
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Computer Science Computer Science

2015

MiSFIT: Mining Software Fault Information and Types MiSFIT: Mining Software Fault Information and Types

Billy R. Kidwell
University of Kentucky, kidwell.bill@gmail.com

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Kidwell, Billy R., "MiSFIT: Mining Software Fault Information and Types" (2015). Theses and Dissertations--
Computer Science. 33.
https://uknowledge.uky.edu/cs_etds/33

This Doctoral Dissertation is brought to you for free and open access by the Computer Science at UKnowledge. It has
been accepted for inclusion in Theses and Dissertations--Computer Science by an authorized administrator of
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/cs_etds
https://uknowledge.uky.edu/cs
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained needed written permission statement(s)

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing

electronic distribution (if such use is not permitted by the fair use doctrine) which will be

submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and

royalty-free license to archive and make accessible my work in whole or in part in all forms of

media, now or hereafter known. I agree that the document mentioned above may be made

available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s thesis including all

changes required by the advisory committee. The undersigned agree to abide by the statements

above.

Billy R. Kidwell, Student

Dr. Jane Huffman Hayes, Major Professor

Dr. Miroslaw Truszczynski, Director of Graduate Studies

MISFIT

MINING SOFTWARE FAULT INFORMATION AND TYPES

DISSERTATION

A dissertation submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Computer Science in the College of

Engineering

at the University of Kentucky

By

Billy R. Kidwell

Lexington, Kentucky

Director: Dr. Jane Huffman Hayes, Professor of Computer Science

Lexington, Kentucky

2015

Copyright © Billy R. Kidwell 2015

ABSTRACT OF DISSERTATION

MISFIT

MINING SOFTWARE FAULT INFORMATION AND TYPES

As software becomes more important to society, the number, age, and

complexity of systems grow. Software organizations require continuous process

improvement to maintain the reliability, security, and quality of these software

systems. Software organizations can utilize data from manual fault classification

to meet their process improvement needs, but organizations lack the expertise or

resources to implement them correctly.

This dissertation addresses the need for the automation of software fault

classification. Validation results show that automated fault classification, as

implemented in the MiSFIT tool, can group faults of similar nature. The resulting

classifications result in good agreement for common software faults with no

manual effort.

To evaluate the method and tool, I develop and apply an extended change

taxonomy to classify the source code changes that repaired software faults from

an open source project. MiSFIT clusters the faults based on the changes. I

manually inspect a random sample of faults from each cluster to validate the

results. The automatically classified faults are used to analyze the evolution of a

software application over seven major releases. The contributions of this

dissertation are an extended change taxonomy for software fault analysis, a

method to cluster faults by the syntax of the repair, empirical evidence that fault

distribution varies according to the purpose of the module, and the identification

of project-specific trends from the analysis of the changes.

KEYWORDS: Software Faults, Software Fault Classification, Software

Taxonomy, Mining Software Repositories, Software Evolution

 Billy R. Kidwell

 Student’s Signature

 April 9, 2015

 Date

MISFIT

MINING SOFTWARE FAULT INFORMATION AND TYPES

By

Billy R. Kidwell

 Jane Huffman Hayes, Ph.D.

 Director of Dissertation

 Miroslaw Truszczynski, Ph.D.

 Director of Graduate Studies

 April 9, 2015

 Date

DEDICATION

This dissertation is dedicated to:

My wife, Nora Mae Kidwell, for her limitless patience, love, and support

My son, Alexander Raylan Kidwell, for providing new meaning to life

My parents, Danny and Donna Kidwell, for instilling a strong work ethic, teaching me

persistence, and encouraging me to excel at whatever I do

iii

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Jane Hayes, for her guidance and support.

She has been an excellent advisor and mentor throughout my time at UK. I thank Dr.

Judy Goldsmith, Dr. Zongming Fei, and Dr. Albert Lederer for serving on my committee

and providing guidance on this dissertation. I would also like to thank Dr. James Lumpp,

Jr. for serving as my outside committee member. Thanks to Dr. Wasilkowski, Dr. Finkel,

Dr. Klapper, and Dr. Truszczynski for their assistance as directors of Graduate Study.

Thanks to NASA for partially funding this research. Thanks to Dr. Allen P.

Nikora for his input and support during this research. Thanks to Hewlett-Packard for

supporting my Ph.D. Thanks to Anthony Wiley, Russ Wolfe, and Rob Guckenberger for

supporting my academic efforts as my manager. Thanks to Carla Griesch, Lucas

Cockerham, Steve Stogner, Matt Downs, Chris Wells, and all of the other co-workers that

have endured conversations about this dissertation.

Thanks to Dr. Davide Falessi for his guidance and mentoring on our research on

failure classification. I would like to thank Dr. Robert Gillespie, Dr. William Pierson,

Professor Joseph Fuller, and Professor Mike Clark for serving as great professors and role

models during my undergraduate studies.

I would like to thank fellow graduate students Wenbin Li, Dr. Hakim Sultanov,

Dr. Wei-keat Kong, and Dr. Ashlee Holbrook for their collaboration.

I would like to thank all of the friends and family that have encouraged me during

this process. I especially want to thank Kevin Magsig, Bill Woodson, James Klawon, and

my father, Danny Kidwell for their encouragement.

I could not have completed this work without the love and support of my wife and

best friend, Nora. Thank you for being there for me.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iii

LIST OF TABLES .. viii

LIST OF FIGURES .. x

Chapter 1 Introduction and Overview... 1

1.1 Problem Statement ... 2

1.2 Research Thesis .. 3

1.3 Scope of the Research ... 3

1.4 Relevance .. 4

1.5 Overview of Dissertation .. 4

Chapter 2 Background and Related Work ... 6

2.1 Terms and Definitions .. 6

2.2 An Overview of the Software Development Lifecycle 7

2.2.1 Verification and Validation ... 10

2.2.2 Software Maintenance and Evolution 11

2.2.3 Conclusions ... 13

2.3 An Introduction to Fault Classification .. 13

2.4 Literature Survey .. 16

2.5 The Benefits of Software Fault Classification 17

2.5.1 Process Improvement .. 17

2.5.2 Verification and Validation ... 22

Test Design .. 22

Fault Injection and Mutation Testing ... 23

Inspection ... 24

v

Planning V&V Activities .. 25

Evaluating V&V Effectiveness .. 27

Software Security.. 28

2.5.3 Empirical Knowledge ... 29

2.6 Manual Fault Classification Challenges .. 31

2.6.1 Empirical Studies of the Challenges of Fault Classification 31

2.6.2 Fault Classification Challenges from Research and Practice .. 33

Data Consistency.. 33

Time .. 34

Customization of Fault Taxonomies.. 35

2.7 Automated Fault and Failure Classification 36

2.7.1 Duplicate Reports .. 36

2.7.2 Fault vs. Enhancement .. 37

2.7.3 Classification of Fault Impact ... 37

2.7.4 Automatic classification of fault severity 38

2.7.5 Automated Classification of Fault Family 38

2.7.6 Bug Fix Patterns .. 39

2.8 Discussion .. 40

Chapter 3 Mining Software Fault Information and Types 42

3.1 Extending a Change Taxonomy ... 42

3.2 Clustering Software Faults ... 43

3.3 Software Fault Evolution .. 43

Chapter 4 An Extended Change Taxonomy for Software Fault Analysis 45

4.1 A Taxonomy of Source Code Changes .. 45

4.2 Extending the Change Taxonomy .. 47

vi

4.3 Case Study ... 50

4.4 Data Collection ... 52

4.4.1 Data Collection Workflow ... 53

4.4.2 Change Distilling Process .. 55

4.5 Validation ... 55

4.6 Conclusions .. 57

Chapter 5 Clustering Software Faults .. 58

5.1 Clustering Software Faults ... 58

5.2 Measurements.. 60

5.3 Experimental Design .. 63

5.3.1 Variables .. 64

5.3.2 Evaluation of Criterion Functions ... 64

5.3.3 Consistency of Clusters for Eclipse 2.0 and 3.0....................... 67

5.4 Manual Inspection of Faults in Each Cluster 69

5.4.1 Data Visualization .. 70

5.4.2 Manual Inspection Process .. 72

5.4.3 Manual Inspection Results ... 73

5.4.4 Discussion ... 85

5.5 Improving ChangeDistiller for Anonymous Classes 87

5.5.1 Updated Clustering Results ... 88

5.5.2 Manual Inspection of Changes .. 90

5.5.3 Discussion ... 93

5.6 Conclusions .. 93

Chapter 6 Software Fault Evolution ... 96

6.1 Case Study ... 96

vii

6.2 Data Collection ... 99

6.2.1 Git Data Collection Changes.. 99

6.2.2 JDT Clustering Results .. 101

6.3 Experimental Design .. 104

6.3.1 Distribution of faults by subcomponent 104

6.3.2 Fault distribution for single and multi-file fixes 109

6.3.3 Fault distribution in terms of developer 111

6.3.4 Fault distributions for pre-release and post-release fixes 113

6.3.5 Fault distribution for problematic fixes 115

6.4 Conclusions .. 118

Chapter 7 Conclusions and Future Work ... 121

7.1 Threats to Validity ... 121

7.2 Contributions .. 124

7.3 Future Work ... 126

References .. 129

Appendix .. 136

Vita... 137

Publications ... 139

viii

LIST OF TABLES

Table 1 - ODC Defect Types and Process Associations 14

Table 2 – Knuth’s Fault Classifications .. 18

Table 3 - Fluri and Gall's Change Taxonomy - Declaration-Part 46

Table 4 - Fluri and Gall's Change Taxonomy - Body-Part 48

Table 5 - Entities Observed in Extended Change Types 49

Table 6 - Descriptive Statistics for Eclipse Versions 51

Table 7 - Top Twelve Change Types for Fault Fixes © 2014 IEEE 56

Table 8 - Example Cluster Metrics from Cluto ... 63

Table 9 - Mean Internal Similarity © 2014 IEEE 65

Table 10 - Comparison of Clustered Faults © 2014 IEEE 68

Table 11 - Cluster Statistics for Eclipse 2.0, k = 10 © 2014 IEEE 69

Table 12 - Cluster 0 Metrics ... 74

Table 13 - Faults Inspected for Cluster 0 ... 75

Table 14 - Cluster 1 Metrics ... 75

Table 15 - Faults Inspected for Cluster 1 ... 76

Table 16 - Cluster 2 Metrics ... 76

Table 17 - Faults Inspected for Cluster 2 ... 77

Table 18 - Cluster 3 Metrics ... 77

Table 19 - Faults Inspected for Cluster 3 ... 78

Table 20 - Cluster 4 Metrics ... 79

Table 21 - Faults Inspected for Cluster 4 ... 80

Table 22 - Cluster 5 Metrics ... 80

Table 23 - Faults Inspected for Cluster 5 ... 81

Table 24 - Cluster 6 Metrics ... 81

Table 25 - Faults Inspected for Cluster 6 ... 82

Table 26 - Cluster 7 Metrics ... 82

Table 27 - Faults Inspected for Cluster 7 ... 83

Table 28 - Cluster 8 Metrics ... 83

Table 29 - Faults Inspected for Cluster 8 ... 84

file:///C:/Users/kidwellb/Dropbox/Dissertation/Diss/Kidwell%20-%20UK%20Dissertation.docx%23_Toc414448197

ix

Table 30 - Cluster 9 Metrics ... 84

Table 31 - Faults Inspected for Cluster 9 ... 85

Table 32 - Updated Clustering Results for Eclipse 2.0............................. 88

Table 33 - Descriptive Feature Comparison .. 89

Table 34 - Additional Manual Inspection for New Results 93

Table 35 - Eclipse Release Timelines .. 97

Table 36 - Fault Fixes for Eclipse JDT Subcomponents by Version 98

Table 37 - Fault distribution for JDT subcomponents 105

Table 38 - Fault Distribution for Fault Fix Commits by Author 112

Table 39 - p-values for Chi-Square Goodness-of-Fit Test 114

x

LIST OF FIGURES

Figure 1 - Waterfall Software Development Process 8

Figure 2 - Star Schema for Eclipse Fault Fix Data 52

Figure 3 - A Service-based source code mining 54

Figure 4 - Dataset Creation Overview .. 59

Figure 5 - Source Code Changes for Bug 10009 59

Figure 6 - Mean Internal Similarity of Eclipse 2.0 © 2014 IEEE 66

Figure 7 - Mean Internal Similarity of Eclipse 3.0 © 2014 IEEE 66

Figure 8 - Visualization of Clusters for Eclipse 2.0 © 2014 IEEE 70

Figure 9 - Mountain Visualization of Clusters for Eclipse 2.0 71

Figure 10 – Bug 11110: Fault fix to check for Null Pointer © 2014 IEEE . 74

Figure 11 – Bug 20421: Additional condition check © 2014 IEEE 78

Figure 12 - Summary of Manual Inspection Results 86

Figure 13 - JDT Project Fault Fixes by Version 99

Figure 14 - Fault Clusters for Eclipse JDT ... 102

Figure 15 - Matrix Visualization of Clusters from Eclipse JD 103

Figure 16 – Similar Fault Distributions for two subcomponents 106

Figure 17 - Fault Distribution for four JDT subcomponents 107

Figure 18 - Normalized Fault Distributions ... 109

Figure 19 - Fault Distribution for Single and Multi-File Fixes 110

Figure 20 - Fault Distribution for Fault Fix Commits by Author 113

Figure 21 - Pre-Release/Post-Release Fault Fix Distribution 115

Figure 22 - Fault Distribution for Problematic Fault Fixes 117

file:///C:/Users/kidwellb/Dropbox/Dissertation/Diss/Kidwell%20-%20UK%20Dissertation.docx%23_Toc414448232
file:///C:/Users/kidwellb/Dropbox/Dissertation/Diss/Kidwell%20-%20UK%20Dissertation.docx%23_Toc414448238
file:///C:/Users/kidwellb/Dropbox/Dissertation/Diss/Kidwell%20-%20UK%20Dissertation.docx%23_Toc414448241

1

Chapter 1

Introduction and Overview

Software companies are building increasingly complex systems. At the

same time, market pressures require that they do so in less time, while

customers are demanding higher quality. Increasingly, today’s software teams

are distributed across the country, or across the world. Balancing these factors is

a major problem for software development organizations. In order to reduce time

and increase quality, software organizations must continually improve their

software development practices.

The most measurable aspect of software quality is the number of faults, or

bugs, that are discovered in a software product. A simple metric to assess the

quality of a product might be a count of the faults reported by customers.

However, this metric is problematic in at least two ways. First, it does not provide

actionable feedback about where improvements can occur and second, it occurs

too late to make any corrections.

Software fault classification provides precise feedback about the software

development process. Modern fault classification schemes include multiple

attributes, such as the severity of the fault, the activity that found the fault, and

the type of fault that occurred. If the scheme is carefully designed, the type of

fault can provide evidence of when the fault was introduced [1]. The longer the

fault goes without detection, the more expensive the fault is to repair [2]. The

goal of using fault classification schemes is thus to prevent faults and find as

many faults as possible, as early as possible.

Prior research has shown that fault classification has been used

successfully to measure and improve the software development process [3],

prevent faults [4][5], design tests [6], plan quality assurance activities [7]–[9], and

evaluate the effectiveness of quality assurance activities [10][11].

Studies cite a number of different challenges for practitioners. The

developer that repaired the fault is required to determine the classification. The

use of the fault description and a secondary group, such as the quality assurance

2

team rather than the developer that fixes the fault, results in low agreement [12].

Fault classification is also dependent on the experience of the classifier [13].

Other studies reported challenges in getting consistent data [5], [14]–[16] and a

need to customize fault classification schemes for a domain, organization, or

project [5], [17]–[19]. I have seen anecdotal evidence of these challenges in my

professional experience as a software engineer. Based on this anecdotal

evidence, I believe that these barriers prevent the widespread adoption of fault

classification in industry.

Automation is applied to fault classification in several ways. Natural

language processing has been used to analyze the text of fault reports and

detect duplicates [20], [21]. Duplicate detection increased process efficiency by

eliminating wasted work. Automation has also been used to automatically

determine if a fault represents corrective maintenance [22], determine the

customer impact of a fault [23], and predict the severity of a fault [24], [25].

1.1 Problem Statement

As software becomes more important to society, the number, age, and

complexity of systems grow. Software organizations require continuous process

improvement to maintain the reliability, security, and quality of these software

systems. Software organizations can utilize data from manual fault classification

to meet the process improvement needs of organizations, but organizations lack

the expertise or resources to implement them correctly. This dissertation

addresses the need for the automation of software fault classification. Validation

results show that automated fault classification, as implemented in the MiSFIT

tool, can group faults of similar nature. The resulting classifications result in good

agreement for common software faults with no manual effort. The evolution of

faults over seven releases are examined with the aid of the classified fault data.

3

1.2 Research Thesis

The goal of this research is to provide an automated method to categorize

software faults based on the syntactical changes that repair the fault. Specifically,

I categorize Java source code changes according to an extended change

taxonomy and apply clustering to the results to form a project-specific fault

taxonomy.

I present a new method implemented in a tool, MiSFIT (Mining Software

Fault Information and Types), which can be utilized to process historical

information from software repositories, classify syntactical changes, and cluster

software faults. The overall thesis of this research is that software fault

classification can be automated by leveraging the information in the source code

changes that repair the fault. The use of the method described in this dissertation

provides a project-specific taxonomy that evolves with the programming

language and the programming practices of the software development team.

To evaluate the thesis, I apply the extended change taxonomy to classify

the source code changes that repaired software faults from an open source

project. MiSFIT clusters the faults based on the changes. I manually inspect a

random sample of faults from each cluster to validate the results. The

automatically classified faults are used to analyze the evolution of a software

application over seven major releases. The validation results in the following

contributions:

 an extended change taxonomy for software fault analysis,

 a method to cluster faults by the syntax of the repair,

 empirical evidence to support prior findings that fault distribution

varies according to the purpose of the module [26], and

 project-specific trends identified through the analysis of the

changes.

1.3 Scope of the Research

For this project, I restrict my attention to object-oriented systems written in

the Java programming language. I limit the investigation of faults to those that

4

appear in source code. I eliminate from consideration any fault in requirements

documents, design models, or documentation that do not appear in the source

code.

1.4 Relevance

Software fault classification provides many benefits, but the primary users

are software organizations with mature development processes. Software

organizations need methods to improve development processes in order to

improve quality and reduce time to market. Unfortunately, manual fault

classification is expensive to implement correctly. An automated method to

classify faults can provide valuable information for improving software

development processes.

In addition, many open source software projects are available today and

provide researchers with an enormous amount of data that was previously

unavailable. The manual classification of the faults in open source projects is

difficult. Open source projects are highly dependent on volunteers to contribute to

the development effort, and the development processes are immature by

software engineering standards. As a result, access to the information to classify

software faults retroactively is difficult to obtain. However, the source code and

problem reports for these projects are readily available. An automated method of

fault classification can provide additional data about the nature of software faults

to advance our understanding of software engineering.

1.5 Overview of Dissertation

This section describes the organization of the dissertation. Chapter 2

discusses background information and surveys the current literature on software

fault classification. Chapter 3 introduces the MiSFIT tool and presents the

research approach. Chapter 4 presents an existing change taxonomy and an

extension that makes it adequate for analyzing software faults. Chapter 5

presents the clustering of software faults based on the syntactic information in

the fix. Chapter 6 extends this work by examining software faults from seven

5

versions of an open source software project. Chapter 7 concludes the

dissertation and discusses future work.

6

Chapter 2

Background and Related Work

I begin this chapter with terms, definitions, and background information on

the software development lifecycle. Once established I introduce software fault

classification by presenting a common fault classification scheme, the Orthogonal

Defect Classification (ODC) scheme. The remainder of this chapter is a review of

the literature in software fault classification. In this review, I explore the benefits,

challenges, and future of software fault classification.

2.1 Terms and Definitions

The IEEE defines a software fault as an “incorrect step, process, or data

definition in a computer program” [27]. The terms defect and fault are often used

interchangeably in the literature. An error causes the introduction of a software

fault in the creation of a software artifact. Faults are introduced in requirements,

architecture, design, or source code and may be detected at any stage after

introduction, including testing and maintenance of the software. A software fault

remains latent until a set of operating conditions or inputs trigger the fault,

causing the fault to manifest itself as a failure.

A software failure is the failure of a software system to operate within the

specifications of that system. The failure may be an incorrect output, system

crash, or a failure to perform its operations under non-functional constraints

related to performance, security, or availability. The cause of software failures

can be complex. In some cases, failures are difficult to reproduce. Failures may

only occur in rare conditions, or one fault may hide the existence of another.

When this occurs, fixing a fault may appear to introduce a new fault, when in fact

it reveals a hidden fault. A better understanding of the complex relationship

between faults and failures is an open area of research and essential for

improving the prevention and detection of software faults [28].

7

The term bug is often used in industry as a synonym for a software fault,

failure, or error. Due to the ambiguous nature of the term, this dissertation avoids

its use as much as possible.

A failure is documented in a database that is used within the software

development organization. This database is referred to by terms such as issue

tracking system, bug tracking system, or problem tracking system. This

dissertation refers to the database as a problem tracking system, and to a single

report of a failure or possible failure as a problem report. Practitioners attempt to

keep each problem report isolated to a single failure, but this is not always

possible. In practice, the source code fix for a single problem report may address

a number of related issues that are uncovered during the investigation and repair

of the issue. In extreme cases, changes may need to occur to the architecture or

high-level design to address a fundamental flaw or changing need of the system.

The problem report is a record of a failure, including its detection, investigation,

and repair.

This section has provided terms and definitions that are useful throughout

this dissertation. The next section introduces fault classification by providing an

overview of a commonly used fault classification scheme.

2.2 An Overview of the Software Development Lifecycle

Modern software processes are iterative and incremental in nature. The

complexity of software requires the decomposition of software into smaller parts

and their assembly into working systems. The history of iterative, incremental

development dates back as far as the 1960s [29]. Iterative, incremental software

development is an improvement on the waterfall development process. Royce

introduced what we now refer to as the waterfall development process in 1970

[30]. Figure 1 illustrates an adapted version of the development process from

Royce’s paper. The waterfall process model provides a useful foundation for the

phases and activities involved in software development. For interested readers,

Larman and Basili provide an overview of the history of iterative and incremental

development processes [29].

8

System

Requirements

Software

Requriements

Preliminary

Program

Design

Analysis

Program

Design

Coding

Testing

Operations

Software

Requirements

Preliminary

Design

(Spec)

Interface

Design

(Spec)

Final Design

(Spec)

Test Plan

(Spec)

Final Design

(As Built)

Test Plan

(Spec)

Test Results

Operating

Instructions

Figure 1 - Waterfall Software Development Process

The system requirements phase identifies the requirements for the

system in the context where it will exist. The software requirements phase is

concerned with collecting all of the requirements of the system. These

requirements include functional requirements, as well as non-functional

requirements such as performance, reliability, and usability. The software

requirements phase results in a software requirements document as an artifact of

this phase.

Royce introduces the preliminary program design phase to reduce risk

in large development projects [30]. An important tenet of the waterfall model is

that problems in a development phase should affect at most one previous phase.

Without the preliminary design phase, problems with timing, storage, and other

constraints identified during testing can affect the requirements phase. The

addition of the preliminary design phase reduces the risk of this problem. The

preliminary design phase is also known as the high-level design phase or the

9

architecture phase of a project. The focus is on the high-level structure of the

software and meeting non-functional requirements.

The analysis phase of a software development project involves modeling

the problems that the system will solve. In the context of a space guidance and

control system, this might involve numerous equations for determining the

appropriate flight path of a rocket. In contrast, the analysis phase for a business

system focuses on understanding the logical entities and business rules to

complete a transaction.

The program design phase, also known as detailed design or low-level

design, is the activity that produces the specification for the coding phase. The

interfaces of modules, as well as the data structures and algorithms, are

determined during this activity. An Interface Design document and a Final Design

document capture the specification. In addition, a Test Plan document is created

that will guide the verification of the software after coding.

The coding phase, or implementation phase, involves the development of

the software. Artifacts from the program design phase are the basis of the

development effort. The Final Design document includes any changes that occur

in the coding phase. The Test Plan document guides the testing phase. The

testing effort validates the functional and non-functional properties of the system

with respect to the requirements and specification. Problems found in the testing

phase may affect the design, and result in changes to the Final Design

document. The output of this phase is the final test plan with test results.

Once the testing phase is completed, the software transitions to an

environment for operational use. This transition to operations includes an

Operation Instructions document.

Royce’s contributions were a two-stage design process, an emphasis on

documentation, and the use of an early simulation, or prototype, to reduce risk for

original work [30]. It is interesting to note that these observations occur within the

constraints of US government-contracting models in the 1960s and 1970s.

Software processes have changed over the decades, but the waterfall model

10

remains a useful example of the phases and activities involved due to its

simplicity.

2.2.1 Verification and Validation

In software engineering terms, verification is the process of evaluating an

artifact to determine whether it meets the conditions to exit the current phase of

the software development lifecycle (SDLC) [27]. The artifact may be a

requirements document, design document, a model, or a software component. In

contrast, validation is the evaluation of a system at the end of the development

process to determine whether it satisfies certain requirements [27].

It is important to detect and eliminate faults in any artifact. Faults that

remain undetected and move on to the next phase, which I refer to as escaped

faults, result in additional costs. The additional cost will vary depending on

several factors, e.g., the complexity of the project and the method of delivery.

Research literature estimates the cost of an undetected fault that escapes into

operations to be 5:1 for small, non-critical systems up to 100:1 for large, complex

systems [2].

The waterfall process described above produces several artifacts. Each of

these artifacts is subject to a review on any large software project. Review of the

Software Requirements document aims to detect ambiguous requirements,

conflicting requirements, and any lack of completeness. Review of the

Preliminary Design document (or Software Architecture document) evaluates the

design to validate it can meet non-functional requirements (e.g., performance,

security, reliability). The reviews of additional design documents verify that the

design will meet the business requirements. The review of the Test Plan

document verifies completeness with respect to the requirements. In addition,

inspection of the code itself can uncover faults that may be difficult to find during

testing. Some faults, e.g., poor documentation of code and failure to follow

coding guidelines, cannot be detected by testing and require code inspection.

The verification of artifacts is important to uncover faults early and make

the project run efficiently. Consider the example where a design has a fault that

11

escapes to the release phase. A customer may detect this fault during

operations, requiring a fix. This forces the software organization to make a

design change to software after release. The design change becomes more

complicated due to backwards compatibility issues. Changes in design may also

cause requirements to be re-visited. The software undergoes design, analysis,

coding, and testing again in order to release the change. It is easy to see how

these costs add up, and why early detection or prevention of faults increases

software productivity and quality.

2.2.2 Software Maintenance and Evolution

The maintenance of software systems differs from that of hardware

systems. Software does not wear out like hardware components, but it must

constantly evolve to respond to changes in its environment. Lehman classifies

systems into three types, according to how they may change [31]. S-systems

are formally defined systems based on a specification. S-systems do not change

often. If the real world problem that the system solves changes, it often means

that a new problem has emerged, and a new system is necessary, rather than a

change to an existing problem. The basis of P-systems is a practical abstraction

of a problem. In this case, the problem is too complex for a complete, formal

specification. P-systems change more often than S-systems, since the

abstraction may be incomplete, and changes to the abstraction result in changes

to the system.

Lehman’s third type of system is the E-system [31]. An E-system is

embedded in the real world. As the world changes, the system must be evolved

or abandoned. A useful example of an E-system is tax preparation software. Tax

laws change every year, requiring updates to these systems. Many software

systems fall into this category and are subject to constant change.

Lehman introduced eight laws of software evolution [31][32]. These laws

have been studied and improved over a period of thirty years [33]. The laws of

software evolution, as published by Lehman [32], are summarized below.

12

I. Continuing Change. An E-type program that is used must be continually

adapted else it becomes progressively less satisfactory.

II. Increasing Complexity. As a program is evolved its complexity increases

unless work is done to maintain or reduce it.

III. Self-Regulation. The program evolution process is self-regulating with

close to normal distribution of measures of product and process attributes.

IV. Conservation of Organisational Stability (invariant work rate). The

average effective global activity rate of an evolving system is invariant

over the product life time.

V. Conservation of Familiarity. During the active life of an evolving

program, the content of successive releases is statistically invariant.

VI. Continuing Growth. Functional content of a program must be continually

increased to maintain user satisfaction over its lifetime.

VII. Declining Quality. E-type programs will be perceived as of declining

quality unless rigorously maintained and adapted to a changing

operational environment.

VIII. Feedback System. E-type programs constitute Multi-loop, Multi-level

Feedback systems and must be treated as such to be successfully

modified or improved.

The first law, Continuing Change, reflects the definition of E-type

systems. As the real world evolves, the E-type system must be updated in order

to remain satisfactory and useful. The law of Increasing Complexity states that

the successive changes to the system will increase the entropy of the system

unless the complexity is constrained and effort expended to reduce the

complexity. The law of Self-Regulation states that software systems exhibit

measurable and predictable behaviors [34]. The fourth law, Conservation of

Organisational Stability, states that the amount of useful work achievable for a

system is invariant. This is in agreement with Brooks’ conclusions that adding

resources to a software project may reduce the effective rate of productive output

[35]. This counter-intuitive phenomenon is due to increased communication and

other overheads as the number of contributors grows.

The fifth law, Conservation of Familiarity, states that over time, the

effects of subsequent releases will make little difference in the overall

functionality of the software. The sixth law, Continuing Growth, refers to the

need to add functionality continually. Unlike the first law, which results from

changes in the real world, this law results due to the need to scope software

13

systems. Out of scope features eventually become more important to users and

must be added. The seventh law, Declining Quality, results because the

assumptions made during the design and implementation phase are based on

the present state of the system and the world. As the system and the real world

evolve, these assumptions are likely to change and result in faults in the system.

The eighth law, Feedback System, describes the software development process

as a feedback system. For example, the system will continually grow until it

becomes more expensive to expand, as a result the organization may reduce the

size of the system in order to add required new functionality. Once the system

size is reduced, however, it will only be a matter of time before the system is

again too large for affordable growth.

2.2.3 Conclusions

This section provides background information on the software

development lifecycle, verification and validation of software, and the evolution of

software systems. The development of large software systems is a complex

endeavor that involves numerous technical and human factors. In the following

section, we build upon this background knowledge to discuss techniques to

monitor and improve the software development process.

2.3 An Introduction to Fault Classification

In this section I introduce the concept of fault classification by example.

Orthogonal Defect Classification (ODC) was developed at IBM by Chillarege et

al. as a method of in-process feedback to developers [1]. The process bridges

the gap between causal analysis and statistical defect models. Chillarege et al.

characterize causal models as qualitative and high effort. Statistical defect

models are quantitative, but occur late in the development process. The ODC is

currently at version 5.2 [36] and has evolved based on changes in technical

needs (e.g., incorporating concepts from Object-Oriented programming) and

pragmatic concerns (e.g., addition of user documentation, build, and language

support categories). The ODC consists of multiple attributes, each concerned

14

with a specific property of a fault. These attributes are designed to be

orthogonal in two ways. The attributes are orthogonal to each other, in that they

capture different information about the fault. The attribute values are designed

such that only one value applies, providing orthogonal attribute values. As an

introduction, I provide an overview of commonly used attributes and applications

of ODC from the literature.

The key attribute of the ODC scheme is the defect type. This attribute

captures the semantics of the fix applied to correct the fault [1]. In addition, a

qualifier indicates whether something was incorrect, missing, or extraneous. The

defect type categories are based on research that identified relationships

between the semantics of fault fixes and the software development process [37].

A subset of the fault types and process associations are shown in Table 1. This

relationship is essential to understanding when a fault is injected into the

software. The knowledge of when the fault injection occurred provides feedback

on the phase of the process that must improve, but also enables other forms of

diagnosis, which I will discuss in the next section.

Table 1 - ODC Defect Types and Process Associations

Defect Type Process
Association

Function Design

Interface Low Level Design

Checking LLD or Code

Assignment Code

Timing/Serialization Low Level Design

Algorithm Low Level Design

A second attribute of importance in the ODC is the defect trigger [1]. The

defect trigger describes the situation in which a latent defect is triggered in a

customer environment [10]. The trigger is identified early in the lifecycle of a fault,

when the fault is discovered and recorded. The trigger is an effective means of

diagnosing the verification process [38]. Examples of a defect trigger include

Design Conformance, Logic/Flow, Backward Compatibility, Workload/Stress, and

15

Rare Situations. Triggers map to verification activities such as Design Review,

Code Inspection, Unit Test, Function Test, and System Test. The defect trigger

also reflects the skill and knowledge of the tester. This property of triggers can be

used to determine if more experienced reviewers, or reviewers with more

knowledge of the system, are required to perform the review. Chaar et al.

describe the use of defect triggers to assess verification activities [38].

Using only the qualifier, defect type, defect removal activity, and defect

trigger, a number of different scenarios in the software development process can

be analyzed. By using the association of defect types to process phases, it is

possible to determine whether the fault detection occurs in the earliest possible

verification activity. When faults escape the earliest possible verification activity,

that activity is a candidate for improvement. After improvement activities,

measurements occur against the current baseline. With the addition of historical

data, it is possible to determine whether an activity is finding a sufficient number

of each type of fault while that activity is in progress. Project managers can make

adjustments earlier in the process when this type of data is available. These

attributes provide important data for process improvement.

In addition to these attributes, ODC includes attributes such as the impact

of the fault on the customer, the age of the code that contains the fault (e.g., new,

pre-existing, rewritten), and the source of the fault (e.g., outsourced, re-used,

ported). It is easy to see how additional attributes can provide additional

diagnosis. For example, the impact attribute can be used to determine which

defect types are prone to high impact customer problems. The source of the fault

might help diagnose problems with outsourced work, re-used code libraries, or

portability problems.

In this section I have provided an introduction to fault classification by

describing the Orthogonal Defect Classification (ODC) scheme. I discussed the

primary attributes, defect type and defect trigger, as well as their role in

measuring the software development process. In the following sections, I will

explore the impact of fault classification more broadly. The next section describes

the process for the literature survey.

16

2.4 Literature Survey

The primary focus of this chapter is to review the literature for practices

and applications of fault classification. The goal of this literature survey is to

identify the claimed benefits of fault classification, analyze evidence related to its

use, and present a direction for the research and application of fault

classification. For this survey I selected a purposive sample of central and pivotal

articles in the field. My selection criteria appear below. The analysis is presented

by concept, with chronological ordering within each concept.

For each publication, I am interested in answering a number of key

questions. First, I am interested in claims of benefits from the use of fault

classification and the validation of these claims. Next, I am interested in

challenges that arise from the use of a fault classification scheme. Finally, I am

interested in the degree to which the fault classification scheme is automatable.

To locate articles, I performed a search using the key terms software,

“fault type”, “defect type”, and taxonomy. I selected these terms based on a

number of searches, many of which result in false positives for the term

classification. I reviewed the 43 results and narrowed the list to 18 results by

reading the abstracts of the resulting papers. In reviewing the results, I kept

papers/articles that met the following criteria:

 About software, rather than hardware or power faults

 From a Journal, Conference, or a Thesis/Dissertation

 Presents

o a fault classification scheme, or

o applications of a fault classification scheme, or

o a software engineering process that is impacted by fault

classification

 Includes

o new results, or significant validation of previous results

From these 18 results, I expand the list by reviewing the bibliography of

the work and exploring sources that meet my criteria. In total there were 81

articles, papers, reports and book chapters that were reviewed for information

collection. After eliminating redundant sources and sources that did not provide

results that were relevant for my purposes, I used 54 sources.

17

In the following sections, I present the information that was collected and

analyzed for this literature survey. I first focus on the benefits of fault

classification as they have been recorded in the literature. Next, I discuss the

challenges that have been published. With these benefits and challenges

explained, I move on to recent innovations and thoughts on the future of fault

classification research. Finally, I compare recent innovations to the research in

this dissertation.

2.5 The Benefits of Software Fault Classification

This section discusses the benefits of software fault classification as

recorded in the literature. Readers that are interested in adopting a fault

classification scheme may find the guidelines presented by Freimut to be useful

[39]. This chapter discusses the benefits of software fault classification in the

broad areas of process improvement, verification and validation, and empirical

knowledge.

2.5.1 Process Improvement

Knuth provides a description of the change classifications that he used for

enhancements and bugs for ten years while developing the TEX system [40].

Knuth reports that his classification may appear ad hoc, but represents the best

way for him to make sense of his experience on the project. Knuth presents nine

classifications for bugs, which he denotes by a single capital letter (code), a

name, and a short description. The author provides numerous examples to clarify

each category. Table 2 below presents the classifications.

Knuth does not claim that his classification scheme is useful to anyone but

himself, so it is not surprising that ambiguities are possible. For example, if a

surprising scenario causes an incorrect result in an algorithm, it is not clear which

classification applies. I argue that the most important contribution of this

classification scheme is increased awareness about the use of fault classification

for process improvement, in this case, applied to an individual.

18

Table 2 – Knuth’s Fault Classifications

Code Name Description

A algorithm awry incorrect algorithm

B blunder or botch author knew what he ought to do, but wrote something

else

D data structure debacle information not properly handled, such as memory

leaks

F forgotten function error of omission, forgot to include a piece of

functionality

L language liability misuse or misunderstanding of the programming

language

M mismatch between modules forgot conventions built into a subroutine when it was

used

R reinforcement of robustness add validation to prevent crashes and erroneous

conditions

S surprising scenario unforeseen interactions force a change in design

T trivial type typed the wrong thing (e.g., ‘+’ instead of ‘-‘), excludes

syntax errors caught by the compiler

Bridge and Miller introduced the ODC scheme to Motorola with the aim to

better measure and improve the software development process [3]. Bridge and

Miller describe how existing inspection data maps to ODC defect types in order

to leverage historical data that is already in place. Many companies are

interested in making use of existing historical data in order to take advantage of

fault classification methods. Bridge and Miller describe one way to leverage

existing data and describe how Motorola uses fault classification for process

improvement.

Perry and Evangelist conduct an empirical investigation of software

interface faults in a real-time system. The system is 350,000 non-commented

lines of C source code. They construct a taxonomy by randomly selecting 84

faults, inspecting the faults, and determining if they matched an existing

category, or warrant a new category [41]. In all, they define sixteen categories.

They determine that 68.6% of the faults are interface faults [42]. Inadequate error

processing, inadequate post processing, coordination of changes, and

inadequate functionality are the most significant categories of errors in their

19

study. They also find that nearly three-fourths of the interface faults originate in

the implementation phase, and not during the design phase.

Leszak et al. also use the taxonomy developed by Perry and Evangelist to

investigate the impact of defect analysis [14]. They report five major findings.

First, the cost of fixing faults grows linearly with phase when the retesting efforts

are not considered. This implies that retesting costs represent a large part of the

costs for faults found late in the process. They also find that the majority of faults

do not originate in early phases and the distributions per subsystem reveal large

differences. The authors claim that human factors significantly influence the

injection of software faults, and that root cause analysis has a low and tolerable

effort (reporting 19 minutes per fault) [14].

The group of studies by Perry and Evangelist [41], [42] and Leszak [14]

contribute a number of interesting findings that impact current knowledge on

software faults. The studies are limited to real-time systems, so further evidence

is needed to generalize beyond that domain. The studies found a large

percentage of interface faults, and many were introduced during implementation.

Many quality improvement initiatives begin with the improvement of requirements

and design. Initiatives targeting requirements and design improvements would

not reduce the number of faults that occur during coding, so they would not have

a large impact on the quality of these systems. These studies primarily contribute

research knowledge to the software engineering community and validate it

empirically in an industrial setting. The latter also contribute to the understanding

of process improvement with fault taxonomies.

Yu investigates the distribution of faults in a telecommunication switching

system. Yu finds that nearly half of the faults are coding faults, and that a

majority of these coding faults are preventable [4]. Root cause analysis is

applied, resulting in the creation and adoption of a set of guidelines to prevent

the introduction of coding faults. The classification of coding defects in the case

study is coarse, with three major categories. These are logic faults, interface

faults, and maintainability faults. The results of adopting these guidelines are

measured with metrics for average fix cost per fault, average implementation

20

cost, and average testing cost per source code line. The study shows a 34.5%

reduction in coding faults, saving an estimated US$7M in product rework and

testing. These results suggest that efforts to reduce coding faults by examining

fault types and performing a root cause analysis can result in significant savings.

Lutz and Mikulski studied the high impact anomalies of seven operational,

safety-critical systems using ODC [43]. Many unexpected classification patterns

revealed implied software requirements, prompted changes to documentation

and procedures, and helped the authors measure assumptions made about the

system and its operational environment. The authors recommend the analysis of

the most severe anomalies in safety critical software for better maintenance as

well as improving future systems.

Robinson et al. report on the successful application of the top two levels of

Beizer’s classification scheme, described more fully in the Test Design section, to

implement a defect-driven improvement process in industry [44]. The report

indicates that approximately four-thousand defects were classified across four

organizations. The effort required to perform the retrospective classification is

estimated at one person-year. The results indicate quantitative and qualitative

improvements in the process. The results include a reduction in the number of

file changes after formal test and an improved perception of software quality by

groups that test and certify the software.

Børretzen and Dyre-Hansen investigate the fault profiles of five business-

critical industrial applications to determine where process improvement activities

should be considered [45]. They find that the most common fault types are

function and GUI fault types. Assignment fault types are also frequent. In terms

of severity, the relationship fault type (associations among procedures, data

structures, or objects) has the highest share of critical faults, faults with the

highest severity rating. GUI and Data faults are among the least severe. Based

on the results, the authors propose increased effort in the design phase to

counter function faults and relationship faults.

Shenvi reports on the adoption of ODC at Philips for fault prevention [5].

Shenvi’s case study is an industrial project to develop software for a DVD player.

21

The case study focuses on the reduction of function faults, which the authors

note are particularly costly. Various practices are adopted, including a

requirements workshop, design overview, automated tools for traceability

improvement, and tailored checklists. The result was a decline in function defects

from 28% to 12% [5].

Seaman et al. describe their experience mapping defect data from

multiple, heterogeneous data sets into a single, comprehensive data set [18].

The motivation for aggregating data from multiple projects is to optimize the

planning of early lifecycle verification and validation activities and demonstrate

tradeoffs. The effort included data from 2,529 inspections from 81 projects across

five NASA centers.

Seaman et al. present challenges in combining the data and

recommendations for designers of fault categorization schemes [18]. The

recommendations align with those of Freimut [39]. The classification scheme is

based heavily on the ODC scheme. It is interesting to note the differences that

evolved from its use in practice and subsequent aggregation with similar

classification schemes. In particular, logic faults are separated from the

algorithm/method type. The interface type is renamed internal interface, and a

separate fault type is added for the user interface. Performance corrections in an

algorithm are classified as an algorithm defect in the ODC scheme, but Seaman

et al. provide a separate category for non-functional defects.

Process improvement is a critical area for software companies. Higher

quality software is demanded by customers, while software companies continue

to feel schedule pressures and operate with constrained resources. In this

section the literature on the use of fault classification schemes for process

improvement were reported.

From this literature, one can conclude that the scope of process

improvement is broad. On one end of the spectrum, Knuth’s classification

scheme [40] was devised for his own use so that he could make personal

improvements. In contrast, Seaman et al. aggregate data from 81 NASA projects

in order to improve processes across multiple projects.

22

The literature also addresses process improvement at multiple phases of

the software development lifecycle. For example, Shenvi discusses reducing

function faults and concentrates on requirements processes [5]. Børretzen and

Dyre-Hansen recommend increased attention to the design phase [45]. Yu

focuses primarily on faults that are introduced while code is implemented [4], and

Robinson et al. focus on cost and efficiency during testing [44].

In conclusion, process improvement and fault prevention have broad

implications for companies across all phases of the software development

lifecycle. Fault classification provides valuable information for measuring the

development process, and is thus an integral part of process improvement

activities.

2.5.2 Verification and Validation

Software verification and validation (V&V) activities are concerned with the

detection of software faults. Fault classification plays an important part in the

design, planning, evaluation, and measurement of V&V techniques.

Test Design

One important use for a fault taxonomy is to aid testers in test design [6].

In this context, it pays to have a large number of fault categories that generate

ideas about problems. These problems are the basis for test cases.

Vijayaraghavan and Kaner provide an example of how tester uses a taxonomy

for this purpose and how it improves completeness of the testing scenarios [6].

Beizer introduced a fault taxonomy to aid software testing [46]. Beizer’s

taxonomy is hierarchical with nine top-level categories. Vinter provides an update

to Beizer’s taxonomy [47]. The classification uses four digit numbers to indicate

the placement of the fault in the hierarchy. The classification captures multiple

aspects of a software fault and is thus not orthogonal. For example, a domain

boundary closure is classified as “243X: Boundary closures,” while other control

logic errors are classified as “3128: Other control flow predicate bugs.” Beizer

23

advised the use of a taxonomy as a statistical basis of a testing strategy, as well

as a tool for test design [46].

A fault taxonomy aids test design in two ways. A taxonomy provides a set

of possible fault conditions for a tester to consider when they are designing tests.

In addition, baseline information about the expected number of faults in each

category of the taxonomy provides a way to plan the amount of testing effort for

each fault type.

Fault Injection and Mutation Testing

Fault Injection provides a way to evaluate the fault tolerance of a software

system. The process of injecting faults into software to assess the fault tolerance

of the system is a recommended practice in industries such as the automotive

and aerospace industries [48]. Fault injection experiments require knowledge of

the distribution of different fault classes to reflect typical behavior during

operation. The injection of faults allows the evaluation of fault tolerance for

different design choices.

Mutation analysis involves the injection of faults into software, but with a

different goal. Mutation analysis provides a way to measure the quality of test

cases that have been developed for a program [49]. A mutation system injects a

program with faults to create multiple versions of the system using mutation

operators. These faults represent small syntactic changes to the program such

as replacement of one arithmetic operator with a different arithmetic operator

(called the AOR mutant). The mutation system executes test cases against the

source program, and then mutant programs. Since these mutant programs may

have errors, the test cases may detect them – marking the mutant as dead. Once

a mutant is marked as dead, that mutant program is removed from the set and

tests are no longer executed against it. A mutation score is used to determine

how effective test cases performed against the mutants. The score is the ratio of

dead mutants to remaining mutants. Testers can add new test cases to improve

the score, and thus improve the test suite.

24

One of the key problems in mutation testing and fault injection is the need

to inject faults that are representative of software faults that are observable in the

field [50]. Chistmansson and Chillarege report on a technique for fault injection

using field data classified using ODC [50]. The defect trigger helps determine an

operational profile, and the defect type is used to select appropriate types of

defects. As a result testers can be assured that the faults generated by mutants

are representative of faults that have occurred in the past, and that the

investment in mutation analysis provides real benefits. These benefits include a

measurably comprehensive test suite, as well as risk mitigation for the company.

Fault injection provides a method to test the reliability of a system when a

fault occurs and mutation analysis provides a way to evaluate and improve

software test suites. Fault classification data provides information about the types

of faults that should be injected into a system. Without this information, these

methods are less effective and may provide misleading results. The techniques

require a representative sample of software faults in order to provide valid

results.

Inspection

Kelly and Shepard extend ODC to compare the effectiveness of software

inspection techniques for computational code [16]. The extended fault

classification scheme, ODC-CC, is used to evaluate inspection techniques. Kelly

and Shepard associate each fault type with the “level of understanding” that is

necessary to identify the fault. For example, discovering a fault by comparing

code to naming conventions requires less understanding than discovering a fault

for logic or error handling. These faults are more difficult to identify during

inspection. The study finds that the use of the task-directed inspection technique

finds more of the difficult faults than the control inspection technique.

Hayes et al. define a fault link as a relationship between the type of fault

and the types of components in which they occur [26]. To validate the utility of

fault links they use fault link information to customize code review checklists.

Hayes et al. find that the customized checklists can improve the number of faults

25

that found by 170-200% and the number of hard to find faults by 200-300%. This

approach demonstrates the use of fault classification data, along with properties

of the software, to improve code inspections.

Two studies that focus on fault classification data and inspections were

identified. Many other studies address inspection as one possible V&V

technique. Kelly and Shepard use fault classification data as a means to validate

improved inspection techniques [16]. Hayes et al. use inspections to validate fault

links, providing a practical method to improve inspections, as well as a novel way

to consider the use of fault classification data [26].

Planning V&V Activities

One important use of fault classification is the planning of V&V activities.

The relationship between testing techniques and the types of faults they detect is

non-trivial. When data about detection techniques and the fault types they can

detect are present, it allows the development of strategies for multiple purposes.

One strategy may broadly cover many fault types with fewer techniques, while

another strategy focuses on high risk fault types.

A report for the U.S. Nuclear Regulatory Commission and the Electric

Power Research Institute contains detailed taxonomies for faults, and for

detection methods [7]. The report provides guidelines for the verification and

validation of both conventional software and expert systems. In the report, Miller

et al. conducted a literature survey to identify methods for the verification and

validation of software [7]. The report classifies methods according to the most

appropriate phase in the software development lifecycle. The report also

characterizes methods according to their ease-of-use and fault detection

capabilities. Two measures are developed to allow quantitative comparisons, a

Cost-Benefit Metric and an Effectiveness Metric [7]. The metrics allow the

ranking of methods according to the goals of a software development

organization or project.

Vegas et al. present a characterization process for testing technique

selection [8]. The characterization schema includes the defect (fault) type.

26

Historical information about which testing techniques discovered which types of

faults can be used to aid technique selection in future efforts.. Components often

exhibit similar types of faults as they have in the past, so the history supplies

helpful empirical data about the selection of the most effective testing technique.

Inspection is an important practice in verification and validation of

software. It is not always clear, however, when it should be applied, and to what

extent. Runeson et al. analyze several empirical studies to answer this question

and provide some practical findings [9]. They find that inspections are more

efficient and effective at finding design specification defects. Functional and

structural testing more effectively find code defects. Runeson et al. suggest

design specification inspections to find design faults early, and a balance of code

inspection and testing techniques to find faults in code.

Zheng et al. evaluate the ability of static analysis to detect faults in three

large industrial software systems at Nortel Networks [51]. Zheng et al. find that

static analysis is an affordable means of fault detection, and that it is most

effective at detecting Assignment and Checking faults. Furthermore, statistical

analysis indicates that the number of static analysis faults can be effective for

identifying problematic modules in a software system. The use of static analysis

may allow organizations to focus on the detection of more complex faults. One of

the findings in this dissertation is that complex faults are more likely to be

problematic faults, which require multiple rounds of changes for repair. Static

analysis is easily applied to new projects, while existing projects may require

more significant effort for adoption. This is because static analysis checks for

current best practices in software development, and older programs are likely to

have multiple violations due to advances in software development practices.

Li et al. develop an extension of ODC for black-box testing called ODC-BD

[52]. ODC-BD is validated against faults from 39 industry projects and two open

source projects. Li et al. also validate the use of the taxonomy to reduce effort

during defect analysis and improve testing efficiency [52].

Planning the verification and validation of software effectively and

efficiently is an important, practical concern as well as an open area of research.

27

In this section, I have discussed several studies with different approaches to

planning these activities. Broad approaches, such as that described by Miller et

al. [7] and Vegas et al. [8] require knowledge of fault classes that are targeted by

a technique.

Other studies focus on particular methods. Runeson et al. seek to choose

between inspection and testing techniques [9]. Zheng et al. focus on

understanding the types of faults detected by static analysis [51]. Li et al. provide

a different approach by focusing on black-box testing, but extending the ODC

classification scheme in order to customize it to the needs of black-box testing.

These studies provide valuable empirical knowledge about individual techniques

and the types of faults detected by their use.

Evaluating V&V Effectiveness

Fault classification can be used for process improvement that targets

verification and validation (V&V) activities, such as review, inspection, and

testing. Studies in this section seek to determine how faults that are discovered

by customers escaped V&V activities, or to understand high severity failures.

This information is essential to formulating V&V strategies and meeting quality

targets in software projects.

Sullivan and Chillarege studied faults that cause high severity failures in a

high-end operating system [10]. Their research focused on overlay failures,

which result in corrupted program memory. The study confirms their impact by

measuring the probability of such a fault to achieve a severity 1 rating, and its

probability of being flagged as “highly pervasive” by customers [10]. They find

that most of these faults are due to boundary condition and allocation problems.

This is contrary to the common belief that timing or serialization problems are the

primary cause of these high severity failures. Based on these findings, the

number of these faults could be greatly reduced by applying better testing of

boundary conditions, which is much less effort than timing/serialization tests.

Chillarege and Bassin describe their use of ODC to systematically

determine how faults escaped V&V activities into the field [11]. The trigger

28

provides valuable information on how the failure can be reproduced. The authors

note that each trigger has a different distribution based on time. Tactically, this

information can be used to focus testing on issues that will be found immediately

following the release, while testing for faults that are found after longer time

periods could be delayed and fixed in subsequent patches. For example, the

authors find that documentation and backward compatibility failures are generally

uncovered quickly, while lateral compatibility failures peak almost a year later.

This information is valuable in order to prioritize testing efforts for software

products.

The trigger attribute is often used in combination with other attributes to

assess the state of verification and validation (V&V) activities. Chaar et al.

present expected distributions for triggers and fault types and demonstrate their

use to troubleshoot V&V activities [38]. Chillarege and Prasad expand on this

concept by focusing on the trigger and activity [53]. By comparing current values

to benchmarks, Chillarege and Prasad are able to determine that code quality is

poorer than expected and that inspections should have caught more of the faults.

These observations led to recommendations to correct the situation, but also led

to guidance for avoiding the situation in the next release.

Similar to the need to plan an effective V&V strategy, it is necessary to

evaluate its effectiveness. Fault classification data provides feedback that allows

corrective action. The development of software is simply too complex and is

impacted by too many factors for consistent success through experience alone.

In this section I discussed multiple ways that researchers have applied different

attributes of ODC in order to investigate software faults. These studies

investigated high severity faults [10], determined how faults escaped verification

and validation activities, and evaluated and controlled the verification and

validation process.

Software Security

Studies show that security vulnerabilities have major economic impact on

software vendors, including a direct impact on stock price [54]. Technology

29

trends such as cloud-computing, mobile devices, and the widespread use of

software in critical applications make software security a growing concern.

Research into prevention and detection of these problems is relevant, and

necessary for improvement. The use of fault classification designed for this

purpose can aid in software security improvement practices.

Du and Mathur present a classification scheme that is designed to

determine the effectiveness of software testing techniques in revealing security

errors [55]. The scheme consists of attributes for the cause, impact, and fix for

the fault. The scheme was validated by inspecting security vulnerability reports

from public security vulnerability databases.

More recently, Hunny et al. extended the Orthogonal Defect Classification

scheme to create a security specific scheme that they refer to as the Orthogonal

Security Defect Classification (OSDC) scheme [56]. The authors validate their

scheme against security vulnerabilities recorded against several versions of the

Firefox and Chrome browsers. They found that some fault classes were more

commonly associated with security vulnerabilities that occurred in multiple

releases. For example, the exploitable logic error fault class was consistently a

large percentage of security vulnerabilities across versions. They recommend

more attention during high-level design and implementation, as well as additional

effort during code review, unit test, and function test to mitigate this concern.

Their goal is to apply OSDC during development and allow teams to benefit from

in-process feedback to aid in adoption of a secure development lifecycle [56].

2.5.3 Empirical Knowledge

While many of the studies previously mentioned contribute to empirical

knowledge, they are focused on specific activities and applications. In this

section I focus on studies that were developed specifically to address empirical

questions about the nature of software faults.

Dyre-Hansen investigates 901 faults from online bank and financial

systems [15]. Dyre-Hansen finds that the majority of faults in these systems are

30

function faults (27%) and GUI faults (19.5%). Relationship faults and

Timing/Serialization faults tend to be the most severe faults, while GUI and Data

faults tend to be less severe. Dyre-Hansen found little correlation among the

different projects and the distribution of the fault types using ODC [15].

Hamill and Goševa-Popstojanova conducted an empirical investigation

and characterization of software faults and failures based on data extracted from

change tracking systems for large-scale, real world projects [28]. The study finds

that requirements and coding faults contribute to about 33% of the total faults

each, and that the next highest category is “data problems” at 16%, where “data

problems” include structural and interaction problems with the data repository. To

further investigate this distribution, the authors group projects based on the

number of releases and compare their results with other studies. From these

comparisons they conclude that the percentage of coding faults is significant,

being roughly equal to the number of requirements and design faults combined.

They also conclude that interactions between components cause problems, and

that other defect types are less significant and may be influenced by the domain

of the software. The percentage of coding faults, requirements faults, and data

faults were found to be surprisingly consistent across projects with different

domains, programming languages, processes, and people. These findings lend

empirical evidence that coding faults are a common problem in software

development projects.

These studies provide useful data that may be used to improve the state

of the art in software engineering. For example, Hamill and Goševa-

Popstojanova reveal that 33% of faults are introduced during implementation.

Many projects begin improvement efforts with the requirements phase, but this

evidence provides reason to carefully consider a more balanced approach. It is

also interesting that the distribution of fault types across projects that was

observed by Dyre-Hansen [15] exhibits no pattern, while Hamill and Goševa-

Popstojanova are able to find consistent patterns [28] when using a higher level

classification (e.g., Requirements, Design, Data, Coding). Understanding the

nature of software faults in large systems is an important research area, with

31

practical implications for industry and research. Relatively few studies exist that

consider this problem in conjunction with the type of faults that occur.

2.6 Manual Fault Classification Challenges

Above we described many advantages of software fault classification.

Advantages include applications in process improvement, verification and

validation, and in empirical software engineering research. Despite the multiple

advantages there are many challenges to the adoption and use of fault

classification practices. In this section I review literature that illuminates these

challenges.

“The range of efforts to create defect classification schemes [..],

and the long history, in which there has been no single, widely

used scheme, suggests that defect classification is hard, and

repeatable orthogonal classification is itself difficult.“

- Kelly and Shepard [16]

The quote above summarizes my beliefs on the challenges of software

fault classification, still accurate fourteen years after it was published. To explore

these challenges I look at: 1) research that directly studies challenges in software

fault classification, and 2) evidence from work that I have already discussed,

where the focus of the study is a benefit, rather than a challenge.

2.6.1 Empirical Studies of the Challenges of Fault Classification

The studies in this section are focused on challenges in fault classification.

These studies focus on the repeatability of fault classification, its effectiveness,

and the orthogonality of the classification. Other considerations include efficiency

and experience requirements.

El Emam and Wieczorek conduct a study to determine whether fault

classification using ODC is repeatable [57]. The authors use the Kappa

32

coefficient to measure agreement between classifiers and found that in general

there is good agreement (κ > 0.62) and in some cases excellent agreement (κ >

0.82). The authors point out confusion between the Data and Assignment defect

types by combining the types and showing the impact on measurements. While

these results seem promising, the results cannot be generalized. Their results

were for a single organization, and only studied the inspection activity.

Henningsson and Wohlin conducted a study to determine whether a group

separate from the developers can correctly classify software faults based on the

fault descriptions [12]. The authors find that agreement is low, but that the

participants are confident in their decisions. This illustrates the impact of human

fallibility on fault classification. The authors also conclude that training is

required, but that education alone does not explain the low agreement.

Falessi and Cantone explored the effectiveness, efficiency, orthogonality,

and discrepancy of software fault classification using ODC [13]. They find that all

effectiveness, orthogonality, and discrepancy are dependent upon experience.

They found that the mean time to classify a defect was 5 minutes and the median

6.7 minutes. The authors provide information about affinity between some defect

types in the ODC scheme and recommend improvements in documentation and

definition of these types in order to improve the repeatability of fault classification.

The affinity of a fault type A with respect to a fault type B measures the

percentage of faults of type A that are classified as A or B. Falessi and Cantone

find that when the most frequent classification (MFC) is Relationship, 90% of the

categorizations from participants are Relationship or Interface/OO Messages.

They also find that when the MFC is Checking, 95% of the classifications are

Checking or Algorithm/Method. Finally, Falessi and Cantone found that faults

with an MFC of Assignment/Initialization, Algorithm/Method, or Checking are

classified as one of these classifications 90% of the time. In other words, these

three classifications are often interchanged by participants.

Several interesting conclusions can be drawn from these studies. First,

orthogonality is indeed difficult to achieve. Without orthogonal attributes and

attribute values it is difficult to get agreement on the correct classification of a

33

fault, and thus difficult to get actionable data. The studies by El Emam and

Wieczorek [57] and Falessi and Cantone [13] both identify affinity between fault

types. The study by Henningsson and Wohlin [12] indicates that the description

of the fault alone is insufficient to classify faults reliably. Perhaps more

concerning, is the high confidence of participants in their decisions, even when

they are incorrect [12]. Thus, the impact of the human classifier cannot be

understated. An additional perspective on this dependency is that of the

experience of the classifier. Falessi and Cantone find that many aspects of the

fault classification activity are impacted by experience [13]. Orthogonality,

available information, and experience are thus three major challenges that have

been explored in empirical studies. Studies seem to indicate that the time to

perform classification is modest, including Falessi and Cantone which explicitly

measure this aspect of fault classification [13].

2.6.2 Fault Classification Challenges from Research and Practice

In this section I explore the fault classification challenges that have been

reported from industrial and research literature that was focused on the benefits

of the technique. I have arranged these observations into high level topics. The

first is the problem of consistent data. The second is time commitment. A third

area of concern is the customization of fault classification schemes.

Data Consistency

Consistent data is necessary in order to make good decisions based on

that data. A number of studies cited problems with the consistency of data that

was collected. Leszak et al. reported that 30% of the data collected from

engineers was inconsistent [58]. They conclude that additional training may be

necessary. However, training seems to be only one aspect of inconsistency.

Dyre-Hansen found that 21.5% of problem reports were either not faults,

or duplicates, while 12% were classified as unknown [15]. The large percentage

of unknown fault reports represents a significant problem in data consistency.

The percentage is large enough to negatively influence decisions based on the

34

distribution of the faults. For example, if a large percentage of the unknown fault

reports represent design issues, but the correctly identified faults indicate that

implementation faults are the largest category, the corrective actions will be

applied to the incorrect phase of the software development lifecycle.

Shenvi points out that some faults could belong to one or more type

according to the ODC scheme [5]. It is unclear whether this is a problem with the

scheme, a problem within that particular domain, or perhaps due to the

interpretation of the information. Kelly and Shepard noted differences in

interpretation as well as a reliance on skill and experience [16], so it is likely that

multiple factors play a part.

Seaman et al. point out that quality assurance activities are necessary to

mitigate factors such as these [18]. Quality assurance activities on fault data

uncover problems that suggest additional training, but may also uncover needs

for changes to the classification scheme. Changes to the scheme may include

new fault categories and changes to existing categories that are often

misclassified.

Time

Although studies have shown that the time to classify faults is small [13],

[58], [59], additional evidence suggests that other time commitments may cause

resource problems. Despite an estimate of nineteen minutes to perform root

cause analysis on each fault, Leszak et al. reported that the complexity of the

scheme caused stakeholders to lose track of the classification effort due to

project pressures [58].

While analysis is a larger time commitment than classification, studies

revealed other time constraints that impact cost. For example, Bhandari et al.

estimate fault classification at 4 minutes per defect [59]. However, they do not

account for training and they estimate 10-20% of an individual’s time for data

collection and analysis. It is also possible that the individuals needed for data

collection and analysis are highly skilled individuals with multiple competing

priorities.

35

I conclude that the time commitment of adopting a fault classification

scheme and the associated practices are not well understood. In order to truly

measure the cost, it is necessary to take multiple factors into account. First, there

is the time to classify a fault. While this time commitment is modest, it is also

frequent. An average of four minutes per fault for one thousand faults is the

equivalent of 67 man hours of effort. While I believe that this investment is

reasonable, it is likely one of the smallest resource requirements required to

adopt fault classification.

In addition to the time for classification, there is the time necessary for

training staff. Education is clearly necessary to end up with consistent data,

although it is not itself sufficient for ensuring consistency. The scheme must be

clearly documented, with relevant examples, and strict guidelines [39]. The

training activities, along with the time commitments to develop guidelines and

examples for operation and for the training itself, are likely to be a significant

investment of time in most organizations.

Finally, one must also consider the time investment of quality assurance

for fault classification data. This includes reviewing faults, recording findings, and

providing feedback on corrective measures. Corrective measures include training

and changes to the fault classification scheme.

Customization of Fault Taxonomies

A number of factors may require customization of fault taxonomies. Some

factors are obvious, such as the goals of the organization. Others are less

understood. Ploski et al. investigate fault classification schemes in order to better

understand how fault injection studies should select a fault density and frequency

of fault classes [60]. They conclude that the distribution of software faults is

dependent on project-specific factors such as the maturity of the software, the

operating environment and the programming language. Furthermore, they state

that it is not obvious how these factors should be considered, or systematically

discovered. This section contains examples illustrating the needs for

customization, as well as some recommended approaches.

36

Studies by Shenvi [5] and Freimut et al. [17] specifically cite a need for

domain specific customization of fault classification schemes. Freimut et al.

present such a customization approach that was used and validated at Robert

Bosch GmbH in the Gasoline Systems business unit [17]. Seaman et al. discuss

the challenges associated with customization in NASA, when the data is

aggregated [18]. The broad customization of the schemes within the same

organization suggest that the domain is only one factor that contributes to

customized schemes.

Hayes presents a process for tailoring and extending a requirements fault

taxonomy for specific projects and types of projects within NASA [19]. The

process of tailoring the fault taxonomy enables a project to better meet its

objectives with regard to quality and safety.

In this section I have presented a number of factors that require

customization of fault classification schemes. While the factors are varied, and

relatively poorly understood, the result is that customization of fault classification

schemes are needed and impact the success of their adoption in organizations.

2.7 Automated Fault and Failure Classification

Researchers have looked at automated methods of understanding fault

and failure information for various purposes. This includes detection of duplicate

problem reports, determining the best developer to fix a fault, and automated

classification. In this section I discuss these efforts and relate it to my research.

2.7.1 Duplicate Reports

Podgurski et al. created an automatic way to classify software failures for

software that is instrumented to detect failures [20]. The authors believe that the

instrumentation of software to provide execution profiles when failures occur will

increase the number of problem reports, and increase the number of failure

reports for the same underlying fault. The authors describe a process to select a

subset of features, perform automated cluster analysis, and compliment it with

visualization of the data. Podgurski et al. find that small, tight clusters were quite

37

likely to contain failures with the same cause [20]. A few large, non-homogenous

clusters existed with sub-clusters that contain similar causes. In some cases

failures from the same cause were split. The technique reduces the average

amount of time and effort necessary to diagnose a failure.

Runeson et al. apply Natural Language Processing techniques to the text

of fault reports in order to identify duplicates [21]. The technique is validated at

Sony Ericsson where approximately 40% of the marked duplicates were

identified. Runeson et al. interviewed developers and testers and were able to

confirm that detection of 40% of duplicates represented a significant cost savings

[21].

2.7.2 Fault vs. Enhancement

Antoniol et al. classify problem reports from Mozilla, Eclipse, and JBoss to

determine if the report describes a fault or another activity (e.g., enhancement or

refactoring) [22]. Issue descriptions were used to distinguish faults with a

precision between 64% and 98% and a recall between 33% and 97%. This work

is complimentary to the research presented in this dissertation. The technique

presented by Antoniol et al. provides an effective pre-processing step to

eliminate non-corrective maintenance activities from consideration.

2.7.3 Classification of Fault Impact

Huang et al. present AutoODC, an approach to automating ODC

classification by treating it as a supervised text classification problem [23].

AutoODC requires experts to annotate the text of the problem report. Once

annotated the system classifies the Impact attribute of ODC. Although Huang et

al. claim that this technique can be applied to other attributes of fault

classification, no evidence of this has been presented. The work in this

dissertation focuses on the fault type, or defect type in ODC, which characterizes

the nature of the fault fix. Therefore, in its current state, the work of Huang et al.

complements the research in this dissertation by automating a different attribute

of the fault.

38

2.7.4 Automatic classification of fault severity

Menzies and Marcus developed a system called SEVERIS which uses the

text of problem reports to automatically classify the severity of the faults [24].

SEVERIS performs its classification and compares it to the manually assigned

severity. Discrepancies can be reviewed and corrected by supervisors. SEVERIS

was validated on NASA robotics projects. The reported F-measure varied for

projects and severity levels. Three of the measurements were greater than 0.90

and many instances were greater than 0.7.

Lamkanfi et al. performed a similar study to predict the severity of problem

reports on three open source systems [25]. Lamkanfi et al. predicted the severity

of faults from Mozilla, Eclipse, and Gnome. They concluded that a training set of

approximately 500 reports per severity was needed to gain consistent results.

The severity of an issue is important to determine the priority with which it

is addressed. Severity levels are often subjective, so automated support can help

compensate for human error or inexperience. These studies complement the

research in this dissertation by automating the severity attribute of a fault.

2.7.5 Automated Classification of Fault Family

Thung et al. propose an automated categorization of software faults into

three families: control and data flow, structural, and non-functional [61]. Thung et

al. use features from bug reports and from the source code that fixes the

software fault. A multi-class classification algorithm is used to classify the faults.

The approach was evaluated on 500 manually labeled faults from three open

source systems. An F-measure of 0.692 and an accuracy of 0.778 was achieved

[61].

Tan et al. use the text of the problem report to classify 109,014 faults into

semantic bugs and memory bugs [62]. The purpose of the automated

classification is to reduce manual effort in building bug benchmarks for the

evaluation of fault detection tools.

39

This dissertation differs from the approaches of Thung et al. [61] and Tan

et al. [62] by providing more granular fault types that are not pre-determined. In

this dissertation we utilize the syntax of the fault fix to group faults, and are not

limited by the completeness or correctness of the fault description. Thung et al.

use statistics on program elements in addition to the text [61]. However, they only

consider a handful of program elements in their classification scheme, and only

classify faults into three fault types. The research in this dissertation provides

flexibility in the number of fault types and is able to consider all source code

changes.

2.7.6 Bug Fix Patterns

Pan et al. present twenty-seven automatically extractable bug fix patterns

as a new approach to software fault classification [63]. They are motivated to find

the most common types of software faults for a specific system and whether the

frequency of these software faults are common across systems. Their validation

finds that 45.7-63.6% of bug fix changes can be classified using their method.

The changes are classified based on locations within the file that have changed,

rather than classifying the fault itself. The most common patterns identified are

changes of the parameters in method calls, changes to conditional expressions

in an if statement, and changes to assignment expressions. Six of the seven

projects have similar bug fix pattern frequencies. An analysis of five developers

in the Eclipse project shows a surprising consistency in the rate at which

developers introduce certain types of software errors.

Merkel and Nath manually apply the bug fix patterns introduced by Pan et

al. as a software fault classification for a Java-based system [64]. They randomly

select 100 commits (373 file revisions) from 476 commits that are identified as

fixes. They suggest four possible new bug fix patterns. The suggestions are

method return value changes, scope changes, loop-related changes, and

changes to string literals. Their results lend additional evidence that the bug fix

pattern approach is useful, and also demonstrate that the patterns are not

comprehensive.

40

There are two major differences between the Bug Fix Pattern approach

and the research in this dissertation. The first difference is what is classified. Bug

Fix Patterns classify a section of code that has been altered. This means that

many such patterns could be present in a single fault fix. In contrast, this

dissertation categorizes the entire fault using information about all of the

changes. It may be possible to use the Bug Fix Patterns as a higher level change

type in order for these techniques to be integrated. The second primary

difference is the identification of patterns. The Bug Fix Patterns are identified

manually, and then their detection in source code is automated. The work in this

dissertation takes a different approach. I classify the source code changes and

find patterns through the use of clustering. This automates the pattern

recognition.

2.8 Discussion

This chapter began with the introduction of fault classification. In order to

provide a concrete example, an overview of the Orthogonal Defect Classification

(ODC) scheme was presented. This scheme was selected for this purpose due to

its large record of use in industry and research.

The benefits of fault classification are broad. I began the discussion of

benefits with the most widely cited benefit of fault classification, that of process

improvement. Process improvement is critical for software companies, and its

applications range from reducing coding defects, improving verification and

validation activities, to changing processes that impact multi-project

organizations.

Verification and validation are also benefitted by fault classification in

multiple ways. A fault taxonomy can serve as a guide to testers that are

designing tests, guide the injection of faults for reliability testing, aid in planning

quality-related activities, and aid in the measurement of their effectiveness.

Research on fault classification is far from complete. There are multiple

issues that make the classification of software faults difficult. Getting consistent

data requires a useful scheme that is properly customized for the environment

41

and domain. The scheme must be well documented, and training must be

conducted. In addition, there is no substitute for the skill and experience of the

classifiers.

Researchers have recognized the limits of manual fault classification and

have investigated automation solutions. Studies have attempted to limit duplicate

problem reports, separate corrective maintenance from other issues, and

automatically determine the impact and severity of software faults.

Relatively few studies have addressed the automatic classification of

faults according to their fault type. Thung et al. successfully distinguish three

broad categories of faults by using information from the text of the problem report

in addition to information from the source code changes [61]. Pan et al. provide

an automated method to classify source code changes, but the classification

occurs for every pair of changes in the source code that repair a fault [63].

I believe that the future of fault classification lies in the automation of the

work. Automated approaches that can deliver on benefits that have been

recorded, as well as address major challenges, can drastically impact how

software organizations approach fault classification. This paradigm shift should

reduce the cost of ownership that is present in fault classification practices today

and make the practices more accessible to organizations that can benefit from

these practices.

42

Chapter 3

Mining Software Fault Information and Types

This chapter describes my approach for mining and categorizing faults

based on syntactical change data. I present MiSFIT (Mining Software Fault

Information and Types), a process, and toolset for mining software fault

information. My approach consists of three phases. Each phase builds on the

results of the last. The first phase extends a change taxonomy. The resulting

change taxonomy provides a method to categorize and count the syntax changes

in a fault repair. The second phase provides a method to cluster software faults

based on the syntax of the fault repair. The final phase applies the automatically

clustered faults to the analysis of software faults over several releases of an

open source software project.

3.1 Extending a Change Taxonomy

This research investigates the extension and application of fine-grained

source code changes to the analysis of software faults. Fluri et al. introduced

ChangeDistiller, a tool that can identify the fine-grained source code changes

from two versions of source code [65].

The algorithm and change taxonomy implemented in ChangeDistiller are

designed to analyze change couplings [65], [66]. The taxonomy is not adequate

for the analysis of software faults due to its treatment of source code statements.

From a change coupling perspective, the insertion of an if statement or a method

invocation have an equally small probability of causing changes in other parts of

the source code. However, from a software fault perspective, the difference in

these two changes strongly informs the classification of a fault.

I extended the change taxonomy and made changes to the application in

order to capture information that was relevant to software faults. My first research

question, which I must address before going further, is whether this extended

taxonomy has information that is relevant to software fault analysis.

43

RQ4.1: Can an extended change taxonomy provide additional

information about source code changes that is useful in the

analysis of software faults?

The details of the extended change taxonomy are discussed in Chapter 4.

Chapter 4 also describes the tool, MiSFIT, which I developed to collect the

software fault data.

3.2 Clustering Software Faults

As previously mentioned, clustering is a machine learning technique that

groups data instances into natural groups [67]. Clustering is therefore useful

when a training set is not available. In this study, I cluster software faults based

on the types of syntactic changes that occurred to repair the fault.

A clustering solution is often evaluated for its internal and external quality.

I expect a clustering solution for software faults to be stable from one version of

software to the next. Changes in the distribution of fault types must be

reasonable, and explained. In addition, I want to know that the clusters convey

beneficial information to users of such a system. The goal of clustering the faults,

as with fault classification, is to enable analysis of faults at a macro level. This

leads to two important research questions for clustering software faults.

RQ5.1: Can clustering of fault fixes by syntactic changes result in

consistent clusters for a software project?

RQ5.2: Does the automatic categorization of faults by syntactical

change provide beneficial information regarding the nature of

the software fault?

3.3 Software Fault Evolution

Software evolution is the study of large, long-lived systems. Due to

changing business requirements and environments, combined with changes in

user expectations, successful software is constantly changing. Software

undergoes changes to correct faults, enhance functionality, and manage

44

complexity (controlling maintenance costs). Chapter 6 looks at the evolution of

software faults with the benefit of classified fault data.

With the addition of fault type, I can look at interesting questions about the

evolution of software systems. For example, do the same types of faults tend to

occur in the same locations? Do developers tend to fix the same types of faults?

Some faults require multiple attempts to repair. I refer to these faults as

problematic fault fixes. Do these problematic fixes tend to occur more often for

certain fault types? These types of question led to the following research

questions.

RQ6.1: Over time, do the same types of faults tend to occur in a

given subcomponent?

RQ6.2: Are certain fault classes more likely to be fixed by single or

multi-file changes?

RQ6.3: Do developers tend to fix the same types of faults?

RQ6.4: Are pre-release fault distributions predictive of post-release

fault distributions?

RQ6.5: Are problematic fault fixes distributed evenly among fault

classes?

45

Chapter 4

An Extended Change Taxonomy for Software Fault Analysis 1

This chapter presents an extension to an existing change taxonomy and

its application to the analysis of software faults. In this chapter I present the

existing taxonomy, including the algorithm and tool that supports the taxonomy. I

then describe my method for extending the taxonomy for analyzing software

faults. Finally, I present an experiment that shows that my extended taxonomy

provides useful information for the software faults in my case study.

This research investigates the extension and application of fine-grained

source code changes to the analysis of software faults. Fluri et al. introduced

ChangeDistiller, a tool that can identify the fine-grained source code changes

from two versions of source code [65]. The algorithm and change taxonomy

implemented in ChangeDistiller are designed to analyze change couplings [65],

[66]. A version of ChangeDistiller is available under an open source license2. The

change taxonomy consists of more than forty change types. Four of these

change types identify the insert, update, delete, or re-ordering of a statement. In

order to extend the taxonomy, I expand these four change types by appending

the type of statement that was changed.

4.1 A Taxonomy of Source Code Changes

Fluri and Gall present a taxonomy of source code changes for change

analysis [66]. The taxonomy is based on the comparison of abstract syntax trees.

The commonly used textual differencing approach is not sufficient, since textual

changes may include formatting changes and updates to comments which are

cosmetic. The taxonomy models changes to abstract syntax trees as operations

on the nodes of the tree, specifically, insert, update, move, and delete changes.

1 © 2014 IEEE. Reprinted, with permission, from Bill Kidwell, Jane Huffman Hayes, Allen
P. Nikora, “Toward Extended Change Types for Analyzing Software Faults”,
Proceedings of the 14th International Conference on Quality Software (QSIC), Oct. 2014.

2 https://bitbucket.org/sealuzh/tools-changedistiller/

46

In addition to defining the taxonomy, Fluri and Gall also associate a

significance level to each change type. These significance levels are low,

medium, high, and crucial. The value is based on the probability that the change

will result in additional changes in the source code. For example, changing the

name of a method requires a change to each method invocation of that method,

resulting in a high significance level. The change taxonomy is presented here in

two parts. The first part, presented in Table 3, represents changes to declaration

parts in the source code. The second part, presented in Table 4, represents

changes to the body of a class or method.

Table 3 - Fluri and Gall's Change Taxonomy - Declaration-Part

Change Type Significance Description

Class Renaming High Changing the name of a class.

Decreasing Accessibility Change Crucial Changing accessibility on a class, method or

attribute to a less accessible state (e.g., public

to private).

Attribute Type Change Crucial Changing the type of an attribute (e.g., from

integer to float).

Attribute Renaming High Renaming an attribute without modifying the

type of the attribute.

Final Modifier Insert Crucial Adding a final modifier to a class, method, or

attribute. This prevents a class or method from

being overridden. It prevents an attribute from

being modified.

Final Modifier Delete Low Removing a final modifier from a class,

method, or attribute. This allows derivation for

classes or methods and allows modification for

attributes.

Increasing Accessibility Change Medium Changing accessibility on a class, method or

attribute to a more accessible state (e.g.,

private to protected).

Method Renaming High Changing the name of a method without

changing the return type or parameters.

Parameter Delete Crucial Removing a parameter from a method.

Parameter Insert Crucial Inserting a new parameter in a method.

47

Table 3, continued

Change Type Significance Description

Parameter Ordering Change Crucial Changing the order of one or more parameters

in a method.

Parameter Type Change Crucial Changing the type of a parameter in a method.

Parameter Renaming Medium Renaming a method without changing the type

of the method.

Parent Class Delete Crucial Removing an inheritance or extension

association with a parent class or interface.

Parent Class Insert Crucial Adding an inheritance or extension association

with a parent class or interface.

Parent Class Update Crucial Changing an inheritance or extension

association with a parent class or interface.

Return Type Delete Crucial Changing the return type of a method to void.

Return Type Insert Crucial Adding a return type to a method.

Return Type Update Crucial Changing the type of the value returned by a

method.

Declaration-part changes include changes to method signatures, changes to a

class name, and to an attribute’s type. They also include changes to the

accessibility of a class, method, or attribute. These changes are the most

significant changes in terms of change propagation.

Body-part changes represent either the addition/removal of methods/attributes to

a class or changes within a method. Changes within a method can be further

divided based on whether they change condition expressions, impact the control

structure of the method (thus changing the nested depth), or move the location of

a statement to a new block.

4.2 Extending the Change Taxonomy

As previously mentioned, the existing change taxonomy is inadequate for

software fault analysis due to the treatment of statements. The majority of fault

fixes impact statements within a method. In order to understand the type of

change that is applied, more precise information about the type of statement is

necessary.

48

Table 4 - Fluri and Gall's Change Taxonomy - Body-Part

Change Type Significance Description

Additional Functionality Low Addition of a function.

Additional Object State Low Addition of an attribute.

Condition Expression Change Medium Change to a condition expression in an if

statement or loop.

Decreasing Statement Delete High Deletion of a statement that results in a

decrease in the nested depth of the

method.

Decreasing Statement Parent

Change

High Change to the location of a statement that

results in a decrease in the nested depth

of the method.

Else-Part Insert Medium Addition of an else block to an if

statement, or case block within a switch.

Else-Part Delete Medium Removal of an else block from an if

statement, or case block within a switch.

Increasing Statement Insert High Addition of a statement that increases the

nested depth of the method.

Increasing Statement Parent

Change

High Change to the location of a statement that

results in an increase to the nested depth

of the method.

Removed Functionality Crucial Removal of a function.

Removed Object State Crucial Removal of an attribute.

Statement Delete Medium Deleting a statement from a method.

Statement Insert Medium Adding a new statement within a method.

Statement Ordering Change Low Changing the order of statements within a

method.

Statement Parent Change Medium Changing the parent of a statement (e.g.,

moving a statement within an if block).

Statement Update Low Updating a statement within a method.

49

The contextual information collected by ChangeDistiller allows the

extension of the statement delete, statement insert, statement update, and

statement ordering change change types. I use the changed entity information

available from the ChangeDistiller API to identify the type of statement that was

altered, such as an if statement or method invocation. For example, a change of

type statement insert and a changed entity of method invocation will result in an

extended change type of statement insert method invocation. I translate this

value to insert method call for readability.

The extension of these change types more than doubles the number of

change types. The theoretical size is equal to the number of statement level

entities in the language multiplied by the four node operations. I only record

change types that are actually observed. The source code entities that were

observed are listed in Table 5. Along with the entity type, I indicate whether it

was seen as part of a statement insert (“I”), statement delete (“D”), statement

ordering change (“M”), or statement update (“U”).

Table 5 - Entities Observed in Extended Change Types

Entity Type I D M U Entity Type I D M U

ASSERT_STATEMENT x x x POSTFIX_EXPRESSION x x x x

ASSIGNMENT x x x x PREFIX_EXPRESSION x x x x

BREAK_STATEMENT x x x RETURN_STATEMENT x x x x

CATCH_CLAUSE x x x x SUPER_CONSTRUCTOR_INVOCATION x x x

CLASS_INSTANCE_CREATION x x x x SUPER_METHOD_INVOCATION x x x x

CONSTRUCTOR_INVOCATION x x x SWITCH_CASE x x x x

CONTINUE_STATEMENT x x x SWITCH_STATEMENT x x x x

DO_STATEMENT x x x SYNCHRONIZED_STATEMENT x x x x

ENHANCED_FOR_STATEMENT x x x THROW_STATEMENT x x x x

FOR_STATEMENT x x x TRY_STATEMENT x x x

IF_STATEMENT x x x VARIABLE_DECLARATION_STATEMENT x x x x

LABELED_STATEMENT x x WHILE_STATEMENT x x x

METHOD_INVOCATION x x x x

Note that the vast majority of these source code entities are statements,

but postfix expressions and prefix expressions are also included. These

expression types were added because a loop is deconstructed into the initializer

expression, condition expression, and update expression.

50

4.3 Case Study

In order to validate the extended change taxonomy I extract the source

code changes of fault fixes from two versions of the Eclipse Platform. I chose

Eclipse version 2.0 and Eclipse version 3.0 for the case study in this research. In

this section I describe the Eclipse platform and provide information about the

versions that I selected.

The Eclipse platform was developed as a common basis for integrated

development environments (IDEs) [68]. Multi-tier applications use a number of

different technologies, which require a diverse collection of tools. The Eclipse

platform was developed with open application programming interfaces (APIs) to

allow the integration of multiple tools in a single platform. Eclipse accomplishes

this level of integration through a component-oriented architecture. Besides a

minimal base, the Eclipse Runtime, all functionality is added through Java

modules called Plug-ins [68].

Eclipse 2.0 was released on June 7, 2002. According to available sources,

the primary focus was quality improvement and performance, with a lesser

emphasis on new features [69]. Eclipse 2.0 consisted of 3 subprojects, the

Eclipse Platform, the JDT (Java development tooling), and the PDE (Plug-in

development environment).

Beginning with Eclipse Version 3.0, Eclipse became a Rich Client Platform

[70]. This required Eclipse to change its underlying architecture. The Eclipse

project adopted the OSGi Service Platform. Gruber et al. describe the transition

from a proprietary framework to a framework based on OSGi [70]. This change is

significant for my purposes, since the two versions of the product are separated

by approximately 2 years and represent a significant change in architecture.

Eclipse 3.0 was released on June 21, 2004. The development plan for

Eclipse 3.0 outlines a number of themes for each subproject [71]. The Eclipse

Platform focused on user experience, more responsive UI, and rich client

platform capabilities. The JDT focused on support for other JVM-based

languages and improved user experience for Java developers. The PDE

51

subproject worked on support for the new plug-in format, testing, and improving

the scalability of its model implementation.

Multiple artifacts for Eclipse are publicly available. The source code for

Eclipse 2.0 and 3.0 is kept in a Concurrent Versioning Systems (CVS) repository.

The problem tracking system is a customized version of Bugzilla3. Some

descriptive statistics for Eclipse 2.0 and Eclipse 3.0 are given in Table 6.

Table 6 - Descriptive Statistics for Eclipse Versions

Version Fault
Fixes

Files
Involved

Lines
Added

Lines
Removed

Start
Date

End
Date

Eclipse 2.0 3335 13047 208257 124313 1/8/2002 9/27/2002

Eclipse 3.0 8160 45096 1440617 1140349 12/22/2003 12/21/2004

Multiple researchers have used the Eclipse source code and problem

tracking system to conduct software engineering research. Zimmermann et al.

mined Eclipse 2.0, 2.1, and 3.0 to build software prediction models [72]. The data

sets from these prediction models are publicly available4. Moser et al. extended

this research by comparing the ability of change metrics to predict faults [73].

Moser et al. concluded that change metrics, such as the number of changes that

are made to a file, are more effective at predicting faults than static metrics, such

as the number of source code lines or the complexity of a method.

Krishnan et al. investigated the use of change predictors to predict fault-

prone files in a product line [74]. The study by Krishnan et al. treats the Eclipse

platform as a product line, and each project as an application that is delivered

from that product line. They found that prediction results improve significantly as

the product evolves. Krishnan et al. also made their dataset, scripts, and

databases publicly available. This research builds upon the Krishnan et al. set of

artifacts.

3 https://bugs.eclipse.org/bugs/
4 https://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/

52

4.4 Data Collection

The first step in data collection is to transform the data in the database

into a format that can be used to drive my process. I use Pentaho Data

Integration tool (aka Kettle) as the Extraction, Transformation, and Loading (ETL)

tool5. The resulting database schema is a star schema, a common approach for

business intelligence databases, which includes dimension tables and fact

tables. The schema is depicted in Figure 2.

Each file is described in the file_dim table, including the full path and the

date/time that the file was added to the system. Each file has one or more

revisions in the file_revision_dim table. The revision number, as well as the

number of lines added and removed, is captured as recorded by CVS. Since a fix

can be attributed to multiple faults, the fix_commit_fact table has one entry per

commit, per problem report. This results in a many-to-many relationship between

the fix_commit_fact table and the file_revision_dim table.

fix_commit_fact

PK Fix_Commit_Key

 Date_Key

 CommitTime

 CommitHour

 CommitMinutes

 CommitSeconds

 BugId

 Description

FK1 Product_Key

FK2 Component_Key

 File_Count

file_revision_dim

PK File_Revision_Key

FK1 File_Key

 Revision

 LinesAdded

 LinesRemoved

file_dim

PK File_Key

 file

 first_seen_date

fix_commit_file_revision_bridge

PK,FK2 Fix_Commit_Key

PK,FK1 File_Revision_Key

product_dim

PK Product_Key

 Name

 Version

component_dim

PK Component_Key

 Component

 SubComponent

developer_dim

PK Developer_Key

 Developer

Figure 2 - Star Schema for Eclipse Fault Fix Data

5 http://community.pentaho.com/projects/data-integration/

53

The product_dim table, the component_dim table, and the developer_dim

table contain information about the product and version, the component and

subcomponent, and the developer that committed the files to CVS. These tables

can be used to query information from the fix_commit_fact table based on these

attributes.

4.4.1 Data Collection Workflow

MiSFIT processes each fault according to a simple workflow. File revisions

before and after each fault fix are retrieved from the CVS source code repository

and stored locally. The workflow is service-based, with each service pulling work

from a message queue, performing a single task, and putting the work on the

next queue. The workflow is shown in Figure 3 and described in more detail

below.

The primary advantages of this approach are scalability, reliability,

flexibility, and modularity. Scalability is achieved by adding additional instances

of each service. Multiple instances can safely pull from a single queue. The

message queue also provides reliability. If a service fails while processing work

the item is returned to the queue after a timeout period. This allows another

instance of the service to pick it up and process it. The system is flexibile

because I can add or remove processing steps easily. Finally, modularity is high

because each service performs a simple task. The overall complexity of each

service is relatively simple.

The initiation controller formats the data into an XML file with the following

fault data: product, release, component, subcomponent, fixDate, bugId, author,

and description. In addition, for each file I include the path, revision, lines added,

lines removed, and the date/time in which the file was first seen. The xml file is

placed in a local file store, and a message is placed on the Fetch Queue.

The File Fetch Service retrieves the message from the fetch queue. The

service reads the xml, and for each file, it retrieves the version of the file before

and after the stated revision. These files are placed in a local file store and the

xml file is updated with their location. Their locations are recorded as two

54

attributes on the file, preRepair and postRepair. Once this is completed, MiSFIT

stores the updated archive file in a document repository and removes the

message from the Fetch Queue. The message is then placed on the Distill

Queue.

Service-based mining of software repositories

D
a

ta
S

e
rv

ic
e

s
Q

u
e

u
e

S
y
s
te

m

Distill

Queue

Initiation

Controller

File Fetch

Service

Fetch

Queue

Bug Fix

Data

Change

Distiller

Change

DataCVS

Finalize

Queue

Log

Data

Bug Fix

Change

Dataset

Figure 3 - A Service-based source code mining

I am using the Evolizer toolset, and specifically the ChangeDistiller

component, from the University of Zurich to collect the syntactic change types

between two versions of a file [75]. By default this tool acts in a batch mode,

processing all of the versions for all of the files in a given project. For the Eclipse

source code, this presented problems. There are many individual projects in the

system, and there are a large number of changes that are of no interest to this

research (do not repair faults). I utilized the Stand-alone ChangeDistiller tutorial6

on the tool’s website as a basis for an OSGi plugin. This allows us to treat the

ChangeDistiller as a service. MiSFIT provides two files and the ChangeDistiller

service provides a list of the change types that occurred between the two

versions. The Change Distilling process is discussed in more detail below. I then

6 https://www.evolizer.org/wiki/bin/view/Evolizer/Tutorials/StandaloneChangeDistiller

55

add the change types to the xml, update the local file store, and place the

message on the Finalize Queue.

The Log Data service is responsible for parsing the xml and updating a

relational database with the information. The use of a relational database makes

it easy to perform reporting and data export to a variety of formats for analysis.

4.4.2 Change Distilling Process

The fine-grained source code changes are extracted for each pair of files

using the ChangeDistiller tool [75]. Fluri et al. describe the change distilling

process, where the abstract syntax trees of each revision of the source code are

compared and source code changes are extracted [65].

I use the changed entity information available from the ChangeDistiller API

to identify the type of statement that was altered, such as an if statement or

method invocation. All of the information for each change is recorded in an SQL

database and the extension is performed through the use of an SQL script. A

database trigger is used to append the changed entity’s type to the change type.

Once the database is populated with all of the source code changes, a query is

used to collect the type and count of source code changes that are recorded for

each fault in the dataset.

4.5 Validation

Validation of the taxonomy occurs in two phases. In this section I describe

my work to validate that the extended change types provide useful information for

fault fixes. In the next chapter I continue validation by clustering these faults and

manually inspecting a subset of the faults. My rationale is that in order to be

useful, the extended change types must occur frequently in fault fixes. If these

change types are infrequent in fault fixes, then the additional granularity that is

gained by adding the extended types adds no new information. On the other

hand, if multiple extended change types occur frequently I should consider these

extended change types as features and evaluate their usefulness for

understanding the data.

56

In this section, I evaluate the frequency of extended change types in

software fault fixes as compared to the original change taxonomy. The top twelve

change types that are extracted from fault fixes in Eclipse 2.0 and 3.0 are the

same, and are presented in Table 7 with frequency of occurrence.

Table 7 - Top Twelve Change Types for Fault Fixes
© 2014 IEEE

Change Type Eclipse 2.0 Eclipse 3.0

Commits Percent Commits Percent

Insert If * 1512 52.39% 3415 52.21%

Insert Method Call * 1391 48.20% 3039 46.46%

Insert Var Decl * 1145 39.67% 2637 40.31%

Statement Parent Chg 1098 38.05% 2555 39.06%

Add Functionality 979 33.92% 2205 33.71%

Update Method Call * 958 33.19% 2095 32.03%

Insert Assignment * 937 32.47% 2238 34.21%

Delete If * 934 32.36% 2239 34.23%

Delete Method Call * 861 29.83% 1883 28.79%

Insert Return * 777 26.92% 1750 26.75%

Update Var Decl * 734 25.43% 1850 28.28%

Cond Expr Change 731 25.33% 1853 28.33%

The first column indicates the change type. Change types that were

introduced by my extension to the taxonomy are denoted by an asterisk (*). The

second and fourth columns provide the number of commits that are associated

with a fault fix that contained at least one instance of the change type for each

version of the software. The third and fifth columns provide a percentage of the

total number of commits that include the change type.

The total number of extended change types in this list provides evidence

that the extended change types provide additional granularity that is useful in the

analysis of software fault fixes. The change types occur with surprising

consistency between the two versions. This led us to question whether the

frequency between the two versions is consistent. The following hypotheses are

used for investigation.

H0: The frequency distributions of extended change types in Eclipse 2.0 and

Eclipse 3.0 are not the same (α=0.05).

57

HA: The frequency distributions of extended change types in Eclipse 2.0 and

Eclipse 3.0 are the same (α=0.05).

The data is not normally distributed, so the non-parametric Wilcoxon

signed rank test is performed to test the hypothesis. The test was performed

against the number of commits for each extended change type in the dataset.

The test indicates that there is no significant difference in the frequency of the

change types, with a p-value of 0.0005. I reject H0 in favor of the alternative and

conclude that the occurrence of change types is consistent in these two versions

of the software.

4.6 Conclusions

In this chapter I have described an extended change taxonomy and

validated its usefulness for fault analysis. First, I described the change taxonomy

provided by Fluri and Gall [66], including its limitations with regards to analyzing

software faults. I provided a proposed extension that utilizes information that is

collected by the ChangeDistiller tool [75].

As a case study, I selected two versions of Eclipse. I included software

faults from multiple Eclipse projects in the analysis. Data collection began with

the extraction and transformation of an existing research database provided by

Krishnan et al. [74]. From this starting point, a service-based workflow that

utilizes a message queue system to coordinate work was described. The data

collection workflow is used throughout this work.

In order to move forward with in-depth analysis of the data I need to

validate the usefulness of the extended change taxonomy. I found that nine of

the top twelve change types in software faults from my case study are extended

change types. In addition, I discovered that there is no significant difference in

the distribution of these extended change types in Eclipse 2.0 and Eclipse 3.0

when only fault fixes are considered. These results provide evidence that the

extended change taxonomy provides useful information and that additional

research is warranted.

58

Chapter 5

Clustering Software Faults7

This chapter describes a process for clustering software faults based on

the changes that were made to repair the software fault. The goal is to

characterize the software fault from the fix that repaired it using an automated

process. In this chapter I describe the clustering tools, my clustering process,

and my validation of the clustering results.

5.1 Clustering Software Faults

The input to the clustering process is a vector. The features of the vector

are the extended change types. One hundred and one extended change types

were present in the Eclipse 2.0 dataset and one hundred and nine change types

were present for Eclipse 3.0. The change types were presented in Chapter 4.

A summary of the process is depicted in Figure 4. The files involved in the

fault fix are extracted from the source code repository. The abstract syntax tree is

instantiated and processed to extract the change types. Each change type is a

feature in the vector and the frequency of a change type for a particular fault is

recorded as the value of that feature for the fault’s vector in the dataset.

7 © 2014 IEEE. Reprinted, with permission, from Bill Kidwell, Jane Huffman Hayes, Allen

P. Nikora, “Toward Extended Change Types for Analyzing Software Faults”,
Proceedings of the 14th International Conference on Quality Software (QSIC), Oct.
2014.

59

Figure 4 - Dataset Creation Overview

For example, Bug # 10009, shown below in Figure 5, consisted of four

changes: JavaDoc comments were inserted, an if statement was added, the

dispose method call was updated, and the parent of the method call was

changed. For this fault the vector has the following values: Insert_If = 1,

Statement_Parent_Change = 1, Update_Method_Call = 1. The changes to

comments are recorded, but discarded for purposes of this study.

+ /**

+ * @see AbstractUIPlugin#shutdown()

+ */

 public void shutdown() throws CoreException {

 JDIDebugModel.removeHotCodeReplaceListener(this);

 JavaDebugOptionsManager.getDefault().shutdown();

- getImageDescriptorRegistry().dispose();

+ if (fImageDescriptorRegistry != null) {

+ fImageDescriptorRegistry.dispose();

+ }

 super.shutdown();

 }

Figure 5 - Source Code Changes for Bug 10009

60

5.2 Measurements

The CLUTO clustering toolkit is used to perform clustering of the data [76].

CLUTO was selected based on its inclusion of cosine similarity as a distance

measure and visualization features that aid in the analysis of the clusters.

CLUTO creates a hierarchical clustering solution when the repeated bisection

approach is used [77]. The hierarchical solution provides views of the data at

different levels of granularity, and in my case allows us to compare hierarchies in

data from multiple datasets.

A complimentary project, gCLUTO, provides an easy method to get

familiar with the tool and visualize data [78]. The gCLUTO interface provides a

convenient method to try different clustering parameters and visualize the results.

It also provides the Mountain Visualization, which we discuss in more detail

below.

CLUTO treats the clustering problem as an optimization process which

seeks to maximize or minimize a particular criterion function [76]. All documents

are initially partitioned into two clusters. One of the clusters is selected and

bisected. This process is repeated k-1 times to arrive at k clusters. CLUTO

provides seven different criterion functions that can be used to guide the

clustering process. A simple, greedy scheme is used to optimize the selected

criterion function [79]. During multiple iterations of refinement, each instance in a

cluster is visited in random order and moved to the cluster that improves the

criterion function’s value. This iterative refinement is repeated until no instances

are moved. In order to avoid the selection of a local maximum or local minimum,

the entire process is repeated ten times and the best solution is selected.

CLUTO offers multiple similarity measures. My initial analysis of clustering

tools identified the cosine similarity as the most effective measure to produce

reasonable clusters in the size range of 7-20 clusters. For two vectors vi and vj,

the cosine similarity function [80] is defined as follows:

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = cos(𝜃) =
𝑣𝑖 ∙ 𝑣𝑗

‖𝑣𝑖‖‖𝑣𝑗‖

61

The cosine similarity ranges from zero (completely orthogonal) to one

(identical), since the frequencies of the change types are always non-negative.

The internal similarity is the average similarity between all objects of the cluster.

An internal similarity near one represents a “tight” cluster. I focus my evaluation

of clusters on the internal similarity since I am trying to group software fixes with

similar syntax. To maximize the internal similarity I limit my evaluation to the use

of the I1 and I2 criterion functions. The external similarity is the average similarity

between the objects of each cluster with the rest of the objects. An external

similarity near zero represents a cluster that is well-separated from other clusters

in the data set. I report the external similarity but do not use it for evaluation.

I define n as the number of fault vectors, k as the number of clusters. S is

the set of vectors that I want to cluster. S1, S2, …, Sk denotes each of the k

clusters. I define n1, n2, …, nk as the size of the k clusters. The composite vector

Di, is defined by the sum of all vectors in cluster Si.

𝐷𝑖 = ∑ 𝑣

𝑣 𝜖 𝑆𝑖

The centroid vector is obtained by averaging the features from all of the

vectors in cluster Si.

𝐶𝑖 =
𝐷𝑖

|𝑆𝑖|

I1 maximizes the sum of the average pairwise similarities between the

instances in the cluster. The I1 criterion function is defined [81] as:

maximize 𝐼1 = ∑

𝑘

𝑟=1

𝑛𝑟 (
1

𝑛𝑟
2

∑ cos(𝑣𝑖, 𝑣𝑗)

𝑣𝑖,𝑣𝑗∈𝑆𝑟

)

The innermost term of this equation is the cosine similarity between two

instance vectors. The similarity is calculated between every two instance vectors

in the cluster and these similarities are summed. The average is calculated by

dividing by the squared size of the clusters, and this is weighted by multiplying by

the size of the cluster. I1 maximizes weighted average for all clusters. A useful

62

way to visualize this criterion function is presented by Ted Pedersen8. You can

imagine that each instance in the cluster is a point, and that you are connecting a

string between each set of points. The length of the string connecting the points

represents the distance, which is the inverse of the similarity. The goal is to end

up with a tight ball of string.

I2 maximizes the similarity between each instance and the centroid of the

cluster, similar to the vector-space of the K-means algorithm [81]. The I2 criterion

function is defined as:

maximize 𝐼2 = ∑

𝑘

𝑟=1

∑ cos(𝑣𝑖, 𝐶𝑟)

𝑣𝑖 ∈ 𝑆𝑟

The innermost term of this equation is the similarity between each

instance vector in the cluster and the cluster’s centroid. This similarity is summed

for all instance vectors in the cluster. The I2 criterion function maximizes this for

all clusters in the solution. This criterion function can also be visualized, but in

this case, as a flower8. Imagine that a piece of yellow string is stretched from the

centroid to each point in the cluster. Again, the length of the string is to be

minimized. In this case, you end up with a small, round flower.

CLUTO provides metrics to aid in cluster analysis. For each cluster, the

internal similarity (iSim) and external similarity (eSim) are reported, along with

their standard deviations (iSDev and eSDev).

Clusters are numbered from zero to k-1. The clusters are ranked by

subtracting the ISim value from the ESim value, and sorting largest to smallest

[76]. The size is the number of instances that have been assigned to this cluster.

The ISim, as described above, is the average internal similarity of the cluster.

The ESim is the average similarity of each instance in the cluster with items from

the other clusters.

CLUTO reports a number of features that account for the internal similarity

of a particular cluster. These are referred to as descriptive features [76]. A

8 http://sourceforge.net/p/senseclusters/mailman/message/692149/

63

percentage is provided with each feature. An example of the output from CLUTO

for a cluster is given in Table 8.

Table 8 - Example Cluster Metrics from Cluto

Cluster 0 Size: 113 ISim: 0.732 ESim: 0.095

Descriptive: UPD_VAR_DECL 97.3%
INS_METH_CALL 0.6%

ADD_FUNC 0.5%

INS_VAR_DECL 0.4%
Discriminating: UPD_VAR_DECL 51.6%

INS_IF 11.1%

INS_METH_CALL 8.9%

STATEMENT_PARENT_CHANGE 4.9%

The descriptive and discriminating features are ranked from largest

contribution to the similarity of the items in a cluster, to the lowest. The number of

features reported is configurable. In this cluster the UPD_VAR_DECL feature

(Update Statement: Variable Declaration) accounts for 97.3% of the similarity

between instances in the cluster. The same feature differentiates the instances in

the cluster from instances in other clusters by 51.6%.

The descriptive features are used in this study to characterize and label

each of the clusters and make a conjecture about the types of faults that belong

to the group. Labeling of the clusters is entirely based on the statistical

prominence of the features in the cluster, and not based on subjective evaluation

of the results. I use a cutoff threshold of 10% in order to name the cluster. All

features with a discriminating feature value equal to or above 10% are included

in the cluster name (e.g., Statement Parent Change + Insert If). This allows us to

compare clusters from different datasets.

5.3 Experimental Design

The purpose of this study is to analyze software faults and the naturally

occurring groups that result from clustering the faults. The frequency of the

syntactical elements that were changed in the fix for the fault are used as the

input to the clustering algorithm. My goal is to understand how effectively the

syntax of the changes can characterize the nature of the software fault, and

64

ultimately to determine whether I can use this clustering as a form of automated

fault classification.

The study is described using the Goal/Question/Metric (GQM) template for

goal definition [82][83].

5.3.1 Variables

The mean internal similarity (iSim) is used to measure the effectiveness of

a clustering solution. This value is calculated by calculating the mean value from

the iSim value for each cluster in the solution.

5.3.2 Evaluation of Criterion Functions

In order to proceed with the clustering and inspection of the faults, I must

choose the most appropriate criterion function. Clustering is performed for fault

data for Eclipse 2.0 and Eclipse 3.0. I repeat the clustering for all values of k from

2 to 20. The number of fault types in a fault taxonomy should be manageable and

not too large [39]. Based on this recommendation, I expect there to be seven to

ten fault types. I choose a broad range of numbers to be inclusive. I use the

following hypotheses for investigation.

H0: There is no difference in the mean internal similarity of clusters when using

the I1 and I2 criterion functions (α=0.05).

HA: The mean internal similarity of clusters when using the I1 criterion function

is greater than the mean internal similarity of clusters when using the I2

criterion function (α=0.05).

Analyze the clustering of software faults

for the purpose of characterizing fault classes

with respect to their effectiveness

from the point of view of the researcher

in the context of two versions of a large, open source system.

65

The mean internal similarity for each of these methods is presented in

Table 9. The number of clusters, k, is shown in the first column. The remaining

columns report the internal similarity for each method, for each version. A graph

of these values for the Eclipse 2.0 dataset is presented in Figure 6. A similar

graph for Eclipse 3.0 is displayed in Figure 7.

I perform a one-tailed paired samples Wilcoxon signed rank test on the

similarity data for I1 and I2 to evaluate the hypothesis. A paired t-test was

considered, but the data does not pass

a test for normality, and thus the non-

parametric test is used. I perform the

test independently for both versions of

Eclipse. For Eclipse 2.0, the p-value =

3.815e-06 and for Eclipse 3.0, the p-

value = 3.624e-05. In both cases I am

able to reject the null hypothesis in

favor of the alternate hypothesis.

Zhao and Karypis provide an

analysis of document clustering

solutions using the I1 and I2 criterion

functions in their comparison of

criterion functions [79], [81]. In general,

all criterion functions have different

sensitivities based on the tightness of

the clusters and the degree of balance

in the resulting solution. Zhao and

Karypis analyze the I1 and I2 functions

to explain how the I1 criterion function

can lead to several pure, tight clusters

and a single large, poor quality cluster. This poor quality cluster is referred to as

a “garbage collector” and results from the function’s tendency to exclude

peripheral documents from the pure clusters.

Table 9 - Mean Internal Similarity
© 2014 IEEE

 Eclipse 2.0 Eclipse 3.0

k I1 I2 I1 I2

2 0.292 0.282 0.297 0.289

3 0.329 0.317 0.333 0.322

4 0.404 0.401 0.412 0.415

5 0.475 0.429 0.439 0.443

6 0.497 0.449 0.526 0.468

7 0.517 0.462 0.546 0.494

8 0.535 0.487 0.551 0.510

9 0.561 0.495 0.566 0.528

10 0.567 0.499 0.571 0.531

11 0.577 0.506 0.584 0.539

12 0.580 0.503 0.591 0.571

13 0.584 0.511 0.601 0.569

14 0.593 0.514 0.612 0.574

15 0.597 0.521 0.614 0.576

16 0.602 0.543 0.617 0.580

17 0.606 0.549 0.601 0.585

18 0.607 0.555 0.604 0.587

19 0.621 0.561 0.615 0.599

20 0.624 0.567 0.622 0.630

66

Figure 6 - Mean Internal Similarity of Eclipse 2.0
© 2014 IEEE

Figure 7 - Mean Internal Similarity of Eclipse 3.0
© 2014 IEEE

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

In
te

rn
al

 S
im

il
ar

it
y

Number of Clusters (k)

Eclipse 2.0

I1

I2

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

In
te

rn
al

 S
im

il
ar

it
y

Number of Clusters (k)

Eclipse 3.0

I1

I2

67

Zhao and Karypis conclude that this property of the I1 criterion function

may be useful in noisy data sets [79]. This helps explain the superiority of the I1

criterion function in my experiment, and suggests that more analysis of the

instances in the “garbage collector” may allow the taxonomy to be refined. While

these faults occur infrequently, there may be patterns of changes over several

releases, or across multiple projects.

5.3.3 Consistency of Clusters for Eclipse 2.0 and 3.0

In this section I analyze the consistency of the clustered fault fixes for

Eclipse 2.0 and Eclipse 3.0 at k=10. I choose this value of k due to similarities in

the descriptive features across the two versions of Eclipse. The groups appear to

stabilize at this value of k. Other researchers have also used a value of k=10, it is

on the high end of the number of fault classifications that are recommended by

best practices [39]. I label each cluster based on the descriptive features

reported by CLUTO. The top five descriptive features of each cluster are

reported, regardless of their significance. In clusters where a single feature

dominates it is possible to use the largest value as the label for the cluster. To

properly represent the clusters with multiple features I use a threshold value of

10% to label the clusters. For example, Cluster 4 below reports descriptive

features as Insert Return (47.3%), Insert If Statement (36.4%), Delete Return

(5.0%), Insert Variable Declaration (3.5%), and Insert Method Call (1.7%). It is

interesting to know that these features occur together, but the first two features

identify the nature of the faults in the cluster. This cluster is labeled “Insert Return

+ Insert If Statement.” The threshold value of 10% allows this labeling to occur

automatically.

The cluster features, sizes, and similarities are reported in Table 10. The

first row reports on the clusters that are described by the update of a variable

declaration. In Eclipse 2.0, this cluster included 94 faults, 3.3% of the total, while

in Eclipse 3.0 the cluster includes 261, 4.3% of the total. The last row of the table

contains totals for the number of faults in each data set.

68

Table 10 - Comparison of Clustered Faults
© 2014 IEEE

Eclipse 2.0 Eclipse 3.0

Cluster

(Descriptive Features) Size iSim Size iSim

Upd Var Decl 94 (3.3%) 0.789 261 (4.3%) 0.724

Cond Expr Chg 139 (4.8%) 0.708 244 (4.0%) 0.834

Add Func 132 (4.6%) 0.678 441 (7.2%) 0.599

Upd Method Call 266 (9.2%) 0.663 494 (8.1%) 0.654

Ins If + Ins Return 164 (5.7%) 0.58 0 (0.0%) -

Ins If + Stmt Parent Chg 446 (15.5%) 0.57 908 (14.9%) 0.584

Ins Meth Call 434 (15.0%) 0.566 756 (12.4%) 0.582

Del Meth Call + Ins Meth Call 279 (9.7%) 0.525 669 (11.0%) 0.513

Ins If + Ins Meth Call + Ins Var Decl 554 (19.2%) 0.504 1049 (17.2%) 0.515

Ins Assign + Upd Assign 376 (13.0%) 0.084 706 (11.6%) 0.128

Ins Assign + Ins If 0 (0.0%) - 567 (9.3%) 0.579

Total 2884

6095

Notice that Eclipse 2.0 has a cluster described by the insertion of if and

return statements, while Eclipse 3.0 has a cluster that is described by the

insertion of assignment and if statements. In order to compare the clustering

solutions, I treat these as empty clusters in the versions where they do not occur.

I use the following hypotheses for investigation.

H0: There type and size of clusters in the is no significant correlation in the

clustering solutions of Eclipse 2.0 and Eclipse 3.0 at k=10 (α=0.05).

HA: The clustering solutions of Eclipse 2.0 and Eclipse 3.0 at k=10 are

correlated (α=0.05).

To test the hypothesis, Pearson’s correlation coefficient is calculated. A

Shapiro-Wilk test for normality was performed to verify that the data is normally

distributed. The value of r for the data is 0.778, with a p-value = 0.004, allowing

us to reject the null hypothesis and conclude that the cluster types and sizes are

correlated.

69

5.4 Manual Inspection of Faults in Each Cluster

In this section I present clustering results on Eclipse 2.0 fault fixes using

the I1 criterion function and setting k=10. The Eclipse 2.0 dataset consists of 101

fine-grained source code change types after expanding statement insert, update,

delete, and ordering change types and eliminating changes to comments and

source code documentation. There are 2884 faults in the dataset with Java

source code changes. Faults with zero Java source code changes, e.g., those

requiring only changes to properties or xml configuration files, are not included in

the analysis. CLUTO reports a number of metrics for the clusters. These metrics

are presented in Table 11.

Table 11 - Cluster Statistics for Eclipse 2.0, k = 10
© 2014 IEEE

Cluster
Id

Size iSim iSDev eSim eSDev

0 94 0.789 0.124 0.077 0.052
1 139 0.708 0.134 0.112 0.073
2 132 0.678 0.125 0.129 0.058
3 266 0.663 0.136 0.118 0.069
4 164 0.58 0.084 0.212 0.073
5 446 0.57 0.093 0.203 0.065
6 434 0.566 0.091 0.208 0.066
7 279 0.525 0.09 0.207 0.084
8 554 0.504 0.082 0.246 0.059
9 376 0.084 0.057 0.083 0.081

The CLUTO manual provides a full description of these metrics [76]. A

summary is presented here. The Cluster Id is a zero-based integer assigned to

each cluster. The Size is the number of faults that were assigned to the cluster.

The column labeled iSim is the mean internal similarity of the faults in the cluster.

The column labeled iSDev is the standard deviation of the mean internal

similarities. Similarly, the eSim column is the mean similarity of the faults in the

cluster with the faults that are not in the cluster, or the external similarity. The

eSDev column is the standard deviation of the mean external similarity for the

faults in the cluster. The clusters are ranked by subtracting the external similarity

70

from the internal similarity and arranging them in decreasing order. This positions

tight, distinct clusters at the top of the list.

5.4.1 Data Visualization

The CLUTO toolset provides tools to visualize clustering results [76]. A

modified version of the cluster plot visualization for the results that I manually

analyzed is presented in Figure 8. The columns in the visualization are the

clusters, with the size of each cluster in parentheses. The tree structure aids in

understanding the relationships between clusters. For example, cluster 6 and 7

are very similar clusters, and contain similar source code changes. The rows of

the visualization provide a subset of the 101 source code changes that were

used as features during the clustering process. The darkness of the cells is

based on the intensity of the feature within each cluster. For example, in the first

column we see that cluster 5 is described by the statement parent change and

insert if statement change types. The label for descriptive features is repeated to

the left of each occurrence. As an example, Cluster 1, on the far right of the

illustration, is described by conditional expression changes (COND EXPR CHG).

Figure 8 - Visualization of Clusters for Eclipse 2.0
© 2014 IEEE

A second visualization of the clusters is provided by gCLUTO. The

mountain visualization aids the user in understanding high-dimensional data in a

71

lower-dimensional representation [78]. The visualization conveys the number of

objects, internal similarity, external similarity, and standard deviation.

The mountain visualization for the Eclipse 2.0 dataset from gCLUTO is

provided in Figure 9. Each peak represents a single cluster. The distance

between two peaks conveys the relative similarity of the two clusters. This

information is consistent with the tree structure in the matrix visualization (Figure

8). For example, the relative locations of clusters 0, 1, 9, and 2 are similar.

Figure 9 - Mountain Visualization of Clusters for Eclipse 2.0

The height of each peak is proportional to the internal similarity of the

cluster. This can be seen by cluster 0 (iSim=0.789) and cluster 9 (iSim=0.084).

The volume of the peak is proportional to the size of the cluster. Cluster 5

consists of 446 instances, and cluster 1 consists of 139. The color of the peak

72

represents the internal standard deviation. Red represents data with low

deviation, while blue represents data with high deviation [78].

5.4.2 Manual Inspection Process

For each cluster I present internal clustering metrics, features that explain

the clusters, and then conduct a manual inspection of five to eight faults. I

randomly select the faults from each of the clusters for manual inspection. The

fault reports for these faults are available on the Eclipse foundation Bugzilla web

site9.

In order to inspect these faults, a taxonomy is necessary. The primary

question that I am seeking to answer is whether the syntactic patterns of the fault

fixes in the cluster characterize the nature of the faults. In order to test this with

the manual inspection, I first use the descriptive features and develop a set of

expectations. The expectations relate the dominant syntactical features to the

types of faults that are expected. During the manual inspection, I am trying to

determine whether the fault that is being inspected falls within those pre-

determined expectations.

Cluster 0: Update Variable Declaration

Faults in this cluster are expected to be the result of incorrectly initialized

variables.

Cluster 1: Condition Expression Change

Faults in this cluster are expected to be simple logic changes. Some complex

logic changes may also occur where there are multiple condition statements that

check similar conditions and must change in unison.

Cluster 2: Additional Functionality

Addition of new functionality or overriding an inherited method.

9 https://bugs.eclipse.org/bugs/

73

Cluster 3: Update Method Call

A method was used incorrectly, for example, incorrect parameters were passed

or incorrect version of a method was called.

Cluster 4: Insert If + Insert Return

I expect the most common faults in this cluster to be unchecked pre-conditions.

More complex changes may be algorithmic changes.

Cluster 5: Statement Parent Change + Insert If

Faults in this cluster are likely to be logic changes. These can range from

checking faults to more complex logic changes.

Cluster 6: Insert Method Call

Faults in this cluster are expected to be missing functionality or interface faults

where a required method was not called.

Cluster 7: Delete Method Call and Insert Method Call

Faults in this cluster are expected to require the removal of extraneous code, or

are expected to be interface faults where the incorrect method was being called.

Cluster 8: Insert If + Variable Declaration + Method Call

Faults in this cluster are expected to be changes to algorithms or changes in

behavior. These types are faults are expected due to the large number of change

types that characterize the cluster.

Cluster 9: Garbage Collector

I expect faults in this cluster to be varied and uncommon. My aim in manually

inspecting this cluster is to determine if any pattern can be found.

5.4.3 Manual Inspection Results

Cluster 0 – Update Variable Declaration

Cluster 0 is the tightest and smallest cluster in the selected solution. The

update variable declaration change type explains over 98% of the similarity of the

faults in the cluster. I expect faults in this cluster to represent faults where a

variable is either uninitialized or incorrectly initialized. The metrics for this cluster

appear in Table 12.

74

Table 12 - Cluster 0 Metrics

Cluster Id 0 Descriptive Features

Size 94 Update Variable Declaration 98.5%

iSim 0.789 Condition Expression Change 0.4%

iSDev 0.124 Insert Variable Declaration 0.2%

eSim 0.077 Update Assignment 0.2%

eSDev 0.052 Additional Functionality 0.1%

Two of the five faults in this category fall in the expected category (10483

and 16828). In Bug 11110, a condition expression change is edited to check for

null references. A portion of the change appears in Figure 10. The change

requires the intermediate variable window on the new line 167. The window

variable is used in the new condition on the new line for 168. This change is

obfuscated because it occurs in a variable declaration for an anonymous class,

an instance of Runnable that is declared on line 165.

Figure 10 – Bug 11110: Fault fix to check for Null Pointer
© 2014 IEEE

The faults inspected from this cluster appear in Table 13. These

descriptions explain my interpretation of the source code changes and allow

other researchers to improve upon these results.

75

Table 13 - Faults Inspected for Cluster 0

Bug Id Expected Description

10483 Yes Bug 10483 includes updates to variables that are subsequently used in method calls. These

changes in values were necessary to support differences in operating systems.

11110 No The changes were made within a variable declaration, but were within an anonymous class.

16828 Yes Bug Id 16828 is fixed by changing the variable declaration for the point where a tooltip is

displayed, thus avoiding overlap with other components and undesired interactions during

usage.

18923 No The fix for Bug 18923 has a number of updated variable declarations due to the fact that

variable names were changed. These changes cause this fault to belong to this cluster, but

do not characterize the fault.

23824 No Bug 23824 is an interface fault. The project folder should be cast to type

ICVSRemoteFolder, changing the call that was used to fetch the parent folder.

Cluster 1 – Condition Expression Changes

The presence of a conditional expression change in faults that belong to

Cluster 1 explain 94.7% of the similarity values for these items. Simple logic

errors are expected to belong to this cluster. Complex algorithmic faults requiring

extensive logic changes may also be represented here. Four of the five faults I

inspect are logic errors, while the fix for Bug 18787 is a more complex logic

change. The metrics for this cluster are presented in Table 14.

Table 14 - Cluster 1 Metrics

Cluster Id 1 Descriptive Features

Size 139 Condition Expression Change 94.7%

iSim 0.708 Statement Parent Change 1.7%

iSDev 0.134 Insert Variable Declaration 1.4%

eSim 0.112 Insert If 0.7%

eSDev 0.073 Insert Assignment 0.3%

 Logic problems are a common cause for software faults and the source

code changes are often small and contained. A small number of dominant

change types easily characterize faults with these characteristics. The faults

inspected from this cluster are described in Table 15.

76

Table 15 - Faults Inspected for Cluster 1

Bug Id Expected Description

15951 Yes Bug 15951 was fixed with a single conditional expression change to repair a forgotten case

for unmanaged remote files.

18482 Yes Bug 18482 added the classpath to a conditional expression.

18787 Yes Bug 18787 was a more complicated logic error. A condition and cast were added to the

conditional expression, but the behavior of the getSignature() method was also changed.

21185 Yes Bug 21185 added a predicate to consider the style of the component during the comparison.

21370 Yes Bug 21370 fixed a failure that froze the editor. The fault was due to a problem with pattern

matching that was repaired by changing a >= operator to a > operator so that the first

character was not unread when the end sequence was not detected.

Cluster 2 – Additional Functionality

The similarity in Cluster 2 is explained by the addition of one or more new

methods (95.2%). The metrics for this cluster are provided in Table 16. I expect

faults in this cluster to include additions of new features and functionality. I

investigate six faults in this cluster.

Table 16 - Cluster 2 Metrics

Cluster Id 2 Descriptive Features

Size 132 Additional Functionality 95.2%

iSim 0.678 Additional State 1.2%

iSDev 0.136 Condition Expression Change 1.0%

eSim 0.118 Insert Assignment 0.5%

eSDev 0.069 Update Variable Declaration 0.3%

Five of the faults met my expectations for this category. The sixth, Bug

15513, is fixed by overriding a method of the base class. This type of fault

logically belongs to the group, so I add it as an additional consideration for this

cluster. The faults inspected from this cluster are described in Table 17.

77

Table 17 - Faults Inspected for Cluster 2

Bug Id Expected Description

11265 Yes Bug 11265 required the addition of two convenience constructors to replace a source locator

API that had been deprecated.

12297 Yes The fix for Bug 12297 enhances the algorithm that checks for synchronization of local and

server resources in the CVS module.

12573 Yes The fix for Bug 12573 adds a WM_NOTIFY method in order to address a platform specific fault

on Windows operating systems.

15513 New Bug 15513 required that the setToolTipText method of the base class be overridden. This

example exposes an additional type of fault that must be considered due to this syntax change.

15699 Yes Bug 15699 was fixed by adding a method to provide an order to the components that should be

placed on a dialog.

18473 Yes The fix for Bug 18473 added a function that would indicate whether the context-sensitive help

window was currently displayed.

Cluster 3 – Update Method Call

The faults in Cluster 3 are characterized by the update of a method call

(95.4%). The metrics for this cluster are provided in Table 18. The faults in this

cluster are expected to be interface faults that involve the incorrect use of

methods. Five faults in this cluster are manually inspected.

Table 18 - Cluster 3 Metrics

Cluster Id 3 Descriptive Features

Size 266 Update Method Call 95.4%

iSim 0.663 Additional Functionality 1.1%

iSDev 0.136 Update Variable Declaration 0.5%

eSim 0.118 Insert Method Call 0.5%

eSDev 0.069 Insert Variable Declaration 0.4%

Two of the five faults that I manually inspect from this cluster meet my

expectations for changes. The faults inspected from this cluster are described in

Table 19. I discuss the problematic samples from this cluster below.

78

Table 19 - Faults Inspected for Cluster 3

Bug Id Expected Description

12449 No In the fix for Bug 12449, one of the parameters was an anonymous class, and logic was

changed in the anonymous class.

14742 Yes The fix for Bug 14742 changes a parameter value from false to a value that is retrieved from

the user’s preferences.

20421 No The fix for Bug 20421 also involved an anonymous class as a method parameter. In this

case the logic checked a precondition and returned if it was not honored.

21824 No The fix for Bug 21824 wraps a function call to display the busy indicator while the code

executed.

23447 Yes The updated method calls in Bug 23447 were primarily to resolve the direct access of

member variables. Changing the code to use getter/setter methods simplified the logic and

corrected the reported failure.

The most unexpected finding in this cluster is the impact of anonymous

classes. Three of the five faults that I manually inspect in this cluster have

methods updated where the argument is an anonymous class. The changes to

the anonymous class are logic changes. An example is shown in Figure 11 from

Bug # 20421. Similar to the anonymous class encountered in cluster 0, the true

nature of the change is hidden. The addition of lines 77-81 check a precondition

and return false if it is false. However, it occurs within the anonymous class that

is passed to the accept method on line 68. Bug #12448 exhibits a similar problem

with an anonymous class. Bug # 21824 is repaired by wrapping a method call in

Figure 11 – Bug 20421: Additional condition check
© 2014 IEEE

79

an anonymous class.

Cluster 4 – Insert If and Return Statements

Cluster 4 is the first cluster with two dominant descriptive features. The

addition of a return statement explains 47.3% of the similarity and the addition of

an if statement explains 36.4% of the similarity. The metrics for this cluster are

presented in Table 20. I expect simple faults in this cluster to be checking faults.

More complex faults with multiple instances of if statements and/or multiple

instances of return statements may represent more complex logic faults.

Table 20 - Cluster 4 Metrics

Cluster Id 4 Descriptive Features

Size 164 Insert Return 47.3%

iSim 0.580 Insert If Statement 36.4%

iSDev 0.084 Delete Return 5.0%

eSim 0.212 Insert Variable Declaration 3.5%

eSDev 0.073 Insert Method Call 1.7%

Five faults are manually inspected in this cluster and all of them meet

expectations. The faults inspected from this cluster are described in Table 21.

Two of the five were checking faults. Two of the fixes were minor logic changes.

Bug 14061 had extensive changes to the program logic.

80

Table 21 - Faults Inspected for Cluster 4

Bug Id Expected Description

12210 Yes The fix for Bug 12210 was an update to code that uses the Visitor design pattern [84]. When

a node is visited, the class must determine if a simple name or a variable declaration is

being visited and act appropriately.

12590 Yes Bug 12590 appears to be a checking fault. The author added a check to see if the selected

item was a local variable when the rename function was invoked.

13417 Yes Bug 13417 was fixed by adding a check for blank text on a tooltip.

14061 Yes Bug 14061 was a complex logic fault that resulted in duplicate menu items when the

SubContributionItem class is used. In addition to the logic changes, new functionality was

also added.

18274 Yes Bug 18274 is related to Bug 14061. In the fix for Bug 18274, a check was added for this type

and an unwrap method was called when it was encountered.

Cluster 5 – Insert If Statement and Statement Parent Change

The faults in Cluster 5 are characterized by a statement parent change

(63.1%) and the insertion of one or more if statements (22.7%). The cluster

metrics are provided in Table 22. Similar to Cluster 4, I expect logic faults that

range from checking faults to more complex logic faults. I manually inspect five

faults in this cluster.

Table 22 - Cluster 5 Metrics

Cluster Id 5 Descriptive Features

Size 446 Statement Parent Change 63.1%

iSim 0.570 Insert If Statement 22.7%

iSDev 0.093 Delete If Statement 2.0%

eSim 0.203 Insert Method Call 1.9%

eSDev 0.065 Insert Variable Declaration 1.5%

Bug 14025 is the only fault in this cluster that does not meet my

expectations. The change requires logic changes, but includes new functionality

as well. The faults inspected from this cluster are described in Table 23 below.

81

Table 23 - Faults Inspected for Cluster 5

Bug Id Expected Description

13024 Yes Bug 13024 changed the code to account for blank text for a tooltip. The changes were

complex because different implementations were necessary for each operating system.

14025 No Bug 14025 required a new instruction set in the abstract syntax tree to deal with the length

member variable on arrays.

17176 Yes The fix for Bug 17176 reordered logic in one method. The reordering was recorded as a

deletion and insertion of the if statements, but as a statement parent change for the code in

the statement block. Although this was unexpected based on the change types, the fault was

a logic fault due to order of checks

18468 Yes Bug 18486 was mislabeled in the CVS repository. That commit was actually for Bug 18468.

The fault repaired was a checking fault. Under certain conditions the view needed to be

refreshed.

19985 Yes

(see Note)

Bug 19985 was fixed by changing the way the end of a line was written. Improvements to the

code were made along with the change in logic. The if statement inserts appear to be

somewhat misleading, since the if statement was moved and the condition expression was

changed.

Cluster 6 – Insert Method Call

The similarity of faults in Cluster 6 is explained primarily through the

insertion of method calls (78.5%). A small part of the similarity is explained due to

the addition of methods (6.7%). The cluster metrics are provided in Table 24. I

expect this cluster to contain faults due to missing functionality and misuse of

methods. Seven faults from this cluster were manually inspected.

Table 24 - Cluster 6 Metrics

Cluster Id 6 Descriptive Features

Size 434 Insert Method Call 78.5%

iSim 0.566 Additional Functionality 6.7%

iSDev 0.091 Insert Variable Declaration 2.9%

eSim 0.208 Additional State 2.6%

eSDev 0.066 Insert Assignment 2.4%

The faults inspected from this cluster are described in Table 25. Three of

the faults address missing functionality (10823, 11308, and 18067). Three of the

82

faults are interface faults (17490, 17981, and 21654). The fix for Bug 16160

repairs a dependency problem and is unexpected in this cluster.

Table 25 - Faults Inspected for Cluster 6

Bug Id Expected Description

10823 Yes The fix for fault 10823 requires changes to four classes and the addition of two new “Action”

classes. The fault is a change of functionality to support advanced users. The Action classes follow

the Command design pattern [84].

11308 Yes The fix for Bug 11308 changed the project to use relative paths to allow project portability.

16160 No The fix for 16160 repaired a dependency problem in the CVSUIPlugin class.

17490 Yes The fix for Bug 17490 added method calls to enable context-sensitive help.

17981 Yes The fix for Bug 17981 added method calls to enable shortcut keys (mneumonics).

18067 Yes The fix for Bug 18067 was a change in behavior that included refreshing the viewer under certain

conditions.

21654 Yes Bug 21654 was a GTK specific issue and was repaired by adding a GTK specific method call.

Cluster 7 – Delete Method Call

The faults in Cluster 7 are explained by the removal of method calls

(56.6%) and partially explained by the insertion of new method calls (16.2%). The

metrics appear in Table 26. I expect the faults in this cluster to include the

removal of extraneous code and moving method calls to new locations. Since the

changes imply restructuring of the code, functional defects and refactoring may

also be present in these faults.

Table 26 - Cluster 7 Metrics

Cluster Id 7 Descriptive Features

Size 279 Delete Method Call 56.6%

iSim 0.525 Insert Method Call 16.2%

iSDev 0.090 Delete Variable Declaration 6.9%

eSim 0.207 Delete If Statement 4.5%

eSDev 0.084 Additional Functionality 4.3%

The faults inspected from this cluster are described in Table 27. Three of

the five fall into the category of extraneous method calls or functionality (14800,

83

16051, and 16445). The other two fixes in this cluster involve extensive changes

to current program flow, and include refactoring.

Table 27 - Faults Inspected for Cluster 7

Bug Id Expected Description

14197 No The fix for Bug 14197 was a significant change in existing functionality and included code

refactoring.

14288 No The fix for Bug 14288 made fundamental changes to the way that the search functions.

These changes included removal of some functions and the insertion of others. This could

be considered an algorithmic or functional fault.

14800 Yes The fix for Bug 14800 removed method calls to fix the behavior.

16051 Yes The fix for Bug 16051 removed method calls to fix the behavior.

16445 Yes Bug 16445 repaired a functional defect where information was requested from the user that

was not necessary.

Cluster 8 – Insert If, Variable Declaration, Method Call, and Assignment

The faults in Cluster 8 are explained by the insertion of if statements

(40.3%), variable declarations (19.5%), method calls (11.1%), and assignment

statements (9.0%). The metrics are provided in Table 28. Given the nature of

these changes, the faults in this cluster are expected to be algorithmic or

functional changes to behavior.

Table 28 - Cluster 8 Metrics

Cluster Id 8 Descriptive Features

Size 554 Insert If Statement 40.3%

iSim 0.504 Insert Variable Declaration 19.5%

iSDev 0.082 Insert Method Call 11.1%

eSim 0.246 Insert Assignment 9.0%

eSDev 0.059 Delete If Statement 5.0%

Seven faults in this cluster are manually inspected. The faults inspected

from this cluster are described in Table 29. Five of the faults manually inspected

fall into this broad category of changes. Bug 15506 is fixed by adding a busy

indicator. The CVS commit for Bug 19270 included changes for another bug,

which makes automated analysis challenging.

84

Table 29 - Faults Inspected for Cluster 8

Bug Id Expected Description

10714 Yes The fix for Bug 10714 corrected behavior when a view was closed. The software was not

always properly setting focus to the last view that was active.

14614 Yes Bug 14614 was an issue with the way that CVS tag decorators were displayed that resulted

in duplicate tags. The fix was an update to the algorithm.

15506 No The fix for Bug 15506 wraps the code in a Runnable class to show the busy indicator. This

required code to store results and handle exceptions, then communicate these to the main

program.

15755 Yes Bug 15755 was repaired by changing the initial search location and the precedence of

additional locations.

19270 No The fix for Bug 19270 was checked in with the fix for Bug 6295. Bug 19270 appears to be a

checking fault that required new code to retrieve a user preference for comparison. The fix

for Bug 6295 corrected a problem where the save as option resulted in a read-only file.

22448 Yes Bug 22448 was corrected by changing the algorithm to handle an edge case where the first

button in the second row of a toolbar caused a screen resize.

24134 Yes The fix for Bug 24134 changed the way that compile was invoked.

Cluster 9 – Garbage Collector

As mentioned previously, the last cluster acts as a “garbage collector”

when the I1 criterion function is used. The metrics and descriptive features are

provided in Table 30. The variation in change types and the scores for each

descriptive feature support previous findings about the nature of the last cluster

when I1 is used as the criterion function [79].

Table 30 - Cluster 9 Metrics

Cluster Id 9 Descriptive Features

Size 376 Update Assignment 24.6%

iSim 0.084 Insert Assignment 12.7%

iSDev 0.057 Delete Variable Declaration 8.0%

eSim 0.083 Update Return 6.6%

eSDev 0.081 Remove Functionality 6.5%

I expect this cluster to have varied faults that are uncommon or simple

faults obfuscated by implementation details. These may represent a set of faults

85

for which automated classification is not possible or warranted due to their

infrequent nature. Eight faults from this cluster are manually inspected. The faults

inspected from this cluster are described in Table 31.

Table 31 - Faults Inspected for Cluster 9

Bug Id Expected Description

10144 n/a Bug 10144 called for the promotion of org.eclipse.ui.views.framelist to a public API. The

change includes the check-in of the files in their new location and updates to use the new

namespace.

11474 n/a The fix for Bug 11474 changed the way that an error condition is checked. The method that

was previously used was deleted from the class and the error message was changed.

12996 n/a Bug 12996 is a concurrency fault. The changes to correct the fault included the deprecation

of old methods and changes to the parent class.

13470 n/a The fix for Bug 13470 adds methods to externalize (and thus translate) string values.

13625 n/a Bug 13625 is fixed by removing deprecated functions.

15583 n/a The fix for Bug 15583 changes a literal value to correct a missing mnemonic in a menu item.

This fault is interesting because the true nature of the fault is obfuscated because it is a

change within a variable declaration.

16027 n/a The fix for Bug 16027 required a large number of files to be changed. The changes included

the removal of a number of getter methods and the update to method parameters. The latter

changes were obfuscated because the method calls were part of a return statement.

20430 n/a Bug 20430 was changed by updating a single assignment that set the minimum width.

There was no discernible pattern to these changes. Some of the changes

were large, while others were small and infrequent. It is important to note that the

fix for Bug 16027 includes some changes that were hidden because they were

part of a return statement.

5.4.4 Discussion

The manual inspection resulted in mixed results for 2 clusters, but many of

the clusters provide promising results. A summary of agreement and

disagreement is given in Figure 12. Cluster 0 (Update Variable Declaration) and

Cluster 3 (Update Method Call) had poor results.

86

Figure 12 - Summary of Manual Inspection Results

In most fault classification studies where the agreement of two classifiers

are studied, Cohen’s Kappa is calculated to determine the level of agreement

between classifiers. If I disregard the faults in the garbage collector and calculate

Cohen’s Kappa for these results, I find κ=0.717. According to the scale presented

by Landis and Koch, 0.717 represents Good agreement [85]. Thus, when

uncommon faults are not considered, these results may be comparable to that of

human fault classifiers [12], [13], [57].

There are many difficulties in extracting useful information from the

syntactical changes. For the faults that I inspected I saw changes such as

variable renaming and refactoring. These changes introduce noise into the

syntactical changes that are used to cluster faults. Similarly, many commits to the

software repository will address multiple faults. These changes cannot easily be

separated. These types of problems can be mitigated by disciplined check-in

procedures. Research has been done on non-essential changes, such as

renaming of variables, which may be applicable to this problem [86]. There have

9: Garbage Collector

8: Insert If, Var Decl, Method…

7: Delete Method Call

6: Insert Method Call

5: Insert If and Parent Change

4: Insert If and Return

3: Update Method Call

2: Additional Functionality

1: Conditional Expression Change

0: Update Variable Declaration

0

5

3

6

4

5

2

5

5

2

8

2

2

1

1

0

3

1

0

3

Manually Inspected Faults

Match Unexpected

87

also been studies on identifying refactored source code from changes [87], and

determining whether a problem report should be classified as a fault or an

enhancement from the text [22]. It may be possible to apply these techniques to

improve results.

However, the most significant problem that I can address based on my

manual inspection results is the way that the ChangeDistiller tool handles

anonymous classes. This problem may be exacerbated by the Eclipse

architecture. Anonymous classes are commonly used as event handlers, and the

component-based architecture of Eclipse relies heavily upon event handlers. In

the next section I address the problem of anonymous classes in variable

declarations, assignments, method calls, and return statements.

5.5 Improving ChangeDistiller for Anonymous Classes

In this section I describe updates to the ChangeDistiller application that

handle changes that occur within anonymous classes. I have made these

changes publicly available10.

It is interesting to note that the Change Distilling algorithm does not

specify a stopping point for comparison [65]. The ChangeDistiller implementation

extracts the changes to the granularity required for the change taxonomy defined

by Fluri and Gall [66]. The changes described in this section have to detect that

an element is an anonymous class and change the behavior of the program

appropriately to properly classify the changes.

The ChangeDistiller tool uses the Visitor design pattern [84]. Each

abstract syntax tree node is visited as the tree is traversed. The visit function for

each node accepts a visitor class. The JDT API defines an ASTVisitor class and

this is used as the basis of the ChangeDistiller algorithm. Returning true from the

visitor results in a traversal of the child nodes, while returning false does not.

Anonymous classes are contained in an instance of a

QualifiedAllocationExpression in the JDT API. I modified the visit method for this

type to traverse the children of the element. I also modified the visit method’s

10 https://bitbucket.org/bill_kidwell/tools-changedistiller

88

local declarations, method calls, and return statements. The changes result in

traversal of statements within anonymous class methods.

My changes have been effective for every case that I found during this

research and my testing. However, there are limitations. The changes are not

designed to deal with any changes within the qualified allocation expression

except for statement level changes. I did not test structural changes, such as the

addition of methods. I did not see any of these changes during my inspection of

fault changes for Eclipse.

5.5.1 Updated Clustering Results

The results of clustering after the changes to ChangeDistiller produced a

similar set of clusters. The metrics from these results are presented in Table 32.

The tightest cluster has an internal similarity of 0.709 (compared to 0.789) and

the garbage collector cluster has an internal similarity of 0.147, an improvement

over the previous result of 0.084.

Table 32 - Updated Clustering Results for Eclipse 2.0

Cluster
Id

Size iSim iSDev eSim eSDev

0 167 0.709 0.125 0.115 0.068
1 116 0.702 0.126 0.109 0.079
2 212 0.654 0.118 0.136 0.079
3 211 0.651 0.087 0.178 0.093
4 323 0.653 0.093 0.222 0.060
5 480 0.596 0.082 0.215 0.068
6 233 0.593 0.065 0.289 0.064
7 282 0.461 0.090 0.187 0.088
8 526 0.510 0.083 0.242 0.071
9 260 0.147 0.085 0.091 0.074

The differences in the two results begin to become apparent when I

investigate the descriptive features of the clusters. In Table 33 the descriptive

features for the clusters are displayed side-by-side. The Condition Expression

Change Cluster moved up one position in rank. The slight reduction in the

similarity of the Update Variable Declaration cluster is likely due to the fact that

variable declarations with changes in anonymous classes now have a different

89

set of feature values. It is also interesting to note that the size of Cluster 4 has

increased dramatically.

Table 33 - Descriptive Feature Comparison

 Original Results Updated Results

Rank Size Descriptive Features Perc. Rank Size Descriptive Features Perc.

1 139
Condition Expression
Change

94.70%
0 167 Condition Expression

Change
96.20%

0 94
Update Var.
Declaration

98.50%
1 116 Update Variable

Declaration
96.30%

3 266 Update Method Call 95.40% 2 212 Update Method Call 93.60%

2 132 Additional Functionality 95.20%
3 211 Additional

Functionality
85.20%

6 434 Insert Method Call 78.50% 4 323 Insert Method Call 89.30%

5 446 St. Parent Change 63.10% 5 480 St. Parent Change 67.90%

 Insert If 22.70% Insert If 17.90%

7 279 Insert Method Call 16.20% 6 233 Insert Method Call 44.20%

 Delete Method Call 56.60% Delete Method Call 28.40%

 7 282 Delete Method Call 40.40%

 Delete Var
Declaration

22.60%

 Delete If Statement 13.40%

8 554 Insert If 40.30% 8 526 Insert If 38.30%

 Insert Var. Declaration 19.50%
 Insert Var.

Declaration
27.90%

 Insert Method Call 11.10%

9 376 Update Assignment 24.60% 9 260 Update Assignment 42.00%

 Insert Assignment 12.70% Insert Assignment 26.70%

4 279 Insert If 36.40%

 Insert Return 47.30%

The next change of interest is the change in Cluster 5. The percentage of

contributions from the Insert If statement has dropped, while Statement Parent

Change has grown. This change is likely due to changes in the membership of

this cluster. The size has only changed from 446 to 452. Cluster 6 also exhibits

large changes in the significance of the descriptive features, as well as a drastic

change in size.

Cluster 7 changed dramatically between the two versions. The logic errors

from the original Cluster 7 are likely to be in a different cluster. Cluster 8 and

Cluster 9 appear to be similar, except for a decrease in size in Cluster 9. In the

90

next section I revisit the manual inspections. I analyze faults that have stayed in

the same clusters as well as faults that have changed clusters.

5.5.2 Manual Inspection of Changes

After updating the ChangeDistiller code and repeating the clustering

process, I pulled the new cluster results for the manually inspected data. Thirty-

six of the fifty-eight faults are in the equivalent cluster in the new results. Nine

additional faults changed membership to a cluster with similar descriptive

features. The remaining thirteen faults changed membership to new clusters. In

this section we analyze faults in each of these categories.

Equivalent Clusters

The majority of faults that remain in an equivalent cluster meet the

expectations set for that cluster. This includes five faults that remain in the

garbage collector cluster. Three faults remain in an equivalent cluster and do not

meet expectations. Bug 18923 remains in the Update Variable Declaration

cluster. As mentioned during the manual inspection, this fault includes variable

name changes that had no impact on behavior. Bug 23824 also remains in the

Update Variable Declaration cluster. Bug 23824 involves an incorrect cast. Bug

15506 remains in the Insert If + Insert Var Decl cluster. In Bug 15506 existing

code is wrapped in an anonymous class instance.

The large number of faults assigned to similar clusters provides some

evidence of stability. None of the faults from Condition Expression Change

cluster or the Additional Functionality cluster change membership. Fault fixes

that require complex changes, or that include refactoring continue to be difficult

to cluster correctly. Some small changes, such as the casting problem and

adding an anonymous class to wrap existing functionality, also present

challenges.

91

Similar Descriptive Features

 It is worth noting that the Insert If + Insert Return cluster does not exist

for the updated clustering results. It is also interesting that the cluster that

appears in the new solution is very different (Delete Method Call + Var Decl + If

Statement cluster). One possible explanation is that the Insert If + Insert

Return cluster is currently a subcluster, and will emerge if k is increased. This

might also lead to an expectation that all of the faults from this cluster are

currently in a different cluster, but this is not the case.

Three of the faults from the original Insert If + Return cluster have

changed membership to the Insert If + Insert Variable Declaration cluster.

Bugs 12590, 13417, and 18274 are checking faults, and the fixes appear to be

simple in the syntactic sense. This supports the idea of a subcluster within the

Insert If + Insert Variable Declaration cluster.

If a subcluster exists, faults that are more complex do not necessarily

reside within the subcluster. Bug 12210 and 14061 changed membership to the

Delete Method Call + Var Decl + If cluster. Both of these faults involved more

extensive logic changes than the others. I increased k until a cluster emerged

with the Insert If Statement and Insert Return Statement as the dominant

descriptive features. The cluster emerged at k = 13. Four of the five faults were in

this cluster, but Bug 12210 remained in the Delete Method Call + Var Decl + If

cluster.

The Insert Method Call cluster and the Insert Method Call + Delete

Method Call cluster also had several membership changes. This is seen in the

changes to sizes and the feature contributions. Bug 16160 is not expected in the

Insert Method Call cluster. The fault moved to the Insert Method Call + Delete

Method Call cluster. The fix is a structural change to avoid referencing an

internal class directly. The fault does not belong in the new cluster either. Bug

11308 is a change in behavior. It moves to the Insert If + Insert Variable

Declaration cluster. Complex faults in this cluster are expected to be complex

logic changes or complex changes to behavior, so it belongs in the new cluster.

92

Bug 10823 is a similarly complex change to logic and behavior that moves to the

Insert Method Call + Delete Method Call cluster. The fault meets the

expectations of this cluster.

Bug 14197 moves from the Delete Method Call cluster to the Insert

Method Call + Delete Method Call cluster. As noted above, Bug 14197 is a

significant change in functionality, so it meets the expectations of this cluster,

where it did not meet the expectations of the Delete Method Call cluster. The fix

for 14197 includes refactoring that makes it difficult to characterize via its syntax.

Bug 16445 also moved from the Delete Method Call cluster, but moved to the

Delete Method Call + Var Decl + If cluster, where it meets the expectations of

that cluster.

Bug 19270 contains multiple fault fixes (includes Bug 6296). In addition to

the fact that two fixes are included, a number of statements are removed during

the restructuring of the files to fix the problems. The fault moved from the Insert

If + Var Decl + Method Call cluster to the Delete Method Call + Var Decl + If

cluster. The fault does not belong in either cluster.

Based on the analysis of the faults in this category, it seems apparent that

larger values for k could provide better results in some cases. It may be difficult

to identify a value that provides the fine-grained patterns that we seek and makes

the clusters meaningful to practitioners. In addition, many changes in this

category were complex. Some of the difficulty in clustering complex faults may be

due to the removal of code.

New Clusters

The aim of the changes to ChangeDistiller was to avoid problems

identified with anonymous classes. Anonymous classes affect three of the

manually inspected faults. Bug 11110 moved to the Condition Expression

Change cluster, where it is an expected member. Bug 12449 involves the

addition of code to handle the delete action when the delete key is pressed. This

fault moved to the Insert Method Call cluster, where it is an expected member.

Bug 20421 involves logic changes that are obfuscated by an anonymous class,

93

which is passed as a parameter. This fault moved to the Statement Parent

Change + Insert If cluster, where it is an expected member of the group. All

three incidents that involve changes in anonymous classes are in correct

clusters.

Additional faults from manual inspection that changed clusters appear

below in Table 34. The Kappa statistic for these results improved slightly to κ =

0.735.

Table 34 - Additional Manual Inspection for New Results

Bug Original Cluster New Cluster Expected

21824 Update Method Call Insert Method Call Yes

14025 Insert If

+ Stmt Parent Change

Update Method Call No

21654 Insert Method Call Update Var Decl No

14288 Delete Method Call Condition Expr Change No

10144 Garbage Collector Additional Functionality Yes

11474 Garbage Collector Condition Expr Change Yes

12996 Garbage Collector Delete Method Call

+ Var Decl + If

No

5.5.3 Discussion

The changes to the ChangeDistiller program did improve the clustering of

faults with anonymous classes, but overall made only incremental improvement. I

take this as a positive sign that additional changes could make further

improvements. Some code check-ins contain multiple fault fixes, refactoring, or

changes to variable names. These fault fixes will be difficult to classify in an

automated manner.

5.6 Conclusions

In order to further validate the extended change types introduced in

Chapter 1 the CLUTO clustering toolkit is used to cluster the fault fixes. Using the

94

repeated bisection clustering method and the cosine similarity, the I1 criterion

function performs better than the I2 criterion function with respect to the average

internal similarity of the clusters in the resulting solution. The ability of I1 to create

tight clusters and one cluster that acts as a “garbage collector” in a noisy data set

aids the investigation [79].

The results of clustering where k=10 are analyzed. The similarity of the

cluster is explained by one to four features that are shared by the faults in the

cluster. These descriptive features are used to automatically label the cluster.

The clusters for Eclipse 2.0 and 3.0 and their sizes were compared. The

occurrence and size of the clusters were correlated, indicating that the clustering

of these change types is consistent in these two versions of the software.

A subjective analysis of a subset of faults in each cluster provides

guidance on the types of faults characterized by different source code change

types. Many fault fixes are in agreement with our expectations based on the

syntactical changes that were made to the fault. For example, faults fixed with

changes to condition expressions that are inspected in this study are in line with

expectations.

Several of the faults that were inspected exposed limitations in the

taxonomy. ChangeDistiller stops the comparison of the abstract syntax trees at

the statement level due to its intent in analyzing change couplings. As a result,

update changes to variable declarations, assignments, or return statements do

not provide the granularity necessary for fault analysis. There were a surprising

number of problems with anonymous classes as method parameters, and within

variable declarations, that also require more granular information about the

change. These findings indicate that the comparison must be extended beyond

differences in statements, to differences in arguments and expressions.

The ChangeDistiller program was updated to handle the common

problems that we saw with anonymous classes. The data was collected with the

updated program and the clustering process was repeated. The faults that

involved anonymous classes were now in the expected clusters, but other

problems emerged. The results seem to indicate that more clusters are

95

necessary for useful results. The number of clusters will involve a trade-off

between the precision of the patterns in the groups, and the usefulness of the

clusters to practitioners. In addition, the number of faults that changed

membership due to deleted statements is significant. Weighting deleted

statements might provide a method to improve these results further.

I encountered a number of common software repository mining problems

during the manual inspection. Code refactoring that is included in a commit for a

bug fix can make automated analysis difficult. A simple change, such as

renaming a variable for readability, should be handled at the semantic level of

analysis. More complex refactoring changes will still make automated analysis

difficult. Developers sometimes include multiple bug fixes in a single commit, as

evidenced by Bug #19270. Bug #18468 was mislabeled as Bug #18486, which

can be problematic when bug database information is cross-referenced with the

syntactical changes.

I conclude that the current taxonomy provides a useful start for the

automated analysis of software faults. Incremental improvements are necessary,

and based on the improvements reported above, can measurably improve the

effectiveness of the method. In the next chapter we utilize the improved version

of the ChangeDistiller tool to investigate the distribution of faults across several

versions of an open source software project.

96

Chapter 6

Software Fault Evolution

In this chapter I analyze the evolution of software faults over multiple

releases for a major component of the Eclipse product line. The Eclipse Java

development tools (JDT) project is analyzed over seven versions of its release. I

investigate a number of questions about the evolution of software faults that are

made possible by automated fault classification. These questions include an

investigation of fault distribution by subcomponent, between single and multi-file

fixes, among developers that fixed the faults, among pre-release and post-

release fault fixes, and of fixes that appear problematic.

The study can be described using the Goal/Question/Metric (GQM)

template for goal definition [82][83].

6.1 Case Study

An overview of the Eclipse JDT is available on the Eclipse.org website

[88]. The project provides a full-featured Java IDE built on the Eclipse platform.

The site describes five JDT plug-ins, the plug-ins are summarized here. The JDT

APT (Annotation Processing Tools) adds annotation support, which was

introduced in Java 5 (1.5). The JDT Core provides APIs for building Java

applications, navigating Java elements (e.g., packages, classes, methods, and

fields), code assist, and refactoring. The JDT Debug plug-in provides debugging

support. The JDT Text plug-in provides a full featured Java editor with syntax

coloring, code assist, code formatting, and other common source code editor

features.

Analyze the distribution of software faults

for the purpose of understanding software evolution

with respect to the consistency of the distributions

from the point of view of the researcher

in the context of an open source Java development environment.

97

The Eclipse project coordinates releases for multiple projects, such as the

Eclipse Platform and the Eclipse JDT, at the same time. The release dates for

the versions that I investigate are shown in Table 35. Faults that are fixed

between the Start date and the Release date are considered pre-release fault

fixes. Faults that are fixed between the Release date and the End date are

considered post-release fault fixes. Eclipse also schedules service releases for

each version after the Release date. The timing of the service releases is not

considered in this study.

Table 35 - Eclipse Release Timelines

Version Start Release End

2.0 1/1/2002 6/7/2002 9/29/2002

2.1 9/30/2002 3/28/2003 9/26/2003

3.0 12/1/2003 6/21/2004 12/30/2004

Europa (3.3) 1/1/2007 6/29/2007 12/31/2007

Ganymede (3.4) 1/1/2008 6/25/2008 12/31/2008

Galileo (3.5) 1/1/2009 6/24/2009 12/31/2009

Helios (3.6) 1/1/2010 6/23/2010 12/31/2010

In this study I am investigating the Eclipse JDT project as a component of

the Eclipse product line. I look at the subcomponents of the JDT based on the

Java packages. The subcomponents are listed in Table 36 with the number of

fault fixes that included source code changes for each version. The total in the

right-most column indicates the number of faults in the subcomponent across all

studied versions. The Version total row at the bottom of the table presents the

total number of faults across all subcomponents for the given version of Eclipse.

98

Table 36 - Fault Fixes for Eclipse JDT Subcomponents by Version

Subcomponent 2.0 2.1 3.0 3.3 3.4 3.5 3.6 Total

org.eclipse.jdt.ui 639 815 842 566 425 238 235 3760

org.eclipse.jdt.core 184 444 684 458 407 300 277 2754

org.eclipse.jdt.debug.ui 341 196 222 138 49 40 27 1013

org.eclipse.jdt.debug 234 98 98 40 19 27 15 531

org.eclipse.jdt.launching 97 81 55 29 20 9 12 303

org.eclipse.jdt.junit 12 45 57 34 12 17 8 185

org.eclipse.ltk.ui.refactoring

9 18 8 7 5 47

org.eclipse.jdt.apt.core

31 9 2 1 43

org.eclipse.ltk.core.refactoring

12 13 6 1 7 39

org.eclipse.jdt.compiler.apt

10 7 8 3 28

org.eclipse.jdt.compiler.tool

8 3 3 7 21

org.eclipse.jdt.apt.pluggable.core

8 4 3 1 16

org.eclipse.jdt.core.manipulation

10

10

org.eclipse.jdt.junit.runtime

5 1

3 9

org.eclipse.jdt.junit4.runtime

2

2 2 6

org.eclipse.jdt.apt.ui

3

3

Version Total 1507 1679 1984 1369 969 657 603 8768

 It is interesting to note that the top 4 subcomponents account for more

than 90% of the fault fixes over the seven releases. It is also evident from the

Version Total row that the fault fix count for the first three releases is trending up,

while the fault fix count for the last four releases is trending down. Most likely this

is due to the maturation of the product and the process. The trend is depicted in

Figure 13.

99

Figure 13 - JDT Project Fault Fixes by Version

6.2 Data Collection

In this section I describe the data collection for this study. The database

that was published by Krishnan et al. was again used as the basis for my data

collection [74]. The source code that was used for collecting the change type

frequencies was no longer available in a public CVS repository. The Eclipse

project migrated to the use of Git, a distributed revision control system. In this

section I describe how I altered MiSFIT to support the use of Git.

6.2.1 Git Data Collection Changes

The first step of the migration is to match CVS file and revision numbers to

Git commits and files. Each commit in a Git repository has an identifier, and may

contain multiple files. CVS, on the other hand, tracks changes for each file

separately, even if changes occur at the same time. When converting from CVS

the Eclipse project chose to maintain historical information. The tools used to

convert the repository combine files checked in simultaneously into individual

commits.

100

I use the Eclipse EGit project as an interface to the Git repository11. For

each fault fix, I query the file name, author name, commit date, and commit

comment from the database. Using this information, I was able to query the Git

repository and retrieve commit and file information for 92.3% of the changes

(1813/22889 could not be retrieved).

All but 15 of the unidentified files are part of a feature branch in CVS. A

feature branch occurs when the code is isolated from other developers in order to

get a feature working, then merged back into the mainline branch for testing and

release. The other 15 files were manually investigated and are not available in

the repository.

Because these seven versions occurred over nearly a decade, it was

necessary to adjust my process to handle new constructs in the Java

programming language. Eclipse 2.0, 2.1, and 3.0 are parsed and examined using

version 1.4 of the Java Development Kit (JDK). Eclipse 3.3 is parsed and

examined using version 1.5 of the JDK. The remaining versions are parsed and

examined using version 1.6 of the JDK.

I also found and corrected a number of issues in the database. The

removal of special characters (e.g., apostrophe (‘) and backslash (\)) caused

issues when matching information by description. I altered the Perl script

provided by Krishanan et al. [74] to maintain these characters and improve the

matching.

I found multiple problems with incorrectly identified Bug Ids in the

database. In CVS, the Bug Id is entered as free form text in the comment.

Multiple conventions are used. I found multiple instances where other numbers in

the comments caused problems. For example, the comment “Fixed bug 187226:

Compiler warning in I20070516-0010” resulted in two records, one for 187226

and one for 0010. I constructed a query to identify similar problems and removed

the erroneous entry. I also found problems where build numbers in the form of

dates cause problems. The entry “JRT 20020305” was logged as Bug Id 200203.

11 http://eclipse.org/egit/

101

I investigated all entries with identifiers that matched dates in the YYYYMMDD

format and removed those that were errors.

In this section I have described modifications to the MiSFIT system in

order to collect data from the Eclipse JDT Git repositories. I utilized the EGit

project to interface with the Git repositories and fetch files as they were needed. I

also used the EGit project to mine information about the commits and expand my

database. Other steps in the data collection process were changed minimally.

6.2.2 JDT Clustering Results

The resulting clusters for 8096 fault fixes that were processed for seven

versions of the Eclipse JDT project are described in Figure 14 and illustrated in

Figure 15. The clusters are similar to those in Eclipse 2.0 and Eclipse 3.0. The

expectations for these clusters are as follows:

0. Logic faults involving condition expressions

1. Interface faults, likely involving incorrect parameters or calling the

incorrect version of a method

2. Faults that involve missing functionality

3. Interface faults or missing functionality

4. Logic faults involving a failure to check necessary conditions

5. Incorrectly initialized variables or incorrect assignments

1
0

2

Eclipse JDT: #Rows: 8096, #Columns: 128, #NonZeros: 1036288

Cluster 0, Size: 624, ISim: 0.779, ESim: 0.135

Descriptive: COND_EXPR_CHG 97.5%, INS_VAR_DECL 0.8%, STATEMENT_PARENT_CHANGE 0.6%, INS_IF 0.3%, UPD_VAR_DECL 0.2%

Cluster 1, Size: 512, ISim: 0.653, ESim: 0.126

Descriptive: UPD_METHOD_CALL 93.0%, INS_VAR_DECL 1.2%, UPD_VAR_DECL 1.1%, INS_METH_CALL 0.7%, ADD_FUNC 0.6%

Cluster 2, Size: 525, ISim: 0.597, ESim: 0.141

Descriptive: ADD_FUNC 88.3%, INS_METH_CALL 3.3%, ADD_STATE 1.8%, COND_EXPR_CHG 1.2%, INS_IF 1.0%

Cluster 3, Size: 840, ISim: 0.606, ESim: 0.179

Descriptive: INS_METH_CALL 87.3%, INS_IF 3.1%, INS_VAR_DECL 2.2%, DEL_METH_CALL 2.1%, ADD_STATE 0.9%

Cluster 4, Size: 1461, ISim: 0.635, ESim: 0.214

Descriptive: STATEMENT_PARENT_CHANGE 74.7%, INS_IF 11.6%, COND_EXPR_CHG 5.4%, INS_VAR_DECL 1.3%, DEL_IF 1.2%

Cluster 5, Size: 499, ISim: 0.487, ESim: 0.105

Descriptive: UPD_VAR_DECL 80.6%, UPD_ASSIGN 14.0%, INS_VAR_DECL 1.5%, COND_EXPR_CHG 1.0%, DEL_VAR_DECL 0.4%

Cluster 6, Size: 707, ISim: 0.557, ESim: 0.208

Descriptive: INS_RETURN 43.2%, INS_IF 40.3%, STATEMENT_PARENT_CHANGE 4.2%, INS_VAR_DECL 3.2%, DEL_RETURN 3.2%

Cluster 7, Size: 1246, ISim: 0.555, ESim: 0.246

Descriptive: INS_VAR_DECL 39.1%, INS_IF 24.5%, INS_ASSIGN 16.1%, INS_METH_CALL 5.8%, STATEMENT_PARENT_CHANGE 4.7%

Cluster 8, Size: 976, ISim: 0.450, ESim: 0.178

Descriptive: DEL_METH_CALL 33.0%, DEL_VAR_DECL 24.1%, DEL_IF 14.2%, DEL_ASSIGN 4.9%, INS_METH_CALL 3.9%

Cluster 9, Size: 706, ISim: 0.146, ESim: 0.086

Descriptive: INS_ASSIGN 42.8%, UPD_RETURN 25.1%, REMOVE_FUNC 5.1%, DEL_ASSIGN 4.9%, ADD_STATE 2.9%

Figure 14 - Fault Clusters for Eclipse JDT

1
0

3

Figure 15 - Matrix Visualization of Clusters from Eclipse JD

104

6. Logic faults; primarily a failure to check pre-conditions

7. Faults with incorrect algorithm or behavior

8. Faults that require the removal of extraneous behavior

9. Rare, varied faults that should be manually inspected

6.3 Experimental Design

In this study I undertake analysis of the fault profile, that is, the frequency

of fault occurrence in each fault class. Each cluster is treated as a fault class. As

mentioned by Freimut [39], the use of the chi-square test can be used to test

whether faults are distributed uniformly, or whether they are statistically

independent.

6.3.1 Distribution of faults by subcomponent

For my first research question I want to know whether there is a

relationship between a fault’s class and the subcomponent in which it is

observed. If such a relationship exists, the distribution of faults among fault

classes will differ for each subcomponent.

RQ6.1: Over time, do the same types of faults tend to

occur in a given subcomponent?

I define fS0 as the frequency of fault class zero (0) in subcomponent s. S is

the set of all subcomponents of the Java Development Toolkit that had fault fixes.

Fs is a vector composed of the frequencies for individual fault classes fs0, fs1, …,

fsn. FsE is a vector composed of the expected frequencies of individual fault

classes for subcomponent s. FsE is calculated by assuming that the distribution of

faults for the JDT project are reflected in each of the subcomponents. For each

subcomponent, the total number of faults in that subcomponent is multiplied by

the frequency of each fault class in the JDT over all seven releases.

105

My independent variable is the subcomponent. My dependent variable is

the distribution of the faults, FS. My null hypothesis is that fault classes from the

subcomponents of JDT are distributed evenly.

𝐻0: ∀ 𝑠 ∈ 𝑆, 𝐹𝑠 = 𝐹𝑠𝐸

My alternative hypothesis is that fault classes are not distributed evenly.

𝐻𝐴: ∃ 𝑠 ∈ 𝑆, 𝐹𝑠 ≠ 𝐹𝑠𝐸

I calculated the expected frequency for all subcomponents in the JDT that

contained faults. Six of these subcomponents had an adequate number of faults

to meet the minimum requirements of a X2 test (expected frequency >5 for each

category). I performed a Χ2 goodness of fit test individually for each

subcomponent. The resulting p-Value of each test is given in Table 37. Items in

bold were significant at the α = 0.05 level.

Table 37 - Fault distribution for JDT subcomponents

Subcomponent No. of Faults p-Values

org.eclipse.jdt.core 2577 4.52E-43

org.eclipse.jdt.debug 501 8.24E-02

org.eclipse.jdt.debug.ui 984 3.85E-17

org.eclipse.jdt.junit 171 5.54E-04

org.eclipse.jdt.launching 284 5.43E-02

org.eclipse.jdt.ui 3673 1.82E-12

Two of the subcomponents, org.eclipse.jdt.debug and

org.eclipse.jdt.launching, have a distribution that is very similar to the expected

frequency. For these two subcomponents, the null hypothesis cannot be rejected.

These two subcomponents have the same fault classes in similar proportions.

The similarity can be seen in Figure 16 below.

106

Figure 16 – Similar Fault Distributions for two subcomponents

The distribution of faults for the four remaining subcomponents differs

significantly from the distribution seen at the JDT project level. The distribution of

faults in these subcomponents can be seen in Figure 17.

107

Figure 17 - Fault Distribution for four JDT subcomponents

The JDT core subcomponent (org.eclipse.jdt.core) has a large proportion

of faults for cluster 3 (Additional Functionality). It also has a much lower

proportion of faults in cluster 6 (Insert Return and Insert If).

The JDT Debug UI subcomponent has a significantly smaller proportion of

faults in Cluster 0 (Condition Expression Change) and Cluster 3 (Additional

Functionality). It has a significantly larger proportion of faults in Cluster 6 (Insert

Return and Insert If).

The JDT JUnit subcomponent has zero faults in Cluster 2 (Update Method

Call) and contains a large proportion of faults in Cluster 1 (Update Variable

Declaration).

The JDT UI subcomponent has the largest number of faults for the studied

time period. Similar to the JDT Debug UI, the JDT UI subcomponent has a

significantly smaller proportion of faults in Cluster 3 (Additional Functionality),

and a larger proportion of faults in Cluster 6 (Insert Return and Insert If). Unlike

108

the JDT Debug UI subcomponent, the proportion of Cluster 0 (Condition

Expression Change) is equal to the expected proportion. The similarity in the two

subcomponents may be due to their similar purpose in the architecture. This led

us to perform a test of independence between the fault distributions between the

two subcomponents. I normalized the values and investigated the following

hypotheses.

My null hypothesis is that the distribution of faults for the two UI

subcomponents are equal.

𝐻0: 𝐹𝑗𝑑𝑡.𝑢𝑖 = 𝐹𝑗𝑑𝑡.𝑑𝑒𝑏𝑢𝑔.𝑢𝑖

My alternative hypothesis is that faults are from different distributions.

𝐻𝐴: 𝐹𝑗𝑑𝑡.𝑢𝑖 ≠ 𝐹𝑗𝑑𝑡.𝑑𝑒𝑏𝑢𝑔.𝑢𝑖

The Χ2 = 0.0296 < X2
0.05, 9 = 16.92. Thus, the null hypothesis cannot be

rejected, indicating that the normalized distribution of faults among the fault

classes is not significantly different. The normalized distributions are shown in

Figure 18. This finding suggests that the fault distribution is a function of the

purpose of the subcomponent, rather than (or perhaps in addition to) the project

in which it resides. An analysis of additional projects, along with a categorization

of subcomponent types, is necessary to better understand this relationship.

109

Figure 18 - Normalized Fault Distributions

6.3.2 Fault distribution for single and multi-file fixes

My next research question investigates the size of a fault fix with respect

to the number of files that are altered. Intuitively, one might suspect that faults

fixed within a single file are less complex in nature. However, what does this

imply for the classification of the fault based on syntactical change data?

RQ6.2: Are certain fault classes more likely to be fixed by

single or multi-file changes?

I filter the file count data so that unclassified changes and changes to

comments are excluded. Note that unclassified changes represent 88 of 19946

file revisions. Changes to comments have no impact.

There are 4867 single file fault fixes and 3219 multi-file fault fixes. The

average number of files changed for a fault fix is 2.54 and the median number of

files is one. The standard deviation is 5.6 files.

I perform a Χ2 goodness of fit test to determine if the single-file fix

frequencies have a distribution similar to the multi-file fix frequencies.

110

My null hypothesis states that the distribution of faults for single file and

multi-file fault fixes are equal.

I define FSF as the vector of observed frequencies for all fault classes that

are repaired with a change to a single Java file. I define FMF as the vector of

expected frequencies for all fault classes that are repaired by changing more

than one Java source file.

𝐻0: 𝐹𝑆𝐹 = 𝐹𝑀𝐹

My alternative hypothesis is that the distribution of fault classes differs for

single file and multi-file fixes.

𝐻𝐴: 𝐹𝑆𝐹 ≠ 𝐹𝑀𝐹

The X2 test is significant at the α=0.05 level, allowing the rejection of the

null hypothesis and leading to the conclusion that these distributions are

significantly different. The distributions are shown in Figure 19.

Figure 19 - Fault Distribution for Single and Multi-File Fixes

There are a number of interesting observations that can made from the

distribution. Cluster 0 (Condition Expression Changes) and Cluster 4 (Statement

0

200

400

600

800

1000

1200

1400

0 1 2 3 4 5 6 7 8 9

N
u

m
b

er
 o

f
Fa

u
lt

s

Cluster (Fault Class)

Fault Distribution for Single and Multi-File Fixes

MULTI_FILE

SINGLE_FILE

111

Parent Change and Insert If) both represent logic changes. As one might

expect, these types of logic changes appear to be much more common in single

file changes. On the other hand, Cluster 3 (Additional Functionality) is also more

common in single file changes. This suggests that many new functions are

called only within their class, or exposed through public APIs. Cluster 5 (Insert

Method Call) is also more common in single file changes. This may indicate that

interface faults are often fixed on the caller side.

6.3.3 Fault distribution in terms of developer

In this section I look at the distribution of faults among the authors of the

fixes.

RQ6.3: Do developers tend to fix the same types of

faults?

I start with 35 developers that committed fault fixes to the JDT for one of

the seven versions in the case study. Eighteen of the 35 fixed enough faults that

the assumptions of X2 could be met (expected value > for all cells). As with

previous tests, I calculate an expected distribution based on the distribution of

faults in the JDT project. The number of fault fixes that were logged for each

author is multiplied by the frequency of each fault type to arrive at the expected

values. The independent variable is the author of the fault fix. The dependent

variable is the distribution of the fault fixes.

I define A to be the set of all authors that committed fault fixes to the JDT

project in the studied releases. Let a be an author that exists in A. Fa is a vector

with the distribution of faults by fault class. FaE is the expected distribution based

on the number of faults fixed by author a, and the frequency of each fault class

in the JDT project.

My null hypothesis is that fault fixes from the authors of the JDT project

are distributed evenly.

112

𝐻0: ∀ 𝑎 ∈ 𝐴, 𝐹𝑎 = 𝐹𝑎𝐸

My alternative hypothesis is that fault classes are not distributed evenly for

each author.

𝐻𝐴: ∃ 𝑎 ∈ 𝐴, 𝐹𝑎 ≠ 𝐹𝑎𝐸

Of these eighteen, the null hypothesis can be rejected for fourteen. The

distribution of the faults for the remaining four authors was not statistically

different than the distribution of faults for the JDT project. The data that was

compared, as well as the p-value for the X2 test, is provided in Table 38. Rows

in bold are significantly different from the expected distribution. The data is

ordered based on the number of total fixes committed by the author.

Table 38 - Fault Distribution for Fault Fix Commits by Author

Author 0 1 2 3 4 5 6 7 8 9 All p-value

maeschli 70 61 37 190 61 53 139 152 86 72 921 4.05E-01

dmegert 67 43 38 149 43 63 117 105 95 56 776 5.90E-02

darin 40 36 36 164 26 46 120 109 92 68 737 1.85E-03

mkeller 52 42 18 87 39 47 78 87 71 56 577 3.61E-03

othomann 28 28 11 94 19 23 39 74 36 48 400 4.37E-02

oliviert 23 21 11 108 20 35 27 85 22 43 395 1.28E-06

dbaeumer 23 26 26 51 16 29 66 66 51 24 378 3.21E-05

akiezun 20 24 24 50 18 49 55 21 39 23 323 1.45E-11

darins 13 28 12 56 19 12 73 32 35 30 310 2.56E-07

bbaumgart 27 13 57 17 31 59 44 35 14 297 2.61E-03

ffusier 22 113 18 12 59 15 25 264 8.27E-11

jlanneluc 25 16 12 71 18 14 16 44 23 15 254 3.11E-02

pmulet 39 107 15 12 15 29 20 17 254 2.82E-13

daudel 37 12 12 63 12 15 14 42 12 34 253 2.61E-06

jeromel 15 12 12 47 21 19 41 17 14 198 6.17E-02

jburns 11 14 36 21 37 28 20 14 181 1.57E-02

lbourlier 11 14 36 13 13 26 19 18 150 3.98E-01

kent 17 67 14 18 116 7.97E-13

113

The relative distribution data is presented graphically in Figure 20. From

the chart I can see that proportions of each type vary considerably. It is clear that

faults from Cluster 3 (Additional Functionality) are quite prominent for all authors.

Additional factors, such as which area of the code the author generally works,

may need to be explored to better understand the distribution.

Figure 20 - Fault Distribution for Fault Fix Commits by Author

6.3.4 Fault distributions for pre-release and post-release fixes

For my next research question, I want to determine whether the

distribution of pre-release faults is indicative of post-release faults. This may tell

us whether certain fault classes require additional attention to prevent their

occurrence as post-release faults.

RQ6.4: Are pre-release fault distributions predictive of

post-release fault distributions?

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Fault Class Distribution by Committer

0 1 2 3 4 5 6 7 8 9

114

The independent variable is the pre-release/post-release state of the fault

fix. The dependent variable is the distribution of the faults. To test this hypothesis

I calculate the expected frequency of post-release faults for each fault class

based on the frequency of its occurrence in pre-release fault fixes.

FPOST is a vector composed of the observed frequencies of post-release

faults for all fault classes. FPOSTE is a vector composed of the expected

frequencies of all fault classes for post-release faults in a version of the Eclipse

JDT project.

My null hypothesis is that the distribution of faults for pre-release and post-

release faults are from the same distribution.

𝐻0: 𝐹𝑃𝑂𝑆𝑇 = 𝐹𝑃𝑂𝑆𝑇𝐸

My alternative hypothesis is that faults are from different distributions.

𝐻𝐴: 𝐹𝑃𝑂𝑆𝑇 ≠ 𝐹𝑃𝑂𝑆𝑇𝐸

The values for the X2 goodness-of-fit test for each version are given in

Table 39. Three of four versions exhibit a significantly different distribution (the

null hypothesis can be rejected at α=0.05), while the other four exhibit a

distribution that is not significantly different than that of pre-release faults.

Table 39 - p-values for Chi-Square Goodness-of-Fit Test

Version p-Value

2.0 0.7019

2.1 0.4006

3.0 0.0008

3.3 Europa 0.0113

3.4 Ganymede 0.0018

3.5 Galileo 0.1047

3.6 Helios 0.2151

The relative distributions for each version is depicted in Figure 21. From

this illustration I can see that the relative distribution is similar in most cases, and

that variations tend to represent a handful of fault classes that occur in higher or

lower frequencies than expected post-release. Cluster 0 (Condition Expression

115

Change) is significantly higher post-release for release 3.0 and 3.3 (Europa).

Conversely, Cluster 6 (Insert Return/Insert If) is significantly lower than expected.

In version 3.4 (Ganymede) the cluster with a larger proportion of faults is Cluster

1 (Update Variable Declaration) while Cluster 4 (Statement Parent Change/Insert

If) and Cluster 5 (Insert Method Call) are both smaller than expected.

Figure 21 - Pre-Release/Post-Release Fault Fix Distribution

6.3.5 Fault distribution for problematic fixes

While mining data from the JDT, I noticed that some faults require multiple

commits before they are fixed. In some cases, this can be attributed to minor

issues that are rectified quickly. I refer to changes that require multiple rounds of

changes as problematic fixes. For my next research question I investigate the

fault classes for these changes.

RQ6.5: Are problematic fault fixes distributed evenly

among fault classes?

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post

2.0 2.1 3.0 3.3 Europa 3.4
Ganymede

3.5 Galileo 3.6 Helios

P
er

ce
n

ta
ge

 o
f

Fa
u

lt
 F

ix
es

Fault Distribution for Pre-Release and Post-Release
Fault Fixes

9

8

7

6

5

4

3

2

1

0

116

I only looked at faults where the file was changed more than once, with at

least a four hour time lapse between changes. Of the 4054 files that are involved

in fault fixes, 1708 files meet this criterion and represent 840 fault fixes. I

calculate the expected distribution based on the overall distribution of each fault

class.

The independent variable for this test is the status of the fault fix as

problematic. The fault fix belongs to the set of faults that required multiple

changes to repair. The dependent variable is the distribution of the faults among

the fault classes. I define FPR as a vector composed of the observed frequencies

of problematic fault fixes for all fault classes. FPRE is a vector composed of the

expected frequencies of all fault classes for problematic fault fixes in a version of

the Eclipse JDT project.

My null hypothesis is that the distribution of problematic fault fixes is the

same as the distribution of faults in the JDT project.

𝐻0: 𝐹𝑃𝑅 = 𝐹𝑃𝑅𝐸

My alternative hypothesis is that problematic fault fixes are from a different

distribution.

𝐻𝐴: 𝐹𝑃𝑅 ≠ 𝐹𝑃𝑅𝐸

The X2 goodness-of-fit test for homogeneity against the expected

distribution is significant for α = 0.05, indicating that these faults are not

distributed as expected. The data is depicted in Figure 22.

117

Figure 22 - Fault Distribution for Problematic Fault Fixes

I made a number of interesting observations from this data. Cluster 0

(Conditional Expression Change), Cluster 2 (Update Method Call), Cluster 4

(Statement Parent Change/Insert If), and Cluster 5 (Insert Method Call) have a

consistently low frequency. This indicates that these types of changes are less

likely to be problematic fault fixes. Cluster 1 (Update Variable Declaration) had

an interesting increase in frequency for version 3.0 of Eclipse. The frequency of

that type decreased in subsequent releases. Cluster 6 (Insert Return/Insert If)

decreases in frequency in subsequent releases. These types of changes may

become less complex as the software matures.

Cluster 3 (Additional Functionality) increases in relative frequency for later

releases. It is the most consistent contributor to problematic faults. This indicates

that faults that must be resolved through additional functionality are more likely to

require multiple rounds of changes, and are likely more complex.

Cluster 7 (Insert Variable Declaration/Insert If/Insert Assignment), Cluster

8 (Delete Method Call/Delete Variable Declaration/Delete If), and Cluster 9

(Garbage Collector) seem to occupy 30-40% of these problematic faults for all

releases. This is consistent with the idea that these clusters with lower internal

similarity, and more descriptive features, represent more complex changes. The

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2.0 2.1 3.0 3.3 Europa 3.4
Ganymede

3.5 Galileo 3.6 Helios

Fault Distribution for Problematic Fault Fixes

0 1 2 3 4 5 6 7 8 9

118

increased complexity of the fix makes the probability that a fault is problematic,

and must be re-visited, more likely.

6.4 Conclusions

In this chapter I analyze the distribution of software faults, as classified by

the clustering of syntactic changes. As a case study I consider seven versions of

the Java Development Tools (JDT), a development environment built on the

Eclipse platform. For these seven releases, 8768 fault fixes with Java source

code changes are included in the analysis.

For my first research question, I examine the distribution of software faults

in six subcomponents of the JDT. If there is no difference in the distribution of

faults in these subcomponents, I expect the distribution of the subcomponent to

be similar to that of the JDT project. Two of the six distributions are not

significantly different from the distribution at the project level. The remaining four

have distributions that differ significantly from the expected distribution. During

this investigation, I found that the normalized distributions of the two user

interface subcomponents (org.eclipse.jdt.ui and org.eclipse.jdt.debug.ui) are not

significantly different. This is an indication that the fault distribution may vary

based on the purpose of the subcomponent in this project.

I also investigate the distribution of faults for single and multi-file fault

fixes. Logic changes appear to occur more frequently in single file fixes, as one

might expect, but additional functionality also occurs more often in single file fault

fixes. This is a surprising finding, and may be due to Eclipse’s component-based

architecture.

My third research question looks at the distribution of faults committed by

developers. Eighteen developers had enough faults to analyze using the X2 test.

Of these eighteen developers, fourteen had distributions that are significantly

different from the expected distribution. I found that faults repaired by adding

functionality were common for all authors.

The distributions for pre-release and post-release faults provided mixed

results. The two earliest releases (Eclipse 2.0 and Eclipse 2.1) had post-release

119

fault distributions that are not significantly different from those of pre-release

faults. This may indicate poor quality. Eclipse versions 3.0, 3.3, and 3.4 have

post-release fault distributions that are significantly different from pre-release

fault distributions. I also notice that faults repaired by additional functionality have

a reduced relative frequency. This may be a sign of improved quality and

stability. However, the last two releases (Eclipse 3.5 and 3.6) return to post-

release fault distributions that are not significantly different from pre-release.

Given the reduced number of fault fixes for these versions, this may indicate that

few new features are added, and fault distributions have reached a steady-state.

I define the concept of a problematic fix, a fix which requires multiple

attempts for resolution. In order to minimize coincidental problems I limit the

investigation to fixes where a second commit occurs after a four hour lapse. The

period of four hours was chosen to eliminate small mistakes that do not represent

problematic constructs. For example, a developer may forget to include a file with

a check-in, and as a result, must add the file after the initial transaction. The four

hour period likely eliminates simpler problem cases, but preserves those that

require significant re-work.

Initialization faults (Cluster 1 – Update Variable Declaration) and logic

faults (Cluster 6 – Insert If and Return) seem to decrease in relative frequency

over time. In converse, the relative frequency of Cluster 3 (Additional

functionality) seems to increase over time. Cluster 7 (Insert If + Variable

Declaration + Assign), Cluster 8 (Delete Method Call + Var Declaration + If) and

the “garbage collector,” Cluster 9 (Insert Assign + Update Return), consistently

make up 30-40% of the problematic fixes. Since clusters are ranked by the

tightness of the cluster, these clusters represent more complex faults. It appears

that faults in these clusters are more likely to encounter difficulty when repaired.

The findings in this chapter show how the distribution of fault classes can

be analyzed for software projects in order to gain insight into the evolution of a

software system. This level of large-scale analysis can be used to gain insight

into the development process and the quality of the product that is being

developed. Many software development organizations have not adopted fault

120

classification due to the overhead involved in getting consistent, high quality

data. Automated classification provides access to this data, and historical data, at

much lower cost.

121

Chapter 7

Conclusions and Future Work

7.1 Threats to Validity

In this chapter I discuss the threats to validity for each of the preceding

three chapters, discuss the contributions in this dissertation, and conclude with a

discussion of future work.

Wohlin et al. describe four areas where the validity of the results may be

threatened [89]. I discuss threats in each of these four areas.

Conclusion Validity concerns the statistical significance of the result. It is

important that the relationship between the treatment and the outcome are

properly measured in order to draw proper conclusions. In order to counter this

threat during statistical tests, the pre-requisites of each statistical test are

confirmed.

In Chapter 4 and Chapter 5, data is checked for a normal distribution

using the Shapiro-Wilk test. In cases where the data is not normally distributed,

the non-parametric Wilcoxon signed rank test is used. Pearson’s correlation

coefficient is used in Chapter 5 when the data is normally distributed.

The X2 goodness-of-fit test is used to test hypotheses in Chapter 6. This

test is not recommended if the frequency for any category is less than five. In

order to meet the pre-requisites, only data that met this criterion was used for the

statistical tests.

Internal Validity is concerned with my ability to correctly measure the

influence of the independent variables on the dependent variables and the

elimination of possible confounding variables that may lead to incorrect

conclusions. The manual inspection of a random subset of faults from each

cluster is an important component of this research, but the sample size may be

too small for statistically significant results. In addition, there is a mono-operation

bias that could be eliminated by allowing independent review and classification of

the results. This is a common problem in fault classification studies, since most

organizations that have classified fault data will not share it. In this dissertation I

122

have made my manual classification notes publicly available so that other

researchers can build on this work and improve upon my results.

There may be undetected problems in the software that is used to collect

data for this study. We build on an existing dataset to help limit this threat [74]. I

made updates to the dataset and associated scripts in order to remove some

errors, but other errors may exist. I utilize the ChangeDistiller tool [75] to collect

change information, but also altered this program. ChangeDistiller may have had

errors that affect these results or I may have introduced problems when I made

changes. Both versions of the ChangeDistiller tool are publicly available so that

other researchers can identify problems and improve results.

The data in the problem tracking database, and the comments in the

version control system depend on the software developer to get accurate

information. I found one instance where a fault identifier was mistyped, and other

faults are likely to be similarly mislabeled.

Construct Validity refers to how well the independent and dependent

variables in the study measure what is intended. Classification of software faults

by the syntax of the fix is difficult due to the uncertainty of the developer’s intent.

While simple changes are easier to interpret, complex changes can be difficult to

understand based on the frequency of changes alone. The alternative would be

to use the description of the fault. This method has similar problems because the

relationship between the symptom recorded and the underlying fault may not be

clear. Henningsson and Wohlin found that use of a description alone for fault

classification resulted in low agreement [12]. To counter this threat I used a large

number of software faults for analysis. In addition, the clustering method isolates

faults that may be infrequent. Gaining more precise data from the syntax of the

source code is discussed further in the future work section.

External Validity refers to the ability to generalize the results of the study.

I do not claim that these results can be generalized outside of the Eclipse project.

I analyzed all of the faults from two versions of Eclipse, and all of the faults from

seven versions of the Java development tools project. This provides a vertical

slice (all projects for two versions) and a horizontal slice (seven versions for one

123

component) that allow me to investigate different aspects of the method. The

consistency in the clusters for these different slices provides strong evidence of

the validity of this approach within Eclipse projects.

There are a number of additional factors that must be considered before

the results of the experiment can be generalized. I will discuss the development

community, architecture, domain, and programming language as factors that

impact external validity.

The Eclipse community consists of a number of open source contributors

and a process for coordinating multiple projects. Other projects include different

developers and different processes that could lead to different findings. One

possible project to further generalize these results without considering other

factors is the NetBeans development platform, which has a similar purpose and

underlying architecture12. The evaluation of commercial software is also an

important direction to extend the work, since the development process is likely to

be very different.

Eclipse uses a very modular, component-based architecture. This

architecture influences the way that code is structured, and the way that software

faults are repaired. For example, the finding that additional functionality is often

added with changes to a single file may be due to the component-based

structure of Eclipse. A study of development environments with different

architectures could improve our understanding of which results can be

generalized, and may also provide insight into the quality impacts of different

architectural decisions.

The domain of the software also has an impact on our ability to generalize

the results. The domain can influence the complexity of the software, the types of

operations that need to be performed, and the types of non-functional

requirements that must be met, such as performance and reliability. Each of

these factors lead to the use of different data structures and algorithms, which

may exhibit different types of faults.

12 http://wiki.netbeans.org/OSGiAndNetBeans

124

My study was limited to the Java programming language. While I would

expect similar results from other strongly-typed, object-oriented programming

languages, additional studies are needed to confirm these studies. In addition the

use of dynamic scripting languages and functional programming have become

increasingly popular, and these languages will have an influence on the way that

faults are repaired.

7.2 Contributions

This dissertation has presented a method and toolset to automatically

classify software faults from the syntax of the source code fix. Other researchers

focus primarily on the use of the text in the problem report for classification [61],

[62] or only identify pre-determined syntax patterns in the repair [63]. Fault

classification research has shown that the textual description of the fault is

insufficient for fault classification [12]. The results in this study support the notion

put forth by DeMillo and Mathur that “syntax is the carrier of semantics” [90].

The following contributions were made in this dissertation towards the goal

of providing automated fault classification of software faults:

1. The change taxonomy published by Fluri and Gall [66] was

extended to support the analysis of software faults. I found that the

change types occur often for fault fixes in two versions of the

Eclipse project, and that the frequency of occurrence for the

change types is correlated, indicating a consistency of occurrence.

2. A method to cluster faults using the syntax of the fault fix is

described. The frequency of change types from the extended

change taxonomy are used as an input vector to the clustering

algorithm. The CLUTO clustering toolkit is used to perform

clustering [76]. The cosine similarity function is used as the internal

similarity measure. The resulting clusters were consistent for two

versions of Eclipse. The use of the I1 criterion function reduces

noise in the data by creating a single, low similarity cluster with data

125

that does not match other clusters [79]. This low quality cluster

isolates faults that occur infrequently and may require manual

classification.

3. Changes to the ChangeDistiller tool were made to overcome

limitations with respect to the handling of anonymous classes.

These changes resulted in measurable improvements to the results

and indicate that additional incremental improvements are possible.

4. The MiSFIT (Mining Software Fault Information and Types) toolset

is presented. The toolset provides a flexible workflow to process

fault information in a reliable and scalable manner.

5. Analysis of the software fault distribution for individual

subcomponents of the JDT indicates that the distribution varies by

the purpose of the subcomponent. This supports prior evidence that

faults vary by the purpose of the component [26].

6. Single file fault fixes in the JDT included a large percentage of

faults that required additional functionality to repair the fault. This is

a surprising finding that may be due to Eclipse’s component-based

architecture.

7. I found that the relative frequency of faults that require additional

functionality is high for all developers within the Eclipse JDT.

8. When analyzing the distribution of software faults that were

problematic, requiring multiple changes to repair, it was discovered

that algorithmic faults, faults repaired by the removal of code, faults

repaired by the addition of functionality, and infrequent faults are

more likely to be problematic to repair. This indicates that these

types of fault fixes may benefit the most from review before they

are committed.

126

7.3 Future Work

The results of this dissertation indicate that the classification of software

faults by the syntax of the fix is a useful method to analyze software faults. This

work can be furthered in a number of ways.

The syntax of software fault fixes can be complex for multiple reasons.

Some non-essential changes (e.g., renaming a variable) produce “noise” in the

data. Kawrykow and Robillard developed DiffCat, a tool to filter out these

changes from source code [86]. Similarly, Thung et al. further this research by

narrowing the essential changes to the root cause [91]. The use of these tools

can greatly reduce the number of syntactical elements that are considered for

classification and lead to more precise classifications.

Multiple fault fixes are sometimes committed to a software repository in a

single transaction. This may be because the two reported failures are caused by

the same underlying fault. However, it may also be due to the fact that the faults

are close together, and working on them together was more efficient for the

software developer. The latter situation results in a need to identify multiple root

causes in a single set of source code changes.

Selection of the CLUTO toolkit for clustering was based on several

requirements, including a need for a pre-existing tool to perform clustering. While

CLUTO contains several clustering algorithms, a more extensive comparison of

clustering techniques is a possible area for future work. In addition to clustering,

other statistical and machine learning techniques could be utilized to classify

software faults. The discovery of a superior classification method would help

advance this research.

One possible application of this research is the development of a decision

support system (DSS) to aid a classifier in the fault classification process [92].

Such a decision support system can be used to improve the efficiency and

consistency of the fault classification task where expert opinion is needed for

fault classification. The DSS would also provide a valuable tool for researchers to

evaluate and improve upon the method and tools in this dissertation.

127

The use of the ChangeDistiller application for extracting the source code

changes limits this work to the Java programming language. Extending

ChangeDistiller to work on additional programming languages can expand the

scope of the research in this dissertation and improve the external validity of the

study.

As I described in the review of current literature, fault links define a

relationship between the types of components and the types of faults that occur

in the components [26]. Past research on fault links has been conducted using

manual classification of components and faults [26], [93], [94]. This research

provides a method to automate the fault classification. There are multiple

techniques to classify the component or module. For example, Marinescu defines

Detection strategies, an approach that utilizes static code metrics and rules to

identify design flaws in object-oriented software [95]. The study of fault links that

are associated with these design flaws could aid our understanding of their

impact. A more general way to classify classes or components is the use of

stereotypes, which define the role of the class. Dragan et al. provide an

automated method of identifying method and class stereotypes from source code

[96], [97]. A better understanding of fault links can further aid in verification and

validation improvement activities, and may also provide a mechanism to perform

tradeoff analysis for refactoring and restructuring activities.

Buse and Zimmermann hypothesize that the application of analytics to

software development activities can aid in decision-making for project managers

and developers [98]. They argue that software development has several

properties that make analytics applicable, and cite the successful application of

analytics to other fields with similar properties. Based on a survey of project

managers and developers, they suggest several areas where software analytics

could be used.

I argue that fault classification data is applicable to many of the software

analytics themes that are presented by Buse and Zimmermann [99].

Furthermore, automation of fault classification data is necessary to drive broad

industry adoption. The extension of this work to build software analytics systems

128

that aid in decision making is, therefore, a promising area of future research. The

combination of the automated fault type data from MiSFIT with other automated

techniques to separate faults from enhancements [22], predict severity [24][25],

and predict the customer impact [23] provide a powerful toolset for fault analysis.

This data can be analyzed from multiple perspectives along with additional

information such as quality metrics and effort data to drive informed decisions to

improve efficiency and quality.

129

References

[1] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, D. S. Moebus, B. K.
Ray, and M.-Y. Wong, “Orthogonal Defect Classification-A Concept for In-
Process Measurements,” IEEE Trans. Softw. Eng., vol. 18, no. 11, pp. 943–
956, 1992.

[2] B. Boehm and V. R. Basili, “Top 10 list [software development],” Computer,
vol. 34, no. 1, pp. 135–137, Jan. 2001.

[3] N. Bridge and C. Miller, “Orthogonal defect classification using defect data to
improve software development,” Software Quality, vol. 3, no. 1, pp. 1–8,
1997.

[4] W. D. Yu, “A software fault prevention approach in coding and root cause
analysis,” Bell Labs Technical Journal, vol. 3, no. 2, pp. 3–21, 1998.

[5] A. A. Shenvi, “Defect prevention with orthogonal defect classification,” in
Proceeding of the 2nd annual conference on India software engineering
conference, Pune, India, 2009, pp. 83–88.

[6] G. Vijayaraghavan and C. Kaner, “Bug taxonomies: Use them to generate
better tests.,” presented at the Software Testing, Analysis & Review
Conference (Star East), Orlando, FL, 2003.

[7] L. A. Miller, E. H. Groundwater, J. E. Hayes, and S. M. Mirsky, “Guidelines
for the Verification and Validation of Expert System Software and
Conventional Software: Survey and Assessment of Conventional Software
Verification and Validation Methods. Volume 2,” Nuclear Regulatory
Commission, Washington, DC (United States). Div. of Systems Technology;
Electric Power Research Inst., Palo Alto, CA (United States). Nuclear Power
Div.; Science Applications International Corp., McLean, VA (United States),
NUREG/CR--6316-Vol.2; SAIC--95/1028-Vol.2, Mar. 1995.

[8] S. Vegas, N. Juristo, and V. Basili, “Packaging experiences for improving
testing technique selection,” Journal of Systems and Software, vol. 79, no.
11, pp. 1606–1618, Nov. 2006.

[9] P. Runeson, C. Andersson, T. Thelin, A. Andrews, and T. Berling, “What do
we know about defect detection methods? [software testing],” IEEE
Software, vol. 23, no. 3, pp. 82–90, May 2006.

[10] M. Sullivan and R. Chillarege, “Software defects and their impact on system
availability-a study of field failures in operating systems,” in Fault-Tolerant
Computing, 1991. FTCS-21. Digest of Papers., Twenty-First International
Symposium, 1991, pp. 2–9.

[11] R. Chillarege and K. A. Bassin, “Software Triggers as a function of time -
ODC on field faults,” presented at the DCCA-5: Fifth IFIP Working
Conference on Dependable Computing for Critical Applications, 1995.

[12] K. Henningsson and C. Wohlin, “Assuring fault classification agreement - an
empirical evaluation,” in 2004 International Symposium on Empirical
Software Engineering, 2004. ISESE ’04. Proceedings, 2004, pp. 95–104.

[13] D. Falessi and G. Cantone, “Exploring Feasibility of Software Defects
Orthogonal Classification,” in Software and Data Technologies, J. Filipe, B.
Shishkov, and M. Helfert, Eds. Springer Berlin Heidelberg, 2008, pp. 136–
152.

130

[14] M. Leszak, D. E. Perry, and D. Stoll, “A Case Study in Root Cause Defect
Analysis,” in Software Engineering, International Conference on, Los
Alamitos, CA, USA, 2000, p. 428.

[15] J. Dyre-Hansen, “Analysis of fault reports from online-systems,” Norwegian
University of Science and Technology, Department of Computer and
Information Science, Depth Study TDT4735, Dec. 2006.

[16] D. Kelly and T. Shepard, “A case study in the use of defect classification in
inspections,” in CASCON ’01: Proceedings of the 2001 conference of the
Centre for Advanced Studies on Collaborative research, Toronto, Ontario,
Canada, 2001.

[17] B. Freimut, C. Denger, and M. Ketterer, “An Industrial Case Study of
Implementing and Validating Defect Classification for Process Improvement
and Quality Management,” in Software Metrics, IEEE International
Symposium on, Los Alamitos, CA, USA, 2005, p. 19.

[18] C. B. Seaman, F. Shull, M. Regardie, D. Elbert, R. L. Feldmann, Y. Guo,
and S. Godfrey, “Defect categorization: making use of a decade of widely
varying historical data,” in Proceedings of the Second ACM-IEEE
international symposium on Empirical software engineering and
measurement, Kaiserslautern, Germany, 2008, pp. 149–157.

[19] J. H. Hayes, “Building a requirement fault taxonomy: experiences from a
NASA verification and validation research project,” in Software Reliability
Engineering, 2003. ISSRE 2003. 14th International Symposium on, 2003,
pp. 49–59.

[20] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J. Sun, and B.
Wang, “Automated support for classifying software failure reports,” in
Proceedings of the 25th International Conference on Software Engineering,
Portland, Oregon, 2003, pp. 465–475.

[21] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of Duplicate
Defect Reports Using Natural Language Processing,” in 29th International
Conference on Software Engineering, 2007. ICSE 2007, 2007, pp. 499–510.

[22] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G. Guéhéneuc, “Is it a
bug or an enhancement?: a text-based approach to classify change
requests,” in Proceedings of the 2008 conference of the center for advanced
studies on collaborative research: meeting of minds, New York, NY, USA,
2008, pp. 23:304–23:318.

[23] L. Huang, V. Ng, I. Persing, R. Geng, X. Bai, and J. Tian, “AutoODC:
Automated generation of Orthogonal Defect Classifications,” in 2011 26th
IEEE/ACM International Conference on Automated Software Engineering
(ASE), 2011, pp. 412–415.

[24] T. Menzies and A. Marcus, “Automated severity assessment of software
defect reports,” in IEEE International Conference on Software Maintenance,
2008. ICSM 2008, 2008, pp. 346–355.

[25] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Predicting the severity
of a reported bug,” in 2010 7th IEEE Working Conference on Mining
Software Repositories (MSR), 2010, pp. 1 –10.

131

[26] J. H. Hayes, I. R. Chemannoor, and E. A. Holbrook, “Improved code defect
detection with fault links,” Softw. Test. Verif. Reliab., p. n/a–n/a, 2010.

[27] “IEEE Standard Glossary of Software Engineering Terminology,” IEEE
Computer Society, IEEE Std 610.12-1990, Dec. 1990.

[28] M. Hamill and K. Goševa-Popstojanova, “Common Trends in Software Fault
and Failure Data,” Software Engineering, IEEE Transactions on, vol. 35, no.
4, pp. 484–496, 2009.

[29] C. Larman and V. R. Basili, “Iterative and Incremental Development: A Brief
History,” Computer, vol. 36, no. 6, pp. 47–56, 2003.

[30] W. Royce, “Managing the Development of Large Software Systems,” in
Proc. Westcon, 1970, pp. 328–339.

[31] M. M. Lehman, “Programs, life cycles, and laws of software evolution,”
Proceedings of the IEEE, vol. 68, no. 9, pp. 1060–1076, Sep. 1980.

[32] M. M. Lehman, “Laws of software evolution revisited,” in Software Process
Technology, C. Montangero, Ed. Springer Berlin Heidelberg, 1996, pp. 108–
124.

[33] M. M. Lehman and J. F. Ramil, “Software evolution—Background, theory,
practice,” Information Processing Letters, vol. 88, no. 1–2, pp. 33–44, Oct.
2003.

[34] S. L. Pfleeger and J. M. Atlee, Software Engineering: Theory and Practice, 4
edition. Upper Saddle River N.J.: Prentice Hall, 2009.

[35] F. P. Brooks, Jr., The Mythical Man-Month: Essays on Software
Engineering, Anniversary Edition, Anniversary edition. Reading, Mass:
Addison-Wesley Professional, 1995.

[36] “Orthogonal Defect Classification - IBM,” 22-Mar-2013. [Online]. Available:
http://researcher.watson.ibm.com/researcher/view_group.php?id=480.
[Accessed: 14-Feb-2015].

[37] R. Chillarege, W.-L. Kao, and R. G. Condit, “Defect type and its impact on
the growth curve [software development],” in , 13th International Conference
on Software Engineering, 1991. Proceedings, 1991, pp. 246–255.

[38] J. K. Chaar, M. J. Halliday, I. S. Bhandari, and R. Chillarege, “In-Process
Evaluation for Software Inspection and Test,” IEEE Trans. Softw. Eng., vol.
19, no. 11, pp. 1055–1070, Nov. 1993.

[39] B. G. Freimut, “Developing and Using Defect Classification Schemes,”
Fraunhofer IESE, IESE-Report 072.01/E, Sep. 2001.

[40] D. E. Knuth, “The errors of TeX,” Software: Practice and Experience, vol. 19,
no. 7, pp. 607–685, 1989.

[41] D. E. Perry and W. M. Evangelist, “An Empirical Study of Software Interface
Faults,” 1985.

[42] D. E. Perry and W. M. Evangelist, “An Empirical Study of Software Interface
Faults - An Update,” in Proceedings of the Twentieth Annual Hawaii
International Conference on System Sciences., Hawaii, 1987, vol. II, pp.
113–126.

[43] R. R. Lutz and I. Carmen Mikulski, “Empirical Analysis of Safety-Critical
Anomalies During Operations,” IEEE Trans. Softw. Eng., vol. 30, pp. 172–
180, Mar. 2004.

132

[44] B. Robinson, P. Francis, and F. Ekdahl, “A defect-driven process for
software quality improvement,” in Proceedings of the Second ACM-IEEE
international symposium on Empirical software engineering and
measurement, Kaiserslautern, Germany, 2008, pp. 333–335.

[45] J. Børretzen and J. Dyre-Hansen, “Investigating the Software Fault Profile of
Industrial Projects to Determine Process Improvement Areas: An Empirical
Study,” in Software Process Improvement, 2007, pp. 212–223.

[46] B. Beizer, Software Testing Techniques, 2nd Edition, 2 Sub. International
Thomson Computer Press, 1990.

[47] B. Beizer and O. Vinter, “Bug Taxonomy and Statistics,” Software
Engineering Mentor, 2630 Taastrup, Technical Report, 2001.

[48] D. Cotroneo and H. Madeira, “Introduction to Software Fault Injection,” in
Innovative Technologies for Dependable OTS-Based Critical Systems,
Springer, 2013, pp. 1–15.

[49] A. J. Offutt and R. H. Untch, “Mutation Testing for the New Century,” W. E.
Wong, Ed. Norwell, MA, USA: Kluwer Academic Publishers, 2001, pp. 34–
44.

[50] J. Christmansson and R. Chillarege, “Generation of an error set that
emulates software faults based on field data,” in Proceedings of the The
Twenty-Sixth Annual International Symposium on Fault-Tolerant Computing
(FTCS ’96), 1996, p. 304.

[51] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl, and M. A.
Vouk, “On the value of static analysis for fault detection in software,”
Software Engineering, IEEE Transactions on, vol. 32, no. 4, pp. 240–253,
2006.

[52] N. Li, Z. Li, and X. Sun, “Classification of Software Defects Detected by
Black-box Testing: An Empirical Study,” in Proceedings of 2010 Second
World Congress on Software Engineering (WCSE 2010), Wuhan, China,
2010, pp. 234–240.

[53] R. Chillarege and K. Ram Prasad, “Test and development process
retrospective - a case study using ODC triggers,” in International
Conference on Dependable Systems and Networks, 2002. DSN 2002.
Proceedings, 2002, pp. 669–678.

[54] R. Telang and S. Wattal, “An Empirical Analysis of the Impact of Software
Vulnerability Announcements on Firm Stock Price,” IEEE Transactions on
Software Engineering, vol. 33, no. 8, pp. 544–557, Aug. 2007.

[55] W. Du and A. P. Mathur, “Categorization of software errors that led to
security breaches,” In Proceedings of the 21st National Information Systems
Security Conference, 1998.

[56] U. Hunny, M. Zulkernine, and K. Weldemariam, “OSDC: Adapting ODC for
Developing More Secure Software,” in Proceedings of the 28th Annual ACM
Symposium on Applied Computing, New York, NY, USA, 2013, pp. 1131–
1136.

[57] K. El Emam and I. Wieczorek, “The repeatability of code defect
classifications,” in Software Reliability Engineering, 1998. Proceedings. The
Ninth International Symposium on, 1998, pp. 322–333.

133

[58] M. Leszak, D. E. Perry, and D. Stoll, “Classification and evaluation of
defects in a project retrospective,” Journal of Systems and Software, vol. 61,
no. 3, pp. 173–187, Apr. 2002.

[59] I. Bhandari, M. Halliday, E. Tarver, D. Brown, J. Chaar, and R. Chillarege, “A
case study of software process improvement during development,” IEEE
Transactions on Software Engineering, vol. 19, no. 12, pp. 1157–1170, Dec.
1993.

[60] J. Ploski, M. Rohr, P. Schwenkenberg, and W. Hasselbring, “Research
issues in software fault categorization,” SIGSOFT Softw. Eng. Notes, vol.
32, no. 6, p. 6, 2007.

[61] F. Thung, D. Lo, and L. Jiang, “Automatic Defect Categorization,” in Reverse
Engineering, Working Conference on, Los Alamitos, CA, USA, 2012, vol. 0,
pp. 205–214.

[62] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai, “Bug characteristics in
open source software,” Empir Software Eng, vol. 19, no. 6, pp. 1665–1705,
Jun. 2013.

[63] K. Pan, S. Kim, and E. Whitehead, “Toward an understanding of bug fix
patterns,” Empirical Software Engineering, vol. 14, no. 3, pp. 286–315, Jun.
2009.

[64] R. Merkel and S. K. Nath, “An Analysis of a fault classification scheme for
Java software,” Swinburne University of Technology, Melbourne, Australia,
Center for Software Analysis and Texting Technical Report 2010-002, May
2010.

[65] B. Fluri, M. Wuersch, M. Pinzger, and H. Gall, “Change Distilling:Tree
Differencing for Fine-Grained Source Code Change Extraction,” IEEE
Transactions on Software Engineering, vol. 33, no. 11, pp. 725–743, 2007.

[66] B. Fluri and H. C. Gall, “Classifying Change Types for Qualifying Change
Couplings,” in 14th IEEE International Conference on Program
Comprehension (ICPC’06), Athens, Greece, 2006, pp. 35–45.

[67] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools
and Techniques, Second Edition, 2nd ed. Morgan Kaufmann, 2005.

[68] J. desRivieres and J. Wiegand, “Eclipse: A platform for integrating
development tools,” IBM Systems Journal, vol. 43, no. 2, pp. 371–383,
2004.

[69] “Eclipse Project DRAFT 2.0 Plan,” eclipse.org, 21-Dec-2001. [Online].
Available:
http://www.eclipse.org/eclipse/eclipse_project_plan_2_0_rev1221.html.
[Accessed: 17-Feb-2015].

[70] D. Gruber, B. J. Hargrave, J. McAffer, P. Rapicault, and T. Watson, “The
Eclipse 3.0 platform: Adopting OSGi technology,” IBM Systems Journal, vol.
44, no. 2, pp. 289–299, 2005.

[71] “Eclipse Project 3.0 Plan (Final),” eclipse.org, 02-Jun-2004. [Online].
Available:
http://eclipse.org/eclipse/development/eclipse_project_plan_3_0.html.
[Accessed: 17-Feb-2015].

134

[72] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting Defects for Eclipse,”
in Predictor Models in Software Engineering, 2007. PROMISE’07: ICSE
Workshops 2007. International Workshop on, 2007, p. 9.

[73] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis of the
efficiency of change metrics and static code attributes for defect prediction,”
in Proceedings of the 30th international conference on Software
engineering, Leipzig, Germany, 2008, pp. 181–190.

[74] S. Krishnan, C. Strasburg, R. R. Lutz, and K. Goševa-Popstojanova, “Are
change metrics good predictors for an evolving software product line?,” in
Proceedings of the 7th International Conference on Predictive Models in
Software Engineering, New York, NY, USA, 2011, pp. 7:1–7:10.

[75] H. C. Gall, B. Fluri, and M. Pinzger, “Change Analysis with Evolizer and
ChangeDistiller,” IEEE Software, vol. 26, no. 1, pp. 26–33, 2009.

[76] G. Karypis, “CLUTO: A Clustering Toolkit,” University of Minnesota,
Department of Computer Science, Minneapolis, MN, Technical Report #02-
017, Nov. 2003.

[77] Y. Zhao and G. Karypis, “Evaluation of hierarchical clustering algorithms for
document datasets,” in Proceedings of the eleventh international conference
on Information and knowledge management, New York, NY, USA, 2002, pp.
515–524.

[78] M. Rasmussen and G. Karypis, “gCLUTO - An Interactive Clustering,
Visualization, and Analysis System,” 2004.

[79] Y. Zhao and G. Karypis, “Empirical and Theoretical Comparisons of
Selected Criterion Functions for Document Clustering,” Mach. Learn., vol.
55, no. 3, pp. 311–331, Jun. 2004.

[80] G. Salton, Automatic Text Processing: The Transformation, Analysis, and
Retrieval of Information by Computer. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1989.

[81] Y. Zhao and G. Karypis, “Criterion Functions for Document Clustering:
Experiments and Analysis,” University of Minnesota, Department of
Computer Science, Minneapolis, MN, Technical Report UMN CS 01-040,
2001.

[82] L. C. Briand, C. M. Differding, and H. D. Rombach, “Practical guidelines for
measurement-based process improvement,” Softw. Process: Improve.
Pract., vol. 2, no. 4, pp. 253–280, Dec. 1996.

[83] C. M. Lott and H. D. Rombach, “Repeatable software engineering
experiments for comparing defect-detection techniques,” Empirical Software
Engineering, vol. 1, no. 3, pp. 241–277, Jan. 1996.

[84] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Pearson Education, 1995.

[85] J. R. Landis and G. G. Koch, “The Measurement of Observer Agreement for
Categorical Data,” Biometrics, vol. 33, no. 1, pp. 159–174, Mar. 1977.

[86] D. Kawrykow and M. P. Robillard, “Non-essential Changes in Version
Histories,” in Proceedings of the 33rd International Conference on Software
Engineering, New York, NY, USA, 2011, pp. 351–360.

135

[87] P. Weissgerber and S. Diehl, “Identifying Refactorings from Source-Code
Changes,” in 21st IEEE/ACM International Conference on Automated
Software Engineering, 2006. ASE ’06, 2006, pp. 231–240.

[88] “Eclipse Java development tools (JDT) Overview,” eclipse.org. [Online].
Available: https://eclipse.org/jdt/overview.php. [Accessed: 22-Feb-2015].

[89] C. Wohlin, P. Runeson, and M. Höst, Experimentation in Software
Engineering: An Introduction, 1st ed. Springer, 1999.

[90] R. A. Demillo and A. P. Mathur, “A Grammar Based Fault Classification
Scheme and its Application to the Classification of the Errors of TEX,”
Software Engineering Research Center; and Department of Computer
Sciences; Purdue University, Technical Report, 1995.

[91] F. Thung, D. Lo, and L. Jiang, “Automatic recovery of root causes from bug-
fixing changes,” in 2013 20th Working Conference on Reverse Engineering
(WCRE), 2013, pp. 92–101.

[92] B. Kidwell, “A decision support system for the classification of software
coding faults: a research abstract,” in Proceeding of the 33rd international
conference on Software engineering, New York, NY, USA, 2011, pp. 1158–
1160.

[93] I. R. C.M., “Fault Links: Identifying Module and Fault Types and Their
Relationship,” Master’s Thesis, University of Kentucky, 2004.

[94] J. H. Hayes, I. R. C.M., V. K. Surisetty, and A. Andrews, “Fault Links:
Exploring the Relationship Between Module and Fault Types,” in
Dependable Computing - EDCC 2005, 2005, pp. 415–434.

[95] R. Marinescu, “Detection strategies: metrics-based rules for detecting
design flaws,” in 20th IEEE International Conference on Software
Maintenance, 2004. Proceedings, 2004, pp. 350– 359.

[96] N. Dragan, M. L. Collard, and J. I. Maletic, “Reverse Engineering Method
Stereotypes,” in 22nd IEEE International Conference on Software
Maintenance, 2006. ICSM ’06, 2006, pp. 24–34.

[97] N. Dragan, M. L. Collard, and J. I. Maletic, “Automatic identification of class
stereotypes,” in 2010 IEEE International Conference on Software
Maintenance (ICSM), 2010, pp. 1–10.

[98] R. P. L. Buse and T. Zimmermann, “Information Needs for Software
Development Analytics,” in Proceedings of the 34th International
Conference on Software Engineering, Piscataway, NJ, USA, 2012, pp. 987–
996.

[99] B. Kidwell and J. H. Hayes, “Toward a Learned Project-Specific Fault
Taxonomy: Application of Software Analytics,” presented at the 2015 IEEE
1st International Workshop on Software Analytics (SWAN), Montréal,
Canada, 2015, pp. 1–4.

136

Appendix

In reference to IEEE copyrighted material which is used with permission in this thesis, the

IEEE does not endorse any of the University of Kentucky's products or services. Internal

or personal use of this material is permitted. If interested in reprinting/republishing IEEE

copyrighted material for advertising or promotional purposes or for creating new

collective works for resale or redistribution, please go to

http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn

how to obtain a License from RightsLink.

137

Vita

Place of Birth:

Beckley, West Virginia

Educational Institutions Attended and Degrees Already Awarded:

West Virginia University Institute of Technology, Montgomery, WV
Bachelor of Science, December 1997
Major: Electrical Engineering
Minor: Computer Science

Research Positions Held:

UK Laboratory for Advanced Networking, College of Engineering
Software Verification and Validation Research Lab, Research Assistant
Oct. 2011 – Sept. 2014

Professional Positions Held:

Hewlett Packard, Lexington, KY

April 14, 2008 – present

 Software Architect (May 2014 – present)

 R&D Program manager (Nov 2010 – May 2014)

 Senior Software Developer (April 2008 – Nov 2010)

Affiliated Computer Services, Inc., Lexington, KY

July 1, 2002 – April 1, 2008

 Technical Systems Architect (July 2005 – April 2008)

 Division Software Manager (May 2003 – June 2005)

 Senior Programming Analyst (July 2002 – May 2003)

Digital Freight, Inc., Lexington, KY

March 2001 – July 2002

 Software Quality Engineer

Future Phase Technology, Lexington, KY

August 1999 – March 2001

 Software Engineer

138

Eagan, McAllister and Associates, Inc., Lexington Park, MD

January 1998 – August 1999

 Associate Engineer

Professional Activities:

Program Committee Member, The 24th IEEE International Symposium on
Software Reliability Engineering (ISSRE), 2013.
Grants:

Past Support

Research Assistant, NASA, “Predicting Fault Types and Fault Links in Object-
Oriented Systems using Historical Data,” with Allen Nikora (JPL), Kishor Trivedi,
and Jane Hayes (advisor), $843K for three years, Oct. 2011 – Oct. 2014.

Scholastic and Professional Honors:

Tau Beta Pi, Engineering Honor Society

Eta Kappa Nu, Electrical Engineering Honor Society

139

Publications

Billy Kidwell, Jane Huffman Hayes. 2015. Toward a Learned Project-Specific
Fault Taxonomy: Application of Software Analytics. In Proceedings of the First
International Workshop on Software Analytics (SWAN). IEEE Computer
Society, Montréal, Canada.

Billy Kidwell, Jane Huffman Hayes, and Allen P. Nikora. 2014. Toward Extended
Change Types for Analyzing Software Faults. In Proceedings of the 2014
14th International Conference on Quality Software (QSIC '14). IEEE
Computer Society, Washington, DC, USA, 202-211.
DOI=10.1109/QSIC.2014.10 http://dx.doi.org/10.1109/QSIC.2014.10

Davide Falessi, Bill Kidwell, Jane Huffman Hayes, and Forrest Shull. 2014. On
failure classification: the impact of "getting it wrong". In Companion
Proceedings of the 36th International Conference on Software
Engineering (ICSE Companion 2014). ACM, New York, NY, USA, 512-515.
DOI=10.1145/2591062.2591122
http://doi.acm.org/10.1145/2591062.2591122

Billy Kidwell. 2011. A decision support system for the classification of software
coding faults: a research abstract. In Proceedings of the 33rd International
Conference on Software Engineering (ICSE '11). ACM, New York, NY, USA,
1158-1160. DOI=10.1145/1985793.1986028
http://doi.acm.org/10.1145/1985793.1986028

http://dx.doi.org/10.1109/QSIC.2014.10
http://doi.acm.org/10.1145/2591062.2591122
http://doi.acm.org/10.1145/1985793.1986028

	MiSFIT: Mining Software Fault Information and Types
	Recommended Citation

	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	Chapter 1 Introduction and Overview
	1.1 Problem Statement
	1.2 Research Thesis
	1.3 Scope of the Research
	1.4 Relevance
	1.5 Overview of Dissertation

	Chapter 2 Background and Related Work
	2.1 Terms and Definitions
	2.2 An Overview of the Software Development Lifecycle
	2.2.1 Verification and Validation
	2.2.2 Software Maintenance and Evolution
	2.2.3 Conclusions

	2.3 An Introduction to Fault Classification
	2.4 Literature Survey
	2.5 The Benefits of Software Fault Classification
	2.5.1 Process Improvement
	2.5.2 Verification and Validation
	Test Design
	Fault Injection and Mutation Testing
	Inspection
	Planning V&V Activities
	Evaluating V&V Effectiveness
	Software Security
	2.5.3 Empirical Knowledge

	2.6 Manual Fault Classification Challenges
	2.6.1 Empirical Studies of the Challenges of Fault Classification
	2.6.2 Fault Classification Challenges from Research and Practice
	Data Consistency
	Time
	Customization of Fault Taxonomies

	2.7 Automated Fault and Failure Classification
	2.7.1 Duplicate Reports
	2.7.2 Fault vs. Enhancement
	2.7.3 Classification of Fault Impact
	2.7.4 Automatic classification of fault severity
	2.7.5 Automated Classification of Fault Family
	2.7.6 Bug Fix Patterns

	2.8 Discussion

	Chapter 3 Mining Software Fault Information and Types
	3.1 Extending a Change Taxonomy
	3.2 Clustering Software Faults
	3.3 Software Fault Evolution

	Chapter 4 An Extended Change Taxonomy for Software Fault Analysis
	4.1 A Taxonomy of Source Code Changes
	4.2 Extending the Change Taxonomy
	4.3 Case Study
	4.4 Data Collection
	4.4.1 Data Collection Workflow
	4.4.2 Change Distilling Process

	4.5 Validation
	4.6 Conclusions

	Chapter 5 Clustering Software Faults
	5.1 Clustering Software Faults
	5.2 Measurements
	5.3 Experimental Design
	5.3.1 Variables
	5.3.2 Evaluation of Criterion Functions
	5.3.3 Consistency of Clusters for Eclipse 2.0 and 3.0

	5.4 Manual Inspection of Faults in Each Cluster
	5.4.1 Data Visualization
	5.4.2 Manual Inspection Process
	5.4.3 Manual Inspection Results
	5.4.4 Discussion

	5.5 Improving ChangeDistiller for Anonymous Classes
	5.5.1 Updated Clustering Results
	5.5.2 Manual Inspection of Changes
	5.5.3 Discussion

	5.6 Conclusions

	Chapter 6 Software Fault Evolution
	6.1 Case Study
	6.2 Data Collection
	6.2.1 Git Data Collection Changes
	6.2.2 JDT Clustering Results

	6.3 Experimental Design
	6.3.1 Distribution of faults by subcomponent
	6.3.2 Fault distribution for single and multi-file fixes
	6.3.3 Fault distribution in terms of developer
	6.3.4 Fault distributions for pre-release and post-release fixes
	6.3.5 Fault distribution for problematic fixes

	6.4 Conclusions

	Chapter 7 Conclusions and Future Work
	7.1 Threats to Validity
	7.2 Contributions
	7.3 Future Work

	References
	Appendix
	Vita
	Publications

