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Legume rotation has allowed a consistent increase in crop yield and consequently in human population since the antiquity.
Legumes will also be instrumental in our ability to maintain the sustainability of our agriculture while facing the challenges of
increasing food and biofuel demand. Medicago truncatula and Lotus japonicus have emerged during the last decade as two major
model systems for legume biology. Initially developed to dissect plant-microbe symbiotic interactions and especially legume nodu-
lation, these two models are now widely used in a variety of biological fields from plant physiology and development to population
genetics and structural genomics. This review highlights the genetic and genomic tools available to the M. truncatula community.
Comparative genomic approaches to transfer biological information between model systems and legume crops are also discussed.

Copyright © 2008 Jean-Michel Ané et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

Legumes are usually defined by their typical flower structure
and the ability of many of them to form root nodules in pres-
ence of symbiotic bacteria named rhizobia. With more than
18 000 species, legumes are found from the artic circle to the
tropics and include many crops of agronomic importance for
grain production, pasture, and forestry [1, 2]. The ability of
more than 88% of legumes to obtain nitrogen from the air
through root nodules was probably a major determinant in
this evolutionary, ecological, and economical success [3]. In-
terestingly, the study of symbiotic associations with rhizobia
as well as with arbuscular mycorrhizal (AM) fungi also drove
the development of two model legumes: Medicago truncatula
Gaertner and Lotus japonicus (Regel) K. Larsen.

While M. truncatula is an annual medic from the Tri-
folieae tribe and a close relative of alfalfa and clovers, L.
japonicus belongs to the Loteae and is more distant from cul-
tivated cool season legumes than M. truncatula. This phy-
logenetic distance to economically important crops is criti-
cal in the choice of M. truncatula by many researchers and
support by numerous funding agencies. The use of both
model legumes allows unique comparative genomic stud-
ies within the legume family as well as the comparison be-

tween two patterns of root nodule development: indetermi-
nate with a persistent nodule meristem in the case of M. trun-
catula and determinate in L. japonicus. Unfortunately, these
two models belong to the same cool season legumes (Gale-
goid clade), whereas soybean and common bean are tropical
season legumes (Phaseolid clade). Soybean is therefore pro-
posed as a third model legume for both its own economic
weight and the phylogenetic proximity to other important
crops [4, 5].

Research efforts on model legumes and especially on M.
truncatula encompass a broad range of fields in plant biol-
ogy from population biology [6–8] and plant development
[9–16] to plant pathology [17–22], insect resistance [23–
27], and biotechnology production [28]. The goal of this
review is to provide an overview of the natural characteris-
tics and genetic and genomic tools that make M. truncatula
such a desirable experimental system for a growing number
of plant biologists. We will highlight how information gained
from M. truncatula can be transferred to other legumes crops
through comparative genomics and we will share our vi-
sion of how M. truncatula can allow us to reach the goal of
sustainable well-being through sustainable food and biofuel
production.

mailto:jfrugol@clemson.edu
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2. MEDICAGO TRUNCATULA AS A MODEL LEGUME

Natural attributes of M. truncatula that make it a valuable ge-
netic model include its annual habit and rapid life cycle, its
diploid (2n = 16) and autogamous nature, its prolific seed
production, and a relatively small genome of about 550 Mb.
Jemalong A17 has been selected by the research community
as a reference line for most genetic and genomic approaches
and is derived from the major commercial cultivar. M. trun-
catula is native to the Mediterranean basin and is found in a
wide range of habitats. It is therefore not surprising to find a
high level of variation among and within natural populations
[29]. Using microsatellite markers, a publicly available core-
collection of 346 inbred lines was developed and thus repre-
sents the breadth of this natural diversity [30]. M. truncatula
is used as a fodder crop in ley-farming systems in Australia,
and a large and diverse collection is housed at the South Aus-
tralian Research and Development Institute (SARDI) [8].

Like many higher plants, M. truncatula forms symbi-
otic associations with a wide array of arbuscular mycorrhizal
(AM) fungi. As a legume, M. truncatula is also able to develop
root nodules with Sinorhizobium meliloti, which is one of the
best-characterized rhizobium species at the genetic level [31].
Cultivation-independent techniques have been used to sam-
ple the diversity of microbes associated with M. truncatula
roots at various developmental stages and they reveal an ex-
tremely dynamic genetic structure of its rhizosphere [32].

Mutagenesis approaches using ethyl methane sulfonate
(EMS), gamma rays, and fast neutron bombardment (FNB)
have generated large mutant populations of M. truncatula
from which mutants affected in symbiotic as well as develop-
mental pathways have been identified [33–37]. T-DNA and
Tnt1 mutagenesis have been developed recently to generate
tagged mutants for forward and reverse genetics purposes
[38–40].

Several protocols have been optimized to transform M.
truncatula using Agrobacterium tumefaciens [41–45]. These
protocols are particularly efficient for the R108 and Jema-
long 2HA lines but the regeneration efficiency still needs to
be improved for Jemalong A17. This moderate efficiency as
well as the time required for the regeneration steps is driv-
ing the preference of the Medicago community towards Tnt1
versus T-DNA for gene tagging approaches [46] as well as the
search for alternative transformation systems.

Hairy root transformation via Agrobacterium rhizogenes
proved to be a rapid and efficient transformation system al-
lowing the generation of transgenic roots in 2-3 weeks. Such
“hairy roots” can be infected by rhizobia or AM fungi with
symbiotic phenotypes indistinguishable from nontransgenic
roots and are therefore an ideal system for plant-microbe
symbiosis studies [47]. The development of DsRed as a vi-
sual reporter reduced the need for Kanamycin or Basta se-
lection systems which were significantly decreasing nodula-
tion efficiency. This hairy root transformation system is now
used routinely to express protein fusions or RNA interfer-
ence (RNAi) constructs [48–50]. The possibility to regener-
ate transgenic plants from hairy roots of the R108 line has
been reported recently. This flexible approach should allow
a rapid initial screening of phenotypes on hairy roots and

a subsequent regeneration of transgenic plants if necessary
[41]. An interesting ex vitro procedure that eliminates the
need for labor-intensive in vitro culture will undoubtedly in-
crease the throughput of hairy root transformations to a level
compatible with genomic studies [51].

The Medicago community has therefore identified many
ecotypes and developed a wide range of mutants and trans-
genic lines. A current goal of the International Medicago
truncatula steering committee is to address the need for a
stock center able to maintain, amplify, and distribute these
lines to an ever growing community.

3. MAPPING THE GENOME OF
MEDICAGO TRUNCATULA

Genetic and cytogenetic tools have been instrumental to
the development of a “gene rich” genome sequence for M.
truncatula. This project also required several bacterial artifi-
cial chromosomes (BAC) libraries that were developed using
HindIII and EcoRI partial digests as well as a robust physical
map (Figure 1).

Genetic maps have been developed from F2 popula-
tions and a wide array of genetic markers such as CAPS,
AFLPs, RAPDs, and microsatellites (SSRs) [52–54]. One of
them, based on a Jemalong A17 A17 × A20 F2 population,
is currently used as a reference for the genome sequencing
project (http://www.medicago.org/genome/map.php). Un-
fortunately, these F2 populations are either based on a lim-
ited amount of genomic DNA or require a labor-intensive
vegetative propagation of F2 individuals. In order to pro-
vide sustainable tools to the community, genetic maps based
on recombinant inbred lines (RILs) and highly polymorphic
microsatellite markers are developed and will undoubtedly
represent the future reference for M. truncatula genetics (T.
Huguet, personal communication).

Cytogenetic maps based on fluorescence in situ hybrid-
ization (FISH) with interphase or metaphase chromosomes
provide a quick access to the chromosomal location of BAC
clones and repeated sequences [55–57]. Obtaining pachytene
chromosomes is more labor intensive than metaphase chro-
mosomes but provides an unequalled resolution all along the
chromosome and particularly in euchromatic regions [58].
Information from such cytogenetic tools was instrumental
for comparative genomics and map-based cloning projects
but also allowed the determination that M. truncatula het-
erochromatin was mostly localized in pericentromeric re-
gions. Genetic and cytogenetic markers corresponding to the
borders of these regions have been developed [57, 59, 60].
Based on this unique chromosomal structure, it is therefore
possible to predict through the genetic map if a BAC clone
belongs to a euchromatic or a heterochromatic region. This
observation as well as the possibility to select EST-rich BAC
clones led the M. truncatula community to initiate the se-
quencing of euchromatic (gene-rich) regions via a BAC-by-
BAC strategy (http://www.medicago.org/genome/).

Four centers share the sequencing effort of the 8 chro-
mosomes: Bruce Roe et al. at the University of Oklahoma,
Chris Town et al. at The Institute for Genomic Research
(TIGR), Jane Rogers et al. at the Sanger Centre, and Francis

http://www.medicago.org/genome/map.php
http://www.medicago.org/genome/
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Quétier et al. at the Genoscope. A physical map grouping
and ordering of BAC clones was developed by the labora-
tory of Douglas R. Cook by combining HindIII digestion
fingerprints with BAC-end sequence data through the FPC
software [52, 61, 62]. More than 1370 FPC contigs cover
466 Mbp (93% of the genome) and are used to determine the
minimum tiling path of gene-rich regions for whole genome
sequencing [52].

As of February 2007, 188 Mb of genome sequence from
1950 BAC clones are publicly available. About 10% of this in-
formation is redundant due to the overlap of BAC clones nec-
essary to create a tiling path and more than 300 gaps between
contigs need to be filled. These gaps are sized by FISH and
covered with contigs by long-range PCR or classical chromo-
some walking [62].

Integration of genetic, cytogenetic, physical, and se-
quence maps allowed the development of pseudochromo-
somes and greatly facilitated comparative mapping [52, 58–
60]. Annotating pseudochromosome sequences is classically
achieved through gene prediction programs and compari-
son with EST databases (Figure 1). The IMGAG (Interna-
tional Medicago Genome Annotation Group) has developed
a unique automated pipeline to predict gene structures and
functions [63]. More than 25 000 genes have been predicted
so far and techniques to test these predictions need to be de-
veloped.

Oligonucleotides covering the entire sequence of pseu-
dochromosomes can be printed on glass slides to generate
tiling arrays. These arrays can be used for a wide range of
applications from gene identification and detection of alter-
native splicing to comparative genome hybridization (CGH)
and chromatin immunoprecipitation on chips (ChIP chips)
[64–67].

4. SYSTEMS ANALYSIS

4.1. Transcriptomics

Large-scale EST sequencing is essential for functional ge-
nomics studies, permitting the direct identification of large
gene collections and setting the stage for further analysis,
such as those using DNA microarray technology. Several
large EST projects have been completed [68–71]. The anal-
ysis of the almost 200 000 ESTs isolated from many differ-
ent libraries constructed from diverse stages and treatments
that came out of these projects is facilitated by searchable
databases such as MtDB2 [72] and the TIGR Gene Index
(http://www.tigr.org).

Both microarray and macroarray analyses of gene ex-
pression changes during symbiosis have been published
[73–78]. These experiments ranged from analysis of a few
thousand genes on filters during AM symbiosis [73] to
almost 10 000 genes compared between wild type and nonn-
odulating mutants [76, 77] or between fix-mutants [79]. A
dual symbiosis chip containing 10 000 M. truncatula genes
and the entire S. meliloti prokaryotic genome allows side by
side analysis of both partners in the symbiosis [80], and an
Affymetrix chip with bioinformatically optimized oligonu-
cleotides representing 48 000 genes is available (http://www

Genetic map
(markers such as
CAPS, SSRs, . . .)

Physical map
(BAC clones,

fingerprint and
BAC ends)

Cytogenetic map
(FISH on

metaphase or
pachytene

chromosomes)

Genome sequence
(pseudo-chromosome) and

comparative genomics

Repeats
(centromeric repeats,

rDNA, . . .)

Tiling arrays

Genome annotation

Gene prediction

EST libraries

Figure 1: Integration of different maps and libraries to generate
and annotate the genomic sequence of M. truncatula. Expressed
sequence tags (EST) are used to generate genetic markers and to
identify BAC clones in gene-rich regions as well as for gene iden-
tification. Repeats identified via genome sequencing and compar-
ison with other species can be mapped via FISH on chromosome
spreads.

.affymetrix.com/support/technical/datasheets/medicago da-
tasheet.pdf). As genome sequencing continues, following
the expression of all M. truncatula genes under varying
conditions should soon be possible. Affymetrix placed probe
sets for 1850 M. sativa transcripts on these chips to facilitate
the study of closely related species such as M. sativa. The use
of M. truncatula arrays for analysis of M. sativa (crop alfalfa)
gene expression has proven effective [81, 82].

Other effective genomic approaches to transcriptional
analysis utilized to date in M. truncatula include suppres-
sive subtractive hybridization (SSH) and serial analysis of
gene expression (SAGE). In SSH, suppressive PCR is used
to both normalize the abundance of transcripts in individ-
ual libraries and enrich for transcripts unique to the library
by subtracting sequences common to several libraries, with
rare sequences being enriched up to 1000 folds [83]. This
method has been used to identify AM specific transcripts
[84] and transcripts specifically involved in the S. meliloti
symbiosis [85]. SAGE is a method for comprehensive anal-
ysis of gene expression patterns using short sequence tags
obtained from a unique position within each transcript (10–
14 bp) to uniquely identify a transcript. The expression level
of the corresponding transcript is determined by quanti-
fying of the number of times a particular tag is observed
[86]. Although no publications have arisen yet, a project
applying SAGE to M. truncatula is underway at the Center
for Medicago Genomics Research at the Nobel Foundation
(http://www.noble.org/medicago/GEP.html).

4.2. Proteomics

Another complementary approach to identify import gene
products involved in interesting processes is to look at
changes in the protein complement of a genome that vary
by cell or treatment. In order for proteomic approaches to be
useful in a system, a large sequence resource is necessary to
match the sequences of peptides generated in tryptic digests

http://www.tigr.org
http://www.affymetrix.com/support/technical/datasheets/medicago$_$datasheet.pdf
http://www.affymetrix.com/support/technical/datasheets/medicago$_$datasheet.pdf
http://www.affymetrix.com/support/technical/datasheets/medicago$_$datasheet.pdf
http://www.noble.org/medicago/GEP.html
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to their proteins of origin. The growing sequence resource
in M. truncatula allows identification of proteins by their
mass spectra, making proteomics an effective approach for
M. truncatula and proteomics approaches have become quite
popular. A comprehensive review of considerations impor-
tant in proteomics technology and applications in M. trun-
catula and Arabidopsis was recently published [87, 88]. Be-
cause small peptides have been shown to have roles in plant
signaling, proteomics has been applied to identifying small
protein/peptide components of certain M. truncatula tissues
[89]. Proteomic approaches have also been applied to analy-
ses of seed development [14, 16], pathogen interactions [90],
symbiosome membranes [91], AM membranes [92], root
microsomes [93], and other organ, tissue, and treatment-
specific approaches [11, 94–100].

Most of the genes cloned thus far in the initial signal
transduction pathway for nodulation are kinases [101]; sug-
gesting global analysis of phosphoproteins is a way to identify
important genes involved in signal transduction in M. trun-
catula. Unfortunately, phosphoproteins involved in cellular
signaling are generally present in low abundance, creating
new challenges for proteomics. By making adjustments the
basic proteomics procedures, such as adding an enrichment
step, a proof of concept experiment in M. truncatula phos-
phoproteomics, gives a taste of the potential of this approach
[102].

4.3. Metabolomics

Alfalfa produces a number of secondary metabolites of great
interest because of their contributions to human health and
animal forage quality. The principle behind metabolomics
is that metabolic profiling on a genomic scale offers a view
of the metabolic status of an organism, which can lend in-
sight to the study gene function or whole plant biology [103].
Successful attempts to link proteomics, transcriptomics, and
metabolomics for cell cultures in M. truncatula have emerged
from these studies [104, 105].

Metabolomics is a new and evolving science, and requires
specialized equipment and multifaceted technical strategies.
The Nobel Foundation employs a strategy that utilizes se-
quential or selective extraction followed by parallel analyses.
The parallel analyses achieve a comprehensive view of the
metabolome with high-performance liquid chromatography
(HPLC), capillary electrophoresis (CE), gas chromatography
(GC), mass spectrometry (MS), and various combinations of
the above techniques such as GC/MS, LC/MS, and CE/MS. In
addition to studying biological responses to biotic and abi-
otic elicitors in M. truncatula cellcultures, these techniques
are being applied to the study of natural variants in M. trun-
catula, M. truncatula development, lignin biosynthesis, and
legume-insect interactions.

Perhaps the most daunting aspect of metabolomic exper-
iments is the analysis of the data. Early on, it became obvious
that metabolomics required a standard similar to MIAME
(minimum information about a microarray experiment) to
allow comparison of data. A framework for the description of
plant metabolomic experiments and their results has recently

been developed. ArMet (architecture for metabolomics) is
published and in accepted use [106, 107].

4.4. Phenomics

As more and more researchers use M. truncatula as a model,
the need for a standardized method of describing pheno-
types becomes acute. Since the timing and structure of veg-
etative and floral development in M. truncatula differ from
Arabidopsis, adoption of standards such as those used for
Arabidopsis [108] is inappropriate. Additionally, M. truncat-
ula symbioses with AM fungi and Sinorhizobium meliloti
add another dimension to developmental processes that re-
quire a standardized description of process stages and plant
anatomy.

To date, a few attempts have been made to develop a stan-
dardized language for comparison. Vegetative growth param-
eters were carefully measured to provide a benchmark in
[109], but the use of a glasshouse environment rather than
a controlled light and temperature regime rendered the data
not universally applicable. Likewise, flower development and
response to vernalization have been documented in the same
way [109], again in a glasshouse so the light intensity was
uncontrolled. These experiments are progress toward a con-
trolled standard for comparison of mutant phenotypes such
as “late flowering” or “increased internodal distance.” Pre-
cision in phenotypic descriptions will be critical to genome
scale mutant hunts.

There is no plant structural GO ontology terms for
nodulation or nodule structures in the Plant Ontology
Consortium site as of the February 2007 release (http://
www.plantontology.org). The present plant ontology system
provides terms for growth and developmental stages, as well
as organs and tissues of Arabidopsis, maize and rice, but none
of these plants nodulates, creating a problem for using GO
annotation in M. truncatula.

4.5. Bioinformatics

All of the “omics” scale tools discussed above necessi-
tate strong bioinformatics infrastructure for the species. A
good place to begin is the Medicago Consortium website:
http://www.medicago.org. In addition to a handbook of pro-
tocols for everything from growing and transforming M.
truncatula to naming genes, links from this page lead to in-
formatics tools such as ENSEMBL which allow a real time
view of the annotation of the genome, tools allowing brows-
ing of the genome for markers, genes, the location of BACs,
the status of the sequencing project or the sequence status of
any individual BAC. Users can also view the contigs assem-
bled for sequencing, and make comparisons to other legumes
through the legume information system [110] and the con-
sensus legume database (www.legumes.org). Tools are also
available through links from the medicago.org website for
examining ESTs (TIGR, MtDB2, MENS), and in the future,
examining microarray data. In silico approaches in M. trun-
catula have led to important insights, such as the identifi-
cation of a large family of small legume-specific transcripts

http://www.plantontology.org
http://www.plantontology.org
http://www.medicago.org
file:www.legumes.org
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with conserved cysteine motifs whose function continues to
be investigated [111–113].

But as genome scale biology is applied, the need to syn-
thesize transcriptomics data, proteomics data, metabolomics
data, and more becomes as important as the availability of
informatics tools to analyze these data individually. Several
steps in this direction have occurred within the M. trun-
catula community. Some of these integrated solutions are
focused around a process, such as gene expression in my-
corrhizal symbiosis [114]. Because of the nearly complete
genome sequence and the cooperative nature of the sequenc-
ing and annotation of the genome, comprehensive integra-
tion of various data sources has been necessary from the be-
ginning. Cannon et al. [115] provide a nice summary of the
available sequence-based resources and how they interact.
A freely available database of biochemical pathway data for
M. truncatula (MedicCyc) contains more than 250 pathways
with related genes, enzymes, and metabolites [116]. This pro-
vides the ability to not only visualize metabolomics data and
integrate them with functional genomics data, but also al-
low comparison of M. truncatula pathways to those in other
plants using the compatible AraCyc and RiceCyc databases.

5. REVERSE GENETICS

Reverse genetics approaches which identify mutants in a gene
of interest based on sequence differences are critical genomic
tools in a model system. A range of approaches are available,
including retrotransposon tagging, T-DNA tagging, TILL-
ING for EMS mutations, PCR screening for fast neutron mu-
tations, and RNA-induced gene silencing (RNAi) [46]. Each
method has advantages and disadvantages, and the choice
of which method(s) to use will depend on the purpose of
the investigator. In M. truncatula, RNAi, TILLING, and PCR
screening of Tnt1 insertion mutagenesis populations or fast-
neutron generated deletion populations are reverse genetic
approaches presently possible.

As noted above, the efficacy of RNAi in M. truncat-
ula has been documented [48] including use in whole
plants and in transformed roots. The combination of
RNAi constructs and hairy root transformation is useful
for large scale screening projects to identify genes of in-
terest for further analysis. A large-scale project to iden-
tify gene function by silencing in M. truncatula is under-
way (http://www.cbs.umn.edu/labs/ganttlab/rnai.html). Ini-
tial results from this project include identification of a
calcium-dependent protein kinase involved in nodule devel-
opment, a gene that had not been identified through classical
mutational analysis [117].

TILLING (Targeting Induced Local Lesions in Genomes)
has proven useful in Arabidopsis and other plants (reviewed
in [118]). Briefly, the sequence of a gene of interest is an-
alyzed with a computer program that determines the con-
sequences of all possible EMS mutations (primarily G to A
transitions) on the amino acid sequence of the deduced pro-
tein. Regions are chosen for PCR amplification based on the
concept that those regions most likely to result in altered pro-
tein function are highly conserved domains in proteins, and
PCR primers are designed to amplify these regions of DNA

from each plant. The PCR products are analyzed for single-
base pair changes in a high throughput sequencing gel system
using an enzyme that detects and cleaves single-base mis-
matches in DNA. The use of high throughput methodology
and a well-characterized and curated population of mutag-
enized plants allows a plant containing a lesion in the gene
of interest to be identified in days. The benefits of TILLING
are not only the rapid identification of lesions, but the nature
of the lesions themselves. The point mutations generated by
EMS treatment allow the use of TILLING to generate an al-
lelic series that includes both missense and nonsense muta-
tions.

In M. truncatula, the Cook lab. at UC Davis developed
a population of ∼4000 curated EMS mutagenized plants for
purpose of TILLING. This resource is currently unavailable
as a community resource due to the absence of funding. To
date genotypic screens for mutations in 15 genes of inter-
est to the Cook lab or collaborators have been undertaken,
and 143 mutants identified, with recovery rates of 9.89 al-
leles per kbp screened. Phenotypic characterization of one
(of 23 unique) allele identified from one of the early geno-
typic screens for mutations in the M. truncatula arbuscule
specific phosphate transporter MtPT4 is described by Javot
et al. [119]. Characterization of other mutants in this col-
lection is currently ongoing or advanced to the stage where
manuscripts are in preparation for submission (Douglas R.
Cook and Varma Penmetsa, personal communication).

A reverse-genetics platform has been established in Med-
icago truncatula exploiting fast neutron (FN) mutagenesis
and a highly sensitive PCR-based detection first documented
in Arabidopsis [120]. The FN-based screening platform pro-
duces complete loss of function mutants by identifying large
deletions in the targeted region. Central to this platform is
the development of a detection strategy which allows a mu-
tant amplicon, possessing an internal deletion, to be prefer-
entially amplified in pools where genomic target sequence
is present at a 20 000-fold excess. This detection sensitivity
has been achieved through a combination of techniques for
suppressing the amplification of the wild-type sequence and
preferentially amplifying the mutant product. The popula-
tion has been arrayed such that 12 000 M2 plants can be an-
alyzed in 4 PCR reactions. These megapools can then be dis-
sected using 25 PCR reactions on 3D pools, allowing iden-
tification of the individual seed lot containing the mutant.
In comparison with the well-established TILLING method
[121–123], which utilizes 8-fold PCR-based screening, FN
alleles can be isolated at a fraction of the cost and avoid
the problems associated with EMS mutagenesis of target-
ing small genes and the very high number of background
mutations in isolated mutants. An initial characterization
of the FN system analyzed 10 genes in a subpopulation of
60 000 M2 plants. Mutants were recovered for 4 target genes.
A population of 180 000 M2 plants has now been established
and should allow the recovery of mutants from a majority of
targeted loci. Information for accessing this resource can be
found at www.jicgenomelab.co.uk. (C. Rodgers and G. E. D.
Oldroyd, personal communication).

Recently, researchers have identified a tobacco retrotrans-
poson, Tnt1, that moves randomly in M. truncatula but only

http://www.cbs.umn.edu/labs/ganttlab/rnai.html
file:www.jicgenomelab.co.uk


6 International Journal of Plant Genomics

upon passage through tissue culture [39]. This retrotranspo-
son can be used to generate a large population of plants with
tagged mutation sites in tissue culture that become stable
upon regeneration of whole plants, an important resource
for both forward and reverse genetics. A population muta-
genized by Tnt1 can be used for reverse genetic screens by
sequencing of tagged sites and forward genetic screens by
observation of phenotypes. The isolation of the M. truncat-
ula pim gene through this reverse genetics approach demon-
strates the utility of the system for identifying mutants by se-
quence [40].

6. TRANSLATIONAL GENOMICS FROM
MODEL TO CROP LEGUMES

The value of the model systems will be enhanced by the abil-
ity to connect model systems to crops at the structural and
functional genome levels. For example, conserved genome
structure (synteny) between model and crop species could al-
low the use of model species as a surrogate genome for map-
based cloning of agronomically important genes in crops
with complex genomes. Moreover, detailed knowledge of the
molecular basis of conserved phenotypes in model species
can be translated to great advantage for gene discovery in
related species. Working with M. truncatula as a reference
system, researchers have used comparative genomics tools
to bridge model and crop legumes through comparative
mapping of orthologous genes [54, 124, 125]. Alignment
of linkage maps and sequenced orthologous regions reveals
an extensive network of macro- and microsynteny between
legume species [125–127]. In fact, the conserved genome or-
ganization between M. truncatula and crop legumes has al-
lowed for cross-species prediction and isolation of several
genes required for root symbiosis using M. truncatula as
a surrogate [128, 129] and reviewed in [125]. Despite the
emerging picture of substantial synteny between legumes,
the level of conservation decreases as the evolutionary dis-
tance increases [124, 125]. Thus, comparisons within Gale-
goid or Phaseolid legumes tend to reveal chromosome-level
synteny, while comparisons between the two clades tend to
reveal large-segment synteny, which is also reflected in the
differences in chromosome number between Galegoid and
Phaseolid legumes [125, 127].The broad taxonomic distance
separating the two clades warrants the development of one or
two reference systems within each clade, M. truncatula, and
L. japonicus for the cool-season legumes and soybean for the
tropical-season legumes [130].

A significant effort has been undertaken in compara-
tive genomic analysis of legume resistance gene homologs
(RGHs). Most plant disease resistance genes identified to date
belong to the nucleotide binding site (NBS) leucine rich re-
peat (LRR) family [131]. NBS-LRR genes can be further clas-
sified by the presence or absence of a toll/interleukin recep-
tor (TIR) homology domain. In previous studies, researchers
investigated the genomic architecture of RGHs in M. trun-
catula [21], and used phylogenetic methods to assess evolu-
tionary trends in this large gene family in legumes and across
the angiosperms [21, 132]. The results from these studies
revealed several important insights into RGH gene evolu-

tion in plants. Despite the presence of the two major lin-
eages of RGHs (i.e., TIR and non-TIR NBS-LRR genes) in
all dicots, each of these lineages is populated by numerous
family-specific or family-predominant clades [132]. For ex-
ample, the major RGH clades that define legumes are absent
from the Brassicaceae and Solanaceae, and vice versa. Thus,
there are likely to be aspects of RGHs (including both struc-
tural and functional attributes) that are peculiar to individual
plant families. When phylogenetic analyses were conducted
within the legume family [21], it was found that all known
major clades in legumes are represented by sequences from
M. truncatula, providing evidence that the major RGH radi-
ations predate the respective speciation events. There are also
cases that cophyletic RGHs occupy syntenic positions be-
tween legumes. The availability of a nearly complete catalog
of M. truncatula NBS-LRR genes is expected to greatly enable
rapid and efficient characterization of RGHs in other closely
related legumes. A legume genome project towards this ef-
fort has recently been funded by the NSF Plant Genome Re-
search Program. The goal of this funded project was to de-
velop genomic tools for five less-studied legume species (i.e.,
chickpea, pigeon pea, cowpea, peanut, and lupine), which are
economically important in the developing countries of Africa
and Asia (D. R. Cook, personal communication).

Forage legumes, such as alfalfa, red clover, and white
clover, are an important component of animal and sustain-
able agriculture throughout the world. In addition to pro-
viding superior forage quality for animal production and
improving soil fertility through nitrogen fixation, forage
legumes also contribute to the improvement of soil struc-
ture and control of soil erosion. Alfalfa (Medicago sativa),
for example, is grown on over 26 million acres and ranks
third in acreage planted and dollar value in the US (USDA
Crop Values Summary 2005). The true clovers (Trifolium
spp.), which are often grown together with forage grasses,
are also widely distributed. Despite serving as a major source
of meat and milk products via animals, the economic im-
portance of forages to food production and the agricultural
economy of the US are not fully appreciated. Consequently,
forage legumes suffer from poorly developed genetic and ge-
nomic infrastructure due to both limited federal funding
and their intractable genetic system (e.g., polyploidy and
self-incompatibility). The lack of such infrastructure limits
the application of genomics-enabled technologies in the ge-
netic improvement of forage legumes. Nevertheless, all these
forage legumes are closely related to the model legume M.
truncatula, a cool-season legume within the tribe Trifolieae.
Therefore, forage legumes could be an immediate benefi-
ciary of the study of M. truncatula genomics. As many of the
pathogens of M. truncatula are also pathogens of closely re-
lated forage legumes, it should be possible to clone resistance
genes that are active against pathogens of crop legume species
in M. truncatula. In addition, due to the close relationship of
resistance gene sequences between these species, it is likely
that functional resistance genes can be moved across species
boundaries by transgenic approaches.

Thus the genetic, genomic, and molecular tools avail-
able in M. truncatula allow not only investigation of basic
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processes important to legumes, but also transfer of that in-
formation to important crop species.
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[114] H. Küster, A. Becker, C. Firnhaber, et al., “Development
of bioinformatic tools to support EST-sequencing, in sil-
ico and microarray-based transcriptome profiling in mycor-
rhizal symbioses,” Phytochemistry, vol. 68, no. 1, pp. 19–32,
2007.

[115] S. B. Cannon, J. A. Crow, M. L. Heuer, et al., “Databases and
information integration for the Medicago truncatula genome
and transcriptome,” Plant Physiology, vol. 138, no. 1, pp. 38–
46, 2005.

[116] E. Urbanczyk-Wochniak and L. W. Sumner, “MedicCyc:
a biochemical pathway database for Medicago truncatula,”
Bioinformatics, vol. 23, no. 11, pp. 1418–1423, 2007.



Jean-Michel Ané et al. 11
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