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   Reversion of the   exon-trapArabidopsis rpn12a-1
mutation by an intragenic suppressor that weakens the chimeric

 5’ splice site [v2; ref status: indexed, http://f1000r.es/18y]
Jasmina Kurepa,  Yan Li, Jan A Smalle
Plant Physiology, Biochemistry, Molecular Biology Program, Department of Plant and Soil Sciences, University of Kentucky, Kentucky, 40546,
USA

Abstract
 In the  26S proteasome mutant , anBackground: Arabidopsis rpn12a-1

exon-trap T-DNA is inserted 531 base pairs downstream of the  STOPRPN12a
codon. We have previously shown that this insertion activates a STOP
codon-associated latent 5' splice site that competes with the polyadenylation
signal during processing of the pre-mRNA. As a result of this dual input from
splicing and polyadenylation in the  mutant, two  transcriptsrpn12a-1 RPN12a
are produced and they encode the wild-type RPN12a and a chimeric
RPN12a-NPTII protein. Both proteins form complexes with other proteasome
subunits leading to the formation of wild-type and mutant proteasome versions.
The net result of this heterogeneity of proteasome particles is a reduction of
total cellular proteasome activity. One of the consequences of reduced
proteasomal activity is decreased sensitivity to the major plant hormone
cytokinin.

 We performed ethyl methanesulfonate mutagenesis of  andMethods: rpn12a-1
isolated revertants with wild-type cytokinin sensitivity.

 We describe the isolation and analyses of suppressor of  (Results: rpn12a-1
). The  mutation is intragenic and located at the fifth position of thesor1 sor1

chimeric intron. This mutation weakens the activated 5' splice site associated
with the STOP codon and tilts the processing of the  mRNA backRPN12a
towards polyadenylation.

 These results validate our earlier interpretation of the unusualConclusions:
nature of the  mutation. Furthermore, the data show that optimal 26Srpn12a-1
proteasome activity requires RPN12a accumulation beyond a critical threshold.
Finally, this finding reinforces our previous conclusion that proteasome function
is critical for the cytokinin-dependent regulation of plant growth.

  Referee Status:

 Invited Referees

 

  
version 2
published
18 Jun 2013

version 1
published
25 Feb 2013

 1 2

report

report

report

report

 25 Feb 2013, :60 (doi: )First published: 2 10.12688/f1000research.2-60.v1
 18 Jun 2013, :60 (doi: )Latest published: 2 10.12688/f1000research.2-60.v2

v2

Page 1 of 11

F1000Research 2013, 2:60 Last updated: 05 MAR 2015

http://f1000research.com/articles/2-60/v2
http://f1000research.com/articles/2-60/v2
http://f1000research.com/articles/2-60/v2
http://f1000r.es/18y
http://f1000research.com/articles/2-60/v2
http://f1000research.com/articles/2-60/v1
http://dx.doi.org/10.12688/f1000research.2-60.v1
http://dx.doi.org/10.12688/f1000research.2-60.v2
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.2-60.v2&domain=pdf&date_stamp=2013-06-18


F1000Research

 Jan A Smalle ( )Corresponding author: jsmalle@uky.edu
 Kurepa J, Li Y and Smalle JA. How to cite this article: Reversion of the   exon-trap mutation by an intragenicArabidopsis rpn12a-1

  2013, :60 (doi: suppressor that weakens the chimeric 5’ splice site [v2; ref status: indexed, ]http://f1000r.es/18y F1000Research 2
)10.12688/f1000research.2-60.v2

 © 2013 Kurepa J . This is an open access article distributed under the terms of the , whichCopyright: et al Creative Commons Attribution Licence
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associated with the article
are available under the terms of the  (CC0 1.0 Public domain dedication).Creative Commons Zero "No rights reserved" data waiver

 This work was supported by grants from NIFA/NRI (2005-35304-16043), NSF (IOS-0919991) and the Kentucky TobaccoGrant information:
Research and Development Center.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

 Competing interests: No relevant competing interests were disclosed.

 25 Feb 2013, :60 (doi: ) First published: 2 10.12688/f1000research.2-60.v1
 06 Mar 2013, :60 (doi: )First indexed: 2 10.12688/f1000research.2-60.v1

Page 2 of 11

F1000Research 2013, 2:60 Last updated: 05 MAR 2015

http://f1000r.es/18y
http://dx.doi.org/10.12688/f1000research.2-60.v2
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://dx.doi.org/10.12688/f1000research.2-60.v1
http://dx.doi.org/10.12688/f1000research.2-60.v1


Introduction
The 26S proteasome (26SP) is a multisubunit protease responsible 
for the degradation of proteins that are covalently labeled with a 
polyubiquitin (Ub) chain via the combined action of Ub activating 
enzymes, Ub conjugating enzymes and Ub ligases1. The 26SP is 
localized in the cytosol and the nucleus, and it degrades proteins 
involved in many signaling and metabolic pathways1,2. The 26SP 
is also essential for the destruction of misfolded proteins that are 
generated by mistranslations and during stress2–4.

Studies with proteasome mutants in Arabidopsis have revealed 
that the 26SP is required for both male and female gametogenesis, 
confirming its essential role in plant growth and development2,5,6. 
Partial loss‑of‑function mutants, on the other hand, have been in‑
dispensable for uncovering pathways in which key components are 
regulated by proteasome‑dependent degradation7–13.

The rpn12a‑1 mutant, which carries an insertion in the RPN12a 
gene (At1g64520) encoding the regulatory particle non‑ATPase 
subunit (RPN) 12a, was isolated from a collection of exon‑trap 
lines14,15. These lines were generated by transforming Arabidopsis 
plants (C24 accession) with a T‑DNA construct that contains a pro‑
moterless neomycin phosphotransferase gene (NPTII) without a 
starting methionine which is preceded by a 3´ splice site of the first 
intron of the apurinic endonuclease (APR)14. Kanamycin‑resistant 
exon‑trap lines are therefore predicted to have the APR‑NPTII con‑
struct inserted downstream of an active promoter either in frame with 
the coding region or in a position that allows the formation of a novel, 
chimeric intron. The rpn12a‑1 mutation is unusual because the 
T‑DNA is inserted downstream of the RPN12a gene, and both the 
full‑length RPN12a cDNA and a chimeric RPN12a‑NPTII cDNA 
are produced15. This suggested that two types of cis signals involved 
in the pre‑mRNA processing of RPN12a are competing. Because the 
wild‑type transcript is produced in the mutant and is stable enough 
to be detected using routine RNA analytical procedures, the poly(A) 
signal of the RPN12a gene must be intact and active. On the other 
hand, since a chimeric RPN12a‑NPTII transcript is also produced, 
the 3´ splice site of the inserted T‑DNA must have recruited a latent 
5´ splice site in the RPN12a gene. We have previously shown that 

this predicted latent 5´ splice site is STOP codon‑associated, and that 
the pre‑mRNA splicing of the chimeric intron leads to the produc‑
tion of the fusion mRNA15. As a result of the action of these two op‑
posing pre‑mRNA processing mechanisms, one part of the mRNA 
species transcribed from the mutant RPN12a gene is translated into 
a functional RPN12a protein, and the other is translated into a chi‑
meric RPN12a‑NPTII fusion protein. Because both RPN12a forms 
are incorporated into the 26SP, the total proteasome activity in these 
mutant seedlings is reduced, but not abolished15.

The reduction of 26SP activity in rpn12a‑1 caused a pleiotropic 
phenotype, which included altered responses to cytokinins15.  
Cytokinins are plant hormones that are essential for every aspect of 
growth and development16–19. For example, cytokinins control the 
development of meristems and vasculature, and play an important 
role in senescence and nutrient allocation19,20. To gain better insight 
into the cytokinin insensitivity of rpn12a‑1 seedlings, we screened 
for suppressor mutants that have a wild‑type cytokinin growth re‑
sponse. Here we describe the intragenic suppressor of rpn12a‑1 
(sor1) that disrupts the latent 5´ STOP‑associated splice site. 
Sor1 reduced the expression of the RPN12a‑NPTII fusion mRNA 
with a concomitant increase in RPN12a transcript level. As a re‑
sult, RPN12a accumulation in sor1 seedlings was identical to the 
wild‑type and was accompanied by wild‑type cytokinin sensitivity. 
These results validate our transcript processing interpretation of the 
rpn12a‑1 exon‑trap effect and accentuate the importance of optimal 
RPN12a expression for cytokinin signaling. 

Materials and methods 
Plant material and growth conditions
The Arabidopsis thaliana rpn12a‑1 mutant in the C24 background 
was described by us previously15. To grow plants on soil and in 
axenic cultures, seeds were surface‑sterilized in 70% ethanol fol‑
lowed by 50% bleach and plated on MS/2 medium that contained 
half‑strength MS salts (pH 5.7, Sigma, St. Louis, MO) and 1% (w/v) 
sucrose. The seeds were kept for 4 days in darkness at 4°C, and ei‑
ther plated on MS/2 or on soil (Miracle‑Gro potting mix:Perlite at 
1:1 ratio). Plants were grown in continuous light at 22°C. 

EMS mutagenesis and screening for rpn12a‑1 suppressors
The rpn12a‑1 seeds were pre‑incubated in 1.0% KCl for 12 hours, 
and then mutagenized for 5 hours in 100 mM sodium phosphate 
buffer (pH 5) containing 5% DMSO and 80 mM ethyl methanesul‑
fonate (EMS; Sigma‑Aldrich, St. Louis, MO). Seeds were washed 
twice in 100 mM sodium thiosulphate and then twice in distilled wa‑
ter. Seeds were incubated and chilled in 0.1% agar and sown directly 
to soil. All the seeds in the M2 generation were pooled upon harvest, 
surface‑sterilized and plated on the MS/2 medium containing 0.1 µM 
kinetin (6‑furfurylaminopurine; obtained from Duchefa Biochemie 
by Gold Biotechnology, St. Louis, MO, USA). The putative suppres‑
sor mutants were transferred from the selection medium onto MS/2 
medium to allow recovery, and were then transferred to soil. 

Phenotypic analyses of sor1 
Cytokinin treatments were as previously described15. For fresh weight 
analyses, seedlings were germinated and grown on kanamycin‑ 
containing media, and their weight was measured in pools of  
5 seedlings after 24 days of growth. Kanamycin monosulfate was 
obtained from Gold Biotechnology.

      Changes from Version 1

We would like to thank the reviewers for their time and comments. 
In response to Dr. Citovsky’s review, we did the qPCR analyses of 
the RPN12a-related and proteasome subunit gene transcript levels. 
The results indeed improved our understanding of the strength of 
the suppressor mutation and also allowed us to provide a clear 
answer to the third question posted by Dr. Masson. As suggested, 
we also included more information about the suppressor screen. We 
did not specify the number of mutants isolated since many of these 
lines have not yet been thoroughly analyzed and await confirmation. 
However, the sor1 mutant described here was the only mutant with 
a near complete reversion to the wild-type phenotype and this was 
clarified in the methods section. In reply to the second question by 
Dr. Masson: although we see its merit, we did not do the suggested 
experiment with the suppressed RPN12a gene. A new author, Yan Li 
who conducted the qPCR analyses, has been added to this version.

See referee reports
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Expression analyses 
Total RNA was isolated from Arabidopsis seedlings grown in liq‑
uid Gamborg’s B5 medium with 1% sucrose (pH 5.7) using TRIzol 
reagent (Invitrogen, Carlsbad, CA, USA). The iScript kit (BioRad, 
Hercules, CA, USA) and 1 µg of TURBO DNAse (Ambion, Austin, 
TX, USA) pre‑treated total RNA was used for the synthesis of the 
first‑strand cDNA. For the RT‑PCR experiments, the primers used 
for the amplification of wild‑type cDNA fragment (306 bp in length) 
were F1: 5´‑GGGTGCCTATAACCGTGTGTTGAGTGCTAG‑3´ 
and R1: 5´‑ATACGCTCCAGCTCTCTGGCGTAGCTTAGA‑3´. 
The RPN12A‑NPTII fusion transcript fragment was amplified with 
F1 and NPTII primer R2: 5´‑CCCCTGCGCTGACAGCCCG‑
GAACA‑3´. PBA1 (At4g31300) was amplified using forward and 
reverse primers that contained the first and last 25 bp of the cDNA. 
The primer set used to amplify the Arabidopsis elongation factor 1‑α 
(EF‑1‑α; At5g60390) was previously described9. For the quantitative 
RT‑PCR (qPCR), primers were designed using RealTime PCR tool 
(Integrated DNA Technologies, Coralville, IA, USA). The RPN12a 
fragment was amplified using qRPN12a F 5´‑AGTTCGAGAGATTCAA‑
GGCG‑3´ and qRPN12a R 5´‑TCCTCGGTTTTGACGCTTAG‑3´ 
primers. The RPT2a (At4g29040) fragment was amplified by us‑
ing 5´‑AATCGGCAAGGAGATCGGAAACCT‑3´ and 5´‑TCGC‑
CACAAACTCTTCCTCCATCA‑3´ as F and R primers, respectively. 
Previous analyses21 have shown that the best reference gene for the 
qPCR analyses of proteasome mutants is ACT2 (At3g18780)23. The 
qPCR assays were done as previously described22.

For immunoblotting analyses, total proteins were isolated, separated 
and transferred to nitrocellulose membranes as described15. Rabbit 
polyclonal anti‑RPN12a and anti‑PBA1 antibodies (used at 1:1000 
dilution) were purchased from Enzo Life Sciences (Plymouth Meeting, 
PA, USA). The rabbit, polyclonal anti‑NPTII antibodies (used at 
1:1000) were obtained from Abcam (Cambridge, MA, USA).

Analyses of the sor1 mutation
Genomic DNA fragments from rpn12a‑1 and sor1 were ampli‑
fied using F1 and R2 primers and sequenced using dye‑termination 
chemistry (Perkin‑Elmer, Foster City, CA, USA) at Advanced Ge‑
netic Technologies Center (AGTC, KY, USA). Sequences were 
analyzed using Vector NTI Suite (Invitrogen, Carlsbad, CA).

Results and discussion
Isolation of an intragenic rpn12a‑1 suppressor
To obtain rpn12a‑1 suppressors, we mutagenized seeds with EMS 
and plated ~50,000 M2 seeds on a medium with 0.1 µM of the cy‑
tokinin kinetin. Because wild‑type plants grown on 0.1 µM kine‑
tin are chlorotic and smaller compared to rpn12a‑115, we selected 
14‑day‑old M2 seedlings which were pale green and small as puta‑
tive suppressors. These putative suppressors were first transferred 
to cytokinin‑free media to recover, and subsequently to soil for 
self‑pollination. We isolated several classes of candidate mutants 
with varying degrees in rpn12a‑1 suppression. However, only one 
of these mutant lines displayed a near‑complete reversion to the 
wild‑type phenotype. Here we describe the molecular analyses of 
this line that we named suppressor of rpn12a‑1 1 (sor1).

Analyses of the M3 generation showed that in suppressor of  
rpn12a‑1 1 (sor1), all visible phenotypes of rpn12a‑1 were reverted 

back to the wild‑type (Figure 1). For example, the rpn12a‑1 mutant 
has a smaller rosette than the wild‑type and a reduced leaf initiation 
rate15. The sor1 plants had a leaf number and rosette size similar to 
the C24 wild‑type plants (Figure 1). The sor1 mutant plants also 
displayed wild‑type sensitivity to cytokinin. After three weeks of 
growth on a medium with 0.2 µM kinetin, both wild‑type and sor1 
seedlings were chlorotic and their growth was severely inhibited, 
while the rpn12a‑1 seedlings were green and larger (Figure 1). 

Next, we analyzed the kanamycin (Km) resistance of the sor1 mu‑
tant line. The Km resistance of the rpn12a‑1 mutant is completely 
linked to the proteasome‑related phenotypes and thus, all the prog‑
eny of a plant homozygous for the rpn12a‑1 mutation should be Km 
resistant. All sor1 seedlings were indeed resistant to Km, but the 
levels of resistance were significantly lower compared to rpn12a‑1 
(Figure 2). While Km did not affect the growth of rpn12a‑1 seed‑
lings, both root and shoot growth of sor1 were partially inhibited 
(Figure 2). We did not observe any attenuation of Km resistance 
over several generations, a phenomenon that has been documented 
for a number of T‑DNA insertion mutant collections23 (see also the 
Salk Institute Genomic Analysis Laboratory Arabidopsis sequence 
indexed T‑DNA insertion Project FAQ). An explanation for the 
change in Km tolerance in sor1 is that the mutation affects the ex‑
pression of the NPTII gene which is an integral part of the exon‑trap 
(Figure 3a and Babiychuk et al. 199714). When the sor1 mutant was 
outcrossed to the C24 wild type, none of the plants of the F2 pop‑
ulation displayed an rpn12a‑1 phenotype, indicating that sor1 is  
intragenic and tightly linked with the rpn12a‑1 mutation. 

sor1 suppresses the accumulation of the RPN12a‑NPTII 
fusion transcript 
To obtain further insight into the nature of the sor1 mutation, we ana‑
lyzed the expression of the RPN12a gene and the accumulation of 
the RPN12a protein. RT‑PCR analyses showed that in sor1, the RP‑
N12aNPTII fusion transcript was not detectable and that the RPN12a 
cDNA level was comparable to the wild type (Figure 3b). Quantitative 
RT‑PCR (qPCR) analyses confirmed that there was no statistically 
significant difference between RPN12a levels in sor1 and the wild 

Figure 1. Decreased sensitivity of rpn12‑1 to cytokinins is 
restored by the sor1 mutation. Plants were grown for three weeks 
on MS/2 media (control) or MS/2 media containing 0.2 µM kinetin in 
continuous light. Representative seedlings are shown.
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Immunoblotting analyses using anti‑RPN12a antibodies showed 
that the sor1 mutant does not accumulate the RPN12a‑NPTII fusion 
protein (Figure 4). The RPN12a abundance in sor1 was increased 
compared to rpn12a‑1 and similar to the wild‑type. We were 
also unable to detect the RPN12a‑NPTII fusion in sor1 by using  

Figure 2. The sor1 mutation leads to a partial loss of kanamycin 
resistance. (a) Wild-type (C24), rpn12a‑1 and sor1 seeds were 
sown and grown on MS/2 media containing 35 µg/ml kanamycin 
(Km). Representative plants were photographed after two weeks 
of growth. (b) Fresh weight (FW) of seedlings grown on Km media 
was measured after two weeks of growth. FW of the wild-type plants 
grown on control MS/2 media was calculated as 100%. Seedlings 
were measured in pools of five, and mean ± SD is presented (n≥7).

type (Figure 3c). The fusion transcript, which was not detected in the 
C24 line, was present in the sor1 plants at a ratio of 1:15,000 compared 
to the rpn12a‑1 mutant (relative transcript levels were calculated to 
be 1.0 ± 1.2 and 15, 856 ± 542 for sor1 and rpn12a‑1, respectively).

Reductions in proteasome activity typically lead to the activa‑
tion of a feedback mechanism that induces the transcription of 
proteasome subunit genes. This mechanism is operational in all  
eukaryotes, including yeasts, Drosophila, mammals and plants7,24–28. 
Due to this global feedback up‑regulation of 26SP subunit genes, 
the 20S proteasome subunit β1 (PBA1) and 26SP regulatory par‑
ticle subunit RPT2a transcripts were more abundant in rpn12a‑1 
compared to the wild type (Figure 3b and 3c). RT‑PCR analyses 
suggested and qPCR analyses confirmed that the proteasome subu‑
nit transcript levels in sor1 were reduced compared to rpn12a‑1, but 
still increased compared to the wild‑type (Figure 3b and 3c), indi‑
cating that the sor1 mutation did not lead to a complete suppression 
of the rpn12a‑1 mutation.

Figure 3. The sor1 mutation reduces the expression of the 
RPN12a‑NPTII fusion transcript. (a) Simplified schematic 
representation of the RPN12a gene and the inserted T-DNA in the 
rpn12a‑1 mutant15. The T-DNA contains the first intron and second 
exon of the apurinic endonuclease gene (ARP) fused in frame to 
the neomycin phosphotransferase II (NPTII) coding region. Exons 
are represented by gray boxes and introns as lines. Positions 
of the forward (F1) and reverse (R1 and R2) primers used for the 
RT-PCR and qRPN12a F and R primers used for qPCR are indicated.  
(b) Total RNA was extracted, reverse transcribed and used to amplify 
the RPN12a‑NPTII (42 cycles) and wild-type RPN12a transcripts  
(35 cycles). The primers used for the reaction are indicated. 
Proteasome β subunit 1 (PBA1) elongation factor 1-α (EF‑1‑α) are 
controls. (c) Quantitative real-time RT-PCR analyses of RPN12a and 
RPT2a levels in C24, rpn12a‑1 and sor1 seedlings. The reference 
gene was ACT2. The transcript levels in C24 were assigned the 
value of 1. The data represent average relative quantity (RQ) values 
of three replicates, and the bars denote the RQMin to RQMax. The 
difference in transcript levels between C24 and the mutants is marked 
(****, P < 0.0001; ANOVA with Bonferroni multiple comparison test).
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Taking into account both the result of the Km resistance tests  
(Figure 2) and the expression data (Figure 3 and Figure 4),  
we concluded that the sor1 mutation strongly but incompletely sup‑
presses the formation of the RPN12a‑NPTII fusion transcript which 
was sufficient to restore 26SP function back to the wild‑type level.

sor1 weakens the STOP codon‑associated 5´ splice site in 
rpn12a‑1
To find the mutation that causes the sor1 phenotype, we amplified and 
compared the sequences of the RPN12a‑NPTII chimeric gene from 
sor1 and rpn12a‑1. No mutations were found in NPTII, indicating 
that the loss of Km resistance and NPTII abundance was not caused 
by any disruption of the NPTII coding region. We also did not detect 
any changes in the RPN12a coding region, but did find a single nu‑
cleotide change immediately downstream of the RPN12a STOP co‑
don (Figure 5). Sequencing of the entire region between RPN12a and 
NPTII did not reveal any additional mutations, confirming that the 
RPN12a STOP codon‑associated G to A mutation was indeed sor1. 

To analyze how this G‑to‑A substitution leads to reversion of the 
rpn12a‑1 phenotype, we manually compared the consensus se‑
quence for 5´ splice sites in Arabidopsis29 with the sequence of 
the exon/intron junction that precedes the RPN12a STOP codon in 
rpn12a‑1 and sor1 (Figure 6a). The alignment revealed that both 
the intron and exon residues adjoining the splice junction of the 
mutants match the consensus well. Interestingly, the sor1 mutation 
changes a consensus G at the fifth position of the intron into an 
A, thus weakening the 5´ splice site of the chimeric intron. The 
G at the position +5 is thought to be required for efficient binding 
of U1snRPN29. Reduced splicing of the chimeric intron between 
the RPN12a and NPTII coding regions is predicted to lead to a re‑
duced accumulation of the RPN12a‑NPTII transcript and protein  
(Figure 6b and 6c). The combination of reduced intron splicing 
and unaffected 3´ end processing is therefore predicted to lead to 
a dramatic shift in favor of the formation of the wild‑type RPN12a 
transcript, and thus to the accumulation of the RPN12a protein back 
to the wild‑type level, which is what we observed in sor1 seedlings. 

Conclusions
Collectively, the results shown here validate our earlier interpreta‑
tion of the effects of the rpn12a‑1 mutation on RPN12a expression 
and 26SP function15. In the original study, we proposed that the 
partial loss of 26SP function in rpn12a‑1 seedlings is caused by 
the competition between RPN12a and RPN12a‑NPT‑II transcript 

Figure 4. The RPN12a‑NPTII fusion protein is absent in the sor1 
mutant. Total protein was isolated from two-week-old wild-type 
(C24), rpn12a‑1 and sor1 seedlings and used for immunoblotting 
analyses with RPN12, NPT and PBA1 antisera. In addition to the 
RPN12a and RPN12a-NPTII fusion proteins, the anti-RPN12 sera 
also recognized two proteins (cross) that are not related to RPN12a. 
Ponceau S-stained membrane showing the large RuBisCO subunit 
(LSU) is presented as a loading control. The size of the proteins 
used as molecular mass standards is shown on the right-hand 
side.

anti‑NPTII antisera (Figure 4). In the rpn12a‑1 mutant, a fraction 
of the assembled 26SP contains the fusion protein leading to a de‑
crease in total cellular 26SP activity and a compensatory increase in 
the expression of proteasome subunit genes15,28. In the sor1 mutant, 
with no or little fusion protein, 26SP function is expected to be re‑
stored back to the wild‑type level. Indeed, immunoblotting analyses 
with the anti‑PBA1 antibodies showed that the abundance of the 
20S proteasome subunit PBA1 in sor1 seedlings was comparable 
to that of the wild‑type, indicating that proteasome activity was re‑
stored to optimal levels and that feedback up‑regulation of protea‑
some subunit genes was halted (Figure 4). 

Figure 5. Sequence alignment of the RPN12a gene (At1g64520) in rpn12a‑1 and sor1. Genomic DNA fragment was amplified using  
F1 and R2 primers (presented in Figure 3), sequenced and the sequence was aligned using Vector NTI suite. Alignment of the region starting 
with base pair 1615 and ending with base pare 1804 of the annotated RPN12a gene is presented using BoxShade 3.2. The red arrowhead 
points to the sor1 mutation and the RPN12a STOP codon is boxed in red.
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processing that leads to a decrease of RPN12a protein levels and 
thus, to a decrease in the abundance of wild‑type 26SP particles15. 
Our finding that suppression of RPN12a‑NPTII accumulation was 
sufficient to restore RPN12a accumulation and reverse the plant de‑
velopment and cytokinin sensitivity back to the wild‑type level vali‑
dates the proposed interpretation and accentuates the importance 
of optimal 26SP abundance for Arabidopsis growth and cytokinin 
regulation1,2,15,22,30.

Author contributions
JK and JAS designed the experiments, performed all experi‑
ments except the qPCR analyses, analyzed the data, and wrote the  

Figure 6. The sor1 mutation weakens the cryptic 5´ splice site that includes the STOP codon of the RPN12a gene. (a) Sequence 
alignment of the terminal exonic tetranucleotides and proximal intronic hexanucleotides of the Arabidopsis consensus sequence29, and 
rpn12a‑1 and sor1 sequences surrounding the STOP codon. Numbers next to the nucleotides of the consensus sequence refer to the 
frequency (%) for the noted nucleotide to be found at a given position. (b), (c) Schematic representations of splicing types in rpn12a‑1 (b) 
and sor1 (c). aa, amino acids.

manuscript. YL performed the qPCR analyses and critically revised 
the second version of the manuscript.

Competing interests
No relevant competing interests were disclosed.

Grant information
This work was supported by grants from NIFA/NRI (2005‑35304‑
16043), NSF (IOS‑0919991) and the Kentucky Tobacco Research 
and Development Center.

The funders had no role in study design, data collection and  
analysis, decision to publish, or preparation of the manuscript.

Page 7 of 11

F1000Research 2013, 2:60 Last updated: 05 MAR 2015



References

1. Smalle J, Vierstra RD: The ubiquitin 26S proteasome proteolytic pathway.  
Annu Rev Plant Biol. 2004; 55: 555–90.  
PubMed Abstract | Publisher Full Text 

2. Kurepa J, Smalle JA: Structure, function and regulation of plant proteasomes. 
Biochimie. 2008; 90(2): 324–35.  
PubMed Abstract | Publisher Full Text 

3. Kurepa J, Wang S, Li Y, et al.: Proteasome regulation, plant growth and stress 
tolerance. Plant Signal Behav. 2009; 4(10): 924–7.  
PubMed Abstract | Publisher Full Text | Free Full Text 

4. Kurepa J, Smalle JA: To misfold or to lose structure? Detection and 
degradation of oxidized proteins by the 20S proteasome. Plant Signal Behav. 
2008; 3(6): 386–88.  
PubMed Abstract | Publisher Full Text | Free Full Text 

5. Book AJ, Smalle J, Lee KH, et al.: The RPN5 subunit of the 26S proteasome 
is essential for gametogenesis, sporophyte development, and complex 
assembly in Arabidopsis. Plant Cell. 2009; 21(2): 460–78.  
PubMed Abstract | Publisher Full Text | Free Full Text 

6. Gallois JL, Guyon‑Debast A, Lecureuil A, et al.: The Arabidopsis proteasome 
RPT5 subunits are essential for gametophyte development and show 
accession‑dependent redundancy. Plant Cell. 2009; 21(2): 442–59.  
PubMed Abstract | Publisher Full Text | Free Full Text 

7. Kurepa J, Toh‑E A, Smalle JA: 26S proteasome regulatory particle mutants have 
increased oxidative stress tolerance. Plant J. 2008; 53(1): 102–14.  
PubMed Abstract | Publisher Full Text 

8. Kurepa J, Wang S, Li Y, et al.: Loss of 26S proteasome function leads to 
increased cell size and decreased cell number in Arabidopsis shoot organs. 
Plant Physiol. 2009; 150(1): 178–89.  
PubMed Abstract | Publisher Full Text | Free Full Text 

9. Wang S, Kurepa J, Smalle JA: The Arabidopsis 26S proteasome subunit RPN1a 
is required for optimal plant growth and stress responses. Plant Cell Physiol. 
2009; 50(9): 1721–25.  
PubMed Abstract | Publisher Full Text 

10. Ueda M, Matsui K, Ishiguro S, et al.: The HALTED ROOT gene encoding the 26S 
proteasome subunit RPT2a is essential for the maintenance of Arabidopsis 
meristems. Development. 2004; 131(9): 2101–11.  
PubMed Abstract | Publisher Full Text 

11. Brenner ED, Feinberg P, Runko S, et al.: A mutation in the proteosomal 
regulatory particle AAA‑ATPase‑3 in Arabidopsis impairs the light‑specific 
hypocotyl elongation response elicited by a glutamate receptor agonist, 
BMAA. Plant Mol Biol. 2009; 70(5): 523–33.  
PubMed Abstract | Publisher Full Text 

12. Sung DY, Kim TH, Komives EA, et al.: ARS5 is a component of the 26S 
proteasome complex, and negatively regulates thiol biosynthesis and arsenic 
tolerance in Arabidopsis. Plant J. 2009; 59(5): 802–13.  
PubMed Abstract | Publisher Full Text | Free Full Text 

13. Huang W, Pi L, Liang W, et al.: The proteolytic function of the Arabidopsis 26S 
proteasome is required for specifying leaf adaxial identity. Plant Cell. 2006; 
18(10): 2479–92.  
PubMed Abstract | Publisher Full Text | Free Full Text 

14. Babiychuk E, Fuangthong M, Van Montagu M, et al.: Efficient gene tagging in 
Arabidopsis thaliana using a gene trap approach. Proc Natl Acad Sci U S A. 
1997; 94(23): 12722–7.  
PubMed Abstract | Publisher Full Text | Free Full Text 

15. Smalle J, Kurepa J, Yang P, et al.: Cytokinin growth responses in Arabidopsis 
involve the 26S proteasome subunit RPN12. Plant Cell. 2002; 14(1): 17–32.  
PubMed Abstract | Publisher Full Text | Free Full Text 

16. Kyozuka J: Control of shoot and root meristem function by cytokinin.  
Curr Opin Plant Biol. 2007; 10(5): 442–6.  
PubMed Abstract | Publisher Full Text 

17. Dello Ioio R, Linhares FS, Sabatini S: Emerging role of cytokinin as a regulator 
of cellular differentiation. Curr Opin Plant Biol. 2008; 11(1): 23–7.  
PubMed Abstract | Publisher Full Text 

18. Shani E, Yanai O, Ori N: The role of hormones in shoot apical meristem 
function. Curr Opin Plant Biol. 2006; 9(5): 484–9.  
PubMed Abstract | Publisher Full Text 

19. Mok DW, Mok MC: Cytokinin metabolism and action. Annu Rev Plant Physiol 
Plant Mol Biol. 2001; 52: 89–118.  
PubMed Abstract | Publisher Full Text 

20. Gan S, Amasino RM: Inhibition of leaf senescence by autoregulated production 
of cytokinin. Science. 1995; 270(5244): 1986–8.  
PubMed Abstract | Publisher Full Text 

21. Wang S, Kurepa J, Hashimoto T, et al.: Salt stress‑induced disassembly of 
Arabidopsis cortical microtubule arrays involves 26S proteasome‑dependent 
degradation of SPIRAL1. Plant Cell. 2011; 23(9): 3412–27.  
PubMed Abstract | Publisher Full Text | Free Full Text 

22. Li Y, Kurepa J, Smalle J: AXR1 promotes the Arabidopsis cytokinin response 
by facilitating ARR5 proteolysis. Plant J. 2013; 74(1): 13–24.  
PubMed Abstract | Publisher Full Text 

23. Gao Y, Zhao Y: Epigenetic suppression of T‑DNA insertion mutants in 
Arabidopsis. Mol Plant. 2012; 6(2): 539–45.  
PubMed Abstract | Publisher Full Text | Free Full Text 

24. Chondrogianni N, Tzavelas C, Pemberton AJ, et al.: Overexpression of 
proteasome β5 assembled subunit increases the amount of proteasome and 
confers ameliorated response to oxidative stress and higher survival rates.  
J Biol Chem. 2005; 280(12): 11840–50.  
PubMed Abstract | Publisher Full Text 

25. Lee CS, Tee LY, Warmke T, et al.: A proteasomal stress response:  
pre‑treatment with proteasome inhibitors increases proteasome activity and 
reduces neuronal vulnerability to oxidative injury. J Neurochem. 2004;  
91(4): 996–1006.  
PubMed Abstract | Publisher Full Text 

26. Meiners S, Heyken D, Weller A, et al.: Inhibition of proteasome activity induces 
concerted expression of proteasome genes and de novo formation of 
mammalian proteasomes. J Biol Chem. 2003; 278(24): 21517–25.  
PubMed Abstract | Publisher Full Text 

27. Wójcik C, DeMartino GN: Analysis of Drosophila 26 S proteasome using RNA 
interference. J Biol Chem. 2002; 277(8): 6188–97.  
PubMed Abstract | Publisher Full Text 

28. Yang P, Fu H, Walker J, et al.: Purification of the Arabidopsis 26 S proteasome: 
biochemical and molecular analyses revealed the presence of multiple 
isoforms. J Biol Chem. 2004; 279(8): 6401–13.  
PubMed Abstract | Publisher Full Text 

29. Brown JW: Arabidopsis intron mutations and pre‑mRNA splicing. Plant J. 1996; 
10(5): 771–80.  
PubMed Abstract | Publisher Full Text 

30. Smalle J, Kurepa J, Yang P, et al.: The pleiotropic role of the 26S proteasome 
subunit RPN10 in Arabidopsis growth and development supports a  
substrate‑specific function in abscisic acid signaling. Plant Cell. 2003;  
15(4): 965–80.  
PubMed Abstract | Publisher Full Text | Free Full Text 

Page 8 of 11

F1000Research 2013, 2:60 Last updated: 05 MAR 2015

http://www.ncbi.nlm.nih.gov/pubmed/15377232
http://www.ncbi.nlm.nih.gov/pubmed/15377232
http://dx.doi.org/10.1146/annurev.arplant.55.031903.141801
http://www.ncbi.nlm.nih.gov/pubmed/17825468
http://www.ncbi.nlm.nih.gov/pubmed/17825468
http://dx.doi.org/10.1016/j.biochi.2007.07.019
http://www.ncbi.nlm.nih.gov/pubmed/19826220
http://www.ncbi.nlm.nih.gov/pubmed/19826220
http://dx.doi.org/10.4161/psb.4.10.9469
http://www.ncbi.nlm.nih.gov/pmc/articles/2801354
http://www.ncbi.nlm.nih.gov/pubmed/19704573
http://www.ncbi.nlm.nih.gov/pubmed/19704573
http://dx.doi.org/10.4161/psb.3.6.5376
http://www.ncbi.nlm.nih.gov/pmc/articles/2634309
http://www.ncbi.nlm.nih.gov/pubmed/19252082
http://www.ncbi.nlm.nih.gov/pubmed/19252082
http://dx.doi.org/10.1105/tpc.108.064444
http://www.ncbi.nlm.nih.gov/pmc/articles/2660617
http://www.ncbi.nlm.nih.gov/pubmed/19223514
http://www.ncbi.nlm.nih.gov/pubmed/19223514
http://dx.doi.org/10.1105/tpc.108.062372
http://www.ncbi.nlm.nih.gov/pmc/articles/2660631
http://www.ncbi.nlm.nih.gov/pubmed/17971041
http://www.ncbi.nlm.nih.gov/pubmed/17971041
http://dx.doi.org/10.1111/j.1365-313X.2007.03322.x
http://www.ncbi.nlm.nih.gov/pubmed/19321709
http://www.ncbi.nlm.nih.gov/pubmed/19321709
http://dx.doi.org/10.1104/pp.109.135970
http://www.ncbi.nlm.nih.gov/pmc/articles/2675745
http://www.ncbi.nlm.nih.gov/pubmed/19605416
http://www.ncbi.nlm.nih.gov/pubmed/19605416
http://dx.doi.org/10.1093/pcp/pcp105
http://www.ncbi.nlm.nih.gov/pubmed/15073153
http://www.ncbi.nlm.nih.gov/pubmed/15073153
http://dx.doi.org/10.1242/dev.01096
http://www.ncbi.nlm.nih.gov/pubmed/19412571
http://www.ncbi.nlm.nih.gov/pubmed/19412571
http://dx.doi.org/10.1007/s11103-009-9489-7
http://www.ncbi.nlm.nih.gov/pubmed/19453443
http://www.ncbi.nlm.nih.gov/pubmed/19453443
http://dx.doi.org/10.1111/j.1365-313X.2009.03914.x
http://www.ncbi.nlm.nih.gov/pmc/articles/2830867
http://www.ncbi.nlm.nih.gov/pubmed/17028202
http://www.ncbi.nlm.nih.gov/pubmed/17028202
http://dx.doi.org/10.1105/tpc.106.045013
http://www.ncbi.nlm.nih.gov/pmc/articles/1626615
http://www.ncbi.nlm.nih.gov/pubmed/9356517
http://www.ncbi.nlm.nih.gov/pubmed/9356517
http://dx.doi.org/10.1073/pnas.94.23.12722
http://www.ncbi.nlm.nih.gov/pmc/articles/25099
http://www.ncbi.nlm.nih.gov/pubmed/11826296
http://www.ncbi.nlm.nih.gov/pubmed/11826296
http://dx.doi.org/10.1105/tpc.010381
http://www.ncbi.nlm.nih.gov/pmc/articles/150548
http://www.ncbi.nlm.nih.gov/pubmed/17904411
http://www.ncbi.nlm.nih.gov/pubmed/17904411
http://dx.doi.org/10.1016/j.pbi.2007.08.010
http://www.ncbi.nlm.nih.gov/pubmed/18060829
http://www.ncbi.nlm.nih.gov/pubmed/18060829
http://dx.doi.org/10.1016/j.pbi.2007.10.006
http://www.ncbi.nlm.nih.gov/pubmed/16877025
http://www.ncbi.nlm.nih.gov/pubmed/16877025
http://dx.doi.org/10.1016/j.pbi.2006.07.008
http://www.ncbi.nlm.nih.gov/pubmed/11337393
http://www.ncbi.nlm.nih.gov/pubmed/11337393
http://dx.doi.org/10.1146/annurev.arplant.52.1.89
http://www.ncbi.nlm.nih.gov/pubmed/8592746
http://www.ncbi.nlm.nih.gov/pubmed/8592746
http://dx.doi.org/10.1126/science.270.5244.1986
http://www.ncbi.nlm.nih.gov/pubmed/21954463
http://www.ncbi.nlm.nih.gov/pubmed/21954463
http://dx.doi.org/10.1105/tpc.111.089920
http://www.ncbi.nlm.nih.gov/pmc/articles/3203425
http://www.ncbi.nlm.nih.gov/pubmed/23279608
http://www.ncbi.nlm.nih.gov/pubmed/23279608
http://dx.doi.org/10.1111/tpj.12098
http://www.ncbi.nlm.nih.gov/pubmed/22973063
http://www.ncbi.nlm.nih.gov/pubmed/22973063
http://dx.doi.org/10.1093/mp/sss093
http://www.ncbi.nlm.nih.gov/pmc/articles/3716301
http://www.ncbi.nlm.nih.gov/pubmed/15661736
http://www.ncbi.nlm.nih.gov/pubmed/15661736
http://dx.doi.org/10.1074/jbc.M413007200
http://www.ncbi.nlm.nih.gov/pubmed/15525353
http://dx.doi.org/10.1111/j.1471-4159.2004.02813.x
http://www.ncbi.nlm.nih.gov/pubmed/12676932
http://www.ncbi.nlm.nih.gov/pubmed/12676932
http://dx.doi.org/10.1074/jbc.M301032200
http://www.ncbi.nlm.nih.gov/pubmed/11739392
http://www.ncbi.nlm.nih.gov/pubmed/11739392
http://dx.doi.org/10.1074/jbc.M109996200
http://www.ncbi.nlm.nih.gov/pubmed/14623884
http://www.ncbi.nlm.nih.gov/pubmed/14623884
http://dx.doi.org/10.1074/jbc.M311977200
http://www.ncbi.nlm.nih.gov/pubmed/8953241
http://www.ncbi.nlm.nih.gov/pubmed/8953241
http://dx.doi.org/10.1046/j.1365-313X.1996.10050771.x
http://www.ncbi.nlm.nih.gov/pubmed/12671091
http://www.ncbi.nlm.nih.gov/pubmed/12671091
http://dx.doi.org/10.1105/tpc.009217
http://www.ncbi.nlm.nih.gov/pmc/articles/152342


F1000Research

Open Peer Review

  Current Referee Status:

Version 2

 01 July 2013Referee Report

doi:10.5256/f1000research.1618.r1037

 Patrick Masson
Department of Genetics, University of Wisconsin-Madison, Madison, WI, USA

This revised manuscript includes both a better description of the mutagenesis and screening strategy that
led to the isolation of  and a new experiment quantifying transcript levels. This addresses two of mysor1
initial questions. A transgenic-rescue experiment aimed at verifying that the mutation detected
immediately downstream of the RPN12a STOP codon truly corresponds to  has not been carried out.sor1
Although I still believe this would be useful to verify this conclusion, I also think that all other data lead us
to believe in the proposed model.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

 25 June 2013Referee Report

doi:10.5256/f1000research.1618.r1024

 Vitaly Citovsky
Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, Stony Brook,
NY, USA

The revised paper addresses my suggestion and strengthens the manuscript.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

Version 1

 06 March 2013Referee Report

doi:10.5256/f1000research.1151.r812

Page 9 of 11

F1000Research 2013, 2:60 Last updated: 05 MAR 2015

http://dx.doi.org/10.5256/f1000research.1618.r1037
http://dx.doi.org/10.5256/f1000research.1618.r1024
http://dx.doi.org/10.5256/f1000research.1151.r812


F1000Research

 Patrick Masson
Department of Genetics, University of Wisconsin-Madison, Madison, WI, USA

This manuscript nicely documents the molecular basis for an intragenic suppressor of the rpn12a-1
exon-trap mutation of , which weakens a chimeric 5’ splice site that fuses the  openArabidopsis RPN12
reading frame to the  coding region in the original mutation. These authors had previously shown NPTII
that the T-DNA insertion of  results in a competition between 3’ splicing of  RNA (using arpn12a-1  RPN12A
donor splice site that overlaps with the stop codon and the acceptor splice site upstream of its NPTII
coding region of the T-DNA) and its normal polyadenylation. They had suggested that a fraction of the
mutant transcripts encoded a non-functional RPN12A-NPTII fusion protein that, upon insertion into the
proteasome, altered its activity. Hence, in the original mutant, overall altered proteasome activity resulted
in pleiotropic phenotypes associated with cytokinin resistance compared to wild type. In this suppressor
line, a point mutation 5 nucleotides within the cryptic intron altered this competing splicing, thereby
restoring more efficient polyadenylation and production of enough functional RPN12a protein to restore
fully functional proteasome activity. Hence, this analysis confirms the initial interpretation of the source of
phenotypes associated with , and documents an interesting example of alteration throughrpn12a-1
mutation of a balance between 3’ splicing and polyadenylation of a precursor RNA.

The design of this work, protocols and results are well presented and justify the conclusions. However, I
had a few minor questions on this work:

How many suppressors were identified in this analysis? Were other intragenic suppressors
identified?

Considering the information provided here, one would suspect that sor1 is a dominant mutation. Is
it? If it is, has an experiment been carried out to show that a transgenic copy of the suppressed
rpn12a-1 sor rescues the cytokinin-resistance phenotype of rpn12a-1?

Analysis of kanamycin resistance in wild type C24, rpn2a-1 and sor1 seedlings showed that sor1
retains a reasonably high level of resistance compared to wild type (Fig 2). Yet, the molecular
characterization described in Figures 3 and 4 shows no evidence of NPTII transcript or protein
being produced in this suppressor. Is this a problem of experimental sensitivity? A brief discussion
of this observation should be included in the text.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

 27 February 2013Referee Report

doi:10.5256/f1000research.1151.r801

 Vitaly Citovsky

Page 10 of 11

F1000Research 2013, 2:60 Last updated: 05 MAR 2015

http://dx.doi.org/10.5256/f1000research.1151.r801


F1000Research

 Vitaly Citovsky
Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, Stony Brook,
NY, USA

This is a very nicely executed and clearly written work. The results are clear, and they support the authors’
conclusions and previously published hypotheses of proteasome involvement in cytokinin response. 

One potential enhancement would be to use qPCR to quantify the amount of transcripts, especially since
these data represent one of the major findings of the paper.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

Page 11 of 11

F1000Research 2013, 2:60 Last updated: 05 MAR 2015


	University of Kentucky
	UKnowledge
	6-18-2013

	Reversion of the Arabidopsis rpn12a-1 Exon-Trap Mutation by an Intragenic Suppressor that Weakens the Chimeric 5' Splice Site
	Jasmina Kurepa
	Yan Li
	Jan A. Smalle
	Repository Citation
	Reversion of the Arabidopsis rpn12a-1 Exon-Trap Mutation by an Intragenic Suppressor that Weakens the Chimeric 5' Splice Site
	Notes/Citation Information
	Digital Object Identifier (DOI)


	tmp.1430238082.pdf.sM177

