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In utero exposure to opiates may affect autonomic functioning of the fetus and newborn.
We investigated heart rate variability (HRV) as a measure of autonomic stability in prenatal
opiate-exposed neonates (n=14) and in control term infants (n=10). Electrocardiographic
data during both non-nutritive and nutritive sucking were evaluated for RR intervals, heart
rate (HR), standard deviation of the consecutive RR intervals (SDRR), standard deviation
of the differences of consecutive RR intervals (SDDRR), and the power spectral densities
in low and high frequency bands. In controls, mean HR increased significantly, 143–161
per min (p=0.002), with a trend toward a decrease in RR intervals from non-nutritive to
nutritive sucking; these measures did not change significantly among exposed infants.
Compared to controls, exposed infants demonstrated significantly greater HRV or greater
mean SDRR and SDDRR during non-nutritive period (p < 0.01), greater mean SDDRR dur-
ing nutritive sucking (p=0.02), and higher powers in the low and high frequency bands
during nutritive feedings. Our findings suggest that prenatal opiate exposure may be
associated with changes in autonomic nervous system (ANS) functioning involving both
sympathetic and parasympathetic branches. Future studies are needed to examine the
effects of prenatal opiate exposure on ANS function.

Keywords: heart rate variability, autonomic nervous system, prenatal opiate, power spectral analysis, neonatal
abstinence syndrome

INTRODUCTION
Heart rate variability (HRV) has been used as a measure of auto-
nomic nervous system (ANS) function for over 30 years. Studies,
such as by Siassi et al. (1) in 1979, examined HRV in both time
and frequency domains to evaluate the health of the ANS. The ANS
controls involuntary physiologic responses through its two main
branches, the sympathetic and parasympathetic systems. These
branches often function in opposition to each other to achieve
homeostasis of involuntary functions such as breathing, diges-
tion, and excretion. In cardiac muscle, the sympathetic nervous
system functions to increase both rate and force of contraction,
while the parasympathetic nervous system functions primarily to
decrease heart rate (HR). In vascular smooth muscle, the sympa-
thetic system primarily causes vascular wall contraction, while the
parasympathetic system causes vascular relaxation. The derived
HRV measures from beat by beat fluctuation in cardiovascular
variables, are used as an index of ANS function (2–8) reflecting the
status of sympathetic and parasympathetic balance. HRV is usually

Abbreviations: ANS, autonomic nervous system; EKG, electrocardiogram; FFT, fast
Fourier transform; HF, high frequency; HR, heart rate; HRV, heart rate variabil-
ity; LF, low frequency; NAS, neonatal abstinence syndrome; PSA, power spectral
analysis; RSA, respiratory sinus arrhythmia; SDDRR, standard deviation of the dif-
ferences of consecutive RR intervals in a subject; SDRR, standard deviation of the
consecutive RR intervals.

assessed in two ways: by time domain analysis and by frequency
domain analysis. The calculations in the time domain analysis are
based on the statistical derivations from consecutive RR intervals
(interbeat intervals) measured from the electrocardiogram (EKG)
tracings. The RR intervals are sometimes referred to as the heart
period. In the frequency domain, the periodic fluctuations in HR
are examined as these fluctuations are affected by temperature, the
baro-receptor reflex, and respirations. The HR fluctuation that is
equal to the respiratory rate from the inspiratory inhibition of
the vagus nerve is noted in the high frequency (HF) region and
has been referred to as the respiratory sinus arrhythmia (RSA) or
vagal tone. In most studies, the low frequency (LF) band usually
includes the regions from 0 to 0.2 Hz and the HF band between
0.2 and 1.5 Hz (9, 10).

Heart rate variability has served as an indicator of ANS sys-
tem functioning in clinical settings, in subjects of all ages. In the
fetus, HRV has been used as one of the indicators of fetal well
being (11). In the newborn infants, the HRV has been studied in
active and quiet sleep (12), in intrauterine growth restriction (13),
in assessment of pain (14), and in sepsis (15). In older infants,
autonomic changes such as brief increases in HR and RSA were
noted to parallel increases in negative emotions during tasks elic-
iting frustration (16). The evaluation of the ANS system in the
newborn is of interest since studies have suggested that physio-
logical measures may predict neurobehavior, temperament, and
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later childhood outcomes (17, 18). In older children, ANS changes
as shown by changes in heart period and vagal tone or RSA were
associated with behavior problems (19, 20).

The ANS functioning has been evaluated in infants with pre-
natal substance exposure such as cocaine and tobacco. Compared
to infants with no prenatal tobacco exposure, exposed infants had
higher HR and RSA (21). Neonates with prenatal cocaine expo-
sure showed autonomic alterations; they had higher HRV; i.e.,
higher total power in frequency domain and higher vagal tone (22).
However, other investigators found similar RR interval dynamics
between those with prenatal cocaine exposure and controls dur-
ing quiet and active sleep (23). In one report, infants with prenatal
cocaine exposure had delayed but prolonged response in HR or
decrease in HRV during orthostatic stress (6).

There are few studies on ANS functioning following prenatal
opiate exposure. Experimental studies indicate that prenatal opi-
ate exposure may affect both the developing fetal hypothalamic-
pituitary-adrenal axis and the sympathetic adrenal medullary axis
(24, 25), and thereby resulting in alteration in not only cortisol
response but also norepinephrine and adrenalin response affecting
HR and HRV. These effects on the hypothalamic-pituitary-adrenal
axis and the sympathetic adrenal medullary axis were evident even
at later ages. Also in adult rats with perinatal exposure to the opi-
ate, oxycodone, changes in blood pressure, and HR responses to
acute stress were different from animals with no prenatal opiate
exposure (26).

Clinical studies also suggest that prenatal opiate exposure may
result in alterations in ANS functioning. Fetuses of mothers on
methadone treatment had decreased baseline HR, HRV, and accel-
eration (27). Following prenatal opiate exposure, infants had
increases in HR as well as associated decreases in vagal tone (5);
these changes in cardiac measures occurred with drug withdrawal
manifestations or neonatal abstinence syndrome (NAS). Other
investigators also found that abnormal HR patterns, e.g., increase
in base line HR and beat-to-beat variability, were associated with
tremors and irritability in infants with NAS (28). Older children
with prenatal opiate exposure appeared to have impairment in
ANS functioning as indicated by increased vagal tone reactivity in
the presence of task with increased attentional demand (29).

With the increasing prevalence of opiate use in women of child
bearing age (30), the number of reported NAS cases also is on
the rise (31). Infants with NAS manifest central nervous sys-
tem and ANS signs; they may have increase in HR, increase in
respiratory rate, and have difficulty with feeding (suck-swallow-
breath interaction) (32). Investigators reported on abnormalities
in the feeding patterns, changes in length and frequency of sucking
bursts, less rhythmic swallowing, and abnormalities in respira-
tory control (33, 34); these may affect both sympathetic and
parasympathetic functioning. Yet there are few reports on the ANS
functioning after prenatal opiate exposure. A more detailed inves-
tigation of ANS functioning in exposed children will help better
understand the underlying physiological changes associated with
the clinical syndrome and its treatment. Furthermore, character-
ization of neonatal ANS functioning in prenatal opiate exposure
may have the potential for determining a relationship between
early ANS functioning and infant behavior regulation and or later
outcomes (17, 18).

To assess the ANS status in neonates, investigators have elicited
changes in ANS functioning using different stimuli (e.g., nutri-
tive sucking, non-nutritive suck with use of a pacifier, or by tilt or
orthostatic changes) (4, 6, 35). Since feeding is a routine activity
for newborn infants, we used nutritive sucking to elicit possible
changes in ANS functioning and determined measures of HRV
in the time domain and the rhythms about the HRV in the fre-
quency domain. We hypothesized that prenatal opiate exposure
would be associated with increased activity in the sympathetic
and parasympathetic systems.

MATERIALS AND METHODS
This study is a part of a prospective larger study on feeding using a
sample of convenience, with Institutional Review Board approval.
The complete protocol has been published elsewhere (36). Subject
enrollment was done after birth. Informed consent was obtained
from a parent. For this ancillary study, we evaluated HRV from
recordings of two groups of term infants: a group with prenatal
opiate exposure with NAS symptoms and a control group with
no prenatal opiate exposure. Although term gestation was a pre-
requisite for enrollment, no matching was done as to birth weight
or gender. The opiate exposure was identified by maternal his-
tory of opiate use and or by a positive opiate screen from infant’s
urine or meconium. All infants admitted had urine and meco-
nium drug screening. As part of our clinical practice, infants with
prenatal opiate exposure were assessed every 3–4 h for symptoms
of withdrawal using the Finnegan scoring system (37). In this
scoring system, 21 items are scored according to severity. Items
scored include central nervous system and autonomic nervous
manifestations, including signs of respiratory and gastrointestinal
dysfunction. Examples of items scored are tremors, muscle tone,
sweating, fever, yawning, mottling, nasal stuffiness, sneezing, nasal
flaring, tachypnea, excessive feeding, poor feeding, regurgitation
or vomiting, loose or watery stools, skin excoriations, and etc. For
this study we noted the Finnegan NAS scores (37) of each exposed
infant documented by the bedside nurse within a few hours before
the study, as well as the highest score at anytime prior to the study.

RECORDING PROCEDURES
Infants were monitored with a 3-lead EKG. Two electrodes were
placed on the upper chest on each side, below the clavicle and in
proximity to the left and right arm. The third electrode was placed
on left lower extremity, proximal to the ankle. All data sets were
collected at times the infant was scheduled to feed per nursing pro-
tocols. EKG signals (Model #90623A, Space Labs Inc., Redmond,
WA, USA) were acquired from the RS-232 port and analog signals
converted to digital data. Signals were digitized using a commer-
cial data acquisition system at a rate of 600 samples per second
(Model #DI-706, DATAQ Instruments, Akron, OH, USA). The
study procedure coincided with scheduled feedings, with infants
in awake state. Prior to the data acquisition, each infant was swad-
dled and held by the research nurse to prepare for feeding. EKG
recording started when a pacifier was given for at least 1 min to
stimulate infant sucking and readiness for bottle feeding. After
non-nutritive sucking, the infant was given his/her feeding (nutri-
tive sucking). EKG recording continued until the infant consumed
the prescribed volume or for no longer than 15 min.
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ANALYSIS OF EKG SIGNALS
A custom-made program in MATLAB (MathWorks, Natick, MA,
USA) was developed to analyze EKG data. With this software, con-
secutive peaks of R waves were identified from the EKG tracings.
After identification of R peaks, the RR intervals (millisecond)
were computed. Data segments with artifacts with three or less
unidentifiable R peaks were removed and values linearly inter-
polated using the preceding RR and the succeeding RR after the
deleted artifact segment. When data segments had more than three
unidentifiable R peaks, the segments were deleted and removed
from the analysis. Of the data segments, 4% contained artifacts
and were not analyzed. One of the authors (Stuart J. Traxel) ran
the custom software for R peak detection and EKG data edits; he
was masked to the study group assignment.

Electrocardiogram signals were examined in the time and fre-
quency domains. In the time domain, variation in HR was exam-
ined from the intervals of consecutive QRS, measured between
peaks or RR. The beat-to-beat changes are the results of the com-
plex interaction of vagal, sympathetic, and other influences on
the heart. Therefore in this study, the HRV measures included
the RR intervals, HR (beats per minute) derived from the RR,
and the statistical derivations namely: standard deviation of the
consecutive RRs intervals (SDRR), and standard deviation of the
difference between consecutive RR intervals (SDDRR). For each
infant during each minute of non-nutritive and nutritive sucking,
the means for the RR intervals, HR, SDRR, and SDDRR were cal-
culated to compare these time domain variables between controls
and opiate-exposed infants. Since during nutritive sucking, the
EKG recordings for each infant lasted for 15 min, we also compared
the time domain variables between controls and opiate-exposed
infants during a 5-min period.

In the frequency domain, periodic changes in heart pattern
within each given frequency band over a range of frequencies were
determined from spectral power display. To extract information at
particular frequencies, RR intervals were equi-sampled and then
filtered using a digital low-pass filter with a cut-off of 12.5 Hz.
After filtering, data were sub-sampled at 25 Hz since components
at frequencies much larger than 1.5 Hz are infrequently used in
power spectral analysis (PSA) of HRV. Sub-sampled data were
segmented into 120 s sections and each section was zero-meaned
and multiplied by a Hanning window. The Fast Fourier Transform
(FFT) was computed for all data segments. Spectral density was
then computed by averaging the FFT of all data segments for each
infant. During non-nutritive sucking, the infant’s EKG data that
were <120 s in duration were zero-padded to equal 120 s in dura-
tion to increase frequency resolution obtained at low frequencies.
EKG data that were longer than 120 s were divided into segments
using a 50% overlap.

For the frequency domain analysis,we performed PSA of the RR
intervals, representing power at each frequency for each category
of infants (controls versus opiate-exposed by non-nutritive and
nutritive sucking), allowing for a visual interpretation of which fre-
quencies in each domain (high and low) are more greatly affected.
LF power was calculated for each infant as the area underneath
the spectral density curve between 0.01 and 0.2 Hz. HF power was
calculated similarly for frequencies between 0.2 and 1.5 Hz. These
calculations summarize the impact on changes to RR variability

at low and high frequencies generally, measured for each category
of infants in power per Hertz. Except for a lower cut-off at the
low end of the LF band, we used frequency bands similar to those
used by other investigators (9, 10, 38–40). The amplitude of power
in the LF band is influenced by both sympathetic and parasym-
pathetic systems. The two components of the power spectrum in
the LF are related to thermoregulatory fluctuations in vasomo-
tor tone and the frequency response of the baro-receptor reflex
(12, 41). The LF may also have the component of fluctuations
due to breath amplitude modulation (38). The spectral power in
the HF band has its peak centered at the respiratory frequency,
reflecting the sinus arrhythmia caused by respirations. Thus, the
peak at HF may shift with changes in respiratory rate. Fluctua-
tions in the HF are modulated by the parasympathetic branch of
the ANS (9, 41, 42).

STATISTICAL METHODS
Descriptive statistics included frequencies, medians, means, stan-
dard error of the mean (SE), and proportions. Normality was
assessed for each of the measures. As to the time domain mea-
sures, we compared the 1-min means of RR, HR, SDRR, and
SDDRR during non-nutritive sucking and nutritive sucking within
and between controls and the exposed group, using mixed linear
models. The 5-min time domain variables between groups dur-
ing nutritive sucking were compared using the T test. In exposed
infants, the use of Pearson’s Correlation assessed the linear associ-
ation between NAS scores and each of the time domain measures
during non-nutritive and nutritive sucking. We also performed
mixed linear models to compare the frequency domain measures
between the controls and exposed groups during non-nutritive
and nutritive periods. The method adjusts for multiple compar-
isons using Tukey–Kramer method. For all analysis, a p-value
<0.05 was considered significant. For all analyses we used SAS
version 9.3 (Cary, NC, USA).

RESULTS
ENROLLED SUBJECTS
Enrollment consisted of 24 subjects, 10 controls, and 14 opiate-
exposed infants. Mothers of control infants did not use opiates and
2 of 10 used tobacco during pregnancy. Seven of 14 mothers in the
exposed group were on methadone and the remaining used oxy-
codone or hydrocodone or both. Three opiate using mothers also
smoked during pregnancy. Mean (SE) birth weight of controls,
3221 (176) g, did not differ from that of the opiate-exposed group,
3045 (125) g. Similarly, mean gestational ages were comparable,
38.7 (0.28) and 39.4 (0.38) weeks for controls and exposed groups
respectively. Median 1- and 5-min Apgar scores for term controls
were 9 and 10, respectively. Median 1- and 5-min Apgar scores
were both 9 for exposed infants. Of the controls, 40% had tran-
sient respiratory distress on admission compared to 21% in the
exposed group. The respiratory distress was attributed to delayed
adaptation and resolved within a few hours of admission. No
infant had respiratory distress at the time of the study procedure.
There were more males in the control group, 80 versus 36% in the
exposed group (p < 0.05). Infants were studied within 1 week of
birth except for four opiate-exposed, who were studied during the
second week of life. In opiate-exposed infants, the Finnegan scores
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(37) obtained a few hours before the physiological data acquisi-
tion ranged from 4 to 20 (median, 11). However, the highest scores
recorded for the study subjects at any time prior to the study pro-
cedure ranged from 12 to 22 (median, 16), scores high enough for
infants to need pharmacologic treatment.

Table 1 compares the means (SE) of the measures in time
domain. The t values and adjusted p-values from multiple com-
parisons are also shown. Figures 1A–D illustrate the results from
the time domain analysis. During non-nutritive sucking, mean RR
(SE) did not differ between controls and exposed infants, 415.0
(13.2) and 383.1 (10.1) ms, respectively. In controls, RR decreased
marginally during nutritive sucking to 383.5 (13.2) ms, p= 0.08,
while no significant decrease was noted in the exposed infants
(Figure 1A). Also, during non-nutritive sucking, a marginal dif-
ference was noted in HR between groups; mean (SE) in controls
was 143 (5) versus 157 (4) per min in exposed infants (Figure 1B).
HR increased significantly during nutritive sucking in controls
to 161 (4.7) per min (p= 0.002), but not in exposed infants.
Figure 1C shows that during non-nutritive sucking, the exposed
infants had higher SDRR values compared to controls, mean (SE)
of 20.6 (2.5) versus 11.0 (1.3); estimated mean (SE) difference was
−7.5(2.7), p= 0.006. Exposed infants also showed a significant
decrease in SDRR, from mean (SE) of 20.6 (2.5) during non-
nutritive to 14.1 (2.5) during nutritive sucking, but no significant
change occurred in controls. As to SDDRR, no significant change
occurred in controls or in exposed infants from non-nutritive to
nutritive periods (Figure 1D). However, those exposed had sig-
nificantly higher SDDRR values during non-nutritive (p < 0.002)
and nutritive (p < 0.02) sucking compared to controls.

We also found differences in the 5-min time domain measures
during nutritive sucking between controls and exposed infants.

Those exposed had a significantly shorter RR, mean (SE) of 359.9
(7.9) compared to controls, who had mean (SE) of 387.5 (10.3),
p= 0.04. HR during the nutritive period for exposed infants was
167.7 (3.5) per min, higher than 155.8 (4.1) per min in controls.
The mean (SE) of the SDRR and SDDRR measures did not differ
between controls and exposed infants during the nutritive period.

Among exposed infants, there was no correlation between the
Finnegan scores recorded within 4 h of the data acquisition and any
of the time domain measures. However, the highest scores recorded
prior to the study procedure correlated significantly, but only dur-
ing the nutritive sucking periods, with the following time domain
measures: RR (r = 0.24, p < 0.02), HR (r =−0.22, p < 0.03), and
SDDRR (r = 0.22, p < 0.03). Therefore, during nutritive feeding,
longer RR intervals, lower HR, and higher SDDRR correlated with
increasing severity of NAS.

FREQUENCY DOMAIN ANALYSIS
Shown in Figures 2A,B and in Table 1 are the means (SE) of power
for the LF (0.01–0.2 Hz) and HF (0.2–2.5 Hz), in the control and
exposed infants during non-nutritive and nutritive periods. The
power in LF and HF increased from non-nutritive to nutritive
sucking in both groups, but significant increase was noted only in
the exposed with a mean difference of −0.19, p= 0.04 for the LF
and mean difference of −0.4075, p= 0.0027 for HF. Both LF and
HF powers were significantly greater in the exposed group during
nutritive sucking compared to controls. Shown in Figures 2C,D,
are the power spectral densities in the LF and HF domains plotted
against frequencies of 0.01–0.2 and 0.2–1.5 Hz, respectively. The
displays of PSA in both LF and HF bands show that controls dur-
ing non-nutritive sucking had the lowest power while the exposed
during nutritive sucking had the highest power in both the LF and

Table 1 | Comparison of time domain variables (RR interval, HR, SDRR, and SDDRR) and frequency domain variables (LF and HF) during

non-nutritive and nutritive sucking between controls and exposed infantsa.

RR interval HR SDRR SDDRR LF HF

Mean (SE)

Controls

Non-nutritive 415.0 (13.2) 143.0 (4.8) 11.03 (1.3) 6.93 (1.3) 0.2201 (0.08) 0.2093 (0.12)

Nutritive 383.5 (13.2) 161.0 (4.7) 10.8 (1.3) 6.67 (1.3) 0.3119 (0.08) 0.3204 (0.12)

t Value 1.75 −3.20 0.12 0.17 −0.87 −0.78

p-Value 0.0838 0.002 0.9051 0.8626 0.3938 0.4453

Exposed

Non-nutritive 383.1 (10.1) 157.1 (4.0) 20.6 (2.5) 13.87 (2.3) 0.4135 (0.07) 0.4155 (0.10)

Nutritive 371.6 (10.1) 164.5 (4.0) 14.1 (2.5) 13.31 (2.3) 0.6066 (0.07) 0.8230 (0.10)

t Value 0.83 −1.33 2.03 0.18 −2.16 −3.38

p-Value 0.410 0.1876 0.0448 0.8595 0.0415 0.0027

Controls versus exposed

Non-nutritive

t Value 1.63 −1.76 −2.82 −3.38 −1.88 −1.29

p-Value 0.1061 0.0812 0.0059 0.0011 0.0738 0.2120

Nutritive

t Value 1.19 −1.35 −0.23 −2.59 −2.86 −3.13

p-Value 0.2385 0.1803 0.8170 0.0111 0.0091 0.0048

aMeans (SE), t value, and adjusted p-value are shown for multiple comparisons (Tukey–Kramer).

Frontiers in Pediatrics | Neonatology October 2013 | Volume 1 | Article 27 | 4

http://www.frontiersin.org/Neonatology
http://www.frontiersin.org/Neonatology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hambleton et al. Autonomic alterations and prenatal opiate

FIGURE 1 | (A–D) Show the means (SE) of time domain variables for
controls and exposed subjects during non-nutritive (pacifier) and nutritive
sucking. Also significant differences are indicated as follows: *p < 0.05;
**p < 0.01. (A) Compares the mean RR (millisecond) between controls

and exposed infants during non-nutritive and nutritive periods.
(B–D) Respectively show the HR (beats per minute), SDRR, and SDDRR
changes between controls and opiate-exposed infants during non-nutritive
and nutritive sucking.

HF bands. The LF to HF ratios did not differ between non-nutritive
sucking and nutritive sucking within groups or between groups.

DISCUSSION
To our knowledge, this is the first report on examining ANS func-
tioning after prenatal opiate exposure during non-nutritive and
nutritive sucking. Our results suggest that prenatal opiate expo-
sure may affect neonatal ANS functioning in both sympathetic
and parasympathetic branches. Compared to controls, exposed
infants showed a greater HRV by some of the time domain mea-
sures. In exposed infants during nutritive sucking, HRV was higher
with higher Finnegan scores. Further, PSA indicated a prominent
increase in activity for both sympathetic and parasympathetic
branches in exposed infants compared to controls during nutritive
sucking.

The findings of increase in HR and decrease in RR from
non-nutritive to nutritive sucking may be related to increased
autonomic output as evidenced by the gustatory hypothesis. The
gustatory hypothesis proposes that due to shared nervous system
nuclei, digestive processes could have concurrent cardiac changes
(43). Lipsitt and co-investigators (44) related their findings in new-
borns of the associated increase in HR during sucking with liquid
(sucrose) compared to sucking with no liquid (non-nutritive) to
adaptive gustatory phenomenon; i.e., a slower sucking rate when

fed a“savored substance.”Previous studies evaluated HR and HRV
in normal,healthy infants during non-nutritive and nutritive suck-
ing with variable results (3, 4, 7, 44, 45). Our results are in line with
findings by Cohen et al. (3, 4), as well as Portales et al. (35), who
noted an increase in autonomic function during nutritive feed-
ing from baseline in healthy infants. We noted similar changes in
our controls, i.e., increase in HR with nutritive sucking, but with
minimal and insignificant change in those with opiate exposure.
Although we did not have measurements prior to non-nutritive
sucking, other investigators (4, 7) found no significant change
between baseline HR and the HR determined while sucking a paci-
fier. The marginally elevated baseline HR of the opiate-exposed
may be explained by an increase in sympathetic activity, decrease
in parasympathetic activity, or a combination of the two. Changes
during embryologic development to cholinergic receptor sites or
other nerve synapse sites with opioid receptors may affect the ANS
functioning (46, 47). Also, ANS alterations in exposed newborns
may be related to the effect of opiate on the ontogeny of the stress
axis with prenatal exposure effects on the hypothalamic-pituitary-
adrenal axis interacting with ANS functioning (25).

Jansson et al. (5) examined heart periods in neonates born with
perinatal methadone exposure. They found longer average heart
periods on days 1 and 2, than the mean RR intervals in our study.
Differences in the methodology of their study from ours include
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FIGURE 2 | (A,B) (Top panels) show the mean (SE) power per Hertz for the
LF and HF bands respectively, comparing the controls and opiate-exposed
infants during non-nutritive and nutritive sucking. Significant differences
are indicated as follows: *p < 0.05; **p < 0.01; ***p < 0.005. In both
controls and exposed, LF and HF power per Hertz increases from
non-nutritive to nutritive periods but significant change occurred only in
exposed in the LF domain (p < 0.05) and HF domain (p < 0.005).

Compared to controls, exposed infants have higher LF (p < 0.05) and HF
(p < 0.03) power per Hertz during nutritive sucking. (C,D) (Bottom panels)
illustrate the plots of power spectral densities against the LF band of
0.01–0.2 Hz and HF band of 0.2–1.5 Hz. The controls during non-nutritive
sucking have the lowest power and the exposed have the highest power in
both LF and HF bands. Note that the scale for power against frequency in
(D) is expanded for HF to provide more details.

an earlier monitoring period (day of life 1–3), no control group,
EKG recording at sleep state, and less severe Finnegan scores or
better pharmacological control than our exposed infants.

The significant differences in the time domain measures, SDRR
and SDDRR, during non-nutritive and nutritive sucking between
controls and exposed infants deserve explanation. The SDDRR,
reflecting the beat-to-beat HRV is influenced by changes in res-
piratory rate or pattern, changes in vasomotor tone, changes in
inotropic function, as well as changes in the suck-swallow-breath
mechanisms affecting vagal tone. LaGasse and others (33) showed
that prenatal drug exposure leads to abnormalities in the feed-
ing patterns and behaviors of neonates, such as changes in length
and frequency of sucking bursts. Gewolb et al. (34) found faster
swallow rate, less rhythmic swallowing, and mild abnormalities in
respiratory control in opiate-exposed neonates. Therefore, it can
be surmised that our findings of autonomic changes after prenatal
opiate exposure, with a stimulus such as feeding, may in part be
related to a disorganized oral motor skills. The disorganized oral
motor skills and abnormalities in suck-swallow-breath rhythms
may affect not only RSA but also the associated small tidal volumes
changes occurring with breathing. These tidal volume variations
affect specifically powers in the LF bands (48), while changes in
vagal tone affect the HF powers.

The LF region in our study includes frequencies correlat-
ing with rhythms attributable to changes in vasomotor tone
and the functioning of the sympathetic system (9). The HF
band frequencies correlate to events, such as changes in respi-
ration and HR, reflecting the activity of the parasympathetic
system (9, 39, 49). Our findings of significant differences in
power in both LF and HF bands between the controls and
opiate-exposed neonates suggest an association between exposure
and increased activity of both sympathetic and parasympathetic
systems.

We adjusted the cutoffs of the LF and HF bands by considering
the higher HR and breathing rates in infants relative to those in
adults. Spectral divisions for neonates between 0.04 and 0.15 Hz
for LF and 0.4–1.5 for HF have been reported (50). Our bands
for LF and HF respectively, were from 0.01 to 0.2 and from 0.2 to
1.5 Hz. The HF band in our analysis is similar to those used by oth-
ers which included a low cut-off of 0.2 Hz (10, 38–40). We did not
exclude the 0.15–0.4 Hz region and we used a slightly lower end for
LF. The reason for using the slightly lower end of LF was a concern
about resolution, given that we were working with smaller data
segments. Given that the primary contribution to the HF band is
the RSA, which results from gating of vagal activity by discharges
in the phrenic nerve, we did not want to exclude contributions to
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the HF from breaths that may have fallen within the 0.2–0.4 Hz
region. Drug-exposed infants are reported to have disorganized
suck and swallow rhythms that may affect regularity and rate of
breathing (33, 34).

There are limitations to our study. Although we had at least
5 min of EKG recording in our subjects during nutritive suck-
ing, we only had a 1-min of recording during the non-nutritive
sucking of the pacifier and therefore shorter than standard recom-
mendation (51). However, with both shorter and longer duration
of recording, we noted differences in the time domain measures
between controls and exposed.

We did eliminate artifacts and ectopic beats after data acquisi-
tion. Nevertheless, the artifact rejection process itself introduces
errors in any situation, especially more so when data lengths are
limited, specifically in the non-nutritive sucking segments. The
difference in age at enrollment between our two groups may intro-
duce bias. But a previous study reported a constant influence of
feeding on HR for the first 6 months of life in healthy infants (7).
Therefore, the differences in our findings between exposed and
controls suggest a link to prenatal opiate exposure rather than
post natal age.

The small number of infants in our study limits generalizability
of our findings. Nagy et al. found male newborns to have lower
baseline HR than female infants (52). A higher proportion of
male infants did comprise our subjects, but our small study num-
ber precluded a meaningful analysis to determine gender effects
on HRV.

Investigators have reported that maternal smoking affects fetal
and neonatal HR patterns (21, 53). However, the small number
of subjects in our study rendered us unable to examine any inter-
action between opiate use and other drugs including tobacco use
during pregnancy. We also did not quantify use of tobacco or other
drugs during pregnancy and thus we were not able to correlate ANS
function with amount of drug use.

In summary, our findings suggest that prenatal opiate expo-
sure may have an effect on the functioning of the sympathetic
and parasympathetic systems. Therefore, determination of ANS
functioning following in utero opiate exposure needs to be further
explored. With a longer duration of data acquisition (51), a cus-
tomized approach for spectral frequency band designations (50),
and a large sample, the effects of opiate exposure on ANS balance
can be better elucidated and the effects of gender, other drug expo-
sures, and confounders can be evaluated. The correlation between
HRV and the severity of NAS based on Finnegan scoring in our
study gives rationale for future studies to examine ANS function-
ing for a role as an adjunct in monitoring neurobehavior of infants
with NAS.
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