# Microscale Modeling of Ablative Thermal Protection System Materials

Eric Stern, Graham Candler, Tom Schwartzentruber, Ioannis Nompelis, Michael Barnhardt







### **Ablation Modeling**





- Engineering material response codes in use today take a macroscopic view of the TPS.
- Typically involve heavy empiricism, and many assumptions



### **TPS Modeling**





Lachaud, et al., JSR, 2010

- The goal of this work is to better model processes at the microscale to inform macro-scale models.
  - Volume averaging.
  - Model reduction!
- This will attempt to build and expand on previous efforts in micro-scale modeling by enabling more physics



#### **TPS Modeling**





Lachaud, et al., JSR, 2010

- The goal of this work is to better model processes at the microscale to inform macro-scale models.
- ...as well as build a framework where higher fidelity models can be incorporated from the nanoscale





NASA Space Technology Research Fellowship

#### Methodology

- DSMC
- Surface Generation and Movement
- Coupled Ablation
- Preliminary Validation and Applications
  - Simplified Darcy Flow
  - Flow-tube Permeability Experiments
- Future Work

NASA

- First: what is DSMC?
- Knudsen numbers in the porous medium range from high-slip to rarefied regimes.
- DSMC can (in principle) simulate all of the relevant physics.
  - Convection
  - Multicomponent Diffusion
  - Gas-phase Kinetics
  - Sophisticated GSI Models
  - Non-equilibrium handled inherently
- DSMC can simulate arbitrarily complex geometries



Lachaud, et al., JSR, 2010





- Parallel implementation of the DSMC method developed at the University of Minnesota.
  - 3-Level Cartesian Mesh
  - Automated Mesh
    Refinement
  - Models for dissociation, vibrational/rotational relaxation.



- 1. Zhang and Schwartzentruber., Comp. and Fluids, 2012
- 2. Nompelis and Schwartzentruber, AIAA Paper, 2014





 Parallel implementation of the DSMC method developed at the University of Minnesota.

- 3-Level Cartesian Mesh
- Automated Mesh
  Refinement
- Models for dissociation, vibrational/rotational relaxation.



<sup>2.</sup> Nompelis and Schwartzentruber, AIAA Paper, 2014





- Parallel implementation of the DSMC method developed at the University of Minnesota.
  - 3-Level Cartesian Mesh
  - Automated Mesh
    Refinement
  - Models for dissociation, vibrational/rotational relaxation.



1. Zhang and Schwartzentruber., Comp. and Fluids, 2012

2. Nompelis and Schwartzentruber, AIAA Paper, 2014



 Parallel implementation of the DSMC method developed at the University of Minnesota.

MGDS2

- 3-Level Cartesian Mesh
- Automated Mesh
  Refinement
- Models for dissociation,
  vibrational/rotational
  relaxation.



2. Nompelis and Schwartzentruber, AIAA Paper, 2014

NASA Space Technology Research Fellowship





- Parallel implementation of the DSMC method developed at the University of Minnesota.
  - 3-Level Cartesian Mesh
  - Automated Mesh
    Refinement
  - Models for dissociation, vibrational/rotational relaxation.



2. Nompelis and Schwartzentruber, AIAA Paper, 2014





 Parallel implementation of the DSMC method developed at the University of Minnesota.

MGDS2

- 3-Level Cartesian Mesh
- Automated Mesh
  Refinement
- Models for dissociation, vibrational/rotational relaxation.



2. Nompelis and Schwartzentruber, AIAA Paper, 2014

#### Some additional features have been added to the code specifically for this work.

- Initialization of simulation to CFD (using US3D).
- Subsonic Boundary
  Conditions
- Simple gas-surface interaction model
- Ablation modules

13









- NASA Space Technology Research Fellowship
- Some additional features have been added to the code specifically for this work.
  - Initialization of simulation to CFD (using US3D).







- Some additional features have been added to the code specifically for this work.
  - Initialization of simulation to CFD (using US3D).

- Subsonic Boundary
  Conditions
- Simple gas-surface interaction model
- Ablation modules







- NASA Space Technology Research Fellowship
- Some additional feature
  been added to the code
  specifically for this worl
  - Initialization of simula
    CFD (using US3D).
  - Subsonic Boundary
    Conditions
  - Simple gas-surface interaction model
  - Ablation modules





- Some additional features have been added to the code specifically for this work.
  - Initialization of simulation to CFD (using US3D).
  - Subsonic Boundary
    Conditions
  - Simple gas-surface interaction model
  - Ablation modules



MGDS2





- Methodology
  - DSMC
  - Surface Generation and Movement
  - Coupled Ablation
- Preliminary Validation and Applications
  - Simplified Darcy Flow
  - Flow-tube Permeability Experiments
- Future Work





- The objective is to develop a tool that is able to generate triangulated surface meshes of random arrays of "fibers" to use in microscale simulations.
- We have developed FiberGen with the following features:
  - It can generate 2D and 3D, random and non-random arrays of cylindrical fibers.
  - The user specifies a box size to fill with fibers, and a target porosity.
  - The user can prescribe properties such as nominal fiber diameter, fiber length, angular biases (i.e. orthotropy), as well as variance and distribution in each.
  - Triangulated surface is output in STL format.
  - It also includes a post-processor for analyzing the geometry.



### FiberGen







- Additionally, the code creates data structures for the mesh which are used for evolving the surface.
- Fiber data structures are written to HDF5 format for efficient I/O in massively parallel applications.

Example geometry having porosity of 0.85, and nominal fiber radius of 6 micron. The figure on the right is of the same geometry after having undergone a prescribed "ablation."



### **Surface Data Structure**







- The surface is composed of many fibers
- Each fiber is composed of discrete elements along the axis.
- Each element contains many *triangles* on their surface







 Now we would like to leverage this framework do develop an efficient method for evolving the surface under the influence of surface reactions (*ablation*)



We begin by computing and storing the volume of each *element* for each fiber.

| V1 | V2 | V3 | V4 | V5 |
|----|----|----|----|----|
|    |    |    |    |    |





| V1 | V2 | V3 | V4 | V5 |
|----|----|----|----|----|
|    |    |    |    |    |

 We then update the *element* volumes as the simulation progresses, and reactions on the *triangles* remove material from the fibers.



 An effective radius that yields a straight cylinder of the same volume is computed for each *element*.







 The radius on each side of each element is then defined as the average between it and it's neighbor.



- The surface is then reconstructed from conical frustum segments.



### **Surface Movement**





- The surface is then reconstructed from conical frustum segments.



 Note: there is error in the volume of the reconstruction, however we always track and operate on the *actual* volume, so mass is conserved.



### **Surface Movement**





This treatment is able to replicate some of the dominant morphologies we observe at the micro-scale.

- non-uniform thinning
- "needling"









- This reconstruction method could be thought of as a Axisymmetric Volume of Fluid (VoF) approach.
- **Benefits**:
  - Relatively easy to implement
  - Error in volume is small and bounded for our work (<1%)</li>
  - Extending code to modeling fiber material response would be (fairly) straightforward (i.e. solving the heat conduction equation is quasi-1D).
  - Surface reconstruction is very fast
- Limitations:
  - Limited to axisymmetric shapes
  - Not easily extensible to tomography-generated surfaces





- Methodology
  - DSMC
  - Surface Generation and Movement
  - Coupled Ablation
- Preliminary Validation and Applications
  - Simplified Darcy Flow
  - Flow-tube Permeability Experiments
- Future Work
- **Conclusions**

## **Mas-Surface Interaction Modeling**

- In DSMC, the gas surface interaction is modeled by determining the probability that a gas particle will react if it strikes a surface
- For our current analysis, we use a temperature dependent probability for carbon oxidation given by Park.
- Devising more sophisticated treatments for the GSI is an active area of research.

 $C(s) + O_2(a) \rightarrow CO(a) + O(a)$ 



$$\alpha = \frac{1.43 \times 10^{-3} + 0.01 \exp(-1450/T)}{1 + 2 \times 10^{-4} \exp(13,000/T)}.$$

Park, Nonequilibrium Hypersonic Aerothermodynamics, 1991



### **Coupled Ablation**





 We have found (so far) that the surface update is generally very fast, therefore we update fairly frequently since there is little to no penalty









Ablation of a single fiber



Ablation of a porous geometry







- Methodology
  - DSMC
  - Surface Generation and Movement
  - Coupled Ablation
- Preliminary Validation and Applications
  - Simplified Darcy Flow
  - Flow-tube Permeability Experiments
- Future Work





- To begin, we seek to validate the approach for simple Stoke's flow through idealized porous medium.
  - We compare to both CFD, and models (analytical and empirical) in the literature
  - CFD augmented with Maxwell slip model







- Results show good agreement with literature.
  - ...as well as intuitive departures due to
    Knudsen number effects, as well as
    microstructure changes









- Now we want to look at more relevant geometries and conditions.
- Flow-tube experiments performed at NASA Ames.
- Experimental data well-fit by Klinkenberg form of Darcy equation.
- Material permeability tested at various pressures and temperatures
- Significant variation in permeability observed due to rarefied effects.

$$F = \frac{4\mu \dot{m}RTL}{\pi D^2 M \Delta P} = K_0(P_{\rm av} + b)$$



Marschall and Milos, JTHT, 1998





- Simulations were performed near the low end of the pressure range (~ 1kPa) of the experiments.
- Gas used was N2 at room temperature.
- Size of volume was 200x50x50 microns with a porosity of ~0.85
- Two nominal fiber radii were used
  - 6 micron (single fiber)
  - 10 micron (fiber bundle)
- Several fiber orientations were simulated





### **Preliminary Results**





- Fiber orientation is defined as the angle of the fiber with "pressing" plane.
- Error bars are those reported in the paper for all runs.





- Caveats:
  - Seems to be large scatter in the experimental data



- Simulated geometry likely doesn't constitute a "representative volume element"
- Experiment gas was air
- Takeaways:
  - Microstructure is important
  - We're in the ballpark!





#### **Future Work**



#### FiberGen

- Add analysis toolbox for computing geometric properties and statistics.
- Woven geometries

#### **Gas-Surface Modeling**

- Develop new gas-surface interaction model that takes better advantage of the improved fidelity of DSMC
  - "Active site" based approach
- Incorporate probabilities from Molecular Dynamics simulations



Poovathingal, et al., J. Phys. Chem., 2013

#### **Experimental Validation**

 Interested in performing targeted validation experiments in the NASA Flow-tube facility on "simple(r)" microstructure



#### Simulate Stuff!...(cool stuff)



Stern et. al., Gordon Research Conf, 2013





- The author would like to thank the NASA Office of the Chief Technologist for supporting this work through the NASA Space Technology Research Fellowship.
- Additionally, the author would like to thank the many researchers at NASA Ames and the U of M who were generous enough to lend their support, and tremendous expertise on this and other topics:

David Hash

Mike Barnhardt

**Dinesh Prabhu** 

Raj Venkatapathy

#### U of M

Pramod Subbareddy Joe Brock Ioannis Nompelis

#### Mike Wright

NASA

Nagi Mansour Francesco Panerai Steve Sepka Jim Arnold *et al....* 

# Questions?