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ABSTRACT OF DISSERTATION  

 
 
 

ENGINEERING TRITERPENE METABOLISM IN TOBACCO 
 

Terpenes comprise a large diverse class of natural products and many of them attract 
interest because of their physiological function, therapeutic and industrial values. 
Triterpene oils including squalene (C30), botrycococcene (C30) and their methylated 
derivatives (C31-C37) generated by the green algae Botryococcus braunii race B, which 
have recently received significant attention because of their utility for advanced biofuels. 
However, the slow growth habit of B. braunii makes it impractical as a robust biofuel 
production system. In this thesis, we firstly evaluated the potential of generating high 
levels of triterpene (C30) production in tobacco plants by diverting carbon flux from 
cytosolic MVA pathway or plastidic MEP pathway by overexpressing avian farnesyl 
diphosphate synthase along with triterpene synthase targeted to the cytoplasm or the 
chloroplast of cells. Up to 1,000 µg/g fresh weight of squalene and 544 µg/g fresh weight 
of botryococcene was achieved in our transgenic plants with this metabolism direct to 
the chloroplasts, which is about approximately 100-times greater than that accumulating 
in the plants engineered for cytosolic production. To test if methylated triterpenes can be 
produced in tobacco, we also engineered triterpene methyltransferases (TMTs) into wild 
type plants and transgenic tobacco plants selected for high level triterpene accumulation. 
We observed that up to 91% of the total triterpene content was converted to methylated 
forms (C31, C32) by targeting the TMTs to the chloroplasts of transgenic plants, 
whereas only 4-14% of total triterpenes were methylated when TMTs were directed to 
the cytoplasm. Select transgenic lines were growing in field studies from 2011 to 2014 to 
evaluate their physiological performance under field conditions. Surprisingly, the field 
studies suggested that the growth and agronomic performance of the transgenic lines 
accumulating squalene were not compromised, while those accumulating high levels of 
botryococcene were only 72%-76% as tall, had about 59%-75% of the leaf area, and 
about 55%-75% of the biomass as wild type plants. Yet, these transgenic plants had 
photosynthetic capacity equal to the wild type plants 
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Chapter 1: Background and Introduction 

1.1 Terpene metabolism in plants 

Terpenes and terpenoids comprise a large diverse class of natural products 

(Buckingham, 2003) and many of them have attracted interest because of their 

therapeutic and industrial value (Dewick, 2009). For example, terpenes extracted from 

plants are used as anti-cancer and anti-malarial drugs (Cragg, 1998; Dhingra et al., 

2000). These valuable compounds are commonly isolated from plants, microbes and 

marine organisms. However, most of these compounds are produced in very small 

amounts by their natural host and often not as single compounds but as complex 

mixtures. Hence, there have been many efforts to engineer terpene metabolism into 

model organisms such as bacteria, yeast and plants, in order to produce large quantities 

for chemical identification and functional characterization (Zook et al., 1996; Wallaart et 

al., 2001; Martin et al., 2003; Kirby et al., 2008). 

In plants, terpene biosynthesis occurs via mevalonate (MVA) pathway operating in the 

cytoplasm and the methyl-erythritol phosphate (MEP) pathway operating in the 

chloroplast compartment (Figure 1.1). By two different routes, both pathways can 

produce isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate 

(DMAPP), which are C5 building blocks for specific class of terpenes. The cytosolic 

pathway (MVA) is mainly responsible for the generation of terpenes like sterols and 

sesquiterpenes, compounds consisting of 30 (C30) or 15 (C15) carbons, respectively. 

Monoterpenes (C10), diterpenes (C20) and carotenoids (C40) are synthesized via the 

plastidic pathway (MEP). Terpenes play important roles in plants, including providing 

essential metabolites for general growth and development (Clouse, 2011; Kohlen et al., 

2011) as well as molecules mediating interactions between plants and their biotic and 

abiotic environments (Keeling and Bohlmann, 2006; Kegge and Pierik, 2010; Huffaker et 

al., 2011). 

1.2 Strategies for metabolic engineering terpene metabolism in plants  

Engineering terpene metabolism in plant system is attractive because plants rely on 

photosynthesis for growth instead of an exogenous carbon source. However, because of 

complex innate regulation of terpene metabolism, limited success has been achieved in 

generating high-level terpene products in plants. In fact, any production platform can not 
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be considered economically viable until the value of the compound produced exceeds 

the production costs. Obvious means for addressing such limitation are to increase 

production levels per plant and to generate high-valued products. In a general 

conceptual sense, producing compounds equivalent to 1% of the dry weight of the plant 

is often mentioned as a minimal target level (Horsch, 1993; Snell and Peoples, 2009). 

However, plants are more complex multicellular organisms compared to microbial 

system, which make them more difficult to genetically engineer. Although efforts have 

indicated that metabolically engineering of plants is feasible, there are still important 

considerations, technologies, and strategies that are limiting successful development of 

strategies for plant production platforms. These important considerations include macro-

scale issues such a selection of an appropriate plant host to engineer to more detailed 

considerations such as tissue-specific and cell-specific targeting of the engineered 

metabolism to assure success. Micro-scale and molecular details also need to be 

considered. Overall, there are three essential components that underwrite any 

engineering strategy: 1. manipulation of gene expression (e.g. using heterologous genes 

from a species unrelated to the host under a promoter that drives the desired temporal 

and/or spatial expression patterns, or altering endogenous gene expression to change 

flux towards the desired pathway); 2. design to avoid endogenous regulation (e.g. using 

specific hosts and targeting the introduced pathway to specific tissues and subcellular 

compartments); and 3. combining these two considerations in unique and novel ways 

with the available technologies (e.g. using metabolic models, synthetic biology to ensure 

enzyme cooperation, use of transporters to sequester accumulated compounds and 

avoid toxicity problems). Besides the choice of plant host, these variables can be 

controlled to large extent by construct design and are best summarized in Figure 1.2. 

1.3 Engineering isoprenoid metabolism in plant organelles 

As noted earlier, metabolic flux in isoprenoid biosynthesis revolves around a complex 

network that involves multiple subcellular compartments within the plant cell: the 

cytosolic MVA pathway, the plastid-localized MEP pathway, localization of many 

sequential isoprenoid biosynthetic enzymes arrayed on the ER membrane or targeted to 

mitochondria and microbodies, and the possible participation of the vacuole as a 

storage/sequestration organelle (Figure 1.2). Hence, targeting of enzymes and 

biosynthetic capacity to an appropriate subcellular location is a prerequisite for 
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successful metabolic engineering in plants, which must overcome several layers of 

complicated regulation (Heinig et al., 2013a; Lange and Turner, 2013). Early metabolic 

engineering attempts achieved less success in elevating terpene production by 

introducing enzymes into the cytoplasm without considering the regulatory complexity of 

the MVA pathway (Wu et al., 2006). Now, engineering terpene metabolism into 

organelles to overcome these innate regulatory constraints has become an important 

strategy, as illustrated by the following two examples. 

It is well established that the biosynthesis of distinct classes of isoprenoids take place in 

distinct organelles (Figure 1). For example, the major steps of monoterpenes, diterpenes 

and carotenoids biosynthesis are known to operate in higher plant chloroplasts, so most 

of the engineering efforts to enhance biosynthesis of these compounds have used 

heterologous enzymes fused with a plastid-targeting signal peptide to direct them to their 

endogenous site of biosynthesis (or by introducing the transgene into the plastid genome 

directly). This type of “straight-forward” genetic engineering has been conducted in 

various species of higher plants, extensively reviewed (Fraser et al., 2009; Misawa, 2009; 

Beyer, 2010; Bai et al., 2011; Farré et al., 2011; Wurtzel et al., 2012; Lange and Turner, 

2013; Morandini, 2013) and will not be reiterated in this section other than to note that 

this type of engineering utilizes pre-existing substrate biosynthesis, which is captured 

and diverted to produce compounds that may or may not be normally present within a 

particular organelle. Hence, this type of strategy does not completely avoid endogenous 

regulatory elements that may respond directly to the synthesized compound or indirectly 

through changes in intermediates and large amounts of target compound accumulation. 

It is also necessary to be aware of any inherent regulatory mechanisms (e.g. allosteric 

sites) of the introduced enzymes that may subject these engineered activities to non-

native regulation.   

In order to avoid this type of regulation, targeting introduced enzymes to particular 

organelles to divert available substrate(s) for the formation of a novel pathway that is 

foreign to the organelle has become a commonplace strategy. In an early study, a 

strawberry linalool/nerolidol synthase FaNES1, was targeted to mitochondria by fusing a 

mitochondrial targeting signal sequence to the amino terminus of the FaNES1 protein, 

leading to generation of two novel sesquiterpenes in transgenic Arabidopsis, (3S)-(E)-

nerolidol and (E)-DMNT, neither of which are found in WT lines (Kappers et al., 2005). In 

another recent study (Farhi et al., 2011), amorphadiene-4,11-diene synthase (ADS) 
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targeted to the mitochondria was co-expressed with a cytochrome P450 (CYP71AV1), a 

cytochrome P450 reductase (CPR), an artemisinic aldehyde reductase (DBR2) from A. 

annua, and a truncated and deregulated HMGR from yeast in N. tabacum. This resulted 

in artemisinin accumulation of 5-7 mg/g DW, which is 8-fold more than when ADS was 

targeted to the cytoplasm (Farhi et al., 2011). These results provide strong evidence that 

mitochondrial targeted FaNES1 and ADS have access to FPP in the mitochondria and 

convert this intermediate into (3S)-(E)-nerolidol and amorpha-4,11-diene, respectively. 

These reaction intermediates were then were further converted by native (and unknown 

enzymes in Arabidopsis) or engineered enzymes (CYP71AV1, CPR, DBR2) present in 

cytosol to the final products (E)-DMNT and artemisinin, respectively. Although it is not 

clear how the intermediate product (3S)-(E)-nerolidol and amorpha-4,11-diene are 

shuttled between the mitochondria and cytosol, the results show that the heterologous 

terpene synthases can efficiently use the FPP pool in the mitochondria for novel 

sesquiterpene production. In contrast, free pools of FPP in chloroplasts and the 

cytoplasm must be less available in these species because simply introducing a FPP-

dependent synthase does not yield appreciable novel terpene accumulation (Aharoni et 

al., 2003; Kappers et al., 2005; Wu et al., 2006; Farhi et al., 2011) 

Wu et al. (2006) furthered this approach by applying it to chloroplasts. Accumulation 

greater than ~25 µg/g FW of the non-native sesquiterpenes patchoulol and amorpha-

4,11-diene, was achieved in transgenic N. tabacum  when an avian FPS gene and non-

native sesquiterpene synthases, ADS or patchoulol synthase (PTS), genes were 

transformed into the nuclear genome with plastid targeting signal sequences appended 

to the amino-terminus of encoded proteins. Using the same strategy, up to ~500 µg/g 

FW of the triterpenes squalene and botryococcene were achieved when an avian FPS 

gene was co-expressed with either a yeast squalene synthase (SQS) or an engineered 

algal botryococcene synthase (BS) targeted to the chloroplast compartment (Wu et al., 

2012 and Jiang et al., unpublished). Conceptually, the plastid targeted FPS diverts the 

IPP and DMAPP intermediates from the MEP pathway towards the accumulation of free 

FPP, the substrate for sesquiterpene and triterpene production. The biosynthesis of FPP, 

sesquiterpenes, and triterpenes are foreign to the chloroplast, and introduction of these 

two-step biochemical pathways allows for elevated non-native terpene production in the 

plastid compartment, sheltering these non-native biosynthetic pathways from any native 

regulatory mechanisms and hence allowing for an unlimited flux of carbon to a desired 
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terpene. Kumar et al., (2012) corroborated this notion in an independent study where the 

entire yeast MVA pathway (a total of six enzymes) was introduced into the chloroplast 

genome of tobacco.The resulting homoplasmic transgenic lines accumulated multiple 

isoprenoid products, including mevalonate, carotenoids, sterols, squalene, and 

interestingly, triacylglycerides.  

When engineering novel biosynthetic capacity into the chloroplast, there is an important 

choice to be made between plastidic transformation versus nuclear transformation. 

Plastidic transformation offers several advantages over nuclear transformation: 

homologous recombination methodology exists, expression of transgene operons could 

improve coordinated gene expression, transgene inheritance should only pass from 

maternal tissue, nuclear epigenetic affects should not present any difficulties, and the 

translation of expressed transgenes into protein is likely to be higher compared to 

nuclear transgene expression (Daniell et al., 2005; Daniell, 2006; Kumar et al., 2012). 

However, there are no any direct comparisons of isoprenoid production by plastid 

genome transformations versus nuclear genome transformations expressing the same 

enzymes within or targeted to the chloroplast. Moreover, the higher level of protein 

expression does not always positively correlate with higher level of terpene production 

and reflects the need to consider many factors, such as: protein (enzyme) activity, 

substrate availability, flux control within the pathway, and other regulatory complexities 

which may exist in the plastid. Thus, the best transformation strategy, nuclear versus 

plastidic, will probably vary on a case-by-case basis.  

1.4 Altering expression patterns of endogenous genes 

1.4.1 Down-regulating gene expression 

Down-regulation or knockout of endogenous biosynthetic genes is another important 

strategy commonly used to regulate/re-direct metabolic pathway flux. These efforts 

attempt to suppress or abolish gene expression of a possible competing enzyme, thus 

flux can be redirected into desired enzyme/pathway. However, this technique has not 

been used substantially and effectively in plant metabolic engineering compared with 

efforts in microbial systems. This is, in part, because of the difficulties in obtaining 

specific plant mutants and the low efficiency in obtaining appropriate amounts of down-

regulation of gene expression in plants (due mainly to large unknown genomes and/or 
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redundant genes). Nevertheless, a number of studies have reported that anti-sense RNA 

and RNAi (RNA interference) techniques have been successfully used in manipulating 

plant terpene metabolism to increase terpenoid production. 

Monoterpene essential oil production was been elevated (61% yield increase over WT 

plants) in transgenic peppermint expressing peppermint antisense (+)-menthofuran 

synthase (MFS) with simultaneous overexpression of DXR (Lange et al., 2011a). Down-

regulation of MFS alone was shown to decrease the level of side-product (+)-

menthofuran, and redirected carbon flux to desirable monoterpene oil production, 

leading to an increased oil yield by roughly 35% (Mahmoud and Croteau, 2001). 

Tuber-specific expression of antisense fragments for either lycopene cyclase (LCY-e) or 

ß-carotene hydroxylase, the genes encoding the enzymes which compete for lycopene 

and further metabolism of ß-carotene, respectively, lead to significantly increased levels 

of ß-carotene (up to 14-fold and 38-fold, respectively) and total carotenoids (up to 2.5-

fold and 4.5-fold, respectively) in potato tuber (Diretto et al., 2006; Diretto et al., 2007). 

When LCY-e was suppressed by an RNAi approach, increased carotenoid content in B. 

napus seeds was reported (Yu et al., 2008). RNAi was also used in several studies to 

increase the content of artemisinin in A. annua by down-regulating SQS and ß-

caryophyllene synthase, both enzymes that compete for FPP, which is a key 

intermediate in the artemisinin biosynthetic pathway (Feng et al., 2009; Zhang et al., 

2009; Chen et al., 2011). When the Catharanthus roseus gene encoding 7-deoxyloganic 

acid 7-hydroxylase (CrDL7H), which is involved in secologanin biosynthesis, were 

suppressed by virus-induced gene silencing the accumulation of secologanin was 

reduced by at least 70%. Critically, the accumulation of the intermediate, 7-deoxyloganic 

acid (the substrate for CrDL7H), was 4 mg/g FW in silenced plants while this compound 

is normally undetectable in WT plants (Salim et al., 2013). 

Transgenic oranges with reduced levels of limonene caused by an antisense down-

regulation of the (+)-limonene synthase gene, were shown to be resistant to 

economically important pathogens (Rodríguez et al., 2011). Exactly how the reduced 

level of limonene in fruits activates a defense response has yet to be determined, but 

reduced limonene accumulation does correlate with increased levels of GGPS which 

could provide substrate for the formation of diterpene antimicrobial compounds that 

inhibit pathogen infection. The authors of this study also suggest that a link between 
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limonene accumulation and pathogen attack could play an ecological role in facilitating 

seed dispersal by allowing herbivores easier access to the fruit pulp (Rodríguez et al., 

2014).  

1.4.2 Transcription factors 

Many specialized metabolites in plants accumulate when plants respond to acute 

developmental or environmental signals (Chappell and Nable, 1987). Therefore, it 

seems reasonable that their biosynthetic genes would be regulated in a coordinated 

manner by transcriptional factors. Although transcriptional regulation of the isoprenoid 

biosynthetic pathways is not well characterized, metabolic engineering of certain 

regulatory genes (the transcriptional factors) provides a novel approach to enhance 

terpene production in plants (Patra et al., 2013).  

Recent studies have reported transcription factors in A. annua that appear to regulate 

artemisinin biosynthesis. AaWRKY1 was characterized as a transcription factor that 

regulates the native ADS gene in A. annua. Transient expression of AaWRKY1 also led 

to increased transcript accumulation of the majority of artemisinin biosynthetic genes 

(Ma et al., 2009). Two jasmonate-responsive (AaERF1 and AaERF2) and a trichome-

specific (AaORA) AP2/ERF transcription factors were also characterized as positive 

regulators for artemisinin biosynthesis in A. annua. Overexpressing either transcription 

factor resulted in increased accumulation of artemisinin and artemisinic acid (Yu et al., 

2012; Lu et al., 2013). In contrast and contrary to expectations, constitutive expression 

of an Arabidopsis blue light receptor, CRY1, gene in A. annua increased the transcript 

abundance for FPS, ADS, and CYP71AV1, three important enzymes in artemisinin 

biosynthesis, and lead to 30∼40% increases in the artemisinin and anthocyanins (Hong 

et al., 2009). 

Catharanthine accumulation was improved up to 6.5-fold higher than WT in C. roseus 

hairy roots by co-expression of the ORCA3 transcription factor and the gene encoding 

for geraniol 10-hydroxylase, an enzyme involved in the terpenoid indole alkaloid (TIA) 

biosynthetic pathway (Wang et al., 2010). Likewise, overexpression of the Arabidopsis 

transcription factor Agamous-like 12 in C. roseus suspension cells promoted enhanced 

accumulation of ajmalicine, a TIA with antihypertensive properties (Montiel et al., 2007). 

Arabidopsis transcription factors MYC2 and MYB21 have also been reported to regulate 
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the expression of sesquiterpene synthase genes TPS11 and TPS21. When mutated, the 

Arabidopsis myc2 and myb21 mutants emit less sesquiterpene volatiles from their 

flowers than the WT plants, which was correlated with reduced levels of the TPS11 and 

TPS21 mRNAs (Hong et al., 2012; Reeves et al., 2012).  

1.5 Engineering terpene metabolism by trichome specific gene expression  

Trichomes encompass a group of specialized cells that originate from the epidermis of 

plant tissues and are differentiated on the basis of their biochemical capabilities. A 

recent review by Lange and Turner (2013) summarizes the current knowledge of 

isoprenoid biosynthesis in trichomes and touches upon how our current understanding in 

trichome biology might be harnessed for use in metabolic engineering efforts. Briefly, 

there are several types of trichomes but glandular trichomes (GTs) are the most 

important in terms of specialized metabolism capacity due to their seemingly dedicated 

role as metabolite production factories. The presence, number, and type of trichomes 

vary between plant species. Thus, the capacity to engineer them does not exist for every 

engineering project (although, this could be an important factor in choosing a particular 

production host). Equally important, glandular trichomes can secrete their products onto 

the leaf surface, facilitating collection, or the glandular head synthesized compounds 

may accumulate in cavities/sacs associated with the metabolically active cells. 

Trichomes secreting hydrophobic compounds like isoprenoids generally have interesting 

intracellular features like an extensive smooth ER network that maintains contact with 

non-pigmented leucoplasts. The leucoplasts appear to have a non-uniform shape which 

could be implicated in increasing the contact surface area with the smooth ER (Lange 

and Turner, 2013). These extensive connections between intracellular membrane 

networks may be critical for transport of large amounts of hydrophobic compounds. A 

recent study has also implicated a possible role of a lipid transfer protein in the export of 

isoprenoids from Nicotiana tall GTs (Choi et al., 2012).  

The species in which isoprenoid biology of the trichomes has been best studied is the 

pathway leading to the production of (-)-menthol in Mentha x piperita (peppermint), 

which occurs exclusively in this plants’ trichomes. The biosynthesis and subcellular 

organization of (-)-menthol production has been well described (Croteau et al., 2005). 

The production of this monoterpene through the MEP pathway illustrates the robust 

carbon flux through trichome plastids. Further support for a high carbon flux through the 
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MEP pathway in trichomes is the high level of Δ9-tetrahydrocannabinolic acid 

accumulation in Cannabis sativa. Tetrahydrocannabinolic acid contains an integrated 

GPP molecule attached to a phenolic precursor which allows for further carbon- and 

lactone- cyclization yielding the final product (Lange and Turner, 2013).Trichome-

specific promoters have also been identified which enable trichome specific transgene 

targeting and novel biotechnology applications (summarized in Tissier, 2012). The 

natural capacity for trichomes to function as specialized biochemical factories, in fact, 

makes them intriguing targets for the redirection of flux into heterologous, high-valued 

compounds (Wu et al., 2012). 

1.6 The unique triterpene and methylated triterpene biosynthesis in Botryococcus 

Braunii race B  

Botryococcus braunii, an ancient green algae, accumulates 30-86% of its dry weight as 

hydrocarbon oils. Three races of Botryococcus braunii have been identified race A, B 

and L. Triterpenes in Botryococcus braunii race B are of particular value because this 

algae has directly contributed to existing oil and coal shale deposits found on Earth, 

accounting for up to 1.4% of total hydrocarbon content in oil shales (Moldowan and 

Seifert, 1980). However, because B. braunii is such a slow growing alga, the use of it for 

large-scale cultivation and oil production seems interesting but unrealistic. Therefore 

characterization of genes for botryococcene and triterpene methylation is important and 

will make it possible for engineering triterpene metabolism into other robust systems for 

renewable petrochemcals and biofuels production (Banerjee et al., 2002). 

Squalene and botryocene are the two triterpene species accumulating in B. braunii race 

B, and they share similarity not only in their structure but also in their biosynthesis 

pathway. Both compounds are derived from two 15-carbon farnesyl (FPP) residues: 

squalene accurs from an intial head to head condensation of two FPPs into the stable 

intermediate presqualene diphosphate (PSPP), followed by a reductive rearrangement 

to form 1-1’ linkage final product. Botryococcene has the same first half reaction, but the 

intermediate PSPP is converted via a different reductive rearrangement to form 1’-3 

linkage final product (Fig. 4A) (Okada et al., 2000). 

Squalene synthase has been extensively studied, in part because it is found in all 

eukaryotes. Based on the assumption that squalene synthase and botrycocene synthase 



 
 

  
10 

 
  

would share similarity in both their sequence and catalytic function, the B. braunii 

squalene synthase cDNA was used to screen B. braunii cDNA library under low 

stringency hybridization conditions, a unique squalene synthase-like gene (SSL-1) was 

isolated. Other two additional squalene synthase-like (SSL) genes, SSL-2, and SSL-3 

were discovered by exhaustive sequencing assessment of B. braunii transcriptomic date 

(Niehaus et al., 2011). Functional analysis of SSL-1 demonstrated it to catalyze PSPP 

formation from two FPPs in a NADPH-dependent manner. SSL-2 itself catalyzed the 

conversion of FPP to 90% bisfarnesyl ether and 10% squalene.  But unexpectedly, when 

SSL-2 were co-expressed with SSL-1 or provided with PSPP, high levels of squalene 

biosynthesis and accumulation were observed. Similarly, SSL-3 was unable to utilized 

FPP as a substrate, but when co-expressed with SSL-1 or provided with PSPP, high-

levels of botryococcene accumulated (Figure 1.3). 

To improve the efficiency of botryococcene biosynthesis, different configurations of SSL-

1 and SSL-3 genes was tested. Fusion of SSL-1 and SSL-3 with a triplet repeat linker of 

GGSG improved production efficiency 2 to 3-fold. Further enhancement was found when 

the SSL-1 and SSL-3 enzymes were appended with the carboxy-terminal amino acids 

domains of B. braunii squalene synthase to C-terminal of SSL-1 and SSL-3 respectively 

(SSL1M+3M) (Figure 1.4). Further experiment shows the best configuration is fusion 

enzyme appending with only one membrane associated domain at its carboxyl-terminal 

(SSL1+3M) (data not shown). The function of these terminal amino acids would serve to 

direct SSL-1 and 3 to the yeast’s endo-membrane system, which might give rise to the 

enzymes greater access to endogenous FPP pools (Niehaus et al., 2011) 

The triterpene oils content of B. braunii race B is primarily of botryococcenes, of which 

less than 1% is in the non-methylated C30 form, while the majority is in methylated 

forms (C32-C34). The proportions of different methylated triterpenes varied by algae 

strains algae and their growth conditions (Metzger, 1985; Metzger et al., 1988). 

Compared with non-methylated forms, methylated botryococcene and squalene are 

much more efficiently hydrocracked to fuel components processes (Figure 1.3). Hence, 

characterization of the specific mechanism for how these triterpenes are methylated 

could provide significant mechanistic insights to the catalytic capacity of these 

methyltransferases.  
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Triterpene methyltransferase TMT-1, TMT-2 and TMT-3 were identified by blast 

searches of the B. braunii 454 transcriptomic dataset using the C24 sterol methyl 

transferase as the search query (Niehaus et al., 2012). TMT-1 and TMT-2 were 

subsequently shown to exhibit strong methylating activity squalene. Co-expression of 

triterpene methyl-transferase-1 (TMT-1) with B. braunii squalene synthase (BSS) in 

yeast resulted in 63% of the total squalene being methylated, of which 43% accumulated 

as dimethyl-squalene.  When TMT-2 was co-expressed with BSS, 40% of the squalene 

was methylated, of which 31% accumulating as monomethyl-squalene and the rest as 

dimethylated squalene. In contrast, TMT-3 showed much lower activity for methylating 

squalene, but readily methylated botryococcene. When TMT-3 co-expression with BSS 

or SSL1+3m (bytrococcene synthase), 18% of the total squalene was methylated, 

whereas 33% of the botrycoccene was methylated, of which more than half was 

dimethylated (Figure 1.4). The function of these three enzymes were corroborated by in 

vitro enzyme assay using 3H-SAM and botryococcene or squalene as the substrates 

(Niehaus et al., 2012). 

Through NMR analysis of these unique methylated compounds, methylation on mono-

methyl squalene was only found at C-3, and methylation on dimethyl squalene was at C-

3 and C-22. In contrast, mono-methylated botryococcene produced by TMT-3 has 

methylation at two positions, C-20 or C-3. The methylation on dimethylated-

botryococcenes occurs at both C-3 and C-20. Although botryococcene accumulates in B. 

braunii predominantly in a tetra-methylated form, further work will be  needed to find the 

enzymes responsible for the specific methylation at C-33 and C-34 (Niehaus et al., 

2012). 

1.7 Methylation, methyltransferase and SAM in plants 

Methylation is one of the most common reactions occurring in all organisms. It is 

involved in wide range of biological processes, including cell signaling, regulation of 

gene expression and protein function, and biosynthesis and metabolism of primary and 

secondary metabolites. Especially DNA and protein methylation have been extensively 

studied for their critical roles in epigenetic inheritance (Martin and McMillan, 2002; 

Schubert et al., 2003; Kozbial and Mushegian, 2005). 



 
 

  
12 

 
  

The majority of methylation reactions are catalyzed by methyltransferases, which are a 

group of enzymes that share a diverse and limited sequence similarity, but broadly 

conserved for AdoMet binding domain (Kagan and Clarke, 1994). These enzymes can 

be divided into several classes based on their substrate specificity (C-, O-, N-, S-, or 

halide methyltransferases) or their structural similarity (Noel et al., 2003; Schubert et al., 

2003; Zubieta et al., 2003; Liscombe et al., 2010). In plants, these enzymes are 

responsible for methylation of proteins, nucleic acids, lipids cell wall polymers, as well as 

secondary metabolites, which plays important roles for plant growth and development 

(Huang et al., 2012; Sauter et al., 2013). 

Most of these methyltransferases utilize S-Adenosylmethionine (SAM) as the methyl 

donor (Liscombe et al., 2010; Scheer et al., 2011), one of the most abundant co-factors 

in plant metabolism (Fontecave et al., 2004; Sauter et al., 2013). SAM is synthesized 

exclusively in the cytosol by using methionine (Met) as the building block (Ravanel et al., 

2004), accounting for 80% of Met metabolism (Giovanelli et al., 1985). Although 90% of 

SAM will be used in vivo as the methyl donor (Giovanelli et al., 1985), the remaining 

SAM can also serve as primary precursors for the biosynthesis of the plant hormone 

ethylene (Wang et al., 2002a), the growth stimulating polyamines (Takahashi et al., 

2003a; Kusano et al., 2008), the iron-chelating nicotinamine (Takahashi et al., 2003b) 

and cyclopropane fatty acids (Figure 1.5)(Bao et al., 2002; Bao et al., 2003). 

SAM also plays a critical role in the methylation and metabolism occurring in the 

chloroplast, where SAM was strictly imported from the cytosol by  specific SAM/SAH 

exchangers exist on the outer membranes of plastids (Ravanel et al., 2004; Bouvier et 

al., 2006). The imported SAM is  utilized for in the biogenesis of aspartate-derived amino 

acids, such as Lys (lysine), Ile (isoleucine) and Thr (threonine) (Curien et al., 1998; 

Jander and Joshi, 2009; Sauter et al., 2013). SAM also serves as the methyl donor for 

methylation of primary, and secondary metabolites in the chloroplast, such as plastid 

DNA (Nishiyama et al., 2002; Ahlert et al., 2009a) and proteins (Houtz et al., 1989; Niemi 

et al., 1990; Ying et al., 1999; Trievel et al., 2003; Alban et al., 2014); or specific 

metabolites prenyllipids (e.g.,chlorophylls, plastoquinone, tocopherol, and phylloquinone) 

(Bouvier et al., 2005; DellaPenna, 2005; Bouvier et al., 2006) and the diterpene 

antioxidant carnosic acid (Munné-Bosch and Alegre, 2001) (Figure 1.5).   
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Figures of chapter 1 

 

Figure 1.1 Outline of the two terpene biosynthetic pathways that operate generally in 

plants, the mevalonate (MVA) pathway in the cytoplasm and the methyl erythritol 

phosphate (MEP) pathway in the plastidic compartment. MVA, Mavalonate; MEP, 

Methylerythritol phosphate; HMG-CoA, 3-hydroxy-3-methylglutaryl-coenzyme A; IPP 

Isopentenyl diphosphate; DMAPP, Dimethylallyl diphosphate; FPP, Farnesyl 

diphosphate; PGAL, Glyceraldehyde 3-phosphate; GPP, Geranyl pyrophosphate; GGPP, 

Geranylgeranyl pyrophosphate. 
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Figure 1.2 A schematic blueprint illustrating important variables and approaches to 

metabolic engineering in plants. This figure shows a typical transgene design that can 

capitalize upon various permutations to yield the desired flux of carbon to the 

biosynthesis of unique end-products. The process(es) controlled by each arrow is 

defined within the inset figure legend. 
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Figure 1.3 A depiction of the catalytic roles of the squalene synthase-like enzymes in 

Botryococcus braunii race B and their putative contributions to the triterpene constituents 

(Niehaus et al., 2011). SSL-1 converts two farnesyl diphosphate molecules (FPP) to pre-

squalene diphosphate (PSPP), which is converted to either squalene or botryococcene 

by SSL-2 or SSL-3, respectively. TMT-1 and TMT-2 catalyze the transfer the methyl 

donor group from AdoMet (SAM) to squalene to form mono- or dimethylated squalene, 

whereas TMT-3 acts on botryococcene to form mono- or dimethylated botryococcene. 

TMT-1 and TMT-2 can transfer a methyl group from SAM to squalene form mono- or 

dimethylated squalene, while TMT-3 favors on botryococcene to form mono- or 

dimethylated-botryococcene (Niehaus et al., 2012). Catalytic hydrocracking of 

tetramethylated botryococcene isolated from B. braunii race B yields petroleum distillate-

like products that can be used directly for industrial chemical manufacturing, or can be 

distilled in high yields to give all classes of combustible fuels, including gasoline (67%), 

aviation fuels (15%) and diesel (15%) (Niehaus et al., 2011). 
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Figure 1.4 Comparison of botryococcene production in yeast engineered with different 

configurations of SSL-1 and SSL-3 (Niehaus et al., 2011). Yeast line TN7 was 

engineered with the SSL-1 and SSL-3 genes on separate plasmids (squares); SSL-1 

fused to SSL-3 via a triplet repeat of GGSG (triangles); the carboxyl terminus of 

Botryococcus squalene synthase appended to C-terminal of the SSL-1 and SSL-3 

enzymes, respectively. 
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Figure 1.5 Model of subcellular compartmentation of SAM metabolism and its multiple 

roles in plant cells. SAM is exclusively synthesized from methionine in the cytosol, where 

it serves as a building block for biosynthesis of polyamines, ethylene, nicotianamne and 

is essential as a methyl donor for the methylation of many macromolecules catalyzed by 

methyltrasferases. SAM biosynthesized in the cytoplasm is also imported into the 

chloroplast by specific transporters that located on the inner membrane of the plastid 

envelope, and utilized in the biosynthesis of a variety of metabolites, amino acids and 

macromolecules as illustrated. 
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Chapter 2:  Engineering squalene metabolism in tobacco 

2.1 Summary 

Terpenes comprise a distinct class of natural products that serve a diverse range of 

physiological functions, provide for interactions between plants and their environment, 

and represent a resource for many kinds of practical applications. To better appreciate 

the importance of terpenes to overall growth and development, and to create a 

production capacity for specific terpenes of industrial interest, we have pioneered the 

development of strategies for diverting carbon flow from the native terpene biosynthetic 

pathways operating in the cytosol and plastid compartments of tobacco for the 

generation of specific classes of terpenes. In the current work, we demonstrate how 

difficult it is to divert the 5-carbon intermediates DMAPP and IPP from the mevalonate 

pathway operating in the cytoplasm for triterpene biosynthesis, yet diversion of the same 

intermediates from the methylerythritol phosphate pathway operating in the plastid 

compartment leads to the accumulation of very high levels of the triterpene squalene. 

This was assessed by the co-expression of an avian farnesyl diphosphate synthase and 

yeast squalene synthase genes targeting metabolism in the cytoplasm or chloroplast. 

We also evaluated the possibility of directing this metabolism to the secretory trichomes 

of tobacco by comparing the effects of trichome-specific gene promoters to strong, 

constitutive viral promoters. Surprisingly, when transgene expression was directed to 

trichomes, high-level squalene accumulation was observed, but overall plant growth and 

physiology were reduced up to 80% of the non-transgenic controls. Our results support 

the notion that the biosynthesis of a desired terpene can be dramatically improved by 

directing that metabolism to a non-native cellular compartment, thus avoiding regulatory 

mechanisms that might attenuate carbon flux within an engineered pathway.  

2.2 Introduction 

Terpenes are a structurally diverse class of compounds in plants that contribute to an 

equally diverse array of physiological and ecological functions. The structural diversity is 

most readily recognized in the classification of terpene families with repeating units of 5-

carbon building blocks, like sesquiterpenes with 15 carbons and triterpenes derived from 

a 30-carbon scaffold. Terpene chemical diversity, however, extends much beyond 

polymer size or linear versus cyclized forms to the substituent decorations like 
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hydroxylation, acylation, aroylation, methylation and glycosylation. Given such chemical 

richness, it isn’t too surprising how recent efforts have uncovered unique roles for 

terpenes in general growth and developmental processes. For instance, the essentiality 

of brassinolides (30 carbon triterpenes derivatives) for overall plant growth (Clouse, 

2011) and strigolactones (15 carbon sesquiterpenes arising from the breakdown of 40 

carbon carotenoids) for the control of axillary bud dormancy and root architecture 

(Kohlen et al., 2011) are two such examples. Our appreciation for the specialized roles 

of terpenes in mediating ecological interactions between plants with other plants (Kegge 

and Pierik, 2010), insects (Keeling and Bohlmann, 2006) and microbes (Huffaker et al., 

2011) has also grown in parallel with our understanding for the structural diversity of 

plant biosynthesized terpenes. Plant derived terpenes have also played a large role in 

various industrial applications ranging from flavors and fragrances (Schwab et al., 2008) 

to medicinals (Shelar and Shirote 2011) to the more recent attention to their utility for 

biofuels (Niehaus et al., 2011).  

With the increased recognition of terpene contributions to physiological functions and 

evolving industrial uses, a parallel effort has been to manipulate the biosynthesis and 

accumulation of these compounds in plants for a variety of reasons. One, genetic and 

molecular genetic technologies to abolish or ectopically produce specific terpenes have 

been used to identify the biochemical and physiological function of genes, thus providing 

a gene annotation capability (Tholl et al., 2005). This has also been important for testing 

our understanding for biochemical processes in general and understanding the genetic 

and biochemical components associated with terpene biosynthetic enzymes (Mandel et 

al., 1996). Second, generating transgenic plants accumulating altered amounts of a 

specific terpene or suite of terpenes can be evaluated for their health promoting 

properties (Sawai and Saito, 2011) or could provide new means for the sustainable 

production of high-value chemicals for industrial uses (Krings and Berger, 2010).   

Engineering terpene metabolism in microbial hosts has advanced significantly in the 

recent past with much of the emphasis on providing a higher yield and recovery of high 

valued terpenes. Much of the early success took advantage of the innate biosynthetic 

machinery in E. coli, the methylerythritol phosphate or MEP pathway, and introduced a 

limited number of carotenoid biosynthetic genes to yield visibly distinct lines (Schmidt-

Dannert et al., 2000). Additional efforts to up-regulate putative rate-limiting steps early in 

the MEP have also improved carotenoid yields (Kim and Keasling, 2001). Significant 
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gains in the production of sesquiterpenes was dramatically realized when the 

complement of the eukaryotic mevalonate, MVA, pathway from yeast was mobilized into 

E. coli (Martin et al., 2003). Yields improved from µg/l to mg/l for the sesquiterpene 

hydrocarbon amorphadiene upon heterologous expression of these yeast genes in E. 

coli. Complementary to these prokaryotic studies, investigators also desired production 

platforms for more highly decorated terpenes and especially hydroxylated forms.  

Because the eukaryotic enzymes for terpene hydroxylation and their associated 

cofactors like cytochrome P450 reductases require internal membrane systems unique 

to eukaryotic cells, development of terpene production in yeast has also been advanced. 

In contrast to E. coli, yeast only possess the MVA pathway, which directs a significant 

amount of carbon down this cytosolic pathway to ergosterol biosynthesis, the dominant 

sterol required for normal growth of yeast. Introducing additional mutations in yeast 

allowing them to utilize exogenous ergosterol under aerobic conditions frees up 

intermediates that can be redirected in desired ways. Ro et al. (2006) and Takahashi et 

al., (2007), for instance, demonstrated that such a strategy allowed for the development 

of yeast strains producing greater than 50 mg/l of oxygenated sesquiterpenes.  

The manipulation of terpene metabolism in plants as a means for investigating key 

biochemical processes as well as for developing plants as production platforms for high 

value terpenes has also been advanced significantly. Notable examples include 

molecular breeding efforts to enhance carotenoid (Harjes et al., 2008) and artemisinin 

(Graham et al., 2010) metabolism in maize and Artemisia annua, respectively.  Other 

investigators have focused on augmenting terpene metabolism by the ectopic 

expression of terpene biosynthetic activities in different cellular compartments. 

Monoterpene biosynthesis naturally occurs in the chloroplast compartment of plant cells, 

but several investigations have documented that over-expression of a single 

monoterpene synthase to either the chloroplast or cytoplasm compartment resulted in 

the accumulation of new monoterpenes and in some cases novel derivatives like glyco-

conjugates (Lewinsohn et al., 2001; Lücker et al., 2001; Aharoni et al., 2003; Ohara et al., 

2003). Re-directing the biosynthesis of sesquiterpene metabolism to the mitochondria 

and plastid compartment has had an equal, if not greater, impact on overall terpene 

metabolism. Kappers et al. (2005) demonstrated the ability of plants to synthesize 

unusual sesquiterpenes in the mitochondrial compartment led to plants able to attract 

predatory insects as a biocontrol mechanism. Likewise, Wu et al. (2006) demonstrated 
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that engineering a more robust sesquiterpene metabolism normally associated with the 

cytoplasm to the chloroplast compartment over-rode any innate regulatory mechanisms 

and yielded robust production of industrially valued sesquiterpenes. More recently, 

Kumar et al. (2012) extended such ectopic engineering strategies by inserting genes 

coding for the normal cytoplasmic MVA pathway into the chloroplast genome to affect 

high-level expression of the enzymes leading up to mevalonate. These transgenic plants 

lines accumulated mevalonate while no such accumulation in control plants was evident, 

and exhibited a 2-fold increase in their main sterol level and a 10-fold increase in 

squalene, but only a 20% increase in ß-carotene content. The results of Kumar et al. 

(2012) suggested that a mevalonate biosynthetic pathway engineered into the 

chloroplast was able to complement and augment overall terpene biosynthetic 

processes occurring both within and outside the chloroplast compartment.  

In the present effort, our objective was to determine if our previous strategy for 

engineering high level sesquiterpene accumulation was applicable to larger terpenes, 

and in particular to the triterpene class of compounds. We also aimed to evaluate the 

possibility of targeting this metabolism to trichomes such that the biosynthesis of a target 

molecule might be secreted as per the suggestions of Wang et al. (2004) and 

Ennajdaoui et al. (2010). 

2.3 Results 

2.3.1 Experimental approach 

Terpene metabolism in plant cells is divided between the mevalonate (MVA) pathway 

operating in the cytoplasm and the methylerythritol phosphate (MEP) pathway occurring 

in the chloroplast (Figure 2.1). Interestingly, a convenient division of labor between these 

two pathways have been established with the MVA pathway largely dedicated to 

sesquiterpene, triterpenes and polyprenol biosynthesis in association with the ER 

endomembrane system, while the MEP pathway is responsible for monoterpenes, 

diterpenes, carotenoids (tetraterpenes) and long-chain phytol biosynthesis occurring in 

the chloroplast stroma. Given this sort of organizational complexity, we reasoned it 

would be best to evaluate several different strategies for engineering triterpene 

metabolism and specifically squalene accumulation. 
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The first approach was to compare squalene accumulation in transgenic plants 

expressing a heterologous squalene synthase directed to the cytosolic compartment 

versus the chloroplast compartment (Figure 2.2). The squalene synthase gene used in 

all these constructs is from yeast and has a 3’ truncation of the DNA sequence coding 

for a carboxy-terminal, membrane-spanning domain, hence yielding a functionally 

soluble squalene synthase enzyme activity (ySS) (Zhang et al., 1993). This deletion was 

important to assure catalytic activity of the squalene synthase vectorially imported into 

the chloroplast compartment via an amino terminal targeting signal sequence (tp) from 

the Rubisco small subunit gene from Arabidopsis (Lee et al., 2006). The yeast squalene 

synthase gene was also chosen because it was assumed to be devoid of sequences 

subject to transcriptional to post-translational regulation that another plant squalene 

synthase gene/enzyme might be. Expression of these initial constructs were directed by 

trichome-specific promoters as described by (Ennajdaoui et al., 2010) and (Wang et al., 

2002a) to potentially provide for the secretion of the trichome synthesized squalene onto 

the leaf surface, as well as the fairly conventional constitutive promoters from 

caulimoviruses (Benfey et al., 1990; Verdaguer et al., 1998). 

These first constructs assumed that an introduced squalene synthase could compete for 

any available FPP in the cytoplasm, or FPP that could arise in the chloroplast 

compartment as an intermediate released from the MEP pathway or imported from the 

cytoplasm. Cytosolic FPP levels are, however, generally low, and FPP is thought to 

serve a regulatory role in controlling carbon flux into the MVA pathway (Closa et al., 

2010). There is also little evidence, if any, for all trans-FPP being formed in chloroplasts 

(Sallaud et al., 2009). The second construct iterations thus included a chicken gene 

encoding for a well-characterized farnesyl diphosphate synthase (FPS) (Tarshis et al., 

1994) in addition to the yeast squalene synthase (Figure 2.2). Expression of these 

constructs varied by using either strong constitutive promoters or trichome-specific 

promoters, plus/minus amino terminal sequences targeting the SS and FPS enzymes to 

the cytoplasm or chloroplast compartments. 

2.3.2 Screening of the T0 and T1 transgenic lines 

The constructs of Figure 2.2 were then used to generate approximately 20 independent 

transgenic lines per construct. The particular cultivar of tobacco, TI 1068, used for these 

experiments is an accession line identified for its high density of secretory trichomes 
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(Nielsen et al. 1982). The various transgenic lines were first evaluated for squalene 

accumulation while still in their final stages of plantlet develop in tissue cultures, then re-

screened multiple times as the T0 generation was propagated in the greenhouse (Table 

2.1). 

Plants expressing only the squalene synthase gene tended to accumulate only 

marginally higher levels of squalene than observed in the control, non-transgenic lines, 

approximately 2-fold. Nonetheless, whether the squalene synthase was targeted to the 

cytoplasm or chloroplast, 1 to 2 transgenic plants within each group accumulated 

squalene levels 4 to 5 times the maximum level observed for the control plants. 

Surprisingly, plants engineered with both SQS and FPS targeted to the cytoplasm and 

directed by either strong constitutive or trichome specific promoters also did not 

accumulate squalene much beyond those lines engineered with the SQS gene by itself.  

In contrast, plants engineered with SQS and FPS targeted to the chloroplast 

compartment demonstrated an overall average accumulation of squalene 20 to 30-fold 

greater than the non-transgenic control lines. More impressive, individual lines 

accumulated 200 to 600 µg of squalene per g fresh weight, 27 to 90 times greater than 

the non-transgenic controls. Nonetheless, abnormal growth characteristics were 

observed for several of these lines. For the constitutive expressed forms of SQS and 

FPS, 30% of the lines exhibited a noticeable dwarfing phenotype, whereas greater than 

85% of the regenerated lines with the trichome specific expression cassette 

demonstrated some degree of dwarfing (35%), chlorosis (17%), or some combination of 

both (30%)(Figure 2.3).   

Similar trends in squalene accumulation were noted for individual plants examined in the 

T1 generation (Table 2.2). The T1 screen also attempted to correlate squalene 

accumulation with plant development, hence samples representing young, developing 

and mature stages of leaf developmental were evaluated. Plant lines engineered for 

SQS targeted to the cytoplasm exhibited little or no difference in their ability to 

accumulate squalene relative the non-transgenic control. Cytosolic targeting of SQS and 

FPS, regardless of the expression promoters used, also did not accumulate significantly 

more squalene than found in the control plant. Transgenic plants with SQS and FPS 

targeted to the chloroplast compartment, however, demonstrated a very significant 

accumulation of squalene in a developmental dependent manner. Levels of squalene 
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accumulation were 300 to 1,000 fold greater than those levels measured in control plant 

lines.  

While squalene is a relatively stable compound, it could be subject to both secondary 

metabolisms occurring in planta, as well as environmental induced changes like 

oxidation. To examine the integrity of the squalene accumulating by plants grown in the 

greenhouse, 60 g of leaves from a plant constitutively expressing plastid targeted SQS 

and FPS were extracted with hexane, the putative squalene compound purified by 

successive rounds of silica chromatography, and the isolated compound then analyzed 

by GC-MS and NMR analyses.  When evaluated by GC-MS, the squalene purified from 

tobacco leaves exhibited an identical retention time and mass spectrum to an authentic 

squalene standard, as did its 1H-NMR and 13C-NMR spectra (Figure 2.4, figure 2.5).  

Transgenic plantlets generated with the indicated construct (expression promoter, 

gene(s) and intracellular targeting information) were propagated under sterile conditions 

until they established root systems and were ready for growth in the greenhouse. The 

greenhouse grown plants were screened several independent times for their squalene 

content. In the data shown, plants were from 40 to 60 cm tall and the first fully expanded 

leaf was sampled. Data represents the average from all the independent plant lines 

sampled twice, as well as the minimum (min) and maximum (max) observed. Plants 

were scored as dwarf if their height was 25% less than their sibling plants. Plants were 

scored as chlorotic if there was obvious yellowing within 3 or more leaves. 

Individual, second generation (T1) plants were propagated in the greenhouse and 

identified on the basis of preliminary chemical profiling screens. On average, young 

leaves were 5-7.5 cm in length, developing leaves were 10 -15 cm in length, and mature 

leaves were greater than 20 cm long. Distinct phenotypes are noted for the plants 

harboring the constructs for trichome specifically expression of SQS and FPS targeted to 

the plastid compartment (see Figure 2.3 for examples). 

2.3.3 Assessment of field grown plants 

To gain a better appreciation for the robustness of the squalene accumulation trait and 

its impact on overall growth performance, segregating populations of transgenic lines 

expressing plastid targeted SQS and FPS enzymes under the direction of the trichome-
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specific promoters (line #32) or the constitutive promoters (line #42) were propagated in 

outdoor field conditions. These lines were chosen because the squalene levels 

determined for these lines during the initial T0 generation screens appeared more typical 

for this class of transgenic plants, rather than representing an extreme. In the T0 

greenhouse screens, the line expressing SQS and FPS targeted to the plastid 

compartment with trichome specific promoters (line 32) accumulated 192 µg squalene/g 

fresh weight, whereas 150 µg squalene/g fresh weight was recorded for the constitutive 

expressing line 42.  

T1 seeds for both lines were germinated without any selection for the transgenes, hence 

representing a segregating population, and grown for approximately 6 weeks in a 

greenhouse before transplanting the plantlets in the field. Two replicate rows of each line 

were grown with standard plant and row spacing, along with independent rows of the 

non-transgenic parental line. Plantlets were randomly selected from the greenhouse 

propagation trays for planting, watered once to twice a week for a couple of weeks to 

support their initial establishment, then allowed to grow without any additional treatments 

(i.e. no fertilizer or pesticide treatments) for a 60-day growing period. Agronomic 

performance characteristics and chemical profiles were measured twice for each plant 

and data for plants accumulating squalene (presumably homozygous and heterozygous 

for the transgenes) as well as those not accumulating squalene were clustered for 

quantitative comparisons. The data in Table 2.3 were obtained from plants at the end of 

field growth cycle with photosynthetic measurements and squalene accumulation 

determined for the uppermost, fully expanded leaf. For line 32, 6 plants accumulated 

squalene and 18 plants did not. Of the 22 plants of line 42 examined, 14 plants 

accumulated squalene.  

Of the non-squalene accumulating plants segregating out of lines 32 and 42, these 

plants performed directly comparable to the wild type check plants with regards to any of 

the agronomic indicators (height, biomass accumulation, leaf area) or photosynthetic 

measurements (CO2 fixation rates, transpiration and internal CO2 levels). The only 

modest impact on performance was for their total leaf area measurements with the non-

squalene accumulators within line 42 having 84% and those within line 32 having only 

72% of that for the control plants.   
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In contrast, for the squalene accumulating plants of line 32 (SQS and FPS targeted to 

the chloroplast and expression directed by the trichome specific promoters), their overall 

agronomic performance was only 20, 21 and 37% that of their non-squalene 

accumulating siblings for biomass accumulation, leaf area and height, respectively. The 

squalene accumulating plants within line 32 also only exhibited about 32% the 

photosynthetic rate of their non-squalene accumulating siblings. Growth was also 

impacted for the squalene accumulating plants within transgenic line 42, though the 

average squalene accumulation within these plants exceed that observed for line 32 

(112 versus 80 µg/g fresh weight). Leaf area, total biomass accumulation and plant 

height of the squalene accumulators were 66, 54 and 68% of that for their non-squalene 

accumulating siblings. However, their photosynthesis rates, stomatal conductance and 

their internal CO2 levels were almost identical to their non-squalene accumulating 

siblings and the wild type control plants.   

Given the relative normal growth appearance of the squalene accumulating plants within 

line 42 (they appear to grow slower and hence appear smaller than the control check 

plants), we also examined the squalene accumulation in leaves of different 

developmental stages in several of these plants. The importance of this measurement 

became obvious when we noted that the squalene level of these plants after about 4 

weeks in the field was 26.5 µg/g fresh weight and over 230 µg/g fresh weight after an 

additional 4 more weeks. As shown in Table 2.4, squalene levels in the very young leaf 

tissues was quite low, almost below detection limits for the just emerging leaves, but 

exhibited a significant increase in accumulation with leaf maturation. In lower, more 

senescent leaves, the amount of extractable squalene was significantly lower than in the 

mature leaves. Also evident in the data of Table 2.4 is the variability between individual 

plants and absolute leaf position, some of which might be related to the zygosity of the 

particular plant as well as difficulty in attaining an absolute standardization of leaf 

development between plants.  

Segregating (T1 generation) seed for transgenic lines targeting SQS and FPS to the 

chloroplast under the direction of trichome specific promoters (line 32) or constitutive 

promoters (line 42) were grown under greenhouse conditions for approximately 6 weeks 

prior to transplanting them to the field. Plants were chosen randomly for field planting 

and the plants grown for a total of 60 days, which is approximately two-thirds of a full 

growth cycle. The plants were screened several times throughout the growing season, 
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but the data shown is for the final data collection at the end of the field season. For 

squalene determinations, two leaf discs of 2 cm diameter collected from the first fully 

expanded leaf from the top of each plant were extracted with organic solvent and their 

squalene content determined by GC-MS. For line 32, 6 plants accumulated significant 

squalene (denoted as +), while 18 others did not (-). For line 42, 14 plants accumulated 

squalene (+) and 8 did not (-). Six control plants were evaluated. No squalene detected 

below the detection limit of ~0.5 µg/g fw are denoted as such (nd).  Measurements of 

photosynthetic gas exchanges were conducted between 10AM and 12PM on a cloudless 

day with light intensity of 1,500 µmol/m2•sec with a LI-COR 6400 portable instrument 

Leaves at various positions of two plants within line 42 were sampled for their squalene 

levels. Plants were grown for 60 days in the field and appeared visually comparable to 

one another. Not detected, nd, refers to levels below detection limit of 0.5 µg/g fw.   

2.4 Discussion 

The current work extends earlier efforts to engineer terpene metabolism in plants in 

several significant ways. Investigators, including ourselves, have successfully 

engineered relatively robust monoterpene (Lewinsohn et al., 2001; Lücker et al., 2001; 

Aharoni et al., 2003; Ohara et al., 2003) and sesquiterpene (Kappers et al., 2005; Wu et 

al., 2006) biosynthesis in transgenic plants, and more modest manipulations in the level 

of diterpenes (Besumbes et al., 2004) and triterpenes (Seo et al., 2005; Lee et al., 2006; 

Kumar et al., 2012). Interestingly, many of the early efforts were focused on introducing 

enzymes to effectively compete for substrates or intermediates in distinct cellular 

compartments where this metabolism occurs naturally, or were attempts to overcome 

prospective rate-limiting steps by over-expressing a gene coding for the suspected 

limiting enzyme. We, and other investigators, have demonstrated that a more successful 

strategy is to divert carbon flux at earlier upstream intermediates to build particular 

terpene compounds in compartments were this metabolism does not normally occur. 

That was indeed the case here in the successfully engineering of triterpene metabolism. 

For example, when SQS was targeted to the cytoplasm and thus potentially accessing 

FPP synthesized by the MVA pathway, only a 2-fold increase in squalene levels relative 

to the wild type controls was observed. When the SQS was targeted to the chloroplast 

where FPP biosynthesis is not known to occur, the levels of squalene observed were 

again, on average, 2-fold greater than the control, non-transgenic plants. There were, of 
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course, a few exceptions where squalene accumulation in transgenic lines having SQS 

targeted to the cytoplasm or chloroplast were more than 4-fold greater than the levels in 

the control plants, but these were single transgenic events and not general observations.  

Explanations for why such a narrow window in the enhancement of squalene 

accumulation is observed when attempting to directly divert the normally produced FPP 

include possible channeling of this intermediate within metabolons or stringent regulation 

imposed upon carbon flux down these pathways by metabolite feedback regulatory 

networks (Gardner and Hampton, 1999; Masferrer et al., 2002; Manzano et al., 2004; 

Muñoz-Bertomeu et al., 2007; Sawai and Saito, 2011), thus limiting the availability of 

FPP. More difficult to understand is how chloroplast targeted SQS by itself would even 

come into contact with FPP because all trans-FPP is not known to be synthesized in the 

chloroplast. Perhaps some cytoplasmic produced FPP can diffuse or be transported into 

the chloroplast, or some of the chloroplast targeted SQS gains access to the cytosolic 

FPP during its movement from its site of synthesis in the cytosol to the chloroplast. 

Equally possible, at least for the plastid targeted SQS, is that some of the targeted 

enzyme may not actually be making its way to the chloroplast compartment and is 

simply diverting FPP formed in the cytoplasmic compartment. But then, one would 

expect cytosolic targeted SQS to have an equal effect and it doesn’t. Nonetheless, when 

FPS and SQS are co-expressed and targeted to the chloroplast compartment, the FPS 

appears able to divert significant DMAPP and IPP (the substrates for FPS) from the 

MEP pathway for the biosynthesis of FPP, which in turn is available to SQS for the novel 

and very robust biosynthesis of squalene in the chloroplast compartment. 

Interestingly, the same is not true for FPS and SQS co-expressed and targeted to the 

cytosolic compartment where the MVA pathway operates. This result suggests that 

DMAPP and IPP are not as readily available in the cytoplasmic compartment, or that 

metabolic flux down the MVA pathway is much more regulated by unknown factors than 

is observed for these metabolites in the chloroplast. Similar conclusions were reached 

by Wu et al. (2006) when FPS was co-expressed with sesquiterpene synthases targeted 

to either the chloroplast or the cytoplasmic compartments.  

An equally surprising observation was that targeted expression of the FPS and SQS 

using trichome-specific promoters resulted in physiologically impaired plants, while use 

of strong, constitutive promoters were much less so. The first indication of this effect was 
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evident in the T0 generation plants. Greater than 80% of the transgenic lines utilizing the 

trichome-specific promoters were either dwarf, chlorotic or a combination of both. In 

comparison, only 23% of the T0 transgenic lines using the constitutive viral promoters 

showed some signs of dwarfism, but no chlorosis. These differences were even more 

accentuated when the plants were grown in field conditions. While the trichome-specific 

expressing plants accumulated relatively modest levels of squalene, overall growth and 

physiological functioning were reduced 60 to 80%. The impact of constitutively 

expressing FPS and SQS targeted to the chloroplast was a growth reduction of 30 to 40% 

without any adverse effects on photosynthetic parameters, even though these plants 

accumulated greater amounts of squalene than the trichome-specific expressing plant 

line. Why the trichome-specific expressing transgenic plants are more impacted than the 

constitutively expressing plants is currently unknown. It may be that trichome-directed 

expression simply distorts biochemical processes in such a manner that trichome 

derived cues or signals alter metabolism occurring elsewhere in the plant. Or, the 

enhancer elements used to improve trichome expression may cause ectopic expression 

in meristematic or progenitor cells distorting their contributions to normal physiological 

growth features. We are not aware of any other reports of similar growth distortion when 

attempting to engineer trichome metabolism, although the number of such engineering 

efforts are rather limited at this time. Additional screening of more independent 

transgenic lines created with these and other trichome-specific constructs, and unbiased 

metabolomics profiling might help resolve these issues.   

Finally, comparison of the developmental squalene accumulation profiles by the field 

grown plants and separate transgenic lines grown under greenhouse conditions 

suggests there is certainly variability by leaf position, which is expected.  If the novel 

squalene biosynthetic machinery is produced constitutively over developmental time, 

then squalene accumulation should continue as leaves develop and expand over time. 

Importantly, the levels of squalene accumulating in the field grown plants harboring the 

constitutively expressing FPS and SQS targeted to the chloroplast were equal to or 

higher than those levels measured in greenhouse grown plants, an indication of the 

robustness of this engineering approach for plants grown under a variety of conditions 

and the utility of such a platform for high value tritepene production.  
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2.5 Materials and methods 

2.5.1 Expression vector construction and plant transformation 

Construct design and assembly were based on the work previously described by Wu et 

al. (2006) using standard molecular methodologies (see Figure 2.2). Gene constructs 

consisted of a truncated form of the yeast squalene synthase (ySQS) gene (ERG9, 

GenBank accession NM 001179321) (Zhang et al., 1993) and the avian farnesyl 

diphosphate synthase (FPS) gene (P08836) (Tarshis et al., 1994). The truncated SQS 

was created by PCR amplifying the yeast SQS mRNA from its start codon to nucleotide 

1260, thus deleting the DNA encoding for the carboxy-terminal 24 amino acids. These 

carboxy-terminal amino acids are predicted to tether the SQS protein to endomembrane 

systems in vivo. Hence, deletion of these amino acids creates a functionally soluble 

enzyme (Zhang et al., 1993).  The ySQS and FPS genes were inserted downstream of 

strong constitutive promoters ((Pca, 35S cauliflower mosaic viral promoter (Benfey et al., 

1990); Pcv, cassava vein mosaic viral promoter (Verdaguer et al., 1996)), or trichome-

specific promoters ((Pcbt, the cembratriene-ol synthase promoter (Ennajdaoui et al., 

2010) or the Pcyp16, cembratriene-ol hydroxylase promoter (Wang et al., 2002b)). The 

Pcbt and Pcyp16 promoters were further augmented with duplicated CAMV 35S 

enhancer elements (Benfey et al., 1990) fused to the 5’ termini of the promoters. Where 

indicated, a plastid targeting signal sequence (tp) encoding for the first 58 amino acids of 

the Arabidopsis Rubisco small subunit gene (NM23202) (Lee et al., 2006) was fused 

onto the 5’ end of the respective genes.  

The DNA sequences were assembled together using standard molecular biology 

methods and the various elements verified by DNA sequencing. The expression 

cassettes were then introduced into pBDON (Wu et al., 2006), a modified pBI101 Ti 

plasmid vector harboring a hygromycin selection marker and a recombination cloning 

cassette. In some cases, simple substitution cloning of the desired DNA elements into 

previously constructed intermediate helper vectors were performed as described by Wu 

et al. (2006). The engineered Ti plasmid vectors were then introduced into 

Agrobacterium tumefaciens GV3850, and the resulting Agrobacterium lines used to 

genetically engineer Nicotiana tabacum (tobacco) TI accession 1068 (Nielsen et al. 1982) 

as previously described previously by Wu et al. (2006). 
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Leaf explants were transformed with the respective gene constructs and the resulting 

calli selected for hygromycin resistance (15 µg/ml) under tissue culture conditions to 

regenerate plantlets. The selected T0 plantlets were then propagated in the greenhouse 

and assessed for squalene accumulation by GC-MS analyses.  

2.5.2 Plant propagation and field tests 

All the T0 plantlets selected for hygromycin resistance were grown in common 

commercial vermiculite/soil blends in the greenhouse and fertilized weekly with a 

commercially available high nitrogen, phosphorus, potassium fertilizer. Insect control 

was performed on as needed basis. The T0 plants were allowed to flower in the 

greenhouse and the T1 seed collected for subsequent cycles of propagation. 

Segregation of the hygromycin resistance trait in the T1 seed lines was also evaluated 

by germinating sterilized seeds on 50 µg/ml hygromycin in T- tissue culture media (4.2 g 

MS salts (Phytotechnology Laboratories, Overland Park, KS), 0.112 g B5 vitamins 

(Phytotechnology Laboratories), 30 g sucrose, 8 g agar). For field evaluation, T1 seeds 

were sown directly in propagation trays in the greenhouse 6 weeks prior to transplanting 

in the field and were not pre-selected for antibiotic resistance. To determine squalene 

accumulation, leaf discs of 2 cm diameter were collected from the upper most, fully 

expanded leaves. Photosynthetic gas exchange measurements of first fully expanded 

leaves were determined at atmospheric concentrations of CO2 and a saturating 

irradiance of 1,500 micromoles photons m-2 s-1 using a LI-COR 6400 portable 

photosynthesis system according to Salvucci and Crafts-Brandner (2004). At the time of 

harvest, plant height was taken, the plants cut at the soil interface, weighed, and all the 

stripped leaves combined for leaf area determinations. All transgenic work was done in 

accordance with regulations and permits provided by the APHIS Division of the USDA.  

2.5.3 Squalene determinations 

One hundred to 500 mg of transgenic leaf material were collected for chemical analyses 

using a 2 cm diameter cork borer tool to obtain leaf discs of approximately 100 mg each.  

Each sample was ground in liquid nitrogen, then extracted with 2-3 ml of a hexane:ethyl 

acetate mixture (v/v 85:15) containing 200 ng of α-cedrene as an external standard for 

quantification and calculations of recovery. The extracts were carefully concentrated to 

500 µl under a nitrogen steam without drying the sample. The concentrated extracts 
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were then partially purified by passing through a silica column (500 mg, prepared in 

glass wool plugged glass pipette) and further eluted with 1 ml of the hexane solvent.  

After concentration of the combined eluate under a stream of nitrogen, aliquots were 

injected onto a GC-MS equipped with a Rtx-5 capillary column (30 m X 0.32 mm, 0.25 

µm phase thickness) with the following temperature program of 70oC for 1 min, followed 

by a 4oC per min gradient to 250oC.  Mass spectra were recorded at 70 eV, scanning 

from 35 to 500 atomic mass units, and experimental samples were compared to 

authentic standards of squalene for verification. 

The structure of purified squalene from tobacco was determined by 1H-NMR and 13C-

NMR spectral analyses. Squalene was extracted from greenhouse grown plants as 

described above, except additional purification was afforded by a silica HPLC 

methodology. Essentially, 60 g leaf material of homozygous line #5 expressing plastid 

target SQS and FPS under the direction of the constitutive promoters was ground in 

liquid nitrogen, then extracted with 1.2 l of hexane:ethyl acetate (85:15), the extract 

concentrated to 5 ml and the extract fractionated on a silica column with 5 ml aliquots of 

hexane as the eluting solvent. Fractions were monitored by TLC (silica plates, hexane 

solvent, iodine vapor stain) and GC for the desired triterpene compound. Enriched 

fractions were pooled, concentrated under nitrogen and the entire sample processed by 

silica HPLC-PDA using hexane as the eluting solvent (Niehaus et al. 2012). Recovery of 

4 mg of purified squalene sample with a 50% yield was obtained.  1H-NMR and 13C-NMR 

spectra were recorded on a 500 MHz Varian J-NMR spectrometer at 300 K, and 

chemical shifts were referenced relative to solvent peaks, namely δH 7.24 and δC 77.0 

for CDCl3.  
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Tables and Figures of chapter 2 

Table 2.1 Screen of T0 transgenic lines for their squalene content 

 

Transgenic plantlets generated with the indicated construct (expression promoter, 

gene(s) and intracellular targeting information) were propagated under sterile conditions 

until they established root systems and were ready for growth in the greenhouse. The 

greenhouse grown plants were screened several independent times for their squalene 

content. In the data shown, plants were from 40 to 60 cm tall and the first fully expanded 

leaf was sampled. Data represents the average from all the independent plant lines 

sampled twice, as well as the minimum (min) and maximum (max) observed. Plants 

were scored as dwarf if their height was 25% less than their sibling plants. Plants were 

scored as chlorotic if there was obvious yellowing within 3 or more leaves.   

Construct 
# of lines 

evaluated 

Ave 

(µg/g fw) 
Min Max Dwarf Chlorotic 

Dwarf & 

Chlorotic 

Wild type 

(control) 
15 3.5 0.5 7.4 0 0 0 

Trichome SQS 

only cytosolic 
24 7.6 1.0 34.2 1 0 0 

Trichome SQS 

only plastidic 
18 6.7 0.6 30.7 0 0 0 

Constitutive 

SQS+FPS 

cytosolic 

29 5.5 0.8 38.7 5 0 0 

Trichome SQS 

+FPS cytosolic 
16 8.1 1 20.1 1 0 0 

Constitutive 

SQS+FPS 

plastidic 

26 63.9 1.4 659.7 6 0 0 

Trichome 

SQS+FPS 

plastidic 

17 101.8 3.6 203.5 6 3 5 
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Table 2.2 Developmental accumulation of squalene in T1 greenhouse grown plants 

 
 

Individual, second generation (T1) plants were propagated in the greenhouse and 

identified on the basis of preliminary chemical profiling screens. On average, young 

leaves were 5-7.5 cm in length, developing leaves were 10 -15 cm in length, and mature 

Construct 
Line 

designation 
Leaf 

development 
Squalene 
(µg/g fw) 

Wild type (control) # 21 

young 1.9 

developing 3.4 

mature 2.3 

Trichome 
SQS 

cytosolic 

# 21 

young 1.3 

developing 4.8 

mature 9.8 

# 44 

young 3.6 

developing 4.1 

mature 2.3 

Trichome 
SQS 

plastidic 
# 39 

young 7.1 

developing 16.7 

mature 26.3 

Constitutive 
SQS+FPS 
cytosolic 

# 16 

young 6.4 

developing 5.5 

mature 7.4 

# 204 

young 2.6 

developing 1.9 

mature 5.6 

Trichome  
SQS+FPS  
cytosolic 

# 27 

young 5.7 

developing 8.4 

mature 5.3 

Constitutive 
SQS+FPS 
plastidic 

#7 

young 30.1 

developing 121.15 

mature 147.4 

#15 

young 329.3 

developing 450.4 

mature 667.5 

Trichome 
SQS+FPS 
plastidic 

#21 
dwarf 

young 90.0 

developing 74.3 

mature 256.7 

#31 
mosaic 

young 527.6 

developing 594.7 

mature 1760.2 
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leaves were greater than 20 cm long. Distinct phenotypes are noted for the plants 

harboring the constructs for trichome specifically expression of SQS and FPS targeted to 

the plastid compartment (see Figure 2.3 for examples).  
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 Table 2.3 Field performance and squalene accumulation by select, segregating 

transgenic lines 

 

 

Segregating (T1 generation) seed for transgenic lines targeting SQS and FPS to the 

chloroplast under the direction of trichome specific promoters (line 32) or constitutive 

promoters (line 42) were grown under greenhouse conditions for approximately 6 weeks 

prior to transplanting them to the field. Plants were chosen randomly for field planting 

and the plants grown for a total of 60 days, which is approximately two-thirds of a full 

growth cycle. The plants were screened several times throughout the growing season, 

but the data shown is for the final data collection at the end of the field season. For 

squalene determinations, two leaf discs of 2 cm diameter collected from the first fully 

expanded leaf from the top of each plant were extracted with organic solvent and their 

squalene content determined by GC-MS. For line 32, 6 plants accumulated significant 

squalene (denoted as +), while 18 others did not (-). For line 42, 14 plants accumulated 

squalene (+) and 8 did not (-). Six control plants were evaluated. nd, no squalene 

detected, below the detection limit of ~0.5 µg/g fw.  Measurements of photosynthetic gas 

exchanges were conducted between 10AM and 12PM on a cloudless day with light 

intensity of 1,500 µmol/m2•sec with a LI-COR 6400 portable instrument.   

Plant 
line 

Heigh
t  

(cm) 

Weigh
t  

(kg) 

Leaf 
area  
(cm2) 

Photosynthesi
s  

(µmol 
CO2/m2•sec) 

Conductanc
e   

(mol 
H20/m2•sec) 

Ci  
(µmol 
CO2/m
ol air) 

Squalen
e  

(µg/g fw) 

Wild 
type 

(control
) 

46.8 ± 
13.6 

1.0 ± 
0.4 

1388
7  
± 

4586 

23.4 ± 2.2 0.6 ± 0.1 
254.0 ± 

8.6 
nd 

32- 
50.2 ± 
12.9 

1.0 ± 
0.3 

1131
3  
± 

3356 

21.5 ± 3.1 0.5 ± 0.1 
249.3 ± 

19.0 
nd 

32+ 
18.9 ± 

5.8 
0.2 ± 
0.1 

2398  
± 

1128 
6.9 ± 2.2 0.6 ± 0.2 

327.8 ± 
11.2 

79.9 ± 
36.6 

42- 
58.4 ± 

8.1 
1.1 ± 
0.3 

1170
4  
± 

2956 

21.3 ± 2.1 0.5 ± 0.1 
249.6± 
15.6 

nd 

42+ 
39.5 ± 

6.3 
0.6 ± 
0.1 

7776  
± 

1650 
21.4 ± 2.5 0.4 ± 0.1 

243.2 ± 
20.5 

112.0 ± 
27.8 
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Table 2.4 Developmental accumulation of squalene in field-grown plants 

 

 

Leaves at various positions of two plants within line 42 were sampled for their squalene 

levels. Plants were grown for 60 days in the field and appeared visually comparable to 

one another. nd, not detected, below detection limit of 0.5 µg/g fw.    

  

construct Plant  Leaf development 
Squalene 
(µg/g fw) 

Constitutive 
SQS + FPS 

plastidic 

# 10 

Young (4th) 91.8 

Developing (7th) 235.1 

Mature (9th) 349.4 

 Senescing (11th) 51.1 

# 21 

Young (2nd) nd 

Developing(5th) 83.7 

Maturing (8th)  163.3 

  Mature (11th) 219.5 

  Senescing  263.2 
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Figure 2.1 A depiction of the mevalonate (MVA) and methylerythritol phosphate (MEP) 

pathways operating natively in plants and their contributions to the biosynthesis of 

particular classes of terpenes (black), along with a conceptualization for targeting novel 

triterpene metabolism to the cytoplasm (blue) or to the chloroplast (red) compartments. 

PT, prenyl transferase (i.e. farnesyl diphosphate synthase); TS, triterpene synthase (i.e. 

squalene synthase). 
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Figure 2.2 Gene constructs used to introduce squalene synthase (SQS) and farnesyl 

diphosphate synthase (FPS) genes into the genome of transgenic plants, and to target 

the encoded catalytic activities to the cytoplasm or chloroplast (tp) compartments.  

Promoters: cbt1, cembredienol synthase (Ennajdaoui et al., 2010); cyp16, cytochrome 

P450 71D16 (Wang et al., 2002a); e, duplicated transcriptional enhancer sequence 

found in the CaMV 35S promoter (Benfey et al., 1990);  cv, 35S cassava mosaic virus 

(Verdaguer et al., 1998); ca, 35S cauliflower mosaic virus (Benfey et al., 1990). Genes; 

ySQS, the yeast squalene synthase with a truncation of 168 bp at the 3’ end (Zhang et 

al., 1993); FPS, the chicken farnesyl diphosphate synthase (Tarshis et al., 1994); tp, the 

chloroplast targeting signal sequence from the Arabidopsis Rubisco small subunit gene 

(Lee et al., 2006). 
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Figure 2.3 Example phenotypes of plants engineered with genes encoding for SQS and 

FPS targeted to the chloroplast and directed by trichome specific promoter (left hand 

pictures) or constitutive viral promoters (center pictures), relative to wild type plants (right 

hand pictures). T2 seed from the trichome promoter line 31 and constitutive promoter 

line 5 were germinated in the presence of hygromycin, while the wild type control seed 

was germinated on medium without antibiotic. Six week old plants were transferred to 

the greenhouse and grown for several months before representative plants were chosen 

for these pictures. 
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Figure 2.4 GC-MS comparison of transgenic leaf hexane extract (B) to authentic 

squalene (A). Leaf material of homozygous line #5 expressing plastid target SQS and 

FPS under the direction of the constitutive promoters was ground in liquid nitrogen, 

extracted with hexane:ethyl acetate (85:15), the extract concentrated under nitrogen, 

then fractionated on a silica column. An aliquot of the flow through fraction was then 

analyzed by GC-MS (B) in comparison to a squalene standard (B). The MS for the 12.85 

min peak in each sample is shown in the inset. 
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Figure 2.5A.  1H-NMR spectrum of isolated squalene produced in planta. (500 MHz, 

CDCl3). 
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Figure 2.5B 13C-NMR spectrum of isolated squalene produced in planta (500 MHz, 

CDCl3). 
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Figure 2.5 Structure identification of squalene.  The structure of purified squalene from 

tobacco was determined 1H-NMR and 13C-NMR spectral analyses. 1H-NMR and 13C-

NMR spectra were recorded on a 500 MHz Varian J-NMR spectrometer at 300 K.  

Chemical shifts were referenced to solvent peaks, namely δH 7.24 and δC 77.0 for 

CDCl3.  (6E,10E,14E,18E)-squalene.  Colorless oil. GC-MS mass: 410.5 amu (M+).   1H-

NMR (500 MHz, CDCl3) δH 1.60 (s, R-CH3, 18H), δH 1.68 (s, R-CH3, 6H), δH 1.99-2.09 

(m, R-CH2-R’, 20H), δH  5.10-5.15 (m, R=CH, 6H).  13C-NMR (125 MHz, CDCl3) δC 

15.9 (=CH-CH3, 2C), δC 16.0 (=CH-CH3, 2C), δC 17.7 (=CH-CH3, 2C), δC 25.9 (=CH-

CH3, 2C), δC 26.88 (=CH-CH2-R, 2C), δC 26.98 (=CH-CH2-CH2, 2C), δC 28.5 (=CH-

CH2-CH2, 2C), δC 39.95 (=CH-CH2-CH2, 2C), δC 39.97 (=CH-CH2-CH2, 2C), δC 

124.5 (=CH, 2C), δC 124.6 (=CH, 2C), δC 124.63 (=CH, 2C), δC 131.5 (=CH, 2C), δC 

135.1 (=CH, 2C), δC 135.3 (=CH, 2C). 
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Chapter 3: Engineering botryococcene and methylated triterpene production in 

tobacco 

3.1 Summary 

Terpenes comprise a large and diverse class of natural products, and many of them 

have attracted interest because of their physiological functions, therapeutic and 

industrial values. Triterpene oils including squalene (C30), botrycococcene (C30) and 

their methylated derivatives (C31-C37) generated by the green algae Botryococcus 

braunii Race B, which have recently received significant attention because of their utility 

for advanced biofuels. However, the slow growth habit of B. braunii makes it impractical 

as a robust biofuel production system. In this study, we evaluated the potential of 

generating high levels of botryococcene (C30) production in tobacco plants by diverting 

carbon flux from the cytosolic MVA pathway or the plastidic MEP pathway by 

overexpressing an avian farnesyl diphosphate synthase along with two versions of 

botryococcene synthases targeted to the cytoplasm (MVA pathway) or the chloroplast of 

(MEP pathway) cells. Up to 544 µg/g fresh weight of botryococcene was achieved in our 

transgenic plants when this metabolism was directed to the chloroplasts, which is 

approximately 90-times greater than that accumulating in the plants engineered for 

cytosolic production. To test if methylated triterpenes could be produced in tobacco, we 

also engineered triterpene methyltransferases (TMTs) from B. braunii into wild type 

plants and transgenic tobacco plants selected for high level of triterpene accumulation. 

We observed that up to 91% of the total triterpenes content was converted to methylated 

forms (C31, C32) by targeting the TMTs to the chloroplasts of transgenic plants, 

whereas only 4-14% of total triterpenes were methylated when TMTs were directed to 

the cytoplasm. When the TMTs were over-expressed in the cytoplasm of wild type plants 

without engineering triterpene biosynthesis, up to 72% of the total squalene was 

methylated. Interestingly, the level of total triterpene (C30+C31+C32) was elevated up to 

52µg/g, a 7-fold increase relative to endogenous squalene accumulated in wild type 

plants. Interestingly, botryococcene accumulating lines, both with and without 

corresponding TMT expression, exhibited a unique phenotype that was not observed in 

squalene (with and without TMT expression) accumulating lines.  
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3.2 Introduction 

Terpenes and terpenoids represent a distinct class of natural products (Buckingham, 

2003) that are derived from two universal 5-carbon precursors: isopentenyl diphosphate 

(IPP) and dimethylallyl diphosphate (DMAPP). In eukaryotes, IPP and DMAPP are 

synthesized via the mevalonate (MVA) pathway whereas in prokaryotes they are 

synthesized via methylerythritol phosphate (MEP) pathway. In higher plants, both 

pathways are present in separate compartments and are believed to operate 

independently: the MVA pathway in the cytoplasm, is predominately responsible for 

sesquiterpene (C15), triterpene (C30), and polyprenol (>45) biosynthesis and is known 

to be associated with the endoplasmic reticulum (ER) system. The MEP pathway resides 

in plastids and is dedicated to monoterpenes (C10), diterpenes (C20), carotenoids (C40) 

and long-chain phytol biosynthesis (Figure 2A). These compounds are usually produced 

in plants and microbes, and play a variety of physiological (i.e. hormones, aliphatic 

membrane anchors, maintaining membrane structure) and ecological roles (i.e. defense 

compounds, insect/animal attractants) in general growth and developmental process 

(Kempinski et al., 2015). Terpenes are also important products in various industrial 

applications ranging from flavors and fragrances (Schwab et al., 2008) to medicines 

(Shelar et al., 2011). Many of them have attracted interests because of their therapeutic 

uses, industrial value and potential for advanced biofuels (Dewick, 2009; Niehaus et al., 

2011; Wu et al., 2012). 

The significant potential to use terpenes as biofuel feedstocks has received much 

attention recently. Reported isoprenoid-derived biofuels includes farnesane (Rude et al., 

2009; Renninger et al., 2008), bisabolane (Peralta-Yahya et al., 2011), pinene dimers 

(Harvey et al., 2010), isopentenal (Withers et al., 2007), and botryococcene (Glikson et 

al., 1989; Hillen et al., 1982; Mastalerz et al., 1996; Moldowan et al., 1980). The richness 

of rings and branches within these hydrocarbon scaffolds usually correlate with a high-

energy content, which enables them to have similar properties and be utilized as suitable 

alternatives to crude petroleum to generate gasoline, diesel and jet fuel (Peralta-Yahya 

et al., 2010). Indeed, some of them are already found in the components of petroleum-

based fuels. One of the best examples of this is the triterpene hydrocarbon oils 

accumulating in the green algae Botryococcus braunni race B, which is considered as a 

major progenitor to oil and coal shale deposits on Earth (Moldowan et al., 1980). This 

alga has been well studied and the major constituents of its prodigious hydrocarbon oils 
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are a group of triterpenes including squalene (C30), and the organismal-specific, 

botryococcene (C30), methylated squalene (C31-C34) and methylated botryococcene 

(C31-C37) (Huang et al., 1989; Metzger et al., 1988; Okada et al., 1995), which can be 

readily converted into all classes of combustible fuels under hydrocracking conditions 

(Hillen et al., 1982b).  

The unique biosynthetic mechanism for these triterpenes in Botryococcus was recently 

described by Niehaus et al. (2011), in which a series of novel squalene synthase-like 

genes were identified. In short, squalene synthase-like enzyme (SSL-1) performs a 

head-to-head condensation of two farnesyl diphosphate (FPP) molecules into 

presqualene diphosphate (PSPP), followed by a reductive rearrangement to yield 

squalene (C30) by enzyme SSL-2, or converted by SSL-3 to form botryococcene 

through a different reductive rearrangement (Figure 3.1) (Niehaus et al., 2011). 

Methylated derivatives are the dominant triterpene species generated by Botryococcus 

brauni race B in variable amounts under natural and artificial growth conditions (Metzger 

et al., 1988; Metzger et al., 1985) and these derivatives are known to yield better quality 

fuels due to their higher energy content by virtue of having more hydrocarbon branches. 

Triterpene methyltransferases (TMTs) that can methylate squalene and botryococcene 

were successfully characterized by Niehaus et al. (2012). Briefly, triterpene 

methyltransferase 1 (TMT-1) and triterpene methyltransferase 2 (TMT2) prefers 

squalene C30 as substrate for production of mono- (C31) or dimethylated (C32) 

squalene, while TMT-3 prefers botryococcene as substrate for the biosynthesis of mono- 

(C31) or dimethylated (C32) botryococcene (Figure 3.1) (Niehaus et al., 2012). 

Like the majority of identified methyltransferases, these TMTs utilize S-

adenosylmethionine (SAM) as the methyl donor, which is ubiquitously present in both 

prokaryotes and eukaryotes (Liscombe et al., 2012; Scheer et al., 2011). In plants, SAM 

is one of the most abundant co-factors (Fontecave et al., 2004; Sauter et al., 2013), and 

is exclusively synthesized in the cytosol. While it is mainly used as a methyl donor in 

methylation reaction (Ravanel et al., 2004) It also  serves as the primary precursor for 

the biosynthesis of the ethylene (Wang et al.,  2002), polyamines (Kusano et al., 2008), 

and nicotianamine (Takahashi et al., 2003a), which play a variety of important roles for 

plant growth and development (Huang et al., 2012; Sauter et al., 2013). The SAM 

present in the chloroplast is strictly imported from the cytosol by specific SAM/S-

adenosylhomocysteine (SAH) exchangers that reside on the envelope membranes of 



 
 

  
48 

 
  

plastids (Ravanel et al., 2004; Bouvier et al., 2006). The imported SAM is involved in the 

biogenesis of aspartate-derived amino acids (Curien et al., 1998; Jander et al., 2009; 

Sauter et al., 2013) and serves as the methyl donor for the methylation of 

macromolecules, such as plastid DNA (Ahlert et al.,  2009; Nishiyama et al., 2002) and 

proteins (Alban et al., 2014; Houtz et al., 1989; Niemi et al., 1990; Trievel et al., 2003; 

Ying et al., 1999), and small molecule metabolites such as prenyllipids (e.g. 

plastoquinone, tocopherol, chlorophylls and phylloquinone (Bouvier et al., 2006; Bouvier 

et al, 2005; DellaPenna, 2005).  

Although plants and microbes are the major natural sources for useful terpenes, most of 

them are produced in a very small amount and often as complex mixtures. Botryococcus 

braunii, produces large quantities of triterpenes, but its slow growth makes it undesirable 

as a possible biofuel production platform (Niehaus et al., 2011). Nevertheless, metabolic 

engineering and synthetic biology offer strategies to manipulate terpene metabolism in 

various biological systems through genetic modification, in order to engineer  production 

of highly-valued terpene with high yield and high fidelity for particular practical 

applications (Nielsen et al., 2011). Many successes have been achieved in engineering 

valuable terpenes in heterotrophic microbes, such as Escherichia coli (Nishiyama et al., 

2002; Martin et al., 2003; Ajikumar et al., 2010), and Saccharomyces cerevisiae (Ro et 

al., 2006; Westfall et al., 2012). The strategies that have been developed in these efforts, 

usually take advantage of specific microbe strains whose innate biosynthetic machinery 

are genetically modified to accumulate certain prenyldiphosphate terpene precursors 

(e.g. isopentenyl diphosphate [IPP] or farnesyl diphosphate [FPP]), which can be utilized 

by further engineered heterologous terpene synthase(s) for production of the desired 

terpene(s). An example of this for isoprenoid-derived biofuel production, is  >900 mg/L of 

bisabolene produced when plant bisabolene synthase genes were introduced into FPP-

overproducing E. coli or S. cerevisiae strains (Peralta-Yahya et al., 2011); Farnesane 

production for diesel fuels was also achieved by reductive hydrogenation of its precursor 

farnesene, which was generated in genetically engineered yeast strain using plant 

farnesene synthases (Renninger et al., 2008; Ubersax et al., 2010). However, terpene 

production using microbial platforms is still dependent on exogenous feedstocks (i.e. 

sugars), which significantly increase the cost for production. 

Compared to microbial systems, engineering terpene production in plant systems seems 

like an attractive target as well. This is because plants can take advantage of 
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photosynthesis by using atmosphere CO2 as their carbon resource instead of relying on 

exogenous carbon feedstocks. Moreover, crop plants such as tobacco can generate a 

large amount of green tissues efficiently when grown for biomass production (Schillberg 

et al., 2003; Andrianov et al., 2010), which make plants a robust, sustainable and 

scalable platform for large-scale biofuel production. Nonetheless, compared to microbial 

platforms, there have only been a few examples of elevating terpene production in 

bioengineered plants. This is partly due to higher plants being complex multicellular 

organisms, in which terpene metabolism generally utilizes much more complex innate 

machinery which can be compartmentalized intracellularly and cell/tissue specific 

(Kempinski et al, 2015; Lange and Ahkami, 2013). Tremendous efforts have been made 

to overcome these obstacles to improve the production of valuable terpenes in plants, 

such as monoterpenes (Lücker et al., 2004; Ohara et al., 2010; Lange et al., 2011b), 

sesquiterpene (Aharoni et al., 2003; Kappers et al., 2005; Wu et al., 2006; Davidovich-

Rikanati et al., 2008), diterpene (Besumbes et al., 2004; Anterola et al., 2009), and 

triterpene (Inagaki et al., 2011; Wu et al., 2012). Among these, engineering terpene 

metabolism in a heterologous organelle, where the engineered enzymes/pathway can 

utilize unlimited/unregulated precursors as substrates (without endogenous regulatory 

mechanism), appears more successful. For example, Wu et al. (2012) expressed an 

avian FPP synthase (FPS) with foreign sesquiterpene/triterpene synthases targeted to 

the plastid, to divert IPP/dimethylallyl diphosphate (DMAPP) pool from the plastidic MEP 

pathway to synthesize high levels of the novel sesquiterpenes, patchoulol and amorpha-

4,11-diene (up to 30 µg/g fresh weight) and the triterpene, squalene (up to 1000 µg/g 

fresh weight )(Wu et al., 2006; Wu et al., 2012). This strategy appears to be more robust 

because it avoids possible endogenous regulation of sesquiterpene and triterpene 

biosynthesis operating in the cytoplasm, as well as utilizing the robust IPP/DMAPP pools 

inherent in the plastid which are generate from carbon derived from the local CO2 

fixation. 

The goal of this study is to engineer unique triterpene metabolism from Botryococcus 

into tobacco, to serve as a plant platform for triterpene oil production, which could be a 

potential way to help alleviate the problem of the world energy crisis. In order to achieve 

this, we first introduced the key steps of botryococcene biosynthesis into specific 

subcellular compartments of tobacco cells under the direction of constitutive promoters 

or trichome specific promoters. The transgenic lines expressing the enzymes in the 
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chloroplast were found to accumulate the highest levels of botryococcene. Triterpene 

methyltransferases were next introduced into the same intracellular compartments of 

selected high accumulating lines. A high yield of methylated triterpenes was also 

achieved in transgenic lines when the TMTs were targeted to the chloroplast. Through 

careful comparison of the levels of triterpenes and the methylated triterpene products in 

the various transgenic lines we have also gained a deeper insight into subcellular 

distribution of the triterpene products in these transgenic lines, as well as a better 

understanding of methylation metabolism for specified metabolites in particular 

compartments. These findings all contribute to our understanding of regulatory elements 

that control the carbon flux through the innate terpene biosynthetic pathways. 

3.3 Results 

3.3.1 Engineering botryococene synthase genes into particular subcellular 

compartments in tobacco 

The earlier study demonstrated that plastidic engineering of a foreign squalene synthase 

coupled with FPP synthase can successfully divert carbon flux from the MEP pathway to 

accumulate a high level of squalene in transgenic tobacco (Wu et al., 2012).That study 

revealed that available IPP/DMAPP precursors are adequate and strong regulatory 

mechanisms are absent in the chloroplast for novel triterpene (C30) production to occur. 

This, in turn, leads us to attempt this strategy to the metabolic engineer of botryococene 

(C30) biosynthesis into tobacco plants. However, botryococcene biosynthesis requires 

two squalene synthase-like enzymes, SSL-1 and SSL-3, to catalyze successive 

reactions to make the botryococcene product. This is in contrast to squalene 

biosynthesis which requires only a single enzyme, squalene synthase (Figure 3.1, 

Niehaus et al., 2011). We chose to over-express two chimeric versions of 

botrycococcene synthase: one is SSL1-3 (Figure 3.2B), which is a fusion of the SSL-1 

and SSL-3 enzymes by a peptide linker, which exhibited a 2-fold greater accumulation of 

botryococcene when expressed in yeast in comparison to simple co-expression of the 

two enzymes separately (Niehaus et al., 2011).  The second design is referred to as 

SSL1-3M (Figure 3.2B) in which the SSL1-3 chimeric enzyme has 71 amino acids of 

carboxy-terminal of Botryococcus squalene synthase (M) appended to its C-terminal. 

This construct thus contains a membrane spanning domain that was hypothesized to 

improve botryococcene productivity by integrating the enzyme into the ER membrane in 
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order to promote proximity between enzymes for substrates (Niehaus et al., 2011). The 

overall gene constructs thus consist of either botryococene systhase SSL1-3 or SSL1-

3M directed by cassava mosaic promoter (Pcv) (Verdaguer et al., 1996), coupled with 

avian FPP synthase gene (FPS) (Tarshis et al., 1994), driven by the 35S-CaMV 

promoter (Pca) (Benfey et al., 1990). An amino terminal, plastid targeting signal 

sequence (tp) from the Rubisco small subunit gene of Arabidopsis (Lee et al., 2006) was 

also inserted onto the chimeric SSL1-3 constructs to target these enzymes to the 

chloroplast compartment, whereas constructs without the signal sequence would target 

the encoded proteins to the cytoplasmic compartment. The respective gene constructs 

(Figure 3.2B, table 3.1) were introduced into Nicotiana tabacum accession KY 1068 by 

standard agrobacterium transformation. Thirty or more T0 independent transgenic lines 

were generated and the leaf materials from different transgenic plants were extracted 

and analyzed by GC-MS and GC-FID. When evaluated by GC–MS, a unique molecule 

was detected in the extraction from some of the transgenic plants (Figure 3.3E) that was 

not evident in any of the wild type plants (Figure 3.3A). This unique chemical peak had 

identical mass spectrum (410 amu) (Figure 3.8A) as compared to botryococcene 

standard (Niehaus et al., 2011). This molecule was also confirmed as botryococcene by 

1H-NMR and 13C-NMR analysis (see below).  

We observed that transgenic lines engineered with the construct that directed 

botryococcene synthase (SSL1-3) along with FPS to the chloroplasts (tpSSL1-3+tpFPS) 

(Figure 3.2B) generate a high level of botryococcene (544 µg/g fw, maximum and 269 

µg/g fw, average) (Figure 3.2C, Table 3.1), which is about 70-90 fold increase over the 

level of botryococcene (6.3 µg/g fw, maximum and 3.5 µg/g fw, average) accumulated in 

the lines (SSL1-3+FPS)(Figure 3.2B) with the same enzymes targeted to the cytoplasm. 

The results indicate that the chimeric SSL1-3 enzyme efficiently uses FPP as a 

substrate derived from the universal C5 precursors present in the chloroplast 

compartment supported by the accompanying engineered FPS. In contrast, the failure to 

enhance botryococcene yield by cytosolic engineering is most likely because the 

cytosolic FPP pool is low and highly regulated, even if avian FPS was used to over-ride 

potentially regulatory mechanisms in the cytoplasm (Wu et al., 2006; Wu et al., 2012). 

The overall production of botryococcene by plastidic engineering and its fold increase 

over that achieved by cytosolic engineering coincided well with what was found earlier 

for engineering squalene biosynthesis by Wu et al. (2012). 



 
 

  
52 

 
  

A similar contrast was also found in comparison of production by engineering the 

membrane tethered version of botryococcene synthase SSL1-3M and FPS in the 

chloroplasts (tpSSL1-3M) to that directed the same metabolism to the cytoplasm (SSL1-

3M).  A relatively high amount of botryococcene accumulation was achieved by plastidic 

engineering, with a maximum level of 202 µg/g fw and average level of 131 µg/g fw, 

which is about a 10 to 20-fold increase over that for cytosolic engineering with a 

maximum of 16.4 µg/g fw and average of 5.8 µg/g fw (Table 3.1, figure 3.2). The low 

production by cytosolic engineering of SSL1-3M suggests again a limited flux of carbon 

and strict endogenous regulation might be occurring in the cytoplasm, but absent in the 

chloroplast. The membrane domain (M) attaching to SSL1-3 were used to help the 

enzymes associate with ER for accessing more available substrates in the cytoplasm, 

which might explain why cytosolic engineering of SSL1-3M accumulated a slightly higher 

level of botryococcene than that was achieved by cytosolic engineering SSL1-3. 

Interestingly, plastidic engineering of SSL1-3M yielded only half the level of 

botryococcene produced by engineering a soluble form of SSL1-3 in chloroplast, which 

is in contrast to what was observed in a yeast system, where membrane tethered 

enzyme increased the yield about 5 times more than that produced by the same enzyme 

without the membrane-spanning domain (Niehaus et al., 2011). One possible reason for 

this could be the different effects of the two intracellular environments on the enzymes’ 

activity, in that chloroplast stroma, which is known as soluble subcellular environment 

could be more favorable to soluble enzymes whereas in the yeast cell that has a full of 

endo-membrane system may be more favorable to membrane-associated enzymes. 

Another possibility could be attributed to the membrane domain (M) that associates the 

enzyme with the ER, which could reduce some of the catalytic activity when imported 

and integrated into the chloroplast compartment.  

We also observed that botryococcene accumulation exhibited a significant 

developmental-dependent pattern of accumulation. The level of botryococcene 

accumulated in mature leaves was 2 to 4-fold higher over that in their young leaves 

(Table 3.1, Figure 3.2). That could be the result of the engineered enzymes being 

constitutively expressed having more time to synthesize products reflected in the  

mature plants over that in young plants. In addition, there is no known mechanism in 

plants or any other organisms for the catabolism of botryococcene. The integrity of the 

botryococcene accumulated by these transgenic lines was also verified by extracting 
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100 mg of leaves from a plant constitutively expressing construct  tpSSL1-3+tpFPS with 

hexane and the putative botryococcene compound purified by successive rounds of 

silica chromatography. The isolated compound then was analyzed by NMR analyses 

(Figure 3.9). 1H-NMR and 13C-NMR data were recorded on a 400 MHz Varian J-NMR 

spectrometer at 300 K.  Chemical shifts were referenced to solvent peaks, namely δH 

7.24 and δC 77.0 for CDCl3. Botryococcene isolated from our transgenic tobacco had all 

of the expected signals as compared to published data (supporting information from 

Pulis and Aggarwal, 2012). Most importantly, the vinyl protons at C-26 (δH 5.82, 1H, dd, 

J=18, 11 Hz), C-27 (δH 4.95, 1H, dd, J= 11, 1 Hz; δH 4.94, 1H, dd, J= 18, 1 Hz), and 

olefinic protons of C-11 (δH 5.33, 1H, dd, J=16, 1 Hz) and C-12 (δH 5.20, 1H, dd, J=16, 8 

Hz) were apparent. In the 13C spectrum, the corresponding signals for C-26 (δC 146.97), 

C-27 (δC 111.32), C-11 (δC 136.03), and C-12 (δC 133.95) were all present.  Altogether, 

the 1H and 13C-NMR analyses confirmed the identity of C30  botryococcene. 

3.3.2 Trichome specific expression of botryococcene metabolism 

Besides the constitutive viral promoters, two trichome specific promoters cbts and cyp16 

derived from cembratrien-ol synthase and cembratriene-ol hydroxylase genes 

(Ennajdaoui et al., 2010; Wang et al., 2002) were also used to drive botryococcene 

synthase and FPS expression, respectively. Trichomes are specialized organs located 

on the surface of the aerial parts of plant species, which are the site of production of 

abundant secondary metabolites, which in certain species, such as tobacco, may 

represent up to 15% of the leaf dry weight (Wagner et al., 2004).  This large contribution 

to leaf biomass relative to the actual volume of the glandular trichomes makes trichome 

engineering an attractive target for metabolite bioengineering (Ennajdaoui et al., 2010). 

In order to strengthen overall expression by the trichome promoters, the 35S double 

enhancer was also appending to the 5’ prime end of each trichome promoters (Wu et al., 

2012). Four constructs harboring SSL1-3 or SSL1-3M with FPS, plus/minus chloroplast 

amino terminal sequences (tp) were also introduced into wild type tobacco plants 

(Nicotiana tabacum accession 1068), which is known to have high trichome density 

(Nielsen et al.1982). More than 30 independent transgenic lines were generated and 

analyzed for botryococcene content (Table 3.1). 

We found that targeting metabolism to the chloroplasts driven by trichome specific 

promoters achieved a moderate level of botryoccocene production in both young and 
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middle-aged leaves (below 30 µg/g fw average), which is also 10-20 fold increase over 

that accumulated in the lines with the enzymes directed to the cytoplasm. Unexpectedly, 

most of the lines with trichome specific expression of SSL1-3 and FPS in the chloroplast 

showed a strong chlorotic, white, mottling, dwalf phenotype (Figure 3.10) which may 

have contributed to difficulties in propagating these materials. This phenotype was more 

serious than anything observed with trichome specific expression of squalene 

biosynthesis (Wu et al., 2012). This adverse phenotype resulting from use of the  

trichome specific promoters to direct botryococcene biosynthesis was surprising and 

suggested that the double 35S enhancers may have conflicting effects when used in 

combination with trichome specific promoters, thus making this design unsuitable for 

metabolic engineering.  

3.3.3 Engineering triterpene methyltransferases into particular subcellular 

compartments in tobacco 

The success in engineering squalene and botryococcene C30 production in transgenic 

tobacco led us to take advantage of these high triterpene accumulating lines as 

platforms to generate methylated triterpenes (C31-C32) products. Our working 

hypothesis was that if we introduce triterpene methyltransferases into these lines, the 

accumulating triterpene (C30) could be converted to their methylated forms. However, 

this hypothesis involved several fundamental questions that remained to be considered: 

1. Subcellular localization of C30 triterpene: although there was evidence that the large 

amounts of C30 triterpene synthesized by enzymes targeted to the chloroplast, the exact 

subcellular localization of this capacity was inferred, and we could not exclude the 

possibility that some of this biosynthesis may be occurring in the cytoplasm; 2. SAM 

consumption: methylation of large amounts of triterpenes would require stoichemical 

amounts of SAM as co-substrates, therefore would there be sufficient amounts of SAMs 

to power these reactions in various locales, and if so, what would be the effects on SAM 

availability for native metabolism; 3. Enzyme specificity: would the three TMTs exhibit 

the same substrate specificity in planta as in yeast (Niehaus et al., 2012); 4. Enzyme 

solubility: these methyltransferases all contain Transmembrane Domain (TMD), which 

might influence their solubility properties and could affect their transport and activity in 

any particular subcellular compartment, such as the chloroplast stoma.  
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To address these questions, all three of the TMTs genes were individually constructed 

into a plant transformation vector harboring a 35S promoter, with a kanamycin 

resistance gene, and separately engineered into a squalene-accumulating line 

constitutively expressing enzymes targeted plastid compartment (#5 of line 

tpSQS+tpFPS, a T2 homozygous generation), or botryococcene accumulating lines 

constitutively expressing enzymes targeted to the plastid compartment (#10 of line 

tpSSL13+tpFPS, a T1 heterozygous generation; #31 of line tpSSL13m+tpFPS, a T1 

heterozygous generation). The methyltransferases were themselves also directed to 

either the cytoplasm or chloroplast compartments in each of these lines in order to test 

for the possible subcellular localization of C30 substrates in planta. Ten or more 

independent transgenic lines were generated for each construct design. The content of 

methylated triterpenes, including monomethylated (C31) and dimethylated (C32) 

squalene (Figure 3.3C and D), and monomethylated (C31) and dimethylated 

botryococcene (C32) (Figure 3.3G) were successfully determined in different transgenic 

plants, but not in the wildtype plants (Figure 3.3A) by GC-MS and GC-FID. Each unique 

methylated triterpene was determined by having an identical mass spectrum (Figure 3.8) 

as compared to published data (Niehaus et al., 2012). In order to simplify the results, 

three experimental data sets are presented.  

In the first experimental set, the constructs consisted of  one of the TMT genes with and 

without the chloroplast targeting signal sequence (tp) and were introduced into high 

squalene accumulating line (tpSQS+tpFPS), which targeted squalene biosynthesis to 

the plastid compartment (Wu et al., 2012). TMTs enzymes targeted to the cytoplasm are 

designated as TMT-1, TMT-2, TMT-3, or when directed to the chloroplasts as tpTMT-1, 

tpTMT-2, tpTMT-3 (Figure 3.4B). When the chemical analysis of all the transgenic lines 

resulting from particular construct were averaged, we observed that the transgenic lines 

targeting TMT-1 and TMT-2 to the chloroplast accumulated a large proportion of 

methylated squalene, from the highest of 91% to an average of 65% of total triterpene 

for TMT-1, and 82% (highest) and 51% (average) of total triterpene for TMT-2, 

respectively (Table 3.2). In contrast, transgenic lines targeting TMT-1 and TMT-2 to the 

cytoplasm accumulated 7% (highest) and 4% (average) methylated squalenes, and 6% 

(highest) and 4% (average) methylated squalene for construct TMT-1 and TMT-2, 

respectively (Table 3.2). The total triterpene amount (C30+C31+C32) among these 
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accumulators are approximately similar to the parental line which accumulates only non-

methylated squalene (Table 3.2).  

The large amounts of methylated squalene products achieved by plastidic engineering  

does not only reveals that both TMT-1 and TMT-2 are able to use squalene C30 as their 

substrates for methylation, which corroborates the preference reported earlier (Niehaus 

et al., 2012), but also indicates there are at least stoichemical amounts of squalene C30 

substrates and SAM are available for the TMTs in the chloroplast. While squalene C30 

that remain unmethylated in this case could be either newly synthesized by the 

engineered SQS or pre-existing, it was nevertheless unavailable to the TMTs. This could 

arise because of some kinetic inconsistences between the synthase and TMT enzymes, 

or the accumulation of methylated products that saturated or inhibited the TMTs directly. 

The co-existence of both umethylated (C30) and two methylated squalene products 

(C31, C32) was also observed by co-expressing TMTs in squalene overproduction yeast 

line (Niehaus et al., 2012), and compared to which, conversion of squalene (C30) to 

methylated squalene (C31, C32) by engineering TMTs in plant chloroplasts was even 

higher (Table 3.2). However, we cannot exclude the possibility that some of this 

unmethylated squalene C30 is because it is in a different compartment from where the 

engineered TMTs were localized. The small amounts of methylated squalene produced 

by targeting TMTs to the cytoplasm supported this possibility and provide evidence that 

cytosolic expressed TMTs are only able to access limited amounts of C30 squalene 

substrates present in the cytosol in high squalene accumulating line (tpSQS+tpFPS). 

This cytosolic localized squalene C30 could be either native squalene (C30) or 

synthesized by mistargeted engineered squalene synthase (SQS) that is not transported 

to the chloroplast yet remains active in the cytoplasm (see other possibilities in 

discussion). In addition, the proportion of C32 (41%) was slightly higher than that of C31 

(25%) in the tpTMT-1 engineered lines, whereas C31 (31%) was higher than C32 (18%) 

in the tpTMT-2 engineered lines, which may represent catalytic limitation of the different 

TMTs (Table 3.2).  

In contrast, only 5 % (average) of the total squalene was methylated when TMT-3 was 

targeted to the chloroplast, suggesting that TMT-3 exhibited weak catalytic activity with 

squalene, which was also observed when it was expressed in yeast line accumulating 

squalene (Niehaus et al., 2012). Targeted expression of TMT-3 to the cytoplasm also did 

not result in any methylation products accumulating, also corroborating the inability of 
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the TMT-3 to utilize the limited amounts of squalene produced normally in this 

compartment (Table 3.3).  

Secondly, when the respective TMT genes constructs were introduced into 

botryococcene (C30) accumulating lines, we observed a large proportion of methylated 

botryoccocene only when TMT-3 was over-expressed and only when it was targeted to 

the chloroplasts. In parental line tpSSL1-3M+tpFPS, 87% of the botryococcene was 

maximally methylated and on average 54% was methylated, whereas in parental line 

tpSSL1-3+tpFPS, 66% of the botryococcene was maximally converted and more 

typically 35% (average) of total botryococcene was methylated when TMT-3 was also 

targeted to the chloroplasts (Table 3.2).  Little to none of the chloroplast synthesized 

botryococcene was methylated when either TMT-1 or TMT-2 were targeted to the 

chloroplast (Table 3.3), further demonstrating the striking preference of TMT-3 for 

botryococcene. By comparison, only a small proportion of methylated botryococcene 

was formed when TMT-3 was expressed in cytoplasm of parental line tpSSL1-

3M+tpFPS, 14% maximal and 6% on average of the total triterpene, and 10% maximal 

and 3% on average for parental line tpSSL1-3+tpFPS (Table 3.2).  Like that suggested 

above for squalene, the low level of methylated botryococcene produced by TMT-3 

targeted to the cytoplasm could arise from botrococcene (C30) produced by mistargeted 

SSL1-3(M) in the cytoplasm of high botryococcene accumulating lines but not from 

natively synthesized botryococcene, because there was no endogenous botryococcene 

biosynthesis occurring in the plants (Figure 3.3A) (see other possibilities in discussion). 

In addition, the transgenic lines expressing TMT-3 in the chloroplast of partental line 

tpSSL1-3M+tpFPS shows a higher percentage of total botryococcene methylation than 

that of lines tpSSL1-3+tpFPS (Table 3.2), which could be simply be proportional to the 

lesser amount of botryococcene produced by line tpSSL1-3M+tpFPS (Figure 3.2 and 

table 3.1). 

There was no methylated botryococcene products found when TMT-1 and TMT-2 genes 

were overexpressed in the chloroplasts of the botryococcene accumulating line tpSSL1-

3+tpFPS. While a small amount of methylated squalene, average 37% of the total 

squalene, was evident in these lines (Table 3.3), which could be derived from natively 

produced squalene that could be methylated by mistargeted TMT-1 in the cytoplasm, or 

a small amount of squalene synthesized by the enzyme SSL1-3 expressing in the 

chloroplast. This latter explanation is entirely possible given that when SSL1-3 was co-
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expressed with TMT-1, a smidgeon of methylated squalene was observed although no 

pool of squalene was evident to non-transgenic yeast (Niehaus et al., 2011). 

Finally, based on these interesting findings of methylation of endogenous squalene,  the 

TMT-1 and TMT-2 genes with expression of each targeted to the chloroplast and 

cytoplasm were introduced into control, wild type tobacco cultivar 1068 and the resulting 

transgenic lines screened for methylated triterpenes. Interestingly, a small proportion of 

methylated squalene (average 41% of total squalene) was observed when TMT-1 

expressed in the chloroplasts (Table 3.4), where there was no evidence for squalene 

being synthesized or present (Aharoni et al., 2003). In these cases, we must assume 

some mis-targeting of the engineered TMTs and methylation of squalene occurring in 

the cytoplasm. In contrast, when TMT-1 and TMT-2 expression was targeted to the 

cytoplasm of wild type plants, a high proportion of methylated squalene (average 72% 

and 67% of total squalene respectively) was found (Table 3.4, figure 3.5). But even more 

surprising, the level of total squalene (C31+C32+C33) in transgenic lines expressing 

TMT-1 was elevated up to 55 µg/g fw (maximum) and 36 µg/g fw (average) (Table 3.4), 

which was about 4 to 7 fold greater than the level of endogenous squalene (C30) 

accumulating in wild type plants (Table 3.4 and Figure 3.5).  

Squalene biosynthesis is known to be one of the key steps in sterol biosynthesis, which 

might be regulatory for squalene accumulation (Wu et al., 2012), but the results of 

relatively high levels of squalene (methylated and non-methylated forms) accumulation 

in the TMT over-expression lines suggests that reduction of the non-methylated 

squalene pool triggers the  biosynthesis of additional squalene, which necessarily means 

an enhanced flux down the MEP pathway for triterpene production.  These results have 

not only revealed that the algal TMTs are fully functionally when expressed in the 

cytoplasm, but also provide a glimpse into the regulatory complexity of squalene 

biosynthesis, which is crucial for homoeostatic control of sterol biosynthesis in the plants.  

3.3.4 Triterpene accumulation in different tissues and leaf layers 

To determine if the various transgenic plants accumulated triterpenes in other tissues 

beside leafs, the triterpene chemical profiles across various tissues and over 

developmental time were determined (Figure 3.6A). Triterpene content (either squalene 

or botryococcene) was found in all the tissues examined, but the levels of varied 



 
 

  
59 

 
  

dramatically. Not surprisingly the leaf accumulates the greatest amount of triterpene, 

which is about 10 to 64 fold increase over the root that accumulates the least triterpene 

among these tissues. A low amount of triterpene (never exceeding 25 µg/g) was also 

determined in other tissues veins and stems. In wild type plants, squalene level in leaf is 

only 1.5-3 fold greater than that in other tissues. This result provides indirect evidence 

that the triterpene accumulation in these transgenic lines reply on the plastidic 

metabolism, because the leaf as the major photosynthetic organ and harbors many more 

chloroplasts than these other tissue types. 

The developmental accumulation of triterpene in various leaf positions was previously 

reported (Wu et al., 2012) , which was also seen in methylated triterpene accumulating 

lines (Figure 3.6B). The leaves at various positions from tobacco lines grown for 4 

months in the greenhouse were sampled for their triterpene content. Interestingly, the 

triterpene level showed a successive increase with leaf maturation on the plant. The 

more mature leaves in the lower leaf positions usually had more total triterpene 

accumulation (Figure 3.6B, right axis). However, the ratio of methylated to total 

triterpene (C30+C31+C32) at the various leaf positions remained essentially the same 

from 55% to 75% for each transgenic line (Figure 3.6B, left axis).  

3.3.5 Phenotypes of triterpene accumulating plants 

Over 75% of the botryococcene accumulating lines directing this metabolism to the 

chloroplast exhibited several distinguishing phenotypes, including some dwarfing, 

chlorosis and mottling (Figure 3.7A, B, C, table 3.1). These phenotypes were not 

observed in any transgenic lines wherein the engineered metabolism was targeted to the 

cytoplasm and obviously different from what was observed in any of squalene 

accumulating plants (Wu et al., 2012). The results thus indicated that botryococcene 

accumulation had unknown toxic effects on tobacco chloroplast,plant morphology and 

growth while squalene did not. Moreover, there were not any noticeable differences in 

phenotypes between triterpene accumulating plants and their respective methylated 

triterpene accumulating plants (Figure 3.7D, E). 
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3.4 Discussion 

The current work successfully introduced the key steps of unique triterpene metabolism 

that originally occurs in the algae Botryococcus brauni race B into tobacco plants, 

leading to a high level accumulation of botryococcene and methylated triterpenes. It 

utilized the strategy of diverting the C5 (IPP/DMAPP) precursors in MEP pathway to 

form FPP, which could then be utilized for novel triterpenes (C30) biosynthesis by the 

co-expression of botryococcene and squalene synthases. The accumulating triterpenes 

(C30) in the transgenic plants could be further methylated by targeting TMTs to the 

chloroplasts of these transgenic plants. Therefore, the engineered enzymes FPS, 

triterpene synthase and TMTs created a unique metabolic channel redirecting carbon 

flux from MEP pathway in chloroplasts to the production of a desired triterpene (Figure 

3.2A). 

The strategy was successful in taking advantage of engineering terpene metabolism in 

the plant chloroplasts. First, chloroplasts offer an unrestricted abundance of carbon 

passing through the MEP pathway, and diverting an intermediate and carbon flux from 

this pathway does not adversely impact the biosynthetic needs in the chloroplasts, for 

large amounts of carotenoid and chlorophyll. The second equally important observation 

is that the chloroplast provides an ideal environment for heterologous terpene production, 

perhaps due to lax endogenous regulation of the MEP pathway in plastids as compared 

to the MVA pathway operating in the cytosol (Kempinski et al., 2015). 

This approach has now been demonstrated to be applicable for the metabolic 

engineering of various types of terpene compounds including monoterpenes, 

sesquiterpenes, and triterpenes in tobacco plants. However, we also note that 

accumulation level of each type of terpene differed significantly between the respective 

terpene targets.  Plants engineered for triterpene production accumulated 200 to 1000 

µg/g fw of triterpene, whereas sesquiterpene production has not exceeded 30 µg/g fw 

and monoterpene accumulation is maximally in the range of 1 µg/g fw (Wu et al., 2006)  

Kempinski et al. 2015). Such stark differences strongly suggest that the limitation in 

specific terpene class accumulation lies with the engineered terpene synthase.  More 

specifically, catalytic efficiency and durability of the engineered terpene synthase may be 

the most important limitations rather than carbon source for building these designer 

molecules. Consistent with this notion, we found that overexpression and chloroplast 
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targeting of the soluble form of SSL1-3 with FPS yielded similar levels of botryococcene 

accumulation to that for squalene achieved by plastidic engineering of a yeast squalene 

synthase along with the avian FPS, but two times more than expressing the SSL1-3M 

enzyme form with FPS targeted to the chloroplast. It suggests that chimeric enzyme 

SSL1-3 functions as well as the single enzyme yeast SQS in the chloroplast, and 

exhibits a higher catalytic capacity than SSL1-3M could.  

TMTs are functionally insoluble enzymes which exhibit an unexpectedly high catalytic 

activity for the methylation reaction when engineered into both the chloroplast and 

cytoplasm compartments of the appropriate transgenic plant lines. Up to 91% of the C30 

triterpenes accumulating in high triterpene C30 accumulating lines was subsequently 

transformed to mono- or di-methylated triterpene when one of the 3 TMT genes targeted 

methyltransferase activity to the chloroplast. The methylation ratio of 51%-91% by TMTs 

directed to the plastid compartment versus 3%-14% by TMTs targeted to the cytosol 

TMTs to the cytosol provide additional evidence to show that the distribution of triterpene 

C30 in the high triterpene accumulating transgenic lines remained in the chloroplast. 

This was not unexpected because the triterpene C30 was supposedly synthesized in the 

chloroplast and methylation in the cytosol would come about by some mechanism, either 

active or passive, to export the novel triterpene out of the chloroplasts to the cytoplasm.  

Therefore, in order to account for the small but significant methylation of triteprenes 

occurring in the cytoplasm, at least four possible routes remain plausible: First, the 

methylated squalene produced by targeting TMT-1 and TMT-2 to the cytoplasm in the 

wildtype plants proves that natively synthesized squalene can be methylated by TMTs; 

Second, the small amount of methylated botryococcene generated in plants wherein 

TMT-3 was directed to the cytoplasm while high botryococcene biosynthesis was 

directed to the chloroplasts [tpSSL1-3(M)+tpFPS], could arise from a low level of 

botryococcene (C30) biosynthesized by mis-targeted SSL1-3(M). This observation 

validates that TMTs can methylate cytosolic triterpene (C30) produced by mis-targeted 

triterpene synthase; 3. Expressing the construct of tpTMT-1 in wild type plants also 

resulted in methylated products, which must be derived from cytosolic endogenous 

squalene catalyzed by mis-targeted TMT-1. This evidence supports that mis-targeted 

TMTs are also able to methylate cytosolic-localized triterpenes. Fourth, the cytosolic 

engineered TMTs finds a way to access the plastidic-localized squalene. One example 

to support this is the recent discovery that plastid envelope-localized substrates can be 
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accessed by the enzymes targeted to ER membrane through the continuity of ER and 

chloroplast (Mehrshahi et al., 2013). Of course, the methylation status of triterpenes 

could come about by some combination of these routes, which might also be variable 

upon plant development and growth habit. Nevertheless, these findings provide a 

valuable depiction of methylation of native squalene, mistargeted enzymes in the 

plastidic engineered plants, and associations between cytosol and chloroplast 

compartments. 

A final issue raised during the initial phases of this work was whether there would be 

sufficient SAM to support formation of the methylated triterpenes. This concern arose 

because of an appreciation for how important SAM is to methylation of macromolecules 

as well as very diverse small molecules. Fortunately, concern for SAM availability 

seemed unfounded regardless if the methylation reactions were targeted to the 

chloroplasts or to the cytoplasm.  

Equally interesting was the observation that plants engineered for botryococcene 

accumulation tended to exhibit distinct phenotypic outcomes like dwarfism, chlorosis and 

mottling, while plants accumulating high levels of squalene did not show any of these 

adverse effects. Why this might be so is currently unknown. However, if one were able to 

discern how the plants were able to accumulate high levels of squalene without any 

negative impact on growth performance, then one might be able to use this information 

in the engineering of advanced accumulation mechanisms for terpenes like 

botryococcene.  

3.5 Materials and Methods 

3.5.1 Expression vector construction and plant transformation 

Design of gene constructs and assembly for engineering botryococene biosynthesis 

were based on the work previously described by Wu et al. (2006) and Wu et al., (2012) 

using standard molecular methodologies. Gene constructs consisted of a peptide fusion 

of SSL-1 (Genebank accession: HQ585058.1) and SSL-3 (Genebank accession: 

HQ585060.1) connected by a triplet repeat peptide linker of GGSG, with or without 

appending the carboxy-terminal (71 amino acids) of the Botryococcus squalene 

synthase (Genebank AF205791.1) onto the carboxy-termini of the SSL-3, and the avian 
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farnesyl diphosphate synthase (FPS) gene (P08836) (Tarshis et al., 1994). The chimeric 

SSL1-3 genes and FPS genes were inserted downstream of strong constitutive 

promoters Pcv, cassava vein mosaic viral promoter (Verdaguer et al., 1996) and Pca, 

35S cauliflower mosaic viral promoter (Benfey et al., 1990) respectively. For trichome 

specific expression of triterpene biosynthesis, the trichome-specific promoters [(Pcbt, the 

cembratrien-ol synthase promoter (Ennajdaoui et al., 2010) or the Pcyp16, 

cembratriene-ol hydroxylase promoter (Wang et al., 2002a)] were fused to 5’ end of 

botryococcene synthase genes and FPS gene respectively. The duplicated CAMV 35S 

enhancer elements (Benfey et al., 1990) was fused to the 5’ end of the each trichome 

promoter. A chloroplast targeting signal sequence (tp) encoding for the first 58 amino 

acids of the Arabidopsis Rubisco small subunit gene (NM23202)(Lee et al., 2006) was 

fused in-frame with the 5’ end of the respective terpene synthase genes. The gene 

cassette were assembled together in a helper vector described in Wu et al. (2012) by 

standard molecular biology methods and the various DNA segments were verified by 

DNA sequencing. The gene cassettes were then introduced into pBDON, a modified Ti 

plasmid vector harboring a hygromycin resistance gene by DNA recombination (Wu et 

al., 2006). 

The triterpene methyltransferase genes TMT-1 (JN828962.1), TMT-2 (JN828963.1), and 

TMT-3 (JN828964.1) were inserted directly into plant transformation vector pKYLx71 

(Schardl et al., 1987), harboring a 35S viral promoter and a kanamycin resistance gene. 

In order to target TMT genes to the chloroplast, the chloroplast targeting signal 

sequence (tp) noted above was then inserted in-frame with the 5’ termini of the 

respective TMT genes. 

The engineered Ti plasmid vectors were introduced into Agrobacterium tumefaciens 

GV3850 by electroporation, and the resulting Agrobacterium lines were used to 

genetically engineer Nicotiana tabacum (tobacco) TI accession 1068 (Nielsen et al. 1982) 

or transgenic line of tpSQS+tpFPS #5 (T2 homozygous generation) with high level of 

squalene, as previously described by Wu et al. (2012), or high botryococcene 

accumulating transgenic lines (tpSSL1-3+tpFPS-10, or tpSSL1-3M+tpFPS-31, T1 

heterzygous generation) generated in this study. Leaf explants were transformed with 

the respective gene constructs and the resulting calli were selected on tissue culture 

media with hygromycin (50 mg/l) for engineering botryococcene biosynthesis and with 

both hygromycin (50 mg/l) and kanamycin (250 mg/l) for engineering methylated 



 
 

  
64 

 
  

triterpene biosynthesis. The culture media (1L) contained 4.2 g MS salts 

(Phytotechnology Laboratories, Overland Park, KS), 0.112 g B5 vitamins 

(Phytotechnology Laboratories), 30 g sucrose, 9 g agar, 1 mg IAA and 2.5 mg 

Benzylaminopurine (Sigma). The selected calli were grown under sterile tissue culture 

conditions to regenerate plantlets. The selected T0 plantlets were then propagated in the 

greenhouse and assessed for triterpene content by GC–MS or GC-FID analyses. 

3.5.2 Plant propagation and segregation selection 

All the T0 plantlets after hygromycin or kanamycin selection were grown in common 

commercial vermiculite/soil blends in a greenhouse and fertilized weekly with water 

soluble fertilizer (20-20-20 for nitrogen, phosphorus, and potassium). Insect control was 

performed monthly. The T0 plants were allowed to flower in the greenhouse and the T1 

seed collected for subsequent cycles of propagation. Segregation of the hygromycin and 

kanamycin resistance trait in the T1 seed lines was also evaluated by germinating 

sterilized seeds on 50 mg/l hygromycin and 250 mg/l kanamycin in T-tissue culture 

media (4.2 g MS salts, 0.112 g B5 vitamins, 30 g sucrose, and 9 g agar in 1 liter 

medium).  

3.5.3 Triterpene (squalene, botryococcene, methylated squalene and 

botryococcene) determinations 

Fifty to one hundred and fifty mg of transgenic leaf material were collected from the 

upper most, fully expanded leaves of tobacco plants grown in greenhouse condition. The 

other plant tissues roots, stem, and veins were collected from plants grown in the tissue 

culture condition for chemical analysis. The terpene content for each sample was 

determined by the methods previously described in Wu et al. (2012).  Each plant sample 

was ground in liquid nitrogen, then extracted with 2-4 ml of a hexane:ethyl acetate 

mixture (v/v 85:15) containing 200 ng of α-cedrene as an external standard for 

quantification and calculations of recovery. The extracts were concentrated to 500 µl 

under a nitrogen stream without drying the sample. The concentrated extracts were then 

partially purified by passing through a silica column (500 mg, prepared in glass wool 

plugged glass pipette) and further eluted with 1 ml of the hexane solvent. After 

concentration of the combined eluate under a stream of nitrogen, aliquots were injected 

onto a GC–MS equipped with a Rtx-5 capillary column (30 m × 0.32 mm, 0.25 µm phase 
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thickness) with the following temperature program of 70°C for 1 min, followed by a 4 °C 

per min gradient to 250 °C. Mass spectra were recorded at 70 eV, scanning from 35 to 

500 atomic mass units, and experimental samples were compared with standards that 

were previously used in earlier studies (Wu et al., 2012, Niehaus et al., 2011 and 2012) 

for verification. 

The structure of purified botryococcene from tobacco was determined by 1H-NMR and 

13C-NMR spectral analyses, which were also described in an earlier study (Wu et al., 

2012). Botryococcene was extracted from leaf material of transgenic line (tpSSL1-

3+tpFPS-10) #10 targeting the chimeric botryococcene synthase SSL1-3 and FPS to the 

plastid compartment under the direction of the constitutive promoters.  

One hundred g leaf materials were ground in liquid nitrogen, then extracted with 1.2 l of 

hexane:ethyl acetate (85:15), the extract concentrated to 5 ml, and the extract 

fractionated on a silica column with 5 ml aliquots of hexane as the eluting solvent. 

Fractions were monitored by GC-MS for the desired triterpene compound. Enriched 

fractions were pooled, concentrated under nitrogen, and the entire sample processed by 

silica HPLC–PDA using hexane as the eluting solvent (Niehaus et al. 2012, Wu et al., 

2012). Alternatively, the crude extract was resuspended in hexane and fractionated via 

silica gel chromatography, a final purification step provided by HPLC. Recovery of 6 mg 

of purified botryococcene sample with a 50% yield was obtained. 1H-NMR and 13C-NMR 

spectra were recorded on a 400-MHz Varian J-NMR spectrometer at 300 K, and 

chemical shifts were referenced relative to solvent peaks, namely dH 7.24 and dC 77.0 

for CDCl3. 
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Tables and Figures of chapter 3 

Table 3.1  Chemical assessments of T0 transgenic lines for their botryococcene content 

 

Wild type tobacco (Nicotiana tabacum accession 1068) was transformed with each 

indicated constructs consisting of chimeric botryococcene synthase gene (SSL1-3 or 

SSL1-3M) and the avian farnesyl diphosphate (FPS) gene, inserted downstream of 

constitutive promoters (cassava vein mosaic viral promoter, Pcv; cauliflower mosaic viral 

promoter, Pca, respectively), or enhanced trichome specific promoters (two 35S 

enhancers [e2] fused to cembreinene synthase and hydroxlase promoters, respectively). 

More than 20 independent lines for each indicated construct were generated and grown 

in the greenhouse condition.  The first fully expanded leaf from each plant was sampled 

for botryococcene content at their young age (1 month old) and mature age (6 month 

old). The lines were analyzed by GC-FID and the average (ave), as well as the minimum 

(min) and maximum (max), of those lines accumulating botryococcene are reported. The 

number of plant lines exhibiting stunting, chlorosis or other developmental abnormalities 

are reported as the number of lines showing an unusual phenotype. 
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Table 3.2 Chemical assessment of T0 transgenic lines harboring TMT genes targeted to 

the chloroplast or the cytoplasm in high triteprene (C30) accumulating lines for their 

methylated squalene content. 

 

More than 30 independent lines were generated by each transformation construct 

consisting one of the three TMT genes targeted to the chloroplast (with tp) or the 

cytoplasm (without tp) of indicated parental lines: T1 homozygous squalene 

accumulating lines (tpSQS+tpFPS #5), or homozygous botryococcene accumulating 

lines (tpSSL1-3+tpFPS #10, or tpSSL1-3M+tpFPS #31) and their triterpene and 

methylated triterpene content was evaluated in 4 months old plants by GC-FID and GC-

MS. The plants accumulating methylated squalene or methylated botryococcene  were 

averaged (ave) based on the percentage of the mono (C31) or dimethyl (C32) 

methylated triterpene to that of the total triterpene (C30+C31+C32). Percentage of 

methylated triterpene (C31+C32) to total triterpene was also denoted as conversion. The 

number of plants with different conversion amounts (less than 10% [<10%], between 10% 

and 50% [10%- 50%], and above 50% [>50%]) for each engineering effort was analyzed 

and the highest and average conversions were noted. Average of total triterpene content 

for each group of lines was also noted. Three or four plants for each parental line 

accumulating only non-methylated triterpene (C30) were determined for their triterpene 

content at the same growth stage as the other analyzed transgenic lines. 
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Table 3.3 Chemical assessment of T0 transgenic lines expressing TMT genes targeting 

methyltransferase activity to the chloroplast or the cytoplasm of in plants engineered for 

high-level biosynthesis and accumulation of squalene or botryococcene to the 

chloroplast compartment.  

 

Independent lines were generated for each TMT gene construct by targeting the 

respective TMT enzyme to the chloroplast (with tp) or the cytoplasm (without tp) of the 

squalene accumulating parental line (tpSQS+tpFPS #5), or botryococcene accumulating 

parental line (tpSSL1-3+tpFPS #10). Their triterpene content was determined by GC-MS 

in plants 2 to 4 months old, and the number of the transgenic plants for each engineered 

group that accumulate methylated squalene were scored  (no methylated botryococcene 

was found). The average (ave) percentage of each molecular form of triterpene to the 

total triterpene and the number of plants with different conversion percentages were 

scored. The highest amount and average (ave) amount of conversion are shown. The 

number of plants with different conversions for each engineering effort were scored and 

highest and average of conversion were noted. The average total triterpene content for 

each group of lines is also noted. 
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Table 3.4 Chemical assessment of T0 transgenic lines  targeting TMT enzyme activity to 

the chloroplast or the cytoplasm of wild type plants for their methylated squalene 

contents. 

 

Independent lines were generated for each construct consisting of one TMT gene 

targeted to the chloroplast (with tp) or the cytoplasm (without tp) of wild type plants, and 

their triterpene and methylated triterpene content was evaluated when the plants were 4-

5 months old by GC-MS. The number of transgenic plants accumulating methylated 

squalene were scored and the percentage of plants accumulating non-methylated (C30), 

mono (C31) or dimethyl (C32) methylated squalene relative to total squalene 

(C30+C31+C32)  reported. The average total triterpene content for each group of lines is 

also noted. The squalene (C30) content in three wild type plants was determined at the 

same growth stage as the transgenic lines.   
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Figure 3.1 A depiction of the catalytic roles of the novel squalene synthase-like enzymes 

(SSL) and triterpene methyltransferases (TMT) in Botryococcus braunii race B and their 

putative contributions to the triterpene constituents (Niehaus et al., 2011; Niehaus et al., 

2012). SSL-1 catalyzes the condensation of two farnesyl diphosphate molecules (FPP) 

to pre-squalene diphosphate (PSPP), which is converted to either squalene or 

botryococcene by SSL-2 or SSL-3, respectively. Squalene can also be synthesized from 

condensation of two FPP molecules catalyzed by squalene synthase (SQS) directly. 

TMT-1 and TMT-2 transfer the methyl donor group from AdoMet (SAM) to squalene to 

form mono- or di-methylated squalene, whereas TMT-3 acts on botryococcene to form 

mono- or di-methylated botryococcene (Niehaus et al., 2012). 
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Figure 3.2 Triterpene content of independent T0 transgenic lines transformed for novel 

botryococcene synthase. Schematic outline of the mevalonate (MVA) and 

methylerythritol phosphate (MEP) pathways operating in plant cytoplasm and chloroplast 

compartment, respectively, and the conceptual strategies to divert carbon flux from 

these two pathways to biosynthesis of novel triterpenes by exogenous terpene synthase. 

Introduced enzymes are FPS (avian chicken FPP synthase) and SSL1-3(M) (a chimeric 

version botryococcene synthase with or without a membrane associating domain) (A). 

Wild type tobacco (Nicotiana tabacum accession KY 1068) was transformed with the 

indicated gene constructs (B), consisting of putative chimeric botryococcene synthase: 

SSL-1 fused to SSL-3 via a liner peptide with M (membrane associate domain) (SSL1-

3M) or without M (SSL1-3) and the FPS gene. Both engineered terpene synthases are 

under the direction of two strong, constitutive viral promoters (cassava vein mosaic viral 

promoter, Pcv; cauliflower mosaic viral promoter, Pca, respectively). A plastid targeting 

signal sequence (tp) was fused to the 5' end of the respective genes. Thus, the 

constructs with tp will target the enzymes to the chloroplasts, and that without tp will 

target the enzyme to the cytoplasm. Antibiotic selected T0 lines propagated in the 

greenhouse were assessed from botryococcene accumulation at a relatively young age 

(1 month old, red) and mature age (6 month old, green) by GC-MS and GC-FID. Three 
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independent elite transgenic lines from each engineered construct are chosen to 

represent their capacity for botryococcene production (C). 

 

Figure 3.3 Triterpene and methylated triterpene contents were determined in leaf 

extracts from elite transgenic plants by GC-MS. Independent T0 transgenic lines 

generated by introducing each construct of tpSQS+tpFPS (B), tpSSL1-3+tpFPS (E) or 

tpSSL1-3M+tpFPS (F),  into wild type plants (A) were propagated in the greenhouse and 
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their leaf extracts were assessed for triterpene and methylated triterpene accumulation 

by GC-MS. Select transgenic lines with a high level of squalene (B) were further 

transformed with tpTMT-1 (C) or tpTMT-2 (D), and lines with a high level of 

botryococcene (E) were engineered with tpTMT-3 (G). The non-methylated and 

methylated triterpene contents were determined in the secondly transformed transgenic 

lines (C, D and G) by GC-MS. The chromatograms are annotated for the elution 

behavior of (1), C30-botryococcene (C30); (2), C31-botryococcene; (3), C32-

botryococcene; (4) C30-squalene; (5) C31-squalene; (6) C32-squalene. 
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Figure 3.4 Methylated triterpene content in independent transgenic lines expressing 

TMT genes in particular subcellular compartments of high triterpene accumulating lines. 

Conceptual strategies to convert triterpenes accumulated in a transgenic plant cell 

where the carbon flux from MEP pathway was diverted to novel triterpenes biosyntheses 

by exogenous terpene synthase FPS and TS [SQS or SSL1-3(M)], into methylated 

triterpenes by cytosolic- or plastidic-targeted TMT are depicted in (A). The gene 

constructs harboring indicated TMT genes targeting to the chloroplast (with tp) or the 

cytoplasm (without tp) (C) were transformed into indicated T1 or T2 parental lines 

accumulating high level of squalene or botryococcene (B). The antibiotic selected T0 

lines propagated in the greenhouse for 4 months were assessed from their triterpene 

and methylated triterpene content by GC-MS and GC-FID. The level of triterpene and 

methylated triterpene accumulation of three elite independent lines was shown as non-

methylated (C30, green) mono- (C31, blue) and di-methylated (C32, orange) triterpene 

(D). 
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Figure 3.5 Methylated triterpene contents in transgenic lines expressing TMTs genes in 

wild type plants. The gene constructs harboring indicated TMT genes targeting to the 

chloroplast (with tp) or the cytoplasm (without tp) (C) were transformed into wild type 

plants (B). The antibiotic selected T0 lines propagated in the greenhouse were assessed 

for their triterpene content by GC-MS and GC-FID. The level of squalene and methylated 

squalene accumulation of three elite independent lines was shown as non-methylated 

(C30, green) mono- (C31, blue) and dimethyl- (C32, orange) methylated squalene (D). 
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Figure 3.6 Triterpene content in different tissues and leaf positions. Triterpene 

accumulation in different tissues (A). Select transgenic lines and wild type plants were 

grown in the tissue culture for 3 months. The plant materials from different tissues (root, 

stem, vein and leaf) for each indicated line, were sampled for their triterpene content by 

GC-FID. The type of triterpene (squalene or botryococcene) they accumulated is 

indicated at the bottom of each column chart. The transgenic lines accumulating 

methylated triterpenes were grown in greenhouse, and the leaf materials at various leaf 

positions (counted from top to bottom) from three independent lines expressing the 

indicated TMT gene targeted to the chloroplast of high triterpene (squalene or 

botryococcene) accumulating plants, were sampled for their triterpene content after 4 

months (B). The level of total tritepene is equivalent to the sum of non-methylated 
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triterpene (C30) and methylated (C31+C32). The percentage (%) of methylated 

triterpene (versus total triterpene) is shown. 

 

Figure 3.7 Example phenotypes of transgenic lines generated by introducing constructs 

of tpSSL1-3+tpFPS (A, left [side view]; B, left [top view]) or tpSQS+tpFPS (E, left), into 

wild type plants (A, right; B, right, E right). The line of tpSSL1-3+tpFPS exhibited unique 

phenotype of dwarfed, chlorosis, mottling and crinkly leave (C) relative to non-transgenic 

wild type plants, whereas tpSQS+tpFPS line did not. The transgenic lines expressing the 

TMT-3 targeted to the chloroplast of line tpSSL1-3+tpFPS (D, right) and lines engineered 

with TMT-1 or TMT-2 directed to the chloroplast of line tpSQS+tpFPS (E, middle) look 

comparable to their parental lines (D, right and E, left, respectively). 
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Figure 3.8 Mass spectra of C30 botryococcene (A) produced in transgenic lines 

expressing SSL1-3 or SSL1-3M in wild type plants, C31 botryococcene (B) and C32 

botryococcene (C) produced in lines expressing TMT-3 in botryococcene accumulating 

line, C31 squalene (D) and C32 squalene (E) produced in lines expressing TMT-1, TMT-

2 and TMT-3 in squalene accumulating lines. 
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Figure 3.9 (6E,10R,11E,13R,16E)-botryococcene (C30 botryococcene). Colorless oil.  

GC-MS mass:  410.5 amu (M+). C30H50.  1H-NMR (400 MHz) δH 5.82 (1H, dd), δH  

5.33 (1H, dd), δH 5.20 (1H, dd), δH 5.05-5.11 (4H, m), δH 4.95 (1H, dd), δH 4.94 (1H, 

dd), δH 1.89-2.08 (13H, m), δH 1.66 (6H, s), δH 1.52-1.58 (12H, m), δH 1.26-1.38 (4H, 

m),  δH 1.06 (3H, s) δH 0.94 (3H, d, J=7 Hz). 13C-NMR (100 MHz) δC 146.98, δC 

136.03, δC 134.95, δC 134.92, δC 133.95, δC 131.52, δC 131.49, δC 125.04, δC 124.92, 

δC 124.63, δC 124.60, δC 111.32, δC 42.24, δC 41.53, δC 39.95, δC 39.93, δC 37.58, 

δC 39.91, δC 26.94, δC 26.93, δC 26.03, δC 25.93, δC 25.93, δC 23.73, δC 23.32, δC 

21.37, δC 17.91, δC 17.91, δC 16.19, δC 16.12.    

 

1H-NMR spectrum of isolated squalene produced in planta. (400 MHz, CDCl3). 
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13C-NMR spectrum of isolated squalene produced in planta. (400 MHz, CDCl3). 
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Figure 3.10 Transgenic lines generated by trichome specific expression of SSL1-3 and 

FPS directed to the chloroplast exhibit a distinct phenotype.  Wild type plants (A, left) in 

comparison to transgenic lines (right) exhibit a strong chlorosis, mottling, dwarfed 

phenotype (B). 
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Chapter 4: Agronomic and chemical analyses of field grown transgenic tobacco 

engineered for triterpene and methylated triterpene metabolism  

4.1 Summary 

Squalene is a key, linear intermediate in isoprenoid metabolism to all classes of 

triterpenes and sterol biosynthesis and is itself highly valued for its use in cosmetics and 

industry. Another unique linear triterpene is botryococcene and its methylated 

derivatives generated by algae Botryococcus braunii race B. These are considered 

important as an alternative biofuel oils. In previous efforts, these high value triterpenes 

were successfully engineered into transgenic tobacco by introducing the key steps of 

triterpene metabolism into the particular subcellular compartments. In this study, the 

agronomic characteristics (height, biomass accumulation, leaf area), the photosynthetic 

capacity (photosynthesis rate, conductance, internal CO2 levels) and triterpene content 

of select triterpene accumulating lines grown in the field were measured and evaluated 

for three consecutive growing seasons. We observed that transgenic lines targeting the 

enzymes to the chloroplasts accumulates squalene about 50-150 fold greater than the 

lines expressing the enzymes in the cytoplasm and non-transgenic control lines, but the 

growth of some high accumulators was only slightly compromised and their 

photosynthesis rates were not affected. We also found that the transgenic lines directing 

the botryococcene metabolism to the chloroplast accumulates botryococccene 10-26 

fold greater than the lines where the same enzymes were targeted to in the cytoplasm. 

But growth of these high accumulators was highly compromised while their 

photosynthesis rates remained unaffected. In addition, in the transgenic lines targeting 

the TMT to the chloroplasts of high squalene accumulators, 55%-65% of total squalene 

was methylated, whereas in the lines expressing TMT in the cytoplasm only 6% of 

squalene was methylated.  The growth of these methylated triterpene accumulating lines 

was even more compromised than that of non-methylated squalene lines.  

4.2 Background and introduction 

Tobacco is an annually–grown herbaceous plant that produces over 2500 compounds 

including terpenes, alkaloids, flavonoids and anthocyanins (Nugroho and Verpoorte, 

2002). Tobacco has been considered primarily as cash-crop grown for it tobacco use 

products that has abundant amount of nicotine, nornicotine, anabasine, and anatabine, 
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thought important for its consumer preference. In most commercial tobacco varieties, 

nicotine represents 90–95% of the total alkaloid content of the leaf (Siminszky et al., 

2005). Tobacco has received much more attention recently because genetically 

enhanced tobacco has been suggested as an alternative platform for pharmaceuticals 

and biofuel production. For example, plant derived vaccines are expected to solve the 

vaccines shortage and be marketed in the near future (Yusibov et al., 2011). As an 

industrial biomass crop, it can generate up to 170 tons ⁄ ha of green tissues when grown 

for biomass production (Andrianov et al., 2010). 

Engineering high level production of terpenes in tobacco has been achieved  using  a 

novel strategy that has been successfully applied in generating large amounts of 

sesquiterpene, monoterpene and triterpene products (Table 4.1). This strategy relies on 

the diversion of carbon flux from MEP pathway by over-expression and targeting an 

avian farnesyl diphosphate (FPP) synthase (FPS) gene with a heterologous terpene 

synthase gene in the chloroplasts (Figure 4.1). Engineering FPS to create a plastidic 

FPP pool was key to the success of this strategy because FPP biosynthesis is lacking in 

the plastidic organelle and hence is not subject to any known innate regulation in the 

chloroplasts (Kappers et al., 2005). In contrast, cytosolic biosynthesis of FPP is highly 

regulated by transcriptional or posttranscriptional mechanisms operating in the 

cytoplasm (Janowski et al., 1996; Gardner and Hampton, 1999). Thus, the strategy 

derives from the putative unlimited supply of IPP/DMAPP that can be diverted from the 

MEP pathway by the action of FPS to yield novel pools of plastidic FPP. These plastidic 

pools could then be utilized by FPP dependent terpene synthase targeted to the 

chloroplasts to result in high level production of the novel terpene(s).  

This strategy makes it possible for large-scale production of highly valued terpene 

products, such as the triterpene and their methylated derivatives generated by the green 

algae Botryococcus braunii, race B., which is considered as an alternative biofuel oil 

(Niehaus et al., 2011). Use of tobacco as a platform for this biofuel production is 

promising because it can utilize photosynthesis to directly convert solar energy and CO2 

into energy–abundant liquid fuels. Engineering transgenic tobacco for production of high 

level of squalene (C30), botryococcene (C30), and their methylated derivatives (C31–

C32) were described in the previous chapter (Wu et al., 2012; Jiang et al.,  unpubliched).  
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However, how much impact such biochemical/metabolic engineering might have on the 

overall physiology and how much yield of oil could be achieved in the field is yet 

unknown. Therefore, to gain a better appreciation for the robustness of the triterpene 

accumulation trait and its impact on overall growth performance, multiple transgenic 

lines were grown in field trials from late May to early September from 2012 to 2014 and 

evaluated for their agronomic characteristcs and triterpene content.  

4.3 Results 

4.3.1 Overall growth characteristics of transgenic tobacco 

Agronomic characteristics (height, biomass accumulation, leaf area) of selecttransgenic 

lines expressing plastidic or cytosolic enzymes under the direction of the trichome-

specific or constitutive promoters (Table 4.3, 4.4, and 4.5) were monitored throughout a 

typical field  season of approximately 90 days, but the final measurements at the 

termination of the field are used here to simplify the comparisons. Likewise, 

measurements of CO2 fixation (photosynthesis rate), transpiration (conductance) and 

internal levels (Ci) were also taken at various times during the field trials, but the final 

determination at ~60 days after planting are used here to compare physiological 

measurements of fitness.  

All these growth characteristics were significantly greater for the 2013 field study versus 

2012 and 2014 (Figure 4.2). For instance, the wild type plants grown in 2013 exhibited 

height, biomass (leaf weight and total weight) and leaf areas measurements 1.5 to 2-

times greater than that in 2012 and 2014. Rainfall from late May to early September 

(especially the June) in 2013 and 2014 was significant greater than that during the same 

period of 2012 (Table 4.2), which that might account for some of these overall difference.  

4.3.2 Agronomic performance of transgenic tobacco engineered for constitutive 

squalene biosynthesis and accumulation   

Agronomic performance of select T2 homozygous transgenic lines constitutively  

targeting FPS and squalene synthase to the chloroplast compartment (G1, G8, I8 and 

H5) were compared to that for a plant line constitutively expressing the transgenes 

targeted to the cytoplasm  (C5), as well as the control, non-transgenic parent line of 

tobacco, cultivar 1068 (Figure 4.2 and table 4.6). The H5 line, which has a significant 
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level of squalene accumulation (Figure 4.8),  only grew to about 82 and 63% the height, 

73 and 46 % the total weight, 71 and 38 % the leaf weight, 79 and 51% the leaf area of 

that for wild type (WT) plants in 2012 and 2013, respectively.  In contrast, the G1 line, 

accumulating the highest level of squalene among all the transgenic lines, exhibited only 

a slight decrease in growth, which was about 96 and 90% the height, 99 and 98% the 

total weight, 97 and 89% the leaf weight, 110 and 87% the leaf area of that for WT plants 

in 2012 and 2013 respectively (Figure 4.2). This indicates that squalene accumulation 

does not necessarily correlate with a decrease in agronomic performance for these high 

squalene accumulating lines. The growth reduction of the H5 line is perhaps due to 

some additional genetic changes resulting from the transformation process, which might 

include so-called non–specific position effects (ectopic effect) of where the transgenes 

integrated into the genomic DNA of the plant. Line C5 which accumulates only a low 

level of squalene (Figure 4.8) similar to WT plants, also exhibited a pronounced 

decrease of overall performance of 62% and 56% total weight, 65% and 62% leaf weight, 

68% and 60% leaf area of that for WT plants in 2012 and 2013, respectively (Table 4.6 A 

and B). The other two high squalene accumulating lines G8 and I8 showed a modest 

growth reduction, less than that observed for H5 but more than that for G1 (Table 4.6 A 

and B). Therefore although all four independent high accumulators were derived from 

the same constructs, their growth characteristics are far from identical, indicating that 

insertional effects have a bigger impact on plant growth than squalene accumulation. 

This notion was supported by line G1, which  accumulates the highest levels of squalene 

but whose growth performance is directly comparable to the WT plants, indicating that 

agronomic performance of the transgenic lines accumulating squalene were not 

necessarily compromised.  

4.3.3 Agronomic performance of transgenic tobacco engineered for squalene 

biosynthesis and accumulation by trichomes  

A different trend in growth reduction was observed in the transgenic lines engineered for 

trichome specific squalene biosynthesis and accumulation. The line R13, which was 

grown as a heterozygous, segregating population of plants, was derived by 

transformation with a construct targeting squalene biosynthesis to the chloroplasts of 

trichomes. Those plants determined to accumulate high level of squalene (Figure 4.8) 

were considered to have inherited the transgenes and denoted as R13+, while those 

plants having squalene levels comparable to WT were considered to be siblings having 
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lost the transgene during segregation and denoted as R13-. The R13+ plants showed 

the most dramatic decrease of overall growth compared with WT plants (about 70% and 

81% the height, 53% and 56% the total weight, 51% and 51% the leaf weight, 63% and 

65% the leaf area of that for WT plants in 2012 and 2013 respectively) (Figure 4.2 and 

Table 4.6A and B). The R13+ plants exhibited  stunted growth and chlorotic symptoms, 

which were previously reported when these plants were grown under greenhouse 

conditions (Wu et al., 2012). The homozygous sibling line R6 exhibited a similar growth 

reduction. But the R13– plants that presumably lost transgene during segregation 

performed equally to the WT, which is taken as evidence that the phenotypic 

consequences are directly attributable to the transgene construct (Figure 4.2 and Table 

4.6 A and B). 

In contrast, the lines targeting only SQS (A7) or SQS with FPS to the cytoplasm (N10), 

or only SQS to the chloroplast (D4) had squalene levels as low as WT plants and 

showed only a slight decrease, if any, in growth performance relative to the WT control. 

For instance, A7 had about 110 and 100% the height, 89 and 75% the total weight, 94 % 

and 78% the leaf weight, 93% and 77% the leaf area of that for WT plants in 2012 and 

2013 respectively; D4 had about 112% and 98% the height, 113% and 85% the total 

weight,117% and 88% the leaf weight, 115% and 86% the leaf area of that for WT plants 

in 2012 and 2013 respectively; and N10 had about 102% and 99% the height, 85% and 

73% the total weight, 87% and 75% the leaf weight, 83% and 70% the leaf area of that 

for WT plants in 2012 and 2013 respectively. These results indicate that targeting 

trichome specific expression of enzymes to the cytoplasm, or engineering only a partial 

pathway for squalene biosynthesis to the chloroplast, results in only low level 

accumulation of squalene (Figure 4.8) without an effect on growth performance.  

4.3.4 The photosynthetic capacity of transgenic lines engineered by squalene 

metabolism. 

In order to test if engineering squalene metabolism to the chloroplasts or cytoplasm has 

any impact on photosynthetic capacity in these transgenic lines, CO2 fixation rates 

(photosynthesis rate), transpiration (conductance) and internal CO2 levels (Ci) were 

measured at about 60 days after planting. Overall, most of the transgenic lines 

accumulating variable levels of squalene, via plastidic or cytosolic targeting under the 

direction of constitutive or trichome-specific promoters, showed higher conductance (a 
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measure of water movement and transpiration) than WT plants, but did not exhibit a 

significant difference in photosynthesis or their ability to concentrate CO2 (Ci) compared 

with WT. The exceptions were lines H5, R13 and R6 that exhibited a modest decrease in 

their photosynthesis rate, a more pronounced increase in conductance and a slightly 

increase in Ci compared to WT plants over two growing seasons (Figure 4.3).  Altered 

photosynthetic and gas exchange capacity in these lines could possibly be correlated 

with their growth reduction.  

The inhibition of photosynthesis in these three lines is unlikely to be the result of 

squalene accumulation, because the likewise developed line G1 had the highest level of 

squalene accumulation without an obvious impact on its photosynthetic capacity (Figure 

4.3). Hence, the reason for their reduction in photosynthesis could vary on a case-by-

case basis. For instance, the H5 line targeting the squalene synthase (SQS) and 

farnesyl diphosphate synthase (FPS) enzymes to the chloroplasts directed by 

constitutive promoters may have had genes related to photosynthesis disrupted by the 

inserted transgenes by some ectopic effect or genetic changes resulting from the 

transformation/regeneration protocol. For the lines R6 and R13, their reduction in 

photosynthesis could be caused by some unique mechanism arising from the chimeric 

trichome specific promoters expressing the transgenes during a crucial time period 

during development of photosynthetically active cells. However, squalene accumulation 

in the various transgenic lines does not appear to correlate with altered photosynthetic 

capacity. Regardless, the measured higher conductance rates in most of transgenic 

lines indicate that they might be more drought sensitive than wild type plants. 

4.3.5 Agronomic performance of transgenic tobacco engineered for 

botryococcene accumulation  

The agronomic characteristics and photosynthesis of T1 transgenic lines expressing 

botryococcene synthase SSL1-3M and FPS targeted to the chloroplast (line td26) or the 

cytoplasm (line 13M), and those lines targeting SSL1-3 and FPS to the chloroplast (line 

tc10 and tc3) or the cytoplasm (line 136) were measured in 2013 and 2014. Because 

these lines were planted as segregating populations, plants accumulating botryococcene 

were considered to harbor the transgene (denoted as “+”), while those that did not were 

considered to have lost the transgene during segregation were denoted as “–”. Of the 

non-botryococcene accumulating plants, lines tc10–, tc3–, td26–, 13M–, 136–, most of 
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these plants performed directly comparable to the wild type plants with regard to the 

agronomic characteristics (height, biomass accumulation, leaf area) and photosynthetic 

measurements (CO2 fixation rates, transpiration and internal CO2 levels).  In contrast, for 

the lines accumulating high level of botrococcene (tc10+, tc3+ and td26+), their overall 

agronomic performance was significantly reduced compared with WT (Figure 4.4 and 

table 4.7). For example, tc10+ with the highest accumulation of botryococcene was only 

74 and 74% the height, 65 and 68% the total weight, 58 and 66% the leaf weight, and 68 

and 58% the leaf area of that for WT plants in 2013 and 2014, respectively. These plants 

also exhibited a higher conductance (1.9 and 1.2 fold increase relative to WT plants in 

2013 and 2014, respectively), and a slightly higher Ci (1.2 and 1.1 fold increase relative 

to WT plants in 2013 and 2014, respectively) (Table 4.7).  Similar levels of reduction in 

growth and increases in conductance and Ci were also observed in other high 

botryococcene accumulating lines like td26 and tc3. However, the lines 136+ and 13M+ 

expressing the enzymes in the cytoplasm, accumulating a low level of botryococcene 

performed directly comparable to the WT plants with regard to overall growth and 

photosynthesis. Interestingly, all the high accumulating lines showed a crinkle, mottling 

and chlorosis leaf phenotype (Figure 4.12), whereas, the non-accumulators or low 

accumulators did not (Figure 4.12). Altogether, plant growth of transgenic lines with high 

levels of botryococcene was significantly compromised, but photosynthesis rates were 

not affected.  

4.3.6 Agronomic performance of transgenic tobacco engineered for methylated 

triterpene accumulation 

To test if engineering methylation of the accumulating triterpene in the transgenic lines 

would have any impact on plant growth and photosynthesis, the T1 transgenic lines 

expressing triterpene methyl transferase (TMT) genes targeted to the cytoplasm or 

chloroplast of respective high squalene or botryococcene accumulators were also 

evaluated in field performance assays. These studies were complemented by using 

different TMTs. TMT-1 and TMT-2 were previously documented to selectively methylate 

squalene, while TMT-3 was described as having much greater specificity for 

botryococcene. Those plants for each line that were determined to have methylated 

triterpenes were considered to have inherited the TMT transgene and denoted as +, 

while those that did not accumulate methylated triterpenes were considered to have lost 

the TMT gene during segregation and are denoted as –. The lines accumulating high 
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level of methylated squalene by targeting the enzymes to the chloroplast (tpT1+ and 

tpT2+), showed a significant growth reduction relative to that for WT plants, about 73 

and 70% the height, 59 and 65% the leaf weight, 57 and 61% the total weight, 65 and 70% 

the leaf area of that for WT plants, respectively (Figure 4.6 and table 4.8A). These two 

high methylated triterpene accumulating lines also showed a growth reduction relative to 

their sibling lines (tpT1–, tpT2–) only accumulating non–methylated squalene, exhibiting 

about 94 and 87% the height , 69 and 73% the leaf weight, 72 and 71% the total weight,  

86 and 80% the leaf area of that for tpT1– and tpT2–, respectively (Table 4.8B). 

However, the lines expressing the TMT–1 in the cytoplasm (T1G+) with low level of 

methylated squalene performed almost equally to its sibling lines (T1G–), accumulating 

only non–methylated squalene (Table 4.8B), although both lines showed a modest 

decrease of growth compared to WT plants (70 and 68% height, 81 and 90% the total 

weight, 75 and 83% the leaf weight, 90 and 95% the leaf area of that for WT plants, 

respectively) (Table 4.8A). 

Similar trends in growth reduction were also observed in the transgenic lines engineered 

for methylated botryocococenes. The high level methylated botryococcene accumulators 

tpT3tc+ and tpT3td+ expressed TMT-3 targeted to the chloroplast showed 68 and 64% 

the height, 61 and 84% the leaf weight, 61 and 77% the total weight, 81 and 99% the 

leaf area of that for WT plants, respectively. Besides, these two high level methylated 

botryococcene accumulators also showed a significant growth reduction relative to their 

sibling lines where the TMT-3 transgene had segregated out and no methylated 

botryococcenes was evident. tpT3tc+ and tpT3td+ exhibited about 98 and 89% the 

height, 68 and 89% the total weight, 70 and 86% the leaf weight, 95 and 93% the leaf 

area of that for tpT3tc– and tpT3td–, respectively (Table 4.8B). The lines targeting TMT-

3 to the cytoplasm (T3tc+ and T3td+), which accumulated only very low levels of 

methylated botryococcenes, were also reduced in their growth relative to the wildtype 

plants, but only slightly decreased relative to their sibling lines (T3tc– and T3td–) 

accumulating only non-methylated botryococcenes (Table 4.8A and B). 

Photosynthesis in most of the transgenic lines engineered for methylated botryococcene 

production was seemingly affected, expect for lines tpT3td+ and T3td+ in comparison to 

wildtype plants (Figure 4.7). Similar to the squalene and methylated squalene 

accumulating plants, most of methylated botryococcene accumulating lines (tpT1+, 

tpT2+, tpT3tc+, tpT3td+, T1G+, T3tc+,T3td+) showed a slightly higher conductance and 
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Ci than their respective sibling line (tpT1–, tpT2–, tpT3tc–, tpT3td–, T1G–, T3tc–,T3td–) 

that accumulated only non-methylated triterpene, or to WT plants (Figure 4.7).   

These results altogether indicated that that the lines engineered for methylated 

triterpene production were modestly impacted in growth performance relative to wildtype 

plants, but did show a slightly greater decrease in growth relative to the non-methylated 

triterpene accumulating lines.  

4.3.7 Development dependent accumulation of squalene over three growing 

seasons 

The triterpene content was determined for the uppermost, fully expanded leaf of 6 to 9 

plants for each transgenic line grown in three replicate rows at different growing stages: 

early (25 days), middle (45-50 days) and late stage (80-100 days, after topping) for three 

growing seasons. Squalene content for each transgenic line targeting squalene 

biosynthesis to the chloroplasts or the cytoplasm under the direction of constitutive or 

trichome-specific promoters was determined by GC-FID and GC-MS.  

By comparing the squalene level in each line at different growing stages, we found that 

squalene accumulated in a developmental-dependent manner, especially for most of the 

high squalene accumulators such as G1. Squalene levels in middle to late stage of leaf 

development were significantly higher than measured in early stages of development 

(Figure 4.8). However, unlike some tobacco specific metabolites such as nitrosamines 

and nicotine that accumulate predominantly during the “ripening” stage (after apical 

meristem topping), squalene seemed to accumulate to the highest levels during the 

middle stages of leaf development. Transgenic line G1, for instance, accumulated the 

highest level of squalene, upwards of 700 µg/g fresh weight, in the middle stages of leaf 

development when averaged over the 3 years of field testing (Figure 4.8). A similar 

pattern of squalene accumulation was also evident in other lines, albeit the absolute 

amounts accumulating were not nearly as high, such as for H5 (or its silbing H9) grown 

for all three growing seasons, and for G8 and I8 grown in 2012 and 2014 (Figure 4.8).  

Among all the transgenic lines under the direction of constitutive promoters, G1  

accumulated squalene 95-, 48-, and 61- fold higher than that found in wild type plants 

growing at the same time in 2012, 2013 and 2014 respectively, and 87-, 150-, and 62-
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fold for squalene accumulation by C5 (or its sibling line C12) that targeted squalene 

biosynthesis to the cytoplasm. Other independent T2 lines engineered with the same 

constructs, such as I8 and G8, also yielded a higher level of squalene accumulation, 

which is significantly higher than WT and cytosolic engineered lines (Figure 4.8). Except 

for the H5 line, other high accumulators did not show any significant growth or biomass 

reduction relative to wildtype plants, indicating that their growth was not significantly 

compromised by squalene accumulation, which makes them potential candidates for 

large-scale application. 

Among the lines under direction of the trichome specific promoters, R13 and its 

homozygous sibling R6 expressing SQS with FPS in the chloroplasts accumulates a 

significant higher level of squalene than other lines. For example, the squalene level for 

R13+ in the middle stage is 74 and 128 fold greater than that for N10 that expressed 

SQS with FPS in the cytoplasm, 71 and 37 fold greater than that for A7 line expressing 

only SQS in the cytoplasm, but 22 and 21 fold greater than that for D4 line that 

expresses only SQS in the chloroplasts, in 2012 and 2013 respectively (Figure 4.8).  

However, when considering intense growth reduction for these high accumulators under 

direction of trichome specific promoters, they may not be suitable for large-scale 

production. Overall, these results indicate transgenic lines engineered for squalene 

metabolism in the chloroplast accumulate significantly higher levels of squalene than the 

lines engineered for cytosolic squalene biosynthesis, and the high squalene 

accumulating lines exhibited a developmental-dependent accumulation pattern when 

grown under field conditions.  

4.3.8 Development dependent accumulation of botryococcene over two growing 

seasons  

T1 transgenic lines expressing SSL1-3M with FPS targeted to the chloroplast (td26) or 

the cytoplasm (13M), and the lines directing SSL1-3 to the chloroplast (tc10 and tc3) or 

the cytoplasm (136) were measured for their botryococcene content. Those plants for 

each line that were determined to accumulate botryococcene were considered to have 

inherited the transgene expression cassette and denoted as “+”, while those not 

accumulating botryococcene were considered to have lost transgene cassette during 

segregation and denoted as “–”. The tc10+ line expressing SSL1-3 targeted to the 

chloroplast accumulated the highest level of botryococcene in the middle and late stages 
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of leaf development, which were about 2.2 and 2.5 times more than that accumulated in 

line td26+ expressing SSL1-3M targeted to the chloroplast grown in 2013 and 2014 

respectively (Figure 4.9). This result coincides well with their greenhouse performance 

wherein plants harboring botryococcene synthase SSL1-3 targeted to the chloroplasts 

exhibited two times higher productivity than SSL1-3M. We also found directing the 

botryococcene biosynthesis to the chloroplasts resulted in significantly higher  

botryococcene accumulation than when the enzymes were targeted to the cytoplasm 

(Figure 4.9). Transgenic lines tc10+ and td26+ targeting SSL1-3 and SSL1-3M 

respectively in the chloroplast in the middle stage of leave development in 2014 

accumulated botryococcene 26- and 10-fold greater than that generated by lines 136+ 

and 13M+ expressing these two enzymes respectively in the cytoplasm. The low 

production of botryococcene by cytosolic engineering indicated the limited substrates 

that could be under regulation in the cytoplasm for triterpene biosynthesis. In addition, 

similar to what we found for squalene accumulating lines, botryococcene also 

accumulated in a developmental–dependent manner, as the highest level of 

botryococcene was determined in their middle stage of leave development rather than 

the young and late stages for most of the high accumulating lines (Figure 4.9).  

4.3.9 Development dependent accumulation of methylated triterpene accumulation 

in 2014 

The squalene and methylated squalene content in transgenic lines tpT1 and tpT2 

targeting TMT-1 and TMT-2 respectively to the chloroplasts of high squalene 

accumulating line G1, and line T1G expressing TMT-1 in the cytoplasm of line G1 were 

evaluated in 2014. As described earlier, the plants for each heterzygous line were 

segregated by their methylated triterpene accumulation: those determined to accumulate 

methylated triterpenes were considered to have inherit TMT expression cassette and 

denoted as “+”, while those that did not were considered to have lost the TMT gene 

during segregation and denoted as “–”. We found that tpT1+ and tpT2+ lines 

accumulated a large proportion of methylated squalene, accounting for 56% and 57% of 

total triterpene accumulating in line tpT1+ in its early and middle stages of leaf 

development respectively, and for 66% and 70% of total triterpene in line tpT2+ in its 

early and middle stages of leaf development, respectively. In contrast, only 6% of total 

triterpene was converted to methylated squalene in line T1G+ in both its early and 

middle stages of leaf development. This result is consistent with what we observed with 
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these lines grown under the greenhouse conditions and demonstrated again that TMT 

enzymes can access the major pool of squalene C30 that is present in the chloroplast in 

contrast to a small amount of C30 squalene present in the cytoplasm. We also found the 

level of total triterpenes for each line in middle stage of leave development is about 1.3-

1.7 fold greater than their accumulation in early stage, but the ratio of methylated 

squalene to total squalene in different stages remains the same (Figure 4.10). The other 

interesting observation is that total triterpene in the high methylated squalene 

accumulating lines tpT1+ and tpT2+ was 1.2 to 2.2 fold greater than that in their sibling 

lines tpT1– and tpT2– accumulating only non-methylated squalene at the same stage, 

and indicating that reduction of the non-methylated squalene pool triggers the 

biosynthesis of additional squalene, which necessarily means an enhanced flux down 

the MEP pathway for triterpene production (Figure 4.10).   

Transgenic lines tpT3tc and tpT3td targeting TMT-3 to the chloroplasts of high 

botryococcene accumulating line tc10 and td26, respectively, and lines T3tc and T3td 

expressing TMT-3 in the cytoplasm of line tc10 and td26, respectively, were evaluated 

for their botryococcene and methylated botryococene content in 2014. Similar to what 

we found in transgenic lines engineered for methylated squalene metabolism, the 

tpT3tc+ and tpT3td+ lines accumulated a high proportion of methylated botryococcene, 

accounting for 66% and 73% of total triterpene in line tpT3tc+ in its early and middle 

stages of leaf development, respectively, and for 71% and 59% of total triterpene in line 

tpT3td+ in its early and middle stages of leaf development, respectively (Figure 4.11). In 

contrast, 51% and 26% of total botryococcene was converted to methylated 

botryococcene in line T3tc+ in its early and middle stages, respectively; 12% and 14% of 

total botryococene was methylated in line T3tc+ and T3tc- in its early and middle stages 

of development, respectively. An unexpected high level of methylation (51%) was found 

in line T3tc+ in the early stage for some unknown reasons. The total triterpene 

accumulated in each line in middle stage of leave development is about 1.3-3.6 fold 

greater than their accumulation in early stage (Figure 4.11). We also observed a slight 

higher level of total triterpene in high methylated botryococcene lines (tpT3tc+, tpT3td+) 

than that in their respective silbling lines (tpT3tc-, tpT3td-), accumulated only non-

methylated botryococcene (tpT3tc-, tpT3tc-) and that in their respective parental lines 

(tc10+, td26+) (Figure 4.11). 
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4.4 Discussion 

In this study, we investigated what, if any, the impact of engineered triterpene 

metabolism might have on various parameters of plant growth and photosynthesis. Any 

impact could be caused directly by the accumulation of transgene encoded proteins 

themselves, distortion of normal physiology by triterpene accumulation in particular cells 

and intracellular compartments, by the depletion of essential substrates or co-factors 

metabolites like IPP and SAM, or by indirect consequences of the genetic 

engineering/regeneration protocol itself. While the current studies could not hope to 

critically address all of these possibilities, the information should be helpful for 

uncovering insights into the physiological consequences of such metabolic engineering 

efforts.  

We firstly observed that most of the transgenic lines exhibited different levels of growth 

reduction relative to the wild type plant. This was not surprising because the transgenic 

plants may have some growth deficiencies compared to the non-transgenic control plant, 

due to the non–specific position effects of transgene insertion into the plant genome. 

Therefore, in order to determine if the growth reduction was due to some insertional 

event, change due to tissue culture regeneration of the various transgenic lines, or could 

be a consequence of the introduced terpene metabolism, we chose to grow and 

evaluate multiple independent lines generated with the same gene construct. It was 

already promising to find that the best squalene accumulators, G1 and its sibling line G8, 

only exhibited a slight decrease of growth. This supports a contention that no deleterious 

and or direct effects of the transgenes on growth occurred. 

In contrast, all the high botryococcene accumulating lines exhibited a specific phenotype 

outcome. The plants were stunted, emerging leaves showed a transient mottling 

phenotype with essential little chlorophyll/carotenoid accumulation around the 

petiole/main vein intersections of the leaf that appears to be corrected over time, and 

gross morphology of the leaves is distinctly different from control plants that also 

seemed to be moderated as the leaves grew to their more mature forms. These 

phenotypes were different from anything seen with the squalene accumulating lines, 

even those high squalene accumulating lines that were somewhat stunted in 

appearance. The phenotypes were also reliable observed in successive growth seasons, 

and thus not simply induced by environmental conditions. Considering the biosynthetic 
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similarities between botryococcene metabolism and squalene metabolism, the greater 

impact of botryococcene on phenotypic outcome might be associated with its distinct 

structure differences to squalene and the recognition of squalene as a natural, native 

constituent but botryococcene not. Plant lines accumulating methylated botryococcene 

exhibited even more dramatic phenotypic outcomes consistent with these molecules 

becoming more physically un-natural in tobacco and possibly more toxic.   

Surprisingly, photosynthetic rates in the transgenic lines were not or only marginally 

affected. But many of the transgenic lines, especially the high triterpene accumulators, 

exhibited a higher conductance than wildtype plants. Water conductance was also found 

to be higher in the plant lines accumulating methylated triterpenes, but this was not more 

significant than the lines accumulating non-methylated triterpene, which suggests that 

this measure, water conductance, is not sufficient to account for the adverse phenotypes 

observed. However, we would predict on the basis of the water conductance measure 

that the triterpene accumulating lines would be more drought sensitive.  

Another overarching goal in a study like this was to determine if the triterpene yield of 

the transgenic plants grown under field condition was stable and comparable to that of 

greenhouse grown plants. The determination of triterpene content in the field grown 

plants demonstrated that the accumulation levels was developmental stage dependent, 

similar to those findings with greenhouse grown plants (Wu et al., 2012). However, more 

striking was that the levels of triterpene accumulation in greenhouse grown plants were 

capitulated in the field trial plants as well. For instance, the squalene levels tested for 

greenhouse grown G1 was 200-600 µg/g fw (data not shown) compared to field grown 

G1 accumulating, on average over 3 growth seasons, 438 µg/g fw.  Hence, we conclude 

that the metabolic engineered trait for triterpene production is indeed stably inherited and 

expressed under a wide range of growth conditions, field versus greenhouse in particular.   

Triterpene production for each transgenic line did vary between different growing 

seasons, and the weather conditions between different growing seasons could be a 

factor influencing triterpene production and accumulation. For example, the rainfall from 

May to Aug in 2013 was 1.6 and 1.3 times more than that in 2012 and 2014, respectively. 

This difference between dry and wet seasons directly leads to about 2 times more 

biomass production in wet season than the dry season. However, squalene level per 

leave area decreased with the increased biomass accumulation in 2013. Squalene 
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production for most of high accumulators grown at the middle stage in 2012 was about 

1.5 times more than that of same lines grown in 2013. Hence, it was counter-initiative to 

what we would have predicted. We would have predicted a direct correlation between 

biomass accumulation and triterpene accumulation. This was not observed and 

suggests that there must be additional regulatory mechanisms controlling carbon 

allocation under these different growth conditions. If we were to understand these 

mechanisms, then perhaps we could use this information to further augment triterpene 

accumulation beyond what was observed with the existing plant materials.  

4.5. Material and method 

4.5.1 Seedling preparation and float setup  

Seeds for all the transgenic lines and WT were germinated without any selection in the 

soil in the greenhouse. After approximately 2 weeks, the seedlings were randomly 

picked and transferred to the sterilized float beds filled with sterilized soil. The float beds 

were kept on water beds of 3 and 5 inches. Greenhouse temperatures were maintained 

around 72oF (70 to 75oF) during the day and 60 to 70oF during the night. The initial water 

beds were prepared with 4.2 lbs of 20-10-20 fertilizer per 1000 gallons float water with 1 

fl oz Terramaster 4EC per 100 gallons float water as a preventative treatment for fungal 

diseases. Fertilizer and Terramaster treatments were reapplied every two weeks.  It 

generally took about 8 weeks from seeding to when plantlets were ready for 

transplanting to the field.  

Seed stocks were generated at the University of Kentucky propagated in greenhouse 

facilities certified by authorization by the UK Biosafety Office. Appropriate APHIS field 

permits for performing field trials with the transgenic materials were obtained for each of 

the annual field trials. All equipment used for propagating transgenic materials were 

clearly labeled and segregated for use with transgenic plant use only. The floatbed flats 

were transported to the designated University of Kentucky Spindletop field site according 

to APHIS guidelines and the field site treated pre-, during and post-planting as dictated 

by APHIS rules for transgenic trials. The field sites were randomly inspected by APHIS 

inspectors during all 3 years of field trials.  

4.5.2 Field plot setup 
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All the field work complied with the performance standards as required by USDA–APHIS. 

Thirty to thirty-six transplants for each line were randomly selected from the greenhouse 

propagation trays for the field planting. Plants were moved from the greenhouse to the 

field locations in an enclosed trailer to minimize environmental exposure. Three replicate 

rows of each line with 12 plants in a row were grown with standard plant and row 

spacing. They were planted in a designated field area with a minimum 50 foot perimeter 

area around the transgenic test area to maintain the field site was free of sexually 

compatible species to tobacco. Out-crossing of the transgenic lines was prevented by 

toping plants showing flowering buds, and maintaining an isolation distance of at least 

1,320 feet between the transgenic plots and any non–transgenic tobacco.  A distance of 

at least 5,280 feet was maintained between the transgenic plots and any open pollinated 

seed tobacco plots. Equipment used to transplant the plants was thoroughly cleaned 

before leaving the plot area.Cleaning included visual inspection to remove obvious 

plants or plant parts, water rinse followed by application of 10% bleach solution, second 

rinse and final inspection to insure no viable plant tissue remained. Any remaining plants 

were discarded in an area adjacent to the plots and incorporated into the soil. This area 

was monitored and tilled as needed to destroy volunteer plants over 4 year period.    

Standard tobacco agricultural practices were implemented to control insects, weeds, and 

pathogens. The test plot was visited at least once a week to document observations 

regarding plant growth and morphology. Test plots were monitored weekly for weed, 

disease and insect infestation and noted conditions documented. The test plots were 

clearly marked to ensure that their identity was maintained throughout the field trial. The 

field plot was visited at least once per week after planting for the duration of the growing 

season to ensure and document the maintenance of the non–flowering stage. Any plants 

showing signs of flowering were topped. No seed pods were observed during the 3 field 

trial growth seasons. 

Plants were harvested approximately 10–12 weeks after planting. Harvested plants were 

measured and weighed at a measuring station neighboring the plot, leaf samples 

collected and the remaining plant material returned to the plot for incorporation into the 

soil. Test plots will be monitored for volunteers at monthly intervals, and any volunteer 

plants destroyed prior to flowering, for at least one year post-harvest or until no volunteer 

plants are observed. Leaf material was transported back to the University of Kentucky 

for leaf area determination, after which the material was steam killed before disposal.   
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4.5.3 Photosynthesis and squalene determination 

Leaf discs of 2 cm diameter were collected from the upper most, fully expanded leaves 

at several times during each field trial and at different leaf positions at least once per 

each field trial. The leaf materials was then extracted and triterpene levels determined by 

GC-MS as described by (Wu et al., 2012). The photosynthetic gas exchange 

measurements of first fully expanded leaves were determined at atmospheric 

concentrations of CO2 and a saturating irradiance of 1,500 micromoles photons m-2 s-1 

using a LI–COR 6400 portable photosynthesis system according to (Salvucci and Crafts-

Brandner, 2004).   
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Table 4.1 Yield of various terpenes in tobacco plants engineered for novel plastidic 

biosynthetic capacities. 

 

 

 

 

Table 4.2 Kentucky Monthly Precipitation (2012–2014) (Inches) 

 

data collected from University of Kentucky Ag weather center 
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Table 4.3 Transgenic lines engineered with various constructs that directed triterpene 

metabolism to different cellular compartments under the direction of constitutive or 

trichome specific promoters used for the 2012 field study. 

 

Wild type tobacco (Nicotiana tabacum accession 1068) was transformed with the 

respective gene constructs consisting of yeast squalene synthase (SQS) and the avian 

farnesyl diphosphate (FPS) gene inserted downstream of strong, viral promoters (35S 

cauliflower mosaic viral promoter and cassava vein mosaic viral promoter) for 

constitutive expression. Double  35S enhancers (e2) fused to trichome specific 

promoters, cembreinene synthase and hydroxlase promoters respectively (Wang et al., 

2002a; Ennajdaoui et al., 2010) were used for trichome specific expression of two 

respective terpene synthase genes. A plastid targeting signal sequence (tp) was fused to 

the 5' end of the respective genes for targeting the enzymes to the chloroplast, and for 

the constructs without tp, the enzymes were expressed in the cytoplasm. T2 

homozygous or heterozygous transgenic lines were selected for the squalene 

expression cassette based on separate antibiotic selection screens. The seeds for each 

line was germinated without selection and plants randomly selected for planning in the 

field test assessments.  
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Table 4.4 Transgenic lines engineered with various constructs that directed triterpene 

metabolism to different cellular compartments under the direction of constitutive or 

trichome specific promoters used for the 2013 field study. 

 

Transgenic lines engineered for botryococcene biosynthesis were generated by 

transforming the respective gene constructs consisting of botryococcene synthase gene 

(SSL1-3) with (SSL1-3M) or without M (ER membrane target sequence) and the avian 

farnesyl diphosphate (FPS) gene inserted downstream of strong, viral promoters (35S 

cauliflower mosaic viral promoter and cassava vein mosaic viral promoter), into wild type 

tobacco (Nicotiana tabacum accession 1068). A plastid targeting signal sequence (tp) 

was fused to the 5' end of the respective genes for targeting the enzymes to the 

chloroplast, and for the constructs without tp, the enzymes were expressed in the 

cytoplasm. The seeds for the putative heterzygous T1 lines engineered for 

botryococcene metabolism were germinated without selection and plants randomly 

selected for planning in the field test assessments. These two T1 lines (tc10 and td26) 

were both shown to be segregated in the field based on whether or not accumulating 

botryococcene. Those plants accumulating botryococcene were considered to harbor 

the transgene (denoted as “+”), while those that did not were considered to have lost the 

transgene during segregation were denoted as “–”. T2 transgenic lines homozygous or 

heterozygous for squalene biosynthesis were described in table 4.3. 
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Table 4.5 Transgenic lines engineered with various constructs that directed triterpene 

metabolism to different cellular compartments under the direction of constitutive or 

trichome specific promoters used for the 2014 field study. 

 

Methylated triterpene accumulating lines were generated by each indicated construct 

with one of three TMT genes targeted to the chloroplast (with tp) or the cytoplasm 

(without tp) of squalene (tpSQS+tpFPS-5, G1), or botryococcene (tpSSL1-3+tpFPS-10, 

tc10 or tpSSL1-3M+tpFPS-31, td31) accumulating lines. The seeds for the putative 

heterzygous T1 lines engineered for methylated triterpene metabolism were germinated 

without selection and plants randomly selected for planning in the field test assessments. 

These T1 lines were all shown to be segregated in the field based on whether or not 

accumulating methylated triterpene. Those plants were determined to accumulate 

methylated triterpene were considered to harbor the transgene (denoted as “+”), while 

those that did not were considered to have lost the transgene during segregation were 

denoted as (–). Transgenic lines homozygous or heterozygous for squalene or 

botryococcene biosynthesis were described in table 4.3 and 4.4.  
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Table 4.6 Growth reduction of squalene accumulating lines compared to wildtype plants  

and genetic segregating siblings (–) that did only accumulate squalene grown in 2012 (A) 

and 2013 (B). 

 

The percentages of four differerent growth parameters of each indicated transgenic line 

to that of wildtype plants were represented. Line R13 was a T1 generation seed lot and 

shown to be heterozygous for the triterpene expression cassette based on separate 

antibiotic selection screens. The R13 seed was germinated without selection and plants 

randomly selected for planning in the field test assessments. Individual R13 plants in 

replicate rows were subsequently screened for their ability to accumulate squalene (+) or 

not (-) and the data for performance of (+) and (-) plants within a row pooled for their 

comparison. Nomenclature for the various lines is the same as given in table 4.3. 
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Table 4.7 Growth reductions of botryococcene accumulating lines (+) compared to 

wildtype plants and genetic segregating siblings (-) that did only accumulate non-

methylated triterpene grown in 2013 (A) and 2014 (B). 

 

The percentages of four differerent growth parameters of each indicated transgenic line 

to that of wildtype plants were shown. The seeds for each line were germinated without 

selection and plants randomly selected for planning in the field test assessments. 

Individual plants in replicate rows for each line were subsequently screened for their 

ability to accumulate botryococcene (+) or not (-) and the data for performance of (+) and 

(-) plants within a row pooled for their comparison. Nomenclatures for the various lines 

were described in table 4.3, 4.4 and 4.5. 
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Table 4.8 Growth reduction of methylated triterpene accumulating lines compared to 

wild type plants (A) and genetic segregating siblings (-) (B) that did only accumulate non-

methylated triterpene during the 2014 growth season. 

 

The percentages of four differerent growth parameters of lines accumulating methylated 

triterpene to that of lines only accumulating non-methylated triterpene or non-transgenic 

wild type control lines were shown. The seeds for each transgenic line were germinated 

without selection and plants randomly selected for planning in the field test assessments. 

Individual plants in replicate rows for each line were subsequently screened for their 

ability to accumulate methylated triterpene (+) or not (-) and the data for performance of 

(+) and (-) plants within a row pooled for their comparison. Nomenclatures for the various 

lines are described in table 4.3 4.4 and 4.5. 
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Figure 4.1 Outline of the two terpene biosynthetic pathways that operated in plants and 

strategies for engineering novel triterpene metabolism from the MVA (cytosolic) or MEP 

(plastidic) pathways.  
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Figure 4.2 The growth performance of transgenic tobacco engineered for squalene 

metabolism. Transgenic lines targeting SQS with FPS to the cytoplasm (C5) or 

chloroplasts (G1, G8, I8, H5) under the direction of constitutive promoters or targeting 

SQS with FPS (R13) or only SQS (D4) to the chloroplasts, or targeting expressing of 

SQS with FPS (N10) or only SQS (A7) to the cytoplasm of trichomes were grown in field 

studies of 2012 (A) and 2013 (B). The height, leaf weight, total weight and leaf area of 9 

individual of plants from 3 independent rows for each respective line were measured at 

the end of field season. An heterologous, segregating population of line R13 was planted 

in both years and are distinguished as those plants that accumulated high levels of 

squalene (>50 µg/g fw),denoted as “+”, and the others having wild type levels of 

squalene are denoted as “-”. The high squalene accumulating lines (>50 µg/g fw) are 

highlighted by red arrows. The values shown are the averages of 6-9 determinations 

from 9 individual plants from 3 independent rows. 
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Figure 4.3 Photosynthetic parameters of transgenic tobacco engineered with squalene 

metabolism grown in the field of 2012 (A) and 2013 (B).  The photosynthesis rates, water 

conductance and Ci of 9 individual of plants from 3 independent rows for each 

respective line were measured in the middle of each growth season. The values shown 

are the averages from 6-9 determinations. Nomenclature for the various lines is the 

same as given in figure 4.2.  
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Figure 4.4 Growth performance of transgenic tobacco engineered for botryococcene 

metabolism to particular compartments grown in the field of 2013 (A) and 2014 (B).  

Transgenic lines expressing SSL1-3 or SSL1-3M with FPS targeted to the chloroplast 

(line tc10 or tc3 and line td26 respectively) or the cytoplasm (line 136 and line 13M 

respectively) were grown and evaluated in the field in comparison to control wild type 

plants as well as those engineered for high squalene accumulation (G1). The 

botryococcene accumulating lines represent genetic segregating T1 population where 

those plants accumulating botryococcene were denoted as “+” and are homozygous or 

heterozygous for the botryococcene expression cassette, and those not accumulating 

botryococcene were denoted as “-” and represent homozygous plants without any 

transgene cassettes. Plant height, leaf weight, total weight and leaf area of 9 individual 

plants from 3 independent rows for each respective line were measured at the end of 

growth cycle for each growing season. The values shown are the averages of 6-9 

determinations. The high botryococcene accumulators (>50 µg/g fw) are highlighted by 

red arrows. 
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Figure 4.5 Photosynthetic parameters of transgenic tobacco lines engineered for 

botryococcene accumulation grown in 2013 (A) and 2014 (B) field trials. The 

photosynthetic rates, water conductance and Ci of 9 individual of plants from 3 

independent rows for each respective line for were measured in the middle of each 

growing season. The values shown are the averages from 6-9 determinations. The 

nomenclature for the various lines is given in Figure 4.4.  
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Figure 4.6 Growth performance of transgenic tobacco lines engineered for methylated 

triterpene accumulation. Transgenic lines expressing TMT-1 and TMT-2 targeted to the 

chloroplast (line tpT1 and tpT2 respectively) or directing TMT-1 to the cytoplasm (line 

T1G) of the high squalene accumulating line (G1), and lines that expressing TMT-3 in 

the chloroplasts (tpT3tc) or the cytoplasm (T3tc) of high botryococcene accumulating 

line (tc10) or targeting TMT-3 to the chloroplasts (tpT3td) or the cytoplasm (T3td) of high 

botryococcene accumulating line (td26) were grown in field studies of 2013 (A) and 2014 

(B). Plant height, leaf weight, total weight and leaf area of 9 plants for each line was 

measured at the end of the growing season by measuring 6-9 individual of plants from 3 

independent rows. The highest botryococcene accumulating lines are highlighted by red 

arrows. The plant lines engineered for methylation of the triterpenes and planted in the 

2013 and 2014 field seasons were segregating populations representing 

homozygous/heterozygous for the methylation expression cassette as well as 

homozygous without the expression cassette.  Those plants for each line that 

accumulated methylated triterpene are denoted as “+”, and those that did not 

accumulate methylated triterpenes are denoted as “-”.The values shown are the 

averages of 6-9 determinations. 
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Figure 4.7 Photosynthetic parameters of transgenic tobacco engineered for methylated 

triterpene accumulation grown in 2014. The photosynthetic rates, water conductance 

and Ci of respective lines were measured in the middle of each growth season by 

evaluating 9 individual of plants from 3 independent rows. The values shown are the 

averages from 6-9 determinations. Nomenclature for the various lines is given if fig. 4.6.  
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Figure 4.8 Squalene accumulation in transgenic lines grown in 2012 (A), 2013 (B) and 

2014 (C). The levels of squalene were determined for the uppermost, fully expanded leaf 

of 6 to 9 plants for each transgenic line grown in three replicate rows at different growing 

stages: 25 days (blue), 50 days (red), and 80-100 days (green) after they grown in the 

field. The values shown are the averages of 6-9 determinations. Nomenclature for the 

various lines is given in Tables 4.3-4.5. 

 

 



 
 

  
114 

 
  

 

Figure 4.9 Botryococcene accumulation in transgenic lines grown in 2013 (A) and 2014 

(B). The levels of botryococcene were determined for the uppermost, fully expanded leaf 

of 6 to 9 plants for each transgenic line grown in three replicate rows at different growing 

stages: 25 days (blue), 50 days (red), and 80-100 days (green) after they planted in the 

field. The values shown are the averages of 6-9 determinations. Nomenclature for the 

lines are defined in Tables 4.3-4.5.  
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Figure 4.10 Methylated squalene accumulation in transgenic lines field grown in 2014. 

The levels of botryococcene were determined for the uppermost, fully expanded leaf of 6 

to 9 plants for each transgenic line grown in three replicate rows at different growth 

stages: early (25 days) and middle (50 days) stages. Transgenic lines expressing TMT-1 

and TMT-2 targeted to the chloroplast (line tpT1 and tpT2 respectively) or directing TMT-

1 to the cytoplasm (line T1G) of the high squalene accumulating line (G1) were 

evaluated. Those plants for each line that accumulated methylated triterpene were 

denoted as “+”, and those accumulated only non-methylated triterpene were denoted as 

“-”. The percentage of methylated squalene (C31+C32) to total squalene 

(C30+C31+C32) was highlighted above the line column. The values shown are the 

averages of 6-9 determinations. Nomenclature for the lines are defined in Tables 4.3-4.5. 
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Figure 4.11 Methylated botryococcene accumulations in transgenic lines grown in 2014. 

The levels of botryococcene were determined for the uppermost, fully expanded leaf of 6 

to 9 plants for each transgenic line grown in three replicate rows at different growing 

stages: early (25 days) and middle stages (50 days). Transgenic lines tpT3tc and tpT3td 

expressing TMT-3 targeted to the chloroplast of line tc10 and td26 respectvely or 

directing TMT-1 to the cytoplasm of line tc10 and td26 respectively were evaluated. 

Those plants for each line that accumulated methylated triterpene were denoted as “+”, 

and those accumulated only non-methylated triterpene were denoted as “-”. The 

percentage of methylated squalene (C31+C32) to total squalene (C30+C31+C32) was 

highlighted above the line column. The values shown are the averages of 6-9 

determinations. Nomenclature for the lines are defined in Tables 4.4-4.5.  
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Figure 4.12 Phenotypes of botryococcene accumulating lines grown in the field trials. 

High botryococcene accumulators segregated and exhibited a unique phenotype 

(chrinkle, mottling and chlorosis) at their early (A, D left), middle (B, E left) and late (C, F 

left) stages of growth relative to their non-botryococcene accumulating siblings (D right, 

E right, and F right). 
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Chapter 5:  Conclusion remarks 

The current work proved that redirection of C5 (IPP/DMAPP) precursors from the MEP 

pathway in the tobacco chloroplast can successfully build novel triterpene products in 

plants. In addition to earlier studies, this strategy has been demonstrated to be widely 

applicable to metabolic engineering of various types of terpene compounds including 

monoterpenes, sesquiterpenes, and now triterpenes in tobacco plants. However, one 

should not overlook that the accumulation level of each type of terpene differed 

significantly, in that triterpene production is usually within range from 200 to 1000 µg/g 

fw, whereas sesquiterpene production did not exceed 30 µg/g fw and monoterpene 

limonene accumulates to approximately 1 µg/g fw. One reason why the lower molecular 

weight terpenes don’t accumulate is because they are volative and lost to the gas phase. 

In fact, Wu et al. (2007) reported that sesquiterpene emission of genetically engineered 

plants probably exceeded that which accumulated by at least 10-fold. A second  reason 

for this could be that these terpene synthases for each type have pronounced different 

catalytic efficiencies For instance, truncated yeast squalene synthase hasa catalytic 

efficiency for FPP reflected in Kms equal to 40 µM and Kcats equal to 3.3 S-1 (Zhang et 

al., 1993), relative to values of 4.45±0.56 µM and 0.43×10-3 s-1 for sesquiterpene 

synthases PTS (Deguerry et al., 2006). A third reason could be if the introduced 

metabolism occurs naturally in the compartments being engineered, it may be subject to 

endogenous regulation. For example, it could be very difficult to elevate GPP pool in the 

chloroplast for monoterpene production even if a exogenous GPS were used, because 

GPP biosynthesis that is normally occurring in the chloroplast and could be regulated by 

plastidic mechanisms, resulting in a relatively low level of monoterpene production. In 

contrast, engineering FPP, sesquiterpene, and triterpene biosynthesis into the 

chloroplast inserts a non-native pathway into the chloroplast compartment, which 

escapes from any native regulation, leads to a higher production of sesquiterpenes and 

triterpene production. It should also be noted that success of this strategy also replies on 

the divertion of a carbon flux pathway at an earlier point in the pathway, where the main 

flux might be monitored by the accumulation of downstream end-products that can 

feedback to positively enhance/increase overall flux down the pathway. 

Metabolic engineering of higher plant chloroplasts offers a great potential for improving 

isoprenoid yields for many reasons: 1) there are many plastids within each higher plant 

cell (up to 50) in which their genomes may be directly engineered themselves and 
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resulting in a large gene dosage effect (up to 1000 copies per plastid); 2) since they are 

the site of photosynthesis, carbon flux in chloroplasts is robust and theoretically could 

provide for an unlimited supply of precursors; 3) chloroplasts may offer a good 

environment for exogenous protein folding, expression and activity; 4) chloroplasts 

appear especially suitable for heterologous isoprenoid production due to lax endogenous 

regulation of the MEP pathway as compared to the MVA pathway operating in the 

cytosol; and 5) there is now the possibility to improve photosynthetic efficiency, which in 

theory should increase production of engineered compounds (Kebeish et al., 2007).  

A recent review by Heinig et al. (2013) discussed the current challenges in conducting 

subcellular targeting in plant metabolic engineering. They suggested important 

considerations to ensure substrate availability, whether this can be overcome by co-

introducing transporters, upstream catalytic enzymes to increase pathway flux, or 

suppressing endogenous pathways which bleed away precursors or cofactors. While the 

most successful subcellular targeting efforts so far have used nuclear-encoded pro-

peptides, that include transit peptides that direct the final protein to its intracellular 

destination, further development and optimization of plastid-encoded enzymes could 

allow for even higher titers of products. While engineering constructs into the chloroplast 

has been possible since the late 20th century (McBride et al., 1995; Daniell et al., 1998; 

Kota et al., 1999), and high protein titers have been obtained, engineering chloroplast-

encoded catalytically active enzymes has been less successful. Hence, there appears to 

be an inherent limitation in the chloroplast for the biosynthesis of high levels of 

catalytically competent enzymes, a problem that currently doesn’t seem to be receiving 

considerable attention. 
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Figure of chapter 5 

 

Figure 5.1 Plumbing model and analogy for metabolic flux. One can imagine that carbon 

flux throughout the cell can be modeled as a system of connected pipes. The pipe 

junctions represent enzymes and the connecting pipes represent the reactions catalyzed 

by those enzymes—with thinner pipes representing rate-limiting steps. In this model the 

water collects in various cisterns which represent the final metabolic product. These 

cisterns have a certain maximum capacity (maximum amount of end product which can 

accumulate) and this is monitored by various sensors (feedback mechanisms), which 

can alter valves (blue tee-shaped objects) that represent regulatory proteins (e.g. 

transcription factors) controlling flux through the various connecting pipes or reactions. 

However, there are many steps designated by question marks for which we do not know 

how they might interact with our metabolic network. 
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