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Abstract: New metabolomics applications of ultra-high resolution and accuracy mass 

spectrometry can provide thousands of detectable isotopologues, with the number of 

potentially detectable isotopologues increasing exponentially with the number of stable 

isotopes used in newer isotope tracing methods like stable isotope-resolved metabolomics 

(SIRM) experiments. This huge increase in usable data requires software capable of correcting 

the large number of isotopologue peaks resulting from SIRM experiments in a timely 

manner. We describe the design of a new algorithm and software system capable of handling 

these high volumes of data, while including quality control methods for maintaining data 

quality. We validate this new algorithm against a previous single isotope correction 

algorithm in a two-step cross-validation. Next, we demonstrate the algorithm and correct 

for the effects of natural abundance for both 13C and 15N isotopes on a set of raw 

isotopologue intensities of UDP-N-acetyl-D-glucosamine derived from a 13C/15N-tracing 

experiment. Finally, we demonstrate the algorithm on a full omics-level dataset. 

Keywords: stable isotope tracing; stable isotope-resolved metabolomics; Fourier  

transform mass spectrometry; multi-isotope natural abundance correction; analytical 

derivation; parallelization 
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1. Introduction 

Stable isotope tracing has long been used to decipher pathways in cellular metabolism [1–3], with more 

recent applications permitting quantitative analyses of cellular metabolic processes [4,5]. The introduction 

of stable isotope-resolved metabolomics (SIRM) [5] and the use of Fourier transform mass 

spectrometers (FT-MS) have been instrumental in enabling the quantitative detection and tracing of 

metabolites [6–8]. These newer FT-MS instruments like the Kingdon-Makarov trap MS (OrbitrapTM) 

and Fourier transform-ion cyclotron resonance-MS (FT-ICR-MS) can achieve both ultra-high mass 

accuracies of better than 0.2 ppm (starting at 0.00008 Da @ 400 m/z) and ultra-high resolution of 

400,000 or more (at 400 m/z, 10% valley). At these levels of accuracy and resolution, thousands of 

metabolites can be unambiguously detected and quantified as specific sets of isotopologue peaks. 

These sets of isotopologue peaks result from the ability to resolve the mass difference between 

isotopologues with the same nominal mass but differing isotope counts due to differing numbers of 

neutrons. Thus, an isotopically-resolved molecular formula can be determined for each isotopologue 

from its m/z ratio alone, when limited to isotopes in living systems. Combined with the ability to 

quantify the relative amount of each isotopologue, it becomes possible to trace the flow of metabolites 

and pathways [9], especially through the use of time-series experiments. 

However, to be able to properly quantify the relative amount of each isotopologue in a SIRM 

experiment, the contribution of natural abundance (NA) must be factored out of each isotopologue 

peak. We previously reported the development of an algorithm specifically tailored for correcting 

FTMS SIRM isotopologue peaks [7]. While improving on prior numerical solutions designed for data 

from less accurate and less resolved mass spectrometers [10–18] and prior methods that did not 

address labeling [19–21], the implementation was a simple proof of concept script that took in a list of 

isotopologue peaks, the atom used for labeling, and the possible number of atoms that could be labeled 

in the formula. 

The analysis of high-throughput metabolomics experiments requires the development of an integrated, 

high-performance system capable of performing the natural abundance correction on thousands of 

isotopologue peaks in a timely manner. Such development involves many considerations of computational 

and software architecture and best practices to have a working, easily extensible system. Below we describe 

the architecture of such a software system, verification of its correctness and its utility for performing 

natural abundance correction of large numbers of isotopologue peaks on reasonable timescales. 

2. Methodology for Peak Correction 

Correcting isotopologue peak intensities from ultra-high FT-MS experiments is accomplished using 

the previously derived equations from [7]. The full derivation is provided in the supplemental 

materials, however they are described here as they correspond to actual objects and methods used in 

the design of the software system. 

As previously described, correction of the isotopologue intensities is performed on each 

isotopologue peak in turn, and iterated until convergence [7]. Equation (1) shows the full correction of 

each isotopologue peak of a triply labeled compound (C, N, and H). Note that this equation corrects 
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the previously reported boundary limits of x, y, and z in [7], and expands the correction to systems 

where more than one of the elements is labeled. 

, ,
, , ; ∑ , , ∗ , ∗ , ∗ ,

; ;
| |
; ;

1 1 1
 (1)

The P- and S-correction terms are generated separately for each element and possible combination 

of x and i. Equation (2) shows the calculation of the P-correction terms for 13C, while Equation (3) 

gives the calculation of the S-correction terms. 

, 1  (2)

,  (3)

3. Software Design and Methods 

3.1. Language and Library Choices 

The Python scripting language [22] was chosen to implement the above equations in the form of a 

practical algorithm that is both efficient and parallelizable. Besides Python’s versatility in integrating 

diverse computational tools [23], the language offers several stable numerical modules that hastened 

the development of the software. The most important Python module used during development was 

numpy. This module provides a convenient and efficient class called an ndarray representing a simple 

n-dimensional array data structure, but with compiled execution speeds due to the module’s implementation 

in the C language [24]. These ndarrays are used in generating both P and S lookup tables (see below). 

3.2. Data Flow 

The software system takes a large collection of peak intensities that represent multiple molecular 

entities (data collection), and performs the correction on the set of peaks corresponding to the 

isotopologues of each molecular entity in turn (dataset). For a given data collection, a configuration 

must be defined that determines which columns contain relevant information such as the peak intensities, 

molecular formulas and isotopologue numbers, as well as the location of the input and output files. 

Initialization causes all the peak data to be read from the file and the generation of both P and S lookup 

tables as caches (see below for description of caching and data generated). Correction actually corrects 

each set of isotopologue peaks (see section 3.4 below for a description of the correction algorithm), 

using the previously cached values from the P and S lookup tables. 

3.3. P and S Caching 

To accommodate a general approach, Equations (2) and (3) are pre-computed before-hand and 

stored in 2D and 1D look up tables respectively, which we refer to as “P” and “S” tables. This is useful 

as the same value of P and S will be used multiple times to correct the peak intensities in a given dataset. 
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However, it is important to note that the values calculated in Equations (2) and (3) are only dependent 

on the labeling element’s maximum count for a given molecule, and not the molecule itself. Therefore, 

the same pre-computed values can be used for any molecules with the same number of atoms for the 

natural abundance correction element. Moreover, many experimental datasets include replicate and 

time series entries for the same molecule, which augments the utility of caching these tables. 

3.4. Correction Algorithm, Constructors, and Modularity 

The implementation of Equation (1) encompasses a general strategy that is applicable for 1, 2 or 3 

labeling sources (see the derivation in the supplement for equations for 1 and 2 labeling sources) as 

well as to the correction for natural abundance for any list of isotopes used in a multi-isotope labeling 

scheme. Figure 1 shows the general flow of the algorithm. The algorithm iteratively refines the natural 

abundance correction via a series of additions and subtractions of isotopic natural abundance from the 

dataset for labeling isotopes. This iterative approach decreases the propagated error by half [7].  

In order to accommodate any possible list of labeling isotopes, the algorithm was developed as a 

Python class called NACorrector, with similarities to both “abstract factory” and “template method” 

design patterns [25], but where object creation implements a specific algorithm. Given the dynamic 

nature of Python objects, object instantiation can have similarities to concrete class implementation in 

more rigid languages. An instance of this NACorrector class must be initialized for a particular dataset 

before being used. This initialization is handled in the constructor method. 

Figure 1. Procedural diagram of the isotopic natural abundance correction algorithm. 

Starting with the shape and order of the set of observed isotopologues, the algorithm is 

initialized, followed by the calculation of the P and S tables or their recovery from a cache. 

Next, the corrected isotopologue intensities (Icorrected) are calculated from the observed 

isotopologue intensities (Idata). Then the isotopical natural abundance contaminated 

intensities (Idatacalc) are calculated from the corrected intensities. The calculated and observed 

intensities are compared. If an improvement is made, the calculation cycle is repeated. 
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The shape and order of Idata are tuples of length n, where n is the number of labeling sources used in 

the experiment (i.e., the data’s dimensionality). The data’s shape defines the maximum isotope count 

for each labeling source (i.e., CMax for 13C), while its order defines which isotope label corresponds to 

which dimension. For example, a shape of (23,54) and an order of (“15N”,”13C”) corresponds to the 

dataset of a molecule with 23 nitrogen atoms and 54 carbon atoms respectively and indicates that 15N 

and 13C were used as labels. The P and S lookup tables are calculated based on the dataset’s order and 

shape, however if these tables are supplied to the algorithm’s constructor via a cache (see Section 3.3), 

these calculations will be skipped. Another advantage of using an algorithm-object design is that each 

instance of the algorithm can be optimized at runtime, depending on the dataset’s dimensionality. 

Specifically, the overhead necessary for converting a multidimensional index to a flat index is  

not required when the algorithm is operating on a dataset where only a single isotopic label was used. 

The implementation takes this into account in the algorithm’s constructor method and uses a much 

faster indexing function when operating on a one-dimensional dataset. 

To increase maintainability and to reduce the complexity of the code base that represents this 

algorithm, the proper functions for iteration are determined during NACorrector’s object initialization 

(in the constructor method). If the algorithm is initialized to operate on datasets with only a single 

labeling source, the standard python function “range” is used. However, if the algorithm is initialized 

to operate on datasets that have multiple labeling sources, the penultimate and ultimate iteration 

functions replace the use of the range function where appropriate. The P and S lookups used in the 

algorithm are also tailored to the dimensionality of the datasets undergoing natural abundance 

correction and operate in tandem with the penultimate and ultimate iteration functions. Figure 2a 

shows how this initialization behavior can be used to keep the generalized form of the algorithm the 

same for any labeling configuration. Keep in mind that the index x and n can represent either 

multidimensional tuples or a single integer, depending on how the algorithm was initialized. 

Here, if the algorithm is to operate on a multidimensional dataset, the function pointers for 

“nacrange” and “xnacrange” are replaced with the ultimate and penultimate iteration functions 

respectively. This occurs only once, during the initialization phase of the algorithm and doing so 

reduces the logical complexity of the calculations immensely. If the algorithm is initialized for data 

with only one labeling source (i.e., one dimensional) then these function pointers are replaced with 

python’s built in range function. The P and S lookups have also been initialized to reflect the 

dimensionality of the dataset, and perform the correct mathematical calculations internally based on 

the indices passed to them during access. Because many methods are reused in multiple places, the 

implementation is organized into modules and classes to encapsulate functionality. Figure 2b shows 

the basic layout of these modules and the various relationships between the classes found within. 

The PyNAC (black square) module encompasses all classes and functions related to our 

implementation, however only the Core submodule (green) implements the actual algorithm. 

NACorrector is the actual algorithm class, and it is supported by NAProduct and NASumProduct, 

which are classes that represent the P and S lookup tables respectively. PenultimateNACIter and 

UltimateNACIter are special iteration classes that return tuple indices describing a location in a 

multidimensional array. Each takes a stopping criterion: a tuple of length n where n is the dimensionality of 

the array being traversed. The members of this tuple represent the maximum value each dimension of 

the returned indices can take during iteration. As the name suggests, the penultimate iterator returns all 
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the indices within the penultimate set of this iterator’s stopping criterion, while the ultimate iterator 

returns all indices including the stopping criterion itself. These classes are replaced with Python’s built 

in range function to increase iteration efficiency when operating on a 1-dimensional dataset. 

Figure 2. Algorithm generalization and class relations in the modularization of the code. 

(a) The orange xnacrange object is generalized to handle the different summations in each 

formula. The light green plookup object generalizes the P table representing different sets 

of binomial terms specific to each formula. The purple slookup object generalizes the S table 

representing different sets of summative binomial terms specific to each formula. (b) The 

PyNAC module has several classes separated into the green Core submodule or the red 

Analysis submodule. The blue multiprocessing module is provided by the standard Python 

language library. The yellow numpy module is the only additional python library that is 

necessary. The NACorrector class implements the main correction algorithm using the ndarray 

class from the nympy module. The PenultimateNACIter, NAProduct, and NASumProduct 

classes implement the orange xnacrange, light green plookup, and purple slookup objects. 

 

3.5. Quality Control 

Included in the correction analysis are several data quality control measures. First, the data read 

from an input file is checked to ensure that each peak conforms predictably to the specifications of the 

configuration. These checks include insuring that the isotope count for a given peak does not exceed the 

maximum number of atoms for that element specified by the peak’s molecular formula. Second if two 



Metabolites 2013, 3            

 

 

859

peaks with the exact same isotopic composition are found to belong to the same data set, the second 

peak is flagged as being a duplicate. If a particular peak fails one of these checks, the specific error 

message related to it is appended at the end of its row in the output file. Generally these errors occur 

when the correction analysis has been misconfigured, however they could also occur in data files that 

have been corrupted. 

In addition to these basic checks, the correction analysis also allows for the configuration of a 

predicted peak inclusion threshold. This threshold can be defined as a percent of the minimum, 

maximum, or average peak intensity for the entire data collection or for each data set individually. If a 

peak is predicted at or above this threshold value, but not observed in the original data, the peak is 

added to the output file with special notation to alert researchers that the peak was predicted above the 

specified threshold but not observed in the data file they supplied. The inclusion of these predicted 

peaks is an important secondary check for researchers. Peak identification must be carried out before 

natural abundance correction. However, alerting the researcher that there are significant peaks predicted, 

but missing from the data collection, can insure better data quality. If, for example, many peaks are 

predicted but missing across many data sets in the data collection, a researcher may re-evaluate her 

methods of peak identification, and subsequently go back to the raw FTMS data to either identify the 

missing peaks manually or relax the restrictions for the software identifying the peaks. 

3.6. Implementations of Binomial Terms 

The calculation of the P correction terms is implemented as an interleaving for-loop constructed in 

such a way as to emulate a full expansion of the binomial term and the exponents, see Equation (2), 

while mitigating some of the effects of multiplying very large and small double precision values 

together. To verify that the interleaving (org) does in fact mitigate these types of errors, alternative 

methods for calculating P correction terms were tested using: (i) “factorials” from Pythons math 

module (choose); (ii) the “comb” function from SciPy, which is an “exact” multiplicative calculation 

(comb); (iii) the “log-gamma” function from SciPy (comb2); and (iv) a log10 version of the algorithm 

(logReal). P correction terms for the full range of n and k using an iMax of 500 and the natural 

abundance of deuterium (0.00015) were generated using each of the methods. Relative differences 

between all of the methods were calculated. Supplemental material contains all of these implementations. 

3.7. Cell Culture and FT-ICR-MS 

The singly labeled 13C data is from glycerophospholipids separated from crude cell extracts derived from 

MCF7-LCC2 cells in tissue culture after 24 h of labeling with uniformly labeled 13C-glucose. The doubly 

labeled 13C/15N data is from polar metabolites separated from crude cell extracts derived from MCF7-LCC2 

cells in tissue culture after 24 h of labeling with uniformly labeled 13C/15N glutamine. Samples were 

directly infused in positive (glycerophospholipid) and negative (metabolites) ion modes on a hybrid 

linear ion trap 7T FT-ICR mass spectrometer (Finnigan LTQ FT, Thermo Electron, Bremen, Germany) 

equipped with a TriVersa NanoMate ion source (Advion BioSciences, Ithaca, NY, USA), with peaks 

identified as previously described [6]. 
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4. Results and Discussion 

4.1. Validation of the Algorithm 

We used a progressive approach to cross-validate, in the analytical sense, all parts of both the 

single- and multi-isotope implementations of the algorithm. First, we performed a cross-validation 

between the single-isotope Python implementation and the original single-isotope Perl implementation 

from Moseley, 2010 [7]. Both real and simulated datasets were used in this cross-validation. We took 

the absolute difference between the values from the results of each implementation and checked that 

each value was below an acceptable threshold. Table 1 shows a comparison between the old single-isotope 

Perl implementation and the new single-isotope Python implementation. The test set describes a 

sample of the metabolite UDP-GlcNAc (C17H27N3O17P2). In all cases, the difference between the 

original implementation and the new implementation were either zero or insignificant (i.e., <10−9). 

Furthermore, this approach cross-validates all parts of the iterative single-isotope Python implementation 

at once, including both the subtractNA and addNA functions. 

Table 1. Comparison of the old Perl and new Python single-isotope algorithm implementations 

using isotopologues of UDP-GlcNAc. 

13C Count a Intensity b Python (New) c Perl (Old) d Difference 

5 187.9 214.81 214.81 2.27 × 10−10 
6 60.5 39.81 39.81 1.79 × 10−11 
7 109.8 116.15 116.15 1.78 × 10−10 
8 418.4 449.36 449.36 3.58 × 10−10 
9 23.1 0 0 0 

10 165 176.39 176.39 3.68 × 10−10 
11 1438 1,523.77 1,523.77 2.63× 10−9 
12 1,215.9 1,183.78 1,183.78 3.59 × 10−9 
13 4,235.8 4,360.57 4,360.57 3.63 × 10−9 
14 1,562.5 1,420.73 1,420.73 2.17 × 10−9 
15 1,253.9 1,231.68 1,231.68 4.81 × 10−9 
16 175.8 149.9 149.9 4.44 × 10−10 

a Zero valued isotopologue intensities have been omitted from the table for the sake of brevity; b Observed 

uncorrected isotopologue intensities; c Corrected intensities using the Python implementation; d Corrected 

intensities using the older Perl implementation. 

Now the multi-isotope Python implementation is cross-validated against the single-isotope Python 

implementation via the creation and use of a simulated multi-isotope isotopologue intensity dataset. 

Table 2 shows simulated 13C and 15N single-isotope datasets, each with normalized isotopologue intensities 

that sum to 1 and each representing a molecule with 9 carbon atoms and 6 nitrogen atoms, respectively. 

Using the validated addNA function from the single-isotope Python implementation, we added the 

effects of natural abundance to both a 13C simulated dataset and a 15N simulated dataset, with the results 

also shown in Table 2. Next, we calculated the vector outer products of both the simulated datasets and 

the simulated natural abundance tainted datasets to produce matrices representing a multi-isotope 

isotopologue intensity dataset for a molecule with both 9 carbon and 6 nitrogen atoms, as shown in 
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Figure 3a,b respectively. Then, we applied the multi-isotope Python implementation to the matrix in 

Figure 3a to produce the natural abundance corrected matrix in Figure 3c. Next, we took the absolute 

difference between the matrices in Figures 3b,c, which is shown in Figure 3d. All of the specific 

differences in the Figure 3d matrix elements were either zero or below 10−16. Also, this approach cross-

validates all parts of the iterative multi-isotope Python iteration at once, including both the specific 

subtractNA and addNA functions. Furthermore, these results demonstrate the numerical stability of the 

multi-isotope implementation, even though the algorithm is dealing with NxM data points and not just 

N data points. 

Figure 3. Validation of the multi-isotope natural abundance correction algorithm. (a) The 

matrix outlined by the black lines represents isotopologue intensities with 13C and 15N 

isotopes from both a labeling source and natural abundance. It is calculated from the vector outer 

product of two single isotope labeled vectors of isotopologue intensities. These single-labeled 

vectors represent the addition of 13C/15N natural abundance to the corresponding single-labeled 

vectors in (b). Each vector and matrix of intensities is normalized to a sum of 1. (b) The matrix 

outlined by the black lines represents isotopologue intensities with 13C and 15N isotopes 

from only a labeling source. It is calculated from the vector outer product of two single 

isotope labeled vectors of isotopologue intensities. (c) This matrix is the result of just one 

iteration of the multi-isotope natural abundance correction algorithm implemented in the 

Python programming language. (d) This matrix is the absolute difference between the 

matrices in (b) and (c). No element is larger than 10−17. 
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Table 2. Simulated 13C and 15N single-isotope isotopologue intensity datasets. 

13C Count 0 1 2 3 4 5 6 7 8 9 

Simulated 0.5 0 0 0.15 0.1 0 0 0 0 0.25 

addNA 0.4523 0.0456 0.0020 0.1403 0.1040 0.0056 1.2 × 10−4 1.4 × 10−6 7.6 × 10−9 0.25 

   
15N Count 0 1 2 3 4 5 6 - - - 

Simulated 0.5 0 0 0.1 0 0 0.4 - - - 

addNA 0.4890 0.0109 0.0001 0.0989 0.0011 4 × 10−6 0.4 - - - 

Note: The addNA rows are the results produced by the addNA function from the single-isotope Python 

implementation. Each row of values is normalized to a sum of 1. 

4.2. Numerical Analysis of Interleaving Method 

The P correction terms generated using the interleaving method were compared to alternative 

implementations of Equation (2) (see Methods) using various methods, including the original 

interleaving (org), factorials (choose), SciPy combinatorials (comb, comb2), and a log-version of the 

interleaving algorithm (logReal). The full set of pairwise differences is shown in Table 3. The maximum 

difference between any two methods was 5.7 × 10−14, well below any level that one would call 

significant in double precision math. The “choose” and “comb” methods gave identical values 

throughout, likely due to Pythons use of “long” integers with arbitrary precision. The “comb2” method 

gave small differences, as the log-gamma method is less accurate than using factorials or multiplicative 

formulations of the binomial. For a discussion of the stability of the interleaving method see the 

supplemental materials. 

Table 3. Maximum differences between each of the methods used to calculate the P 

correction values. 

 org comb comb2 choose logReal 

org 0 −2.36 × 10−16 −5.67 × 10−14 −2.36 × 10−16 −2.36 × 10−15 
comb - - −5.66 × 10−14 0 −2.25 × 10−15 

comb2 - - - 5.66 × 10−14 5.48 × 10−14 
choose - - - - −2.25 × 10−15 

4.3. Application to Observed Isotopologues of UDP-GlcNAc 

Figure 4 shows the application of the multi-isotope Python implementation applied to a real dataset 

of 13C/15N isotopologue intensities for uridine diphosphate-N-acetyl-D-glucosamine or UDP-GlcNAc 

(C17H27N3O17P2). There are significant changes in quite a few of the isotopologues, but especially IM+1,0, 

IM+1,1, IM+1,2, IM+4,2, IM+1,3, and IM+4,3, where IM+i,j refers to the incorporation of i 13C nuclei and j 15N nuclei. 

In fact, the effects of isotopic natural abundance are more dramatic than what is seen for single 

labeling experiments. This is to be expected since the effects of isotopic natural abundance for two 

elements is naturally greater than for either element. 
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Figure 4. Corrected and observed 13C/15N isotopologues of UDP-GlcNAc. Each graph 

represents a set of 13C-labeled isotopologues with a specific number of 15N nuclei incorporated. 

IM+i,0, IM+i,1, IM+i,2, and IM+i,3 represent 0,1,2, and 3 15N nuclei. Observed intensities are in 

red and the isotopic natural abundance corrected intensities are in blue. The calculation of 

the corrected intensities required 12 iterations of the algorithm. 

 

4.4. Running Time 

To test the effect of caching the P and S table calculations on the running time of the software,  

we ran it both in a default mode where caching is enabled, and alternatively forcing the recalculation 

of the P and S tables for each data set of peaks. With caching enabled, the run time averaged 530 s (9 min). 

Without caching enabled, the run time averaged 890 s (15 min). Both runs were performed on an Intel® 

Xeon X5650 processor running at 2.67 GHz. Also, these timings used a data file of 9,066 different 

metabolites, with an average of 5 isotopologue peaks per metabolite. 

5. Conclusions 

Correction for the effects of natural abundance for multiple isotopes simultaneously is both 

computationally feasible and numerically stable when the raw isotopologues are isotopically resolved 

and identified. In addition, our algorithm is numerically stable both with respect to increasing isotope 

incorporation and to increasing dimensionality of the correction due to multiple isotopes. In addition, 
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these corrections of isotopologue intensities are required before further quantitative analyses can be applied 

to SIRM experimental datasets, especially for determining metabolic flux. In general, SIRM experiments 

can generate massive volumes of data in relatively short periods of time. A single experimental dataset 

may contain well over 100,000 isotopologue intensities and can be collected in as little as five minutes 

with current FT-ICR mass spectrometers, like the one described in the Methods section. This makes 

natural abundance isotopic correction a high throughput computational problem. Fortunately, our current 

algorithm can correct for natural abundance on this time scale (i.e., ~5 min data collection vs ~9 min 

analysis), with tools to detect and help correct issues in data quality. However, since each isotopologue 

set's correction calculations are independent from all others within the entire dataset, many sets could be 

corrected simultaneously. The design of the software inherently allows for a multi-processor 

implementation that scales to any number processor cores available, making the algorithm extremely 

robust with regard to future multi-core improvements in computing hardware. In addition, utilization of 

multiple processor cores will be required when applying this algorithm to error analysis of large 

datasets in a timely manner [26]. 

Software Availability 

The software system is available as a tarball in the supplemental materials, and includes an example 

of running the software on a file to correct multiple compounds in a single file. The software may also 

be downloaded from [27]. 
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