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MISFIT 

MINING SOFTWARE FAULT INFORMATION AND TYPES 

 

As software becomes more important to society, the number, age, and 

complexity of systems grow. Software organizations require continuous process 

improvement to maintain the reliability, security, and quality of these software 

systems. Software organizations can utilize data from manual fault classification 

to meet their process improvement needs, but organizations lack the expertise or 

resources to implement them correctly.  

This dissertation addresses the need for the automation of software fault 

classification. Validation results show that automated fault classification, as 

implemented in the MiSFIT tool, can group faults of similar nature. The resulting 

classifications result in good agreement for common software faults with no 

manual effort.  

To evaluate the method and tool, I develop and apply an extended change 

taxonomy to classify the source code changes that repaired software faults from 

an open source project. MiSFIT clusters the faults based on the changes. I 

manually inspect a random sample of faults from each cluster to validate the 

results. The automatically classified faults are used to analyze the evolution of a 

software application over seven major releases. The contributions of this 

dissertation are an extended change taxonomy for software fault analysis, a 

method to cluster faults by the syntax of the repair, empirical evidence that fault 

distribution varies according to the purpose of the module, and the identification 

of project-specific trends from the analysis of the changes. 
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Chapter 1  

Introduction and Overview 

Software companies are building increasingly complex systems. At the 

same time, market pressures require that they do so in less time, while 

customers are demanding higher quality. Increasingly, today’s software teams 

are distributed across the country, or across the world. Balancing these factors is 

a major problem for software development organizations. In order to reduce time 

and increase quality, software organizations must continually improve their 

software development practices. 

The most measurable aspect of software quality is the number of faults, or 

bugs, that are discovered in a software product. A simple metric to assess the 

quality of a product might be a count of the faults reported by customers. 

However, this metric is problematic in at least two ways. First, it does not provide 

actionable feedback about where improvements can occur and second, it occurs 

too late to make any corrections.  

Software fault classification provides precise feedback about the software 

development process. Modern fault classification schemes include multiple 

attributes, such as the severity of the fault, the activity that found the fault, and 

the type of fault that occurred. If the scheme is carefully designed, the type of 

fault can provide evidence of when the fault was introduced [1]. The longer the 

fault goes without detection, the more expensive the fault is to repair [2]. The 

goal of using fault classification schemes is thus to prevent faults and find as 

many faults as possible, as early as possible.  

Prior research has shown that fault classification has been used 

successfully to measure and improve the software development process [3], 

prevent faults [4][5], design tests [6], plan quality assurance activities [7]–[9], and 

evaluate the effectiveness of quality assurance activities [10][11].  

Studies cite a number of different challenges for practitioners. The 

developer that repaired the fault is required to determine the classification. The 

use of the fault description and a secondary group, such as the quality assurance 
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team rather than the developer that fixes the fault, results in low agreement [12]. 

Fault classification is also dependent on the experience of the classifier [13]. 

Other studies reported challenges in getting consistent data [5], [14]–[16] and a 

need to customize fault classification schemes for a domain, organization, or 

project [5], [17]–[19]. I have seen anecdotal evidence of these challenges in my 

professional experience as a software engineer. Based on this anecdotal 

evidence, I believe that these barriers prevent the widespread adoption of fault 

classification in industry.  

Automation is applied to fault classification in several ways. Natural 

language processing has been used to analyze the text of fault reports and 

detect duplicates [20], [21]. Duplicate detection increased process efficiency by 

eliminating wasted work. Automation has also been used to automatically 

determine if a fault represents corrective maintenance [22], determine the 

customer impact of a fault [23], and predict the severity of a fault [24], [25].  

1.1 Problem Statement 

As software becomes more important to society, the number, age, and 

complexity of systems grow. Software organizations require continuous process 

improvement to maintain the reliability, security, and quality of these software 

systems. Software organizations can utilize data from manual fault classification 

to meet the process improvement needs of organizations, but organizations lack 

the expertise or resources to implement them correctly. This dissertation 

addresses the need for the automation of software fault classification. Validation 

results show that automated fault classification, as implemented in the MiSFIT 

tool, can group faults of similar nature. The resulting classifications result in good 

agreement for common software faults with no manual effort. The evolution of 

faults over seven releases are examined with the aid of the classified fault data. 
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1.2 Research Thesis  

The goal of this research is to provide an automated method to categorize 

software faults based on the syntactical changes that repair the fault. Specifically, 

I categorize Java source code changes according to an extended change 

taxonomy and apply clustering to the results to form a project-specific fault 

taxonomy.  

I present a new method implemented in a tool, MiSFIT (Mining Software 

Fault Information and Types), which can be utilized to process historical 

information from software repositories, classify syntactical changes, and cluster 

software faults. The overall thesis of this research is that software fault 

classification can be automated by leveraging the information in the source code 

changes that repair the fault. The use of the method described in this dissertation 

provides a project-specific taxonomy that evolves with the programming 

language and the programming practices of the software development team. 

To evaluate the thesis, I apply the extended change taxonomy to classify 

the source code changes that repaired software faults from an open source 

project. MiSFIT clusters the faults based on the changes. I manually inspect a 

random sample of faults from each cluster to validate the results. The 

automatically classified faults are used to analyze the evolution of a software 

application over seven major releases. The validation results in the following 

contributions: 

 an extended change taxonomy for software fault analysis, 

 a method to cluster faults by the syntax of the repair, 

 empirical evidence to support prior findings that fault distribution 

varies according to the purpose of the module [26], and 

 project-specific trends identified through the analysis of the 

changes. 

1.3 Scope of the Research 

For this project, I restrict my attention to object-oriented systems written in 

the Java programming language. I limit the investigation of faults to those that 
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appear in source code. I eliminate from consideration any fault in requirements 

documents, design models, or documentation that do not appear in the source 

code. 

1.4 Relevance 

Software fault classification provides many benefits, but the primary users 

are software organizations with mature development processes. Software 

organizations need methods to improve development processes in order to 

improve quality and reduce time to market. Unfortunately, manual fault 

classification is expensive to implement correctly. An automated method to 

classify faults can provide valuable information for improving software 

development processes. 

In addition, many open source software projects are available today and 

provide researchers with an enormous amount of data that was previously 

unavailable. The manual classification of the faults in open source projects is 

difficult. Open source projects are highly dependent on volunteers to contribute to 

the development effort, and the development processes are immature by 

software engineering standards. As a result, access to the information to classify 

software faults retroactively is difficult to obtain. However, the source code and 

problem reports for these projects are readily available. An automated method of 

fault classification can provide additional data about the nature of software faults 

to advance our understanding of software engineering. 

1.5 Overview of Dissertation 

This section describes the organization of the dissertation. Chapter 2 

discusses background information and surveys the current literature on software 

fault classification. Chapter 3 introduces the MiSFIT tool and presents the 

research approach. Chapter 4 presents an existing change taxonomy and an 

extension that makes it adequate for analyzing software faults. Chapter 5 

presents the clustering of software faults based on the syntactic information in 

the fix. Chapter 6 extends this work by examining software faults from seven 
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versions of an open source software project. Chapter 7 concludes the 

dissertation and discusses future work.  
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Chapter 2  

Background and Related Work 

I begin this chapter with terms, definitions, and background information on 

the software development lifecycle. Once established I introduce software fault 

classification by presenting a common fault classification scheme, the Orthogonal 

Defect Classification (ODC) scheme. The remainder of this chapter is a review of 

the literature in software fault classification. In this review, I explore the benefits, 

challenges, and future of software fault classification. 

2.1 Terms and Definitions 

The IEEE defines a software fault as an “incorrect step, process, or data 

definition in a computer program” [27]. The terms defect and fault are often used 

interchangeably in the literature. An error causes the introduction of a software 

fault in the creation of a software artifact. Faults are introduced in requirements, 

architecture, design, or source code and may be detected at any stage after 

introduction, including testing and maintenance of the software. A software fault 

remains latent until a set of operating conditions or inputs trigger the fault, 

causing the fault to manifest itself as a failure.  

A software failure is the failure of a software system to operate within the 

specifications of that system. The failure may be an incorrect output, system 

crash, or a failure to perform its operations under non-functional constraints 

related to performance, security, or availability. The cause of software failures 

can be complex. In some cases, failures are difficult to reproduce. Failures may 

only occur in rare conditions, or one fault may hide the existence of another. 

When this occurs, fixing a fault may appear to introduce a new fault, when in fact 

it reveals a hidden fault. A better understanding of the complex relationship 

between faults and failures is an open area of research and essential for 

improving the prevention and detection of software faults [28]. 
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The term bug is often used in industry as a synonym for a software fault, 

failure, or error. Due to the ambiguous nature of the term, this dissertation avoids 

its use as much as possible.  

A failure is documented in a database that is used within the software 

development organization. This database is referred to by terms such as issue 

tracking system, bug tracking system, or problem tracking system. This 

dissertation refers to the database as a problem tracking system, and to a single 

report of a failure or possible failure as a problem report. Practitioners attempt to 

keep each problem report isolated to a single failure, but this is not always 

possible. In practice, the source code fix for a single problem report may address 

a number of related issues that are uncovered during the investigation and repair 

of the issue. In extreme cases, changes may need to occur to the architecture or 

high-level design to address a fundamental flaw or changing need of the system. 

The problem report is a record of a failure, including its detection, investigation, 

and repair.  

This section has provided terms and definitions that are useful throughout 

this dissertation. The next section introduces fault classification by providing an 

overview of a commonly used fault classification scheme. 

2.2 An Overview of the Software Development Lifecycle 

Modern software processes are iterative and incremental in nature. The 

complexity of software requires the decomposition of software into smaller parts 

and their assembly into working systems. The history of iterative, incremental 

development dates back as far as the 1960s [29]. Iterative, incremental software 

development is an improvement on the waterfall development process. Royce 

introduced what we now refer to as the waterfall development process in 1970 

[30]. Figure 1 illustrates an adapted version of the development process from 

Royce’s paper. The waterfall process model provides a useful foundation for the 

phases and activities involved in software development. For interested readers, 

Larman and Basili provide an overview of the history of iterative and incremental 

development processes [29]. 
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Figure 1 - Waterfall Software Development Process 

The system requirements phase identifies the requirements for the 

system in the context where it will exist. The software requirements phase is 

concerned with collecting all of the requirements of the system. These 

requirements include functional requirements, as well as non-functional 

requirements such as performance, reliability, and usability. The software 

requirements phase results in a software requirements document as an artifact of 

this phase. 

Royce introduces the preliminary program design phase to reduce risk 

in large development projects [30]. An important tenet of the waterfall model is 

that problems in a development phase should affect at most one previous phase. 

Without the preliminary design phase, problems with timing, storage, and other 

constraints identified during testing can affect the requirements phase. The 

addition of the preliminary design phase reduces the risk of this problem. The 

preliminary design phase is also known as the high-level design phase or the 
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architecture phase of a project. The focus is on the high-level structure of the 

software and meeting non-functional requirements. 

The analysis phase of a software development project involves modeling 

the problems that the system will solve. In the context of a space guidance and 

control system, this might involve numerous equations for determining the 

appropriate flight path of a rocket. In contrast, the analysis phase for a business 

system focuses on understanding the logical entities and business rules to 

complete a transaction. 

The program design phase, also known as detailed design or low-level 

design, is the activity that produces the specification for the coding phase. The 

interfaces of modules, as well as the data structures and algorithms, are 

determined during this activity. An Interface Design document and a Final Design 

document capture the specification. In addition, a Test Plan document is created 

that will guide the verification of the software after coding.  

The coding phase, or implementation phase, involves the development of 

the software. Artifacts from the program design phase are the basis of the 

development effort. The Final Design document includes any changes that occur 

in the coding phase. The Test Plan document guides the testing phase. The 

testing effort validates the functional and non-functional properties of the system 

with respect to the requirements and specification. Problems found in the testing 

phase may affect the design, and result in changes to the Final Design 

document. The output of this phase is the final test plan with test results.  

Once the testing phase is completed, the software transitions to an 

environment for operational use. This transition to operations includes an 

Operation Instructions document.  

Royce’s contributions were a two-stage design process, an emphasis on 

documentation, and the use of an early simulation, or prototype, to reduce risk for 

original work [30]. It is interesting to note that these observations occur within the 

constraints of US government-contracting models in the 1960s and 1970s. 

Software processes have changed over the decades, but the waterfall model 
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remains a useful example of the phases and activities involved due to its 

simplicity.  

2.2.1 Verification and Validation 

In software engineering terms, verification is the process of evaluating an 

artifact to determine whether it meets the conditions to exit the current phase of 

the software development lifecycle (SDLC) [27]. The artifact may be a 

requirements document, design document, a model, or a software component. In 

contrast, validation is the evaluation of a system at the end of the development 

process to determine whether it satisfies certain requirements [27].  

It is important to detect and eliminate faults in any artifact. Faults that 

remain undetected and move on to the next phase, which I refer to as escaped 

faults, result in additional costs. The additional cost will vary depending on 

several factors, e.g., the complexity of the project and the method of delivery. 

Research literature estimates the cost of an undetected fault that escapes into 

operations to be 5:1 for small, non-critical systems up to 100:1 for large, complex 

systems [2].  

The waterfall process described above produces several artifacts. Each of 

these artifacts is subject to a review on any large software project. Review of the 

Software Requirements document aims to detect ambiguous requirements, 

conflicting requirements, and any lack of completeness. Review of the 

Preliminary Design document (or Software Architecture document) evaluates the 

design to validate it can meet non-functional requirements (e.g., performance, 

security, reliability). The reviews of additional design documents verify that the 

design will meet the business requirements. The review of the Test Plan 

document verifies completeness with respect to the requirements. In addition, 

inspection of the code itself can uncover faults that may be difficult to find during 

testing. Some faults, e.g., poor documentation of code and failure to follow 

coding guidelines, cannot be detected by testing and require code inspection.  

The verification of artifacts is important to uncover faults early and make 

the project run efficiently. Consider the example where a design has a fault that 
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escapes to the release phase. A customer may detect this fault during 

operations, requiring a fix. This forces the software organization to make a 

design change to software after release. The design change becomes more 

complicated due to backwards compatibility issues. Changes in design may also 

cause requirements to be re-visited. The software undergoes design, analysis, 

coding, and testing again in order to release the change. It is easy to see how 

these costs add up, and why early detection or prevention of faults increases 

software productivity and quality. 

2.2.2 Software Maintenance and Evolution 

The maintenance of software systems differs from that of hardware 

systems. Software does not wear out like hardware components, but it must 

constantly evolve to respond to changes in its environment. Lehman classifies 

systems into three types, according to how they may change [31]. S-systems 

are formally defined systems based on a specification. S-systems do not change 

often. If the real world problem that the system solves changes, it often means 

that a new problem has emerged, and a new system is necessary, rather than a 

change to an existing problem. The basis of P-systems is a practical abstraction 

of a problem. In this case, the problem is too complex for a complete, formal 

specification. P-systems change more often than S-systems, since the 

abstraction may be incomplete, and changes to the abstraction result in changes 

to the system.  

Lehman’s third type of system is the E-system [31]. An E-system is 

embedded in the real world. As the world changes, the system must be evolved 

or abandoned. A useful example of an E-system is tax preparation software. Tax 

laws change every year, requiring updates to these systems. Many software 

systems fall into this category and are subject to constant change. 

Lehman introduced eight laws of software evolution [31][32]. These laws 

have been studied and improved over a period of thirty years [33]. The laws of 

software evolution, as published by Lehman [32], are summarized below.  
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I. Continuing Change. An E-type program that is used must be continually 

adapted else it becomes progressively less satisfactory.  

II. Increasing Complexity. As a program is evolved its complexity increases 

unless work is done to maintain or reduce it. 

III. Self-Regulation. The program evolution process is self-regulating with 

close to normal distribution of measures of product and process attributes.  

IV. Conservation of Organisational Stability (invariant work rate). The 

average effective global activity rate of an evolving system is invariant 

over the product life time.  

V. Conservation of Familiarity. During the active life of an evolving 

program, the content of successive releases is statistically invariant. 

VI. Continuing Growth. Functional content of a program must be continually 

increased to maintain user satisfaction over its lifetime. 

VII. Declining Quality. E-type programs will be perceived as of declining 

quality unless rigorously maintained and adapted to a changing 

operational environment. 

VIII. Feedback System. E-type programs constitute Multi-loop, Multi-level 

Feedback systems and must be treated as such to be successfully 

modified or improved.  

The first law, Continuing Change, reflects the definition of E-type 

systems. As the real world evolves, the E-type system must be updated in order 

to remain satisfactory and useful. The law of Increasing Complexity states that 

the successive changes to the system will increase the entropy of the system 

unless the complexity is constrained and effort expended to reduce the 

complexity. The law of Self-Regulation states that software systems exhibit 

measurable and predictable behaviors [34]. The fourth law, Conservation of 

Organisational Stability, states that the amount of useful work achievable for a 

system is invariant. This is in agreement with Brooks’ conclusions that adding 

resources to a software project may reduce the effective rate of productive output 

[35]. This counter-intuitive phenomenon is due to increased communication and 

other overheads as the number of contributors grows. 

The fifth law, Conservation of Familiarity, states that over time, the 

effects of subsequent releases will make little difference in the overall 

functionality of the software. The sixth law, Continuing Growth, refers to the 

need to add functionality continually. Unlike the first law, which results from 

changes in the real world, this law results due to the need to scope software 
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systems. Out of scope features eventually become more important to users and 

must be added. The seventh law, Declining Quality, results because the 

assumptions made during the design and implementation phase are based on 

the present state of the system and the world. As the system and the real world 

evolve, these assumptions are likely to change and result in faults in the system. 

The eighth law, Feedback System, describes the software development process 

as a feedback system. For example, the system will continually grow until it 

becomes more expensive to expand, as a result the organization may reduce the 

size of the system in order to add required new functionality. Once the system 

size is reduced, however, it will only be a matter of time before the system is 

again too large for affordable growth.  

2.2.3 Conclusions 

This section provides background information on the software 

development lifecycle, verification and validation of software, and the evolution of 

software systems. The development of large software systems is a complex 

endeavor that involves numerous technical and human factors. In the following 

section, we build upon this background knowledge to discuss techniques to 

monitor and improve the software development process. 

2.3 An Introduction to Fault Classification  

In this section I introduce the concept of fault classification by example. 

Orthogonal Defect Classification (ODC) was developed at IBM by Chillarege et 

al. as a method of in-process feedback to developers [1]. The process bridges 

the gap between causal analysis and statistical defect models. Chillarege et al. 

characterize causal models as qualitative and high effort. Statistical defect 

models are quantitative, but occur late in the development process. The ODC is 

currently at version 5.2 [36] and has evolved based on changes in technical 

needs (e.g., incorporating concepts from Object-Oriented programming) and 

pragmatic concerns (e.g., addition of user documentation, build, and language 

support categories). The ODC consists of multiple attributes, each concerned 
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with a specific property of a fault. These attributes are designed to be 

orthogonal in two ways. The attributes are orthogonal to each other, in that they 

capture different information about the fault. The attribute values are designed 

such that only one value applies, providing orthogonal attribute values. As an 

introduction, I provide an overview of commonly used attributes and applications 

of ODC from the literature. 

The key attribute of the ODC scheme is the defect type. This attribute 

captures the semantics of the fix applied to correct the fault [1]. In addition, a 

qualifier indicates whether something was incorrect, missing, or extraneous. The 

defect type categories are based on research that identified relationships 

between the semantics of fault fixes and the software development process [37]. 

A subset of the fault types and process associations are shown in Table 1. This 

relationship is essential to understanding when a fault is injected into the 

software. The knowledge of when the fault injection occurred provides feedback 

on the phase of the process that must improve, but also enables other forms of 

diagnosis, which I will discuss in the next section.  

Table 1 - ODC Defect Types and Process Associations 

Defect Type Process 
Association 

Function Design 

Interface Low Level Design 

Checking LLD or Code 

Assignment Code 

Timing/Serialization Low Level Design 

Algorithm Low Level Design 

A second attribute of importance in the ODC is the defect trigger [1]. The 

defect trigger describes the situation in which a latent defect is triggered in a 

customer environment [10]. The trigger is identified early in the lifecycle of a fault, 

when the fault is discovered and recorded. The trigger is an effective means of 

diagnosing the verification process [38]. Examples of a defect trigger include 

Design Conformance, Logic/Flow, Backward Compatibility, Workload/Stress, and 
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Rare Situations. Triggers map to verification activities such as Design Review, 

Code Inspection, Unit Test, Function Test, and System Test. The defect trigger 

also reflects the skill and knowledge of the tester. This property of triggers can be 

used to determine if more experienced reviewers, or reviewers with more 

knowledge of the system, are required to perform the review. Chaar et al. 

describe the use of defect triggers to assess verification activities [38].  

Using only the qualifier, defect type, defect removal activity, and defect 

trigger, a number of different scenarios in the software development process can 

be analyzed. By using the association of defect types to process phases, it is 

possible to determine whether the fault detection occurs in the earliest possible 

verification activity. When faults escape the earliest possible verification activity, 

that activity is a candidate for improvement. After improvement activities, 

measurements occur against the current baseline. With the addition of historical 

data, it is possible to determine whether an activity is finding a sufficient number 

of each type of fault while that activity is in progress. Project managers can make 

adjustments earlier in the process when this type of data is available. These 

attributes provide important data for process improvement. 

In addition to these attributes, ODC includes attributes such as the impact 

of the fault on the customer, the age of the code that contains the fault (e.g., new, 

pre-existing, rewritten), and the source of the fault (e.g., outsourced, re-used, 

ported). It is easy to see how additional attributes can provide additional 

diagnosis. For example, the impact attribute can be used to determine which 

defect types are prone to high impact customer problems. The source of the fault 

might help diagnose problems with outsourced work, re-used code libraries, or 

portability problems.  

In this section I have provided an introduction to fault classification by 

describing the Orthogonal Defect Classification (ODC) scheme. I discussed the 

primary attributes, defect type and defect trigger, as well as their role in 

measuring the software development process. In the following sections, I will 

explore the impact of fault classification more broadly. The next section describes 

the process for the literature survey. 
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2.4 Literature Survey 

The primary focus of this chapter is to review the literature for practices 

and applications of fault classification. The goal of this literature survey is to 

identify the claimed benefits of fault classification, analyze evidence related to its 

use, and present a direction for the research and application of fault 

classification. For this survey I selected a purposive sample of central and pivotal 

articles in the field. My selection criteria appear below. The analysis is presented 

by concept, with chronological ordering within each concept.  

For each publication, I am interested in answering a number of key 

questions. First, I am interested in claims of benefits from the use of fault 

classification and the validation of these claims. Next, I am interested in 

challenges that arise from the use of a fault classification scheme. Finally, I am 

interested in the degree to which the fault classification scheme is automatable. 

To locate articles, I performed a search using the key terms software, 

“fault type”, “defect type”, and taxonomy. I selected these terms based on a 

number of searches, many of which result in false positives for the term 

classification. I reviewed the 43 results and narrowed the list to 18 results by 

reading the abstracts of the resulting papers. In reviewing the results, I kept 

papers/articles that met the following criteria:  

 About software, rather than hardware or power faults 

 From a Journal, Conference, or a Thesis/Dissertation 

 Presents  

o a fault classification scheme, or 

o applications of a fault classification scheme, or 

o a software engineering process that is impacted by fault 

classification 

 Includes 

o new results, or significant validation of previous results 

From these 18 results, I expand the list by reviewing the bibliography of 

the work and exploring sources that meet my criteria. In total there were 81 

articles, papers, reports and book chapters that were reviewed for information 

collection. After eliminating redundant sources and sources that did not provide 

results that were relevant for my purposes, I used 54 sources. 



17 
 

In the following sections, I present the information that was collected and 

analyzed for this literature survey. I first focus on the benefits of fault 

classification as they have been recorded in the literature. Next, I discuss the 

challenges that have been published. With these benefits and challenges 

explained, I move on to recent innovations and thoughts on the future of fault 

classification research. Finally, I compare recent innovations to the research in 

this dissertation. 

2.5 The Benefits of Software Fault Classification 

This section discusses the benefits of software fault classification as 

recorded in the literature. Readers that are interested in adopting a fault 

classification scheme may find the guidelines presented by Freimut to be useful 

[39]. This chapter discusses the benefits of software fault classification in the 

broad areas of process improvement, verification and validation, and empirical 

knowledge.  

2.5.1 Process Improvement 

Knuth provides a description of the change classifications that he used for 

enhancements and bugs for ten years while developing the TEX system [40]. 

Knuth reports that his classification may appear ad hoc, but represents the best 

way for him to make sense of his experience on the project. Knuth presents nine 

classifications for bugs, which he denotes by a single capital letter (code), a 

name, and a short description. The author provides numerous examples to clarify 

each category. Table 2 below presents the classifications. 

Knuth does not claim that his classification scheme is useful to anyone but 

himself, so it is not surprising that ambiguities are possible. For example, if a 

surprising scenario causes an incorrect result in an algorithm, it is not clear which 

classification applies. I argue that the most important contribution of this 

classification scheme is increased awareness about the use of fault classification 

for process improvement, in this case, applied to an individual. 
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Table 2 – Knuth’s Fault Classifications 

Code Name Description 

A algorithm awry incorrect algorithm 

B blunder or botch author knew what he ought to do, but wrote something 

else 

D data structure debacle information not properly handled, such as memory 

leaks 

F forgotten function error of omission, forgot to include a piece of 

functionality 

L language liability misuse or misunderstanding of the programming 

language 

M mismatch between modules forgot conventions built into a subroutine when it was 

used 

R reinforcement of robustness add validation to prevent crashes and erroneous 

conditions 

S surprising scenario unforeseen interactions force a change in design 

T trivial type typed the wrong thing (e.g., ‘+’ instead of ‘-‘), excludes 

syntax errors caught by the compiler 

 

Bridge and Miller introduced the ODC scheme to Motorola with the aim to 

better measure and improve the software development process [3]. Bridge and 

Miller describe how existing inspection data maps to ODC defect types in order 

to leverage historical data that is already in place. Many companies are 

interested in making use of existing historical data in order to take advantage of 

fault classification methods. Bridge and Miller describe one way to leverage 

existing data and describe how Motorola uses fault classification for process 

improvement. 

Perry and Evangelist conduct an empirical investigation of software 

interface faults in a real-time system. The system is 350,000 non-commented 

lines of C source code. They construct a taxonomy by randomly selecting 84 

faults, inspecting the faults, and determining if they matched an existing 

category, or warrant a new category [41]. In all, they define sixteen categories. 

They determine that 68.6% of the faults are interface faults [42]. Inadequate error 

processing, inadequate post processing, coordination of changes, and 

inadequate functionality are the most significant categories of errors in their 
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study. They also find that nearly three-fourths of the interface faults originate in 

the implementation phase, and not during the design phase.  

Leszak et al. also use the taxonomy developed by Perry and Evangelist to 

investigate the impact of defect analysis [14]. They report five major findings. 

First, the cost of fixing faults grows linearly with phase when the retesting efforts 

are not considered. This implies that retesting costs represent a large part of the 

costs for faults found late in the process. They also find that the majority of faults 

do not originate in early phases and the distributions per subsystem reveal large 

differences. The authors claim that human factors significantly influence the 

injection of software faults, and that root cause analysis has a low and tolerable 

effort (reporting 19 minutes per fault) [14].  

The group of studies by Perry and Evangelist [41], [42] and Leszak [14] 

contribute a number of interesting findings that impact current knowledge on 

software faults. The studies are limited to real-time systems, so further evidence 

is needed to generalize beyond that domain. The studies found a large 

percentage of interface faults, and many were introduced during implementation. 

Many quality improvement initiatives begin with the improvement of requirements 

and design. Initiatives targeting requirements and design improvements would 

not reduce the number of faults that occur during coding, so they would not have 

a large impact on the quality of these systems. These studies primarily contribute 

research knowledge to the software engineering community and validate it 

empirically in an industrial setting. The latter also contribute to the understanding 

of process improvement with fault taxonomies.  

Yu investigates the distribution of faults in a telecommunication switching 

system. Yu finds that nearly half of the faults are coding faults, and that a 

majority of these coding faults are preventable [4]. Root cause analysis is 

applied, resulting in the creation and adoption of a set of guidelines to prevent 

the introduction of coding faults. The classification of coding defects in the case 

study is coarse, with three major categories. These are logic faults, interface 

faults, and maintainability faults. The results of adopting these guidelines are 

measured with metrics for average fix cost per fault, average implementation 
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cost, and average testing cost per source code line. The study shows a 34.5% 

reduction in coding faults, saving an estimated US$7M in product rework and 

testing. These results suggest that efforts to reduce coding faults by examining 

fault types and performing a root cause analysis can result in significant savings. 

Lutz and Mikulski studied the high impact anomalies of seven operational, 

safety-critical systems using ODC [43]. Many unexpected classification patterns 

revealed implied software requirements, prompted changes to documentation 

and procedures, and helped the authors measure assumptions made about the 

system and its operational environment. The authors recommend the analysis of 

the most severe anomalies in safety critical software for better maintenance as 

well as improving future systems.  

Robinson et al. report on the successful application of the top two levels of 

Beizer’s classification scheme, described more fully in the Test Design section, to 

implement a defect-driven improvement process in industry [44]. The report 

indicates that approximately four-thousand defects were classified across four 

organizations. The effort required to perform the retrospective classification is 

estimated at one person-year. The results indicate quantitative and qualitative 

improvements in the process. The results include a reduction in the number of 

file changes after formal test and an improved perception of software quality by 

groups that test and certify the software. 

Børretzen and Dyre-Hansen investigate the fault profiles of five business-

critical industrial applications to determine where process improvement activities 

should be considered [45]. They find that the most common fault types are 

function and GUI fault types. Assignment fault types are also frequent. In terms 

of severity, the relationship fault type (associations among procedures, data 

structures, or objects) has the highest share of critical faults, faults with the 

highest severity rating. GUI and Data faults are among the least severe. Based 

on the results, the authors propose increased effort in the design phase to 

counter function faults and relationship faults.  

Shenvi reports on the adoption of ODC at Philips for fault prevention [5]. 

Shenvi’s case study is an industrial project to develop software for a DVD player. 
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The case study focuses on the reduction of function faults, which the authors 

note are particularly costly. Various practices are adopted, including a 

requirements workshop, design overview, automated tools for traceability 

improvement, and tailored checklists. The result was a decline in function defects 

from 28% to 12% [5]. 

Seaman et al. describe their experience mapping defect data from 

multiple, heterogeneous data sets into a single, comprehensive data set [18]. 

The motivation for aggregating data from multiple projects is to optimize the 

planning of early lifecycle verification and validation activities and demonstrate 

tradeoffs. The effort included data from 2,529 inspections from 81 projects across 

five NASA centers.  

Seaman et al. present challenges in combining the data and 

recommendations for designers of fault categorization schemes [18]. The 

recommendations align with those of Freimut [39]. The classification scheme is 

based heavily on the ODC scheme. It is interesting to note the differences that 

evolved from its use in practice and subsequent aggregation with similar 

classification schemes. In particular, logic faults are separated from the 

algorithm/method type. The interface type is renamed internal interface, and a 

separate fault type is added for the user interface. Performance corrections in an 

algorithm are classified as an algorithm defect in the ODC scheme, but Seaman 

et al. provide a separate category for non-functional defects. 

Process improvement is a critical area for software companies. Higher 

quality software is demanded by customers, while software companies continue 

to feel schedule pressures and operate with constrained resources. In this 

section the literature on the use of fault classification schemes for process 

improvement were reported.  

From this literature, one can conclude that the scope of process 

improvement is broad. On one end of the spectrum, Knuth’s classification 

scheme [40] was devised for his own use so that he could make personal 

improvements. In contrast, Seaman et al. aggregate data from 81 NASA projects 

in order to improve processes across multiple projects.  
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The literature also addresses process improvement at multiple phases of 

the software development lifecycle. For example, Shenvi discusses reducing 

function faults and concentrates on requirements processes [5]. Børretzen and 

Dyre-Hansen recommend increased attention to the design phase [45]. Yu 

focuses primarily on faults that are introduced while code is implemented [4], and 

Robinson et al. focus on cost and efficiency during testing [44].  

In conclusion, process improvement and fault prevention have broad 

implications for companies across all phases of the software development 

lifecycle. Fault classification provides valuable information for measuring the 

development process, and is thus an integral part of process improvement 

activities.  

2.5.2 Verification and Validation 

Software verification and validation (V&V) activities are concerned with the 

detection of software faults. Fault classification plays an important part in the 

design, planning, evaluation, and measurement of V&V techniques.  

Test Design 

One important use for a fault taxonomy is to aid testers in test design [6]. 

In this context, it pays to have a large number of fault categories that generate 

ideas about problems. These problems are the basis for test cases. 

Vijayaraghavan and Kaner provide an example of how tester uses a taxonomy 

for this purpose and how it improves completeness of the testing scenarios [6].  

Beizer introduced a fault taxonomy to aid software testing [46]. Beizer’s 

taxonomy is hierarchical with nine top-level categories. Vinter provides an update 

to Beizer’s taxonomy [47]. The classification uses four digit numbers to indicate 

the placement of the fault in the hierarchy. The classification captures multiple 

aspects of a software fault and is thus not orthogonal. For example, a domain 

boundary closure is classified as “243X: Boundary closures,” while other control 

logic errors are classified as “3128: Other control flow predicate bugs.” Beizer 
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advised the use of a taxonomy as a statistical basis of a testing strategy, as well 

as a tool for test design [46]. 

A fault taxonomy aids test design in two ways. A taxonomy provides a set 

of possible fault conditions for a tester to consider when they are designing tests. 

In addition, baseline information about the expected number of faults in each 

category of the taxonomy provides a way to plan the amount of testing effort for 

each fault type. 

Fault Injection and Mutation Testing 

Fault Injection provides a way to evaluate the fault tolerance of a software 

system. The process of injecting faults into software to assess the fault tolerance 

of the system is a recommended practice in industries such as the automotive 

and aerospace industries [48]. Fault injection experiments require knowledge of 

the distribution of different fault classes to reflect typical behavior during 

operation. The injection of faults allows the evaluation of fault tolerance for 

different design choices.  

Mutation analysis involves the injection of faults into software, but with a 

different goal. Mutation analysis provides a way to measure the quality of test 

cases that have been developed for a program [49]. A mutation system injects a 

program with faults to create multiple versions of the system using mutation 

operators. These faults represent small syntactic changes to the program such 

as replacement of one arithmetic operator with a different arithmetic operator 

(called the AOR mutant). The mutation system executes test cases against the 

source program, and then mutant programs. Since these mutant programs may 

have errors, the test cases may detect them – marking the mutant as dead. Once 

a mutant is marked as dead, that mutant program is removed from the set and 

tests are no longer executed against it. A mutation score is used to determine 

how effective test cases performed against the mutants. The score is the ratio of 

dead mutants to remaining mutants. Testers can add new test cases to improve 

the score, and thus improve the test suite. 
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One of the key problems in mutation testing and fault injection is the need 

to inject faults that are representative of software faults that are observable in the 

field [50]. Chistmansson and Chillarege report on a technique for fault injection 

using field data classified using ODC [50]. The defect trigger helps determine an 

operational profile, and the defect type is used to select appropriate types of 

defects. As a result testers can be assured that the faults generated by mutants 

are representative of faults that have occurred in the past, and that the 

investment in mutation analysis provides real benefits. These benefits include a 

measurably comprehensive test suite, as well as risk mitigation for the company. 

Fault injection provides a method to test the reliability of a system when a 

fault occurs and mutation analysis provides a way to evaluate and improve 

software test suites. Fault classification data provides information about the types 

of faults that should be injected into a system. Without this information, these 

methods are less effective and may provide misleading results. The techniques 

require a representative sample of software faults in order to provide valid 

results.  

Inspection 

Kelly and Shepard extend ODC to compare the effectiveness of software 

inspection techniques for computational code [16]. The extended fault 

classification scheme, ODC-CC, is used to evaluate inspection techniques. Kelly 

and Shepard associate each fault type with the “level of understanding” that is 

necessary to identify the fault. For example, discovering a fault by comparing 

code to naming conventions requires less understanding than discovering a fault 

for logic or error handling. These faults are more difficult to identify during 

inspection. The study finds that the use of the task-directed inspection technique 

finds more of the difficult faults than the control inspection technique. 

Hayes et al. define a fault link as a relationship between the type of fault 

and the types of components in which they occur [26]. To validate the utility of 

fault links they use fault link information to customize code review checklists. 

Hayes et al. find that the customized checklists can improve the number of faults 
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that found by 170-200% and the number of hard to find faults by 200-300%. This 

approach demonstrates the use of fault classification data, along with properties 

of the software, to improve code inspections.  

Two studies that focus on fault classification data and inspections were 

identified. Many other studies address inspection as one possible V&V 

technique. Kelly and Shepard use fault classification data as a means to validate 

improved inspection techniques [16]. Hayes et al. use inspections to validate fault 

links, providing a practical method to improve inspections, as well as a novel way 

to consider the use of fault classification data [26].  

Planning V&V Activities 

One important use of fault classification is the planning of V&V activities. 

The relationship between testing techniques and the types of faults they detect is 

non-trivial. When data about detection techniques and the fault types they can 

detect are present, it allows the development of strategies for multiple purposes. 

One strategy may broadly cover many fault types with fewer techniques, while 

another strategy focuses on high risk fault types.  

A report for the U.S. Nuclear Regulatory Commission and the Electric 

Power Research Institute contains detailed taxonomies for faults, and for 

detection methods [7]. The report provides guidelines for the verification and 

validation of both conventional software and expert systems. In the report, Miller 

et al. conducted a literature survey to identify methods for the verification and 

validation of software [7]. The report classifies methods according to the most 

appropriate phase in the software development lifecycle. The report also 

characterizes methods according to their ease-of-use and fault detection 

capabilities. Two measures are developed to allow quantitative comparisons, a 

Cost-Benefit Metric and an Effectiveness Metric [7]. The metrics allow the 

ranking of methods according to the goals of a software development 

organization or project.  

Vegas et al. present a characterization process for testing technique 

selection [8]. The characterization schema includes the defect (fault) type. 
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Historical information about which testing techniques discovered which types of 

faults can be used to aid technique selection in future efforts.. Components often 

exhibit similar types of faults as they have in the past, so the history supplies 

helpful empirical data about the selection of the most effective testing technique. 

Inspection is an important practice in verification and validation of 

software. It is not always clear, however, when it should be applied, and to what 

extent. Runeson et al. analyze several empirical studies to answer this question 

and provide some practical findings [9]. They find that inspections are more 

efficient and effective at finding design specification defects. Functional and 

structural testing more effectively find code defects. Runeson et al. suggest 

design specification inspections to find design faults early, and a balance of code 

inspection and testing techniques to find faults in code.  

Zheng et al. evaluate the ability of static analysis to detect faults in three 

large industrial software systems at Nortel Networks [51]. Zheng et al. find that 

static analysis is an affordable means of fault detection, and that it is most 

effective at detecting Assignment and Checking faults. Furthermore, statistical 

analysis indicates that the number of static analysis faults can be effective for 

identifying problematic modules in a software system. The use of static analysis 

may allow organizations to focus on the detection of more complex faults. One of 

the findings in this dissertation is that complex faults are more likely to be 

problematic faults, which require multiple rounds of changes for repair. Static 

analysis is easily applied to new projects, while existing projects may require 

more significant effort for adoption. This is because static analysis checks for 

current best practices in software development, and older programs are likely to 

have multiple violations due to advances in software development practices. 

Li et al. develop an extension of ODC for black-box testing called ODC-BD 

[52]. ODC-BD is validated against faults from 39 industry projects and two open 

source projects. Li et al. also validate the use of the taxonomy to reduce effort 

during defect analysis and improve testing efficiency [52]. 

Planning the verification and validation of software effectively and 

efficiently is an important, practical concern as well as an open area of research. 



27 
 

In this section, I have discussed several studies with different approaches to 

planning these activities. Broad approaches, such as that described by Miller et 

al. [7] and Vegas et al. [8] require knowledge of fault classes that are targeted by 

a technique.  

Other studies focus on particular methods. Runeson et al. seek to choose 

between inspection and testing techniques [9]. Zheng et al. focus on 

understanding the types of faults detected by static analysis [51]. Li et al. provide 

a different approach by focusing on black-box testing, but extending the ODC 

classification scheme in order to customize it to the needs of black-box testing. 

These studies provide valuable empirical knowledge about individual techniques 

and the types of faults detected by their use.  

Evaluating V&V Effectiveness 

Fault classification can be used for process improvement that targets 

verification and validation (V&V) activities, such as review, inspection, and 

testing. Studies in this section seek to determine how faults that are discovered 

by customers escaped V&V activities, or to understand high severity failures. 

This information is essential to formulating V&V strategies and meeting quality 

targets in software projects. 

Sullivan and Chillarege studied faults that cause high severity failures in a 

high-end operating system [10]. Their research focused on overlay failures, 

which result in corrupted program memory. The study confirms their impact by 

measuring the probability of such a fault to achieve a severity 1 rating, and its 

probability of being flagged as “highly pervasive” by customers [10]. They find 

that most of these faults are due to boundary condition and allocation problems. 

This is contrary to the common belief that timing or serialization problems are the 

primary cause of these high severity failures. Based on these findings, the 

number of these faults could be greatly reduced by applying better testing of 

boundary conditions, which is much less effort than timing/serialization tests.  

Chillarege and Bassin describe their use of ODC to systematically 

determine how faults escaped V&V activities into the field [11]. The trigger 
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provides valuable information on how the failure can be reproduced. The authors 

note that each trigger has a different distribution based on time. Tactically, this 

information can be used to focus testing on issues that will be found immediately 

following the release, while testing for faults that are found after longer time 

periods could be delayed and fixed in subsequent patches. For example, the 

authors find that documentation and backward compatibility failures are generally 

uncovered quickly, while lateral compatibility failures peak almost a year later. 

This information is valuable in order to prioritize testing efforts for software 

products. 

The trigger attribute is often used in combination with other attributes to 

assess the state of verification and validation (V&V) activities. Chaar et al. 

present expected distributions for triggers and fault types and demonstrate their 

use to troubleshoot V&V activities [38]. Chillarege and Prasad expand on this 

concept by focusing on the trigger and activity [53]. By comparing current values 

to benchmarks, Chillarege and Prasad are able to determine that code quality is 

poorer than expected and that inspections should have caught more of the faults. 

These observations led to recommendations to correct the situation, but also led 

to guidance for avoiding the situation in the next release.  

Similar to the need to plan an effective V&V strategy, it is necessary to 

evaluate its effectiveness. Fault classification data provides feedback that allows 

corrective action. The development of software is simply too complex and is 

impacted by too many factors for consistent success through experience alone. 

In this section I discussed multiple ways that researchers have applied different 

attributes of ODC in order to investigate software faults. These studies 

investigated high severity faults [10], determined how faults escaped verification 

and validation activities, and evaluated and controlled the verification and 

validation process. 

Software Security  

Studies show that security vulnerabilities have major economic impact on 

software vendors, including a direct impact on stock price [54]. Technology 
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trends such as cloud-computing, mobile devices, and the widespread use of 

software in critical applications make software security a growing concern. 

Research into prevention and detection of these problems is relevant, and 

necessary for improvement. The use of fault classification designed for this 

purpose can aid in software security improvement practices.  

Du and Mathur present a classification scheme that is designed to 

determine the effectiveness of software testing techniques in revealing security 

errors [55]. The scheme consists of attributes for the cause, impact, and fix for 

the fault. The scheme was validated by inspecting security vulnerability reports 

from public security vulnerability databases. 

More recently, Hunny et al. extended the Orthogonal Defect Classification 

scheme to create a security specific scheme that they refer to as the Orthogonal 

Security Defect Classification (OSDC) scheme [56]. The authors validate their 

scheme against security vulnerabilities recorded against several versions of the 

Firefox and Chrome browsers. They found that some fault classes were more 

commonly associated with security vulnerabilities that occurred in multiple 

releases. For example, the exploitable logic error fault class was consistently a 

large percentage of security vulnerabilities across versions. They recommend 

more attention during high-level design and implementation, as well as additional 

effort during code review, unit test, and function test to mitigate this concern. 

Their goal is to apply OSDC during development and allow teams to benefit from 

in-process feedback to aid in adoption of a secure development lifecycle [56].  

 

2.5.3 Empirical Knowledge 

While many of the studies previously mentioned contribute to empirical 

knowledge, they are focused on specific activities and applications. In this 

section I focus on studies that were developed specifically to address empirical 

questions about the nature of software faults.  

Dyre-Hansen investigates 901 faults from online bank and financial 

systems [15]. Dyre-Hansen finds that the majority of faults in these systems are 
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function faults (27%) and GUI faults (19.5%). Relationship faults and 

Timing/Serialization faults tend to be the most severe faults, while GUI and Data 

faults tend to be less severe. Dyre-Hansen found little correlation among the 

different projects and the distribution of the fault types using ODC [15]. 

Hamill and Goševa-Popstojanova conducted an empirical investigation 

and characterization of software faults and failures based on data extracted from 

change tracking systems for large-scale, real world projects [28]. The study finds 

that requirements and coding faults contribute to about 33% of the total faults 

each, and that the next highest category is “data problems” at 16%, where “data 

problems” include structural and interaction problems with the data repository. To 

further investigate this distribution, the authors group projects based on the 

number of releases and compare their results with other studies. From these 

comparisons they conclude that the percentage of coding faults is significant, 

being roughly equal to the number of requirements and design faults combined. 

They also conclude that interactions between components cause problems, and 

that other defect types are less significant and may be influenced by the domain 

of the software. The percentage of coding faults, requirements faults, and data 

faults were found to be surprisingly consistent across projects with different 

domains, programming languages, processes, and people. These findings lend 

empirical evidence that coding faults are a common problem in software 

development projects.  

These studies provide useful data that may be used to improve the state 

of the art in software engineering. For example, Hamill and Goševa-

Popstojanova reveal that 33% of faults are introduced during implementation. 

Many projects begin improvement efforts with the requirements phase, but this 

evidence provides reason to carefully consider a more balanced approach. It is 

also interesting that the distribution of fault types across projects that was 

observed by Dyre-Hansen [15] exhibits no pattern, while Hamill and Goševa-

Popstojanova are able to find consistent patterns [28] when using a higher level 

classification (e.g., Requirements, Design, Data, Coding). Understanding the 

nature of software faults in large systems is an important research area, with 
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practical implications for industry and research. Relatively few studies exist that 

consider this problem in conjunction with the type of faults that occur. 

2.6 Manual Fault Classification Challenges 

Above we described many advantages of software fault classification. 

Advantages include applications in process improvement, verification and 

validation, and in empirical software engineering research. Despite the multiple 

advantages there are many challenges to the adoption and use of fault 

classification practices. In this section I review literature that illuminates these 

challenges.  

“The range of efforts to create defect classification schemes [..], 

and the long history, in which there has been no single, widely 

used scheme, suggests that defect classification is hard, and 

repeatable orthogonal classification is itself difficult.“ 

- Kelly and Shepard [16] 

The quote above summarizes my beliefs on the challenges of software 

fault classification, still accurate fourteen years after it was published. To explore 

these challenges I look at: 1) research that directly studies challenges in software 

fault classification, and 2) evidence from work that I have already discussed, 

where the focus of the study is a benefit, rather than a challenge. 

2.6.1 Empirical Studies of the Challenges of Fault Classification 

The studies in this section are focused on challenges in fault classification. 

These studies focus on the repeatability of fault classification, its effectiveness, 

and the orthogonality of the classification. Other considerations include efficiency 

and experience requirements.  

El Emam and Wieczorek conduct a study to determine whether fault 

classification using ODC is repeatable [57]. The authors use the Kappa 
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coefficient to measure agreement between classifiers and found that in general 

there is good agreement (κ > 0.62) and in some cases excellent agreement (κ > 

0.82). The authors point out confusion between the Data and Assignment defect 

types by combining the types and showing the impact on measurements. While 

these results seem promising, the results cannot be generalized. Their results 

were for a single organization, and only studied the inspection activity.  

Henningsson and Wohlin conducted a study to determine whether a group 

separate from the developers can correctly classify software faults based on the 

fault descriptions [12]. The authors find that agreement is low, but that the 

participants are confident in their decisions. This illustrates the impact of human 

fallibility on fault classification. The authors also conclude that training is 

required, but that education alone does not explain the low agreement.  

Falessi and Cantone explored the effectiveness, efficiency, orthogonality, 

and discrepancy of software fault classification using ODC [13]. They find that all 

effectiveness, orthogonality, and discrepancy are dependent upon experience. 

They found that the mean time to classify a defect was 5 minutes and the median 

6.7 minutes. The authors provide information about affinity between some defect 

types in the ODC scheme and recommend improvements in documentation and 

definition of these types in order to improve the repeatability of fault classification. 

The affinity of a fault type A with respect to a fault type B measures the 

percentage of faults of type A that are classified as A or B. Falessi and Cantone 

find that when the most frequent classification (MFC) is Relationship, 90% of the 

categorizations from participants are Relationship or Interface/OO Messages. 

They also find that when the MFC is Checking, 95% of the classifications are 

Checking or Algorithm/Method. Finally, Falessi and Cantone found that faults 

with an MFC of Assignment/Initialization, Algorithm/Method, or Checking are 

classified as one of these classifications 90% of the time. In other words, these 

three classifications are often interchanged by participants. 

Several interesting conclusions can be drawn from these studies. First, 

orthogonality is indeed difficult to achieve. Without orthogonal attributes and 

attribute values it is difficult to get agreement on the correct classification of a 
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fault, and thus difficult to get actionable data. The studies by El Emam and 

Wieczorek [57] and Falessi and Cantone [13] both identify affinity between fault 

types. The study by Henningsson and Wohlin [12] indicates that the description 

of the fault alone is insufficient to classify faults reliably. Perhaps more 

concerning, is the high confidence of participants in their decisions, even when 

they are incorrect [12]. Thus, the impact of the human classifier cannot be 

understated. An additional perspective on this dependency is that of the 

experience of the classifier. Falessi and Cantone find that many aspects of the 

fault classification activity are impacted by experience [13]. Orthogonality, 

available information, and experience are thus three major challenges that have 

been explored in empirical studies. Studies seem to indicate that the time to 

perform classification is modest, including Falessi and Cantone which explicitly 

measure this aspect of fault classification [13].  

2.6.2 Fault Classification Challenges from Research and Practice 

In this section I explore the fault classification challenges that have been 

reported from industrial and research literature that was focused on the benefits 

of the technique. I have arranged these observations into high level topics. The 

first is the problem of consistent data. The second is time commitment. A third 

area of concern is the customization of fault classification schemes. 

Data Consistency 

Consistent data is necessary in order to make good decisions based on 

that data. A number of studies cited problems with the consistency of data that 

was collected. Leszak et al. reported that 30% of the data collected from 

engineers was inconsistent [58]. They conclude that additional training may be 

necessary. However, training seems to be only one aspect of inconsistency.  

Dyre-Hansen found that 21.5% of problem reports were either not faults, 

or duplicates, while 12% were classified as unknown [15]. The large percentage 

of unknown fault reports represents a significant problem in data consistency. 

The percentage is large enough to negatively influence decisions based on the 
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distribution of the faults. For example, if a large percentage of the unknown fault 

reports represent design issues, but the correctly identified faults indicate that 

implementation faults are the largest category, the corrective actions will be 

applied to the incorrect phase of the software development lifecycle. 

Shenvi points out that some faults could belong to one or more type 

according to the ODC scheme [5]. It is unclear whether this is a problem with the 

scheme, a problem within that particular domain, or perhaps due to the 

interpretation of the information. Kelly and Shepard noted differences in 

interpretation as well as a reliance on skill and experience [16], so it is likely that 

multiple factors play a part. 

Seaman et al. point out that quality assurance activities are necessary to 

mitigate factors such as these [18]. Quality assurance activities on fault data 

uncover problems that suggest additional training, but may also uncover needs 

for changes to the classification scheme. Changes to the scheme may include 

new fault categories and changes to existing categories that are often 

misclassified.  

Time 

Although studies have shown that the time to classify faults is small [13], 

[58], [59], additional evidence suggests that other time commitments may cause 

resource problems. Despite an estimate of nineteen minutes to perform root 

cause analysis on each fault, Leszak et al. reported that the complexity of the 

scheme caused stakeholders to lose track of the classification effort due to 

project pressures [58].  

While analysis is a larger time commitment than classification, studies 

revealed other time constraints that impact cost. For example, Bhandari et al. 

estimate fault classification at 4 minutes per defect [59]. However, they do not 

account for training and they estimate 10-20% of an individual’s time for data 

collection and analysis. It is also possible that the individuals needed for data 

collection and analysis are highly skilled individuals with multiple competing 

priorities. 
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I conclude that the time commitment of adopting a fault classification 

scheme and the associated practices are not well understood. In order to truly 

measure the cost, it is necessary to take multiple factors into account. First, there 

is the time to classify a fault. While this time commitment is modest, it is also 

frequent. An average of four minutes per fault for one thousand faults is the 

equivalent of 67 man hours of effort. While I believe that this investment is 

reasonable, it is likely one of the smallest resource requirements required to 

adopt fault classification. 

In addition to the time for classification, there is the time necessary for 

training staff. Education is clearly necessary to end up with consistent data, 

although it is not itself sufficient for ensuring consistency. The scheme must be 

clearly documented, with relevant examples, and strict guidelines [39]. The 

training activities, along with the time commitments to develop guidelines and 

examples for operation and for the training itself, are likely to be a significant 

investment of time in most organizations.  

Finally, one must also consider the time investment of quality assurance 

for fault classification data. This includes reviewing faults, recording findings, and 

providing feedback on corrective measures. Corrective measures include training 

and changes to the fault classification scheme.  

Customization of Fault Taxonomies 

A number of factors may require customization of fault taxonomies. Some 

factors are obvious, such as the goals of the organization. Others are less 

understood. Ploski et al. investigate fault classification schemes in order to better 

understand how fault injection studies should select a fault density and frequency 

of fault classes [60]. They conclude that the distribution of software faults is 

dependent on project-specific factors such as the maturity of the software, the 

operating environment and the programming language. Furthermore, they state 

that it is not obvious how these factors should be considered, or systematically 

discovered. This section contains examples illustrating the needs for 

customization, as well as some recommended approaches. 
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Studies by Shenvi [5] and Freimut et al. [17] specifically cite a need for 

domain specific customization of fault classification schemes. Freimut et al. 

present such a customization approach that was used and validated at Robert 

Bosch GmbH in the Gasoline Systems business unit [17]. Seaman et al. discuss 

the challenges associated with customization in NASA, when the data is 

aggregated [18]. The broad customization of the schemes within the same 

organization suggest that the domain is only one factor that contributes to 

customized schemes.  

Hayes presents a process for tailoring and extending a requirements fault 

taxonomy for specific projects and types of projects within NASA [19]. The 

process of tailoring the fault taxonomy enables a project to better meet its 

objectives with regard to quality and safety.  

In this section I have presented a number of factors that require 

customization of fault classification schemes. While the factors are varied, and 

relatively poorly understood, the result is that customization of fault classification 

schemes are needed and impact the success of their adoption in organizations.  

2.7 Automated Fault and Failure Classification 

Researchers have looked at automated methods of understanding fault 

and failure information for various purposes. This includes detection of duplicate 

problem reports, determining the best developer to fix a fault, and automated 

classification. In this section I discuss these efforts and relate it to my research. 

2.7.1 Duplicate Reports 

Podgurski et al. created an automatic way to classify software failures for 

software that is instrumented to detect failures [20]. The authors believe that the 

instrumentation of software to provide execution profiles when failures occur will 

increase the number of problem reports, and increase the number of failure 

reports for the same underlying fault. The authors describe a process to select a 

subset of features, perform automated cluster analysis, and compliment it with 

visualization of the data. Podgurski et al. find that small, tight clusters were quite 
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likely to contain failures with the same cause [20]. A few large, non-homogenous 

clusters existed with sub-clusters that contain similar causes. In some cases 

failures from the same cause were split. The technique reduces the average 

amount of time and effort necessary to diagnose a failure.  

Runeson et al. apply Natural Language Processing techniques to the text 

of fault reports in order to identify duplicates [21]. The technique is validated at 

Sony Ericsson where approximately 40% of the marked duplicates were 

identified. Runeson et al. interviewed developers and testers and were able to 

confirm that detection of 40% of duplicates represented a significant cost savings 

[21]. 

2.7.2 Fault vs. Enhancement 

Antoniol et al. classify problem reports from Mozilla, Eclipse, and JBoss to 

determine if the report describes a fault or another activity (e.g., enhancement or 

refactoring) [22]. Issue descriptions were used to distinguish faults with a 

precision between 64% and 98% and a recall between 33% and 97%. This work 

is complimentary to the research presented in this dissertation. The technique 

presented by Antoniol et al. provides an effective pre-processing step to 

eliminate non-corrective maintenance activities from consideration.  

2.7.3 Classification of Fault Impact 

Huang et al. present AutoODC, an approach to automating ODC 

classification by treating it as a supervised text classification problem [23]. 

AutoODC requires experts to annotate the text of the problem report. Once 

annotated the system classifies the Impact attribute of ODC. Although Huang et 

al. claim that this technique can be applied to other attributes of fault 

classification, no evidence of this has been presented. The work in this 

dissertation focuses on the fault type, or defect type in ODC, which characterizes 

the nature of the fault fix. Therefore, in its current state, the work of Huang et al. 

complements the research in this dissertation by automating a different attribute 

of the fault.  
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2.7.4 Automatic classification of fault severity 

Menzies and Marcus developed a system called SEVERIS which uses the 

text of problem reports to automatically classify the severity of the faults [24]. 

SEVERIS performs its classification and compares it to the manually assigned 

severity. Discrepancies can be reviewed and corrected by supervisors. SEVERIS 

was validated on NASA robotics projects. The reported F-measure varied for 

projects and severity levels. Three of the measurements were greater than 0.90 

and many instances were greater than 0.7.  

Lamkanfi et al. performed a similar study to predict the severity of problem 

reports on three open source systems [25]. Lamkanfi et al. predicted the severity 

of faults from Mozilla, Eclipse, and Gnome. They concluded that a training set of 

approximately 500 reports per severity was needed to gain consistent results.  

The severity of an issue is important to determine the priority with which it 

is addressed. Severity levels are often subjective, so automated support can help 

compensate for human error or inexperience. These studies complement the 

research in this dissertation by automating the severity attribute of a fault. 

2.7.5 Automated Classification of Fault Family 

Thung et al. propose an automated categorization of software faults into 

three families: control and data flow, structural, and non-functional [61]. Thung et 

al. use features from bug reports and from the source code that fixes the 

software fault. A multi-class classification algorithm is used to classify the faults. 

The approach was evaluated on 500 manually labeled faults from three open 

source systems. An F-measure of 0.692 and an accuracy of 0.778 was achieved 

[61].  

Tan et al. use the text of the problem report to classify 109,014 faults into 

semantic bugs and memory bugs [62]. The purpose of the automated 

classification is to reduce manual effort in building bug benchmarks for the 

evaluation of fault detection tools.  
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This dissertation differs from the approaches of Thung et al. [61] and Tan 

et al. [62] by providing more granular fault types that are not pre-determined. In 

this dissertation we utilize the syntax of the fault fix to group faults, and are not 

limited by the completeness or correctness of the fault description. Thung et al. 

use statistics on program elements in addition to the text [61]. However, they only 

consider a handful of program elements in their classification scheme, and only 

classify faults into three fault types. The research in this dissertation provides 

flexibility in the number of fault types and is able to consider all source code 

changes. 

2.7.6 Bug Fix Patterns 

Pan et al. present twenty-seven automatically extractable bug fix patterns 

as a new approach to software fault classification [63]. They are motivated to find 

the most common types of software faults for a specific system and whether the 

frequency of these software faults are common across systems. Their validation 

finds that 45.7-63.6% of bug fix changes can be classified using their method. 

The changes are classified based on locations within the file that have changed, 

rather than classifying the fault itself. The most common patterns identified are 

changes of the parameters in method calls, changes to conditional expressions 

in an if statement, and changes to assignment expressions. Six of the seven 

projects have similar bug fix pattern frequencies. An analysis of five developers 

in the Eclipse project shows a surprising consistency in the rate at which 

developers introduce certain types of software errors. 

Merkel and Nath manually apply the bug fix patterns introduced by Pan et 

al. as a software fault classification for a Java-based system [64]. They randomly 

select 100 commits (373 file revisions) from 476 commits that are identified as 

fixes. They suggest four possible new bug fix patterns. The suggestions are 

method return value changes, scope changes, loop-related changes, and 

changes to string literals. Their results lend additional evidence that the bug fix 

pattern approach is useful, and also demonstrate that the patterns are not 

comprehensive. 
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There are two major differences between the Bug Fix Pattern approach 

and the research in this dissertation. The first difference is what is classified. Bug 

Fix Patterns classify a section of code that has been altered. This means that 

many such patterns could be present in a single fault fix. In contrast, this 

dissertation categorizes the entire fault using information about all of the 

changes. It may be possible to use the Bug Fix Patterns as a higher level change 

type in order for these techniques to be integrated. The second primary 

difference is the identification of patterns. The Bug Fix Patterns are identified 

manually, and then their detection in source code is automated. The work in this 

dissertation takes a different approach. I classify the source code changes and 

find patterns through the use of clustering. This automates the pattern 

recognition. 

2.8 Discussion 

This chapter began with the introduction of fault classification. In order to 

provide a concrete example, an overview of the Orthogonal Defect Classification 

(ODC) scheme was presented. This scheme was selected for this purpose due to 

its large record of use in industry and research. 

The benefits of fault classification are broad. I began the discussion of 

benefits with the most widely cited benefit of fault classification, that of process 

improvement. Process improvement is critical for software companies, and its 

applications range from reducing coding defects, improving verification and 

validation activities, to changing processes that impact multi-project 

organizations. 

Verification and validation are also benefitted by fault classification in 

multiple ways. A fault taxonomy can serve as a guide to testers that are 

designing tests, guide the injection of faults for reliability testing, aid in planning 

quality-related activities, and aid in the measurement of their effectiveness.  

Research on fault classification is far from complete. There are multiple 

issues that make the classification of software faults difficult. Getting consistent 

data requires a useful scheme that is properly customized for the environment 



41 
 

and domain. The scheme must be well documented, and training must be 

conducted. In addition, there is no substitute for the skill and experience of the 

classifiers.  

Researchers have recognized the limits of manual fault classification and 

have investigated automation solutions. Studies have attempted to limit duplicate 

problem reports, separate corrective maintenance from other issues, and 

automatically determine the impact and severity of software faults.  

Relatively few studies have addressed the automatic classification of 

faults according to their fault type. Thung et al. successfully distinguish three 

broad categories of faults by using information from the text of the problem report 

in addition to information from the source code changes [61]. Pan et al. provide 

an automated method to classify source code changes, but the classification 

occurs for every pair of changes in the source code that repair a fault [63].  

I believe that the future of fault classification lies in the automation of the 

work. Automated approaches that can deliver on benefits that have been 

recorded, as well as address major challenges, can drastically impact how 

software organizations approach fault classification. This paradigm shift should 

reduce the cost of ownership that is present in fault classification practices today 

and make the practices more accessible to organizations that can benefit from 

these practices. 
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Chapter 3  

Mining Software Fault Information and Types 

This chapter describes my approach for mining and categorizing faults 

based on syntactical change data. I present MiSFIT (Mining Software Fault 

Information and Types), a process, and toolset for mining software fault 

information. My approach consists of three phases. Each phase builds on the 

results of the last. The first phase extends a change taxonomy. The resulting 

change taxonomy provides a method to categorize and count the syntax changes 

in a fault repair. The second phase provides a method to cluster software faults 

based on the syntax of the fault repair. The final phase applies the automatically 

clustered faults to the analysis of software faults over several releases of an 

open source software project. 

3.1 Extending a Change Taxonomy 

This research investigates the extension and application of fine-grained 

source code changes to the analysis of software faults. Fluri et al. introduced 

ChangeDistiller, a tool that can identify the fine-grained source code changes 

from two versions of source code [65].  

The algorithm and change taxonomy implemented in ChangeDistiller are 

designed to analyze change couplings [65], [66]. The taxonomy is not adequate 

for the analysis of software faults due to its treatment of source code statements. 

From a change coupling perspective, the insertion of an if statement or a method 

invocation have an equally small probability of causing changes in other parts of 

the source code. However, from a software fault perspective, the difference in 

these two changes strongly informs the classification of a fault.  

I extended the change taxonomy and made changes to the application in 

order to capture information that was relevant to software faults. My first research 

question, which I must address before going further, is whether this extended 

taxonomy has information that is relevant to software fault analysis. 
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RQ4.1:  Can an extended change taxonomy provide additional 

information about source code changes that is useful in the 

analysis of software faults? 

The details of the extended change taxonomy are discussed in Chapter 4. 

Chapter 4 also describes the tool, MiSFIT, which I developed to collect the 

software fault data. 

3.2 Clustering Software Faults 

As previously mentioned, clustering is a machine learning technique that 

groups data instances into natural groups [67]. Clustering is therefore useful 

when a training set is not available. In this study, I cluster software faults based 

on the types of syntactic changes that occurred to repair the fault.  

A clustering solution is often evaluated for its internal and external quality. 

I expect a clustering solution for software faults to be stable from one version of 

software to the next. Changes in the distribution of fault types must be 

reasonable, and explained. In addition, I want to know that the clusters convey 

beneficial information to users of such a system. The goal of clustering the faults, 

as with fault classification, is to enable analysis of faults at a macro level. This 

leads to two important research questions for clustering software faults. 

RQ5.1: Can clustering of fault fixes by syntactic changes result in 

consistent clusters for a software project? 

RQ5.2: Does the automatic categorization of faults by syntactical 

change provide beneficial information regarding the nature of 

the software fault? 

3.3 Software Fault Evolution 

Software evolution is the study of large, long-lived systems. Due to 

changing business requirements and environments, combined with changes in 

user expectations, successful software is constantly changing. Software 

undergoes changes to correct faults, enhance functionality, and manage 
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complexity (controlling maintenance costs). Chapter 6 looks at the evolution of 

software faults with the benefit of classified fault data.  

With the addition of fault type, I can look at interesting questions about the 

evolution of software systems. For example, do the same types of faults tend to 

occur in the same locations? Do developers tend to fix the same types of faults? 

Some faults require multiple attempts to repair. I refer to these faults as 

problematic fault fixes. Do these problematic fixes tend to occur more often for 

certain fault types? These types of question led to the following research 

questions. 

RQ6.1: Over time, do the same types of faults tend to occur in a 

given subcomponent? 

RQ6.2: Are certain fault classes more likely to be fixed by single or 

multi-file changes? 

RQ6.3: Do developers tend to fix the same types of faults? 

RQ6.4: Are pre-release fault distributions predictive of post-release 

fault distributions? 

RQ6.5: Are problematic fault fixes distributed evenly among fault 

classes?  
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Chapter 4  

An Extended Change Taxonomy for Software Fault Analysis 1 

This chapter presents an extension to an existing change taxonomy and 

its application to the analysis of software faults. In this chapter I present the 

existing taxonomy, including the algorithm and tool that supports the taxonomy. I 

then describe my method for extending the taxonomy for analyzing software 

faults. Finally, I present an experiment that shows that my extended taxonomy 

provides useful information for the software faults in my case study. 

This research investigates the extension and application of fine-grained 

source code changes to the analysis of software faults. Fluri et al. introduced 

ChangeDistiller, a tool that can identify the fine-grained source code changes 

from two versions of source code [65]. The algorithm and change taxonomy 

implemented in ChangeDistiller are designed to analyze change couplings [65], 

[66]. A version of ChangeDistiller is available under an open source license2. The 

change taxonomy consists of more than forty change types. Four of these 

change types identify the insert, update, delete, or re-ordering of a statement. In 

order to extend the taxonomy, I expand these four change types by appending 

the type of statement that was changed.  

4.1 A Taxonomy of Source Code Changes 

Fluri and Gall present a taxonomy of source code changes for change 

analysis [66]. The taxonomy is based on the comparison of abstract syntax trees. 

The commonly used textual differencing approach is not sufficient, since textual 

changes may include formatting changes and updates to comments which are 

cosmetic. The taxonomy models changes to abstract syntax trees as operations 

on the nodes of the tree, specifically, insert, update, move, and delete changes.  

                                            
1 © 2014 IEEE. Reprinted, with permission, from Bill Kidwell, Jane Huffman Hayes, Allen 
P. Nikora, “Toward Extended Change Types for Analyzing Software Faults”, 
Proceedings of the 14th International Conference on Quality Software (QSIC), Oct. 2014.  

2 https://bitbucket.org/sealuzh/tools-changedistiller/ 
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In addition to defining the taxonomy, Fluri and Gall also associate a 

significance level to each change type. These significance levels are low, 

medium, high, and crucial. The value is based on the probability that the change 

will result in additional changes in the source code. For example, changing the 

name of a method requires a change to each method invocation of that method, 

resulting in a high significance level. The change taxonomy is presented here in 

two parts. The first part, presented in Table 3, represents changes to declaration 

parts in the source code. The second part, presented in Table 4, represents 

changes to the body of a class or method. 

Table 3 - Fluri and Gall's Change Taxonomy - Declaration-Part 

Change Type Significance Description 

Class Renaming High Changing the name of a class. 

Decreasing Accessibility Change Crucial Changing accessibility on a class, method or 

attribute to a less accessible state (e.g., public 

to private). 

Attribute Type Change Crucial Changing the type of an attribute (e.g., from 

integer to float). 

Attribute Renaming High Renaming an attribute without modifying the 

type of the attribute. 

Final Modifier Insert Crucial Adding a final modifier to a class, method, or 

attribute. This prevents a class or method from 

being overridden. It prevents an attribute from 

being modified. 

Final Modifier Delete Low Removing a final modifier from a class, 

method, or attribute. This allows derivation for 

classes or methods and allows modification for 

attributes. 

Increasing Accessibility Change Medium Changing accessibility on a class, method or 

attribute to a more accessible state (e.g., 

private to protected). 

Method Renaming High Changing the name of a method without 

changing the return type or parameters. 

Parameter Delete Crucial Removing a parameter from a method. 

Parameter Insert Crucial Inserting a new parameter in a method. 
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Table 3, continued 

Change Type Significance Description 

Parameter Ordering Change Crucial Changing the order of one or more parameters 

in a method. 

Parameter Type Change Crucial Changing the type of a parameter in a method. 

Parameter Renaming Medium Renaming a method without changing the type 

of the method. 

Parent Class Delete Crucial Removing an inheritance or extension 

association with a parent class or interface. 

Parent Class Insert Crucial Adding an inheritance or extension association 

with a parent class or interface. 

Parent Class Update Crucial Changing an inheritance or extension 

association with a parent class or interface. 

Return Type Delete Crucial Changing the return type of a method to void. 

Return Type Insert Crucial Adding a return type to a method. 

Return Type Update Crucial Changing the type of the value returned by a 

method. 

Declaration-part changes include changes to method signatures, changes to a 

class name, and to an attribute’s type. They also include changes to the 

accessibility of a class, method, or attribute. These changes are the most 

significant changes in terms of change propagation. 

Body-part changes represent either the addition/removal of methods/attributes to 

a class or changes within a method. Changes within a method can be further 

divided based on whether they change condition expressions, impact the control 

structure of the method (thus changing the nested depth), or move the location of 

a statement to a new block. 

4.2 Extending the Change Taxonomy 

As previously mentioned, the existing change taxonomy is inadequate for 

software fault analysis due to the treatment of statements. The majority of fault 

fixes impact statements within a method. In order to understand the type of 

change that is applied, more precise information about the type of statement is 

necessary.  
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Table 4 - Fluri and Gall's Change Taxonomy - Body-Part 

Change Type Significance Description 

Additional Functionality Low Addition of a function. 

Additional Object State Low Addition of an attribute. 

Condition Expression Change Medium Change to a condition expression in an if 

statement or loop. 

Decreasing Statement Delete High Deletion of a statement that results in a 

decrease in the nested depth of the 

method. 

Decreasing Statement Parent 

Change 

High Change to the location of a statement that 

results in a decrease in the nested depth 

of the method. 

Else-Part Insert Medium Addition of an else block to an if 

statement, or case block within a switch. 

Else-Part Delete Medium Removal of an else block from an if 

statement, or case block within a switch. 

Increasing Statement Insert High Addition of a statement that increases the 

nested depth of the method. 

Increasing Statement Parent 

Change 

High Change to the location of a statement that 

results in an increase to the nested depth 

of the method. 

Removed Functionality Crucial Removal of a function. 

Removed Object State Crucial Removal of an attribute. 

Statement Delete Medium Deleting a statement from a method. 

Statement Insert Medium Adding a new statement within a method. 

Statement Ordering Change Low Changing the order of statements within a 

method. 

Statement Parent Change Medium Changing the parent of a statement (e.g., 

moving a statement within an if block). 

Statement Update Low Updating a statement within a method. 
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The contextual information collected by ChangeDistiller allows the 

extension of the statement delete, statement insert, statement update, and 

statement ordering change change types. I use the changed entity information 

available from the ChangeDistiller API to identify the type of statement that was 

altered, such as an if statement or method invocation. For example, a change of 

type statement insert and a changed entity of method invocation will result in an 

extended change type of statement insert method invocation. I translate this 

value to insert method call for readability. 

The extension of these change types more than doubles the number of 

change types. The theoretical size is equal to the number of statement level 

entities in the language multiplied by the four node operations. I only record 

change types that are actually observed. The source code entities that were 

observed are listed in Table 5. Along with the entity type, I indicate whether it 

was seen as part of a statement insert (“I”), statement delete (“D”), statement 

ordering change (“M”), or statement update (“U”). 

Table 5 - Entities Observed in Extended Change Types 

Entity Type I D M U  Entity Type I D M U 

ASSERT_STATEMENT x x  x  POSTFIX_EXPRESSION x x x x 

ASSIGNMENT x x x x  PREFIX_EXPRESSION x x x x 

BREAK_STATEMENT x x x   RETURN_STATEMENT x x x x 

CATCH_CLAUSE x x x x  SUPER_CONSTRUCTOR_INVOCATION x x  x 

CLASS_INSTANCE_CREATION x x x x  SUPER_METHOD_INVOCATION x x x x 

CONSTRUCTOR_INVOCATION x x  x  SWITCH_CASE x x x x 

CONTINUE_STATEMENT x x x   SWITCH_STATEMENT x x x x 

DO_STATEMENT x x x   SYNCHRONIZED_STATEMENT x x x x 

ENHANCED_FOR_STATEMENT x x x   THROW_STATEMENT x x x x 

FOR_STATEMENT x x x   TRY_STATEMENT x x x  

IF_STATEMENT x x x   VARIABLE_DECLARATION_STATEMENT x x x x 

LABELED_STATEMENT x x    WHILE_STATEMENT x x x  

METHOD_INVOCATION x x x x       

Note that the vast majority of these source code entities are statements, 

but postfix expressions and prefix expressions are also included. These 

expression types were added because a loop is deconstructed into the initializer 

expression, condition expression, and update expression.  
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4.3 Case Study 

In order to validate the extended change taxonomy I extract the source 

code changes of fault fixes from two versions of the Eclipse Platform. I chose 

Eclipse version 2.0 and Eclipse version 3.0 for the case study in this research. In 

this section I describe the Eclipse platform and provide information about the 

versions that I selected.  

The Eclipse platform was developed as a common basis for integrated 

development environments (IDEs) [68]. Multi-tier applications use a number of 

different technologies, which require a diverse collection of tools. The Eclipse 

platform was developed with open application programming interfaces (APIs) to 

allow the integration of multiple tools in a single platform. Eclipse accomplishes 

this level of integration through a component-oriented architecture. Besides a 

minimal base, the Eclipse Runtime, all functionality is added through Java 

modules called Plug-ins [68].  

Eclipse 2.0 was released on June 7, 2002. According to available sources, 

the primary focus was quality improvement and performance, with a lesser 

emphasis on new features [69]. Eclipse 2.0 consisted of 3 subprojects, the 

Eclipse Platform, the JDT (Java development tooling), and the PDE (Plug-in 

development environment).  

Beginning with Eclipse Version 3.0, Eclipse became a Rich Client Platform 

[70]. This required Eclipse to change its underlying architecture. The Eclipse 

project adopted the OSGi Service Platform. Gruber et al. describe the transition 

from a proprietary framework to a framework based on OSGi [70]. This change is 

significant for my purposes, since the two versions of the product are separated 

by approximately 2 years and represent a significant change in architecture. 

Eclipse 3.0 was released on June 21, 2004. The development plan for 

Eclipse 3.0 outlines a number of themes for each subproject [71]. The Eclipse 

Platform focused on user experience, more responsive UI, and rich client 

platform capabilities. The JDT focused on support for other JVM-based 

languages and improved user experience for Java developers. The PDE 
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subproject worked on support for the new plug-in format, testing, and improving 

the scalability of its model implementation.  

Multiple artifacts for Eclipse are publicly available. The source code for 

Eclipse 2.0 and 3.0 is kept in a Concurrent Versioning Systems (CVS) repository. 

The problem tracking system is a customized version of Bugzilla3. Some 

descriptive statistics for Eclipse 2.0 and Eclipse 3.0 are given in Table 6.  

Table 6 - Descriptive Statistics for Eclipse Versions 

Version Fault 
Fixes 

Files 
Involved 

Lines 
Added 

Lines 
Removed 

Start 
Date 

End  
Date 

Eclipse 2.0 3335 13047 208257 124313 1/8/2002 9/27/2002 

Eclipse 3.0 8160 45096 1440617 1140349 12/22/2003 12/21/2004 

Multiple researchers have used the Eclipse source code and problem 

tracking system to conduct software engineering research. Zimmermann et al. 

mined Eclipse 2.0, 2.1, and 3.0 to build software prediction models [72]. The data 

sets from these prediction models are publicly available4. Moser et al. extended 

this research by comparing the ability of change metrics to predict faults [73]. 

Moser et al. concluded that change metrics, such as the number of changes that 

are made to a file, are more effective at predicting faults than static metrics, such 

as the number of source code lines or the complexity of a method.  

Krishnan et al. investigated the use of change predictors to predict fault-

prone files in a product line [74]. The study by Krishnan et al. treats the Eclipse 

platform as a product line, and each project as an application that is delivered 

from that product line. They found that prediction results improve significantly as 

the product evolves. Krishnan et al. also made their dataset, scripts, and 

databases publicly available. This research builds upon the Krishnan et al. set of 

artifacts. 

                                            
3 https://bugs.eclipse.org/bugs/ 
4 https://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/ 
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4.4 Data Collection 

The first step in data collection is to transform the data in the database 

into a format that can be used to drive my process. I use Pentaho Data 

Integration tool (aka Kettle) as the Extraction, Transformation, and Loading (ETL) 

tool5. The resulting database schema is a star schema, a common approach for 

business intelligence databases, which includes dimension tables and fact 

tables. The schema is depicted in Figure 2.  

Each file is described in the file_dim table, including the full path and the 

date/time that the file was added to the system. Each file has one or more 

revisions in the file_revision_dim table. The revision number, as well as the 

number of lines added and removed, is captured as recorded by CVS. Since a fix 

can be attributed to multiple faults, the fix_commit_fact table has one entry per 

commit, per problem report. This results in a many-to-many relationship between 

the fix_commit_fact table and the file_revision_dim table.  

fix_commit_fact

PK Fix_Commit_Key

 Date_Key

 CommitTime

 CommitHour

 CommitMinutes

 CommitSeconds

 BugId

 Description

FK1 Product_Key

FK2 Component_Key

 File_Count

file_revision_dim

PK File_Revision_Key

FK1 File_Key

 Revision

 LinesAdded

 LinesRemoved

file_dim

PK File_Key

 file

 first_seen_date

fix_commit_file_revision_bridge

PK,FK2 Fix_Commit_Key

PK,FK1 File_Revision_Key

product_dim

PK Product_Key

 Name

 Version

component_dim

PK Component_Key

 Component

 SubComponent

developer_dim

PK Developer_Key

 Developer

 

Figure 2 - Star Schema for Eclipse Fault Fix Data 

                                            
5 http://community.pentaho.com/projects/data-integration/ 
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The product_dim table, the component_dim table, and the developer_dim 

table contain information about the product and version, the component and 

subcomponent, and the developer that committed the files to CVS. These tables 

can be used to query information from the fix_commit_fact table based on these 

attributes.  

4.4.1 Data Collection Workflow 

MiSFIT processes each fault according to a simple workflow. File revisions 

before and after each fault fix are retrieved from the CVS source code repository 

and stored locally. The workflow is service-based, with each service pulling work 

from a message queue, performing a single task, and putting the work on the 

next queue. The workflow is shown in Figure 3 and described in more detail 

below.  

The primary advantages of this approach are scalability, reliability, 

flexibility, and modularity. Scalability is achieved by adding additional instances 

of each service. Multiple instances can safely pull from a single queue. The 

message queue also provides reliability. If a service fails while processing work 

the item is returned to the queue after a timeout period. This allows another 

instance of the service to pick it up and process it. The system is flexibile 

because I can add or remove processing steps easily. Finally, modularity is high 

because each service performs a simple task. The overall complexity of each 

service is relatively simple. 

The initiation controller formats the data into an XML file with the following 

fault data: product, release, component, subcomponent, fixDate, bugId, author, 

and description. In addition, for each file I include the path, revision, lines added, 

lines removed, and the date/time in which the file was first seen. The xml file is 

placed in a local file store, and a message is placed on the Fetch Queue.  

The File Fetch Service retrieves the message from the fetch queue. The 

service reads the xml, and for each file, it retrieves the version of the file before 

and after the stated revision. These files are placed in a local file store and the 

xml file is updated with their location. Their locations are recorded as two 
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attributes on the file, preRepair and postRepair. Once this is completed, MiSFIT 

stores the updated archive file in a document repository and removes the 

message from the Fetch Queue. The message is then placed on the Distill 

Queue.  

Service-based mining of software repositories
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Figure 3 - A Service-based source code mining 

I am using the Evolizer toolset, and specifically the ChangeDistiller 

component, from the University of Zurich to collect the syntactic change types 

between two versions of a file [75]. By default this tool acts in a batch mode, 

processing all of the versions for all of the files in a given project. For the Eclipse 

source code, this presented problems. There are many individual projects in the 

system, and there are a large number of changes that are of no interest to this 

research (do not repair faults). I utilized the Stand-alone ChangeDistiller tutorial6 

on the tool’s website as a basis for an OSGi plugin. This allows us to treat the 

ChangeDistiller as a service. MiSFIT provides two files and the ChangeDistiller 

service provides a list of the change types that occurred between the two 

versions. The Change Distilling process is discussed in more detail below. I then 

                                            
6 https://www.evolizer.org/wiki/bin/view/Evolizer/Tutorials/StandaloneChangeDistiller  
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add the change types to the xml, update the local file store, and place the 

message on the Finalize Queue.  

The Log Data service is responsible for parsing the xml and updating a 

relational database with the information. The use of a relational database makes 

it easy to perform reporting and data export to a variety of formats for analysis. 

4.4.2 Change Distilling Process 

The fine-grained source code changes are extracted for each pair of files 

using the ChangeDistiller tool [75]. Fluri et al. describe the change distilling 

process, where the abstract syntax trees of each revision of the source code are 

compared and source code changes are extracted [65].  

I use the changed entity information available from the ChangeDistiller API 

to identify the type of statement that was altered, such as an if statement or 

method invocation. All of the information for each change is recorded in an SQL 

database and the extension is performed through the use of an SQL script. A 

database trigger is used to append the changed entity’s type to the change type. 

Once the database is populated with all of the source code changes, a query is 

used to collect the type and count of source code changes that are recorded for 

each fault in the dataset.  

4.5 Validation 

Validation of the taxonomy occurs in two phases. In this section I describe 

my work to validate that the extended change types provide useful information for 

fault fixes. In the next chapter I continue validation by clustering these faults and 

manually inspecting a subset of the faults. My rationale is that in order to be 

useful, the extended change types must occur frequently in fault fixes. If these 

change types are infrequent in fault fixes, then the additional granularity that is 

gained by adding the extended types adds no new information. On the other 

hand, if multiple extended change types occur frequently I should consider these 

extended change types as features and evaluate their usefulness for 

understanding the data.  
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In this section, I evaluate the frequency of extended change types in 

software fault fixes as compared to the original change taxonomy. The top twelve 

change types that are extracted from fault fixes in Eclipse 2.0 and 3.0 are the 

same, and are presented in Table 7 with frequency of occurrence.  

Table 7 - Top Twelve Change Types for Fault Fixes 
© 2014 IEEE 

Change Type Eclipse 2.0 Eclipse 3.0 

 

Commits Percent Commits Percent 

Insert If * 1512 52.39% 3415 52.21% 

Insert Method Call * 1391 48.20% 3039 46.46% 

Insert Var Decl * 1145 39.67% 2637 40.31% 

Statement Parent Chg 1098 38.05% 2555 39.06% 

Add Functionality 979 33.92% 2205 33.71% 

Update Method Call * 958 33.19% 2095 32.03% 

Insert Assignment * 937 32.47% 2238 34.21% 

Delete If * 934 32.36% 2239 34.23% 

Delete Method Call * 861 29.83% 1883 28.79% 

Insert Return * 777 26.92% 1750 26.75% 

Update Var Decl * 734 25.43% 1850 28.28% 

Cond Expr Change 731 25.33% 1853 28.33% 

The first column indicates the change type. Change types that were 

introduced by my extension to the taxonomy are denoted by an asterisk (*). The 

second and fourth columns provide the number of commits that are associated 

with a fault fix that contained at least one instance of the change type for each 

version of the software. The third and fifth columns provide a percentage of the 

total number of commits that include the change type.  

The total number of extended change types in this list provides evidence 

that the extended change types provide additional granularity that is useful in the 

analysis of software fault fixes. The change types occur with surprising 

consistency between the two versions. This led us to question whether the 

frequency between the two versions is consistent. The following hypotheses are 

used for investigation. 

H0: The frequency distributions of extended change types in Eclipse 2.0 and 

Eclipse 3.0 are not the same (α=0.05).  
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HA: The frequency distributions of extended change types in Eclipse 2.0 and 

Eclipse 3.0 are the same (α=0.05). 

The data is not normally distributed, so the non-parametric Wilcoxon 

signed rank test is performed to test the hypothesis. The test was performed 

against the number of commits for each extended change type in the dataset. 

The test indicates that there is no significant difference in the frequency of the 

change types, with a p-value of 0.0005. I reject H0 in favor of the alternative and 

conclude that the occurrence of change types is consistent in these two versions 

of the software. 

4.6 Conclusions 

In this chapter I have described an extended change taxonomy and 

validated its usefulness for fault analysis. First, I described the change taxonomy 

provided by Fluri and Gall [66], including its limitations with regards to analyzing 

software faults. I provided a proposed extension that utilizes information that is 

collected by the ChangeDistiller tool [75].  

As a case study, I selected two versions of Eclipse. I included software 

faults from multiple Eclipse projects in the analysis. Data collection began with 

the extraction and transformation of an existing research database provided by 

Krishnan et al. [74]. From this starting point, a service-based workflow that 

utilizes a message queue system to coordinate work was described. The data 

collection workflow is used throughout this work.  

In order to move forward with in-depth analysis of the data I need to 

validate the usefulness of the extended change taxonomy. I found that nine of 

the top twelve change types in software faults from my case study are extended 

change types. In addition, I discovered that there is no significant difference in 

the distribution of these extended change types in Eclipse 2.0 and Eclipse 3.0 

when only fault fixes are considered. These results provide evidence that the 

extended change taxonomy provides useful information and that additional 

research is warranted.  
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Chapter 5  

Clustering Software Faults7 

This chapter describes a process for clustering software faults based on 

the changes that were made to repair the software fault. The goal is to 

characterize the software fault from the fix that repaired it using an automated 

process. In this chapter I describe the clustering tools, my clustering process, 

and my validation of the clustering results. 

5.1 Clustering Software Faults 

The input to the clustering process is a vector. The features of the vector 

are the extended change types. One hundred and one extended change types 

were present in the Eclipse 2.0 dataset and one hundred and nine change types 

were present for Eclipse 3.0. The change types were presented in Chapter 4.  

A summary of the process is depicted in Figure 4. The files involved in the 

fault fix are extracted from the source code repository. The abstract syntax tree is 

instantiated and processed to extract the change types. Each change type is a 

feature in the vector and the frequency of a change type for a particular fault is 

recorded as the value of that feature for the fault’s vector in the dataset.  

                                            
7 © 2014 IEEE. Reprinted, with permission, from Bill Kidwell, Jane Huffman Hayes, Allen 

P. Nikora, “Toward Extended Change Types for Analyzing Software Faults”, 
Proceedings of the 14th International Conference on Quality Software (QSIC), Oct. 
2014. 
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Figure 4 - Dataset Creation Overview 

For example, Bug # 10009, shown below in Figure 5, consisted of four 

changes: JavaDoc comments were inserted, an if statement was added, the 

dispose method call was updated, and the parent of the method call was 

changed. For this fault the vector has the following values: Insert_If = 1, 

Statement_Parent_Change = 1, Update_Method_Call = 1. The changes to 

comments are recorded, but discarded for purposes of this study. 

 

 

+ /** 

+  * @see AbstractUIPlugin#shutdown() 

+  */ 

  public void shutdown() throws CoreException { 

   JDIDebugModel.removeHotCodeReplaceListener(this); 

   JavaDebugOptionsManager.getDefault().shutdown(); 

-  getImageDescriptorRegistry().dispose(); 

+  if (fImageDescriptorRegistry != null) { 

+   fImageDescriptorRegistry.dispose(); 

+  } 

   super.shutdown(); 

  } 

Figure 5 - Source Code Changes for Bug 10009 
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5.2 Measurements 

The CLUTO clustering toolkit is used to perform clustering of the data [76]. 

CLUTO was selected based on its inclusion of cosine similarity as a distance 

measure and visualization features that aid in the analysis of the clusters. 

CLUTO creates a hierarchical clustering solution when the repeated bisection 

approach is used [77]. The hierarchical solution provides views of the data at 

different levels of granularity, and in my case allows us to compare hierarchies in 

data from multiple datasets.  

A complimentary project, gCLUTO, provides an easy method to get 

familiar with the tool and visualize data [78]. The gCLUTO interface provides a 

convenient method to try different clustering parameters and visualize the results. 

It also provides the Mountain Visualization, which we discuss in more detail 

below. 

CLUTO treats the clustering problem as an optimization process which 

seeks to maximize or minimize a particular criterion function [76]. All documents 

are initially partitioned into two clusters. One of the clusters is selected and 

bisected. This process is repeated k-1 times to arrive at k clusters. CLUTO 

provides seven different criterion functions that can be used to guide the 

clustering process. A simple, greedy scheme is used to optimize the selected 

criterion function [79]. During multiple iterations of refinement, each instance in a 

cluster is visited in random order and moved to the cluster that improves the 

criterion function’s value. This iterative refinement is repeated until no instances 

are moved. In order to avoid the selection of a local maximum or local minimum, 

the entire process is repeated ten times and the best solution is selected.  

CLUTO offers multiple similarity measures. My initial analysis of clustering 

tools identified the cosine similarity as the most effective measure to produce 

reasonable clusters in the size range of 7-20 clusters. For two vectors vi and vj, 

the cosine similarity function [80] is defined as follows:  

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = cos(𝜃) =
𝑣𝑖  ∙ 𝑣𝑗

‖𝑣𝑖‖‖𝑣𝑗‖
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The cosine similarity ranges from zero (completely orthogonal) to one 

(identical), since the frequencies of the change types are always non-negative. 

The internal similarity is the average similarity between all objects of the cluster. 

An internal similarity near one represents a “tight” cluster. I focus my evaluation 

of clusters on the internal similarity since I am trying to group software fixes with 

similar syntax. To maximize the internal similarity I limit my evaluation to the use 

of the I1 and I2 criterion functions. The external similarity is the average similarity 

between the objects of each cluster with the rest of the objects. An external 

similarity near zero represents a cluster that is well-separated from other clusters 

in the data set. I report the external similarity but do not use it for evaluation.  

I define n as the number of fault vectors, k as the number of clusters. S is 

the set of vectors that I want to cluster. S1, S2, …, Sk denotes each of the k 

clusters. I define n1, n2, …, nk as the size of the k clusters. The composite vector 

Di, is defined by the sum of all vectors in cluster Si. 

𝐷𝑖 = ∑ 𝑣

𝑣 𝜖 𝑆𝑖

 

The centroid vector is obtained by averaging the features from all of the 

vectors in cluster Si.  

𝐶𝑖 =  
𝐷𝑖

|𝑆𝑖|
 

I1 maximizes the sum of the average pairwise similarities between the 

instances in the cluster. The I1 criterion function is defined [81] as:  

maximize 𝐼1 = ∑  

𝑘

𝑟=1

𝑛𝑟 (
1

𝑛𝑟
2

∑ cos(𝑣𝑖, 𝑣𝑗)

𝑣𝑖,𝑣𝑗∈𝑆𝑟

) 

The innermost term of this equation is the cosine similarity between two 

instance vectors. The similarity is calculated between every two instance vectors 

in the cluster and these similarities are summed. The average is calculated by 

dividing by the squared size of the clusters, and this is weighted by multiplying by 

the size of the cluster. I1 maximizes weighted average for all clusters. A useful 
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way to visualize this criterion function is presented by Ted Pedersen8. You can 

imagine that each instance in the cluster is a point, and that you are connecting a 

string between each set of points. The length of the string connecting the points 

represents the distance, which is the inverse of the similarity. The goal is to end 

up with a tight ball of string.  

I2 maximizes the similarity between each instance and the centroid of the 

cluster, similar to the vector-space of the K-means algorithm [81]. The I2 criterion 

function is defined as: 

maximize 𝐼2 = ∑  

𝑘

𝑟=1

∑ cos(𝑣𝑖, 𝐶𝑟)

𝑣𝑖 ∈ 𝑆𝑟

 

The innermost term of this equation is the similarity between each 

instance vector in the cluster and the cluster’s centroid. This similarity is summed 

for all instance vectors in the cluster. The I2 criterion function maximizes this for 

all clusters in the solution. This criterion function can also be visualized, but in 

this case, as a flower8. Imagine that a piece of yellow string is stretched from the 

centroid to each point in the cluster. Again, the length of the string is to be 

minimized. In this case, you end up with a small, round flower. 

CLUTO provides metrics to aid in cluster analysis. For each cluster, the 

internal similarity (iSim) and external similarity (eSim) are reported, along with 

their standard deviations (iSDev and eSDev).  

Clusters are numbered from zero to k-1. The clusters are ranked by 

subtracting the ISim value from the ESim value, and sorting largest to smallest 

[76]. The size is the number of instances that have been assigned to this cluster. 

The ISim, as described above, is the average internal similarity of the cluster. 

The ESim is the average similarity of each instance in the cluster with items from 

the other clusters.  

CLUTO reports a number of features that account for the internal similarity 

of a particular cluster. These are referred to as descriptive features [76]. A 

                                            
8 http://sourceforge.net/p/senseclusters/mailman/message/692149/ 
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percentage is provided with each feature. An example of the output from CLUTO 

for a cluster is given in Table 8.  

Table 8 - Example Cluster Metrics from Cluto 

Cluster 0   Size: 113   ISim: 0.732   ESim: 0.095 

Descriptive: UPD_VAR_DECL 97.3% 
INS_METH_CALL 0.6% 

ADD_FUNC 0.5% 

INS_VAR_DECL 0.4% 
Discriminating: UPD_VAR_DECL 51.6% 

INS_IF 11.1% 

INS_METH_CALL 8.9% 

STATEMENT_PARENT_CHANGE 4.9% 

 

The descriptive and discriminating features are ranked from largest 

contribution to the similarity of the items in a cluster, to the lowest. The number of 

features reported is configurable. In this cluster the UPD_VAR_DECL feature 

(Update Statement: Variable Declaration) accounts for 97.3% of the similarity 

between instances in the cluster. The same feature differentiates the instances in 

the cluster from instances in other clusters by 51.6%. 

The descriptive features are used in this study to characterize and label 

each of the clusters and make a conjecture about the types of faults that belong 

to the group. Labeling of the clusters is entirely based on the statistical 

prominence of the features in the cluster, and not based on subjective evaluation 

of the results. I use a cutoff threshold of 10% in order to name the cluster. All 

features with a discriminating feature value equal to or above 10% are included 

in the cluster name (e.g., Statement Parent Change + Insert If). This allows us to 

compare clusters from different datasets. 

5.3 Experimental Design 

The purpose of this study is to analyze software faults and the naturally 

occurring groups that result from clustering the faults. The frequency of the 

syntactical elements that were changed in the fix for the fault are used as the 

input to the clustering algorithm. My goal is to understand how effectively the 

syntax of the changes can characterize the nature of the software fault, and 
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ultimately to determine whether I can use this clustering as a form of automated 

fault classification.   

The study is described using the Goal/Question/Metric (GQM) template for 

goal definition [82][83].  

 

5.3.1 Variables 

The mean internal similarity (iSim) is used to measure the effectiveness of 

a clustering solution. This value is calculated by calculating the mean value from 

the iSim value for each cluster in the solution.   

5.3.2 Evaluation of Criterion Functions 

In order to proceed with the clustering and inspection of the faults, I must 

choose the most appropriate criterion function. Clustering is performed for fault 

data for Eclipse 2.0 and Eclipse 3.0. I repeat the clustering for all values of k from 

2 to 20. The number of fault types in a fault taxonomy should be manageable and 

not too large [39]. Based on this recommendation, I expect there to be seven to 

ten fault types. I choose a broad range of numbers to be inclusive. I use the 

following hypotheses for investigation. 

H0: There is no difference in the mean internal similarity of clusters when using 

the I1 and I2 criterion functions (α=0.05).  

HA: The mean internal similarity of clusters when using the I1 criterion function 

is greater than the mean internal similarity of clusters when using the I2 

criterion function (α=0.05). 

Analyze the clustering of software faults  

for the purpose of characterizing fault classes 

with respect to their effectiveness  

from the point of view of the researcher  

in the context of two versions of a large, open source system. 
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The mean internal similarity for each of these methods is presented in 

Table 9. The number of clusters, k, is shown in the first column. The remaining 

columns report the internal similarity for each method, for each version. A graph 

of these values for the Eclipse 2.0 dataset is presented in Figure 6. A similar 

graph for Eclipse 3.0 is displayed in Figure 7.  

I perform a one-tailed paired samples Wilcoxon signed rank test on the 

similarity data for I1 and I2 to evaluate the hypothesis. A paired t-test was 

considered, but the data does not pass 

a test for normality, and thus the non-

parametric test is used. I perform the 

test independently for both versions of 

Eclipse. For Eclipse 2.0, the p-value = 

3.815e-06 and for Eclipse 3.0, the p-

value = 3.624e-05. In both cases I am 

able to reject the null hypothesis in 

favor of the alternate hypothesis. 

Zhao and Karypis provide an 

analysis of document clustering 

solutions using the I1 and I2 criterion 

functions in their comparison of 

criterion functions [79], [81]. In general, 

all criterion functions have different 

sensitivities based on the tightness of 

the clusters and the degree of balance 

in the resulting solution. Zhao and 

Karypis analyze the I1 and I2 functions 

to explain how the I1 criterion function 

can lead to several pure, tight clusters 

and a single large, poor quality cluster. This poor quality cluster is referred to as 

a “garbage collector” and results from the function’s tendency to exclude 

peripheral documents from the pure clusters. 

Table 9 - Mean Internal Similarity 
© 2014 IEEE 

 Eclipse 2.0 Eclipse 3.0 

k I1 I2 I1 I2 

2 0.292 0.282 0.297 0.289 

3 0.329 0.317 0.333 0.322 

4 0.404 0.401 0.412 0.415 

5 0.475 0.429 0.439 0.443 

6 0.497 0.449 0.526 0.468 

7 0.517 0.462 0.546 0.494 

8 0.535 0.487 0.551 0.510 

9 0.561 0.495 0.566 0.528 

10 0.567 0.499 0.571 0.531 

11 0.577 0.506 0.584 0.539 

12 0.580 0.503 0.591 0.571 

13 0.584 0.511 0.601 0.569 

14 0.593 0.514 0.612 0.574 

15 0.597 0.521 0.614 0.576 

16 0.602 0.543 0.617 0.580 

17 0.606 0.549 0.601 0.585 

18 0.607 0.555 0.604 0.587 

19 0.621 0.561 0.615 0.599 

20 0.624 0.567 0.622 0.630 
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Figure 6 - Mean Internal Similarity of Eclipse 2.0 
© 2014 IEEE 

 

Figure 7 - Mean Internal Similarity of Eclipse 3.0 
© 2014 IEEE 
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Zhao and Karypis conclude that this property of the I1 criterion function 

may be useful in noisy data sets [79]. This helps explain the superiority of the I1 

criterion function in my experiment, and suggests that more analysis of the 

instances in the “garbage collector” may allow the taxonomy to be refined. While 

these faults occur infrequently, there may be patterns of changes over several 

releases, or across multiple projects.  

5.3.3 Consistency of Clusters for Eclipse 2.0 and 3.0 

In this section I analyze the consistency of the clustered fault fixes for 

Eclipse 2.0 and Eclipse 3.0 at k=10. I choose this value of k due to similarities in 

the descriptive features across the two versions of Eclipse. The groups appear to 

stabilize at this value of k. Other researchers have also used a value of k=10, it is 

on the high end of the number of fault classifications that are recommended by 

best practices [39]. I label each cluster based on the descriptive features 

reported by CLUTO. The top five descriptive features of each cluster are 

reported, regardless of their significance. In clusters where a single feature 

dominates it is possible to use the largest value as the label for the cluster. To 

properly represent the clusters with multiple features I use a threshold value of 

10% to label the clusters. For example, Cluster 4 below reports descriptive 

features as Insert Return (47.3%), Insert If Statement (36.4%), Delete Return 

(5.0%), Insert Variable Declaration (3.5%), and Insert Method Call (1.7%). It is 

interesting to know that these features occur together, but the first two features 

identify the nature of the faults in the cluster. This cluster is labeled “Insert Return 

+ Insert If Statement.” The threshold value of 10% allows this labeling to occur 

automatically. 

The cluster features, sizes, and similarities are reported in Table 10. The 

first row reports on the clusters that are described by the update of a variable 

declaration. In Eclipse 2.0, this cluster included 94 faults, 3.3% of the total, while 

in Eclipse 3.0 the cluster includes 261, 4.3% of the total. The last row of the table 

contains totals for the number of faults in each data set. 
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Table 10 - Comparison of Clustered Faults 
© 2014 IEEE 

 

Eclipse 2.0 Eclipse 3.0 

Cluster  

(Descriptive Features) Size iSim Size iSim 

Upd Var Decl 94 (3.3%) 0.789 261 (4.3%) 0.724 

Cond Expr Chg 139 (4.8%) 0.708 244 (4.0%) 0.834 

Add Func 132 (4.6%) 0.678 441 (7.2%) 0.599 

Upd Method Call 266 (9.2%) 0.663 494 (8.1%) 0.654 

Ins If + Ins Return 164 (5.7%) 0.58 0 (0.0%) - 

Ins If + Stmt Parent Chg 446 (15.5%) 0.57 908 (14.9%) 0.584 

Ins Meth Call 434 (15.0%) 0.566 756 (12.4%) 0.582 

Del Meth Call + Ins Meth Call 279 (9.7%) 0.525 669 (11.0%) 0.513 

Ins If + Ins Meth Call + Ins Var Decl  554 (19.2%) 0.504 1049 (17.2%) 0.515 

Ins Assign + Upd Assign 376 (13.0%) 0.084 706 (11.6%) 0.128 

Ins Assign + Ins If 0 (0.0%) - 567 (9.3%) 0.579 

Total 2884 

 

6095  

Notice that Eclipse 2.0 has a cluster described by the insertion of if and 

return statements, while Eclipse 3.0 has a cluster that is described by the 

insertion of assignment and if statements. In order to compare the clustering 

solutions, I treat these as empty clusters in the versions where they do not occur. 

I use the following hypotheses for investigation. 

H0: There type and size of clusters in the is no significant correlation in the 

clustering solutions of Eclipse 2.0 and Eclipse 3.0 at k=10 (α=0.05).  

HA: The clustering solutions of Eclipse 2.0 and Eclipse 3.0 at k=10 are 

correlated (α=0.05). 

To test the hypothesis, Pearson’s correlation coefficient is calculated. A 

Shapiro-Wilk test for normality was performed to verify that the data is normally 

distributed. The value of r for the data is 0.778, with a p-value = 0.004, allowing 

us to reject the null hypothesis and conclude that the cluster types and sizes are 

correlated. 
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5.4 Manual Inspection of Faults in Each Cluster 

In this section I present clustering results on Eclipse 2.0 fault fixes using 

the I1 criterion function and setting k=10. The Eclipse 2.0 dataset consists of 101 

fine-grained source code change types after expanding statement insert, update, 

delete, and ordering change types and eliminating changes to comments and 

source code documentation. There are 2884 faults in the dataset with Java 

source code changes. Faults with zero Java source code changes, e.g., those 

requiring only changes to properties or xml configuration files, are not included in 

the analysis. CLUTO reports a number of metrics for the clusters. These metrics 

are presented in Table 11. 

Table 11 - Cluster Statistics for Eclipse 2.0, k = 10 
© 2014 IEEE 

Cluster 
Id 

Size iSim iSDev eSim eSDev 

0 94 0.789 0.124 0.077 0.052 
1 139 0.708 0.134 0.112 0.073 
2 132 0.678 0.125 0.129 0.058 
3 266 0.663 0.136 0.118 0.069 
4 164 0.58 0.084 0.212 0.073 
5 446 0.57 0.093 0.203 0.065 
6 434 0.566 0.091 0.208 0.066 
7 279 0.525 0.09 0.207 0.084 
8 554 0.504 0.082 0.246 0.059 
9 376 0.084 0.057 0.083 0.081 

The CLUTO manual provides a full description of these metrics [76]. A 

summary is presented here. The Cluster Id is a zero-based integer assigned to 

each cluster. The Size is the number of faults that were assigned to the cluster. 

The column labeled iSim is the mean internal similarity of the faults in the cluster. 

The column labeled iSDev is the standard deviation of the mean internal 

similarities. Similarly, the eSim column is the mean similarity of the faults in the 

cluster with the faults that are not in the cluster, or the external similarity. The 

eSDev column is the standard deviation of the mean external similarity for the 

faults in the cluster. The clusters are ranked by subtracting the external similarity 
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from the internal similarity and arranging them in decreasing order. This positions 

tight, distinct clusters at the top of the list. 

5.4.1 Data Visualization 

The CLUTO toolset provides tools to visualize clustering results [76]. A 

modified version of the cluster plot visualization for the results that I manually 

analyzed is presented in Figure 8. The columns in the visualization are the 

clusters, with the size of each cluster in parentheses. The tree structure aids in 

understanding the relationships between clusters. For example, cluster 6 and 7 

are very similar clusters, and contain similar source code changes. The rows of 

the visualization provide a subset of the 101 source code changes that were 

used as features during the clustering process. The darkness of the cells is 

based on the intensity of the feature within each cluster. For example, in the first 

column we see that cluster 5 is described by the statement parent change and 

insert if statement change types. The label for descriptive features is repeated to 

the left of each occurrence. As an example, Cluster 1, on the far right of the 

illustration, is described by conditional expression changes (COND EXPR CHG). 

 

Figure 8 - Visualization of Clusters for Eclipse 2.0 
© 2014 IEEE 

A second visualization of the clusters is provided by gCLUTO. The 

mountain visualization aids the user in understanding high-dimensional data in a 
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lower-dimensional representation [78]. The visualization conveys the number of 

objects, internal similarity, external similarity, and standard deviation. 

The mountain visualization for the Eclipse 2.0 dataset from gCLUTO is 

provided in Figure 9. Each peak represents a single cluster. The distance 

between two peaks conveys the relative similarity of the two clusters. This 

information is consistent with the tree structure in the matrix visualization (Figure 

8). For example, the relative locations of clusters 0, 1, 9, and 2 are similar.  

 

Figure 9 - Mountain Visualization of Clusters for Eclipse 2.0 

The height of each peak is proportional to the internal similarity of the 

cluster. This can be seen by cluster 0 (iSim=0.789) and cluster 9 (iSim=0.084). 

The volume of the peak is proportional to the size of the cluster. Cluster 5 

consists of 446 instances, and cluster 1 consists of 139. The color of the peak 
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represents the internal standard deviation. Red represents data with low 

deviation, while blue represents data with high deviation [78].  

5.4.2 Manual Inspection Process 

For each cluster I present internal clustering metrics, features that explain 

the clusters, and then conduct a manual inspection of five to eight faults. I 

randomly select the faults from each of the clusters for manual inspection. The 

fault reports for these faults are available on the Eclipse foundation Bugzilla web 

site9.  

In order to inspect these faults, a taxonomy is necessary. The primary 

question that I am seeking to answer is whether the syntactic patterns of the fault 

fixes in the cluster characterize the nature of the faults. In order to test this with 

the manual inspection, I first use the descriptive features and develop a set of 

expectations. The expectations relate the dominant syntactical features to the 

types of faults that are expected. During the manual inspection, I am trying to 

determine whether the fault that is being inspected falls within those pre-

determined expectations. 

Cluster 0: Update Variable Declaration 

Faults in this cluster are expected to be the result of incorrectly initialized 

variables. 

Cluster 1: Condition Expression Change 

Faults in this cluster are expected to be simple logic changes. Some complex 

logic changes may also occur where there are multiple condition statements that 

check similar conditions and must change in unison. 

Cluster 2: Additional Functionality 

Addition of new functionality or overriding an inherited method. 

                                            
9 https://bugs.eclipse.org/bugs/ 
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Cluster 3: Update Method Call 

A method was used incorrectly, for example, incorrect parameters were passed 

or incorrect version of a method was called. 

Cluster 4: Insert If + Insert Return 

I expect the most common faults in this cluster to be unchecked pre-conditions. 

More complex changes may be algorithmic changes. 

Cluster 5: Statement Parent Change + Insert If 

Faults in this cluster are likely to be logic changes. These can range from 

checking faults to more complex logic changes.  

Cluster 6: Insert Method Call 

Faults in this cluster are expected to be missing functionality or interface faults 

where a required method was not called. 

Cluster 7: Delete Method Call and Insert Method Call 

Faults in this cluster are expected to require the removal of extraneous code, or 

are expected to be interface faults where the incorrect method was being called. 

Cluster 8: Insert If + Variable Declaration + Method Call 

Faults in this cluster are expected to be changes to algorithms or changes in 

behavior. These types are faults are expected due to the large number of change 

types that characterize the cluster. 

Cluster 9: Garbage Collector 

I expect faults in this cluster to be varied and uncommon. My aim in manually 

inspecting this cluster is to determine if any pattern can be found. 

5.4.3 Manual Inspection Results 

Cluster 0 – Update Variable Declaration 

Cluster 0 is the tightest and smallest cluster in the selected solution. The 

update variable declaration change type explains over 98% of the similarity of the 

faults in the cluster. I expect faults in this cluster to represent faults where a 

variable is either uninitialized or incorrectly initialized. The metrics for this cluster 

appear in Table 12.  
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Table 12 - Cluster 0 Metrics 

Cluster Id 0  Descriptive Features  

Size 94  Update Variable Declaration 98.5% 

iSim 0.789  Condition Expression Change 0.4% 

iSDev 0.124  Insert Variable Declaration 0.2% 

eSim 0.077  Update Assignment 0.2% 

eSDev 0.052  Additional Functionality 0.1% 

Two of the five faults in this category fall in the expected category (10483 

and 16828). In Bug 11110, a condition expression change is edited to check for 

null references. A portion of the change appears in Figure 10. The change 

requires the intermediate variable window on the new line 167. The window 

variable is used in the new condition on the new line for 168. This change is 

obfuscated because it occurs in a variable declaration for an anonymous class, 

an instance of Runnable that is declared on line 165.  

 

Figure 10 – Bug 11110: Fault fix to check for Null Pointer 
© 2014 IEEE 

The faults inspected from this cluster appear in Table 13. These 

descriptions explain my interpretation of the source code changes and allow 

other researchers to improve upon these results.  
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Table 13 - Faults Inspected for Cluster 0 

Bug Id Expected Description 

10483 Yes Bug 10483 includes updates to variables that are subsequently used in method calls. These 

changes in values were necessary to support differences in operating systems.  

11110 No The changes were made within a variable declaration, but were within an anonymous class. 

16828 Yes Bug Id 16828 is fixed by changing the variable declaration for the point where a tooltip is 

displayed, thus avoiding overlap with other components and undesired interactions during 

usage. 

18923 No The fix for Bug 18923 has a number of updated variable declarations due to the fact that 

variable names were changed. These changes cause this fault to belong to this cluster, but 

do not characterize the fault.  

23824 No Bug 23824 is an interface fault. The project folder should be cast to type 

ICVSRemoteFolder, changing the call that was used to fetch the parent folder.  

Cluster 1 – Condition Expression Changes 

The presence of a conditional expression change in faults that belong to 

Cluster 1 explain 94.7% of the similarity values for these items. Simple logic 

errors are expected to belong to this cluster. Complex algorithmic faults requiring 

extensive logic changes may also be represented here. Four of the five faults I 

inspect are logic errors, while the fix for Bug 18787 is a more complex logic 

change. The metrics for this cluster are presented in Table 14. 

Table 14 - Cluster 1 Metrics 

Cluster Id 1  Descriptive Features  

Size 139  Condition Expression Change 94.7% 

iSim 0.708  Statement Parent Change 1.7% 

iSDev 0.134  Insert Variable Declaration 1.4% 

eSim 0.112  Insert If 0.7% 

eSDev 0.073  Insert Assignment 0.3% 

 Logic problems are a common cause for software faults and the source 

code changes are often small and contained. A small number of dominant 

change types easily characterize faults with these characteristics. The faults 

inspected from this cluster are described in Table 15. 
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Table 15 - Faults Inspected for Cluster 1 

Bug Id Expected Description 

15951 Yes Bug 15951 was fixed with a single conditional expression change to repair a forgotten case 

for unmanaged remote files. 

18482 Yes Bug 18482 added the classpath to a conditional expression.  

18787 Yes Bug 18787 was a more complicated logic error. A condition and cast were added to the 

conditional expression, but the behavior of the getSignature() method was also changed. 

21185 Yes Bug 21185 added a predicate to consider the style of the component during the comparison. 

21370 Yes Bug 21370 fixed a failure that froze the editor. The fault was due to a problem with pattern 

matching that was repaired by changing a >= operator to a > operator so that the first 

character was not unread when the end sequence was not detected. 

 

Cluster 2 – Additional Functionality 

The similarity in Cluster 2 is explained by the addition of one or more new 

methods (95.2%). The metrics for this cluster are provided in Table 16. I expect 

faults in this cluster to include additions of new features and functionality. I 

investigate six faults in this cluster. 

Table 16 - Cluster 2 Metrics 

Cluster Id 2  Descriptive Features  

Size 132  Additional Functionality 95.2% 

iSim 0.678  Additional State 1.2% 

iSDev 0.136  Condition Expression Change 1.0% 

eSim 0.118  Insert Assignment 0.5% 

eSDev 0.069  Update Variable Declaration  0.3% 

Five of the faults met my expectations for this category. The sixth, Bug 

15513, is fixed by overriding a method of the base class. This type of fault 

logically belongs to the group, so I add it as an additional consideration for this 

cluster. The faults inspected from this cluster are described in Table 17. 
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Table 17 - Faults Inspected for Cluster 2 

Bug Id Expected Description 

11265 Yes Bug 11265 required the addition of two convenience constructors to replace a source locator 

API that had been deprecated. 

12297 Yes The fix for Bug 12297 enhances the algorithm that checks for synchronization of local and 

server resources in the CVS module. 

12573 Yes The fix for Bug 12573 adds a WM_NOTIFY method in order to address a platform specific fault 

on Windows operating systems. 

15513 New Bug 15513 required that the setToolTipText method of the base class be overridden. This 

example exposes an additional type of fault that must be considered due to this syntax change. 

15699 Yes Bug 15699 was fixed by adding a method to provide an order to the components that should be 

placed on a dialog. 

18473 Yes The fix for Bug 18473 added a function that would indicate whether the context-sensitive help 

window was currently displayed. 

 

Cluster 3 – Update Method Call 

The faults in Cluster 3 are characterized by the update of a method call 

(95.4%). The metrics for this cluster are provided in Table 18. The faults in this 

cluster are expected to be interface faults that involve the incorrect use of 

methods. Five faults in this cluster are manually inspected.  

Table 18 - Cluster 3 Metrics 

Cluster Id 3  Descriptive Features  

Size 266  Update Method Call 95.4% 

iSim 0.663  Additional Functionality 1.1% 

iSDev 0.136  Update Variable Declaration 0.5% 

eSim 0.118  Insert Method Call 0.5% 

eSDev 0.069  Insert Variable Declaration 0.4% 

Two of the five faults that I manually inspect from this cluster meet my 

expectations for changes. The faults inspected from this cluster are described in 

Table 19. I discuss the problematic samples from this cluster below. 



78 
 

Table 19 - Faults Inspected for Cluster 3 

Bug Id Expected Description 

12449 No In the fix for Bug 12449, one of the parameters was an anonymous class, and logic was 

changed in the anonymous class. 

14742 Yes The fix for Bug 14742 changes a parameter value from false to a value that is retrieved from 

the user’s preferences. 

20421 No The fix for Bug 20421 also involved an anonymous class as a method parameter. In this 

case the logic checked a precondition and returned if it was not honored. 

21824 No The fix for Bug 21824 wraps a function call to display the busy indicator while the code 

executed. 

23447 Yes The updated method calls in Bug 23447 were primarily to resolve the direct access of 

member variables. Changing the code to use getter/setter methods simplified the logic and 

corrected the reported failure. 

The most unexpected finding in this cluster is the impact of anonymous 

classes. Three of the five faults that I manually inspect in this cluster have 

methods updated where the argument is an anonymous class. The changes to 

the anonymous class are logic changes. An example is shown in Figure 11 from 

Bug # 20421. Similar to the anonymous class encountered in cluster 0, the true 

nature of the change is hidden. The addition of lines 77-81 check a precondition 

and return false if it is false. However, it occurs within the anonymous class that 

is passed to the accept method on line 68. Bug #12448 exhibits a similar problem 

with an anonymous class. Bug # 21824 is repaired by wrapping a method call in 

Figure 11 – Bug 20421: Additional condition check  
© 2014 IEEE 



79 
 

an anonymous class. 

Cluster 4 – Insert If and Return Statements 

Cluster 4 is the first cluster with two dominant descriptive features. The 

addition of a return statement explains 47.3% of the similarity and the addition of 

an if statement explains 36.4% of the similarity. The metrics for this cluster are 

presented in Table 20. I expect simple faults in this cluster to be checking faults. 

More complex faults with multiple instances of if statements and/or multiple 

instances of return statements may represent more complex logic faults.  

Table 20 - Cluster 4 Metrics 

Cluster Id 4  Descriptive Features  

Size 164  Insert Return 47.3% 

iSim 0.580  Insert If Statement 36.4% 

iSDev 0.084  Delete Return 5.0% 

eSim 0.212  Insert Variable Declaration 3.5% 

eSDev 0.073  Insert Method Call 1.7% 

 

Five faults are manually inspected in this cluster and all of them meet 

expectations. The faults inspected from this cluster are described in Table 21. 

Two of the five were checking faults. Two of the fixes were minor logic changes. 

Bug 14061 had extensive changes to the program logic.  
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Table 21 - Faults Inspected for Cluster 4 

Bug Id Expected Description 

12210 Yes The fix for Bug 12210 was an update to code that uses the Visitor design pattern [84]. When 

a node is visited, the class must determine if a simple name or a variable declaration is 

being visited and act appropriately. 

12590 Yes Bug 12590 appears to be a checking fault. The author added a check to see if the selected 

item was a local variable when the rename function was invoked. 

13417 Yes Bug 13417 was fixed by adding a check for blank text on a tooltip.  

14061 Yes Bug 14061 was a complex logic fault that resulted in duplicate menu items when the 

SubContributionItem class is used. In addition to the logic changes, new functionality was 

also added.  

18274 Yes Bug 18274 is related to Bug 14061. In the fix for Bug 18274, a check was added for this type 

and an unwrap method was called when it was encountered. 

 

Cluster 5 – Insert If Statement and Statement Parent Change 

The faults in Cluster 5 are characterized by a statement parent change 

(63.1%) and the insertion of one or more if statements (22.7%). The cluster 

metrics are provided in Table 22. Similar to Cluster 4, I expect logic faults that 

range from checking faults to more complex logic faults. I manually inspect five 

faults in this cluster.  

Table 22 - Cluster 5 Metrics 

Cluster Id 5  Descriptive Features  

Size 446  Statement Parent Change 63.1% 

iSim 0.570  Insert If Statement 22.7% 

iSDev 0.093  Delete If Statement 2.0% 

eSim 0.203  Insert Method Call 1.9% 

eSDev 0.065  Insert Variable Declaration 1.5% 

 

Bug 14025 is the only fault in this cluster that does not meet my 

expectations. The change requires logic changes, but includes new functionality 

as well. The faults inspected from this cluster are described in Table 23 below. 
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Table 23 - Faults Inspected for Cluster 5 

Bug Id Expected Description 

13024 Yes Bug 13024 changed the code to account for blank text for a tooltip. The changes were 

complex because different implementations were necessary for each operating system. 

14025 No Bug 14025 required a new instruction set in the abstract syntax tree to deal with the length 

member variable on arrays. 

17176 Yes The fix for Bug 17176 reordered logic in one method. The reordering was recorded as a 

deletion and insertion of the if statements, but as a statement parent change for the code in 

the statement block. Although this was unexpected based on the change types, the fault was 

a logic fault due to order of checks 

18468 Yes Bug 18486 was mislabeled in the CVS repository. That commit was actually for Bug 18468. 

The fault repaired was a checking fault. Under certain conditions the view needed to be 

refreshed. 

19985 Yes 

(see Note) 

Bug 19985 was fixed by changing the way the end of a line was written. Improvements to the 

code were made along with the change in logic. The if statement inserts appear to be 

somewhat misleading, since the if statement was moved and the condition expression was 

changed. 

 

Cluster 6 – Insert Method Call 

The similarity of faults in Cluster 6 is explained primarily through the 

insertion of method calls (78.5%). A small part of the similarity is explained due to 

the addition of methods (6.7%). The cluster metrics are provided in Table 24. I 

expect this cluster to contain faults due to missing functionality and misuse of 

methods. Seven faults from this cluster were manually inspected. 

Table 24 - Cluster 6 Metrics 

Cluster Id 6  Descriptive Features  

Size 434  Insert Method Call 78.5% 

iSim 0.566  Additional Functionality 6.7% 

iSDev 0.091  Insert Variable Declaration 2.9% 

eSim 0.208  Additional State 2.6% 

eSDev 0.066  Insert Assignment 2.4% 

The faults inspected from this cluster are described in Table 25. Three of 

the faults address missing functionality (10823, 11308, and 18067). Three of the 
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faults are interface faults (17490, 17981, and 21654). The fix for Bug 16160 

repairs a dependency problem and is unexpected in this cluster.  

Table 25 - Faults Inspected for Cluster 6 

Bug Id Expected Description 

10823 Yes The fix for fault 10823 requires changes to four classes and the addition of two new “Action” 

classes. The fault is a change of functionality to support advanced users. The Action classes follow 

the Command design pattern [84]. 

11308 Yes The fix for Bug 11308 changed the project to use relative paths to allow project portability. 

16160 No The fix for 16160 repaired a dependency problem in the CVSUIPlugin class. 

17490 Yes The fix for Bug 17490 added method calls to enable context-sensitive help. 

17981 Yes The fix for Bug 17981 added method calls to enable shortcut keys (mneumonics). 

18067 Yes The fix for Bug 18067 was a change in behavior that included refreshing the viewer under certain 

conditions. 

21654 Yes Bug 21654 was a GTK specific issue and was repaired by adding a GTK specific method call. 

 

Cluster 7 – Delete Method Call 

The faults in Cluster 7 are explained by the removal of method calls 

(56.6%) and partially explained by the insertion of new method calls (16.2%). The 

metrics appear in Table 26. I expect the faults in this cluster to include the 

removal of extraneous code and moving method calls to new locations. Since the 

changes imply restructuring of the code, functional defects and refactoring may 

also be present in these faults.  

Table 26 - Cluster 7 Metrics 

Cluster Id 7  Descriptive Features  

Size 279  Delete Method Call 56.6% 

iSim 0.525  Insert Method Call 16.2% 

iSDev 0.090  Delete Variable Declaration 6.9% 

eSim 0.207  Delete If Statement 4.5% 

eSDev 0.084  Additional Functionality 4.3% 

The faults inspected from this cluster are described in Table 27. Three of 

the five fall into the category of extraneous method calls or functionality (14800, 
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16051, and 16445). The other two fixes in this cluster involve extensive changes 

to current program flow, and include refactoring. 

Table 27 - Faults Inspected for Cluster 7 

Bug Id Expected Description 

14197 No The fix for Bug 14197 was a significant change in existing functionality and included code 

refactoring. 

14288 No The fix for Bug 14288 made fundamental changes to the way that the search functions. 

These changes included removal of some functions and the insertion of others. This could 

be considered an algorithmic or functional fault. 

14800 Yes The fix for Bug 14800 removed method calls to fix the behavior. 

16051 Yes The fix for Bug 16051 removed method calls to fix the behavior. 

16445 Yes Bug 16445 repaired a functional defect where information was requested from the user that 

was not necessary. 

 

Cluster 8 – Insert If, Variable Declaration, Method Call, and Assignment 

The faults in Cluster 8 are explained by the insertion of if statements 

(40.3%), variable declarations (19.5%), method calls (11.1%), and assignment 

statements (9.0%). The metrics are provided in Table 28. Given the nature of 

these changes, the faults in this cluster are expected to be algorithmic or 

functional changes to behavior. 

Table 28 - Cluster 8 Metrics 

Cluster Id 8  Descriptive Features  

Size 554  Insert If Statement 40.3% 

iSim 0.504  Insert Variable Declaration 19.5% 

iSDev 0.082  Insert Method Call 11.1% 

eSim 0.246  Insert Assignment 9.0% 

eSDev 0.059  Delete If Statement 5.0% 

Seven faults in this cluster are manually inspected. The faults inspected 

from this cluster are described in Table 29. Five of the faults manually inspected 

fall into this broad category of changes. Bug 15506 is fixed by adding a busy 

indicator. The CVS commit for Bug 19270 included changes for another bug, 

which makes automated analysis challenging.  
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Table 29 - Faults Inspected for Cluster 8 

Bug Id Expected Description 

10714 Yes The fix for Bug 10714 corrected behavior when a view was closed. The software was not 

always properly setting focus to the last view that was active. 

14614 Yes Bug 14614 was an issue with the way that CVS tag decorators were displayed that resulted 

in duplicate tags. The fix was an update to the algorithm. 

15506 No The fix for Bug 15506 wraps the code in a Runnable class to show the busy indicator. This 

required code to store results and handle exceptions, then communicate these to the main 

program. 

15755 Yes Bug 15755 was repaired by changing the initial search location and the precedence of 

additional locations.  

19270 No The fix for Bug 19270 was checked in with the fix for Bug 6295. Bug 19270 appears to be a 

checking fault that required new code to retrieve a user preference for comparison. The fix 

for Bug 6295 corrected a problem where the save as option resulted in a read-only file. 

22448 Yes Bug 22448 was corrected by changing the algorithm to handle an edge case where the first 

button in the second row of a toolbar caused a screen resize. 

24134 Yes The fix for Bug 24134 changed the way that compile was invoked. 

 

Cluster 9 – Garbage Collector 

As mentioned previously, the last cluster acts as a “garbage collector” 

when the I1 criterion function is used. The metrics and descriptive features are 

provided in Table 30. The variation in change types and the scores for each 

descriptive feature support previous findings about the nature of the last cluster 

when I1 is used as the criterion function [79].  

Table 30 - Cluster 9 Metrics 

Cluster Id 9  Descriptive Features  

Size 376  Update Assignment 24.6% 

iSim 0.084  Insert Assignment 12.7% 

iSDev 0.057  Delete Variable Declaration 8.0% 

eSim 0.083  Update Return 6.6% 

eSDev 0.081  Remove Functionality 6.5% 

I expect this cluster to have varied faults that are uncommon or simple 

faults obfuscated by implementation details. These may represent a set of faults 
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for which automated classification is not possible or warranted due to their 

infrequent nature. Eight faults from this cluster are manually inspected. The faults 

inspected from this cluster are described in Table 31. 

Table 31 - Faults Inspected for Cluster 9 

Bug Id Expected Description 

10144 n/a Bug 10144 called for the promotion of org.eclipse.ui.views.framelist to a public API. The 

change includes the check-in of the files in their new location and updates to use the new 

namespace. 

11474 n/a The fix for Bug 11474 changed the way that an error condition is checked. The method that 

was previously used was deleted from the class and the error message was changed. 

12996 n/a Bug 12996 is a concurrency fault. The changes to correct the fault included the deprecation 

of old methods and changes to the parent class. 

13470 n/a The fix for Bug 13470 adds methods to externalize (and thus translate) string values. 

13625 n/a Bug 13625 is fixed by removing deprecated functions. 

15583 n/a The fix for Bug 15583 changes a literal value to correct a missing mnemonic in a menu item. 

This fault is interesting because the true nature of the fault is obfuscated because it is a 

change within a variable declaration. 

16027 n/a The fix for Bug 16027 required a large number of files to be changed. The changes included 

the removal of a number of getter methods and the update to method parameters. The latter 

changes were obfuscated because the method calls were part of a return statement. 

20430 n/a Bug 20430 was changed by updating a single assignment that set the minimum width. 

There was no discernible pattern to these changes. Some of the changes 

were large, while others were small and infrequent. It is important to note that the 

fix for Bug 16027 includes some changes that were hidden because they were 

part of a return statement. 

5.4.4 Discussion 

The manual inspection resulted in mixed results for 2 clusters, but many of 

the clusters provide promising results. A summary of agreement and 

disagreement is given in Figure 12. Cluster 0 (Update Variable Declaration) and 

Cluster 3 (Update Method Call) had poor results.  



86 
 

 

Figure 12 - Summary of Manual Inspection Results 

In most fault classification studies where the agreement of two classifiers 

are studied, Cohen’s Kappa is calculated to determine the level of agreement 

between classifiers. If I disregard the faults in the garbage collector and calculate 

Cohen’s Kappa for these results, I find κ=0.717. According to the scale presented 

by Landis and Koch, 0.717 represents Good agreement [85]. Thus, when 

uncommon faults are not considered, these results may be comparable to that of 

human fault classifiers [12], [13], [57].  

There are many difficulties in extracting useful information from the 

syntactical changes. For the faults that I inspected I saw changes such as 

variable renaming and refactoring. These changes introduce noise into the 

syntactical changes that are used to cluster faults. Similarly, many commits to the 

software repository will address multiple faults. These changes cannot easily be 

separated. These types of problems can be mitigated by disciplined check-in 

procedures. Research has been done on non-essential changes, such as 

renaming of variables, which may be applicable to this problem [86]. There have 
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also been studies on identifying refactored source code from changes [87], and 

determining whether a problem report should be classified as a fault or an 

enhancement from the text [22]. It may be possible to apply these techniques to 

improve results.  

However, the most significant problem that I can address based on my 

manual inspection results is the way that the ChangeDistiller tool handles 

anonymous classes. This problem may be exacerbated by the Eclipse 

architecture. Anonymous classes are commonly used as event handlers, and the 

component-based architecture of Eclipse relies heavily upon event handlers. In 

the next section I address the problem of anonymous classes in variable 

declarations, assignments, method calls, and return statements.  

5.5 Improving ChangeDistiller for Anonymous Classes 

In this section I describe updates to the ChangeDistiller application that 

handle changes that occur within anonymous classes. I have made these 

changes publicly available10.  

It is interesting to note that the Change Distilling algorithm does not 

specify a stopping point for comparison [65]. The ChangeDistiller implementation 

extracts the changes to the granularity required for the change taxonomy defined 

by Fluri and Gall [66]. The changes described in this section have to detect that 

an element is an anonymous class and change the behavior of the program 

appropriately to properly classify the changes.  

The ChangeDistiller tool uses the Visitor design pattern [84]. Each 

abstract syntax tree node is visited as the tree is traversed. The visit function for 

each node accepts a visitor class. The JDT API defines an ASTVisitor class and 

this is used as the basis of the ChangeDistiller algorithm. Returning true from the 

visitor results in a traversal of the child nodes, while returning false does not.  

Anonymous classes are contained in an instance of a 

QualifiedAllocationExpression in the JDT API. I modified the visit method for this 

type to traverse the children of the element. I also modified the visit method’s 

                                            
10 https://bitbucket.org/bill_kidwell/tools-changedistiller 
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local declarations, method calls, and return statements. The changes result in 

traversal of statements within anonymous class methods.  

My changes have been effective for every case that I found during this 

research and my testing. However, there are limitations. The changes are not 

designed to deal with any changes within the qualified allocation expression 

except for statement level changes. I did not test structural changes, such as the 

addition of methods. I did not see any of these changes during my inspection of 

fault changes for Eclipse. 

5.5.1 Updated Clustering Results 

The results of clustering after the changes to ChangeDistiller produced a 

similar set of clusters. The metrics from these results are presented in Table 32. 

The tightest cluster has an internal similarity of 0.709 (compared to 0.789) and 

the garbage collector cluster has an internal similarity of 0.147, an improvement 

over the previous result of 0.084.   

Table 32 - Updated Clustering Results for Eclipse 2.0 

Cluster 
Id 

Size iSim iSDev eSim eSDev 

0 167 0.709 0.125 0.115 0.068 
1 116 0.702 0.126 0.109 0.079 
2 212 0.654 0.118 0.136 0.079 
3 211 0.651 0.087 0.178 0.093 
4 323 0.653 0.093 0.222 0.060 
5 480 0.596 0.082 0.215 0.068 
6 233 0.593 0.065 0.289 0.064 
7 282 0.461 0.090 0.187 0.088 
8 526 0.510 0.083 0.242 0.071 
9 260 0.147 0.085 0.091 0.074 

 

The differences in the two results begin to become apparent when I 

investigate the descriptive features of the clusters. In Table 33 the descriptive 

features for the clusters are displayed side-by-side. The Condition Expression 

Change Cluster moved up one position in rank. The slight reduction in the 

similarity of the Update Variable Declaration cluster is likely due to the fact that 

variable declarations with changes in anonymous classes now have a different 
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set of feature values. It is also interesting to note that the size of Cluster 4 has 

increased dramatically.  

Table 33 - Descriptive Feature Comparison 

 Original Results  Updated Results 

Rank Size Descriptive Features Perc.  Rank Size Descriptive Features Perc. 

1 139 
Condition Expression 
Change 

94.70% 
0 167 Condition Expression 

Change 
96.20% 

0 94 
Update Var. 
Declaration 

98.50% 
1 116 Update Variable 

Declaration 
96.30% 

3 266 Update Method Call 95.40% 2 212 Update Method Call 93.60% 

2 132 Additional Functionality  95.20% 
3 211 Additional 

Functionality  
85.20% 

6 434 Insert Method Call 78.50% 4 323 Insert Method Call 89.30% 

5 446 St. Parent Change 63.10% 5 480 St. Parent Change 67.90% 

  Insert If 22.70%   Insert If 17.90% 

7 279 Insert Method Call 16.20% 6 233 Insert Method Call 44.20% 

  Delete Method Call 56.60%   Delete Method Call 28.40% 

    7 282 Delete Method Call 40.40% 

      Delete Var 
Declaration 

22.60% 

      Delete If Statement 13.40% 

8 554 Insert If 40.30% 8 526 Insert If 38.30% 

    Insert Var. Declaration 19.50% 
  Insert Var. 

Declaration 
27.90% 

    Insert Method Call 11.10%     

9 376 Update Assignment 24.60% 9 260 Update Assignment 42.00% 

  Insert Assignment 12.70%   Insert Assignment 26.70% 

4 279 Insert If 36.40%     

  Insert Return 47.30%     

 

The next change of interest is the change in Cluster 5. The percentage of 

contributions from the Insert If statement has dropped, while Statement Parent 

Change has grown. This change is likely due to changes in the membership of 

this cluster. The size has only changed from 446 to 452. Cluster 6 also exhibits 

large changes in the significance of the descriptive features, as well as a drastic 

change in size.  

Cluster 7 changed dramatically between the two versions. The logic errors 

from the original Cluster 7 are likely to be in a different cluster. Cluster 8 and 

Cluster 9 appear to be similar, except for a decrease in size in Cluster 9. In the 
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next section I revisit the manual inspections. I analyze faults that have stayed in 

the same clusters as well as faults that have changed clusters. 

5.5.2 Manual Inspection of Changes 

After updating the ChangeDistiller code and repeating the clustering 

process, I pulled the new cluster results for the manually inspected data. Thirty-

six of the fifty-eight faults are in the equivalent cluster in the new results. Nine 

additional faults changed membership to a cluster with similar descriptive 

features. The remaining thirteen faults changed membership to new clusters. In 

this section we analyze faults in each of these categories. 

Equivalent Clusters 

The majority of faults that remain in an equivalent cluster meet the 

expectations set for that cluster. This includes five faults that remain in the 

garbage collector cluster. Three faults remain in an equivalent cluster and do not 

meet expectations. Bug 18923 remains in the Update Variable Declaration 

cluster. As mentioned during the manual inspection, this fault includes variable 

name changes that had no impact on behavior. Bug 23824 also remains in the 

Update Variable Declaration cluster. Bug 23824 involves an incorrect cast. Bug 

15506 remains in the Insert If + Insert Var Decl cluster. In Bug 15506 existing 

code is wrapped in an anonymous class instance.  

The large number of faults assigned to similar clusters provides some 

evidence of stability. None of the faults from Condition Expression Change 

cluster or the Additional Functionality cluster change membership. Fault fixes 

that require complex changes, or that include refactoring continue to be difficult 

to cluster correctly. Some small changes, such as the casting problem and 

adding an anonymous class to wrap existing functionality, also present 

challenges. 
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Similar Descriptive Features 

 It is worth noting that the Insert If + Insert Return cluster does not exist 

for the updated clustering results. It is also interesting that the cluster that 

appears in the new solution is very different (Delete Method Call + Var Decl + If 

Statement cluster). One possible explanation is that the Insert If + Insert 

Return cluster is currently a subcluster, and will emerge if k is increased. This 

might also lead to an expectation that all of the faults from this cluster are 

currently in a different cluster, but this is not the case.  

Three of the faults from the original Insert If + Return cluster have 

changed membership to the Insert If + Insert Variable Declaration cluster. 

Bugs 12590, 13417, and 18274 are checking faults, and the fixes appear to be 

simple in the syntactic sense. This supports the idea of a subcluster within the 

Insert If + Insert Variable Declaration cluster.  

If a subcluster exists, faults that are more complex do not necessarily 

reside within the subcluster. Bug 12210 and 14061 changed membership to the 

Delete Method Call + Var Decl + If cluster. Both of these faults involved more 

extensive logic changes than the others. I increased k until a cluster emerged 

with the Insert If Statement and Insert Return Statement as the dominant 

descriptive features. The cluster emerged at k = 13. Four of the five faults were in 

this cluster, but Bug 12210 remained in the Delete Method Call + Var Decl + If 

cluster.  

The Insert Method Call cluster and the Insert Method Call + Delete 

Method Call cluster also had several membership changes. This is seen in the 

changes to sizes and the feature contributions. Bug 16160 is not expected in the 

Insert Method Call cluster. The fault moved to the Insert Method Call + Delete 

Method Call cluster. The fix is a structural change to avoid referencing an 

internal class directly. The fault does not belong in the new cluster either. Bug 

11308 is a change in behavior. It moves to the Insert If + Insert Variable 

Declaration cluster. Complex faults in this cluster are expected to be complex 

logic changes or complex changes to behavior, so it belongs in the new cluster. 
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Bug 10823 is a similarly complex change to logic and behavior that moves to the 

Insert Method Call + Delete Method Call cluster. The fault meets the 

expectations of this cluster. 

Bug 14197 moves from the Delete Method Call cluster to the Insert 

Method Call + Delete Method Call cluster. As noted above, Bug 14197 is a 

significant change in functionality, so it meets the expectations of this cluster, 

where it did not meet the expectations of the Delete Method Call cluster. The fix 

for 14197 includes refactoring that makes it difficult to characterize via its syntax. 

Bug 16445 also moved from the Delete Method Call cluster, but moved to the 

Delete Method Call + Var Decl + If cluster, where it meets the expectations of 

that cluster.  

Bug 19270 contains multiple fault fixes (includes Bug 6296). In addition to 

the fact that two fixes are included, a number of statements are removed during 

the restructuring of the files to fix the problems. The fault moved from the Insert 

If + Var Decl + Method Call cluster to the Delete Method Call + Var Decl + If 

cluster. The fault does not belong in either cluster. 

Based on the analysis of the faults in this category, it seems apparent that 

larger values for k could provide better results in some cases. It may be difficult 

to identify a value that provides the fine-grained patterns that we seek and makes 

the clusters meaningful to practitioners. In addition, many changes in this 

category were complex. Some of the difficulty in clustering complex faults may be 

due to the removal of code. 

New Clusters 

The aim of the changes to ChangeDistiller was to avoid problems 

identified with anonymous classes. Anonymous classes affect three of the 

manually inspected faults. Bug 11110 moved to the Condition Expression 

Change cluster, where it is an expected member. Bug 12449 involves the 

addition of code to handle the delete action when the delete key is pressed. This 

fault moved to the Insert Method Call cluster, where it is an expected member. 

Bug 20421 involves logic changes that are obfuscated by an anonymous class, 
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which is passed as a parameter. This fault moved to the Statement Parent 

Change + Insert If cluster, where it is an expected member of the group. All 

three incidents that involve changes in anonymous classes are in correct 

clusters. 

Additional faults from manual inspection that changed clusters appear 

below in Table 34. The Kappa statistic for these results improved slightly to κ = 

0.735.  

Table 34 - Additional Manual Inspection for New Results 

Bug Original Cluster New Cluster Expected 

21824 Update Method Call Insert Method Call Yes 

14025 Insert If  

+ Stmt Parent Change 

Update Method Call No 

21654 Insert Method Call Update Var Decl No 

14288 Delete Method Call Condition Expr Change No 

10144 Garbage Collector Additional Functionality Yes 

11474 Garbage Collector Condition Expr Change Yes 

12996 Garbage Collector Delete Method Call  

+ Var Decl + If 

No 

 

5.5.3 Discussion 

The changes to the ChangeDistiller program did improve the clustering of 

faults with anonymous classes, but overall made only incremental improvement. I 

take this as a positive sign that additional changes could make further 

improvements. Some code check-ins contain multiple fault fixes, refactoring, or 

changes to variable names. These fault fixes will be difficult to classify in an 

automated manner.  

5.6 Conclusions 

In order to further validate the extended change types introduced in 

Chapter 1 the CLUTO clustering toolkit is used to cluster the fault fixes. Using the 
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repeated bisection clustering method and the cosine similarity, the I1 criterion 

function performs better than the I2 criterion function with respect to the average 

internal similarity of the clusters in the resulting solution. The ability of I1 to create 

tight clusters and one cluster that acts as a “garbage collector” in a noisy data set 

aids the investigation [79]. 

The results of clustering where k=10 are analyzed. The similarity of the 

cluster is explained by one to four features that are shared by the faults in the 

cluster. These descriptive features are used to automatically label the cluster. 

The clusters for Eclipse 2.0 and 3.0 and their sizes were compared. The 

occurrence and size of the clusters were correlated, indicating that the clustering 

of these change types is consistent in these two versions of the software. 

A subjective analysis of a subset of faults in each cluster provides 

guidance on the types of faults characterized by different source code change 

types. Many fault fixes are in agreement with our expectations based on the 

syntactical changes that were made to the fault. For example, faults fixed with 

changes to condition expressions that are inspected in this study are in line with 

expectations.  

Several of the faults that were inspected exposed limitations in the 

taxonomy. ChangeDistiller stops the comparison of the abstract syntax trees at 

the statement level due to its intent in analyzing change couplings. As a result, 

update changes to variable declarations, assignments, or return statements do 

not provide the granularity necessary for fault analysis. There were a surprising 

number of problems with anonymous classes as method parameters, and within 

variable declarations, that also require more granular information about the 

change. These findings indicate that the comparison must be extended beyond 

differences in statements, to differences in arguments and expressions. 

The ChangeDistiller program was updated to handle the common 

problems that we saw with anonymous classes. The data was collected with the 

updated program and the clustering process was repeated. The faults that 

involved anonymous classes were now in the expected clusters, but other 

problems emerged. The results seem to indicate that more clusters are 
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necessary for useful results. The number of clusters will involve a trade-off 

between the precision of the patterns in the groups, and the usefulness of the 

clusters to practitioners. In addition, the number of faults that changed 

membership due to deleted statements is significant. Weighting deleted 

statements might provide a method to improve these results further. 

I encountered a number of common software repository mining problems 

during the manual inspection. Code refactoring that is included in a commit for a 

bug fix can make automated analysis difficult. A simple change, such as 

renaming a variable for readability, should be handled at the semantic level of 

analysis. More complex refactoring changes will still make automated analysis 

difficult. Developers sometimes include multiple bug fixes in a single commit, as 

evidenced by Bug #19270. Bug #18468 was mislabeled as Bug #18486, which 

can be problematic when bug database information is cross-referenced with the 

syntactical changes. 

I conclude that the current taxonomy provides a useful start for the 

automated analysis of software faults. Incremental improvements are necessary, 

and based on the improvements reported above, can measurably improve the 

effectiveness of the method. In the next chapter we utilize the improved version 

of the ChangeDistiller tool to investigate the distribution of faults across several 

versions of an open source software project.  
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Chapter 6  

Software Fault Evolution 

In this chapter I analyze the evolution of software faults over multiple 

releases for a major component of the Eclipse product line. The Eclipse Java 

development tools (JDT) project is analyzed over seven versions of its release. I 

investigate a number of questions about the evolution of software faults that are 

made possible by automated fault classification. These questions include an 

investigation of fault distribution by subcomponent, between single and multi-file 

fixes, among developers that fixed the faults, among pre-release and post-

release fault fixes, and of fixes that appear problematic.  

The study can be described using the Goal/Question/Metric (GQM) 

template for goal definition [82][83].  

6.1 Case Study 

An overview of the Eclipse JDT is available on the Eclipse.org website 

[88]. The project provides a full-featured Java IDE built on the Eclipse platform. 

The site describes five JDT plug-ins, the plug-ins are summarized here. The JDT 

APT (Annotation Processing Tools) adds annotation support, which was 

introduced in Java 5 (1.5). The JDT Core provides APIs for building Java 

applications, navigating Java elements (e.g., packages, classes, methods, and 

fields), code assist, and refactoring. The JDT Debug plug-in provides debugging 

support. The JDT Text plug-in provides a full featured Java editor with syntax 

coloring, code assist, code formatting, and other common source code editor 

features.  

Analyze the distribution of software faults  

for the purpose of understanding software evolution 

with respect to the consistency of the distributions 

from the point of view of the researcher  

in the context of an open source Java development environment. 
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The Eclipse project coordinates releases for multiple projects, such as the 

Eclipse Platform and the Eclipse JDT, at the same time. The release dates for 

the versions that I investigate are shown in Table 35. Faults that are fixed 

between the Start date and the Release date are considered pre-release fault 

fixes. Faults that are fixed between the Release date and the End date are 

considered post-release fault fixes. Eclipse also schedules service releases for 

each version after the Release date. The timing of the service releases is not 

considered in this study. 

Table 35 - Eclipse Release Timelines 

Version Start Release End 

2.0 1/1/2002 6/7/2002 9/29/2002 

2.1 9/30/2002 3/28/2003 9/26/2003 

3.0 12/1/2003 6/21/2004 12/30/2004 

Europa (3.3) 1/1/2007 6/29/2007 12/31/2007 

Ganymede (3.4) 1/1/2008 6/25/2008 12/31/2008 

Galileo (3.5) 1/1/2009 6/24/2009 12/31/2009 

Helios (3.6) 1/1/2010 6/23/2010 12/31/2010 

 

In this study I am investigating the Eclipse JDT project as a component of 

the Eclipse product line. I look at the subcomponents of the JDT based on the 

Java packages. The subcomponents are listed in Table 36 with the number of 

fault fixes that included source code changes for each version. The total in the 

right-most column indicates the number of faults in the subcomponent across all 

studied versions. The Version total row at the bottom of the table presents the 

total number of faults across all subcomponents for the given version of Eclipse. 
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Table 36 - Fault Fixes for Eclipse JDT Subcomponents by Version 

Subcomponent 2.0 2.1 3.0 3.3 3.4 3.5 3.6 Total 

org.eclipse.jdt.ui 639 815 842 566 425 238 235 3760 

org.eclipse.jdt.core 184 444 684 458 407 300 277 2754 

org.eclipse.jdt.debug.ui 341 196 222 138 49 40 27 1013 

org.eclipse.jdt.debug 234 98 98 40 19 27 15 531 

org.eclipse.jdt.launching 97 81 55 29 20 9 12 303 

org.eclipse.jdt.junit 12 45 57 34 12 17 8 185 

org.eclipse.ltk.ui.refactoring 
  

9 18 8 7 5 47 

org.eclipse.jdt.apt.core 
   

31 9 2 1 43 

org.eclipse.ltk.core.refactoring 
  

12 13 6 1 7 39 

org.eclipse.jdt.compiler.apt 
   

10 7 8 3 28 

org.eclipse.jdt.compiler.tool 
   

8 3 3 7 21 

org.eclipse.jdt.apt.pluggable.core 
   

8 4 3 1 16 

org.eclipse.jdt.core.manipulation 
   

10 
   

10 

org.eclipse.jdt.junit.runtime 
  

5 1 
  

3 9 

org.eclipse.jdt.junit4.runtime 
   

2 
 

2 2 6 

org.eclipse.jdt.apt.ui 
   

3 
   

3 

Version Total 1507 1679 1984 1369 969 657 603 8768 

 It is interesting to note that the top 4 subcomponents account for more 

than 90% of the fault fixes over the seven releases. It is also evident from the 

Version Total row that the fault fix count for the first three releases is trending up, 

while the fault fix count for the last four releases is trending down. Most likely this 

is due to the maturation of the product and the process. The trend is depicted in 

Figure 13.  
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Figure 13 - JDT Project Fault Fixes by Version 

6.2 Data Collection 

In this section I describe the data collection for this study. The database 

that was published by Krishnan et al. was again used as the basis for my data 

collection [74]. The source code that was used for collecting the change type 

frequencies was no longer available in a public CVS repository. The Eclipse 

project migrated to the use of Git, a distributed revision control system. In this 

section I describe how I altered MiSFIT to support the use of Git. 

6.2.1 Git Data Collection Changes 

The first step of the migration is to match CVS file and revision numbers to 

Git commits and files. Each commit in a Git repository has an identifier, and may 

contain multiple files. CVS, on the other hand, tracks changes for each file 

separately, even if changes occur at the same time. When converting from CVS 

the Eclipse project chose to maintain historical information. The tools used to 

convert the repository combine files checked in simultaneously into individual 

commits.  
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I use the Eclipse EGit project as an interface to the Git repository11. For 

each fault fix, I query the file name, author name, commit date, and commit 

comment from the database. Using this information, I was able to query the Git 

repository and retrieve commit and file information for 92.3% of the changes 

(1813/22889 could not be retrieved).  

All but 15 of the unidentified files are part of a feature branch in CVS. A 

feature branch occurs when the code is isolated from other developers in order to 

get a feature working, then merged back into the mainline branch for testing and 

release. The other 15 files were manually investigated and are not available in 

the repository.  

Because these seven versions occurred over nearly a decade, it was 

necessary to adjust my process to handle new constructs in the Java 

programming language. Eclipse 2.0, 2.1, and 3.0 are parsed and examined using 

version 1.4 of the Java Development Kit (JDK). Eclipse 3.3 is parsed and 

examined using version 1.5 of the JDK. The remaining versions are parsed and 

examined using version 1.6 of the JDK.  

I also found and corrected a number of issues in the database. The 

removal of special characters (e.g., apostrophe (‘) and backslash (\)) caused 

issues when matching information by description. I altered the Perl script 

provided by Krishanan et al. [74] to maintain these characters and improve the 

matching.  

I found multiple problems with incorrectly identified Bug Ids in the 

database. In CVS, the Bug Id is entered as free form text in the comment. 

Multiple conventions are used. I found multiple instances where other numbers in 

the comments caused problems. For example, the comment “Fixed bug 187226: 

Compiler warning in I20070516-0010” resulted in two records, one for 187226 

and one for 0010. I constructed a query to identify similar problems and removed 

the erroneous entry. I also found problems where build numbers in the form of 

dates cause problems. The entry “JRT 20020305” was logged as Bug Id 200203. 

                                            
11 http://eclipse.org/egit/ 
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I investigated all entries with identifiers that matched dates in the YYYYMMDD 

format and removed those that were errors.  

In this section I have described modifications to the MiSFIT system in 

order to collect data from the Eclipse JDT Git repositories. I utilized the EGit 

project to interface with the Git repositories and fetch files as they were needed. I 

also used the EGit project to mine information about the commits and expand my 

database. Other steps in the data collection process were changed minimally. 

6.2.2 JDT Clustering Results 

The resulting clusters for 8096 fault fixes that were processed for seven 

versions of the Eclipse JDT project are described in Figure 14 and illustrated in 

Figure 15. The clusters are similar to those in Eclipse 2.0 and Eclipse 3.0. The 

expectations for these clusters are as follows: 

0. Logic faults involving condition expressions 

1. Interface faults, likely involving incorrect parameters or calling the 

incorrect version of a method 

2. Faults that involve missing functionality 

3. Interface faults or missing functionality 

4. Logic faults involving a failure to check necessary conditions 

5. Incorrectly initialized variables or incorrect assignments 
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Eclipse JDT: #Rows: 8096, #Columns: 128, #NonZeros: 1036288 

Cluster  0, Size:  624, ISim: 0.779, ESim: 0.135 

Descriptive: COND_EXPR_CHG 97.5%, INS_VAR_DECL 0.8%, STATEMENT_PARENT_CHANGE 0.6%, INS_IF 0.3%, UPD_VAR_DECL 0.2%  

Cluster  1, Size:  512, ISim: 0.653, ESim: 0.126 

Descriptive: UPD_METHOD_CALL 93.0%, INS_VAR_DECL 1.2%, UPD_VAR_DECL 1.1%, INS_METH_CALL 0.7%, ADD_FUNC 0.6%  

Cluster  2, Size:  525, ISim: 0.597, ESim: 0.141 

Descriptive: ADD_FUNC 88.3%, INS_METH_CALL 3.3%, ADD_STATE 1.8%, COND_EXPR_CHG 1.2%, INS_IF 1.0%  

Cluster  3, Size:  840, ISim: 0.606, ESim: 0.179 

Descriptive: INS_METH_CALL 87.3%, INS_IF 3.1%, INS_VAR_DECL 2.2%, DEL_METH_CALL 2.1%, ADD_STATE 0.9%  

Cluster  4, Size: 1461, ISim: 0.635, ESim: 0.214 

Descriptive: STATEMENT_PARENT_CHANGE 74.7%, INS_IF 11.6%, COND_EXPR_CHG 5.4%, INS_VAR_DECL 1.3%, DEL_IF 1.2%  

Cluster  5, Size:  499, ISim: 0.487, ESim: 0.105 

Descriptive: UPD_VAR_DECL 80.6%, UPD_ASSIGN 14.0%, INS_VAR_DECL 1.5%, COND_EXPR_CHG 1.0%, DEL_VAR_DECL 0.4%  

Cluster  6, Size:  707, ISim: 0.557, ESim: 0.208 

Descriptive: INS_RETURN 43.2%, INS_IF 40.3%, STATEMENT_PARENT_CHANGE 4.2%, INS_VAR_DECL 3.2%, DEL_RETURN 3.2%  

Cluster  7, Size: 1246, ISim: 0.555, ESim: 0.246 

Descriptive: INS_VAR_DECL 39.1%, INS_IF 24.5%, INS_ASSIGN 16.1%, INS_METH_CALL 5.8%, STATEMENT_PARENT_CHANGE 4.7%  

Cluster  8, Size:  976, ISim: 0.450, ESim: 0.178 

Descriptive: DEL_METH_CALL 33.0%, DEL_VAR_DECL 24.1%, DEL_IF 14.2%, DEL_ASSIGN 4.9%, INS_METH_CALL 3.9%  

Cluster  9, Size:  706, ISim: 0.146, ESim: 0.086 

Descriptive: INS_ASSIGN 42.8%, UPD_RETURN 25.1%, REMOVE_FUNC 5.1%, DEL_ASSIGN 4.9%, ADD_STATE 2.9% 

Figure 14 - Fault Clusters for Eclipse JDT 
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Figure 15 - Matrix Visualization of Clusters from Eclipse JD
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6. Logic faults; primarily a failure to check pre-conditions 

7. Faults with incorrect algorithm or behavior 

8. Faults that require the removal of extraneous behavior 

9. Rare, varied faults that should be manually inspected 

6.3 Experimental Design 

In this study I undertake analysis of the fault profile, that is, the frequency 

of fault occurrence in each fault class. Each cluster is treated as a fault class. As 

mentioned by Freimut [39], the use of the chi-square test can be used to test 

whether faults are distributed uniformly, or whether they are statistically 

independent. 

6.3.1 Distribution of faults by subcomponent 

For my first research question I want to know whether there is a 

relationship between a fault’s class and the subcomponent in which it is 

observed. If such a relationship exists, the distribution of faults among fault 

classes will differ for each subcomponent.  

RQ6.1: Over time, do the same types of faults tend to 

occur in a given subcomponent? 

I define fS0 as the frequency of fault class zero (0) in subcomponent s. S is 

the set of all subcomponents of the Java Development Toolkit that had fault fixes. 

Fs is a vector composed of the frequencies for individual fault classes fs0, fs1, …, 

fsn. FsE is a vector composed of the expected frequencies of individual fault 

classes for subcomponent s. FsE is calculated by assuming that the distribution of 

faults for the JDT project are reflected in each of the subcomponents. For each 

subcomponent, the total number of faults in that subcomponent is multiplied by 

the frequency of each fault class in the JDT over all seven releases. 
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My independent variable is the subcomponent. My dependent variable is 

the distribution of the faults, FS. My null hypothesis is that fault classes from the 

subcomponents of JDT are distributed evenly. 

𝐻0: ∀ 𝑠 ∈  𝑆, 𝐹𝑠 = 𝐹𝑠𝐸   

My alternative hypothesis is that fault classes are not distributed evenly. 

𝐻𝐴: ∃ 𝑠 ∈  𝑆, 𝐹𝑠 ≠ 𝐹𝑠𝐸   

I calculated the expected frequency for all subcomponents in the JDT that 

contained faults. Six of these subcomponents had an adequate number of faults 

to meet the minimum requirements of a X2 test (expected frequency >5 for each 

category). I performed a Χ2 goodness of fit test individually for each 

subcomponent. The resulting p-Value of each test is given in Table 37. Items in 

bold were significant at the α = 0.05 level.  

Table 37 - Fault distribution for JDT subcomponents 

Subcomponent No. of Faults p-Values 

org.eclipse.jdt.core 2577 4.52E-43 

org.eclipse.jdt.debug 501 8.24E-02 

org.eclipse.jdt.debug.ui 984 3.85E-17 

org.eclipse.jdt.junit 171 5.54E-04 

org.eclipse.jdt.launching 284 5.43E-02 

org.eclipse.jdt.ui 3673 1.82E-12 

Two of the subcomponents, org.eclipse.jdt.debug and 

org.eclipse.jdt.launching, have a distribution that is very similar to the expected 

frequency. For these two subcomponents, the null hypothesis cannot be rejected. 

These two subcomponents have the same fault classes in similar proportions. 

The similarity can be seen in Figure 16 below. 
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Figure 16 – Similar Fault Distributions for two subcomponents 

The distribution of faults for the four remaining subcomponents differs 

significantly from the distribution seen at the JDT project level. The distribution of 

faults in these subcomponents can be seen in Figure 17. 
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Figure 17 - Fault Distribution for four JDT subcomponents 

The JDT core subcomponent (org.eclipse.jdt.core) has a large proportion 

of faults for cluster 3 (Additional Functionality). It also has a much lower 

proportion of faults in cluster 6 (Insert Return and Insert If).  

The JDT Debug UI subcomponent has a significantly smaller proportion of 

faults in Cluster 0 (Condition Expression Change) and Cluster 3 (Additional 

Functionality). It has a significantly larger proportion of faults in Cluster 6 (Insert 

Return and Insert If). 

The JDT JUnit subcomponent has zero faults in Cluster 2 (Update Method 

Call) and contains a large proportion of faults in Cluster 1 (Update Variable 

Declaration). 

The JDT UI subcomponent has the largest number of faults for the studied 

time period. Similar to the JDT Debug UI, the JDT UI subcomponent has a 

significantly smaller proportion of faults in Cluster 3 (Additional Functionality), 

and a larger proportion of faults in Cluster 6 (Insert Return and Insert If). Unlike 
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the JDT Debug UI subcomponent, the proportion of Cluster 0 (Condition 

Expression Change) is equal to the expected proportion. The similarity in the two 

subcomponents may be due to their similar purpose in the architecture. This led 

us to perform a test of independence between the fault distributions between the 

two subcomponents. I normalized the values and investigated the following 

hypotheses. 

My null hypothesis is that the distribution of faults for the two UI 

subcomponents are equal. 

𝐻0: 𝐹𝑗𝑑𝑡.𝑢𝑖 = 𝐹𝑗𝑑𝑡.𝑑𝑒𝑏𝑢𝑔.𝑢𝑖 

My alternative hypothesis is that faults are from different distributions. 

𝐻𝐴: 𝐹𝑗𝑑𝑡.𝑢𝑖 ≠ 𝐹𝑗𝑑𝑡.𝑑𝑒𝑏𝑢𝑔.𝑢𝑖 

The Χ2 = 0.0296 < X2
0.05, 9 = 16.92. Thus, the null hypothesis cannot be 

rejected, indicating that the normalized distribution of faults among the fault 

classes is not significantly different. The normalized distributions are shown in 

Figure 18. This finding suggests that the fault distribution is a function of the 

purpose of the subcomponent, rather than (or perhaps in addition to) the project 

in which it resides. An analysis of additional projects, along with a categorization 

of subcomponent types, is necessary to better understand this relationship. 
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Figure 18 - Normalized Fault Distributions 

6.3.2 Fault distribution for single and multi-file fixes 

My next research question investigates the size of a fault fix with respect 

to the number of files that are altered. Intuitively, one might suspect that faults 

fixed within a single file are less complex in nature. However, what does this 

imply for the classification of the fault based on syntactical change data?  

RQ6.2: Are certain fault classes more likely to be fixed by 

single or multi-file changes? 

I filter the file count data so that unclassified changes and changes to 

comments are excluded. Note that unclassified changes represent 88 of 19946 

file revisions. Changes to comments have no impact.  

There are 4867 single file fault fixes and 3219 multi-file fault fixes. The 

average number of files changed for a fault fix is 2.54 and the median number of 

files is one. The standard deviation is 5.6 files.  

I perform a Χ2 goodness of fit test to determine if the single-file fix 

frequencies have a distribution similar to the multi-file fix frequencies.  
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My null hypothesis states that the distribution of faults for single file and 

multi-file fault fixes are equal.  

I define FSF as the vector of observed frequencies for all fault classes that 

are repaired with a change to a single Java file. I define FMF as the vector of 

expected frequencies for all fault classes that are repaired by changing more 

than one Java source file.  

𝐻0: 𝐹𝑆𝐹 = 𝐹𝑀𝐹 

My alternative hypothesis is that the distribution of fault classes differs for 

single file and multi-file fixes.  

𝐻𝐴: 𝐹𝑆𝐹 ≠ 𝐹𝑀𝐹 

The X2 test is significant at the α=0.05 level, allowing the rejection of the 

null hypothesis and leading to the conclusion that these distributions are 

significantly different. The distributions are shown in Figure 19. 

 

 

Figure 19 - Fault Distribution for Single and Multi-File Fixes 

There are a number of interesting observations that can made from the 

distribution. Cluster 0 (Condition Expression Changes) and Cluster 4 (Statement 
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Parent Change and Insert If) both represent logic changes. As one might 

expect, these types of logic changes appear to be much more common in single 

file changes. On the other hand, Cluster 3 (Additional Functionality) is also more 

common in single file changes. This suggests that many new functions are 

called only within their class, or exposed through public APIs. Cluster 5 (Insert 

Method Call) is also more common in single file changes. This may indicate that 

interface faults are often fixed on the caller side.  

6.3.3 Fault distribution in terms of developer 

In this section I look at the distribution of faults among the authors of the 

fixes.  

RQ6.3: Do developers tend to fix the same types of 

faults? 

I start with 35 developers that committed fault fixes to the JDT for one of 

the seven versions in the case study. Eighteen of the 35 fixed enough faults that 

the assumptions of X2 could be met (expected value > for all cells). As with 

previous tests, I calculate an expected distribution based on the distribution of 

faults in the JDT project. The number of fault fixes that were logged for each 

author is multiplied by the frequency of each fault type to arrive at the expected 

values. The independent variable is the author of the fault fix. The dependent 

variable is the distribution of the fault fixes. 

I define A to be the set of all authors that committed fault fixes to the JDT 

project in the studied releases. Let a be an author that exists in A. Fa is a vector 

with the distribution of faults by fault class. FaE is the expected distribution based 

on the number of faults fixed by author a, and the frequency of each fault class 

in the JDT project.  

My null hypothesis is that fault fixes from the authors of the JDT project 

are distributed evenly. 
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𝐻0: ∀ 𝑎 ∈  𝐴, 𝐹𝑎 = 𝐹𝑎𝐸   

My alternative hypothesis is that fault classes are not distributed evenly for 

each author. 

𝐻𝐴: ∃ 𝑎 ∈  𝐴, 𝐹𝑎 ≠ 𝐹𝑎𝐸   

 

Of these eighteen, the null hypothesis can be rejected for fourteen. The 

distribution of the faults for the remaining four authors was not statistically 

different than the distribution of faults for the JDT project. The data that was 

compared, as well as the p-value for the X2 test, is provided in Table 38. Rows 

in bold are significantly different from the expected distribution. The data is 

ordered based on the number of total fixes committed by the author.  

Table 38 - Fault Distribution for Fault Fix Commits by Author 

Author 0 1 2 3 4 5 6 7 8 9 All p-value 

maeschli 70 61 37 190 61 53 139 152 86 72 921 4.05E-01 

dmegert 67 43 38 149 43 63 117 105 95 56 776 5.90E-02 

darin 40 36 36 164 26 46 120 109 92 68 737 1.85E-03 

mkeller 52 42 18 87 39 47 78 87 71 56 577 3.61E-03 

othomann 28 28 11 94 19 23 39 74 36 48 400 4.37E-02 

oliviert 23 21 11 108 20 35 27 85 22 43 395 1.28E-06 

dbaeumer 23 26 26 51 16 29 66 66 51 24 378 3.21E-05 

akiezun 20 24 24 50 18 49 55 21 39 23 323 1.45E-11 

darins 13 28 12 56 19 12 73 32 35 30 310 2.56E-07 

bbaumgart 27 13  57 17 31 59 44 35 14 297 2.61E-03 

ffusier 22   113 18 12  59 15 25 264 8.27E-11 

jlanneluc 25 16 12 71 18 14 16 44 23 15 254 3.11E-02 

pmulet 39   107 15 12 15 29 20 17 254 2.82E-13 

daudel 37 12 12 63 12 15 14 42 12 34 253 2.61E-06 

jeromel 15 12 12 47 21  19 41 17 14 198 6.17E-02 

jburns 11 14  36 21  37 28 20 14 181 1.57E-02 

lbourlier 11 14  36  13 13 26 19 18 150 3.98E-01 

kent 17   67  14  18   116 7.97E-13 
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The relative distribution data is presented graphically in Figure 20. From 

the chart I can see that proportions of each type vary considerably. It is clear that 

faults from Cluster 3 (Additional Functionality) are quite prominent for all authors. 

Additional factors, such as which area of the code the author generally works, 

may need to be explored to better understand the distribution.  

 

Figure 20 - Fault Distribution for Fault Fix Commits by Author 

6.3.4 Fault distributions for pre-release and post-release fixes 

For my next research question, I want to determine whether the 

distribution of pre-release faults is indicative of post-release faults. This may tell 

us whether certain fault classes require additional attention to prevent their 

occurrence as post-release faults.  

RQ6.4: Are pre-release fault distributions predictive of 

post-release fault distributions? 
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The independent variable is the pre-release/post-release state of the fault 

fix. The dependent variable is the distribution of the faults. To test this hypothesis 

I calculate the expected frequency of post-release faults for each fault class 

based on the frequency of its occurrence in pre-release fault fixes.  

FPOST is a vector composed of the observed frequencies of post-release 

faults for all fault classes. FPOSTE is a vector composed of the expected 

frequencies of all fault classes for post-release faults in a version of the Eclipse 

JDT project. 

My null hypothesis is that the distribution of faults for pre-release and post-

release faults are from the same distribution. 

𝐻0: 𝐹𝑃𝑂𝑆𝑇 = 𝐹𝑃𝑂𝑆𝑇𝐸 

My alternative hypothesis is that faults are from different distributions. 

𝐻𝐴: 𝐹𝑃𝑂𝑆𝑇 ≠ 𝐹𝑃𝑂𝑆𝑇𝐸 

The values for the X2 goodness-of-fit test for each version are given in 

Table 39. Three of four versions exhibit a significantly different distribution (the 

null hypothesis can be rejected at α=0.05), while the other four exhibit a 

distribution that is not significantly different than that of pre-release faults. 

Table 39 - p-values for Chi-Square Goodness-of-Fit Test 

Version p-Value 

2.0 0.7019 

2.1 0.4006 

3.0 0.0008 

3.3 Europa 0.0113 

3.4 Ganymede 0.0018 

3.5 Galileo 0.1047 

3.6 Helios 0.2151 

 

The relative distributions for each version is depicted in Figure 21. From 

this illustration I can see that the relative distribution is similar in most cases, and 

that variations tend to represent a handful of fault classes that occur in higher or 

lower frequencies than expected post-release. Cluster 0 (Condition Expression 



 

115 
 

Change) is significantly higher post-release for release 3.0 and 3.3 (Europa). 

Conversely, Cluster 6 (Insert Return/Insert If) is significantly lower than expected. 

In version 3.4 (Ganymede) the cluster with a larger proportion of faults is Cluster 

1 (Update Variable Declaration) while Cluster 4 (Statement Parent Change/Insert 

If) and Cluster 5 (Insert Method Call) are both smaller than expected.  

 

Figure 21 - Pre-Release/Post-Release Fault Fix Distribution 

6.3.5 Fault distribution for problematic fixes 

While mining data from the JDT, I noticed that some faults require multiple 

commits before they are fixed. In some cases, this can be attributed to minor 

issues that are rectified quickly. I refer to changes that require multiple rounds of 

changes as problematic fixes. For my next research question I investigate the 

fault classes for these changes. 

RQ6.5: Are problematic fault fixes distributed evenly 

among fault classes? 
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I only looked at faults where the file was changed more than once, with at 

least a four hour time lapse between changes. Of the 4054 files that are involved 

in fault fixes, 1708 files meet this criterion and represent 840 fault fixes. I 

calculate the expected distribution based on the overall distribution of each fault 

class. 

The independent variable for this test is the status of the fault fix as 

problematic. The fault fix belongs to the set of faults that required multiple 

changes to repair. The dependent variable is the distribution of the faults among 

the fault classes. I define FPR as a vector composed of the observed frequencies 

of problematic fault fixes for all fault classes. FPRE is a vector composed of the 

expected frequencies of all fault classes for problematic fault fixes in a version of 

the Eclipse JDT project. 

My null hypothesis is that the distribution of problematic fault fixes is the 

same as the distribution of faults in the JDT project. 

𝐻0: 𝐹𝑃𝑅 = 𝐹𝑃𝑅𝐸 

My alternative hypothesis is that problematic fault fixes are from a different 

distribution. 

𝐻𝐴: 𝐹𝑃𝑅 ≠ 𝐹𝑃𝑅𝐸 

 

The X2 goodness-of-fit test for homogeneity against the expected 

distribution is significant for α = 0.05, indicating that these faults are not 

distributed as expected. The data is depicted in Figure 22.  
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Figure 22 - Fault Distribution for Problematic Fault Fixes 

I made a number of interesting observations from this data. Cluster 0 

(Conditional Expression Change), Cluster 2 (Update Method Call), Cluster 4 

(Statement Parent Change/Insert If), and Cluster 5 (Insert Method Call) have a 

consistently low frequency. This indicates that these types of changes are less 

likely to be problematic fault fixes. Cluster 1 (Update Variable Declaration) had 

an interesting increase in frequency for version 3.0 of Eclipse. The frequency of 

that type decreased in subsequent releases. Cluster 6 (Insert Return/Insert If) 

decreases in frequency in subsequent releases. These types of changes may 

become less complex as the software matures. 

Cluster 3 (Additional Functionality) increases in relative frequency for later 

releases. It is the most consistent contributor to problematic faults. This indicates 

that faults that must be resolved through additional functionality are more likely to 

require multiple rounds of changes, and are likely more complex.  

Cluster 7 (Insert Variable Declaration/Insert If/Insert Assignment), Cluster 

8 (Delete Method Call/Delete Variable Declaration/Delete If), and Cluster 9 

(Garbage Collector) seem to occupy 30-40% of these problematic faults for all 

releases. This is consistent with the idea that these clusters with lower internal 

similarity, and more descriptive features, represent more complex changes. The 
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increased complexity of the fix makes the probability that a fault is problematic, 

and must be re-visited, more likely. 

6.4 Conclusions 

In this chapter I analyze the distribution of software faults, as classified by 

the clustering of syntactic changes. As a case study I consider seven versions of 

the Java Development Tools (JDT), a development environment built on the 

Eclipse platform. For these seven releases, 8768 fault fixes with Java source 

code changes are included in the analysis. 

For my first research question, I examine the distribution of software faults 

in six subcomponents of the JDT. If there is no difference in the distribution of 

faults in these subcomponents, I expect the distribution of the subcomponent to 

be similar to that of the JDT project. Two of the six distributions are not 

significantly different from the distribution at the project level. The remaining four 

have distributions that differ significantly from the expected distribution. During 

this investigation, I found that the normalized distributions of the two user 

interface subcomponents (org.eclipse.jdt.ui and org.eclipse.jdt.debug.ui) are not 

significantly different. This is an indication that the fault distribution may vary 

based on the purpose of the subcomponent in this project. 

I also investigate the distribution of faults for single and multi-file fault 

fixes. Logic changes appear to occur more frequently in single file fixes, as one 

might expect, but additional functionality also occurs more often in single file fault 

fixes. This is a surprising finding, and may be due to Eclipse’s component-based 

architecture.  

My third research question looks at the distribution of faults committed by 

developers. Eighteen developers had enough faults to analyze using the X2 test. 

Of these eighteen developers, fourteen had distributions that are significantly 

different from the expected distribution. I found that faults repaired by adding 

functionality were common for all authors. 

The distributions for pre-release and post-release faults provided mixed 

results. The two earliest releases (Eclipse 2.0 and Eclipse 2.1) had post-release 
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fault distributions that are not significantly different from those of pre-release 

faults. This may indicate poor quality. Eclipse versions 3.0, 3.3, and 3.4 have 

post-release fault distributions that are significantly different from pre-release 

fault distributions. I also notice that faults repaired by additional functionality have 

a reduced relative frequency. This may be a sign of improved quality and 

stability. However, the last two releases (Eclipse 3.5 and 3.6) return to post-

release fault distributions that are not significantly different from pre-release. 

Given the reduced number of fault fixes for these versions, this may indicate that 

few new features are added, and fault distributions have reached a steady-state. 

I define the concept of a problematic fix, a fix which requires multiple 

attempts for resolution. In order to minimize coincidental problems I limit the 

investigation to fixes where a second commit occurs after a four hour lapse. The 

period of four hours was chosen to eliminate small mistakes that do not represent 

problematic constructs. For example, a developer may forget to include a file with 

a check-in, and as a result, must add the file after the initial transaction. The four 

hour period likely eliminates simpler problem cases, but preserves those that 

require significant re-work.  

Initialization faults (Cluster 1 – Update Variable Declaration) and logic 

faults (Cluster 6 – Insert If and Return) seem to decrease in relative frequency 

over time. In converse, the relative frequency of Cluster 3 (Additional 

functionality) seems to increase over time. Cluster 7 (Insert If + Variable 

Declaration + Assign), Cluster 8 (Delete Method Call + Var Declaration + If) and 

the “garbage collector,” Cluster 9 (Insert Assign + Update Return), consistently 

make up 30-40% of the problematic fixes. Since clusters are ranked by the 

tightness of the cluster, these clusters represent more complex faults. It appears 

that faults in these clusters are more likely to encounter difficulty when repaired.  

The findings in this chapter show how the distribution of fault classes can 

be analyzed for software projects in order to gain insight into the evolution of a 

software system. This level of large-scale analysis can be used to gain insight 

into the development process and the quality of the product that is being 

developed. Many software development organizations have not adopted fault 
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classification due to the overhead involved in getting consistent, high quality 

data. Automated classification provides access to this data, and historical data, at 

much lower cost.  
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Chapter 7  

Conclusions and Future Work 

7.1 Threats to Validity 

In this chapter I discuss the threats to validity for each of the preceding 

three chapters, discuss the contributions in this dissertation, and conclude with a 

discussion of future work. 

Wohlin et al. describe four areas where the validity of the results may be 

threatened [89]. I discuss threats in each of these four areas. 

Conclusion Validity concerns the statistical significance of the result. It is 

important that the relationship between the treatment and the outcome are 

properly measured in order to draw proper conclusions. In order to counter this 

threat during statistical tests, the pre-requisites of each statistical test are 

confirmed. 

In Chapter 4 and Chapter 5, data is checked for a normal distribution 

using the Shapiro-Wilk test. In cases where the data is not normally distributed, 

the non-parametric Wilcoxon signed rank test is used. Pearson’s correlation 

coefficient is used in Chapter 5 when the data is normally distributed.  

The X2 goodness-of-fit test is used to test hypotheses in Chapter 6. This 

test is not recommended if the frequency for any category is less than five. In 

order to meet the pre-requisites, only data that met this criterion was used for the 

statistical tests. 

Internal Validity is concerned with my ability to correctly measure the 

influence of the independent variables on the dependent variables and the 

elimination of possible confounding variables that may lead to incorrect 

conclusions. The manual inspection of a random subset of faults from each 

cluster is an important component of this research, but the sample size may be 

too small for statistically significant results. In addition, there is a mono-operation 

bias that could be eliminated by allowing independent review and classification of 

the results. This is a common problem in fault classification studies, since most 

organizations that have classified fault data will not share it. In this dissertation I 
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have made my manual classification notes publicly available so that other 

researchers can build on this work and improve upon my results.  

There may be undetected problems in the software that is used to collect 

data for this study. We build on an existing dataset to help limit this threat [74]. I 

made updates to the dataset and associated scripts in order to remove some 

errors, but other errors may exist. I utilize the ChangeDistiller tool [75] to collect 

change information, but also altered this program. ChangeDistiller may have had 

errors that affect these results or I may have introduced problems when I made 

changes. Both versions of the ChangeDistiller tool are publicly available so that 

other researchers can identify problems and improve results. 

The data in the problem tracking database, and the comments in the 

version control system depend on the software developer to get accurate 

information. I found one instance where a fault identifier was mistyped, and other 

faults are likely to be similarly mislabeled.  

Construct Validity refers to how well the independent and dependent 

variables in the study measure what is intended. Classification of software faults 

by the syntax of the fix is difficult due to the uncertainty of the developer’s intent. 

While simple changes are easier to interpret, complex changes can be difficult to 

understand based on the frequency of changes alone. The alternative would be 

to use the description of the fault. This method has similar problems because the 

relationship between the symptom recorded and the underlying fault may not be 

clear. Henningsson and Wohlin found that use of a description alone for fault 

classification resulted in low agreement [12]. To counter this threat I used a large 

number of software faults for analysis. In addition, the clustering method isolates 

faults that may be infrequent. Gaining more precise data from the syntax of the 

source code is discussed further in the future work section. 

External Validity refers to the ability to generalize the results of the study. 

I do not claim that these results can be generalized outside of the Eclipse project. 

I analyzed all of the faults from two versions of Eclipse, and all of the faults from 

seven versions of the Java development tools project. This provides a vertical 

slice (all projects for two versions) and a horizontal slice (seven versions for one 
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component) that allow me to investigate different aspects of the method. The 

consistency in the clusters for these different slices provides strong evidence of 

the validity of this approach within Eclipse projects.  

There are a number of additional factors that must be considered before 

the results of the experiment can be generalized. I will discuss the development 

community, architecture, domain, and programming language as factors that 

impact external validity.  

The Eclipse community consists of a number of open source contributors 

and a process for coordinating multiple projects. Other projects include different 

developers and different processes that could lead to different findings. One 

possible project to further generalize these results without considering other 

factors is the NetBeans development platform, which has a similar purpose and 

underlying architecture12. The evaluation of commercial software is also an 

important direction to extend the work, since the development process is likely to 

be very different. 

Eclipse uses a very modular, component-based architecture. This 

architecture influences the way that code is structured, and the way that software 

faults are repaired. For example, the finding that additional functionality is often 

added with changes to a single file may be due to the component-based 

structure of Eclipse. A study of development environments with different 

architectures could improve our understanding of which results can be 

generalized, and may also provide insight into the quality impacts of different 

architectural decisions. 

The domain of the software also has an impact on our ability to generalize 

the results. The domain can influence the complexity of the software, the types of 

operations that need to be performed, and the types of non-functional 

requirements that must be met, such as performance and reliability. Each of 

these factors lead to the use of different data structures and algorithms, which 

may exhibit different types of faults.  

                                            
12 http://wiki.netbeans.org/OSGiAndNetBeans 
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My study was limited to the Java programming language. While I would 

expect similar results from other strongly-typed, object-oriented programming 

languages, additional studies are needed to confirm these studies. In addition the 

use of dynamic scripting languages and functional programming have become 

increasingly popular, and these languages will have an influence on the way that 

faults are repaired. 

 

7.2 Contributions 

This dissertation has presented a method and toolset to automatically 

classify software faults from the syntax of the source code fix. Other researchers 

focus primarily on the use of the text in the problem report for classification [61], 

[62] or only identify pre-determined syntax patterns in the repair [63]. Fault 

classification research has shown that the textual description of the fault is 

insufficient for fault classification [12]. The results in this study support the notion 

put forth by DeMillo and Mathur that “syntax is the carrier of semantics” [90]. 

The following contributions were made in this dissertation towards the goal 

of providing automated fault classification of software faults: 

1. The change taxonomy published by Fluri and Gall [66] was 

extended to support the analysis of software faults. I found that the 

change types occur often for fault fixes in two versions of the 

Eclipse project, and that the frequency of occurrence for the 

change types is correlated, indicating a consistency of occurrence. 

2. A method to cluster faults using the syntax of the fault fix is 

described. The frequency of change types from the extended 

change taxonomy are used as an input vector to the clustering 

algorithm. The CLUTO clustering toolkit is used to perform 

clustering [76]. The cosine similarity function is used as the internal 

similarity measure. The resulting clusters were consistent for two 

versions of Eclipse. The use of the I1 criterion function reduces 

noise in the data by creating a single, low similarity cluster with data 
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that does not match other clusters [79]. This low quality cluster 

isolates faults that occur infrequently and may require manual 

classification. 

3. Changes to the ChangeDistiller tool were made to overcome 

limitations with respect to the handling of anonymous classes. 

These changes resulted in measurable improvements to the results 

and indicate that additional incremental improvements are possible. 

4. The MiSFIT (Mining Software Fault Information and Types) toolset 

is presented. The toolset provides a flexible workflow to process 

fault information in a reliable and scalable manner.  

5. Analysis of the software fault distribution for individual 

subcomponents of the JDT indicates that the distribution varies by 

the purpose of the subcomponent. This supports prior evidence that 

faults vary by the purpose of the component [26]. 

6. Single file fault fixes in the JDT included a large percentage of 

faults that required additional functionality to repair the fault. This is 

a surprising finding that may be due to Eclipse’s component-based 

architecture.  

7. I found that the relative frequency of faults that require additional 

functionality is high for all developers within the Eclipse JDT. 

8. When analyzing the distribution of software faults that were 

problematic, requiring multiple changes to repair, it was discovered 

that algorithmic faults, faults repaired by the removal of code, faults 

repaired by the addition of functionality, and infrequent faults are 

more likely to be problematic to repair. This indicates that these 

types of fault fixes may benefit the most from review before they 

are committed. 
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7.3 Future Work 

The results of this dissertation indicate that the classification of software 

faults by the syntax of the fix is a useful method to analyze software faults. This 

work can be furthered in a number of ways.  

The syntax of software fault fixes can be complex for multiple reasons. 

Some non-essential changes (e.g., renaming a variable) produce “noise” in the 

data. Kawrykow and Robillard developed DiffCat, a tool to filter out these 

changes from source code [86]. Similarly, Thung et al. further this research by 

narrowing the essential changes to the root cause [91]. The use of these tools 

can greatly reduce the number of syntactical elements that are considered for 

classification and lead to more precise classifications.  

Multiple fault fixes are sometimes committed to a software repository in a 

single transaction. This may be because the two reported failures are caused by 

the same underlying fault. However, it may also be due to the fact that the faults 

are close together, and working on them together was more efficient for the 

software developer. The latter situation results in a need to identify multiple root 

causes in a single set of source code changes.  

Selection of the CLUTO toolkit for clustering was based on several 

requirements, including a need for a pre-existing tool to perform clustering. While 

CLUTO contains several clustering algorithms, a more extensive comparison of 

clustering techniques is a possible area for future work. In addition to clustering, 

other statistical and machine learning techniques could be utilized to classify 

software faults. The discovery of a superior classification method would help 

advance this research. 

One possible application of this research is the development of a decision 

support system (DSS) to aid a classifier in the fault classification process [92]. 

Such a decision support system can be used to improve the efficiency and 

consistency of the fault classification task where expert opinion is needed for 

fault classification. The DSS would also provide a valuable tool for researchers to 

evaluate and improve upon the method and tools in this dissertation. 
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The use of the ChangeDistiller application for extracting the source code 

changes limits this work to the Java programming language. Extending 

ChangeDistiller to work on additional programming languages can expand the 

scope of the research in this dissertation and improve the external validity of the 

study. 

As I described in the review of current literature, fault links define a 

relationship between the types of components and the types of faults that occur 

in the components [26]. Past research on fault links has been conducted using 

manual classification of components and faults [26], [93], [94]. This research 

provides a method to automate the fault classification. There are multiple 

techniques to classify the component or module. For example, Marinescu defines 

Detection strategies, an approach that utilizes static code metrics and rules to 

identify design flaws in object-oriented software [95]. The study of fault links that 

are associated with these design flaws could aid our understanding of their 

impact. A more general way to classify classes or components is the use of 

stereotypes, which define the role of the class. Dragan et al. provide an 

automated method of identifying method and class stereotypes from source code 

[96], [97]. A better understanding of fault links can further aid in verification and 

validation improvement activities, and may also provide a mechanism to perform 

tradeoff analysis for refactoring and restructuring activities.  

Buse and Zimmermann hypothesize that the application of analytics to 

software development activities can aid in decision-making for project managers 

and developers [98]. They argue that software development has several 

properties that make analytics applicable, and cite the successful application of 

analytics to other fields with similar properties. Based on a survey of project 

managers and developers, they suggest several areas where software analytics 

could be used.  

I argue that fault classification data is applicable to many of the software 

analytics themes that are presented by Buse and Zimmermann [99]. 

Furthermore, automation of fault classification data is necessary to drive broad 

industry adoption. The extension of this work to build software analytics systems 
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that aid in decision making is, therefore, a promising area of future research. The 

combination of the automated fault type data from MiSFIT with other automated 

techniques to separate faults from enhancements [22], predict severity [24][25], 

and predict the customer impact [23] provide a powerful toolset for fault analysis. 

This data can be analyzed from multiple perspectives along with additional 

information such as quality metrics and effort data to drive informed decisions to 

improve efficiency and quality.  
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