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Objectives and project partners  

Development of a light-weight ablative material for research purposes: 

- Understand the key factors to design ablative materials 

- Better understanding of underlying physics 

 
Participating institutes: 
 

- Institute of Structures and Design, German Aerospace Center 

- Institute of Space Systems, University of Stuttgart,  

- Institute of Aerospace Thermodynamics, University of Stuttgart  
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Loads during atmospheric re-entry 
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Steep re-entry 

Low Earth Orbit (LEO):  
200 – 2000 km  

I. Lifting re-entry (e.g. Space Shuttle, SHEFEX) 
- Heat flux qSpace Shuttle = 0,75 MW/m² 

  Reusable thermal protection materials 
 suited e.g. C/C-SiC  

- Heat flux qC/C-SIC ≤ 1 MW/m²  
- Tmax  ≤ 1700 ºC 

II. Steep re-entry (e.g. Stardust capsule hyperbolic  
v = 12.9 km/s) 
- Heat flux qStardust = 12 MW/m²  

  Ablator 



Charring ablation  
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[Rivell, 2006] 



Mechanisms of action of charring ablator 
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Ablative mechanisms and derived requirements: 

 
1. Energy conversion by endothermic reactions 

- Thermal decomposition of the resin 

2. Reduction of the convective heat transfer  
- Emission of pyrolysis gases, lifting of a boundary layer 

3. Reduction of the heat transfer by radiation 
- Emission of carbon particles 

4. Heat dissipation by re-radiation 
- High emissivity 
- Temperature stability up to the radiative equilibrium 

temperature  

5. Conversion of energy by phase change 
- Smelting or preferential sublimation processes 

 



Additional requirements 
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1. Thermal isolation 
- Protection of the substructure (→ avoidance of high temperatures) 
- Causing high surface temperatures (→ beneficial for an effective heat 

emission by reflection) 
         (Stefan-Boltzmann equation) 

2. Low specific system mass 

3. Mechanically stable virgin ablator and char layer (→  aerodynamic loads) 

4
, TM se ⋅⋅= σε



Reference  Stardust 
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Gas Air 

Heat flux [MW/m²] 2 6 12 

Total pressure [hPa] 33,6 38,7 44,6 

Test duration [s] 60 30 15 

Test conditions: 

Plasma wind tunnel PWK1 (IRS) 
   

Stardust capsule [NASA] 

[Herdrich et al., 2009] 
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Material Screening tests 

Variation of: 
 
- Precursor resin 

 
- Fiber type 

 
- Fiber length 
- Fiber orientation 

Objective:  

 
- Investigation of influence of the variations onto the ablative material 

properties 

short fibers, fabric, felt 

carbon fibers, mullite fibers 

phenolic, epoxy, silicone, polyaromatic 
 resin  



Manufacturing processes 
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Autoclave process Resin transfer molding Hot pressing process 



Ablation sample for plasma wind tunnel tests 
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- Manufacturing of more than 72 samples 
- Sample geometry: Ø 40 mm x 40 mm 
- 5 thermocouples in a depth of 3, 5, 8, 15 and 40 mm related to the ablator front 

Ablation sample 

Aluminum  
back plate 

Channel for wiring 
the thermocouples 



Measurands 
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Pyrometry Thermography 

Spectroscopy 

Before test: 
 

- Specific gravity 
- Open porosity 
- Sample thickness 
- Weight 

 
During test: 
 

- Temperature distribution 
 

Post test: 
 

- Pyrolysis zone  
- Sample thickness 
- Weight 

 



Results of material screening tests 
Ablative performance of precursor resin 
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Delaminated sample HP683#1 after test in 
plasma wind tunnel: 
- 2D fabric reinforcement  
- Phenolic precursor 
- Test conditions: 6 MW/m², 30 s 
 
 Due to the massive delaminations an 
evaluation of the precursor with respect to 
ablation was not possible 

 3D-reinforcement is necessary 
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Results of material screening tests  
 Pyrolysis zone on 3D-reinforced samples 

CT-picture PWT sample HP691#4 
after testing 
 
Test conditions: 2 MW/m², 60 s 

Cut view of PWT sample 
PH2075quer#1 after testing 
 
Test conditions: 6 MW/m², 30 s 



Results of material screening tests  
Temperature distribution & fiber orientation 
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PH2075quer#4 

PH2075#4 

cross 2D-fabric reinforcement 

normal 



Results of material screening tests  
Temperature distribution & fiber orientation 
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T [ºC]  

(3 mm depth) 
T [ºC]  

(5 mm depth) 
T [ºC] 

(8 mm depth) 
PH2075#4 1025 475 100 
PH2075quer#4 1250 650 500 

PH2075quer#4 PH2075#4 

Temperature distribution: 
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Reinforcement fibers: Mullite fibers 
Test conditions:  2 MW/m², 60 s 
Damages: 

Reinforcement fibers: carbon felt 
Test conditions:  2 MW/m², 60 s 

Molten mullite 
fibers 
(28 % SiO2 + 
72 % AI2O3) 

Results of material screening tests  
Influence of reinforcement fiber type 

PWT sample IP438 #4 PWT sample IP455 #1 

 Low heat conduction causes local heat peaks (critical at edges and narrow 
radius) 

 Mullite fibers exhibit melting (undesirable), carbon fibers sublimate 
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200 µm  200 µm  

Carbon felt (Schunk K73) 
+ phenolic resin 
+ addition agent 

ρ = 0,3 g/cm³ ρ = 0,3 g/cm³ 

Carbon felt (Schunk K73) 
+ phenolic resin 

New Manufacturing Process 

Lessons learned from screening tests: 
- 3D-reinforcement is necessary 
- Avoid local heat peaks 
- Use phenolic resin to generate high amount of residual carbon to 

reduce the radiative heat transfer (from literature research) 

Modified process 

Carbon fibers 
embedded into 
micro porous 
phenolic resin 

foam 
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A new material 
 Zuram R 
  

Carbon preform + phenolic resin + addition agent 
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A new material 
 Plasma wind tunnel tests 

Test conditions:  12 MW/m², 15 s 
Averaged recession:  1.80 mm  
Mass loss:  1.92 g 

ZURAM sample  
after PWT test 

Temperature distribution within  
ZURAM PWT sample 
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Characterization 
 DSC 

Heat capacity of ZURAM R 
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Characterization 
 LFA 

Heat conductivity in plane Heat conductivity perpendicular to plane 

 Anisotropic behavior due to pre-form 
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Characterization 
 Mechanical 

Compressive strength 
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Characterization 
 Properties of interest 
 
 

- virgin and char density 
- virgin and char thermal conductivity  
- virgin an char heat capacity   
- emissivity/ absorptivity 
- thermal decomposition data 
- elemental composition 
- porosity/ permeability 
- flow characteristics 
- mechanical characteristics 
- recession rates 

 



Conclusions 
 
- Goal: 

- Better understanding of behavior and underlying physics of ablative 
materials 

- Status and knowledge gained: 
- A new material “ZURAM R” was developed 
- A new manufacturing process was developed 
- Tests, including PWT tests, were performed for characterization 
- From the material screening tests: 

- 3D reinforcement is necessary 
- Foam-like closed porous microstructure is desirable 
- Carbon fiber preform seems advantageous over aluminum oxide 

preform 
- Ongoing and prospective: 

- Further material development, variation of material composition 
- Further characterizations with different load cases, in states other than 

virgin material and PWT shear tests are foreseen 
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Future Steps: An invitation to participate 
 
Main interest:  
 
- Research the important parameters on how to manufacture a better ablator 
- Aim at a broad range of future scientific planetary and sample return missions 
- Perform fundamental research on ZURAM; vary material properties to better 

understand its behavior at various conditions 
 
- DLR has the capability to manufacture a reproducible ablative material (will be 

further confirmed by PWT test at DLR facilities in Cologne) 
 

- Material composition could be modified to necessity or liking. 
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Providing common test material to facilities would allow for: 
- Repeatability of test conditions in a facility 
- Comparison of results gained in different facilities  

 
- We would deliver 4 ISO-Q samples (e.g. ø 50 mm x 40 mm) for free, keep 

track of the samples and collect the results 
 

- Measurands 1st round:  
 

- Temperature @ 5 locations inside the specimen 
- Total recession and mass loss 
- Flow characterization 
- + whatever you like to measure 

 
Please regard as invitation for discussion.  
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Future steps: An invitation to participate 
 TPS facility inter-calibration test 



 
 
Additional result: exhaustive and consistent set of material data 
 
-  Supplement or substitute synthetic model like TACOT (mid term) 
-  allow not only for verification but also validation of models 
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Future steps: An invitation to participate 
 TPS facility inter-calibration test 



> Th. Rothermel> 10.04.2014 

Questions? Comments? 

 
thomas.rothermel@dlr.de 

christian.zuber@dlr.de 
 
 

Thank you for your attention 
 


	A LIGHT-WEIGHT ABLATIVE MATERIAL FOR RESEARCH PURPOSES��
	Objectives and project partners 
	Loads during atmospheric re-entry
	Charring ablation 
	Mechanisms of action of charring ablator
	Additional requirements
	Reference  Stardust
	Material Screening tests
	Manufacturing processes
	Ablation sample for plasma wind tunnel tests
	Measurands
	Results of material screening tests�Ablative performance of precursor resin
	Results of material screening tests �	Pyrolysis zone on 3D-reinforced samples
	Results of material screening tests �Temperature distribution & fiber orientation
	Results of material screening tests �Temperature distribution & fiber orientation
	Results of material screening tests �Influence of reinforcement fiber type
	Foliennummer 17
	Foliennummer 18
	Foliennummer 19
	Foliennummer 20
	Foliennummer 21
	Foliennummer 22
	Foliennummer 23
	Conclusions�
	Future Steps: An invitation to participate�
	Foliennummer 26
	Foliennummer 27
	Foliennummer 28

