
University of Kentucky
UKnowledge

Molecular and Cellular Biochemistry Faculty
Publications Molecular and Cellular Biochemistry

9-25-2013

A Computational Framework for High-
Throughput Isotopic Natural Abundance
Correction of Omics-Level Ultra-High Resolution
FT-MS Datasets
William J. Carreer
University of Kentucky, jim.carreer@uky.edu

Robert M. Flight
University of Kentucky, robert.flight@uky.edu

Hunter N. B. Moseley
University of Kentucky, hunter.moseley@uky.edu

Click here to let us know how access to this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/biochem_facpub

Part of the Biochemistry, Biophysics, and Structural Biology Commons

This Article is brought to you for free and open access by the Molecular and Cellular Biochemistry at UKnowledge. It has been accepted for inclusion in
Molecular and Cellular Biochemistry Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact
UKnowledge@lsv.uky.edu.

Repository Citation
Carreer, William J.; Flight, Robert M.; and Moseley, Hunter N. B., "A Computational Framework for High-Throughput Isotopic
Natural Abundance Correction of Omics-Level Ultra-High Resolution FT-MS Datasets" (2013). Molecular and Cellular Biochemistry
Faculty Publications. 51.
https://uknowledge.uky.edu/biochem_facpub/51

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/232565815?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/?utm_source=uknowledge.uky.edu%2Fbiochem_facpub%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://uknowledge.uky.edu/?utm_source=uknowledge.uky.edu%2Fbiochem_facpub%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu?utm_source=uknowledge.uky.edu%2Fbiochem_facpub%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/biochem_facpub?utm_source=uknowledge.uky.edu%2Fbiochem_facpub%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/biochem_facpub?utm_source=uknowledge.uky.edu%2Fbiochem_facpub%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/biochem?utm_source=uknowledge.uky.edu%2Fbiochem_facpub%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
https://uknowledge.uky.edu/biochem_facpub?utm_source=uknowledge.uky.edu%2Fbiochem_facpub%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1?utm_source=uknowledge.uky.edu%2Fbiochem_facpub%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/biochem_facpub/51?utm_source=uknowledge.uky.edu%2Fbiochem_facpub%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:UKnowledge@lsv.uky.edu

A Computational Framework for High-Throughput Isotopic Natural Abundance Correction of Omics-Level
Ultra-High Resolution FT-MS Datasets

Notes/Citation Information
Published in Metabolites, v. 3, no. 4, p. 853-866.

This is an open access article distributed under the Creative Commons Attribution License which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Digital Object Identifier (DOI)
http://dx.doi.org/10.3390/metabo3040853

This article is available at UKnowledge: https://uknowledge.uky.edu/biochem_facpub/51

http://creativecommons.org/licenses/by/3.0/
https://uknowledge.uky.edu/biochem_facpub/51?utm_source=uknowledge.uky.edu%2Fbiochem_facpub%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages

Metabolites 2013, 3, 853-866; doi:10.3390/metabo3040853

metabolites
ISSN 2218-1989

www.mdpi.com/journal/metabolites/

Article

A Computational Framework for High-Throughput Isotopic
Natural Abundance Correction of Omics-Level Ultra-High
Resolution FT-MS Datasets

William J. Carreer, Robert M. Flight and Hunter N. B. Moseley *

Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington,

KY 40536, USA; E-Mails: jim.carreer@uky.edu (W.J.C.); robert.flight@uky.edu (R.M.F.)

* Author to whom correspondence should be addressed; E-Mail: hunter.moseley@uky.edu;

Tel.: +1-859-323-5549; Fax: +1-859-257-2283.

Received: 21 July 2013; in revised form: 26 August 2103 / Accepted: 10 September 2013 /

Published: 25 September 2013

Abstract: New metabolomics applications of ultra-high resolution and accuracy mass

spectrometry can provide thousands of detectable isotopologues, with the number of

potentially detectable isotopologues increasing exponentially with the number of stable

isotopes used in newer isotope tracing methods like stable isotope-resolved metabolomics

(SIRM) experiments. This huge increase in usable data requires software capable of correcting

the large number of isotopologue peaks resulting from SIRM experiments in a timely

manner. We describe the design of a new algorithm and software system capable of handling

these high volumes of data, while including quality control methods for maintaining data

quality. We validate this new algorithm against a previous single isotope correction

algorithm in a two-step cross-validation. Next, we demonstrate the algorithm and correct

for the effects of natural abundance for both 13C and 15N isotopes on a set of raw

isotopologue intensities of UDP-N-acetyl-D-glucosamine derived from a 13C/15N-tracing

experiment. Finally, we demonstrate the algorithm on a full omics-level dataset.

Keywords: stable isotope tracing; stable isotope-resolved metabolomics; Fourier

transform mass spectrometry; multi-isotope natural abundance correction; analytical

derivation; parallelization

OPEN ACCESS

Metabolites 2013, 3

854

1. Introduction

Stable isotope tracing has long been used to decipher pathways in cellular metabolism [1–3], with more

recent applications permitting quantitative analyses of cellular metabolic processes [4,5]. The introduction

of stable isotope-resolved metabolomics (SIRM) [5] and the use of Fourier transform mass

spectrometers (FT-MS) have been instrumental in enabling the quantitative detection and tracing of

metabolites [6–8]. These newer FT-MS instruments like the Kingdon-Makarov trap MS (OrbitrapTM)

and Fourier transform-ion cyclotron resonance-MS (FT-ICR-MS) can achieve both ultra-high mass

accuracies of better than 0.2 ppm (starting at 0.00008 Da @ 400 m/z) and ultra-high resolution of

400,000 or more (at 400 m/z, 10% valley). At these levels of accuracy and resolution, thousands of

metabolites can be unambiguously detected and quantified as specific sets of isotopologue peaks.

These sets of isotopologue peaks result from the ability to resolve the mass difference between

isotopologues with the same nominal mass but differing isotope counts due to differing numbers of

neutrons. Thus, an isotopically-resolved molecular formula can be determined for each isotopologue

from its m/z ratio alone, when limited to isotopes in living systems. Combined with the ability to

quantify the relative amount of each isotopologue, it becomes possible to trace the flow of metabolites

and pathways [9], especially through the use of time-series experiments.

However, to be able to properly quantify the relative amount of each isotopologue in a SIRM

experiment, the contribution of natural abundance (NA) must be factored out of each isotopologue

peak. We previously reported the development of an algorithm specifically tailored for correcting

FTMS SIRM isotopologue peaks [7]. While improving on prior numerical solutions designed for data

from less accurate and less resolved mass spectrometers [10–18] and prior methods that did not

address labeling [19–21], the implementation was a simple proof of concept script that took in a list of

isotopologue peaks, the atom used for labeling, and the possible number of atoms that could be labeled

in the formula.

The analysis of high-throughput metabolomics experiments requires the development of an integrated,

high-performance system capable of performing the natural abundance correction on thousands of

isotopologue peaks in a timely manner. Such development involves many considerations of computational

and software architecture and best practices to have a working, easily extensible system. Below we describe

the architecture of such a software system, verification of its correctness and its utility for performing

natural abundance correction of large numbers of isotopologue peaks on reasonable timescales.

2. Methodology for Peak Correction

Correcting isotopologue peak intensities from ultra-high FT-MS experiments is accomplished using

the previously derived equations from [7]. The full derivation is provided in the supplemental

materials, however they are described here as they correspond to actual objects and methods used in

the design of the software system.

As previously described, correction of the isotopologue intensities is performed on each

isotopologue peak in turn, and iterated until convergence [7]. Equation (1) shows the full correction of

each isotopologue peak of a triply labeled compound (C, N, and H). Note that this equation corrects

Metabolites 2013, 3

855

the previously reported boundary limits of x, y, and z in [7], and expands the correction to systems

where more than one of the elements is labeled.

, ,
, , ; ∑ , , ∗ , ∗ , ∗ ,

; ;
| |
; ;

1 1 1
 (1)

The P- and S-correction terms are generated separately for each element and possible combination

of x and i. Equation (2) shows the calculation of the P-correction terms for 13C, while Equation (3)

gives the calculation of the S-correction terms.

, 1 (2)

, (3)

3. Software Design and Methods

3.1. Language and Library Choices

The Python scripting language [22] was chosen to implement the above equations in the form of a

practical algorithm that is both efficient and parallelizable. Besides Python’s versatility in integrating

diverse computational tools [23], the language offers several stable numerical modules that hastened

the development of the software. The most important Python module used during development was

numpy. This module provides a convenient and efficient class called an ndarray representing a simple

n-dimensional array data structure, but with compiled execution speeds due to the module’s implementation

in the C language [24]. These ndarrays are used in generating both P and S lookup tables (see below).

3.2. Data Flow

The software system takes a large collection of peak intensities that represent multiple molecular

entities (data collection), and performs the correction on the set of peaks corresponding to the

isotopologues of each molecular entity in turn (dataset). For a given data collection, a configuration

must be defined that determines which columns contain relevant information such as the peak intensities,

molecular formulas and isotopologue numbers, as well as the location of the input and output files.

Initialization causes all the peak data to be read from the file and the generation of both P and S lookup

tables as caches (see below for description of caching and data generated). Correction actually corrects

each set of isotopologue peaks (see section 3.4 below for a description of the correction algorithm),

using the previously cached values from the P and S lookup tables.

3.3. P and S Caching

To accommodate a general approach, Equations (2) and (3) are pre-computed before-hand and

stored in 2D and 1D look up tables respectively, which we refer to as “P” and “S” tables. This is useful

as the same value of P and S will be used multiple times to correct the peak intensities in a given dataset.

Metabolites 2013, 3

856

However, it is important to note that the values calculated in Equations (2) and (3) are only dependent

on the labeling element’s maximum count for a given molecule, and not the molecule itself. Therefore,

the same pre-computed values can be used for any molecules with the same number of atoms for the

natural abundance correction element. Moreover, many experimental datasets include replicate and

time series entries for the same molecule, which augments the utility of caching these tables.

3.4. Correction Algorithm, Constructors, and Modularity

The implementation of Equation (1) encompasses a general strategy that is applicable for 1, 2 or 3

labeling sources (see the derivation in the supplement for equations for 1 and 2 labeling sources) as

well as to the correction for natural abundance for any list of isotopes used in a multi-isotope labeling

scheme. Figure 1 shows the general flow of the algorithm. The algorithm iteratively refines the natural

abundance correction via a series of additions and subtractions of isotopic natural abundance from the

dataset for labeling isotopes. This iterative approach decreases the propagated error by half [7].

In order to accommodate any possible list of labeling isotopes, the algorithm was developed as a

Python class called NACorrector, with similarities to both “abstract factory” and “template method”

design patterns [25], but where object creation implements a specific algorithm. Given the dynamic

nature of Python objects, object instantiation can have similarities to concrete class implementation in

more rigid languages. An instance of this NACorrector class must be initialized for a particular dataset

before being used. This initialization is handled in the constructor method.

Figure 1. Procedural diagram of the isotopic natural abundance correction algorithm.

Starting with the shape and order of the set of observed isotopologues, the algorithm is

initialized, followed by the calculation of the P and S tables or their recovery from a cache.

Next, the corrected isotopologue intensities (Icorrected) are calculated from the observed

isotopologue intensities (Idata). Then the isotopical natural abundance contaminated

intensities (Idatacalc) are calculated from the corrected intensities. The calculated and observed

intensities are compared. If an improvement is made, the calculation cycle is repeated.

Metabolites 2013, 3

857

The shape and order of Idata are tuples of length n, where n is the number of labeling sources used in

the experiment (i.e., the data’s dimensionality). The data’s shape defines the maximum isotope count

for each labeling source (i.e., CMax for 13C), while its order defines which isotope label corresponds to

which dimension. For example, a shape of (23,54) and an order of (“15N”,”13C”) corresponds to the

dataset of a molecule with 23 nitrogen atoms and 54 carbon atoms respectively and indicates that 15N

and 13C were used as labels. The P and S lookup tables are calculated based on the dataset’s order and

shape, however if these tables are supplied to the algorithm’s constructor via a cache (see Section 3.3),

these calculations will be skipped. Another advantage of using an algorithm-object design is that each

instance of the algorithm can be optimized at runtime, depending on the dataset’s dimensionality.

Specifically, the overhead necessary for converting a multidimensional index to a flat index is

not required when the algorithm is operating on a dataset where only a single isotopic label was used.

The implementation takes this into account in the algorithm’s constructor method and uses a much

faster indexing function when operating on a one-dimensional dataset.

To increase maintainability and to reduce the complexity of the code base that represents this

algorithm, the proper functions for iteration are determined during NACorrector’s object initialization

(in the constructor method). If the algorithm is initialized to operate on datasets with only a single

labeling source, the standard python function “range” is used. However, if the algorithm is initialized

to operate on datasets that have multiple labeling sources, the penultimate and ultimate iteration

functions replace the use of the range function where appropriate. The P and S lookups used in the

algorithm are also tailored to the dimensionality of the datasets undergoing natural abundance

correction and operate in tandem with the penultimate and ultimate iteration functions. Figure 2a

shows how this initialization behavior can be used to keep the generalized form of the algorithm the

same for any labeling configuration. Keep in mind that the index x and n can represent either

multidimensional tuples or a single integer, depending on how the algorithm was initialized.

Here, if the algorithm is to operate on a multidimensional dataset, the function pointers for

“nacrange” and “xnacrange” are replaced with the ultimate and penultimate iteration functions

respectively. This occurs only once, during the initialization phase of the algorithm and doing so

reduces the logical complexity of the calculations immensely. If the algorithm is initialized for data

with only one labeling source (i.e., one dimensional) then these function pointers are replaced with

python’s built in range function. The P and S lookups have also been initialized to reflect the

dimensionality of the dataset, and perform the correct mathematical calculations internally based on

the indices passed to them during access. Because many methods are reused in multiple places, the

implementation is organized into modules and classes to encapsulate functionality. Figure 2b shows

the basic layout of these modules and the various relationships between the classes found within.

The PyNAC (black square) module encompasses all classes and functions related to our

implementation, however only the Core submodule (green) implements the actual algorithm.

NACorrector is the actual algorithm class, and it is supported by NAProduct and NASumProduct,

which are classes that represent the P and S lookup tables respectively. PenultimateNACIter and

UltimateNACIter are special iteration classes that return tuple indices describing a location in a

multidimensional array. Each takes a stopping criterion: a tuple of length n where n is the dimensionality of

the array being traversed. The members of this tuple represent the maximum value each dimension of

the returned indices can take during iteration. As the name suggests, the penultimate iterator returns all

Metabolites 2013, 3

858

the indices within the penultimate set of this iterator’s stopping criterion, while the ultimate iterator

returns all indices including the stopping criterion itself. These classes are replaced with Python’s built

in range function to increase iteration efficiency when operating on a 1-dimensional dataset.

Figure 2. Algorithm generalization and class relations in the modularization of the code.

(a) The orange xnacrange object is generalized to handle the different summations in each

formula. The light green plookup object generalizes the P table representing different sets

of binomial terms specific to each formula. The purple slookup object generalizes the S table

representing different sets of summative binomial terms specific to each formula. (b) The

PyNAC module has several classes separated into the green Core submodule or the red

Analysis submodule. The blue multiprocessing module is provided by the standard Python

language library. The yellow numpy module is the only additional python library that is

necessary. The NACorrector class implements the main correction algorithm using the ndarray

class from the nympy module. The PenultimateNACIter, NAProduct, and NASumProduct

classes implement the orange xnacrange, light green plookup, and purple slookup objects.

3.5. Quality Control

Included in the correction analysis are several data quality control measures. First, the data read

from an input file is checked to ensure that each peak conforms predictably to the specifications of the

configuration. These checks include insuring that the isotope count for a given peak does not exceed the

maximum number of atoms for that element specified by the peak’s molecular formula. Second if two

Metabolites 2013, 3

859

peaks with the exact same isotopic composition are found to belong to the same data set, the second

peak is flagged as being a duplicate. If a particular peak fails one of these checks, the specific error

message related to it is appended at the end of its row in the output file. Generally these errors occur

when the correction analysis has been misconfigured, however they could also occur in data files that

have been corrupted.

In addition to these basic checks, the correction analysis also allows for the configuration of a

predicted peak inclusion threshold. This threshold can be defined as a percent of the minimum,

maximum, or average peak intensity for the entire data collection or for each data set individually. If a

peak is predicted at or above this threshold value, but not observed in the original data, the peak is

added to the output file with special notation to alert researchers that the peak was predicted above the

specified threshold but not observed in the data file they supplied. The inclusion of these predicted

peaks is an important secondary check for researchers. Peak identification must be carried out before

natural abundance correction. However, alerting the researcher that there are significant peaks predicted,

but missing from the data collection, can insure better data quality. If, for example, many peaks are

predicted but missing across many data sets in the data collection, a researcher may re-evaluate her

methods of peak identification, and subsequently go back to the raw FTMS data to either identify the

missing peaks manually or relax the restrictions for the software identifying the peaks.

3.6. Implementations of Binomial Terms

The calculation of the P correction terms is implemented as an interleaving for-loop constructed in

such a way as to emulate a full expansion of the binomial term and the exponents, see Equation (2),

while mitigating some of the effects of multiplying very large and small double precision values

together. To verify that the interleaving (org) does in fact mitigate these types of errors, alternative

methods for calculating P correction terms were tested using: (i) “factorials” from Pythons math

module (choose); (ii) the “comb” function from SciPy, which is an “exact” multiplicative calculation

(comb); (iii) the “log-gamma” function from SciPy (comb2); and (iv) a log10 version of the algorithm

(logReal). P correction terms for the full range of n and k using an iMax of 500 and the natural

abundance of deuterium (0.00015) were generated using each of the methods. Relative differences

between all of the methods were calculated. Supplemental material contains all of these implementations.

3.7. Cell Culture and FT-ICR-MS

The singly labeled 13C data is from glycerophospholipids separated from crude cell extracts derived from

MCF7-LCC2 cells in tissue culture after 24 h of labeling with uniformly labeled 13C-glucose. The doubly

labeled 13C/15N data is from polar metabolites separated from crude cell extracts derived from MCF7-LCC2

cells in tissue culture after 24 h of labeling with uniformly labeled 13C/15N glutamine. Samples were

directly infused in positive (glycerophospholipid) and negative (metabolites) ion modes on a hybrid

linear ion trap 7T FT-ICR mass spectrometer (Finnigan LTQ FT, Thermo Electron, Bremen, Germany)

equipped with a TriVersa NanoMate ion source (Advion BioSciences, Ithaca, NY, USA), with peaks

identified as previously described [6].

Metabolites 2013, 3

860

4. Results and Discussion

4.1. Validation of the Algorithm

We used a progressive approach to cross-validate, in the analytical sense, all parts of both the

single- and multi-isotope implementations of the algorithm. First, we performed a cross-validation

between the single-isotope Python implementation and the original single-isotope Perl implementation

from Moseley, 2010 [7]. Both real and simulated datasets were used in this cross-validation. We took

the absolute difference between the values from the results of each implementation and checked that

each value was below an acceptable threshold. Table 1 shows a comparison between the old single-isotope

Perl implementation and the new single-isotope Python implementation. The test set describes a

sample of the metabolite UDP-GlcNAc (C17H27N3O17P2). In all cases, the difference between the

original implementation and the new implementation were either zero or insignificant (i.e., <10−9).

Furthermore, this approach cross-validates all parts of the iterative single-isotope Python implementation

at once, including both the subtractNA and addNA functions.

Table 1. Comparison of the old Perl and new Python single-isotope algorithm implementations

using isotopologues of UDP-GlcNAc.

13C Count a Intensity b Python (New) c Perl (Old) d Difference

5 187.9 214.81 214.81 2.27 × 10−10
6 60.5 39.81 39.81 1.79 × 10−11
7 109.8 116.15 116.15 1.78 × 10−10
8 418.4 449.36 449.36 3.58 × 10−10
9 23.1 0 0 0

10 165 176.39 176.39 3.68 × 10−10
11 1438 1,523.77 1,523.77 2.63× 10−9
12 1,215.9 1,183.78 1,183.78 3.59 × 10−9
13 4,235.8 4,360.57 4,360.57 3.63 × 10−9
14 1,562.5 1,420.73 1,420.73 2.17 × 10−9
15 1,253.9 1,231.68 1,231.68 4.81 × 10−9
16 175.8 149.9 149.9 4.44 × 10−10

a Zero valued isotopologue intensities have been omitted from the table for the sake of brevity; b Observed

uncorrected isotopologue intensities; c Corrected intensities using the Python implementation; d Corrected

intensities using the older Perl implementation.

Now the multi-isotope Python implementation is cross-validated against the single-isotope Python

implementation via the creation and use of a simulated multi-isotope isotopologue intensity dataset.

Table 2 shows simulated 13C and 15N single-isotope datasets, each with normalized isotopologue intensities

that sum to 1 and each representing a molecule with 9 carbon atoms and 6 nitrogen atoms, respectively.

Using the validated addNA function from the single-isotope Python implementation, we added the

effects of natural abundance to both a 13C simulated dataset and a 15N simulated dataset, with the results

also shown in Table 2. Next, we calculated the vector outer products of both the simulated datasets and

the simulated natural abundance tainted datasets to produce matrices representing a multi-isotope

isotopologue intensity dataset for a molecule with both 9 carbon and 6 nitrogen atoms, as shown in

Metabolites 2013, 3

861

Figure 3a,b respectively. Then, we applied the multi-isotope Python implementation to the matrix in

Figure 3a to produce the natural abundance corrected matrix in Figure 3c. Next, we took the absolute

difference between the matrices in Figures 3b,c, which is shown in Figure 3d. All of the specific

differences in the Figure 3d matrix elements were either zero or below 10−16. Also, this approach cross-

validates all parts of the iterative multi-isotope Python iteration at once, including both the specific

subtractNA and addNA functions. Furthermore, these results demonstrate the numerical stability of the

multi-isotope implementation, even though the algorithm is dealing with NxM data points and not just

N data points.

Figure 3. Validation of the multi-isotope natural abundance correction algorithm. (a) The

matrix outlined by the black lines represents isotopologue intensities with 13C and 15N

isotopes from both a labeling source and natural abundance. It is calculated from the vector outer

product of two single isotope labeled vectors of isotopologue intensities. These single-labeled

vectors represent the addition of 13C/15N natural abundance to the corresponding single-labeled

vectors in (b). Each vector and matrix of intensities is normalized to a sum of 1. (b) The matrix

outlined by the black lines represents isotopologue intensities with 13C and 15N isotopes

from only a labeling source. It is calculated from the vector outer product of two single

isotope labeled vectors of isotopologue intensities. (c) This matrix is the result of just one

iteration of the multi-isotope natural abundance correction algorithm implemented in the

Python programming language. (d) This matrix is the absolute difference between the

matrices in (b) and (c). No element is larger than 10−17.

Metabolites 2013, 3

862

Table 2. Simulated 13C and 15N single-isotope isotopologue intensity datasets.

13C Count 0 1 2 3 4 5 6 7 8 9

Simulated 0.5 0 0 0.15 0.1 0 0 0 0 0.25

addNA 0.4523 0.0456 0.0020 0.1403 0.1040 0.0056 1.2 × 10−4 1.4 × 10−6 7.6 × 10−9 0.25

15N Count 0 1 2 3 4 5 6 - - -

Simulated 0.5 0 0 0.1 0 0 0.4 - - -

addNA 0.4890 0.0109 0.0001 0.0989 0.0011 4 × 10−6 0.4 - - -

Note: The addNA rows are the results produced by the addNA function from the single-isotope Python

implementation. Each row of values is normalized to a sum of 1.

4.2. Numerical Analysis of Interleaving Method

The P correction terms generated using the interleaving method were compared to alternative

implementations of Equation (2) (see Methods) using various methods, including the original

interleaving (org), factorials (choose), SciPy combinatorials (comb, comb2), and a log-version of the

interleaving algorithm (logReal). The full set of pairwise differences is shown in Table 3. The maximum

difference between any two methods was 5.7 × 10−14, well below any level that one would call

significant in double precision math. The “choose” and “comb” methods gave identical values

throughout, likely due to Pythons use of “long” integers with arbitrary precision. The “comb2” method

gave small differences, as the log-gamma method is less accurate than using factorials or multiplicative

formulations of the binomial. For a discussion of the stability of the interleaving method see the

supplemental materials.

Table 3. Maximum differences between each of the methods used to calculate the P

correction values.

 org comb comb2 choose logReal

org 0 −2.36 × 10−16 −5.67 × 10−14 −2.36 × 10−16 −2.36 × 10−15
comb - - −5.66 × 10−14 0 −2.25 × 10−15

comb2 - - - 5.66 × 10−14 5.48 × 10−14
choose - - - - −2.25 × 10−15

4.3. Application to Observed Isotopologues of UDP-GlcNAc

Figure 4 shows the application of the multi-isotope Python implementation applied to a real dataset

of 13C/15N isotopologue intensities for uridine diphosphate-N-acetyl-D-glucosamine or UDP-GlcNAc

(C17H27N3O17P2). There are significant changes in quite a few of the isotopologues, but especially IM+1,0,

IM+1,1, IM+1,2, IM+4,2, IM+1,3, and IM+4,3, where IM+i,j refers to the incorporation of i 13C nuclei and j 15N nuclei.

In fact, the effects of isotopic natural abundance are more dramatic than what is seen for single

labeling experiments. This is to be expected since the effects of isotopic natural abundance for two

elements is naturally greater than for either element.

Metabolites 2013, 3

863

Figure 4. Corrected and observed 13C/15N isotopologues of UDP-GlcNAc. Each graph

represents a set of 13C-labeled isotopologues with a specific number of 15N nuclei incorporated.

IM+i,0, IM+i,1, IM+i,2, and IM+i,3 represent 0,1,2, and 3 15N nuclei. Observed intensities are in

red and the isotopic natural abundance corrected intensities are in blue. The calculation of

the corrected intensities required 12 iterations of the algorithm.

4.4. Running Time

To test the effect of caching the P and S table calculations on the running time of the software,

we ran it both in a default mode where caching is enabled, and alternatively forcing the recalculation

of the P and S tables for each data set of peaks. With caching enabled, the run time averaged 530 s (9 min).

Without caching enabled, the run time averaged 890 s (15 min). Both runs were performed on an Intel®

Xeon X5650 processor running at 2.67 GHz. Also, these timings used a data file of 9,066 different

metabolites, with an average of 5 isotopologue peaks per metabolite.

5. Conclusions

Correction for the effects of natural abundance for multiple isotopes simultaneously is both

computationally feasible and numerically stable when the raw isotopologues are isotopically resolved

and identified. In addition, our algorithm is numerically stable both with respect to increasing isotope

incorporation and to increasing dimensionality of the correction due to multiple isotopes. In addition,

Metabolites 2013, 3

864

these corrections of isotopologue intensities are required before further quantitative analyses can be applied

to SIRM experimental datasets, especially for determining metabolic flux. In general, SIRM experiments

can generate massive volumes of data in relatively short periods of time. A single experimental dataset

may contain well over 100,000 isotopologue intensities and can be collected in as little as five minutes

with current FT-ICR mass spectrometers, like the one described in the Methods section. This makes

natural abundance isotopic correction a high throughput computational problem. Fortunately, our current

algorithm can correct for natural abundance on this time scale (i.e., ~5 min data collection vs ~9 min

analysis), with tools to detect and help correct issues in data quality. However, since each isotopologue

set's correction calculations are independent from all others within the entire dataset, many sets could be

corrected simultaneously. The design of the software inherently allows for a multi-processor

implementation that scales to any number processor cores available, making the algorithm extremely

robust with regard to future multi-core improvements in computing hardware. In addition, utilization of

multiple processor cores will be required when applying this algorithm to error analysis of large

datasets in a timely manner [26].

Software Availability

The software system is available as a tarball in the supplemental materials, and includes an example

of running the software on a file to correct multiple compounds in a single file. The software may also

be downloaded from [27].

Acknowledgments

We thank Richard Higashi and Pawel Lorkiewicz for support and helpful discussion. This work

was supported in part by DOE DE-EM0000197, NIH P20 RR016481S1, NIH 1R01ES022191-01,

and NSF 1252893.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Rittenberg, D.; Schoenheimer, R. Deuterium as an indicator in the study of intermediary

metabolism. J. Biol. Chem. 1937, 121, 235.

2. Schoenheimer, R.; Rittenberg, D. The study of intermediary metabolism of animals with the aid of

isotopes. Physiol. Rev. 1940, 20, 218.

3. Schoenheimer, R.; Rittenberg, D. Deuterium as an indicator in the study of intermediary

metabolism. J. Biol. Chem. 1935, 111, 163.

4. Boros, L.G.; Brackett, D.J.; Harrigan, G.G. Metabolic biomarker and kinase drug target discovery

in cancer using stable isotope-based dynamic metabolic profiling (SIDMAP). Curr. Cancer Drug Tar.

2003, 3, 445–453.

Metabolites 2013, 3

865

5. Fan, T.W.; Lane, A.N.; Higashi, R.M.; Farag, M.A.; Gao, H.; Bousamra, M.; Miller, D.M.

Altered regulation of metabolic pathways in human lung cancer discerned by (13)C stable

isotope-resolved metabolomics (SIRM). Mol. Cancer 2009, 8, 41.

6. Lane, A.N.; Fan, T.W.M.; Xie, Z.; Moseley, H.N.B.; Higashi, R.M. Isotopomer analysis of lipid

biosynthesis by high resolution mass spectrometry and NMR. Anal. Chim. Acta 2009, 651, 201–208.

7. Moseley, H.N. Correcting for the effects of natural abundance in stable isotope resolved

metabolomics experiments involving ultra-high resolution mass spectrometry. BMC Bioinformatics

2010, 11, 139.

8. Pingitore, F.; Tang, Y.J.; Kruppa, G.H.; Keasling, J.D. Analysis of amino acid isotopomers using

FT-ICR MS. Anal. Chem. 2007, 79, 2483–2490.

9. Moseley, H.N.; Lane, A.N.; Belshoff, A.C.; Higashi, R.M.; Fan, T.W. A novel deconvolution

method for modeling UDP-N-acetyl-D-glucosamine biosynthetic pathways based on (13)C mass

isotopologue profiles under non-steady-state conditions. BMC Biol. 2011, 9, 37.

10. Dauner, M.; Sauer, U. GC-MS Analysis of amino acids rapidly provides rich information for

isotopomer balancing. Biotechnol. Progr. 2000, 16, 642–649.

11. Fischer, E.; Sauer, U. Metabolic flux profiling of Escherichia coli mutants in central carbon

metabolism using GC-MS. Eur. J. Biochem. 2003, 270, 880–891.

12. Hellerstein, M.K.; Neese, R.A. Mass isotopomer distribution analysis at eight years: Theoretical,

analytic, and experimental considerations. Am. J. Physiol.—Endoc. M. 1999, 276, E1146–E1170.

13. Lee, W.N.P.; Byerley, L.O.; Bergner, E.A.; Edmond, J. Mass isotopomer analysis: Theoretical and

practical considerations. Biol. Mass Spectrom. 1991, 20, 451–458.

14. Snider, R. Efficient calculation of exact mass isotopic distributions. JASMS 2007, 18, 1511–1515.

15. Van Winden, W.; Wittmann, C.; Heinzle, E.; Heijnen, J. Correcting mass isotopomer distributions

for naturally occurring isotopes. Biotechnol. Bioeng. 2002, 80, 477–479.

16. Wahl, S.A.; Dauner, M.; Wiechert, W. New tools for mass isotopomer data evaluation in 13C flux

analysis: Mass isotope correction, data consistency checking, and precursor relationships.

Biotechnol. Bioeng. 2004, 85, 259–268.

17. Zhang, X.; Hines, W.; Adamec, J.; Asara, J.; Naylor, S.; Regnier, F. An automated method for the

analysis of stable isotope labeling data in proteomics. JASMS 2005, 16, 1181–1191.

18. Fernandez, C.A.; Des Rosiers, C.; Previs, S.F.; David, F.; Brunengraber, H. Correction of 13C

mass isotopomer distributions for natural stable isotope abundance. J. Mass Spectrom. 1996, 31,

255–262.

19. Rockwood, A.L.; Haimi, P. Efficient calculation of accurate masses of isotopic peaks. JASMS

2006, 17, 415–419.

20. Rockwood, A.L.; van Orden, S.L. Ultrahigh-speed calculation of isotope distributions. Anal. Chem.

1996, 68, 2027–2030.

21. Yergey, J.A. A general approach to calculating isotopic distributions for mass spectrometry. Int. J.

Mass Spectrom. Ion Phys. 1983, 52, 337–349.

22. Rossum, G.V. The Python Programming Language. Available online: http://www.python.org/

(accessed on 21 July 2013).

23. Sanner, M.F. Python: A programming language for software integration and development. J. Mol.

Graph. Model. 1999, 17, 57–61.

Metabolites 2013, 3

866

24. Oliphant, T.E. A Guide to NumPy; Trelgol Publishing: Spanish Fork, UT, USA, 2006; Volume 1,

pp. 1–371.

25. Gamma, E. Design Patterns: Elements of Reusable Object-Oriented Software; Addison-Wesley

Professional: Boston, MA, USA, 1995; pp. 1–416.

26. Moseley, H.N.B. Error analysis and propagation in metabolomics data analysis. Comp. Struct

Biotech. J. 2013, 4, e201301006.

27. Moseley Bioinformatics Laboratory Software Repository for download. Available online:

http://bioinformatics.cesb.uky.edu/bin/view/Main/SoftwareDevelopment (accessed on 21 July 2013).

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

	University of Kentucky
	UKnowledge
	9-25-2013

	A Computational Framework for High-Throughput Isotopic Natural Abundance Correction of Omics-Level Ultra-High Resolution FT-MS Datasets
	William J. Carreer
	Robert M. Flight
	Hunter N. B. Moseley
	Repository Citation
	A Computational Framework for High-Throughput Isotopic Natural Abundance Correction of Omics-Level Ultra-High Resolution FT-MS Datasets
	Notes/Citation Information
	Digital Object Identifier (DOI)

	A Computational Framework for High-Throughput Isotopic Natural Abundance Correction of Omics-Level Ultra-High Resolution FT-MS Datasets

