

In-Situ Recession Measurements by Photogrammetric Ablator Surface Analysis

S. Loehle¹ T. Staebler¹ T.Reimer² A. Cefalu³

¹Institute of Space Systems, University of Stuttgart

²German Aerospace Center

³Institute of Photogrammetry, University of Stuttgart

loehle@irs.uni-stuttgart.de

Speaker: Megan MacDonald

10/04/2014

Overview

- 2 Theoretical Background
- 3 Experimental Setup

4 Results

Motivation

- Ablative material loss quantification with respect to surface recession.
- In-situ analysis of recession.
- Identification of influence of material defects.
- Analyse differences in ground testing compared to flight scenario.

Surface photography during test.

Theory

- Using the central projection, a 3D object point can be seen in two images.
- The needed information is the orientation of the sensor area (inner orientation) and the orientation of the camera in space (outer orientation).
- Connecting both images allows to derive where the lines overlap. This is the 3D position in space.
- More cameras increase the accuracy, beause the overlap becomes more precise.

Central Projection: A 3D point P is found as a P' and P'' in the image data.

Experimental Setup

- Experiments in the plasma wind tunnel PWK1 at IRS.
- Two Canon EOS 60D DSLR cameras.
- Carbon preform material sample (MERSEN) with a density of 0.18 g/cm^3 .
- Surface temperature measurement using Pyrometry and Thermography.

Flow Condition

Parameter	Value	Parameter	Value
m _{air}	18 g/s	Focal length	300 mm
p_∞	16.6 hPa	Resolution	17.9 MPix
p_{tot}	24.3 hPa	Frame rate	3 fps
P _{el}	162 kW	Exposure time	$1/4000\mathrm{s}$
q _{coldwall}	$4.1\mathrm{MW/m^2}$	Aperture	f/25
h _{local}	$68.4 \mathrm{MJ/kg}$	Filter	ND1.2

Flow Condition.

Camera Parameter.

- Heat flux, total pressure, and enthalpy correspond to a hayabusa flight condition at an altitude of 78 km.
- Plasma wind tunnel flow is subsonic.
- The combination of ND filter and short exposure time gives sufficient surface feature resolution for the photogrammetry.

Calibration

Calibration object.

 $\label{eq:Camera Calibration using AGISOFT.}$

- Three-dimensional object is positioned close to the measurement location.
- Pictures are taken for different object inclinations.
- Pictures are arranged by the software to calculate the camera orientation.
- Camera position must not be change!

Data Reduction

Surface Triangulation of the point cloud.

- \bullet The calibrated camera position is loaded in the software ${\rm Sure.}$
- Acquired image pairs from plasma wind tunnel tests are analysed by SURE.
- SURE computes point positions from the image pair, so a 3D map is generated.
- The surface change is then identified from image pair to image pair.

6th Ablation Workshop

Photogrammetric In-Situ Surface Analysis

10-times

Recession measurement

- Rate is derived from 3 sec., i.e. mean value of 9 frames.
- Rate is very constant.
- Mean rate (52.5 μ m/s) is consistent with published values.
- Asymmetric recession due to sample holder.

Surface Analysis

- At the beginning the scratches are visible in photos and point cloud (upper figure).
- For later times (lower figure) scratch is only visible in point cloud.
- A lower recession has been measured, perhaps due to denser material, i.e. the scratch was probably a dent.

Summary

- Three-dimensional surface determination from stereoscopic image acquisition has been realized.
- $\bullet\,$ Surface is resorted with 300 000 data points, i.e. 25 000 points/cm^2 (approx. 400 dpi).
- Recession rate has been derived from photogrammetric data sets to 52.5 $\mu m/s$ for the carbon preform.
- Surface defects (scratches, dents) can be analysed.

Thank you.

Further questions, comments, ideas:

Stefan Loehle Institute of Space Systems, University of Stuttgart Pfaffenwaldring 29

70569 Stuttgart, Germany

loehle@irs.uni-stuttgart.de

+49 - 711 - 685 - 62387

...and thank you, Megan!