urea N = 
168 kg ha-1 urea + urease inhibitor. 
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