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transitional zone between the entorhinal cortex (EC) and the more 
laterally situated six-layered cerebral isocortex (Braak and Braak, 
1985). The TEC thus “can be considered a periallocortical fi eld bor-
dering a proisocortical fi eld of the adjacent temporal cortex, that 
corresponds to the perirhinal region”, according to Heiko Braak 
and colleagues (Schmidt et al., 1993). NFTs are observed in the TEC 
long before clinical manifestations of AD: in a large autopsy series, 
scant numbers of NFTs were detected in the TEC of approximately 
one-fi fth of persons dying in their thirties and over one-third of 
persons in their forties (Del Tredici and Braak, 2008).

During the progression toward end-stage AD, NFTs and/or 
cell death claim the large majority of neurons in some laminae 
of the TEC and nearby EC (Braak and Braak, 1985; Gomez-Isla 
et al., 1996; Garcia-Sierra et al., 2000; Hof et al., 2003). NFTs 
are also observed in the TEC and EC in neurodegenerative dis-
eases other than AD: Parkinson’s disease, argyrophilic grain dis-
ease, and Huntington’s disease, for example (Braak and Braak, 
1992; Ulrich et al., 1992; Braak et al., 2000; Nelson et al., 2009a). 
Unfortunately, the remarkable predisposition of TEC and EC 
neurons to develop pathological changes has not been adequately 
explained. Nor are there many reported markers providing clues 
about TEC neurochemistry.

In the present study, in situ hybridization (ISH) was performed in 
order to characterize the distribution of some  neuronally-expressed 
microRNAs (miRNAs) in the human TEC and surrounding brain 
structures. MiRNAs are short (∼22 nucleotide) RNA molecules 
that play fundamental roles in gene expression regulation in all 
known plants and animals. In particular,  miRNAs are known 

INTRODUCTION
Alzheimer’s disease (AD) is a prevalent neurodegenerative dis-
ease that culminates in severe defi cits in cognition and autonomy. 
By defi nition, brains affl icted by AD contain two different neu-
ropathological hallmarks – neurofi brillary tangles (NFTs) and 
neuritic amyloid plaques (NPs) The National Institute on Aging, 
and Reagan Institute Working Group on Diagnostic Criteria for 
the Neuropathological Assessment of Alzheimer’s Disease (1997). 
NFTs are ‘inclusion bodies’, composed of insoluble tau protein poly-
mers that coalesce within neurons. NPs consists a roughly-spherical 
extracellular component that includes fi brillary polymers of the Aβ 
peptide, with nearby degenerating cell processes that contain tau 
polymers indistinguishable from those in NFTs.

Neuroanatomically, AD pathology manifests in a complex but 
well-characterized spatiotemporal sequence (Braak and Braak, 
1991; Braak et al., 1993). Most clinico-pathological correlation 
studies indicate that cortical NFT density, assessed by Braak staging 
(Braak et al., 1993) or other means, is the parameter best correlated 
with the severity of AD cognitive impairment (Arriagada et al., 
1992; Nelson et al., 2007b, 2008a,b, 2009b; Sonnen et al., 2007). In 
the fi rst stages of the disease, NFTs are observed in medial temporal 
lobe structures (Braak and Braak, 1991).

The specifi c cerebral cortical subfi eld with earliest NFT forma-
tion in AD is the transentorhinal cortex (TEC) (Braak and Braak, 
1992). The TEC usually occupies the medial bank of the perirhinal 
collateral sulcus, comprising ∼2–10 mm of the inexactly defi ned and 
phylogenetically variable Brodmann Area 35 (Schmidt et al., 1993; 
Taylor and Probst, 2008). As its name implies, the TEC  constitutes a 
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to serve key functions in neurodevelopment, synaptic plasticity, 
and  neuroprotection (Kosik and Krichevsky, 2005; Cuellar et al., 
2008; Smalheiser and Lugli, 2009). MiRNAs may have potenti-
ated mammalian brain evolution by amplifying the complexity 
of nervous system gene expression regulation (Nelson and Keller, 
2007; Heimberg et al., 2008). On the other hand, miRNAs also 
contribute to human illnesses, particularly in the pathogenesis of 
human neurodegenerative disease (Nelson et al., 2008b; Hebert 
and De Strooper, 2009). ISH shows important cerebral cortical 
lamina-specifi c patterns of miRNA expression that would be lost 
on most tissue-level expression studies (Mellios et al., 2008; Nelson 
and Wilfred, 2009), and these lamina-specifi c miRNA expression 
patterns could be relevant to AD (Wang et al., 2008).

We chose to study four miRNAs that are expressed in human 
brain:

(1) miR-107, which we have shown may be relevant to AD patho-
genesis and traumatic brain injury, and which may be involved 
in metabolic regulation (Wilfred et al., 2007; Wang et al., 2008; 
Redell et al., 2009; Tang et al., 2009).

(2) miR-124, which is highly enriched in neurons and plays 
many important roles in neuronal gene expression regulation 
(Smirnova et al., 2005; Krichevsky et al., 2006; Makeyev et al., 
2007; Tang et al., 2007).

(3) miR-125b, which is expressed in many different cell types 
including the mammalian brain and which has been proposed 
to play a number of complex nervous system roles (Smirnova 
et al., 2005; Lukiw and Pogue, 2007; Ferretti et al., 2008; Le 
et al., 2009a,b).

(4) miR-320, which is highly expressed in neurons and glial cells 
and which is dysregulated in prion disease (Nelson et al., 
2007a; Saba et al., 2008).

MATERIALS AND METHODS
Brain tissue was obtained from University of Kentucky ADC Brain 
bank using appropriate IRB protocols. Details of subject recruit-
ment, autopsies, and other analyses using the University of Kentucky 
ADC autopsy series are described elsewhere (Nelson et al., 2007b, 
2008a). Criteria for inclusion in this study included post-mortem 
intervals (PMIs) under 5 h. Brain sections from two individuals 
without antemortem cognitive decline were included (Cases 1 and 
2), and a third person with early AD (Case 3). Demographic and 
pathological parameters of each of the three cases used for this 
study are shown in Table 1.

Human brain ISH methods have been published (Nelson et al., 
2006; Wang et al., 2008; Nelson and Wilfred, 2009). Very briefl y, 
post-mortem human brain sample was obtained via autopsy 
within 5 h of death. Tissue portions that included the EC were 
used. Brain tissues were fi xed in 4% paraformaldehyde overnight 
at 4oC and then immersed in 20% sucrose (4oC) for an additional 
24–48 h. Tissue was cut to 25 microns on a freezing microtome 
and mounted onto premarked Superfrost® Plus slides. Cut tis-
sue sections were allowed to air-dry for 30 min. The slides were 
then transferred to a −80oC freezer, until subsequent process-
ing as described. Digoxigenin-labeled locked nucleic acid probes 
(Exiqon, Woburn MA) were used and their presence visualized 
via anti-digoxigenin immunohistocyhemistry using protocols 
described in detail previously (Wang et al., 2008; Nelson and 
Wilfred, 2009).

Histological stains were performed on near-serial sections that 
were fi xed, cut, mounted, and frozen along with the sections used for 
ISH. Thiofl avine S (Polysciences, Inc., Warrington, Pennsylvania) 
was used as a 1% aqueous solution followed by differentiation in 
two changes of 80% ethanol. Nissl staining was accomplished using 
0.1% Cresyl violet solution that was fi ltered immediately before 
use. After staining for 5 min, sections were differentiated in 95% 
ethanol and cleared in xylenes.

RESULTS
Sections of human TEC and EC were evaluated using miRNA ISH 
and several histological stains. Photomicrographs from each of the 
three cases are presented in Figures 1–3. These show ISH results 
for miR-107, miR-124, miR-125b, and miR-320 in the TEC and 
nearby structures in correlation to AD pathology (Thiofl avine S 
stained NFTs and NPs).

Since miR-320 and miR-124 showed distinctive cortical laminar 
staining in the TEC, a separate panel (Figure 4) shows the ISH 
results for near-serial section using miR-320 and miR-124 ISH and 
Thiofl avine S from Case 3. Note that the Thiofl avine S-stained 
NFT-bearing neurons are present in a band of cells that are rela-
tively lacking in ISH stain for both miR-124 and miR-320. For both 
miR-124 and miR-320, there is an immediately more superfi cial 
band of cells that are labeled. As can be seen in Figures 1–3, the 
staining pattern in and near the TEC is relatively consistent with 
regard to this staining pattern of cells – the layer of miR-124 cells 
appears particularly characteristic. MiR-107 stains less strongly 
than the other probes. As expected, miR-125b, and to a lesser degree 
miR-107 and miR-320, appear to stain glial cells in addition to 

Table 1 | Information about cases used in the current study including demographic, cognitive testing, post-mortem interval, Consortium to 

Establish A Registry for Alzheimer’s Disease (CERAD) neuritic plaque, Braak neurofi brillary stages, and apolipoprotein E (ApoE) alleles.

 Sex Age at  Final MMSE Months since Post-mortem  CERAD  Braak  ApoE

  death score fi nal MMSE interval (hrs) score stage

Case 1  F 79 29 9 1.75 No 0–I 3/3

(Non-demented)

Case 2  F 94 27 5 2.33 No II 3/3

(Non-demented)

Case 3 (AD) M 76 27 32 4.25 Defi nite VI 3/4
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FIGURE 1 | In situ hybridization, Nissl, and Thiofl avine S stains for Case 1. 

(A) Nissl stain (B) miR-107 ISH (C) miR-125b ISH (D) miR-320 ISH (E) miR-124 
ISH, and (F) Thiofl avine S (amyloid plaques and neurofi brillary tangles are 

fl uorescent.) In this case, there were no amyloid plaques and a few scattered 
neurofi brillary tangles, which are indicated with arrows in the transentorhinal 
cortex. Scale bar = 1000 microns. D = dorsal, M = medial, V = ventral, L = lateral.
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FIGURE 2 | In situ hybridization, Nissl, and Thiofl avine S stains for Case 2. (A) Nissl stain (B) miR-107 ISH (C) miR-125b ISH (D) miR-320 ISH (E) miR-124 ISH, 
and (F) Thiofl avine S (amyloid plaques and neurofi brillary tangles are fl uorescent.). TEC indicated with arrows. Scale bar = 1200 microns. D = dorsal, M = medial, 
V = ventral, L = lateral.
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FIGURE 3 | In situ hybridization, Nissl, and Thiofl avine S stains for Case 3. 

(A) Nissl stain (B) miR-107 ISH (C) miR-125b ISH (D) miR-320 ISH (E) miR-124 
ISH (band of stained cells indicated with black arrow), and (F) Thiofl avine S 
(amyloid plaques and neurofi brillary tangles are fl uorescent.). In this case there 

was extensive Alzheimer’s-type pathology with both amyloid plaques and 
neurofi brillary tangles. A band of neurofi brillary tangles, near the miR-124 
positive cell band from the nearby section, is indicated with a pink arrow. Scale 
bar = 1200 microns. D = dorsal, M = medial, V = ventral, L = lateral.

neurons. In some of the sections there was artifactual staining in 
the white matter that was trimmed out of the photomicrographs. 
To see what the staining in the white matter looks like, please see 
SupplementaryMaterial.

Figure 5 provides a more comprehensive picture of the EC and 
the nearby subiculum. ISH shows results using probes for miR-320, 
miR-124, and miR-125b in Case 1. Note that the layer II (“pre-α”) 
EC “islands” are relatively strongly labeled for miR-124, whereas 
the the superfi cial portions of the pre-, para-, and pro-subiculum 
are somewhat more strongly labeled for miR-125b. This pattern 
was also seen in other cases (data not shown).

DISCUSSION
ISH using a set of probes against brain-enriched miRNAs was used 
to assess cellular miRNA expression in the human TEC and sur-
rounding structures. These data have both technical and theoretical 
implications. From a technical standpoint, the present study further 
underscores the importance of ISH as a technique to complement 
tissue-level miRNA expression profi ling. The pattern of miRNA 

expression also helps to refi ne the expectations for miRNA functions 
in the brain, in both normal and disease conditions. The pattern 
of ISH labeling in the human cerebral cortex affi rms that defi ning 
individual miRNAs as “neuronal” or “non-neuronal” is overly sim-
plistic, because different populations of neurons – even within a tiny 
cell layer – can have distinct miRNA expression profi les.

There are some limitations to the current study. ISH is a relatively 
low-throughput technique and thus we only were able to thoroughly 
evaluate the results using a handful of miRNA probes, and brain sec-
tions from only three individuals’ brains (all of these patients were 
elderly Caucasians). Although the results were consistent among the 
cases evaluated, it is possible that study of a larger population would 
result in greater variability or even completely disparate results. Also, 
it has been shown that post-mortem degradation of miRNAs in the 
human brain can be rapid and can affect different miRNAs at dif-
ferent rates (Sethi and Lukiw, 2009). In the current study we used 
brains that had relatively short PMIs (less than 5 h). However, using 
cases with even shorter PMIs may have revealed a different staining 
pattern. Finally, the technique that we used employs both ISH and 
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FIGURE 5 | In situ hybridization of entorhinal cortex (layer pre-α is noted) 

and pre-, para- and pro-subiculum (S) using probes against miRNAs (A) 

miR-125b (B) miR-320, and (C) miR-124. All stains were performed on Case 
1. Scale bar = 1500 microns.

miR-
124

miR-
320

+ Thioflavin
A

D

B

C

*

Case 3

FIGURE 4 | Comparison in staining patterns using ISH with miRNA 

probes and Thiofl avine S on Case 3. Photomicrographs from sections 
stained with miR-124 (A) and miR-320 (C) were overlaid with near-serial 
sections stained with Thiofl avine S (B and D). Note that for both miR-124 and 
miR-320, it is layers with a relative paucity of ISH stain (arrows on the left) that 
are most intensely stained with the Thiofl avine S (arrows on the right). Pial 
surface is indicated in A with an asterisk. Scale bar = 300 microns.

immunohistochemistry (anti-digoxigenin antibody is used to detect 
the digoxigenin-labeled RNA probe). Like the great majority of his-
tochemical staining methods, ISH is not a rigorously quantitative 
technique for evaluating gene expression. This is because of the many 
variables in tissue processing that are impossible to control between 
cases and even between different sections of the same case. As such it 
is more appropriate to evaluate critically the staining pattern, rather 
than the more detailed characteristics of staining intensity in any given 
section. We also are dissatisfi ed with employing near-serial sections 
to defi ne correlative staining patterns. Hence we are investigating the 
use of double-label methods to enable, in the future, more defi nite 
determination of human brain miRNA co-expression patterns.

Despite the limitations inherent to this type of study, the ISH 
technique reveal consistent staining patterns in the human cerebral 
cortex. The TEC itself is a small (<1 cm) but highly intriguing corti-
cal subfi eld, being most developed in the human relative even to 
other primate species (Braak et al., 2000; Taylor and Probst, 2008). 
Perhaps most interesting is the cell population that seems to “dive” 
from the superfi cial layer II neurons of the EC, through the entire 
depth of layer III in the TEC, to approximate layer V neurons in the 
“temporal proneocortex” (Braak and Braak, 1985, 1992). These are 
apparently the neurons most vulnerable to NFT development in the 

human cerebral cortex. These particular neurons show an apparent 
lack of high amounts of both miR-124 and of miR-320. The impact 
of these expression patterns are currently not understood. They 
may relate in some way with the remarkable dendritic plasticity 
shown by TEC and EC neurons (Arendt et al., 1998). However, 
neurons in the nearby pre-α (layer II) of the EC proper, which is 
also affected relatively early in AD, express high amounts of both 
miR-320 and miR-124. There are of course many other miRNAs 
with expression patterns overlaid on those of miR-107, miR-125b, 
miR-124, and miR-320. For all of these, the lamina-specifi c expres-
sion characteristics would not be possible to evaluate using most 
tissue-level expression profi ling platforms.

In conclusion, we have demonstrated novel miRNA expression 
patterns in the human TEC and EC. Neurodegenerative diseases 
tend to affect these cell populations for reasons that currently are 
poorly understood. MiRNAs are important components of a neu-
ron’s gene expression repertoire. Each neuronal subpopulation may 
express a distinct fraction of the uniquely-human miRNome. Thus, 
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