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ABSTRACT OF DISSERTATION 

 

BIOMOLECULE LOCALIZATION AND SURFACE ENGINEERING WITHIN SIZE 

TUNABLE NANOPOROUS SILICA PARTICLES 

 

Mesoporous silica materials are versatile platforms for biological catalysis, 

isolation of small molecules for detection and separation applications. The design of 

mesoporous silica supports for tailored protein and biomolecule interactions has been 

limited by the techniques to demonstrate biomolecule location and functionality as a 

function of pore size.  This work examines the interaction of proteins and lipid bilayers  

with engineered porous silica surfaces using spherical silica particles with  tunable pore 

diameters (3 – 12 nm) in the range relevant to biomolecule uptake in the pores, and large 

particle sizes (5 - 15 µm) amenable to microscopy imaging 

The differentiation of protein location between the external surface and within the 

pore, important to applications requiring protein protection or catalytic activity in pores, 

is demonstrated.  A protease / fluorescent protein system is used to investigate protein 

location and protection as a function of pore size, indicating a narrow pore size range 

capable of protein protection, slightly larger than the protein of interest and approaching 

the protease dimensions. Selective functionalization, in this case exterior-only surface 

functionalization of mesoporous particles with amines, is extended to larger pore silica 

materials. A reaction time dependent functionalization approach is demonstrated as the 

first visually confirmed, selective amine functionalization method in protein accessible 

supports.  

Mesoporous silica nanoparticles are effective supports for lipid bilayer 

membranes and membrane associated proteins for separations and therapeutic delivery, 

although the role of support porosity on membrane fluidity is unknown.  Transport 

properties of bilayers in lipid filled nanoparticles as a function of pore diameter and 

location in the particle are measured for the first time.   Bilayer diffusivity increases with 

increasing pore size and is independent of bilayer location within the core, mid or cap of 

the particle, suggesting uniform long range bilayer mobility in lipid filled pores. 

Application of lipid bilayers on mesoporous silica was examined for membrane 



 
 

associated proteins  A unique method to adhere functional proteins in lipid bilayers on 

mesoporous silica particles is established using vesicles derived from cell plasma 

membranes and their associated proteins. This method of membrane protein investigation 

retains proteins within native lipid membranes, stabilizing proteins for investigation on 

supports.  

 

KEYWORDS: Mesoporous silica, selective functionalization, protein adsorption, lipid  

   membrane, membrane protein 
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CHAPTER 1 

Introduction 

1.1 Introduction 

 Mesoporous silica materials are a versatile class of inorganic materials that can be 

synthesized in a variety morphologies such as thin films, membranes and particles of 

controlled size. In addition to their morphological versatility, these materials are 

chemically and physically robust with pore diameters and surface chemistries that can be 

tuned through a variety of synthetic procedures for application specific properties. These 

materials have been successfully employed in the fields of separations, catalysis, isolation 

of small molecules for detection and drug delivery while continually evolving for greater 

applications.   In regards to the development of these materials, there remain some 

unanswered fundamental questions such as biomacromolecular accessibility to pore 

spaces, control and location of surface functionalities and porosity roles on supported 

membranes. Santa Barbara Amorphous Batch 15, or SBA-15, materials revolutionized 

the mesoporous silica field due to their highly ordered, large particles sizes and large pore 

diameters (up to 30 nm).[3] Tuning of particle shape and sizing using surfactant 

combinations, such as P123 and CTAB, lead to micron diameter spherical, porous 

particles.[4] With their large particles sizes, capable of microscopic imaging, these large, 

spherical particles make an ideal platform for the direct visual investigation of 

biomacromolecule, functional group and membrane location on particles..  

Protein adsorption and interactions with mesoporous silica are of interest for a 

broad range of applications including drug delivery, chemical synthesis, biosensors and 

bioseparations.  A major challenge in designing mesoporous silica supports for tailored 

protein interaction is the differentiation of protein interactions at the surface of the 

particle from interactions within the pore, important features when considering 

mesoporous silica as a protective support for active proteins. The ability to confirm the 

accessibility of proteins to pores as a function of pore size or surface functionalization is 

limited in most mesoporous silica thin films and nanoparticles. Confirmation of protein 

binding is often performed via bulk solution depletion measurements, with little coupling 

of protein size and charge to pore diameter and surface charge of the materials.[5, 6] 

Confocal microscopy has been demonstrated as a tool to investigate protein diffusion into 
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pores, but current systems do not effectively delineate surface bound from pore 

associated proteins.[7]  Work presented in this dissertation develops the use of pore size 

tunable silica particles for investigation of protein accessibility within porous substrates. 

Differentiating the chemical properties of the external and pore surface of sol-gel 

derived mesoporous materials by selective functionalization is important to advancing 

their application as platforms for biological catalysis, isolation of small molecules for 

detection and drug delivery. This need has been identified within the porous nanoparticle 

community resulting in selectively functionalized, nanoporous (<5.5 nm diameter) 

nanoparticles. [8-12] However, the extension of these selective external functionalization 

techniques to large pore of mesoporous silica, appropriate for loading active proteins and 

biomolecules, is inferred from indirect measurements: direct visual localization is 

prevented in nanoparticles due to their nanoscale. The effectiveness of methods of 

selective functionalization of nanomaterials, such as pore blocking, were evaluated for 

the first time in larger diameter (> 7 nm) pores in this work. Surface functionalization 

techniques were extended to tethering of lipid membrane to particle surfaces. Lipid 

bilayer membranes have been demonstrated as effective biomimetic surface 

functionalization for biological sensing, semi-permeable transport and isolation of small 

molecules for detection. Lipid bilayers perform these functions using a host of membrane 

associated and transmembrane proteins. Outside of self-assembled lipid vesicles, lipid 

bilayers require support on an external substrate. Mesoporous silica is an ideal support for 

lipid bilayers: the physically robust silica provides support to the fragile self-assembled 

bilayer and the porosity of the support act as reservoirs for molecular flux through the 

membrane. Unfortunately, the impact of porous supports on bilayer properties, such as 

bilayer fluidity, is unknown. Porous nano-particles are often used to support lipid 

bilayers, where characterization is limited due to the nano-scale of the particle support.   

In this work, bilayer properties, such as location and fluidity, are investigated as a 

function of nanopore diameter and a techniques derived from this system are applied to a 

whole cell membrane with receptor signaling demonstrated.  

1.2 Research Objectives 

 Mesoporous silica materials have become frequently used platforms for isolation 

of small molecules for detection, catalysis and separations. These applications would be 
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advanced by controlled protein incorporation, advanced surface functionalization or lipid 

bilayer membrane incorporation into mesoporous and particle surfaces. Understanding 

and characterizing the effect of pore size on the interaction of biomolecules is often 

difficult due to the dimensions of the nanoparticles.  Due to their large particle diameters, 

surface functionalities and tunable pore sizes, SBA-15 mesoporous silica materials are 

able to be visually characterized and can simulate a variety of porous environments. The 

objectives of this research are to develop a materials platform for understanding protein 

accessibility and protection in mesoporous domains as a function of pore size, develop 

techniques to place surface functional groups in distinct locations in large-pore particles 

and determine effects of porosity on lipid membrane functionality at the particle surface. 

These materials will then be evaluated as platforms to investigate whole cell membrane 

support for investigation of membrane protein binding.  

 In Chapter 2, a review of mesoporous particle development and applications is 

provided.  A discussion of materials synthesis techniques will emphasize porous silica 

platforms and methods of tuning pore sizes within particles. Following materials 

synthesis, the interaction of proteins with mesoporous supports and techniques for 

locating and confirming protein location and activity within mesoporous supports will be 

described. In addition, surface functionalization techniques are summarized with specific 

emphasis on methods to separately functionalize external particle surfaces from pore 

walls. Finally, the development of porous silica materials as lipid bilayer membrane 

supports is described along with their applications, setting the stage to understand porous 

support effects on bilayer membrane fluidity.  

 Chapter 3 focuses on the development of porous silica materials as protein 

supports, placing emphasis on both  protein activity and localization using the fluorescent 

protein Enhanced Green Fluorescent Protein (EGFP).Uniquely, both EGFP activity and 

location can both be obtained from fluorescence emission data during particle imaging. 

The use of the protease Pepsin A cleaves accessible GFP from the porous support where 

only GFP diffused within pores and inaccessible to Pepsin A retain their fluorescence 

after Pepsin treatment. As a function of tunable pore diameter, this platform of pore 

accessibility and activity is a technique developed to correlate protein size and pore 



4 
 

accessibility along with an effective method to inactivate and remove proteins from 

external particle surfaces.  

  The ability to surface functionalize silica materials post synthetically increases 

their application versatility.  A major challenge confronting functionalized nanoparticles 

is the selective functionalization of external particle surfaces while leaving interior pore 

spaces unchanged. Chapter 4 presents techniques and evidence to functionalize the 

outside of porous particle post synthetically. This work is unique in that 1) it is true post-

synthetic functionalization, requiring no pore template for blocking pores during 

functionalization as is seen in literature [7] 2) functional group location is visually 

localized using confocal microscopy, confirming functional group location and 3) this is 

the first demonstration of selective functionalization in materials with protein accessible 

pore diameters.  

 Chapter 5 examines the interaction of lipid bilayer membranes with porous 

mesoporous silica supports as a function of pore size. As opposed to wrapping particles 

with lipid membranes via lipid vesicle fusion, lipids are deposited within the nanopores 

and on particle surfaces by evaporation deposition. Lipids are rehydrated and sonicated to 

form bilayers on particles surfaces and within pores where accessibility is confirmed via 

confocal imaging. Additionally, FRAP measurements of bilayer diffusivity within and on 

particle surfaces indicates both pore size and surface chemistry effect on diffusivity. This 

work is the first comprehensive measurement of bilayer fluidity throughout particles, in 

multiple locations. Additionally, this work provides the same particle system for 

investigation of a multiple variables, surface chemistry and pore diameter, eliminating the 

possibility of different support effects on bilayer fluidity.. Chapter 6 expands on imaging 

and bilayer formation techniques developed in chapter 5, utilizing large diameter particles 

as supports for cell plasma membrane derive membranes. The versatility in this support 

system is in both the particle support and cell derived membrane. The surface chemistry 

of particle supports can be tailored for application specific interactions while the cell 

derived membranes can be used to incorporate a  variety of membrane proteins through 

cell transfection prior to vesicle formation. Chapter 6 demonstrates this versatility 

through by demonstrating ligand binding to membranes expressed with receptors, while 

no membrane association occurs in non receptor expressed membranes.  
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CHAPTER 2 

Background 

2.1 Synthesis of Porous Silica Materials 

 The field of well ordered, mesoporous (2 nm - 50 nm pore diameters) silica 

materials (MSMs) originated in 1992 with the the synthesis of MCM-41 materials.[13, 

14]  Porous silica materials are inorganic metal oxides that can be synthesized in a variety 

of morphologies (thin films, membranes, particles) with mesopores derived from a 

variety of pore templates.[4, 15] MSMs are inexpensive to produce, chemically and 

physically robust and employ well known aqueous based synthesis chemistry with 

existing applications as platforms in separations and catalysis.[16, 17] The structures of 

MSMs are finely tunable and synthetically versatile, allowing for a broad range of after 

post-synthesis surface chemistries. Since the original synthesis of MCM-41 materials, 

greater particle shape and pore size control has been developed leading to the SBA-15 

class of materials. [3] SBA-15 materials are synthesized under acidic, rather than basic, 

synthesis conditions using pluronic copolymer pore templates for increased achievable 

pore diameters and diameter tunability. These materials can be synthesized with easily 

tunable particle shapes and sizes as well as tunable pore diameters using different 

templating systems.[4] Chapters 3,4, 5 and 6 demonstrate the use of spherical SBA-15 

class materials for investigating protein localization and protection, selective surface 

functionalization, lipid membrane coating and membrane protein function in these pore 

size tunable materials.   

2.1.1 Sol Gel Chemistry 

 Sol-gel, solution-gelation, chemistry is the foundation for the synthesis of both 

non-porous and porous silica materials. Sol-gel chemistry describes the process of silica 

alkoxide precursor hydrolysis and condensation to form a tetrahedrally coordinated 

network of SiO2.[18] Sols are generally prepared in aqueous alcohol solutions and are 

catalyzed by either acids or bases, both of which mechanisms are in Figure 2.1. Both the 

acid and base catalyzed reactions use alkoxide silane precursors which undergo 

hydrolysis and polycondensation to form the silica network.[1, 18] Acid catalysis 

promotes the protonation of ethoxy groups resulting in the rapid hydrolysis of TEOS and 

slow condensation, resulting in small particle diameters. In basic conditions, precipitation 
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occurs rapidly, resulting in the formation of larger diameter particles. On the other hand, 

base catalyzed synthesis of silica materials requires the nucleophilic attack of TEOS by 

hydroxide ions, resulting in the formation of an unstable transition product. Solution 

concentrations of hydrolyzed Si(OH)4 must reach supersaturation levels before particle 

nucleation begins, resulting in smaller particle diameters. [19, 20] 
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Figure 2.1 Reaction mechanism of alkoxy silane precursor hydrolysis and condensation 

under acidic and basic conditions.  [19, 20] 
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 After the initiation of TEOS condensation, materials are thermally treated to increase the 

polycondensation of the silica network and particle growth, followed by drying.[18] 

Drying of the material removes excess water and alcohol, which are part of the initial sol 

and products of the hydrolysis and condensation reactions. Thermal treatment of the as-

formed silica materials promotes silica condensation, increasing the SiO2 density and 

robustness of the materials around the surfactant pore templates. 

2.1.2 Pore Templates 

 The porosity within MSMs comes from a variety of surfactants and block 

copolymers which self-assemble into pore templates. The structure of the ordered porous 

network, either cubic, hexagonal or lamellar, is dependent upon both template and 

solution composition.[21] MCM based silica materials, synthesized via base catalysis, are 

generally characterized by their nanoparticle sizes (50 nm - 500 nm diameter). Pore 

templates for these materials are most notably cetyltrimethylammonium bromide 

(CTAB), which self assembles into a micellar pore template structure resulting in rather 

narrow pore diameters (2.5 nm). Methods of increasing pore diameters in these 

nanoparticle materials generally involve the expansion of micelles using an organic 

template swelling agent such as trimethylbenzene (TMB) which insert themselves into 

the hydrophobic template core, expanding micelle diameters and subsequently pore 

diameters up to 4.8 nm.[22, 23]Additionally, increasing surfactant chain lengths from 8 to 

16 carbons increases the assembled micelle diameter resulting in increased pore 

diameters from 1.8 nm to 3.8 nm.[23] Other methods such as altering reactant and 

template concentrations as well as reaction temperature can be used to expand pore 

diameters upwards of 6.6 nm while retaining pore wall thickness and rigidity of 

synthesized materials. [24] 

 Spherical SBAS materials, adapted from P123 templated, acid catalyzed SBA-15 

materials, use a dual surfactant templating procedure which results in significantly 

increased, tunable pore diameters between 3 and 15 nm. The secondary surfactant, 

cetyltrimethylammonium bromide (CTAB), is used to promote spherical particle 

formation.  Nonionic triblock copolymers, such as P123 and F127, with respective 

structures of (Ethyleneoxide)20-(Propyleneoxide)70-(Ethyleneoxide)20 (Sigma-Aldrich 

435465) and (Ethyleneoxide)101-(Propyleneoxide)56- (Ethyleneoxide)101 (Sigma-Aldrich 
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P-2443), form significantly larger pore templates than ionic surfactants by themselves, 

resulting in increased pore diameters.[25, 26]  Templates used specifically in this work 

are comprised of polymeric triblock copolymer (P123) and cationic surfactants (CTAB), 

and upon formation of micelles assemble into a hexagonal phase, creating hexagonal 

templated porous materials.[4] Tunability of pore diameters comes from temperature 

dependent solvation of the ethyleneoxide (EO) end units of the P123 copolymer during 

template formation. Templates form when PO blocks cross over one another to form a 

hydrophobic core, which EO blocks protruding into the surrounding solution. At 

increased synthesis temperatures EO end units are less solvated in the aqueous synthesis 

sol, resulting in their retraction into the more hydrophobic core of the pore template, 

increasing pore template diameters (Figure 2.2).[25] The process of hydrothermal aging 

and  holding materials during synthesis at elevated synthesis temperatures results in 

temperature tunable pore diameters during synthesis, between 3 and 15 nm.[27] The 

hydrothermal aging method of pore diameter tuning in SBAS materials is preferable to 

methods of MCM materials as there are no changes in synthesis reagents, merely changes 

in synthesis temperature. After heat treatment and particle formation from the sol-gel 

condensation around hexagonally oriented pore templates, removal of the pore template 

is required to create accessible porous systems. Removal of templates can occur by either 

solvent extraction or calcination. Solvent extract removes template by solubilizing the 

template and washing it away in an alcohol solution, often ethanol.[28] On the other 

hand, calcination removes porous template by burning the carbonaceous species from the 

pores of the materials while simultaneously heat treating the SiO2 materials, increasing 

pore wall thickness and materials robustness.[29] 
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Figure 2.2 With increasing temperature ethylene oxide end 

units in P123 become less solvated and infiltrate the 

hydrophobic propylene oxide core, increasing the template 

and subsequently pore diameters. 

 

 

2.2 Protein Adsorption in Porous Silica Materials   

 Proteins and enzymes are natural catalysts capable of creating complex products 

with high enantiospecificity and selectivity although they suffer from low stability in bulk 

solution in large scale applications.[30] In addition to having large scale application roles, 

therapeutic protein delivery is an area of intense research for disease treatment and 

prevention.[31] Porous MSMs have been identified as materials for stabilization, loading 

and delivery of proteins and enzymes in solution. Specifically, SBA-15 silica materials 

have increased the use of MSMs for protein loading with their large pore diameters, 

accessible to adsorbing and diffusing proteins. These protein accessible materials are 

frequently used for protein catalysis, protein separations, biological signaling and drug 

delivery.[32-38]  The confining effects of pore walls provide confirmation stability to 

adsorbed proteins, thus retaining protein activity in environments where the protein may 

otherwise denature in solution.[39]   

2.2.1 Protein loading methods 
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 A variety of methods exist to load active proteins on the surface of mesoporous 

silica including adsorption, encapsulation, and covalent binding. The most common 

method of loading proteins on mesoporous supports is electrostatic adsorption. Because 

of the generally negative charge of silica materials and positive charge of most biological 

proteins at neutral pH, an inherent attraction is present between the silica surface and 

proteins in solution. Electrostatic adsorption is pH and protein dependent, which has been 

demonstrated as an effective protein capture and release tool in solution. Lu et.al. utilized 

pH shifts to electrostatically release and re-adsorb Lysozyme, where its activity on 

macrosubstrates was measured whilst free in solution prior to re-adsorption.[40]  In cases 

where proteins do not adsorb to silica surface, post-synthetic functionalization is used to 

induce adsorption. A variety of charged (amine, carboxylic acids) and hydrophobic 

(phenyl) groups can be used to induce adsorption.[41] Protein encapsulation during 

particle synthesis is also used for loading proteins.[42, 43] The byproducts of MCM 

synthesis, often alcohols and water, in addition to the acid or base catalysts are 

unfavorable for sustained protein activity, therefore sugars and liposomes are used to 

stabilize proteins during entrapment. In addition to entrapment and adsorption, covalent 

immobilization of enzymes on mesoporous supports is common. Frequently an amine to 

amine linker is used for covalent anchoring, where amine functionalized silica materials 

are connected to amine groups expressed on protein surfaces via glutaraldehyde.[44] 

Unfortunately, covalent immobilizations of enzymes on supports leads to deactivation by 

altering protein conformation. [45] Due to the potential for inactivation, electrostatic 

adsorption is used as the method of protein attraction and diffusion into mesopores in this 

work.  

2.2.2 Protein localization in mesoporous silica 

 While porous silica supports are frequently used for protein immobilization, 

effective evidence of protein accessibility to MSM pore spaces is unclear. Frequently, 

solution depletion measurements are used to confirm the localization of proteins within 

mesoporous supports.[5, 6]  

Using US-Vis measurements to measure protein uptake, size selective adsorption of 

bovine serum albumin (BSA), lysozyme (LYS) and myoglobin (MYO) on SBA-15 

materials with different pore diameters  (3.8 nm, 7.7 nm and 24.0 nm) has been 
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demonstrated using bulk  solution protein measurements.[5] Bulk measurements of 

protein concentration (at 280 nm) can be used to measure the amount of protein adsorbed 

materials but cannot identify the location of proteins on supports within the pores or on 

the external surface of the particle. Additionally, considering a significant majority of all 

proteins absorb light at 280 nm, the use of UV-Vis bulk measurements limits 

experimental bulk measurements to single protein experiments. 

 An alternative to bulk solution measurements of protein concentration is the use 

of protein assays to measure their activity. Assays of protein activity provide information 

on protein function on support and active site accessibility, in addition to information 

regarding loading on the support. Jaladi et.al. (2009) employed the p-nitrophenyl acetate 

assay as a measure of Burkholderia cepacia lipase (BC Lipase) activity after 

immobilization onto SBA-15 silica supports.[46] Measurements of protein activity on 

SBA-15 materials with 24 nm pore diameters was similar to that of the free enzyme in 

solution, indicating limited diffusional resistance of assay reactants to the protein or 

denaturation on the support. On 5.5 nm supports, a 20 to 30 percent reduction in protein 

activity was interpreted as diffusion into porous supports, reducing assay reactant access 

to enzyme active sites.  This work highlights the fact that assay based systems are 

dependent on both enzyme activity and accessibility. In order to confirm location of 

proteins within mesopores of SBA-15 silica materials (rod shaped and spherical SBAS 

particles), protein visualization studies have been employed to confirm protein 

accessibility and location within pores.  

 The development of well ordered, large particle sizes of SBA-15 materials has 

permitted the direct microscopic visualization of fluorescent and fluorescently tagged 

proteins and guests in materials via Confocal Scanning Laser Microscopy (CSLM).[7, 47, 

48] CSLM has been used to visualize and measure the size dependent diffusion of 

fluorescently tagged Lipase into SBA-15 materials with pore diameters of 5.6, 8.0 and 

9.7 nm. [48] Size exclusion is visually apparent in the smallest pore diameter with 

increasing diffusivity in large pore diameters. In a multiprotein systems using SBA-15 

materials, Katiyar et.al. visually demonstrated size selective protein separations of 

fluorescently tagged Bovine Serum Albumin (BSA) and Lysozyme (Lys) where BSA 

was excluded from 12.7 nm pores accessible to Lys in SBA-15.[7] While the fluorescent 
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tagging of proteins is an effective way to locate them, proteins that are naturally 

fluorescent provide both location[47] and protein activity data via fluorescence. In 

Chapter 3, the fluorescent protein Enhanced Green Fluorescence Protein (EGFP) is 

demonstrated as an effective tool to locate and confirm protein activity. A secondary 

protein, the large protease Pepsin A, is used to actively cleave EGFP from the surface of 

particles and when accessible in larger pores. This two protein system is used to delineate 

surface bound from pore located proteins and demonstrates an effective method of both 

cleaning proteins from particles surface and utilizes fluorescence to confirm protein 

activity. 

2.3 Surface Functionalization of Silica 

 One of the greatest benefits of mesoporous silica is the ease of surface 

functionalization. MSMs can be functionalized with a variety of different compounds 

including metal oxides and a host of organic functionalities for controlled adsorption [49, 

50], targeted particle therapies [51], cargo stabilizers [44] and detection and imaging 

sensors.[52, 53] Functionalization of mesoporous silica with amines, in particular, has 

been shown to stabilize enzymes in mesopores,[54] to modulate interactions of peptides 

and proteins with silica[55-58] and to control particle uptake and cytotoxicity[59-61]. 

The most common methods of surface functionalization are co-condensation and post-

synthetic functionalization. The co-functionalization approach to particle 

functionalization incorporates the addition of functional agents prior to completion of 

particle synthesis.  Efforts have been made to use the co-condensation approach to 

control functional group location at different periods of particle formation.[62, 63] 

Depending on time in synthesis, before, during or after particle formation, functional 

groups can be located in the silica framework, on all surfaces or exterior only surfaces. 

[62, 63] Co-condensation techniques are employed for the incorporation of fluorescent 

guests into the silica framework for biological imaging and as contrast agents.[63, 64] 

Post-synthesis functionalization approaches functionalize particles after synthesis and 

curing, ensuring sol-gel formation of the silica network without functional group 

perturbations.[18] Post-synthesis functionalization methods benefit from ensured particle 

robustness, as surface functional groups do not compromise sol-gel framework 
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integrity.[65] Additionally, post-synthesis grafting on external surfaces afford greater 

control in functional group localization as well as the detail of surface chemistries.[65]   

2.3.1 Selective surface functionalization approaches 

Selective functionalization of mesoporous silica has been approached by a variety 

of methods, each with mixed success. [8-12, 62, 66-68] Co-condensation, addition of 

functional groups during particle formation, is generally used to functionalize particle 

frameworks, generally with guests that aid in visual detection (for medical diagnostics). 

[62, 63] Kecht determined addition of surface reactants towards the end of particle 

formation places functional groups on the exterior of the particle surfaces, as opposed to 

within the framework if added earlier in particle synthesis.[62] On the other hand, Kim 

et.al. took advantage of the particle growth phase to introduce functional groups within 

the silica frame work and pore walls and reacting particle exteriors with alternative 

silanes at the end of synthesis to form hydroxyl coated particles. [63] While confirmation 

of external particle charges, measurements of pore diameter changes after 

functionalization, FTIR and Fluorescence Resonance Energy Transfer (FRET) have been 

used to infer functional group location, direct visualization of functional groups via 

imaging is prohibited due to nanoscale particle size.[62, 63]  

In addition to co-condensation approaches to control functional group location, 

functionalization of materials with bulky functional groups prohibited from entering 

pores is also a method of surface functionalization. PEG is frequently used as a surface 

modifier of silica particles to increase their biocompatibility, although PEG 

functionalization frequently leads to pore blocking.[68]  Therefore, Bouchoucha et.al. 

used simultaneous deposition of a smaller, spacer silanes with PEG silanes to reduce 

deposition quantities of PEG silane.[68] While 10% (w/w) PEG coverage lead to 

significant pore volume loss and blocking, tailoring deposition between the two silanes 

(<5% (w/w) PEG) resulted in more open, accessible pores, resulting in pore accessible, 

exterior PEGylated silica particles. Reverse de-protection has also been a method 

developed to selectively functionalize mesoporous silica materials.[69] Cheng et.al. 

demonstrated this method by fully functionalizing particles with  N-(9-

fluorenylmethyloxycarbonyl) (FMOC) tagged amino-silanes and reacting the 

functionalized materials with the small molecule piperidine, which cleaves the FMOC 
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leaving amine terminated particle surfaces. Although this method formed selectively 

functionalized silica surfaces with amine exteriors, pore surfaces were functionalized in 

FMOC, significantly reducing pore diameters from 3.0 nm to < 2.0 nm.  

As opposed to co-condensation, bulky silane deposition or complex unblocking 

methods, the simplistic pore blocking method of selective functionalization is more 

frequently used. Pore blocking relies on the use of pore templates within pores to block 

the accessibility of functional groups to functionalize pore walls, and has been used to 

selectively functionalize with carboxylic acids, alkanes and amine functional groups.[8-

10, 70] In specific regard to amine functionalization, selective functionalization of 

amines on small pored (<5.5 nm pore diameter) silica has been demonstrated. Critical to 

this demonstration of selective functionalization is the retention of surfactant templates 

within pores as well as the use of reduced reactivity amino silanes (3-

aminopropyltris(methoxyethoxyethoxy)silane) (APTMEES). These techniques have 

specifically relied on the reactivity of amino silanes coupled with pore blocking to 

achieve external only functionalization.[70] In the absence of a pore blocking template, 

the greatest pore size capable of selective functionalization was 2.9 nm diameter. Silica 

particles with pore diameters up to 5.5 nm were capable of being selectively 

functionalized in the presence of the pore blocking pore template, although removal of 

template prior to functionalization resulted in the grafting of the functional group 

throughout the particle, regardless of amino-silane used.[70] These results were achieved 

on silica materials capable of being visualized, although their pore diameters are narrow, 

prohibiting their use with biologically active systems.  

2.3.2 Characterization of selective surface functionalization 

 Although there are a variety of characterization techniques employed to determine 

functional group location on mesoporous materials, the vast majority are bulk material 

measurements in which functional group location must be inferred from indirect 

measurements. Zeta potential measurements can measure the change of charges on 

external surfaces, but provide no information on internal grafting. [62] Similarly, nitrogen 

adsorption measurements can indicate changes in pore diameters, suggesting pore surface 

functionalization, but cannot differentiate between functionalization a the pore opening or 

in the pore itself.[62] NMR has been used to determine interactions between surface 
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functional groups and surface silanols to determine surface functionalization of porous 

materials.[71] The only direct method of locating surface functional groups is via 

visualization of functional groups on particles. Gartmann et.al. demonstrated the amine 

functionalization of large diameter silica particles followed by fluorescent tagging to 

locate the functional groups on the particle.[65] While this technique confirmed selective 

functionalization, the pore diameter of the materials investigated (2.9 nm to 5.5 nm) is 

too small for larger biomolecule applications. Cheng et.al. also used confocal microscopy 

to visualize surface functionalization of large particle diameter materials, although the 

pore diameters within the materials were limited to 2.3 nm – 3.0 nm.[66] In this work, 

particles were fully functionalized with a construct that was later cleaved off to reveal 

amine functional groups. Controlling exposure times to the cleavage molecule piperidine 

results in selective, surface cleavage or full particle cleavage with increased exposure 

times.    

Chapter 4 of this dissertation develops methods of selective exterior 

functionalization of large pore diameter silica materials (>7 nm) that do not rely on the 

blocking of pores to control external functionalization. When compared to pore blocking 

methods employed in smaller pore diameter materials, it was determined that pore 

blocking methods were not effective in selectively functionalizing large pored materials. 

All functional group locations were confirmed via confocal fluorescence localization of 

functional groups after fluorescent tagging.  The methods described in Chapter 4 are time 

dependent, bulk diffusion methods, techniques capable of extension into larger pore 

diameter ranges.  

2.4 Lipid Bilayer Membranes Supported on Mesoporous Silica 

 All eukaryotic cellular systems are surrounded by cell membranes which control 

cellular signaling, transport in and out of cells and environmental detection. Significant 

research efforts have focused cell membrane mimicry, in the form of synthetic lipid 

bilayers, in an attempt to duplicate the function of individual cell membrane systems. A 

primary problem with synthetic membrane systems is their sensitivity to environmental 

conditions. Free formed lipid bilayers vesicles are self-assemblies that are sensitive to 

temperature, pH, and ionic strength, among other environmental parameters. [72] 

Synthetic supports are used to provide physical support and favorable surface chemistries 
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to stabilize bilayers.[73] Mesoporous silica is an ideal support for lipid bilayer membrane 

applications due to its morphological versatility, ease of surface functionalization, tunable 

porosity and particle dimensions. [3, 15] 

2.4.1 Silica supported bilayer membranes – applications 

 Silica supported membranes on porous silica materials have direct applications in 

targeted drug delivery, membrane separations and isolation of small molecules for 

detection. [73-75] Ashley et.al. employed membrane coated silica nanoparticles for 

targeted drug delivery with membrane associated targeting peptides.[76, 77] Due to the 

large pore volumes and surface areas of mesoporous silica nanoparticles, multicomponent 

cargos including SiRNAs and chemotherapeutics can be loaded into nanoparticles for 

cellular delivery.[76] Pore forming proteins within lipid membranes can be used for 

single molecule separation processes with the pores of nano-particles acting as small 

molecule receptacles. [78, 79] The transmembrane proteins Gramicidin A and 

Cyctochrome C have been used as model transport proteins for selective transport of ATP 

and ions, respectively, through membranes into nanoporous supports.[78, 79] Receptor-

ligand binding events on cellular surfaces are used for environmental sensing and 

detection. Translated into membrane associated supports, these proteins are used for 

molecular sensing via fluorescent signaling upon binding. [80]  

2.4.2 Tether supported membranes 

 A variety of membrane tethers have been developed to stabilize membranes and 

promote binding to synthetic surfaces. The primary method of membrane tethering is via 

insertion of the tether into the hydrophobic portion of the membrane. The most simplistic 

membrane tethers include long chain alkane tethers[81] and covalently bound lipid 

tails[82] on porous membrane supports. Additionally, releasable membrane tethers have 

been synthesized via reducible phosphatidyl choline tails that release membrane contents 

upon reduction. Non-porous supports require more comprehensive approaches to 

membrane tethers. The narrow interstitial water space between the membrane and support 

induces membrane-support interactions, interfering with membrane activity.[83] PEG 

cushioned supports have been designed to increase the interstitial water layer between the 

membrane and support by inclusion of hydrophilic PEG chains between the membrane 
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tether and support.[84, 85] Membrane tethers in these systems are composed of peptide 

or protein tethers to mimic the local environment of cell membranes.   

2.4.3 Investigation of membrane fluidity on supports 

 A primary characterization component of lipid bilayer membranes is the fluidity 

of the lipid bilayer. Membrane fluidity is critical for membrane function as it impacts 

membrane associated protein insertion, membrane function and small molecule 

permeability.[86, 87] Bilayer fluidity varies by orders of magnitude between different 

lipid systems, support chemistries and membrane tethering.[84, 88, 89] The primary 

supports for investigation of membrane fluidity are non-porous, micron diameter silica 

particles and non-porous thin films.[88, 90-92] Micron diameter particles are employed 

for their ability to be visually characterized via Confocal Scanning Laser Microscopy and 

subsequently use the CSLM technique Fluorescence Recovery After Photobleaching 

(FRAP) for measurement of bilayer fluidity. Compared to other techniques, such as 

Fluorescence Correlation Spectroscopy (FCS) and Single Particle Tracking (SPT), FRAP 

is one of the more robust methods of measurement in supported bilayer systems.[93]  

 A frequent lipid choice for assembling synthetic bilayer membranes is the lipid 

1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). DPPC is a primary lipid 

component of the cell membrane and uniquely has a gel to fluid phase transition 

temperature of 41ºC, where most lipids are fluid at or below room temperature. [88, 94] 

Scomparin et.al. investigated the effect of support chemistry on DPPC bilayer diffusivity 

after vesicle fusion onto both mica and glass slide substrates.[88] Although both supports 

are primarily composed of silicon dioxide, subtle differences in metal oxide doping 

resulted in order of magnitude differences in DPPC diffusivities (Glass: 0.05-0.1 µm2/g, 

Mica: 0.00009-0.01 µm2/g). In addition to surface chemistry effects, surface tethering 

dramatically affects the fluidity of lipid bilayers. Surface tethers themselves are 

immobile, therefore in a lipid bilayer they impart a tether density dependent effect on 

bilayer fluidity, potentially reducing diffusivity by orders of magnitude.[95]  

 Investigations of porosity effects on supported 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphocholine (POPC) bilayer fluidity have been performed by Claesson et.al. on 2 nm, 

4 nm and 6 nm pore diameter silica thin films.[96] A decrease in bilayer fluidity with 

pore diameter was observed. However, several surfactant systems were used to achieve a 
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range of pore diameters, each resulting in a different nanopore structure and surface 

chemistry. Large diameter porous silica particle provide the opportunity to visually 

investigate lipid properties both on the surface of pores and within particle pores, which 

is difficult in thin films due to shallow pores. In addition, pore diameters in these 

particles are tunable over a wider range while keeping constant the templates, pore 

geometries and surface chemistries. Simple FRAP experiments on the interior of particles 

have demonstrated bilayers retain their fluidity within mesoporous silica particles, 

although no diffusivity measurements have been made.[91] Recently, mesoporous silica 

nanoparticles have been used as fluorescent detection devices with lipid filled 

pores.[52]With high density lipophilic particle cores, these materials are ideal for 

sequestering fluorescent molecules in solution for signal production. The application 

versatility of porous supports with bilayer membranes necessitates investigation into 

porous support effects on bilayer properties.  

 Chapter 5 of this dissertation will take into consideration the use of membrane 

tethers and porosity in the investigation of lipid bilayer fluidity on and within 

mesoporous silica. Pore diameters will be tuned within a size range capable of excluding 

and internalizing lipid bilayers within the pore. The FRAP technique, established in 

section 2.6.2, will be used to investigate bilayer fluidity as a function of pore diameter 

and surface chemistry.  

2.4.4 Investigation of membrane proteins in supported lipid bilayers  

 Complex protein structures within the plasma membrane of cells control 

membrane transport, cell signaling and signal transduction pathways within the cell.[97] 

As described in Section 2.5.1, incorporation of these proteins in synthetic lipid 

membranes has become an area of growing interest for investigating membrane associate 

protein and receptor function, protein mediated membrane transport and receptor affinity 

investigations. [78-80] The incorporation of membrane proteins within synthetic bilayers 

requires the separation and purification of proteins from biological sources that often lead 

to protein inactivation.[80] Reincorporation of transmembrane proteins into synthetic 

lipid systems requires the detergent or organic solvent solubilization of membrane 

proteins followed by detergent removal or solvent exchange during reincorporation into 

synthetic membranes which can also lead to denaturation.[98] Incorporation of proteins 
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within their native lipid membranes onto particle supports for investigation would 

prevent protein denaturation and retain the physiological surrounds used to retain protein 

function within the membrane.  

 Due to recent efforts in molecular biology to understand protein pathways in cells,  

improved methods to purify cell components have been identified, including separation 

of the cell plasma membrane from other organelles and cellular components.[99, 100] In 

Chapter 6, purified plasma membrane vesicles, also known as microsomes, were used to 

transfer membrane proteins in their physiological lipid mixtures for evaluation of protein 

function on porous particles supports. Microsomes are formed by rupturing cells via 

nitrogen cavitation where membranes reform in solution and are purified from cell lysates 

via ultra-centrifugation. Upon mixing with large diameter particles, microsomes rupture 

on the particle surface, spanning pores, ideal for visual investigation of membrane protein 

function. In Chapter 6 a model transmembrane receptor system, epidermal growth factor 

receptor (EGFR) is expressed within HEK293 cell prior microsome to evaluate function 

on particle surfaces. Protein function and ligand binding is evaluated on particle surfaces 

to confirm transfer of active protein function on particle supports. Retaining membrane 

proteins within their native lipid membranes is envisioned as a method to retain protein 

function after transfer to particle supports for both investigation of protein function and 

applications into membrane protein separations and catalysis. 

2.5 Fluorescent Characterization Techniques 

 Confocal scanning laser microscopy (CSLM) is a form of high resolution 

microscopy that has generally been reserved for imaging of cells. Some of the first 

demonstrated uses of confocal microscopy with synthetic materials occurred in the later 

part of the 90’s with large diameter porous silica particles. In  Ljunglof’s work, bulk 

solution measurements of protein adsorption were correlated with images of protein 

diffusion into mesoporous silica materials as a function of time.[101] Following this 

work many authors began to use confocal imaging couple with bulk protein 

measurements to understand the interaction and adsorption of proteins within mesoporous 

silica materials. Katiyar visually demonstrated size selective protein separations over 

mesoporous silica[7] while numerous papers have coupled visual protein accessibility 

images with controlled adsorption as a function of pore size.[27, 40, 43, 47, 102] In 
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addition to guest molecules on the surface of silica particles, confocal scanning 

microscopy has been demonstrated as an effective method of visualizing surface 

functional groups on mesoporous silica. Some of the first work visually confirming 

selective surface functionalization on silica particles was demonstrated by Gartmann 

et.al.[70] This work investigated the use of different amino-silane precursors as well as a 

pore blocking theory in an attempt to selectively functionalize mesoporous silica. After 

functionalization, the amino-silane were fluorescently tagged for visual location 

confirmation using CSLM. Fluorescence has long been used as a technique for analysis 

of lipid bilayer membrane systems. In order to investigate lipid bilayer properties on 

silica particles, non-porous silica particles with large diameters are frequently used as a 

support for investigation of bilayer fluidity.[90] In order to measure bilayer fluidity, the 

fluorescence technique Fluorescence Recovery After Photobleaching (FRAP) is 

employed, which will be covered ins 2.6.2. In Chapter 5 of this work, both CSLM and 

FRAP will be used to investigate lipid bilayer location and fluidity over a series of pore 

sizes both too small and large enough to internalize lipid bilayers. Additionally, in 

Chapter 6 CSLM will be used to confirm the enveloping of these pore size tunable 

particles in lipid bilayers derived from cell membranes, for investigation of membrane 

protein function in their native physiological membranes.  

2.5.1 Fundamentals of Fluorescence 

 The beginnings of fluorescence can be found in nature. For example, the 

fluorescent protein used in Chapter 3 of this dissertation is derived from the jelly fish 

Aequorea Victoria. Fluorescent molecules can be generally characterized by their 

aromatic rings of double bonds, which are composed of dumbbell shaped π bonds in 

addition to σ bonds. π bonds are generally weaker as their electron density is further from 

the positive charge of their nucleus. These less strongly bound electrons can be excited 

with light of a particular wavelength.[103] When these fluorescent molecules are exposed 

to light having an energy that matches an electronic transition within the molecule, the 

light is absorbed, and the electrons within the molecule are considered excited. [103] This 

transition takes the electron from the Highest Occupied Molecular Orbital (HOMO) to 

the Lowest Unoccupied Molecule Orbital (LUMO). This phenomenon can be represented 

in Figure 2.3, which is the traditional Jablonski diagram.[104] The excitation of electrons 
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happens rapidly (10-15 seconds). After excitation, electrons vibrate into their LUMO on 

the order of 10-12 seconds. Relaxation into a lower orbital can take on the order 10-9 

seconds during which time fluorescence occurs via the release of a photon of greater 

wavelength than received. This lower energy, longer wavelength light is read by the 

detector as the output of fluorescence.  

 
Figure 2.3 A modified Jablonki 

diagram demonstrating fluorescence 

 

2.5.2 Confocal Scanning Laser Microscopy (CSLM) 

 Fluorescence microscopy was developed in the early 1900’s by Carl Zeiss.[105] 

A standard fluorescence microscope floods an entire sample with excitation light and the 

CCD detector images the entire field of vision. Unfortunately, standard fluorescence 

microscopy detects significant amount of out of focus light, blurring images taken. The 

numerical aperture (NA) is a convenient indicator of objective resolution[106]. NA 

ranges from 0.1 for low magnification objectives to 1.6 for high performance objectives. 

The equation can be seen in (2.1).[106].   

 𝑁𝑁 = 𝑛(sin(𝜃)) (2.1) 

The numerical aperture is a function of both the refractive index of the 

observation medium (n) and (θ) which is one-half the objective angular aperture. In 
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addition to describing objective resolution, the NA is inversely proportional to the square 

root of the depth of field (DOF) (Equation 2.2)[106].  The DOF is the axial range in 

which the objective can be focused.  

 𝑑 =  𝜆𝑛 𝑁𝑁2�  (2.2) 

In Equation 2.2, d is the DOF, λ is the wavelength of light used, n is the refractive index 

of the medium and NA is the numerical aperture of the objective used. The DOF changes 

decreases dramatically with increasing NA, from 15.5 µm in a 4x magnification lens to 

0.19 µm in a 100x lens.[106] A thinner depth of field has greater resolution as light is 

being imaged from a thinner slice of the sample. Although the depth of field can be 

thinner with increasing magnification, out of focus light is still detected by the detector, 

blurring the image and taking away detail.  

CSLM uses two main methods to decrease the amount of out of focus light 

detected: 1) point by point laser illumination of the sample and 2) rejection of out of 

focus light using a pin hole aperture before the detector (see Figure 2.4).  

 

Figure 2.4 Schematic diagram of 

confocal microscope. 

 

The pin hole is located at the conjugate focal (thus confocal) plane of the sample thus 

rejecting all out of focus light coming from the remainder of the sample. Any rejection of 

photons from the sample decreases the intensity of emission light, therefore 

photomultiplier tubes are used to increase the signal of photons received from the focused 

sample. The rejection of out of focus light permits the optical slicing of the materials as a 
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function of sample depth.[107] At any instant in time, there is only one point of sample 

illumination; the 2-D image is a reconstruction of the individual points. By stacking 

multiple 2-D images, 3-D reconstructions of images are possible.   

2.5.3 Fluorescence Recovery After Photobleaching (FRAP) 

 In Chapter 5 of this dissertation, the impact of supporting lipid bilayers on and 

within mesoporous silica pores with and without lipid tethers is evaluated via comparison 

of bilayer fluidity. Lipid bilayer fluidity can be measured by fluorescence correlation 

spectroscopy (FCS), single particle tracking (SPT) and most commonly fluorescence 

recovery after photobleaching (FRAP).[93] FCS requires significant referencing and 

calibration for correct diffusivity analysis and SPT methods suffer from low accuracy, 

whereas FRAP is considered a more robust measurement technique.[93]  

2.5.3.1 Measurement of Fluorescence Recovery After Photobleaching 

 FRAP works by photobleaching a section of sample and monitoring the recovery 

fluorescence as a function of time. Photobleaching is the permanent photochemical 

destruction of a fluorescent molecule by illuminating the molecule with high intensity 

fluorescence light of the fluorophores excitation wavelength. After photobleaching, the 

fluorescence intensity of the area photobleached is scanned over a period of time as 

unbleached fluorophore from surrounding areas diffuses into the space and fluorescence 

recovers. The fluorescence recovery is described by a series of differential equations as a 

function of the diffusivity and fluorescence intensity at t = ∞, both of which are obtained 

after modeling the raw data. 

 Identification of a photobleach geometry that describes the experimental 

measurement is necessary geometries available such as squares, rectangles circles etc. In 

general, squares and rectangles are ideal for measurement of one dimensional diffusion in 

thin fluorescent strips, such as in a lipid bilayer wrapped around porous and non-porous 

silica particles.[90, 91] In planar supported bilayers, circular bleach spots are used to 

account for two dimensional diffusion within the plane.[96, 108] In 3-dimensional bilayer 

systems, such as bilayer supported throughout porous particles or membrane within 

colloidal crystals, circular bleach spots are used as well.[109] In this case, the light beam 

used to bleach the region of interest (ROI) also bleaches all fluorophore above and below 

the ROI, reducing vertical diffusion effects while the confocal microscope images only 
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the plane of interest.[109] After identification of an ROI, the area is bleached with high 

intensity excitation light to permanently bleach the fluorophore. The ROI is then 

monitored using low intensity excitation light to measure diffusion of fluorophores and 

fluorescent recovery.  

 Diffusivity of fluorophores is calculated by modeling data to an equation that fits 

the general photobleach geometry and bleach pattern. Bleach shapes are also affected by 

light beam profile, either Gaussian or circular.[110] Modern laser excitation sources 

achieve bleach spots by high speed rastering of the laser light, providing uniform, non-

Gaussian bleach profiles. For circular bleach profiles assuming an exponential recovery 

curve, zero immobile lipids and full fluorescence recovery, a simplified single 

exponential equation can be used to determine the lipid diffusivity (2.3).[108, 110] 

 
𝐷 = (

𝑟2

4 ∗ 𝜏1
2�

)𝛾𝐷 
2.3 

Where diffusivity, D, is a function of the bleach radius, r, half time of recovery τ1⁄2 and a 

correction factor, γD that is dependent on the bleach time and laser beam geometry (0.88 

for circular beams). For more accurate results, where post-bleach fluorescence is greater 

than zero and recovery values may not reach pre-bleach values, fluorescence recovery 

results can be modeled to the recovery data using the differential equations used to 

describe the circular bleach spot. This model for a circular bleach profile is derived in 

section 2.5.3.2. Equation 2.3 is the simplified three point fit solution to the differential 

equation outlined in 2.5.3.2, with the assumptions of full fluorescence recovery and 

known halftime fluorescence recovery developed by Axelrod.[110]  

2.5.3.2 Modeling of Fluorescence Recovery After Photobleaching 

The following derivations were adapted from Minchul Kangs and Anne 

Kenworthy’s Complex Application of Simple FRAP on Membranes.[111] Before 

understanding the recovery of fluorescence, fluorescence must be defined as a function of 

concentration of the diffusing species. Fluorescence of the tagged lipids is defined by 

(Equation 2.4) 

 𝐹(𝑥,𝑦, 𝑡)

= 𝑞𝑞(𝑥,𝑦)𝐶(𝑥,𝑦, 𝑡) 

(2.4) 
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In Equation 2.4, F is fluorescence intensity, I is the intensity of the excitation 

light, C is the concentration of fluorescent species and q is the quantum yield, i.e. how 

many photons are emitted per photon of excitation light. The fluorescence over the region 

of interest can be described as in Equation 2.5. 

 
𝐹(𝑡) = 𝑞 �𝑞(𝑥,𝑦)𝐶(𝑥, 𝑦, 𝑡)𝑑𝑥𝑑𝑦

𝑅𝑅𝑅

 
(2.5) 

where,  I(x,y) = I0 / πω2 and which describes the FRAP curve evolution as a function of 

time within the ROI.  

 Deriving the diffusion of fluorescent species within lipid bilayers from raw FRAP 

data requires a model that accurately describes the diffusion geometry and species. From 

Fick’s first law, the diffusion of fluorescent species will move into the bleach area across 

a concentration gradient while the mass within the bleach area will remain conserved. 

Therefore the net change in the number of fluorescent molecules and the total flux of 

species will be equal to one another (Equation 2.6). 

 𝜕
𝜕𝑡
�𝐶(𝑥,𝑦, 𝑡)𝑑𝑥𝑑𝑦 =  −��

𝜕𝑭
𝜕𝑥

+
𝜕𝑭
𝜕𝑦
�𝑑𝑥𝑑𝑦 (2.6) 

 Ficks law states that F  ∝ -∇C  therefore for some constant D, F = -D∇C  and the 

differential equation can be evaluation to produce (Equation 2.7) 

 𝑑𝐶(𝑥,𝑦, 𝑡)
𝑑𝑡

= 𝐷∇2𝐶(𝑥,𝑦, 𝑡) 
(2.7) 

 

Where, the laplacian operator defines ∆ = ∇2 = ∂2/∂x2 + ∂2/∂y2. The equation can be 

changed to into radial dimensions by changing the spatial variables x = rcos(θ) and y= 

rsin(θ).  

FRAP for a three dimensional geometry in x,y and z can be described by 

Equation 2.5 and C can be solved from equation (Equation 2.7) with the appropriate 

initial conditions. From PDE theory, the solution to (Equation 2.7) takes the form 

(Equation 2.8) 

 
𝐶(𝑥,𝑦, 𝑡) =  �𝐶(𝑥,𝑦, 0)Φ(𝑥 − 𝑥′),𝑦 − 𝑦′, 𝑡)𝑑𝑥′𝑑𝑦′ 

(2.8) 

where Φ(x,y,t) satisfies (Equation 2.9): 
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 𝜕Φ(𝑥,𝑦, 𝑡)
𝜕𝑥

= 𝐷∆𝛷(𝑥,𝑦, 𝑡) 
(2.9) 

 In Equation 2.9, the initial condition of Φ at t = 0, Φ(x,y,0), is the Dirac function, δo. 

The δo function states every point on a line is zero, except at 0, which has an integral 

value of 1. Therefore, this describes our initial concentration at t=0 prior to any diffusion. 

Φ is solved by taking the Fourier transform to obtain an equation only in t and is then 

transformed back to a function of x,y and t by taking the inverse transform (Equation 

2.10). 

 
Φ(𝑥,𝑦, 𝑡) =  

1
4𝜋𝐷𝑡

𝑒−�
𝑥2+𝑦2
4𝐷𝐷 � 

(2.10) 

F(t) is solved for using equation (Equation 2.5) after solution of C(x,y,t) (2.7) with 

uniform laser profile I(x,y) is solved using (Equation 2.10). The solution is an infinite 

series which can be converted into the explicit equation (Equation 2.11). 

 𝑓(𝑡) = exp �−
2𝜏𝑑
𝑡
� �𝑰0 �

2𝜏𝑑
𝑡
� + 𝑰1 �

2𝜏𝑑
𝑡
�� (2.11) 

In (Equation 2.12), I0 and I2 are the modified bessel functions, τd is the characteristic 

diffusion time and f(t) = (F(t) – Fo)/ (Finf – Fo). Diffusion (D) can be obtained from the 

relationship τd =ω2/(4D). The raw fluorescence data is modeled using the MATLAB 

function lsqcurvefit, which is a nonlinear curve-fitting function using a least squares 

method.  

2.5.4 General Fluorescence Techniques 

 In addition to FRAP, confocal scanning laser microscopy is a valuable tool for a 

variety of other fluorescence based characterization techniques. Techniques such as 

fluorescence resonance energy transfer (FRET), fluorescence loss in photobleaching 

(FLIP) and fluorescence lifetime imaging microscopy (FLIM) are frequently employed in 

materials and biological characterization applications. While not used in this work, it is 

worthwhile to review them in the context of this work.  

 FRET is a frequently used fluorescence technique used to measure the proximity 

of fluorophores and understanding fluorophore interaction within mesoporous silica using 

two distinct fluorophores with overlapping emission and excitation wavelengths.[63, 104, 

112] A donor fluorophore in its excited state can transfer energy to an accepting 

fluorophore, thus exciting the acceptor (Figure 2.5). The emissions wavelength of the 
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acceptor fluorophore can then be monitored to confirm energy transfer. [2] The excited 

state energy transfer between the donor and acceptor fluorophores occurs via a dipole-

dipole coupling, making the distance between donor and acceptor interaction very short 

(nanometers). [113]  This tool has been recently employed by Wang et.al. to confirm 

fluorophores incorporated within the silica framework during co-condensation are 

accessible as the materials surface within the pores. [63] 

 
 

Figure 2.5 A modified Jablonksi 

diagram of the basic FRET interaction 

between two fluorophores. (Adapted 

from Jakowicz [2]) 

 

 FLIP is used to determine the colocalization of fluorescent components. In FLIP, 

the biomolecule of interest carries two fluorescent labels, one of which is bleached and 

the second which is used as reference for localization. Two distinct regions of interest are 

identified on the sample. One ROI is repeatedly bleached while the second ROI, in a 

separate location, monitors fluorescence intensity.[114] This method is used to determine 

the flow and exchange of species between different portions of a sample and is often used 

to verify membrane continuity and determine exchange rates between different 

reservoirs.  

 In addition to FRAP, FRET and FLIP, FLIM uses the difference in exponential 

decay rates to produce an image from a sample. As opposed to using the fluorescence 
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intensity to image samples, the lifetime of the fluorescence decay is used to produce 

images. This method makes possible the observation of the local fluorescent 

environment, and its impact on environmentally sensitive fluorophores.[114] In addition 

to understand local environments, lifetime imaging is used to understand fluorophore 

interactions with other molecules, in a manner similar to FRET.  
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CHAPTER 3 

Pore-Size Dependent Protein Adsorption and Protection from Proteolytic 

Hydrolysis in Tailored Mesoporous Silica Particles 

3.1 Abstract  

Protein adsorption and interactions with mesoporous silica are of interest for a 

broad range of applications including drug delivery, chemical synthesis, biosensors and 

bioseparations.  A major challenge in designing mesoporous silica supports for tailored 

protein interaction is the differentiation of protein interactions at the surface of the 

particle from interactions within the pore, important features when considering 

mesoporous silica as a protective support for active proteins.  In this investigation, the 

location of Enhanced Green Fluorescent Proteins (EGFPs) adsorbed on tailored 

mesoporous silica particles is examined as a function of pore diameter using proteolytic 

hydrolysis to distinguish between accessible and inaccessible proteins. Pore size control 

is achieved by tuning the hydrothermal aging temperature (60°C - 110°C) during 

synthesis, where the synthesis results in 5 - 15 µm diameter spherical particles 

appropriate for imaging by confocal scanning laser microscopy (CSLM).   In low pH 

environments, EGFP unfolds within pores and on the surface of particles, rendering it 

susceptible to proteolytic hydrolysis by the protease Pepsin A. Upon return to neutral pH, 

un-hydrolyzed EGFP regains it fluorescence and can be visualized within the mesoporous 

particles.     The pore-size dependent loading and protection of EGFP (2.4 nm diameter x 

4.2 nm) from proteolytic attack by Pepsin A (7.3 nm x 3.6 nm x 5.4 nm) is demonstrated 

by the retention of fluorescence in 7.3 nm pores.  Larger-pored materials (> 9 nm) 

provide diminishing protection for EGFP, and the protection is greatly reduced with 

increasing pore size and pore size distribution breadth.  Proteolytic hydrolysis is used to 

delineate the activity of pore-loaded versus surface-bound proteins and to establish that 

there is an optimal pore diameter for loading EGFP while protecting it from attack by a 

larger proteolytic enzyme. 

3.2 Introduction 

Significant interest in the development of nano-scale protein encapsulation 

platforms has coincided with advances in the synthesis of mesoporous silica, which 

provide the ability to engineer nanoscale materials with fine control of the surface and 
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pore environments.  Mesoporous silica materials (MSMs) are inexpensive to produce, 

robust and employ well known aqueous-based synthesis chemistry with existing 

applications as platforms for separations and catalysis. [16, 17] The structures of MSMs 

can withstand high temperatures and pressures, are finely tunable, and synthetically 

versatile, allowing for a broad range of bulk forms (particles, monoliths, thin films), pore 

structures, and organic functional group incorporation.  While the applications of MSMs 

for the separation and reaction of small molecules are well established, more recent 

interest in separations, catalysis and controlled release using larger biomolecules has 

grown as advances in synthesis techniques have made pore diameters greater than 5 nm 

in spherical particles readily achievable. [32, 115] 

 Approaches to increasing the pore diameters of MSMs for the encapsulation of 

proteins include the use of mixed cationic and non-ionic surfactant systems as well as 

aging the templated silica materials at increased temperatures before pore template 

removal.  [4-7, 25, 47, 102, 116] Originally, Zhao et. al. reported the first large-pore 

mesoporous materials with well-ordered hexagonal close-packed pores having diameters 

as large as 30 nm.  [3] These materials were denoted SBA-15 (Santa Barbara Amorphous 

batch 15). Initially developed using tri-block copolymer surfactants, such as Pluronic 

surfactant P123, these materials have significantly increased pore diameters as a function 

of synthesis temperature due to use of the large tri-block copolymers as the pore 

templating micelle.  [25] Increasing the temperature of the micelles during particle 

formation incorporates more of the hydrophilic chain ends of the non-ionic triblock 

copolymer into the core of the micelle, thus increasing micelle size and subsequently pore 

diameter with increased aging temperatures.  [3, 25, 117] The use of cationic surfactants 

such as CTAB as a cosurfactant along with P123 in acidic conditions yields spherical 

particles, with particle diameters dependent upon CTAB concentrations in solution.  [4, 

25] Acidic conditions are used due to the lower rate of silica condensation at low pH, 

allowing the shape of the particle to assume a sphere to minimize surface area and 

surface free energy.  [118] Large pore diameters capable of protein adsorption (> 6 nm) 

have been reported in micron-scale spherical P123-templated silica particles (5 µm -20 

µm diameter) by adjusting the temperature during hydrothermal aging (from 80°C to 

125°C).  [25, 115] 
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Due to the generally negative charge of silica materials and positive charge of 

most biological proteins at neutral pH, an inherent attraction is present between the 

surface of silica materials and proteins in solution.  [33, 34, 119] The adsorption of 

proteins on the particle exterior and interior of pores provides different environments for 

the activity and stabilization of these adsorbates.  The stabilization of proteins in 

biotechnology is dependent upon keeping the proteins active in an unnatural 

environment.  [32] The confining effects of pore walls provide conformational stability to 

adsorbed proteins, thus protein encapsulation within the pores is desirable.  [39] The 

ability to functionalize the exterior and interior of these structures extends their potential 

uses into biomimetic in vitro applications, using surface functional groups for drug 

delivery and targeted therapies.  [120] Recently published reviews outline many of the 

applications of mesoporous silica as a biomaterial for encapsulating proteins as well as 

the potential for biological catalysis, size selective protein separations, biological 

signaling and drug delivery.  [32-37]     

Several research groups have demonstrated the use of tailored pore diameters for 

size selective adsorption of proteins, concluding that large pore diameters increase the 

accessibility of interior surface area for protein adsorption.  [5-7, 48] Previously, protein 

depletion measurements in solution have been used to deduce protein loading on 

particles.  [5, 6] High resolution confocal scanning laser microscopy (CSLM) has 

recently been employed to visualize proteins throughout mesoporous silica particles.  [7, 

43, 47, 102, 121] The diffusion of fluorescently tagged proteins and biomolecules is 

easily imaged in the well-ordered hexagonal close packed columnar pore structures of 

MCM-41 and SBA-15 materials.  [47, 48, 70] CSLM imaging has been used to 

demonstrate the diffusion resistance of enhanced green fluorescent proteins (EGFP) (2.4 

nm x 4.2 nm) in the pore openings of random shaped (4.1 nm pores), rod shaped (2.9 nm 

pores) and spherical (5.5 nm pores) particles.  [47] Size selective protein adsorption 

within large pored silica materials has been visualized using fluorescently tagged 

lysozyme and bovine serum albumin (BSA). Pores of 7.4 nm and 12.7 nm diameter are 

fully accessible to lysozyme (3.0 x 3.0 x 4.5 nm) while prohibiting diffusion of BSA (4.0 

x 4.0 x 14.0 nm).  [7] A pore diameter of 2.8 nm prohibited the diffusion of both 

lysozyme and BSA.  Visualization studies have been complemented by computational 
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studies of biomolecular diffusion, which suggest that significant diffusion resistance 

occurs in the boundary layer at the entrance to pores in which the pore diameter 

approaches the size of the proteins diffusing.  [48]   

Limiting active proteins to porous structures and confirming the location of 

proteins within the pores of the materials requires a technique to inactivate proteins that 

are located on the surface of the particles and not protected within pores.  Proteases are 

common proteins that hydrolyze other proteins, rendering them inactive. EGFP, for 

example, is susceptible to proteolytic hydrolysis and inactivation by the porcine protease 

Pepsin A.  [122]  Hydrolysis of EGFP by Pepsin A results in a permanent loss of protein 

activity and fluorescence due to the preferential cleavage of peptide bonds between 

hydrophobic aromatic amino acids.  [122] Nearly the entire protein sequence is required 

for chromophore formation, therefore cleavage of 1 of the 45 available hydrophobic 

aromatic amino acids provides inactivation of EGFP fluorescence.  [122] The quantitative 

reproducibility of EGFP fluorescence inactivation by Pepsin A has led to its use in an 

assay to determine active Pepsin A concentrations.  [122] The size of Pepsin A (7.3 nm x 

3.6 nm x 5.4nm) is slightly larger than that of EGFP (2.4 nm x 4.2 nm barrel), suggesting 

a range of pore diameters for size exclusion of Pepsin A, ensuring proteolytic hydrolysis 

of only surface bound proteins.  [123] Pepsin A activity on SBA-15 mesoporous silica 

materials with 7.0 nm diameter pores is consistent with limited accessibility of larger 

substrates in the pores.  [124]  Small substrates (Z-L-glutamyl-L-tyrosine) demonstrated 

significantly increased Pepsin A activity compared to the larger hemoglobin, which 

showed diminished activity, suggesting steric hindrance of the protease.  [124]  

 The inactivation of proteins located on the surface of the particle using proteases 

is a novel approach to examine the protective environment of proteins in porous materials 

as well as to achieve materials with only pore-loaded active proteins.  The concept is 

demonstrated in this work for a fluorescent protein (EGFP) / protease (Pepsin A) system 

using pore-diameter tunable silica particles appropriate for CSLM.  EGFP is used both as 

a probe to visualize protein position and as a functional protein that will become non-

fluorescent upon degradation by Pepsin A.   CSLM is used to investigate protein 

protection as a function of pore diameter based upon imaging both before and after 

exposure of fluorescent protein loaded particle to a proteolytic environment.  EGFP 
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loaded particles with pore diameters ranging from 5.4 nm – 11.6 nm are exposed to a 

solution of Pepsin A at low pH, rendering EGFP susceptible to hydrolysis by active 

Pepsin A.  The dimensions of EGFP, Pepsin A and the pore diameter are used to interpret 

the results and to demonstrate size selective protein adsorption, protection and 

localization within spherical mesoporous silica particles.  

3.3 Materials and Methods 

3.3.1 Materials 

 Enhanced Green Fluorescent Proteins (EGFP) (≥97%) were purchased from 

BioVision and were received in a 1 mg/mL solution of PBS.  Acetone (≥99.5%), ACS 

certified HCl (12.1M), and citric acid (≥99.9%) were purchased from Fisher Scientific.  

Lyophilized Pepsin A (≥2,500 units per mg dry) was purchased from Worthington 

Biochemical.  Tetraethyl orthosilicate (TEOS, ≥98%) and crystalline trichloroacetic acid 

(TCA, ≥99%) were purchased from Acros Organics.  Cetyltrimethylammonium bromide 

(CTAB, 98%) was purchased from Research Organics.  200 proof ethanol (ETOH, 200 

proof) was purchased from Decon Labs.   Pluronic P123 triblock copolymer 

((EO)20(PO)70(EO)20 where EO is an ethylene oxide unit and PO is a propylene oxide 

unit, MWavg= 5800) was purchased from Sigma Aldrich.  All materials were used as 

purchased and dilutions were made using deionized, ultra filtered water purchased from 

Fisher Scientific.  

3.3.2 Materials Synthesis 

 Spherical SBA-15 (SBAS) materials were prepared using an adapted version of 

Gartmann’s synthesis procedure, as modified from the work of Katiyar.  [7, 70]  Initially, 

3.10 grams of P123 was heated in a round bottom flask in a 50°C oven until melted.  

After this, 0.465 g of CTAB dissolved in 20 mL of deionized water was added to the 

P123.  This solution was placed in a water bath at 30°C and stirred vigorously while 7.8 

mL of 200 proof ETOH and 45.9 mL of 1.5 M HCl were added.  After the P123 

completely dissolved, 10 mL of TEOS was slowly added drop wise.  This solution was 

mixed for 2 hours.  At the end of 2 hours, the solution was poured into a Parr 4748 Teflon 

lined bomb, which had been acclimated to the hydrothermal aging temperature, between 

60°C and 120°C, prior to use.  The sample was kept at the desired hydrothermal aging 

temperature in an oven for 3 days.  At the end of the 3 day period, the sample was 
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removed from the bomb and mixed in a high speed mixer to homogenize the solution.  

After homogenization, the sample was filtered and rinsed with 50 mL of deionized water.  

After filtration, the sample was placed into a single walled Whatmann cellulose 

extraction thimble and the surfactants were removed using Soxhlet extraction with 200 

mL of acetone over 24 hours.   The extracted particles are designated as SBASx, where x 

is hydrothermal aging temperature in °C, which is the independent synthesis variable.  

3.3.3 Materials Characterization 

 Pore diameter and surface area were measured from nitrogen adsorption 

experiments (Micromeritics Tristar 3000) conducted at 77 K.  Samples were degassed at 

120 °C for a minimum of 4 hours under flowing nitrogen gas before analysis.  Specific 

surface area was estimated using the Brunauer, Emmett and Teller (BET) isotherm and 

the pore diameter was estimated as the peak in the pore size distribution calculated by the 

method of Barrett, Joyner and Halenda (BJH).  [125-127] The particles were imaged 

using a Hitachi S-4300 Scanning Electron Microscope (SEM).  SEM samples were 

prepared by sprinkling the particles onto double sided carbon tape and attached to 15 mm 

aluminum mounts with M4 threads.  Excess silica materials were blown off of the sample 

with nitrogen.  Samples were prepared 24 hours in advance and left in a desiccator prior 

to being sputter coated in a gold-palladium alloy before analysis.  

3.3.4 EGFP pH Based Denaturation and Renatuaration  

 The fluorescence of aqueous EGFP at room temperature was measured using a 

Varian Cary Eclipse fluorescence spectrophotometer.  The “activity” of EGFP is 

interpreted from its fluorescence in the protein’s folded state.  Fluorescence experiments 

were performed at an excitation wavelength of 398 nm and excitation slit width of 5 nm, 

with the emission spectra measured at 508 nm.  The stability of EGFP fluorescence was 

confirmed by monitoring its intensity in solution (11 µg/mL EGFP in 10 mM Tris-HCl at 

pH 7.5) in the absence of silica particles at room temperature for 30 hours.  After an 

initial decrease of fluorescence intensity of 20% over the first 2 hours, the fluorescence 

intensity of EGFP remained constant.  EGFP was denatured and renatured  by pH using a 

combination of citric acid and Tris-HCl, as adapted from Malik et al.  [122] Concentrated 

EGFP was diluted to 22 µg/mL in 10 mM Tris-HCl at pH 7.5.  Upon use, 500 µL aliquots 

were denatured using 100 µL of 0.1 M citric acid solution to adjust the pH to 2.5.  After 
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10 minutes, the fluorescence of the denatured sample was measured.  The EGFP sample 

was renatured by returning the solution to pH 7.5 using 400 µL of 1M Tris-HCl at pH 8.5 

and protein fluorescence while renaturing was monitored as a function of time.   

 All silica samples were pre-wetted before introduction of EGFP.  Thirty 

milligrams of each SBAS material was first shaken with 1 mL of 10 mM Tris-HCl in a 

1.5 mL centrifuge vial for 24 hours.  After 24 hours these materials were centrifuged at 

13,300 RPM for 3 minutes and the supernatant was discarded.  The wetted particles were 

re-dispersed in 0.5 mL of 22 µg/mL EGFP and shaken for 24 hours to allow for EGFP 

diffusion into the particles.  The silica particles were used to prepare three types of 

samples for CSLM; EGFP-adsorbed particles, pH-denatured/renatured EGFP particles, 

and pH denatured/Pepsin A exposed/pH renatured EGFP particles.  

Denaturation/renaturation of the protein adsorbed to the particles was performed by 

introducing 0.1 mL of 0.1 M citric acid to the protein loaded particles, reducing the pH to 

2.5, and shaking for 10 minutes followed by raising the pH to 7.5 with the addition of 0.4 

mL of 1 M Tris-HCl.  Hydrolyzed EGFP-adsorbed particles were obtained by conducting 

the pH denaturation step, with shaking in the presence of 30 µg/mL Pepsin A in 0.1 M 

citric acid. The pH was raised in the same manner through the addition of 0.4 mL of 1 M 

Tris-HCl. 

Samples of each type of EGFP/particle solution were prepared by dropping the 

suspended particles in EGFP solution onto glass slides and covering them with standard 

cover slips.  The edges of the samples were sealed and samples were immediately imaged 

using a LEICA TSP SP5 Confocal Microscope.  An argon laser was used to excite the 

fluorescent proteins over a 63X objective.  The gain voltage on the photo multiplier tube 

detector was held between 995 and 1200 V.  The scan speed was 400 frames per second.  

The CSLM images presented are slices through the center of a single particle or a pair of 

particles, where the scan corresponding to the approximate “center” of the spherical 

particles was established from greater than 20 scans of the spherical particles in the z-

direction.  Fluorescence intensity profiles were extracted by scanning along a line 

through the center of each particle in the CSLM images using ImageJ software (National 

Institutes of Health).  Each set of images comparing the fluorescence of EGFP loaded 

into the particles at pH 7.5 and the subsequent image after exposing the same particles to 
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Pepsin at pH 2.5 and increasing the pH back to 7.5 were obtained under the same 

microscope conditions. 

3.4 Results and Discussion 

Spherical SBA-15 (SBAS) silica materials were chosen as the encapsulating 

structure for proteins based on their large particle size and sphericity, making them 

appropriate for imaging, as well as their large, tunable pore diameter range appropriate 

for protein loading.  SEM images establish an average particle diameter range of 5 µm – 

15 µm for these spherical particles (Figure 3.1).  As seen in Figure 3.1A, particles 

synthesized at 60°C are characterized by a rough particle surface.  SBA-15 particles 

transition from “gyroid” to spherical morphology when synthesized between room 

temperature and 80°C, therefore the rough surface of SBAS60, synthesized at 60°C, 

could be attributed to this transitional structure (Figure 3.1A).  [118] Materials 

synthesized at higher temperatures are smooth relative to materials synthesized at lower 

temperatures (for instance, SBAS120 in Figure 3.1B).  
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Figure 3.1 SEM images of SBAS materials 

synthesized at A) 60°C and B) 120°C. 

 

A key feature of these materials is the large, temperature-tunable pore diameter 

range appropriate for protein loading that can be achieved using the same surfactant 

template system (P123 and CTAB).  [25] Increasing temperatures during hydrothermal 

aging increases the hydrophobic volume of the micelle templates, thus increasing micelle 

and template pore diameters.  [25] The pore diameter  of the synthesized materials, as 

determined by the Barrett-Joyner-Halenda (BJH) method,  range from 5.4 nm to 11.6 nm 

over the range of hydrothermal aging temperatures (60°C – 120°C) (Table 3.1).  All 

materials have type IV isotherms, which are consistent with the well-defined mesoporous 

nature of these materials.  The BJH pore diameter distribution for all synthesized 

materials is provided in Figure 3.2.  Materials synthesized between 60°C and 110°C 

exhibit sharp pore diameter distributions, while a broader distribution is found at 120°C.  
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The presence of small mesopores is apparent in SBAS60 materials in Figure 3.2 and is 

due to the ethylene oxide units of the large P123 copolymer extending from the 

templating micelle and into the walls of the silica matrix.  [3, 25, 117] At higher 

temperatures, these small mesopores disappear as the ethylene oxide units are 

incorporated into the hydrophobic core of the micelle.  [115] The pore diameters could be 

tuned in a range spanning from a diameter near to size of the protein to be encapsulated 

(EGFP 2.4 nm x 4.2 nm barrel, 26.9 KDa) to a diameter large enough to accommodate 

both the protein and protease (Pepsin A, 7.3 nm x 3.6 nm x 5.4 nm, 34.6 KDa).  [122, 

123, 128, 129]  

 

Table 3.1 Surface area and pore diameter (mode of 

the pore size distribution) as a function of synthesis 

temperature determined by BET and BJH methods, 

respectively.  

Sample Synthesis 

Temperature 

(°C) 

Surface 

Area 

(m2/g) a 

Pore 

Diameter 

(nm) b 

SBAS60 60 819 5.4 ± 0.6 

SBAS90 90 654 7.3 ± 1.5 

SBAS100 100 532 9.2 ± 1.5 

SBAS110 110 441 11.3 ± 1.2 

SBAS120 120 311 11.6 ± 4.4 

a  The uncertainty of the BET regression of a single measurement is less than  ± 2 

m2/g  
b The value in parenthesis is the half of the full width at half maximum in the pore 

distribution peak 
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Figure 3.2 Effect of hydrothermal aging 

temperature on pore diameter distributions. 

 

The pore diameter of SBAS60 (5.4 nm) is slightly larger than the largest 

dimension of EGFP (4.2 nm) while the pore diameter of SBAS90 is the same as the 

largest dimension of Pepsin A (7.3 nm).  The pore diameters of SBAS100, 110 and 120, 

9.2 nm, 11.3 nm and 11.6 nm, respectively, are large enough for both the diffusion of 

EGFP and Pepsin A, potentially limiting the size selective protective abilities of the 

pores.  Thus, this pore range is ideal to test the hypothesis that an optimal pore diameter 

exists that is adequate for loading and protection of only the target protein within the 

pores of these materials. 

 Enhanced green fluorescent protein (EGFP) was chosen for this protein 

encapsulation study because of its robust renaturing abilities during pH changes as well 

as its significantly greater stability over wild type GFP, minimizing the effect of time 

dependent protein unfolding over the period of the experiments.  [122, 130] Pepsin A is 

active below pH 4, a pH where EGFP is unfolded and non-fluorescent.  In the presence of 

Pepsin A in acidic environments, EGFP undergoes proteolytic hydrolysis, rendering it 

incapable of refolding, thus permanently eliminating fluorescence.  [122, 130] 

Visualization of EGFP not hydrolyzed at low pH by Pepsin A requires an increase of pH 

back to pH 7.5, permitting recovery of fluorescence and subsequent visualization in 

CSLM.  The hydrolysis of EGFP by protease Pepsin A at pH 2.5 and the ability of EGFP 

to regain fluorescence after exposure to pH 2.5 (in the absence of the protease) was 

confirmed in solution (Figure 3.3).  In the absence of protease, full recovery of EGFP 

fluorescence is observed in going from pH 7.5 to pH 2.5 to pH 7.5.  In contrast, a total 
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loss of EGFP fluorescence is observed in an identical sample exposed to this denaturing 

and renaturing pH cycle in the presence of Pepsin A.  The residual fluorescence intensity 

observed in the hydrolyzed protein solution is consistent with the background 

fluorescence from the solution.  

 
Figure 3.3 Fluorescence intensity of EGFP 

at pH 7.5, after denaturation at pH 2.5 and 

during renaturation via  pH increase to pH 

7.5, and after exposure to Pepsin A at pH 2.5 

and renaturing at pH 7.5.   

 

 CSLM was used to establish the location of fluorescently active EGFP in the 5 

µm to 15 µm diameter silica particles.  Figures 3.4 and 3.5 present the representative 

CSLM images and the corresponding fluorescence histograms taken across the center of a 

single spherical particle or pair of particles, respectively, as a function of the SBAS 

material.  The first column in these figures is the fluorescence of the EGFP loaded 

particles prior to Pepsin A exposure.  The second column is of the protein loaded 

particles after exposure to Pepsin A at pH 2.5 and renaturation at pH 7.5.  The exception 

to the imaging of individual particles is the SBAS60 material (presented at 4x lower 

magnification).  The particle clustering observable by CLSM is similar to SEM (Figure 

3.1A), making this material less ideal for direct visualization of protein adsorption in 

pores.  The histogram taken in Figure 3.5 is over one particle that was located within the 

cluster image of SBAS60 in Figure 3.4.  
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Figure 3.4 CSLM images of EGFP loaded 
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mesoporous silica materials (column 1) and 

EGFP loaded materials after exposure to active 

protease (column 2).  The contrast of SBAS90, 

SBAS100 and SBAS110 images were 

enhanced by .1% for the clarity. The contrast of 

image groups SBAS60 and SBAS120 were 

unmodified. 
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Figure 3.5 Histograms of the fluorescence 

intensity of EGFP loaded mesoporous silica 

materials (column 1) and EGFP loaded 

materials after exposure to active protease 

(column 2).  Histograms correspond to images 

in Figure 4 without contrast enhancement, with 

the exception of the histogram for SBAS60 

taken for a single particle from the cluster 

image in Figure 4.   

 

 The CSLM images can be used to interpret the accessibility of the pores to EGFP 

and the size-dependent protection of the EGFP from proteolytic attack.  Minimal 

diffusion of the protein into the smallest pore material synthesized (SBAS60, 5.4 nm 

pores) is observed, as indicated by a sharp ring of fluorescence intensity at the surface of 

the particles after exposure to EGFP for 24 hours.  The fluorescence of this surface bound 

protein is completely lost upon 10-minute exposure to Pepsin A, indicating that the 

standard protocol for EGFP hydrolysis by Pepsin A28 is effective at hydrolyzing the 

surface protein.  Although the pore diameter is greater than the largest dimension of 

EGFP (2.4 nm x 4.2 nm), the pores of SBAS60 are too narrow for the diffusion of active 

EGFP molecules over a 24 hour period.  Protein accumulation on the surface of particles 

where protein dimensions approach the pore diameter has been attributed to the inability 

of native folded proteins to pass each other at the pore entrance.  [48] While these images 

are similar to previous reports of GFP loading in porous silica, [47] our results uniquely 

establish the removal of surface proteins by proteases.       

Increasing the pore diameter of the SBAS materials to 7.3 nm (synthesized with 

hydrothermal aging temperature at 90°C) allows for significant EGFP loading within the 

pores as well as protection against proteolytic attack of the pore-loaded protein.  Greater 

loading of EGFP within the pores is indicated by a more diffuse fluorescence intensity 

profile in the CSLM image that extends into the interior of the particles.  Although the 

pore diameter is theoretically sufficient to permit  diffusion of both EGFP (2.4 nm x 4.2 

nm) and Pepsin A (7.3 nm x 3.6 nm x 5.4 nm), these pores provide the best protection 
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against proteolysis (indicated by the highest level of fluorescence after Pepsin exposure 

relative to the intensity before exposure in Figure 3.5).   The accessibility of the protease 

to a pore of similar dimension may be hindered, as in the case of protein buildup of EGFP 

at the surface of materials with 5.4 nm pores.  Alternatively, the pore diameter must also 

be sufficient to allow for access of the active site of the enzyme to the protein in its 

unfolded state, dimensions that are not predicted by protein size. 

 Higher hydrothermal treatment temperatures lead to larger pore diameters, 9.2 nm 

and 11.3 nm for SBAS100 and SBAS110, respectively.  The pore diameters of these 

carriers allow for even more effective diffusion of EGFP, which leads to a greater 

fluorescence intensity throughout the entire cross section of the protein-loaded particles 

in Figures 3.4 and 3.5.  However, the large pores of these materials also permit diffusion 

of Pepsin A into the pores as indicated by the  hydrolysis of EGFP within pores.  The 

decreased fluorescence of the EGFP after exposure to hydrolysis conditions is more 

pronounced for EGFP-loaded SBAS120, although the mode pore diameter of this 

material, 11.6 nm, is only 0.3 nm larger than SBAS110.  Complete loss of fluorescence 

intensity throughout the spherical particles is observed after exposure to active Pepsin A 

at pH 2.5.  The broad distribution of pore diameters in the SBAS120 material may 

contribute to its inability to protect EGFP towards proteolysis.  Although 11.6 nm is the 

predominant pore diameter in this material, a significant fraction of pores of larger size 

(greater than 20 nm) are available for diffusion of EGFP and Pepsin A. 

Protein protection from proteolytic hydrolysis would be overestimated and 

underestimated, respectively, if the pores of mesoporous silica materials provide 

conformational stability to encapsulated proteins [34, 37, 39, 131], suggesting that 

protein unfolding may be less favorable relative to bulk solutions.  Our description of size 

selective protein adsorption and protection from proteases assumes that EGFP undergoes 

pH denaturation (unfolding) and renaturation (refolding) in mesoporous silica.  In support 

of our described mechanism of size-selective protein protection, EGFP loaded SBAS90 

was subjected to pH denaturation/renaturation in the absence of the protease.  SBAS90 

materials have the smallest pore diameter (7.3 nm) capable of significant EGFP loading 

in this study.  The potential that the unfolding or refolding of EGFP is constrained by the 

pore size would be most evident in SBAS90 relative to the larger pore materials 
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(SBAS100, SBAS110, and SBAS120).  The fluorescence intensity histogram of EGFP 

within SBAS90 materials prior to lowering the solution pH (Figure 3.6A) and after 

denaturation at pH 2.5/renaturation at pH 7.5 (Figure 3.6B) are similar.  The 

fluorescence of intermediate confocal images of EGFP loaded SBAS90 at pH 2.5 is 

indistinguishable from background noise, indicating denaturation of EGFP in the silica 

pores at low pH.  The effective pH denaturation/renaturation of EGPF within silica pores 

is consistent with observations in silica gels that the difference in kinetics of unfolding 

are not distinguishable for GFPs confined in pores or in solution. [132]  Stability of 

EGFP in SBAS90 is not due to confinement within the pores, but due to the pore 

diameter limiting the accessibility of Pepsin A to the unfolded EGFP.  

 
Figure 3.6 Histograms of the fluorescence 

intensity of EGFP loaded SBAS90, a) at pH 7.5 

b) after lowering to pH 2.5 and returning to pH 

7.5 in the absence of a protease. The lack of 

EGFP fluorescence at pH 2.5 is not shown. 

 

3.5 Conclusion 

 This investigation provides direct evidence of size selective protein adsorption on 

porous spherical silica particles, a phenomenon that can be used to convey protective 

capabilities to pore loaded proteins or selectively remove proteins from particle surfaces 

using proteases. For the system of EGFP and Pepsin A, mesoporous silica with pore 

diameters greater than the diameter of the target protein provide for effective diffusion of 

the protein into the pores, while preventing rapid proteolytic attack within the pores even 

for a protease similar in size to the protein loaded in the pore.  As the pore diameter 

increases beyond this optimal diameter, the loading of the target protein increases, but 

diffusion of the protease into the pores also increases, with the subsequent hydrolysis of 

the target protein.  Increasing the synthesis temperature of SBAS materials increase the 
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pore diameter, and also increases the pore size distribution at the highest synthesis 

temperature.  Materials with a broad pore size distribution (SBAS120) provide 

significantly less protection of the target protein from hydrolytic attack, although the 

mode pore diameter of 11.6 nm represents only a slight increase in pore size relative to 

materials synthesized at a lower temperature (SBAS110, 11.3 nm).  

The direct visualization of size selective protein protection and localization in 

porous materials made use of spherical SBAS materials, which were specifically chosen 

for this purpose based on their morphological homogeneity, narrow pore diameter 

distribution and most importantly, particle size, allowing them to be imaged using 

CSLM.  The use of EGFP, which is stable, robust to pH changes and the use of Pepsin A 

to hydrolyze EGFP not protected within the pores, were also critical to this investigation.  

However, the interpretation of size selectively and protein protection against hydrolysis is 

applicable to mesoporous materials in general. Our results show that, consistent with 

some of the earliest studies of protein loading into mesoporous silica, merely having a 

pore size slightly larger than or similar in size to the protein being adsorbed is not always 

adequate for protein loading.[5]  The use of a protease allowed us to more clearly 

demonstrate that the protein is indeed loaded into the pore, and that co-diffusion of 

proteins follows a similar trend to single protein diffusion – namely, that the pore 

diameter must be larger than the combined diameters of the pair of proteins to permit 

significant entry of the larger protein to occur.  Thus, when tuning mesoporous materials 

for protein loading and delivery applications, the optimal pore size for loading with 

protection is likely to be found between the diameter of the target protein and the sum of 

the diameters of the target protein and the smallest proteolytic enzyme able to attack that 

protein.  Also, when co-diffusion of proteins is desirable (for example, when co-locating 

enzymes for sequential reactions in mesopores), the optimal pore diameter for protein 

loading is likely to be larger than the sum of the diameters of the two proteins.  These 

findings demonstrate the value of techniques that provide complementary information to 

bulk adsorption, release and activity measurements– namely tuned micron-scale particles 

for visualization of protein location, and introduction of proteolytic enzymes for removal 

of surface-bound protein from the particle surface and confirmation of protein protection.  
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These techniques are suggested to be broadly applicable in the design of mesoporous 

protein nanocarriers. 
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CHAPTER 4 

Selective External Surface Functionalization of Large Pored Silica Materials 

Capable of Protein Loading 

4.1 Abstract 

 Differentiating the chemical properties of the external and pore surface of sol-gel 

derived mesoporous materials by selective functionalization is important to advancing 

their application as platforms for biological catalysis, sensing and drug delivery.  Prior 

selective functionalization techniques have been limited to small pores (≤ 5.5nm 

diameter) incapable of loading large biological molecules. This work investigates the 

selective exterior surface functionalization by amines of larger-pored (>7 nm diameter) 

mesoporous silica particles, which are synthesized by dual surfactant templating and 

hydrothermal aging. Previously developed selective functionalization techniques rely on 

choice of functionalization precursor, functionalization reaction time, or pore blocking 

(by leaving pore templates in as-synthesized materials).  The effectiveness of these 

strategies are compared for larger-pored materials using the precursors (3-

aminopropyl)trimethoxyethoxyethoxy silane (APTMEES) and (3-aminopropyl)triethoxy 

silane (APTES). The extent of amine functionalization is determined as a function of 

precursor reaction time (10 or 20 minutes) in both as-synthesized and template-extracted 

materials by confocal laser scanning microscopy of the ~10 mm diameter particles tagged 

with fluorescein isothiocyanate.  Reaction time, regardless of pore template presence, is 

demonstrated to be the controlling variable for achieving selective exterior 

functionalization in these larger pored mesoporous materials.  Under the conditions used, 

10 min of functionalization with APTMEES localizes amine groups at the exterior of the 

particles, while 20 min functionalizes both the exterior and the interior pore surfaces.  

Protein accessibility within pores, before and after selective and full functionalization, is 

visually confirmed by confocal fluorescence imaging of Rhodamine B tagged lysozyme 

probed particles.    

4.2 Introduction 

 Complementary advances in the synthesis of mesoporous silica materials (MSMs) 

and the uses of proteins in biotechnology present new opportunities for enzyme catalysis, 

protein delivery, and protein-based sensing using silica platforms. [38, 45, 133-137] The 
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synthesis of templated mesoporous silica materials with tunable ordered pores of size 

appropriately large for protein loading (5 nm – 12 nm) has become routine. [3, 138] 

These materials can be synthesized in a variety of morphologies such as thin films and 

particles. [4, 15] The uses of enzyme loaded mesoporous silica materials range from 

biosensors to biocatalysts for the detection of a variety of compounds such as 

carbohydrates, aromatics and aquatic toxins. [34, 37, 119, 139-141]  

The benefits of using mesoporous silica materials for the entrapment of proteins 

stem from the tunable properties of the materials. SBA type materials, synthesized with 

the tri-block copolymers such as Pluronic P-123 ((ethylene oxide)20(propylene 

oxide)70(ethylene oxide)20), have transformed the synthesis of ordered large-pored metal 

oxides with a variety of tunable morphologies such as thin films and particles with 

different ordered mesostructures.  [4, 15, 26] The addition of the ionic surfactant 

cetyltrimethylammonium bromide (CTAB) permits the synthesis of SBA-15 particles 

with spherical morphology and diameters in the micron range. [4] Hydrothermal aging of  

particles has proven to be an effective means of tuning pore diameters from 3.5 nm to 

11.6 nm using temperatures between  60°C  and 130°C. [25, 27, 142] Tunable pore sizes 

within mesoporous silica particles can be used for protein protection, protein separations 

and to sustain protein activity. [7, 27] 

Protein loading within the pores of mesoporous silica is frequently established by 

bulk measurements of protein concentration or activity assays before and after exposure 

to particles. [46, 119]  However, activity measurements can be difficult to interpret 

clearly due to limited accessibility of the substrate to the enzyme within pores. In 

addition, neither method can directly determine the location of proteins within the 

materials. Confocal laser scanning microscopy (CSLM), on the other hand, has the 

benefit of using fluorescent imaging to visualize the location of proteins on the surface or 

within the particles. [7, 70]  For example, the diffusional resistance of enhanced green 

fluorescent proteins has been visualized within particles with pore sizes between 2.9 nm 

and 5.5 nm in both rod shaped and spherical particles. [47] Size selective protein 

separations have been visually confirmed using fluorescently tagged lysozyme and 

bovine serum albumin within 12 nm diameter pores of SBA-15 silica. [7] Recently, our 

group has demonstrated the use of spherical MSMs for pore-size dependent protection of 
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proteins within SBA-15 spherical particles in the presence of hydrolyzing proteases.  [27] 

Hydrothermal aging was used to tune pore sizes between 5.4 nm and 11.6 nm in diameter 

where an optimum diameter of 7.3 nm permitted access of a smaller fluorescent protein, 

while protecting it from a larger protease. CSLM provided both confirmation of 

fluorescent activity and location of the protein within the particles.  

The synthesis of separate organic functional domains, either on the exterior 

particle surface or in the pores, has the potential to further enhance the application of 

large-pored organic – inorganic porous structures for protein applications. Selective 

functionalization could regulate particle interactions with their environment, covalently 

anchor proteins either within pores or on the exterior surface of particles, screen 

molecules entering and exiting pores or be used in particle targeting with antibodies.  

Functionalization of mesoporous silica with amines, in particular, has been shown to 

stabilize enzymes in mesopores,[54] to modulate interactions of peptides and proteins 

with silica[55-58, 143] and to control particle uptake and cytotoxicity[59-61, 144].    Due 

to the versatile chemistry of primary amines on the surface of silica, amine 

functionalization allows for direct tagging with fluorophores or use as a building block 

for more advanced functionalization. [70, 145, 146]  Precursors typically used to modify 

mesoporous silica are aminopropyl alkoxysilanes (e.g. 3-aminopropyltriethoxysilane 

(APTES) and  3-aminopropyltris(methoxyethoxyethoxy)silane (APTMEES)). 

 Selective interior or exterior functionalization of ordered mesoporous silica has 

been demonstrated by using pore blocking in mesoporous silica (where an organic 

functionality is grafted while the pore template still resides in the pores),[8-12] by 

functionalizing non-selectively followed by diffusion-limited deprotection[66], by adding 

combinations of precursors at different times to generate layers with different 

functionality[62, 67], by intentionally functionalizing with bulky functional groups, 

sterically hindered from pore accessibility[68] and by passivating the external surface 

with an inert organic group followed by adding a second reactive silane to functionalize 

the internal pore surface.[8]  Specifically for amines, selective external functionalization 

of silica with small mesopores (less than 5.5 nm) has been demonstrated through the 

selection of an amino silane precursor of suitable size and reactivity, and via pore 

blocking by the templating surfactant. [62, 65, 71, 147]  For example, Gartmann et.al. 
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demonstrated exterior functionalization using the larger and less reactive aminosilane 

APTMEES for particles with 2.9 nm pores. [70]  By functionalizing mesoporous 

materials in the presence of the unextracted P123/CTAB template, exterior surface 

functionalization was demonstrated for pore sizes up to 5.5 nm using APTMEES as the 

precursor. Selective exterior aminosilane functionalization has been interpreted from 

FTIR and NMR data, [71, 147] and visual confirmation of functional groups location via 

fluorescent tagging has been demonstrated with CSLM. [66, 70, 146]   However, the 

techniques used to functionalize small pored materials (pore blocking, choice of 

aminosilanes, and reaction time for functionalization) have not been translated to 

selective functionalization of large pore porous materials (pore diameter > 5.5 nm).  [62, 

70, 71]   Pores for protein loading and protection from environmental destabilization are 

required to be large in diameter (in excess of 5 nm) to accommodate protein dimensions, 

so a need exists to test and develop methods for selective functionalization to large pored 

materials. [27, 39]  

The goal of this work is to demonstrate strategies for the selective exterior 

functionalization of large pore (>7 nm diameter) mesoporous silica particles with 

aminosilanes.  SBA-15 sphere (SBAS) materials are employed in this study, which are 

micron-scale particles with tunable large mesopores obtained through dual-surfactant 

templating and hydrothermal aging. Synthesis conditions have been chosen (90°C 

hydrothermal aging temperature) to obtain 5 µm – 15 µm particles, appropriate for 

imaging by CSLM, with 7.4 nm diameter pores. The aminosilanes, APTES and 

APTMEES, are selected for their differing reactivity and size. The density of amine 

functional groups on the silica particles as a function of reaction time with the precursor 

(10 or 20 minutes) is examined for both as-synthesized (materials with the pore template 

left in the pores) and template extracted materials using FTIR and by a fluorescamine 

assay following dissolution of the particles. Functional group location and protein 

accessibility in the functionalized material is confirmed via imaging using confocal 

microscopy after fluorescent tagging.  

4.3 Materials and Methods 

4.3.1 Materials 
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ACS Certified Hydrochloric Acid (12.1 M) and hexanes were purchased from 

Fisher Scientific. Tetraethyl orthosilicate (TEOS , ≥98%) and Fluorescamine (Synthetic, 

100% pure)  were purchased from Acros Organics.  Cetyltrimethylammonium bromide 

(CTAB, 98%) was purchased from Research Organics.  Ethanol (200 proof) was 

purchased from Decon Labs. Rhodamine B isothiocyanate (TRITC), fluorescein 

isothiocyanate (FITC, 90%),  3-aminopropyltriethoxy silane (APTES, 99%) and Pluronic 

P123 triblock copolymer ((EO)20(PO)70(EO)20 where EO is an ethylene oxide unit and 

PO is a propylene oxide unit, MWavg= 5800) were purchased from Sigma Aldrich. 3-

aminopropyltris(methoxyethoxyethoxy) silane (APTMEES, 95%) was purchased from 

Gelest Inc.  Lyophilized lysozyme (LYS, ≥20,000 units/mg) was purchased from MP 

Biomedicals.  Proteins were purified after tagging with TRITC using Thermo Scientific 

Pierce polyacrylamide desalting spin columns with 6K MW cutoffs from Fisher 

Scientific.  All dilutions were made using 18.2 MΩ DIUF water purchased from Fisher 

Scientific.  

4.3.2 Materials Synthesis 

Spherical SBA-15 particles were prepared using synthesis procedures adapted 

from Gartmann and Brühwiler, as modified from the work of Katiyar and Pinto.  [7, 70]  

Initially, 3.10 g of P123 were heated in a 250 mL round bottom flask in a 50°C oven until 

melted.  After this, 0.465 g of CTAB dissolved in 20 mL of deionized water was added to 

the P123.  This solution was placed in a water bath at 30°C and stirred vigorously while 

7.8 mL of 200 proof ethanol and 45.9 mL of 1.5 M HCl were added.  After the P123 

completely dissolved, 10 mL of TEOS was slowly added drop wise.  This solution was 

mixed for 2 hours.  After 2 hours, the solution was poured into a Parr 4748 Teflon lined 

reactor, sealed, and heated at 90°C for 3 days.  The sample was then homogenized in a 

high speed mixer and filtered over Whatman #5 filter paper in a 55 mm Büchner funnel.  

The synthesized material was split into two portions prior to amine functionalization 

(described below).  In one portion (labeled ‘extracted’), the template was removed via 

Soxhlet extraction with 200 mL refluxing ethanol over 24 hours.  The extracted materials 

were then filtered and dried in the oven at 80°C.  The ‘as-synthesized’ sample was placed 

in an oven at 80°C overnight, leaving the template present in the materials.   

4.3.3 Amine Functionalization of Mesoporous Silica 
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Extracted or as-synthesized material (200 mg) was dispersed in 10 mL of hexane 

in a 50 mL nitrogen-purged two-necked flask. To this solution, 190 µL of either APTES 

or APTMEES was added under vigorous mixing. This solution was stirred for either 10 

or 20 minutes under a nitrogen atmosphere. The materials were labeled as AsSyn- XM or 

Extracted- XM for as-synthesized or extracted, functionalized for X Minutes (0M (non-

functionalized), 10M or 20M). After the functionalization period, the particles were 

filtered from solution over Whatman #5 filter paper in a 55 mm Buchner funnel and 

rinsed with 25 mL hexane. These materials were then cured at 80°C for 24 hours. After 

curing, the materials were washed for 24 hours in 100 mL ethanol to remove any 

remaining surfactant (in both as-synthesized and extracted materials), filtered, and dried 

in an oven at 80°C overnight. 

Washed and dried functionalized APTMEES materials were re-suspended in 10 

mL hexane in a nitrogen-purged 50 mL two-necked flask. To this solution, 15 mg of 

FITC was added and mixed for 10 minutes. After mixing, particles were filtered over 

Whatman #5 filter paper, rinsed with 25 mL hexane and immediately placed in 100 mL 

ethanol under vigorous mixing to remove excess FITC. After 24 hours, materials were 

filtered from solution again and rinsed with copious quantities of ethanol over filter paper 

until the supernatant became colorless, indicating that the non-covalently bound FITC 

had been removed. After rinsing with ethanol, the materials were dried in an 80°C oven 

for 24 hours. APTES functionalized materials were tagged immediately following 

functionalization with 15 mg of FITC for 10 minutes followed by filtration over 

Whatman #5 paper and curing at 80°C overnight. Samples were washed in 100 mL 200 

proof ethanol for 24 hours, centrifuged out of solution and dried.  

4.3.4 Particle Characterization 

 Pore diameter and surface area were measured from nitrogen adsorption 

measurements (Micromeritics Tristar 3000) conducted at 77 K.  Samples were degassed 

at 120°C for a minimum of 4 hours under flowing nitrogen gas before analysis.  Specific 

surface area was estimated using the Brunauer, Emmett and Teller (BET) isotherm and 

the pore diameter was estimated as the peak in the pore size distribution calculated by the 

method of Barrett, Joyner and Halenda (BJH) using the adsorption branch of the nitrogen 

adsorption-desorption isotherm.  [125-127] The particles were imaged using a Hitachi S-
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4300 Scanning Electron Microscope (SEM).  SEM samples were prepared by sprinkling 

the particles onto double sided carbon tape and adhering the tape to 15 mm aluminum 

mounts.  Excess silica materials were blown off of the sample with nitrogen.  Samples 

were prepared 24 hours in advance and left in a desiccator prior to being sputter coated 

using an Emscope SC400 with a gold-palladium alloy before analysis. Particle diameters 

were measured from the captured SEM images using ImageJ software.   

 FTIR was used to observe the removal of template during the functionalization 

procedure. The removal of the surfactant pore template was examined by exposing as-

synthesized particles to hexane (the solvent used during functionalization) for 10 and 20 

minutes. The FTIR spectra of the original as-synthesized particles and the hexane-

exposed particles were analyzed for the presence of the pore template.  FTIR also 

provided a complementary method to particle dissolution (below) for the determination 

of the extent of aminosilane functionalization of the materials. All FTIR samples were 

ground at a concentration of 0.5 – 1.0 % by weight in anhydrous KBr.  Pellets were 

pressed and spectra taken using a desiccated and sealed ThermoNicolet Nexus 470 with a 

DTGS detector at room temperature.   Within the FTIR spectra, the areas beneath the 

CH2 stretching (2800 cm-1 to 3000 cm-1), Si-OH stretching (900 cm-1 to 984 cm-1), and N-

H bending (1570 cm-1 to 1740 cm-1) bands were calculated using Thermo OMNIC 

software, and were normalized using the area of the Si-O-Si stretching (980 cm-1 to 1330 

cm-1) band to account for small changes in the mass of the bulk silica sample being 

prepared.  

 The amount of amine incorporated on the particles was quantified from the 

presence of amines in solution following particle dissolution at basic conditions.  

Fluorescamine, which covalently binds to primary amines to form a fluorescent 

pyrrolinone, was used to quantify the amines in solution. [148]  Functionalized particles 

were dissolved over a 4 hour period in 30 mL of 0.02 M NaOH at room temperature 

under vigorous stirring. A 100 µL aliquot of the dissolved particle solution and 1.0 ml of 

1.0 mM solution of fluorescamine in acetone was added to 2.0 mL of phosphate buffered 

saline (PBS) at pH 7.4. The maximum fluorescence of this solution at 480 nm was 

monitored after excitation at 366 nm using a Varian Cary Eclipse fluorescence 

spectrophotometer.  Both excitation and emission slits were held at 5 nm. A calibration 
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curve with known amounts of aminosilanes was prepared by dissolving 30 mg of 

extracted, non-functionalized material in 30 mL of 80, 160 and 320 µM APTMEES 

solutions in 0.02 M NaOH. These calibration solutions (100 µL) were added to the PBS 

solution with fluorescamine and analyzed as described above.   

4.3.5 TRITC-labeled Lysozyme to Probe Pore Accessibility 

 Lysozyme, at a concentration of 10 mg/mL in 1 mL PBS, was labeled at a ratio of 

1:1 molar with TRITC for 24 hours at 4°C.  After 24 hours, samples were purified in 100 

µL aliquots according to the instructions provided with the Thermo Scientific spin 

columns (#89849). [149] New columns were unsealed and centrifuged for 1 minute at 

1,500 x g to remove excess gel liquid. Columns were equilibrated in PBS by applying 

100 µL PBS to columns and centrifuging at 1,500 x g for 1 minute. Proteins were 

purified by pipetting 100 µL of TRITC-Lys solution on the columns followed by 

centrifugation at 1,500 x g for 2 minutes. The accessibility of the particles to TRITC-

labeled lysozyme before and after amine functionalization was examined by diluting the 

protein solution to 200 µg/mL in ethanol and mixing 1 mL of the protein solution with 10 

mg of particles for 1.5 hours.  After 1.5 hours, samples were imaged using confocal 

microscopy.  

4.3.6 Confocal Scanning Laser Microscopy (CSLM) 

 Particles were prepared for CSLM (with a LEICA TSP SP5 confocal Microscope) 

by dispersing 10 mg of fluorescently tagged silica particles in 1 mL ethanol via vortex 

shaking for 24 hours. After 24 hours, one or two drops of the solution was placed on a 

glass slide, covered with a glass cover slip and sealed to prevent ethanol evaporation.  An 

argon laser was used to excite the fluorophores over a 63X objective.  The gain voltage 

on the laser was between 400 and 700 V.  The scan speed was 400 frames per second.  

FITC emission was detected via a standard photomultiplier tube detector. Particles 

exposed to TRITC-labeled lysozyme were used as prepared and dropped onto glass slides 

for imaging, as described above. TRITC emission was detected with a photon counting 

high definition detector. 

4.4 Results and Discussion 

 Selective external amine functionalization of mesoporous silica has previously 

been demonstrated for pore diameters ranging from 2.9 nm to 5.5 nm. [8, 62, 70, 71]  
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Selective functionalization for the largest pore diameter (5.5 nm) was achieved with 

APTMEES using as-synthesized (pore blocked) materials and verified visually using 

CSLM. [70]  For the purpose of extending selective functionalization techniques to 

larger-pore materials appropriate for protein loading, spherical silica particles with 

tunable pore sizes are synthesized by combining mixed cationic and non-ionic surfactant 

templating methods with hydrothermal aging. [4, 7] In our previous work, 5 µm to 15 µm 

spherical particles were synthesized with a pore size range of 5.4 nm to 11.6 nm 

(corresponding to hydrothermal aging temperatures between 60°C and 120°C). [27]  

These spherical particles are appropriate for the visualization of protein loading by 

CSLM based on their large pore sizes and easily recognizable spherical morphology.   

Adsorption of proteins into pores with diameters that are greater than the largest diameter 

of the protein by 1 nm to 2 nm was demonstrated.  Here, a synthesis temperature of 90°C 

was chosen to produce pore diameters of 7.4 nm, with a goal of producing accessible 

mesoporous silica materials for the model protein, lysozyme (3.0 nm x 3.0 nm x 4.5 nm).   

The pore diameters and surface areas of as-synthesized and pore template 

extracted mesoporous silica particles synthesized by mixed surfactant templating were 

measured using nitrogen adsorption. Surface areas were calculated using the BET method 

and modes of the pore diameter distribution were determined from the BJH pore size 

distribution plots. Pore size distribution plots can be seen in Figure 4.1. As-synthesized 

samples have 59 m2/g of external surface area with pore diameters of 6.0 ± 1.1 nm. As 

expected, template removal from the porous materials increases the measured surface 

area and pore diameter. The surface area and pore diameter of template extracted samples 

increases to 587 m2/g and 7.4 ± 1.0 nm, respectively.  Particles with spherical 

morphology and diameter of 7.34 ± 1.76 µm (n = 21 particles for this estimate) are 

obtained from this synthesis procedure, as seen in the representative SEM micrograph in 

Figure 4.2.   This morphology makes the particles easily identifiable under a confocal 

microscope.  Additionally, locating fluorescent protein probes and functional groups on 

the surface or interior of the particle is possible with spherical particles by performing z-

scans in the third dimension to define particle boundaries during imaging. 



58 
 

 

Figure 4.1 B.J.H. pore size distributions for 

materials synthesized after varying synthesis 

steps – as-synthesize, after extraction of the 

templates, and after 10 or 20 minutes of 

functionalization by APTMEES in hexane. 

 

 

Figure 4.2 SEM image of non-functionalized, 

extracted mesoporous silica (denoted Extracted-

0M). 

 

A time-dependent functionalization method was chosen to selectively modify 

both as-synthesized and template extracted materials. The location of the grafted 

aminopropyl silane groups on the particles was determined by tagging the amine groups 
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with the fluorescent probe (FITC) and imaging the particles using CSLM.  The effects of 

functionalization time (10 and 20 minutes) on the location of aminopropyl groups for 

APTMEES functionalization of as-synthesized and extracted materials are compared in 

Figure 4.3.  The removal of FITC from non-functionalized materials with ethanol 

washing is effective, resulting in no fluorescence of non-functionalized particles after 

washing. Selective, exterior functionalization is evident in Figure 4.3 for both as-

synthesized and extracted materials after 10 minutes of exposure to APTMEES in 

hexane. In contrast, after 20 minutes of exposure to APTMEES in hexane, incorporation 

of the amine group both on the exterior of the particles and in the pores throughout the 

particles is observed. Similarly, grafting of another common aminosilane, APTES, was 

examined in extracted particles after 10 minutes of functionalization.  Relative to 

APTMEES, APTES has significantly higher hydrolysis reactivity due to the reduced size 

of its alkoxy groups. [150] In spite of higher reactivity of APTES, selective surface 

functionalization is also observed for APTES grafted material after 10 minutes of 

exposure to particles in hexane (Figure 4.4), suggesting a similar time-dependence for 

selective functionalization as in APTMEES.  
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Figure 4.3 CSLM images of FITC tagged amine functional groups (green) before and 

after template extraction (left and center columns) for varying functionalization time. The 

materials after template extraction are simultaneously probed with TRITC tagged 

Lyszome (red).  All scale bars are 5.0 µm wide.  
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Figure 4.4 APTES functionalized 

mesoporous silica particles after 

FITC tagging. 

 

 Characterization of the effects of the reaction time for amine functionalization (0 

(no functionalization), 10 or 20 min) on the surface area and the overall extent of 

functionalization was performed using nitrogen adsorption, FTIR, and an amine assay on 

the dissolved particles. Only template extracted materials were characterized due to 

potential effect of remaining templating agents on the FTIR and nitrogen adsorption 

results. The effect of APTMEES functionalization on the pore diameters for extracted 

particles is similar for 10 and 20 minutes of functionalization (Table 4.1). Pore diameters 

of non-functionalized and APTMEES functionalized samples are 7.4 nm and 6.1 nm, 

respectively. The reduction in pore size can be attributed to the presence of amine 

functional groups either on pore walls or at the edge of the pore openings, where they can 

extend approximately 0.5 nm into the pore space, although pore diameter differences 

after before and after functionalization approach the associated error of measurement. 

[151] The accumulation of aminosilane functional groups at the pore opening of smaller, 

3.1 to 3.9 nm pores is well documented as a known artifact of post-synthesis 

functionalization. [151, 152]  
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Table 4.1 Pore diameter of materials after template 

extraction as a function of functionalization time 

using APTMEES 

Functionalization Time Pore Diameter (nm) 

0 min. (as extracted) 7.4 ± 1.0 

10 min. 6.1 ± 1.3 

20 min. 6.1 ± 1.4 

 

FTIR was used to qualitatively evaluate the functionalization of the particle 

surface with aminopropyl silane functional groups. Specific vibrational modes analyzed 

were the CH2 stretching associated with the aminopropyl silane, Si-OH stretching of 

surface silanols and the Si-O-Si stretching of the bulk silica sample.  All spectra are 

normalized by the area of their Si-O-Si stretching peaks (980 cm-1 -1330 cm-1), which is 

representative of the amount of bulk silica prepared in each KBr crystal sample. The 

FTIR spectra in the region 800 cm-1 to 1500 cm-1 (Figure 4.5A) highlights the Si-O-Si 

stretching (1085 cm-1) and the Si-OH stretching (970 cm-1). The greatest absorbance at 

970 cm-1 occurs prior to functionalization and is attributed to hydroxyl groups on the 

surface of the particles. This peak decreases as the surface silanols react with silanes to 

form siloxane bonds bound to aminopropyl silane groups during functionalization. After 

10 minutes of functionalization the normalized peak area is reduced by 72 %, followed 

by a further reduction to 19% of the original silanol content after 20 minutes of 

functionalization, indicative of increased surface functionalization as a function of time. 

As can be seen in Figure 4.5B, minimal CH2 stretching (2800 cm-1 – 3000 cm-1) occurs 

in non-functionalized, extracted samples. CH2 stretching associated with the propyl 

portion of the aminopropyl silanes increases fourfold after 10 minutes of 

functionalization, as compared to non-functionalized samples (as seen in Figure 4.5B). 

After an additional ten minutes of functionalization, a small increase of 3% in CH2 

stretching is seen. Although FTIR qualitatively describes particle functionalization, a 
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more quantitative method of particle dissolution was employed to measure the amount of 

aminosilane grafted to the particles.  

 

Figure 4.5 FTIR spectra of extracted (non-

functionalized) silica particles and silica 

particles after 10 or 20 min of 

functionalization using APTMEEES.  The 

regions are selected to highlight (A) the Si-

OH stretching band (970 cm-1) and (B) the 

CH2 stretching band (2985 cm-1). The 

FTIR spectra are normalized to the Si-O-Si  

stretching (1085 cm-1)  indicated in part in 

A.  
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Quantification of grafted APTMEES was performed via a fluorescence based 

amine assay following the dissolution of the silica particles in dilute sodium 

hydroxide.[151]  After particle dissolution, fluorescamine, which covalently binds to the 

free primary amines to create a fluorescent pyrrolinone product, was added to the 

solution. The quantity of APTMEES grafted to the particles was determined from the 

fluorescence intensity of the solution and quantified using a calibration curve (Figure 

4.6) developed from known quantities of APTMEES. After 10 minutes of APTMEES 

functionalization, grafting quantities reached 623.4 mg APTMEES per gram of silica 

sample (Figure 4.7). After an additional 10 minutes of grafting, the amount of amine 

increased by 45% to 906.0 mg/g. Each aminosilane covalently bound to the silica surface 

covers approximately 50 Å2 of surface area when present in a monolayer [153].  The 

quantities of grafted amines at functionalization times of 10 and 20 minutes correspond to 

3 - 5 times excess of monolayer coverage for the entire (internal and external) particle 

surface. This is consistent with the reaction conditions during particle functionalization. 

Although anhydrous solvents were used in nitrogen purged reaction flasks, water 

physiosorbed to the particle surface or minutely present in the reaction flask could induce 

hydrolysis and condensation between amino-silanes in solution and on the surface of 

particles, leading to multilayer formation. Although the deposition of aminosilane is 

significantly higher than monolayer coverage, the quantity of amine groups between 10 

and 20 minutes is in qualitative agreement with the visualization of amine 

functionalization presented in Figure 4.3. Increased quantities of amines are deposited 

after 20 minutes of functionalization, as compared to 10 minutes of functionalization. 
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Figure 4.6 Calibration curve used for amine 

dissolution assay. Fluorescence from known 

quantities of APTMEES mixed with 

fluorescamine reagent is shown. 

 

 

Figure 4.7 Quantity of amines grafted onto extracted 

particles as determined by the fluorescence emission 

of the fluorescamine-aminosilane derivative after 

particle dissolution.  
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Amine functionalization is observable in the pores deep within the particles after 

20 minutes of functionalization for both the as synthesized and template-extracted 

materials (Figure 4.3).  This finding is in contrast to an accepted approach to exterior-

only functionalization of mesoporous silica - functionalizing as-synthesized materials 

while leaving the template in the pores to limit the accessibility of the reactive organic 

silanes to the interior pore walls.  For small-pore silica materials (less than 5.5 nm), 

selective exterior functionalization using pore blocking with silanes has been confirmed 

with combinations of NMR, nitrogen adsorption, CSLM and FTIR. [8, 70, 71]  The 

effectiveness of this pore-blocking approach for the larger-pore silica materials was 

examined by quantifying the presence of the pore template in the materials after exposure 

to hexane, the solvent used for the functionalization with APTMEES.  FTIR spectra were 

measured for as-synthesized, 10 minute hexane-exposed, 20 minute hexane-exposed and 

Soxhlet extracted samples to compare the CH2 stretching band associated with the pore 

template. A quantitative comparison between each sample can be made by normalizing 

the CH2 stretching (between 2800 cm-1 and 3000 cm-1) to the bulk silica samples by 

dividing the area under the CH2 stretching band by the area under the Si-O-Si stretching 

band (980 cm-1 to 1330 cm-1). The raw FTIR spectra with marked CH2 and Si-O-Si 

stretching ranges are presented in Figure 4.8 of the supporting information. The 

normalized CH2 stretching associated with the pore template can be seen in Figure 4.9.  

There is a minor reduction in the quantity of template present after exposure to hexane; 

after 10 and 20 minutes of exposure to hexane, 92% and 83%, respectively, of the 

template present in the as-synthesized sample remains.  In contrast, the Soxhlet ethanol 

extraction process removes over 90 percent of the original pore template. These results 

suggest that the while some template may be extracted by hexane during 

functionalization, its removal is largely incomplete during the amine functionalization 

procedure used for the as-synthesized silica particles. These results suggest that interior 

pore functionalization occurs independently of pore template presence in these 

hydrothermally processed, large-pored materials.  
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Figure 4.8 FTIR spectra of as-synthesized, 

extracted and hexane treated (10 or 20 

minutes) samples. 

 

 

Figure 4.9 Normalized CH2 stretching of the pore 

template in as-synthesized material as a function of 

duration of exposure to hexane. Materials washed by 

Soxhlet extraction are presented as a reference, and 

denoted “extracted.” 

 

The demonstrated functionalization of the silica pores in the presence of pore 

template suggest that the pore blocking techniques used to achieve selective exterior 

functionalization of small pore mesoporous silica  may not be effective in materials 
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prepared by hydrothermal expansion of P123 micelles. Prior researchers have used 

mesoporous materials with smaller pore diameters, 2 nm – 4 nm, with CTAB as a pore 

blocking agent, and found evidence for selective external functionalization even with 

relatively long (on the order of hours) exposure periods to silanes in solution. [8, 71]  

Extended functional group exposure periods on the hour time scale are incompatible with 

the selective functionalization of the large-pored materials used here, which can be seen 

with full particle functionalization after 20 minutes.  Aminosilanes have previously been 

shown to remove pore template by displacing surfactants within 4.9 nm pores and to 

rapidly hydrogen bond to surface silanols within pores. [154, 155] APTES, as well as the 

similarly structured 3-aminopropyltrimethoxysilane (APTMES), have been shown to 

displace the positively charged head group of CTAB (the templating surfactant) during a 

10-hour period of refluxing, thus simultaneously displacing the template and 

functionalizing the pore walls [155]. This method of template removal and surface 

functionalization would not be evident in hexane exposure studies (Figure 4.9) due to the 

absence of aminosilane functional groups in the solution. Functionalization of both the 

external surface and the interior pore surface at longer functionalization times is 

consistent with the greater diffusion of aminosilanes into the pores, and perhaps increased 

template replacement with aminosilanes. In addition to displacement of the pore 

template, more rapid diffusion of APTMEES in the hydrothermally expanded CTAB and 

P123-based particles may be possible due to greater separation of the PEO blocks of the 

template from the silica walls due to increased hydrophobicity at elevated temperature. 

[25] At increased temperatures, water becomes a poorer solvent for the ethyleneoxide 

blocks of P123. Therefore at higher temperatures they retract into the hydrophobic core 

of the micelle, reducing their pore wall interactions. This reduced pore template – pore 

wall interaction, caused by high temperature synthesis, may increase the accessibility of 

aminosilanes to pore wall surfaces in the presence of P123 based templates.  

This work establishes through visualization a selective, surface functionalization 

strategy for mesoporous particles with pore sizes appropriate for the protein loading.   

The accessibility of the pores of these functionalized particles is verified using a model 

protein, fluorescently tagged lysozyme, which has previously been used to demonstrate 

pore accessibility in non-functionalized mesoporous silica materials as well as size 
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selective protein separations in these materials. [7, 119, 156] Lysozyme, a 14.6 kDa 

protein with dimensions of 4.5 nm x 3.0 nm x 3.0 nm [157], has been shown in literature 

to adsorb into pore diameters as narrow as 6.5 nm. [7, 119]  In this study, the favorable 

properties of the silica particles for CSLM imaging are used to visualize the accessibility 

of TRITC-tagged lysozyme for functionalized particles.  The difference in the excitation 

and emission wavelengths of the TRITC tagged lysozyme and FITC tagged amine groups 

on the surface of the particles allow their location to be imaged simultaneously.  

The location of TRITC tagged lysozyme within non-functionalized particles 

shows full penetration through the particles after 1.5 hours of passive protein loading 

(Figure 4.3). Although there is a pore diameter reduction after 10 and 20 minute 

functionalization, this reduction does not have an impact on the diffusion of lysozyme 

into the pores. Both selectively functionalized and fully functionalized materials are 

capable of loading lysozyme within pores throughout the particle. Previous reports using 

CSLM have visually confirmed accessibility of lysozyme within non-functionalized 

particles with 7.4 nm diameter pores, but this is the first documentation of simultaneous 

protein localization with selective external or full particle functionalization. [7] Similar 

amino-silane grafting attempts on smaller pored silica materials (4.0 nm pore diameter) 

block pores and significantly reduced pore accessibility to proteins – to the extent they 

have been used to permanently trap proteins within pores. [158] Similar to selectively 

functionalized materials, full functionalization of pore walls after 20 minutes of 

functionalization does not result in the clogging of pores, which would prohibit  

lysozyme diffusion into the pores.  This observation is significant not only because it 

suggests that protein-accessible particles with engineered external surfaces can be 

prepared by controlling silane exposure times, but also because simultaneous imaging of 

functional groups attached to pore walls within close proximity to proteins inside of pores 

is an enabling technology for future studies of functional group / protein interactions in 

confined nanopore spaces.  

4.5 Conclusion 

The selective placement of functional groups on mesoporous particles allows for 

two distinct local interactions of a particle with a solute or with its environment. Selective 

functionalization of large-pored, protein accessible materials has been shown to be 
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primarily dependent on the reaction time of the functionalization, where shorter exposure 

time (10 minutes vs. 20 minutes) to aminosilane precursors led to localization of 

functional groups only at the exterior of the particles. As indicated by CSLM, the location 

of grafted amine groups (on the exterior surface or in the pores) is identical for as-

synthesized (non-extracted) materials and extracted materials, indicating the 

ineffectiveness of the pore blocking method in selectively functionalizing large-pored 

materials prepared in this case by hydrothermal expansion of a P123 template. Although 

extended functionalization periods (in excess of an hour) can provide selective exterior 

functionalization in small pore blocked materials, aminosilanes in larger pored materials 

effectively replace template along pore walls, leading to pore wall functionalization.  

The accessibility of pores after functionalization is critical in maintaining the 

applicability of large pored-mesoporous particles. Pore diameters were found to be 

somewhat reduced after functionalization, from 7.5 nm to 6.1 nm, in both selectively and 

fully functionalized materials. This reduction is consistent with the length of an 

aminopropyl functional groups extending into a pore opening. Although pore diameters 

were reduced, pores were still accessible to the model protein(fluorescently tagged 

lysozyme (14.6 kDa 3.0 nm x 3.0 nm x 4.5 nm)).  Using both red and green fluorescent 

dyes, respectively, to tag proteins and particles, CSLM was used to simultaneously 

confirm the presence and full accessibility of lysozyme throughout non-functionalized, 

selectively external functionalized and fully functionalized particles.   Mesoporous silica 

materials have proven to be versatile platforms for biological interactions, although the 

ability to selectively locate functional groups on distinct particle surfaces can be difficult 

to verify.  As demonstrated here, the selective functionalization of  mesoporous silica 

with pore sizes appropriate for protein loading  permits tailored interactions on the 

particle surface while providing the opportunity for protein based biological function 

within pore  environments.  
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CHAPTER 5 

Effect of Pore Size on the Diffusivity of Tethered and Supported Lipid Bilayers in 

Mesoporous Silica 

5.1 Abstract 

 Incorporation of lipid bilayers on the surface and within pores of mesoporous 

silica particles provides for biomimetic approaches to analyte sensing and separations on 

high surface area platforms. The small diameter of typical mesoporous silica supports (50 

nm – 300 nm) limits direct investigation of bilayer properties. In this work, lipid mobility 

in lipid-filled mesoporous silica is investigated as a function of pore size using spherical, 

large diameter (greater than 5 μm) mesoporous silica (SBAS) particles. Large diameter 

particles provide for the visual characterization of fluorescent lipid location and lipid 

bilayer diffusivity via confocal scanning laser microscopy (CSLM) and fluorescence 

recovery after photobleaching (FRAP), respectively, as a function of location in the 

particle (surface, mid-core, and core). SBAS materials with 3.0 nm, 5.4 nm and 9.1 nm 

pores were filled with dipalmitoylphosphatidylcholine (DPPC) by evaporation 

deposition, followed by hydration and sonication to form bilayers. Steric constraints 

restrict the DPPC bilayers (approximately 4 nm in thickness) to the surface of the SBAS 

with 3.0 nm diameter pores, while bilayers were present throughout the  5.4 nm and 9.1 

nm pore diameters materials.. FRAP measurements indicate a pore size dependence on 

bilayer fluidity, with a 4.6 and 9.4 fold increase in bilayer diffusivity at the surface from 

3.0 nm pores to 5.4 nm and 9.1 nm pores, respectively.  Functionalizing silica surfaces 

with covalent lipid tethers (such as the lipid-like silane 13-

(chlorodimethylsilylmethyl)heptacosane (CDSMH)) can promote bilayer adhesion and 

stability as well as affect bilayer fluidity. Formation of bilayers within mesoporous silica 

functionalized with CDSMH was prohibited in both 3.0 nm and 5.4 nm pore diameter 

materials, and only permitted throughout 9.1 nm particles. The diffusivity of tethered 

bilayers was significantly compared to supported bilayers, by a factor of 3.4 in 5.4 nm 

pore diameter materials and  a factor of 1.4 in 9.1 nm materials. Diffusivity was reduced 

below the limit of detection in in 3.0 nm pored materials. This work presents a 

framework for interpreting high density loading of lipid bilayers within large pore 

diameter materials for bilayer based applications,  as well as a platform for investigation 
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of bilayer location and function within these chemically and physically tunable, high 

surface area silica materials.  

5.2 Introduction 

 Lipid bilayer membranes are synthetic analogues of the ubiquitous cell membrane 

found in biological systems. These biological membranes, coupled with numerous 

membrane associated proteins, control cell to cell signaling, selective membrane 

permeability, isolation of small molecules for detection and environmental sensing. [74] 

Mimicking these individual membrane functions in synthetic supported lipid bilayers is 

being explored for new molecule discovery, small molecule separations and catalysis.[74, 

75]  Solid surfaces provide physical stabilization of bilayers, tunable morphology and 

surface chemistry for applications, and allow for the use of surface characterization 

techniques to probe bilayer structure and function. [73] Mesoporous silica is 

morphologically versatile, capable of being synthesized in particles, thin film and 

membrane platforms, physically robustness and easily functionalized, making it an ideal 

support for lipid bilayers.[4, 15]   

Mesoporous silica nanoparticles, typically synthesized with  particle dimensions 

of 50 – 300 nm in diameter, have large surface areas and pore volumes which are suitable 

for drug loading and delivery [76]. Lipid bilayer enveloping of drug loaded nanoparticles 

have been used to design stealth particles and to develop therapies using membrane 

associated targeting peptides.[77]   Lipid bilayer membranes and membrane associated 

proteins have been incorporated in a variety of biosensor and small molecule sensing 

applications on nanoparticles due to their selectivity in molecular binding.[80] 

Membrane-based single molecule and ion transport devices have also been assembled 

around porous silica nanoparticles, using the large pore volumes as reservoirs for 

molecular transport.[78, 79]  

The self-assembled structure of supported lipid bilayers (SLBs) renders them 

sensitive to environmental stressors, particularly those found in biological environments. 

In order to stabilize these nano assemblies, functionalization of silica with moieties that 

mimic lipids is used to promote bilayer adhesion,  increasing stability against pH, 

temperature, ionic concentration gradients and other environmental factors that 

destabilize bilayers.[72] Silica can be easily functionalized for the purpose of forming 
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tethering bilayers (TLBs) using long chain alkane tethers[81], covalently bound lipid tails 

[82] and PEG-cushioned protein and peptide supports.[84, 85, 159]  

While silica nanoparticles have been effectively employed as bilayer and 

membrane protein supports, limited techniques exist to characterize bilayer – particle 

interactions both at the surface and in the interior of the particles. In particular, the 

fluidity of bilayers on supported surfaces is an important property in their application and 

has been demonstrated as a key modulator of membrane permeability and membrane 

protein insertion and activity in bilayers.[86, 87] Fluidity is dependent not only on the 

specific lipid composition of the bilayer, but also on temperature and support surface 

chemistry. [88, 89] The tethering of lipid bilayers effects bilayer mobility, reducing 

bilayer diffusivity as a function of tether density.[84, 85, 95, 160] 

Non-porous, micron diameter particles and non-porous thin films are common 

supports for the measurement and characterization of supported lipid bilayer diffusivity 

due to their respective large particle diameters (micron scale), suitable for microscopic 

visualization and surface characterization techniques.[88, 90-92] Confocal scanning laser 

microscopy (CSLM) has been employed for the characterization and visualization of a 

bilayer formation on non-porous supports, as well as the measurement of membrane 

fluidity via  fluorescence recovery after photobleaching (FRAP) in both large diameter 

non-porous particles [90, 91] and non-porous planar thin films.[161] The fluidity of lipid 

bilayers on porous silica thin films has recently been measured for 1-palmitoyl-2-oleoyl-

sn-glycero-3-phosphocholine (POPC) bilayers as a function of pore size (2 nm, 4 nm and 

6 nm). [96] Multiple templating chemistries and synthesis strategies were required to 

achieve this range of pore sizes.   Deposition of the lipid bilayers on the porous surfaces 

by vesicle rupturing resulted in sometimes inconsistent bilayer membranes across the 

pores, as determined from AFM and QCM-D.   Both the changes in surface chemistry 

due to synthesis conditions [88, 162] and the method of bilayer coating  [163] could 

contribute to inconsistent bilayer formation. While a trend of increasing pore diameter 

lead to increasing bilayer fluidity, these factors make the results difficult to interpret.   

Recent materials development has made possible the synthesis of spherical, large 

diameter (5µm to 15µm), pore size tunable (3 nm – 12 nm diameter) SBA-15 (SBAS) 

silica particles appropriate for characterization by CSLM. [7, 27] SBAS synthesis utilizes 
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both a dual surfactant templating system and hydrothermal aging to form spherical 

particles and tune pore size using a single synthesis approach. Coupled with CSLM, these 

materials make possible the nano-scale investigation of the interaction of both small and 

larger, biologically relevant molecules with silica as a function of pore size. SBAS 

particles have been used to investigate pore size dependent protein separations as well as 

protein protection in hydrolytic environments.  [7, 27]   

Lipid bilayer coating of silica particles, both nonporous and porous, is 

traditionally achieved by rupturing preformed bilayer vesicles on particle surfaces, 

enveloping particles. While effective at producing pore spanning supported lipid 

membranes, this method is ineffective of forming bilayers within pores. [109, 164] On 

the other hand,  the evaporation deposition of lipids into nano-pores and  subsequent 

rehydration and sonication into bilayers is an effective method to form bilayers within 

nano-porous colloidal crystals.[109] Evaporation deposition of lipids has been used for 

increased bilayer loading and membrane associated isolation of small molecules for 

detection in nanoparticle platforms.[52] In regard to nano-confinement of lipid bilayers, 

diffusivity effects on membranes have been evaluated by Ratto and Longo, using gel 

phase lipid rafts as physical barriers to diffusing fluid bilayers, discovering order of 

magnitude reductions depending on gel phase density. [165] Lipid bilayer confinement 

within nano-pores may exhibit similar effects with reduced bilayer fluidity in narrow pore 

diameters.   

Large diameter spherical SBAS mesoporous silica particles are capable of visual 

characterization using CSLM, which can be used to both confirm bilayer location within 

particles as well as measure the diffusivity of lipids at the surface of the particle and also 

within nano-confined pore spaces within the particle interior. The lipid 

dipalmitoylphosphatidylcholine (DPPC) is used as a model membrane system in this 

work to form bilayers (4 nm thickness) on the surface of and within particle pores. Lipids 

are deposited on particle surfaces via evaporation deposition and bilayers are formed via 

rehydration and sonication.  Pore size tunable SBAS particles are synthesized using 

hydrothermal aging temperatures of 60°C, 70°C and 120°C to produce respective pore 

diameters of 3.0 nm, 5.4 nm and 9.1 nm, ranging above and below bilayer thickness. 

Fluorescence recovery after photobleaching (FRAP) is used to determine the fluidity of 
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bilayers supported on the particle surface as well as within pores in the particle interior.   

The effect lipid tethering on bilayer formation and mobility in porous nanoparticles is 

investigated using the lipid silane (13-(chlorodimethylsilylmethyl)heptacosane 

(CDSMH)), which is lightly deposited on particles surfaces. Using confocal scanning 

laser microscopy, thin optical slices can be taken throughout particles in different 

locations, making possible the location confirmation and measurement of bilayer fluidity 

within particle pores. Coupled with surface measurements of bilayer fluidity, this 

information provides a more complete understanding of lipid dynamics within 

nanoporous silica materials.   

5.3 Materials and Methods 

5.3.1 Materials 

 ACS certified hydrochloric acid (12.1 M), 200 proof ethanol, chloroform (ACS 

Grade), phosphate buffer tablets (0.01M phosphate buffer, 0.0027M KCl, and 0.137M 

NaCl at pH 7.4) and 18.1 MΩ de-ionized ultra-filtered water were purchased from Fisher 

Scientific. Tetraethyl orthosilicate (TEOS, ≥98%) was purchased from Acros Organics. 

Cetyltrimethylammonium bromide (CTAB, 98%) was purchased from Research 

Organics. Pluronic P123 triblock copolymer ((EO)20(PO)70(EO)20 where EO is an 

ethylene oxide unit and PO is a propylene oxide unit, MWavg= 5800) was purchased from 

Sigma Aldrich. 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) was purchased 

from Avanti Polar Lipids (Alabaster, AL). The fluorescent lipid N-(Fluorescein-5-

Thiocarbamoyl)-1,2-Dihexadecanoyl-sn-Glycero-3-Phosphoethanolamine (DHPE-FITC) 

was purchased from Life Technologies (Carlsbad, CA). The lipid silane 13-

(chlorodimethylsilylmethyl)heptacosane (CDSMH) was purchased from Gelest Inc. 

(Morissville, PA).  

5.3.2 Materials Synthesis 

 Spherical SBAS-15 particles were prepared using synthesis procedures adapted 

from Gartmann and Brühwiler, as modified from the work of Katiyar and Pinto. [7, 70] 

Initially, 3.10 g of P123 were heated in a 250 mL round bottom flask in an 80°C oven 

until the P123 melted. This was then placed in a 30°C water bath and stirred vigorously 

while 7.8 mL of 200 proof ethanol, 45.9 mL of 1.5 M HCl, 0.465 grams of CTAB and 20 

mL of deionized water were added. After complete dissolution of P123, 10 mL TEOS 
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was added dropwise. This solution was then mixed for 2 hours. After mixing the solution 

was transferred to a Teflon lined bomb and kept at either 60°C, 70°C or 120°C in an oven 

for 3 days. After three days, the mixture was broken up under a high speed mixer and 

filtered over Whatmann #5 filter paper in a 55 mm Buchner funnel. The pore template of 

the material was then extracted in a Soxhlet extractor with 200 mL of refluxing 200 proof 

ethanol. The final sample was dried at 80°C and stored for use.   

5.3.3 Materials Characterization 

 Pore diameter and surface area were measured from nitrogen adsorption 

measurements (Micromeritics Tristar 3000) conducted at 77 K.  Samples were degassed 

at 120°C for a minimum of 4 hours under flowing nitrogen gas before analysis.  Specific 

surface area was estimated using the Brunauer, Emmett and Teller (BET) isotherm and 

the pore diameter was estimated as the peak in the pore size distribution calculated by the 

method of Barrett, Joyner and Halenda (BJH) using the adsorption branch of the nitrogen 

adsorption-desorption isotherm.  [125-127] The particles were imaged using a Hitachi S-

4300 Scanning Electron Microscope (SEM).  SEM samples were prepared by sprinkling 

the particles onto double sided carbon tape and adhering the tape to 15 mm aluminum 

mounts.  Excess silica materials were blown off of the sample with nitrogen.  Samples 

were prepared 24 hours in advance and left in a desiccator prior to being sputter coated 

using an Emscope SC400 with a gold-palladium alloy before analysis.  

5.3.4 Lipid Silane Surface Modification 

 For the formation of tethered lipid bilayers, particles were functionalized with 13-

(chlorodimethylsilylmethyl)heptacosane (CDSMH), which was added in amount 

significantly less than monolayer coverage in an attempt to lightly functionalize particle 

surfaces without blocking pores. Monolayer coverage was calculated using the 

approximate surface area of 59 Å2 for tethered silane attachment [83, 166] and assuming 

a 800 m2/g accessible surface area on all materials. Sufficient CDSMH was used to 

functionalize 10% of the calculated monolayer surface coverage.  In a 15 mL centrifuge 

tube, 10 mg of silica particles were combined with 5.5 mL of CHCl3 and 1.4 µL of 

CDSMH in a nitrogen purged bag. After sealing of the tube and removal from the 

nitrogen bag the sample tube was vortexed for 1 hour while CDSMH reacted with the 

particle surface. The CHCl3 was then blown off the sample under flowing air and the 
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sample was washed 3 times with 5.5 mL ethanol through repeated centrifugation cycles. 

After washing, the sample was dried in air at 80°C overnight. Surface functionalization of 

particles with the lipid silane CDSMH was confirmed using Fourier Transform Infrared 

(FTIR) spectroscopy. All FTIR samples were ground at a concentration of 0.5 – 1.0 % by 

weight in anhydrous KBr.  Pellets were pressed and spectra taken using a desiccated and 

sealed ThermoNicolet Nexus 470 with a DTGS detector at room temperature.   Within 

the FTIR spectra, the identified bands of interest were the CH2 stretching (2800 cm-1 to 

3000 cm-1), Si-OH stretching (980 cm-1), and Si-O-Si vibration (1070 cm-1) which 

identified the lipid silane, non-functionalized surface groups and bulk silica particle, 

respectively. For qualitative analysis of surface functionalization the areas beneath the 

CH2 stretching (2800 cm-1 to 3000 cm-1) and Si-OH stretching (915 cm-1 to 980 cm-1) 

bands were calculated using Thermo OMNIC software, and were normalized using the 

area of the Si-O-Si stretching (980 cm-1 to 1330 cm-1) band to account for small changes 

in the mass of the bulk silica sample being prepared.  

5.3.5 Supported and Tethered Lipid Bilayers (SLBs and TLBs) 

 Particles were coated in supported lipid bilayers of DPPC containing 0.5 % 

DHPE-FITC in a method adapted from Wang et.al.[82] In one 2 mL centrifuge vial, 10 

mg of particles (non-functionalized or lipid silane modified) were place in 0.5 mL 

CHCl3. In a second 2 mL centrifuge vial 20 mg of DPPC and 0.12 mg of DHPE-FITC 

were placed in 0.5 mL CHCl3. Solutions were sonicated separately for 5 minutes, 

combined and sonicated for an additional 30 minutes. After sonication, the CHCl3 was 

evaporated by blowing air over the centrifuge tube and then placing samples under high 

vacuum for a minimum of 12 hours. To form bilayers, samples were sonicated at 47°C 

for 1 hour in 1 mL phosphate buffered saline (pH 7.4). Samples were shook and 

sonicated for an additional 15 minutes while cooling to 25°C. Excess lipid was removed 

from the samples by washing with PBS, centrifuging at 1,000 x g and repeating 3 times.  

5.3.6 Differential Scanning Calorimetry (DSC) 

 DSC was used to confirm the formation of lipid bilayers on particle surfaces by 

measuring the gel to fluid phase transition temperature of DPPC bilayers on particles. 

Following the preparation of supported and tethered lipid bilayers on particles, particle 

suspensions were centrifuged at 1,000 x g to form a soft pellet. After formation of a soft 
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pellet, 10 uL of the pellet was hermetically sealed in a DSC sample pan. Thermograms 

were run on a TA Instruments Q600 DSC between 20ºC and 70ºC at a ramp rate of 

10ºC/min and returned to 20ºC at a cooling rate of 10ºC/min.  

5.3.7 Confocal Microscopy and FRAP 

 Samples of supported or tethered lipid bilayer particles were imaged within 2 

hours of preparation using a Leica TSP SP5 confocal microscope.  DHPE-FITC was 

excited at 496 nm with an argon laser at 6% laser power for imaging and emission was 

collected between 505 nm and 600 nm. Experiments were performed at 28°C over a 

x63/1.3 oil immersion objective. For FRAP experiments, one image was captured prior to 

bleaching, a 500 nm diameter disk was bleached once at 75% laser power, 5 images were 

captured at the fastest capture rate (1.3 seconds), 5 images were captured at 3 second 

intervals and finally 20 images were captured at 10 second intervals. Diffusivity was 

measured in three locations throughout the particle, at the particle cap, middle and core of 

the particle, (Figure 5.1). 

 

Figure 5.1 Location of FRAP 

measurements for determination of lipid 

diffusivity throughout the particle. 

Yellow columns indicate the path of 

photobleach light. 

 

Pixel intensity data for the 500 nm diameter bleach spot was collected as a function of 

time and averaged via the Leica FRAP Wizard software. The diffusivity of the lipid 

bilayers was calculated  from raw FRAP data modeled with the solution of the 

differential equation  describing diffusion in a disk shaped (bleach) spot [111]: 
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where f is the relative fluorescence recovery intensity as a function of time (t), I is the 

modified Bessel function and τD is the characteristic diffusion time. The relative 

fluorescence recovery is related to the measured fluorescence: 

 
𝑓(𝑡) =  

𝐹(𝑡) − 𝐹𝑜
𝐹𝑖𝑖𝑖 −  𝐹𝑜

 
(5.2) 

 

Fo  = fluorescence intensity at t = 0 and Finf  is the fluorescence at t = ∞ and F(t) is the 

raw fluorescence intensity as a function of time, t. The diffusivity is a function of the 

bleach spot radius, r, and the characteristic diffusion time:   

 
𝐷 =  

𝑟2

4 ∗ 𝜏𝐷
 

(5.3) 

 

The parameters of characteristic diffusion time and the fluorescence intensity at t = ∞ 

(Finf)  were determined by fitting the time-dependent diffusion data using MATLAB 

version R2012a and the lsqcurvefit function. Modeled diffusivity values and their 95% 

confidence intervals are reported in Tables A1-A11 in Appendix A. 

5.4 Results and Discussion 

Large diameter spherical SBA-15 (SBAS) mesoporous silica particles were 

chosen for this study due to their large particles size and spherical morphology, making 

them appropriate for imaging, and their tunable diameters, appropriate for investigating 

lipid bilayer formation and fluidity within nano-pores. SEM images of particles (Figure 

5.2) confirm their spherical shape and large diameters between 5 µm and 15 µm. The 

diameters of the hexagonally oriented pores formed in the dual templating surfactant 

system can be tuned using the hydrothermal aging temperature. Pores are templated from 

P123 and CTAB in the aqueous synthesis sol, where  the hydrophobic cores of the pore 

templates expands with increasing synthesis temperature creating larger pore 

diameters.[25] In this study, hydrothermal aging temperatures of 60°C, 70°C and 120°C 

resulted in pore diameters of 3.0 nm, 5.4 nm and 9.1 nm (Table 5.1). Materials were 

named to indicate the particle type and pore diameter (in nm), with SBAS indicating non-
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functionalized material after preparation and TLB indicating functionalization with the 

lipid bilayer tether (CDSMH), followed by the pore diameter. Synthesized pore diameters 

are below, near and above the thickness of the DPPC lipid bilayer (4.0 nm).[166] Surface 

area decreases and pore volume increases with increasing pore diameters (Table 1), 

expected trends for mesoporous silica. [126] TLB materials functionalized with CDSMH 

containing 12 and 14 carbon tails, similar in length to the 15 and 16 carbon tails of 

DPPC. After functionalization, pore diameters did not change, although surface areas and 

pore volumes decreased. This is consistent with the blocking of some of the pores during 

functionalization, thus lowering the overall surface area while not significantly reducing 

the pore diameter.  

 

Figure 5.2 SEM image of SBAS 

mesoporous silica particles synthesized at 

70°C.   
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Table 5.1 Surface area, pore diameter and pore volume as a 

function of pore diameter on bare silica (SBAS)  and silica 

following lipid silane tethering (TLB). 

Sample 

Surface Area 

(m2/g) 

Pore Size 

(nm) 

Pore Volume 

(cm3/g) 

SBAS-3.0 885 3.0 0.80 

TLB-2.9  579 2.9 0.51 

SBAS-5.4 866 5.4 1.28 

TLB-5.4 626 5.4 0.91 

SBAS-9.1 541 9.1 1.81 

TLB-9.0 488 9.0 1.63 

 

 Particle surfaces were lightly functionalized with the lipid silane to not block 

pores and to retain the properties of a primarily DPPC bilayer. Thermogravimetric 

analysis of materials was used to determine the surface coverage of CDSMH functional 

groups of TLB materials relative to their non-functionalized SBAS starting materials 

(Figure 5.3). Analysis revealed the lipid silane functionalization density was 

approximately 120 mg CDSMH / g particles, which equates to 9%, 14%, and 11% of 

surface area coverage for TLB-2.9, TLB-5.4 and TLB-9.0, respectively, after 

functionalization (Figure 5.4). For comparison, full CDSMH coverage of materials with 

800 m2/g surface area is approximately 1100 mg CDSMH / g silica material.[83, 166]  
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Figure 5.3 Thermogravimetric analysis 

(TGA) plots of materials before and after 

surface functionalization with CDSMH. 

 

 

Figure 5.4 Weight percentage difference 

between non-functionalized SBAS and 

functionalized TLB materials after 

thermogravimetric analysis at 700ºC.  

 

 Fourier transform infrared (FTIR) analysis of samples is used to verify attachment 

of CDSMH to the particle surface (Figure 5.5). Two sharp peaks associated with the C-H 

vibration of the long hydrocarbon chains of the lipid silane are clearly present at 2850 

cm-1 and 2930 cm-1 after functionalization. Additionally, the Si-O-Si network of the silica 

particles as well as remaining un-functionalized surface Si-O-H group vibration can be 



83 
 

seen at 1070 cm-1 and 960 cm-1, respectively.  A qualititative comparison of 

functionalization between each sample can be made by normalizing the CH2 stretching 

band (between 2800 cm-1 and 3000 cm-1) area of each sample by the Si-O-Si stretching 

band (980 cm-1 to 1330 cm-1) area of each sample (Figure 5.6) The area beneath the CH2 

stretching peaks increases approximately by a factor of two due to the functional group 

presence. The reduction of surface silanol groups as they are replaced by tethered 

CDSMH can also be used to compare the extent of functionalization by a tethered silane.   

A similar factor of two decrease in the Si-O-H peak area (915 cm-1 to 980 cm-1) relative 

to the Si-O-Si stretching band (980 cm-1 to 1330 cm-1) area of each sample also occurs 

after functionalization (Figure 5.6). 

 

Figure 5.5 FTIR analysis of materials before 

and after CDSMH functionalization 
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Figure 5.6 Normalized CH2 and SiOH 

vibration areas of CDSMH functionalized 

TLB materials compared to non-

functionalized SBAS.  

 

The lipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) was chosen for 

this study because DPPC membrane are frequently used as model membranes and 

primary constituent of cell membranes [94, 167] and because it has a phase transition 

temperature of 41°C, ensuring all bilayer measurements are made in the gel phase.[88] In 

addition to DPPC, the fluorescein-isothiocyanate tagged lipid DHPE-FITC is 

incorporated within the DPPC lipid mixture at 0.5% for visualization and FRAP 

measurements. Unilamellar vesicles for enveloping silica particles can be pre-formed 

from multilamellar vesicles by sonication or extrusion through polycarbonate 

membranes, which when mixed with nanoparticles adhere and wrap around the particle 

but do not enter the pores. [77, 90, 92, 109] Lipid enveloped SBAS materials with 9.1 nm 

pore diameters were prepared to demonstrate that, at even the largest of pore diameters 

investigated in this study, the particle is enveloped in a bilayer but preformed bilayers are 

not present in the pores (Figure 5.7).   In contrast, the solvent casting method of bilayer 

coating forms bilayers within nanoporous spaces, providing the opportunity to investigate 

bilayer mobility within pores at locations across the mesoporous particle. Solvent casting 

deposits lipid in pores via evaporation from chloroform, and uses sonication and 

rehydration to form bilayers within porous domains, when sterically feasible.  The 
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bilayers formed by this method have been demonstrated previously to be unilamellar, as 

indicated via TEM imaging of stained bilayers on 100 nm diameter silica nano-particles 

with 2.4 nm pore diameters.[72] DSC was used to confirm the bulk phase transition 

temperature of all supported bilayers within pores and on the outside of particles to be 

between 41°C and 43°C (Figure 5.8), which agrees with the phase transition temperature 

of pure DPPC bilayer vesicles. [167]  

 

Figure 5.7 Lipid enveloped SBAS 

material with 9.1 nm pore diameter. 
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Figure 5.8 Differential Scanning 

Calorimetry analysis of lipid bilayers 

supported on particles. 

 

 

After rehydration and bilayer formation of lipids deposited within the pores of 

SBAS-3.0 materials, bilayers are formed on the exterior of particles, as indicated by the 

halo of fluorescence around the particle. (Figure 5.9).  The enveloping of particles with 3 

nm pores most likely is due to the thickness of DPPC bilayers when fully hydrated, which 

is approximately 4.0 nm thick, prohibiting bilayer formation within the particles.[166] 

Rehydration of lipids with the pores of SBAS-5.4 and SBAS-9.1 materials results in lipid 

bilayer formation within pores (Figure 5.9).  
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Figure 5.9 Confocal microscopy images of Supported 

Lipid Bilayers (Column 1) and Tethered Lipid Bilayers 

(Column 2) on mesoporous silica with varying pore 

diameters.  

 

  

 CDSMH functionalized TLB particles were coated in lipid bilayers to form 

tethered bilayers using the same solvent casting method as used for SBAS materials. 

Following a similar trend to SBAS-3.0 particles, bilayers in TLB-2.9 materials were 
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formed only on the surface of particles (Figure 5.9). Ho et.al. confirmed a similar result 

on 200 nm diameter particles with 3.7 nm diameter pores by staining and imaging 

bilayers under TEM after formation, although a 70 fold increase in CDSMH used during 

synthesis relative to our study could have resulted in increased blocked pores and 

affected the interpretation of these results.[82]   

Bilayers formed on TLB-5.4 materials were excluded to the exterior particle 

surface, which is unexpected considering their pore accessibility in SBAS-5.4 materials 

(Figure 5.9). Lipid tethers have the potential to alter the interstitial water space between 

the lipid and support surface as well as decrease the diffusivity of the bilayer upon 

formation. [83, 159] . The relatively narrow pore diameter (5.4 nm) approaching the 

bilayer membrane thicknesses (4.0 nm)  coupled with perturbations in the membrane – 

support interstitial space may cause the available diameter of the pore to become too 

narrow to support bilayer formation within TLB-5.4 pores, resulting in exterior only 

bilayers on TLB-5.4 surfaces.  Within TLB-9.0 materials, bilayers form within pores as 

well as the surface of particles due to the significantly larger pore space, providing room 

for bilayers to organize within the pores (Figure 5.9).  

The diffusion of lipids on the surface of particles and throughout different 

locations within particles was measured using FRAP. In order to determine the diffusivity 

of lipids within pores of the materials, thin optical slices of particles were made through 

the equator of particles for core and mid-core FRAP measurements (Figure 5.1). For 

determination of bilayer diffusivity on the particle surface, and for particles that were 

enveloped by the bilayer (SBAS-3.0, TLB-2.9 and TLB-5.4 materials), cap FRAP 

measurements were made through thin optical slices of the top of particles (Figure 5.1). 

The diffusivity of supported bilayers on the surface of particles varies with pore 

diameter, with increasing mobility with increasing pore size (Figure 5.10A). Bilayers on 

SBAS-3.0 enveloped the external particle surface, therefore measurements were only 

made on the particle cap, where the measured diffusivity is 0.044x10-3 µm2/s. On SBAS-

5.4 and SBAS-9.1 materials, which possessed bilayers throughout the particles, average 

diffusivities between the core, mid and cap of the particles were 0.326 x10-3 µm2/s and 

0.574 x10-3 µm2/s, respectively. Interestingly, diffusivities were statistically identical 

between the core, mid and cap in each respective pore diameter, although were 
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statistically different between different pore diameters. These are the first measurements 

of bilayer diffusivity in lipid filled pores as a function of pore size and demonstrate 

consistent bilayer diffusivity throughout particles and on surfaces as a function of pore 

size. These results suggest long range, similar mobility of the bilayer throughout particles 

and at the surface. For comparison, POPC bilayers (Tm = -2ºC)  on the surface of porous 

silica thin films with 2 nm, 4 nm and 6 nm pores also show a pore size dependence on 

diffusivity, increasing with pore diameter.[96]  The pore size tuning methods in this work 

(hydrothermal aging) result in similar support surface chemistry and pore structure 

(hexagonal) for pore size comparison, where tuning in thin film systems required 

multiple different synthesis methods to achieve the reported pore size range, also 

resulting in different pore structures (Im3m and Pm3n). [96] Differences in support 

chemistry can result in orders of magnitude differences in measured bilayer diffusivity on 

planar supports.[88] Previous work highlights the surface-dependence of gel phase DPPC 

diffusivity on planar supports, where DPPC bilayers on mica and glass slide supports 

have diffusivities of  0.00009 µm2/s - 0.05 µm2/s, respectively.[88] DPPC fluidity within 

unsupported membrane vesicles is approximately 0.014 µm2/s, approximately two orders 

of magnitude larger than particle supported membranes, although within range of planar 

supported membranes.[168] Our measured diffusivities of gel phase DPPC fluidity on 

mesoporous silica are within these values.  Additional FRAP measurements of DPPC 

fluidity in multibilayers on glass slides reveal diffusivity of  ≤0.05 µm2/s, also a few 

orders of magnitude above the measured diffusivity in porous particles. Not surprisingly 

pore confined and supported DPPC bilayers possess reduced diffusivities as comparisons 

between supported POPC bilayers on non-porousr vs porous planar supports indicate 

higher diffusivities on planar supports as well.[96]   
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Figure 5.10 Diffusivity of DPPC bilayers 

A) freely supported on particle surfaces or 

B) tethered to particle surfaces on varying 

pore diameter (3.0 nm, 5.4 nm and 9.1 nm) 

materials. Error bars are representative of a 

minimum of 7 fluorescence measurements.  

 

 In addition to impacting the location of formed bilayers on porous particles, 

bilayers immobilized on lipid tethered surfaces have decreased diffusivities compared to 

non-tethered systems. TLB-9.0 diffusivity, where bilayer is present throughout particles, 

is reduced by a factor of 1.4 to 0.404 x10-3 µm2/s compared to SBAS-9.1 supported 

bilayers. As was previously discussed in TLB-5.4 images, constraints within pores 

prohibited the formation of bilayers within pore spaces, leaving bilayers only on external 
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particle surfaces. The diffusivity of this bilayer was reduced by a factor of 3.4 to 0.095 

x10-3 µm2/s throughout untethered particles as compared to SBAS-5.4 supported bilayers, 

indicating a clear reduction of diffusivity on the surface of particles due to tethering. 

Bilayer diffusivity on the surface of TLB-2.9 materials was below the limit of detection, 

as there was no recovery of fluorescence after monitoring for 180 seconds. This reduction 

in mobility is an indication of a combined effect of pore size and lipid tether on bilayer 

mobility, as lipid tethers reduce the overall fluidity of bilayers due to their inherent 

reduced as a function of tether density.[95]  

 This work is the first investigation of the behavior of lipid membranes within 

porous silica materials, with demonstrations of bilayer dynamics within particles, not 

limited to exterior surfaces only. Traditionally, lipid bilayers have been thought of as a 

surface coating on particle and planar systems to act as an interface between synthetic 

particles and their biological environments. Lipid-loaded mesoporous silica takes  

advantage of the high density hydrophobic core of bilayers upon loading into high 

surface area porous particles. Potential applications of lipid-loaded silica include small 

molecule separations, capable of sequestering hydrophobic small molecules, such as 

PCBs, from aqueous solutions, an area of active investigation for environmental 

remediation.[169] Additionally, small molecule transporters, such as boronic acids, have 

been used for the transport of hydrophilic small molecules across membranes.[170] These 

molecules are used to non-covalently bind and impart a lipophilic property to hydrophilic 

molecules, increasing their octanol:water partition coefficient and likelihood of bilayer 

uptake.  Lipid filled porous silica particles with high density hydrophobic membrane 

cores are capable of sequestering lipophilic molecule from solution for hydrophobic 

molecule uptake, an active area of research for aqueous separation and purification 

applications. 

5.5 Conclusion 

 The diffusivity of lipids in nano-porous regions is dependent on both the diameter 

of the nano-pore to which it is confined as well as to the surface chemistry upon which 

the bilayer is interacting. The large particle, tunable pore size platform used in this work 

provides the opportunity to visualize and study bilayers within particle pores and is the 

first demonstration of bilayer diffusivity investigation within multiple locations 
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throughout the same particle and across a variety of pore diameters.  Bilayer diffusivity 

increases with increasing pore size and is  independent of bilayer location within the core, 

mid or cap of the particle, suggesting uniform long range bilayer mobility in lipid filled 

pores. Tethering bilayers with the lipid silane CDSMH, significantly reduces the 

diffusivity of bilayers throughout the largest pore diameter particles by a factor of 1.4. In 

pore diameters (5.4 nm) approaching the thickness of a lipid bilayer (4 nm), lipid tethers 

within the pore forced lipid bilayers from forming permitting particle surface only 

formation, reducing bilayer diffusivity on the cap by a factor of 3.4. This is potentially 

due to perturbations in the interstitial membrane supporting water space reducing the 

working diameter of the pore, prohibiting bilayer formation.  Large diameter particles are 

uniquely capable of optical slicing, permitting inner pore measurements of bilayer 

dynamics in nano-pores capable of extension into understanding membrane protein 

dynamics within membranes or the diffusion of guest small molecules through 

membranes and into lipid filled pores.  
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CHAPTER 6 

Mesoporous Silica Micro-Particles as Whole Cell Plasma Membrane Supports 

6.1 Abstract 

 The potential applications of supported lipid bilayers for sensing and separation 

are limited by the ability to incorporate functional transmembrane proteins in synthetic 

lipid bilayer vesicles, the traditional starting point for adhering the bilayer to the support. 

This work demonstrates the formation of supported lipid bilayers on mesoporous silica 

particles using plasma membrane microsomes as the source of the lipid bilayer.  Direct 

transfer of these microsomes, vesicles composed of cell plasma membranes and 

membrane associated proteins expressed from mammalian cell lines, to the support have 

the advantage of maintaining proteins in their physiological lipid environment for 

increased stability.  The synthetic versatility of silica particles, with tunable surface 

chemistries, particle sizes (50 nm – 15 µm) and pore diameters (2 nm – 30 nm), makes 

them an ideal platform for the investigation of bilayer integrity and membrane protein 

functionality.  In this work, epidermal growth factor receptor (EGFR) is expressed in 

HEK293 cells, which are used to form plasma membrane microsomes via nitrogen 

cavitation, rupturing cells for membrane microsome reformation in solution, and 

purification via ultra-centrifugation. Microsome bilayers are adhered to spherical 

mesoporous silica particles (5.4 nm pore diameter) of large particle diameter (5 µm – 15 

µm) appropriate for confocal imaging, and the integrity of the bilayer, and presence and 

selective ligand binding to the protein receptor is confirmed visually using a fluorescently 

tagged Epidermal Growth Factor (EGF) ligand. This work establishes an approach to 

synthesize supported bilayers on porous substrates that is generally applicable to the 

incorporation of membrane associated proteins and  provides stabilization in their 

physiological lipid mixture throughout the process of bilayer adherence on the support. 

6.2 Introduction 

 Mesoporous silica materials (MSMs) are a versatile support for investigating lipid 

bilayer membranes and their applications. [80] MSMs can be synthesized in a variety of 

morphologies, including thin films, particles and membranes, versatile for specific 

supported lipid membrane applications.[3, 15] Traditional formation of supported lipid 

bilayers on particle surfaces is performed via enveloping particles in preformed vesicles 
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composed of synthetic lipids. [76, 109] Both extrusion and sonication can be used to form 

vesicles and, upon mixing with particles, vesicles rupture on particle surfaces, enveloping 

the exterior. [76, 109] Lipid bilayers supported on spherical silica particles have been 

used for isolation of small molecules for detection, to investigate ligand binding to 

membrane proteins and to separate small molecules.[73-76, 78] In addition to their 

synthetic versatility, porous silica systems are physically robust and can be chemically 

tailored for specific applications. Specifically, silica surfaces can be modified with lipid-

like alkane tethers to promote membrane adhesion to solid supports.[81, 82] These 

covalent tethers are used to enhance membrane stabilization on supports against pH, 

temperature and ionic strength gradients as well as influence bilayer fluidity.[72] 

   Although non-porous particles can be enveloped with lipids to form lipid 

membrane supports, their surface can limit membrane transport and function, particularly 

the function of membrane proteins. Non-covalent interactions between membrane 

associated proteins and non-porous surfaces limit protein function and fluidity within 

supported bilayers.[160] In contrast, the porosity at the surface of porous supports 

provides space for the incorporation of transmembrane proteins through the lipid bilayers, 

potentially limiting the protein / support interactions.[91] For small molecule separation 

applications, the pores of mesoporous silica particles act as reservoirs for membrane 

transport and storage or release of small molecules through the bilayer.[78] Small 

molecule separations have been performed on the surface of nanoporous silica 

nanoparticles using the transmembrane proteins Gramicidin A and Cyctochrome C for 

selective transport of ATP and ions, respectively, through lipid bilayer membranes and 

the pores of the silica support.[78, 79] In addition to molecular transport, pore associated 

proteins have been demonstrated as effective molecular sensing devices using fluorescent 

responses from ligand-receptor binding in particle supported membranes.[92] 

 The incorporation of functional proteins on supported lipid membranes requires 

the retention of protein function after removal from the physiological environment of the 

cells used to express the protein and reincorporation into synthetic lipid bilayers, which is 

often challenging for integral proteins.[80] Supporting cell derived membranes on 

particle surfaces is preferred as it keeps all membrane proteins in their native 

physiological lipid mixture, aiding in retention of functionality.[80] Nonporous silica 
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particles have been used to support natural yeast membranes, where membrane 

functionality was demonstrated by the synthesis of chitin in solution.[171] Hemolysed 

red blood cells have also been coated on the surface of nonporous and porous (400 nm 

pore diameter) silica chromatography packing  (3 µm to 5 µm in diameter) and 

adsorption was confirmed via fluorescent antibody staining.[163] Most recently, porous 

silica particles (100 nm pore diameter) were used as supports for cell organelles 

(sarcoplasmic reticulum), containing the transmembrane protein Ca2+-ATPase which 

hydrolyses ATP. [172] Reticulum coated particles were demonstrated as effective 

biocatalytic reactors in a packed column for flow through ATP hydrolysis.  

Recent efforts in separating cell organelles have led to methods of purifying cell 

membranes into plasma membrane vesicles potentially ideal for transfer onto particle 

supports.[100] Gene transfection, introducing foreign nucleic acids to produce genetically 

modified cells, has made the expression of a variety of membrane proteins and 

components of interest possible, a powerful technique for investigation of protein 

function and gene regulation.[173] Cell plasma membranes separate intracellular 

components from the extracellular environment and possess many complex protein 

structures involved in signal transduction and transport.[97] Direct cell membrane 

deposition techniques on synthetic supports are crude. When membranes do not directly 

transfer by mixing particles with cells, methods of covalently tethering membranes on 

particle surfaces and shearing off the remaining cell have been employed.[163, 174] 

Transfer of cell-derived plasma membranes from genetically unmodified or modified 

cells onto silica particle supports has yet to be demonstrated.   

Formation of cell membrane vesicles, microsomes, from mammalian cells can be 

performed via nitrogen cavitation, where whole cells are ruptured and membrane 

microsomes are allowed to self-assemble in solution. [175] Purification via 

ultracentrifugation results in pure microsomes composed of the original cell membrane 

and membrane associated proteins and molecules in their physiological lipid mixtures. 

Recent work has demonstrated the effectiveness of this method in the formation of 

microsomes from HEK293T cells, demonstrating the versatility of gene transfection via 

controlled receptor expression to evaluate receptor-ligand binding and membrane protein 

function in vesicles via single molecule fluorescence correlation spectroscopy.[176] The 
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incorporation of cell derived membrane microsomes on particle platforms is envisioned 

as possible via microsome enveloping of particles similar to traditional synthetic vesicle 

enveloping methods. This work demonstrates the formation of supported lipid bilayers 

onto mesoporous silica particles directly from microsomes containing a membrane 

protein receptor. Mesoporous (5 nm pore diameter) spherical silica particles are 

synthesized with particle diameters (5 µm – 15 µm) appropriate for visual confirmation 

of  bilayer immobilization  and  ligand binding via confocal scanning laser microscopy 

(CLSM).  Using nitrogen cavitation, microsomes are formed from HEK293T plasma 

membranes and purified using ultra centrifugation, resulting in cell membrane vesicles 

composed of original plasma membrane lipid mixtures and membrane associated 

proteins. Microsomes derived from cells with and without the membrane receptor 

epidermal growth factor receptor (EGFR) are adhered to the silica surface by vesicle 

rupturing.  Confocal microscopy is used to confirm membrane adhesion to particle 

surfaces, receptor orientation and activity via ligand binding and membrane integrity via 

ligand exclusion from particle pores.  

6.3 Materials and Methods 

6.3.1 Materials  

 ACS Certified Hydrochloric Acid (12.1 M) and 18.2 MΩ  DIUF water were 

purchased from Fisher Scientific. Tetraethyl orthosilicate (TEOS , ≥98%) was purchased 

from Acros Organics.  Pluronic P123 triblock copolymer ((EO)20(PO)70(EO)20 where EO 

is an ethylene oxide unit and PO is a propylene oxide unit, MWavg= 5800) and phosphate 

buffered saline tables (Product P4417) were purchased from Sigma Aldrich. 

Cetyltrimethylammonium bromide (CTAB, 98%) was purchased from Research 

Organics.  Ethanol (200 proof) was purchased from Decon Labs. The membrane dye 3,3-

dioctadecyloxacarbocyanine perchlorate (DiO) was purchased from AAT Bioquest. 

Plasma membrane microsomes produced by nitrogen cavitation from HEK293T cells and 

HEK293T cells transfected with Epidermal Growth Factor Receptor (EGFR) were 

provided from the laboratory of Dr. Chris Richards (University of Kentucky, Department 

of Chemistry). These microsomes were produced as described in [176]. Epithelial 

Growth Factor (EGF) conjugated with biotin and linked via streptavidin to the 

fluorophore Alexa647 were purchased from Life Technologies (# E-35351).  
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6.3.2 Materials Synthesis 

Spherical SBA-15 particles were prepared using synthesis procedures adapted 

from Gartmann and Brühwiler, as modified from the work of Katiyar and Pinto.  [7, 70]  

Initially, 3.10 g of P123 were heated in a 250 mL round bottom flask in a 50°C oven until 

melted.  After this, 0.465 g of CTAB dissolved in 20 mL of deionized water was added to 

the P123.  This solution was placed in a water bath at 30°C and stirred vigorously while 

7.8 mL of 200 proof ethanol and 45.9 mL of 1.5 M HCl were added.  After the P123 

completely dissolved, 10 mL of TEOS was slowly added drop wise.  This solution was 

mixed for 2 hours.  After 2 hours, the solution was poured into a Parr 4748 Teflon lined 

reactor, sealed, and heated at 70°C for 3 days.  The sample was then homogenized in a 

high speed mixer and filtered over Whatman #5 filter paper in a 55 mm Büchner funnel.  

Pore templates were removed via Soxhlet extraction with 200 mL refluxing ethanol over 

24 hours.  The extracted materials were then filtered and dried in the oven at 80°C.  

Materials were crushed in a mortar and pestle and then sieved through a 50 µm sieve 

prior to use.  

6.3.3 Materials Characterization   

 Pore diameter and surface area were measured from nitrogen adsorption 

measurements (Micromeritics Tristar 3000) conducted at 77 K.  Samples were degassed 

at 120°C for a minimum of 4 hours under flowing nitrogen gas before analysis.  Specific 

surface area was estimated using the Brunauer, Emmett and Teller (BET) isotherm and 

the pore diameter was estimated as the peak in the pore size distribution calculated by the 

method of Barrett, Joyner and Halenda (BJH) using the adsorption branch of the nitrogen 

adsorption-desorption isotherm.  [125-127] The particles were imaged using a Hitachi S-

4300 Scanning Electron Microscope (SEM).  SEM samples were prepared by sprinkling 

the particles onto double sided carbon tape and adhering the tape to 15 mm aluminum 

mounts.  Excess silica materials were blown off of the sample with nitrogen.  Samples 

were prepared 24 hours in advance and left in a desiccator prior to being sputter coated 

using an Emscope SC400 with a gold-palladium alloy before analysis. Particle diameters 

were measured from the captured SEM images using ImageJ software.   

6.3.4 Microsome Preparation and Adhesion 
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 Purified membrane microsomes were passed through a 200 nm polycarbonate 

membrane extruder (Avestin LipoFast, Ottawa Canada) two times prior to use. Extruded 

microsomes were then tagged with DiO (stock solution 1 mg/mL in DMSO) at a final 

concentration of 11 µM for imaging. Prior to microsome immobilization to particle 

surfaces, dry particles were pre-wet with PBS. To 1 mg of particles, 500 µL of PBS was 

added and vortex mixed overnight. Particles were centrifuged for 2 minutes at 17,000 x g. 

Particles were then mixed with extruded microsomes (250 µL) for 1 hour prior to 

imaging.  

6.3.5 Microparticle imaging of bilayer and ligand 

 To image EGF ligand binding to membranes on particles, 1 µL of a 33µM EGF-

Alexa647 solution was added to particles and mixed for 5 minutes to allow for binding. 

Approximately 15 uL of particle sulitions were placed on a glass slide, covered with a 

cover slip and sealed prior to imaging on a Leica TSP SP5 confocal microscope. An 

argon laser at 488 nm was used to excite DiO while a helium neon laser at 633 nm was 

used to excite Alexa647. The gain voltage on photomultiplier tubes was kept at 750 V for 

all imaging. The DiO excitation laser was turned off while imaging Alexa647.  

6.4 Results and Discussion 

 Materials synthesis procedures result in the formation of spherical, large diameter 

SBA-15 (SBAS) silica particles. SEM imaging of particles after synthesis confirms their 

uniform, spherical morphology and particle diameter (Figure 6.1). BET analysis of these 

materials confirms the pore size as 5.4 nm with a surface area of 866 m2/g. Although 

SBAS materials were chosen for this investigation, previous publications from our 

laboratory group have demonstrated the synthetic versatility of these materials.[27] Pore 

diameters between 3 nm and 12 nm are possible by hydrothermally aging materials at 

different temperatures between 50ºC and 120ºC. Previous work in our lab has used tuned 

pore diameters between 3.0 nm and 9.1 nm for the investigation of lipid bilayer properties 

in nano-porous domains and the effect of bilayer immobilization method on location 

within particles.(Schlipf 2015) Solvent evaporation of lipids (DPPC) and rehydration into 

bilayers permit bilayer formation within particle pores and on particle surfaces within 5.4 

nm pored materials. On the other hand, formation of lipid vesicles via extrusion and 

rupturing on particle surface lead to exterior only lipid bilayers on much larger, 9.1 nm 
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pored materials, with similar results expected of microsome adhesion on narrower pored 

5.4 nm materials.    

 

Figure 6.1 SEM image of SBAS 

materials after synthesis and 

template extraction. 

 

  Preparation of plasma membrane vesicles (microsomes) is performed via 

nitrogen cavitation where cells are lysed and membrane microsome components reform 

in solution spontaneously. Microsomes were purified from other cell lysates via 

ultracentrifugation of solutions to produce purified microsomes of approximately 180±20 

nm diameter.[100, 176]  . HEK293 cells were used for microsome preparation and were 

expressed with epidermal growth factor receptor (EGFR) to confirm the ability to retain 

receptor activity (via ligand binding) after isolation in microsomes and adhesion to 

particles surfaces.[176] EGFR is a model receptor for the demonstration of transfer of 

protein function from the microsome to the supported bilayer via active ligand binding 

from solution, indicating receptor activity and correct receptor orientation in the 

membrane.[177] Receptor orientation within the membrane is believed to be random as 

microsomes form spontaneously in solution after rupturing of cells via nitrogen 

cavitation. Also, receptor binding is seen in microsomes prior to adhesion on 

particles[176] and herein after rupturing, indicating receptor accessibility on both 

membrane faces. 



100 
 

 Confocal scanning laser microscopy (CSLM) was used to confirm both membrane 

bilayer location on particles and locate the ligand using two distinct fluorescent tags for 

simultaneous visual confirmation on particles. The membrane dye, DiO preferentially 

orients itself within bilayers where it becomes fluorescent upon insertion, confirming 

bilayer presence. Upon exposure to particles without lipid bilayers, DiO exhibits minimal 

fluorescence, where only background noise is apparent in Figure 6.2A. Additionally. The 

ligand affinity for silica particles was investigated in absence of membranes as well, 

Figure 6.2B, showing significant nonspecific interactions. The adsorption and diffusion 

of the Alexa647tagged ligand appears similar to that of the Enhanced Green Fluorescent 

Protein (EGFP) penetration into pore diameters approaching protein 

dimensions.(Chapter 6.3). The EGF ligand is a 53 amino acid structure, approximately 6 

KDa in molecule weight attached via biotin to streptavidin which has approximately 2-3 

linked Alexa647 fluorophores. Within this complex, the 52.8 KDa streptavidin is the 

largest molecule with approximate dimensions of 5.8 nm x 7.3 nm x 6.4 nm.[178] With 

dimensions slightly larger than the pore diameter of 5.4 nm, build-up of ligand on particle 

surface is expectedly seen (Figure 2B).   

A 

 

B 

 
Figure 6.2 A) Membrane tag DiO non-fluorescent in solution with particles. 

B) Ligand EGF-Alexa647 shows nonspecific binding to silica particles and 

diffusion within cores. 
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 Membrane adhesion to particles was visually confirmed (Figure 6.3A and C) via 

DiO fluorescence after membrane incorporation. Both non-EGFR expressed and EGFR 

expressed membranes on particles possess continuous bilayers around the outside of 

particle supports. In EGFR expressed microsomes, locations of high intensity DiO 

emission potentially signal differences in membrane composition.  

 EGF affinity for non-expressed microsomes was evaluated to ensure membrane 

association in EGFR expressed samples is receptor mediated. Non-EGFR expressed 

microsomes were adhered to particle surfaces and exposed to EGF (Figure 6.2B) 

confirming no EGF ligand association with non-expressed membranes. Although no 

ligand association is seen on membranes, the  Alexa647 fluorescent tag of the EGF ligand 

can be seen in the surrounding environment confirming its proximity in solution. Upon 

exposure of EGF to supported EGFR expressed membranes, clear EGF association can 

be seen on the membrane surface as intense local fluorescent spots from the Alexa647 tag 

at the membrane surface (Figure 6.3D).  Ligand binding with EGFR on particle surfaces 

demonstrates receptor binding site accessibility to the ligand, indicating a rite site out 

protein orientation, accessible to EGF in solution.[177] Receptor orientation is critical, 

and many membrane immobilization methods, such as tethered cell shearing and particle 

mixing cells, result in distinctly inside out membrane orientation.  
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A) 

 

B) 

 
C) 

 

D) 

 
Figure 6.3 A) Non EGFR expressed microsomes adhered to particles B) 

Non EGFR expressed microsomes on particle surface in presence of EGF 

ligand without binding C) EGFR expressed microsomes adhered to particle 

D) EGF ligand binding to EGFR on membrane surface 

 

 In addition to determining ligand association with both non-expressed and EGFR 

expressed supported membranes, membrane integrity can be inferred from Figures 6.2 

and 6.3. Substantial non-specific binding of EGF ligand onto silica particles can be seen 

in Figure 6.2B with significant build-up of ligand at the surface of the particles. In 

contrast, in both non-expressed and expressed supported membranes there is no build-up 
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of ligand at the membrane surface. Membrane sealing of porous particle cores is 

important as our future work progresses toward evaluating membrane protein transport 

functions, such as that of the chloride channel cystic fibrosis transmembrane receptor 

(CFTR), expressed and preliminarily investigated in HEK293 microsomes.[176] 

6.5 Conclusion 

 This work presents a direct method of transmembrane protein incorporation onto 

synthetic platforms for investigation, circumventing the often troubled method of re-

incorporation of purified proteins in synthetic membranes. Mesoporous silica materials 

are an ideal support for lipid bilayer membrane immobilization as pores permit 

membrane flux, surface porosity promote membrane protein function and morphological 

versatility provide application specific support structures. Unfortunately, incorporation of 

functional membranes proteins into synthetic lipid bilayers has proven difficult. Methods 

of membrane protein separation from biological sources and reincorporation, using 

detergents to solubilize the protein, lead to protein denaturation and loss of functionality. 

Incorporation of cell membrane microsomes via fusion to silica particles permits the 

incorporation of transmembrane proteins in their native physiological membrane.  

 Herein we demonstrate a method of adhering cell derived membranes onto 

particles in a similar method used to adhere synthetic lipid vesicles via vesicle rupture 

and enveloping on particle surfaces. Cell membranes vesicles (microsomes) were derive 

from cell membranes via nitrogen cavitation and purified via ultracentrifugation for 

adhesion to particle supports. Prior to microsome formation, cells were genetically 

modified to express the epidermal growth factor receptor as a model membrane protein to 

confirm transfer of functioning, ligand accessible receptors on particles supports. 

Membrane-ligand association is only seen on EGFR expressed membrane with no ligand-

membrane association seend on non-expressed membranes. The ability to directly 

transfer transmembrane proteins in stabilized, physiological lipid membranes onto porous 

supports opens new avenues for the development of sensing, separation, and catalysis 

based on functional membrane proteins.  
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CHAPTER 7 

Conclusions and Future Directions 

7.1 Conclusions  

 Chapters 2 through 6 of this work have outlined the application a porous, large 

diameter synthetic particle for the investigation of interactions at the biological interface. 

The porous inorganic material used in this work is synthesized from the precursor 

tetraethoxylorthosilane while a dual surfactant system (CTAB and P123) is used to 

control both particle morphology (spherical) and pore diameter. The surfactant pore 

template is sensitive to the materials synthesis temperature, making possible the tuning of 

pore diameters in the final material. In addition to tuning material properties during 

synthesis, materials can be post-synthetically functionalized to impart application specific 

surface chemistries. A literature survey of mesoporous silica synthesis, applications with 

proteins, surface chemistries and lipid bilayers can be found in Chapter 2.   

 Porous silica particles supporting active enzymes within pores are frequently used 

as a biocatalytic platform. Understanding the interaction and diffusion of proteins within 

particles and on the surface of supports is of great interest. In Chapter 3, the synthesis and 

application of pore size tunable, large diameter particles was demonstrated in the 

protection of fluorescent proteins as a function of pore diameter, controlled via 

hydrothermal aging. The fluorescent protein EGFP and the protease Pepsin A were 

employed to demonstrate pore size dependent diffusion and protection within the tuned 

pore diameters (5.4 nm – 11.6 nm). For the smallest diameter pores, neither EGFP nor 

Pepsin A were capable of diffusing into pores and EGFP was thus hydrolyzed from the 

surface of the particle. Between the pore diameters of 7.3 nm and 11.3 nm EGFP protein 

diffusion in the pores was seen, with the greatest retention of protein fluorescence, and 



105 
 

thus activity, seen at a pore diameter of 7.3 nm. At 11.6 nm, full accessibility to both 

EGFP and Pepsin A was observed and all fluorescence within the pores was removed by 

the hydrolysis of EGFP by Pepsin A. There are two major contributions of this result to 

the field of protein immobilization of porous supports. When matching the accessibility 

of proteins to pore diameters, around 1 nm – 2 nm of space is required to allow proper 

diffusion into the pores. Also, a method is developed to remove proteins from the surface 

of particles. Pepsin A was shown as a tool to hydrolyze proteins from the surface of 

particles and its larger size is well applied to limit its accessibility to pores while proteins 

within pores retain their function.  

 In Chapter 4 the selective surface functionalization of these large diameter, 

protein accessible materials was demonstrated. The surface functionalization of 

mesoporous silica particles is frequently employed to control surface binding, covalently 

attach proteins, increase bio-inertness and control pore accessibility. In a variety of these 

applications, selectively modifying the exterior or interior only of the particle is desirable. 

In previous accounts, selective external functionalization is demonstrated on particles 

with narrow, protein inaccessible pore diameters by physically blocking accessibility to 

the pore with the pore template. In this work, a post synthetic method is developed for 

functionalization of materials after synthesis and removal of pore template. This method 

of functionalization is time dependent, where short exposure times to functional agents 

result in exterior only functionalization and longer exposures results in full exterior and 

pore wall functionalization. Time dependent functionalization was tested in both pores 

blocked and free of pore template resulting in time dependent selective functionalization 

regardless of template presence. These results are confirmed via confocal microscopy 
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imaging, a technique uniquely available to these large diameter particles. In addition to 

the demonstration of selective functionalization, fully and selectively functionalized 

particles are probed with the model protein lysozyme to confirm pore accessibility in the 

presence of functional groups. Previous attempts at surface-only functionalization were in 

materials inaccessible to biologically functioning proteins, severely limiting their 

application potential. Herein a method of selective surface functionalization, regardless of 

pore blocking is, demonstrated in silica materials capable of housing proteins for 

biological activity.  

 The synthetic analog of biological membranes, lipid bilayers, have significantly 

aided the fields of drug discovery, separations and sensing. Lipid bilayer membranes 

have been incorporated on the surface of mesoporous silica particles for a variety of 

applications including stealth therapeutic delivery, particle targeting, selective permeation 

and separations and small molecule discovery. Porous nanoparticles are common 

supports for lipid membranes although little attention has been given to the impact of the 

underlying porous support on membrane function. This is partially due to the nano-scale 

dimensions of the particle, which limits the ability to characterize particle-lipid bilayer 

interactions.  The most common parameter used to characterize lipid membranes is 

membrane fluidity, which controls membrane permeability and membrane protein 

function.  

 In Chapter 5, particles were synthesized with pore size ranges between 3.0 and 9.1 

nm in diameter, above and below the thickness of the DPPC lipid membrane (4 nm). 

Membranes were formed within pores using a unique solvent casting and re-hydrating 

technique. Imaging using confocal microscopy confirmed bilayers were incapable of 
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forming within the more narrow 3.0 nm pore diameters, but were accessible to materials 

with 5.4 nm and 9.1 nm pore diameters. Interestingly, after surface tethering with the 

lipid like silane CDSMH (approximately 10 percent surface coverage) bilayer 

accessibility within 5.4 nm materials was also prohibited. The fluidity of bilayer 

membranes both on the surface of and incorporated within pores was investigated using 

the confocal microscopy technique FRAP. As pore diameters decreased, bilayer fluidity 

decreased both within pores and on the surface of the pores, indicating a pore diameter 

effect on bilayer diffusivity both within pores and in bilayers spanning  pores (enveloped 

particles). Tethering of bilayers had a greater impact on reducing bilayer fluidity as it 

immobilized portions of the bilayer with covalent tethering. A coupled small pore 

diameter effect and tethering on 2.9 nm pore diameter CDSMH functionalized materials 

resulted in a fluidity reduced below the level of detection. In this work, the solvent 

casting method of lipid deposition is demonstrated as a unique method of bilayer 

formation within porous materials with large pore diameters as well as bilayer formation 

on the external surfaces of narrow pore diameter materials. Large particle diameters make 

possible the use of confocal microscopy visualization and uniquely FRAP measurements 

of bilayer fluidity on particle surface and within nanopores.   

 A recurring challenge in the supported synthetic bilayer field is the incorporation 

of membrane proteins within the bilayer to provide biological activity to the membrane. 

Purification and reincorporation of membrane proteins frequently results in their 

denaturing and inactivation prior to incorporation. In order to circumvent this it is most 

desirable to incorporate membrane proteins in their native physiological membrane 

system. In Chapter 6, an effective method of expressing desired membrane proteins in 
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cell membranes, formation and purification of plasma membrane vesicles from the cell 

membrane and incorporation on mesoporous silica supports is demonstrated. Epidermal 

growth factor receptors (EGFR) were effectively transfected and expressed in the 

membrane, incorporated on a particle surface and function was demonstrated through the 

binding of the epidermal growth factor (EGF) ligand. EGF ligands did not associate with 

non-EGFR expressed membranes, indicating EGFR binding results were not the result of 

non-specific binding. This is a powerful demonstration of selective protein expression 

and supporting on synthetic particles within native biological membranes. Supporting 

membranes on particles provided a platform for membrane protein investigation as well 

as the potential for investigating pore-forming protein function as mesoporous provide 

reservoirs for molecular transport.  

7.2 Future Directions 

 Mesoporous silica nanoparticles have been developed for a variety of cellular 

applications, most notably for the delivery of therapeutic molecules for disease treatment. 

Nanoparticle diameters between 50 nm and 200 nm are most ideal for cellular uptake.[76] 

Mesoporous silica nanoparticles are limited by the narrow pore diameters achievable in 

nanoparticle systems, limiting intracellular delivery to smaller biomolecules. For the 

delivery of larger macromolecules such as proteins and RNA, understanding the 

interaction between macromolecules of interest and nano-pore dimensions is critical to 

maximize the use of available pore diameters. Chapter 3 of this work investigates the 

interaction of a multiprotein system with pore size tunable silica particles to understand 

relationship between pore diameter and biomacromolecule accessibility and protection 
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within pores. Biomacromolecular diffusion within pore spaces requires pore diameters 

slightly larger than the dimensions of the diffusing molecule. 

 Delivery of DNA and RNA for gene therapies in both mammalian and insect 

applications, specifically for disease prevention and population control in the latter, is 

complicated by the stability of DNA and RNA in biological systems. Using the 

understanding of biomacromolecule diffusion in nano-porous systems, porous 

nanoparticles (150 nm diameter) are being developed for the delivery of nucleic acids to 

insects in culture for gene regulation. Nanoparticle uptake has been confirmed in cell 

culture after colocalization of rhodamine b tagged nanoparticles within cells. Similar to 

the model protease Pepsin A in Chapter 3, ribonuclease are proteins produced by cells 

that breakdown RNA into smaller components in solution, rendering the RNA inactive. 

Ribonuclease have dimensions of approximately 4 x 4 x 9 nm [179] making confirmation 

of RNA diffusion and protection within pores critical for cellular delivery.  Future work 

will focus on understanding the diffusion of RNA within pores of varying diameter for 

protection from ribonuclease. Additionally, surface functionalization of particles will be 

used to control affinity of RNA to particle surfaces for controlled delivery within cells, 

using functionalization techniques developed in Chapter 4. After confirmation of RNA 

uptake within nano-pores, RNA delivery and gene transfection can be evaluated in DNA 

or RNA-loaded nanoparticles   

 In addition to nano and micron particle development, our lab focuses on silica thin 

film membranes for separations. Mesoporous silica thin films are used for a variety of 

membrane separation applications in both the gas and liquid phase.[180] 

Functionalization of thin films with organic moieties alters the permeability of the 
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membrane providing selective separation potentials.[181] Selective functionalization 

techniques form Chapter 4 can be transferred from particle platforms to thin films 

membranes for specific solution interactions. In our lab, hydrophobic functionalization of 

silica thin film membranes with decyl functional groups has been used to reduce 

membrane permeability to water while not impacting the flux of alcohols through the 

membrane.[181] A primary concern during functionalization of membranes is non-

specific pore and surface functionalization, which can block pores, reducing transport 

potential. Controlled exposure times to functional groups, approaches developed in 

Chapter 4, can be used with membrane systems to ensure single sided membrane 

functionalization for controlled transport. Future work will focus on controlled placement 

of functional groups on membrane surfaces for separation of carbohydrates. 

 Large diameter silica particles have been shown in this work as valuable tools to 

investigate biomacromolecule and lipid membrane interactions at the nano-porous 

interface.  Lipid bilayer membranes on particles and thin films have been used for a 

variety of separations often mediated by transporters within the bilayer. Bilayers 

themselves are excellent membranes as their non-polar lipid cores prohibit transport of 

polar species from aqueous solutions. The permeability of bilayers to ions and water flux 

is susceptible to chemical perturbants, such as cholesterol which decreases bilayer 

permeability by altering lipid order.[182 ] Bilayer fluidity is directly dependent on 

environmental temperature and bilayer permeability increases with increased bilayer 

fluidity.[182] As opposed to porating bilayers with proteins or controlling permeability 

via bilayer fluidity, small molecule transporters can be used to mediate small molecule 

transport into and through the non-polar membrane region.[170, 183 ] A prominent class 



111 
 

of transport molecules is boronic acids, which are used to both identify and transport 

carbohydrates. [170] 

 Boronic acids detect different types of carbohydrates in solution as well as 

transports them through bilayers via non covalent interactions with carbohydrate 

diols.[170, 184] The majority of methods used to identify and separate carbohydrates are 

based on covalent interactions, employing enzymes or sugar binding proteins to interact 

with sugars in solution. [184] On the other hand, boronic acids, interact reversibly with 

the 1,2 and 1,3 diols of carbohydrates which are highly enantiomerically specific. 

Fortunately, boronic acid backbones are synthetically versatile to interact specifically 

with distinct carbohydrates.[184]  Selecting a variety of commercially available boronic 

acids with organic backbones (of the phenyl class to infiltrate the non-polar bilayer core),  

Westmark et.al. demonstrated their ability to separate a mixture of glucose, fructose and 

sorbitol across DPPC membranes depending on boronic acid type.[170] Selective sugar 

transport into lipid vesicles was demonstrated, although limited by the small interior 

volume of vesicles and large concentration gradients required to drive transport.  

 Using the large, open pore volumes and high surface areas of mesoporous silica 

capable of loading large quantities of lipid membrane, we hypothesize that lipid loaded 

silica particles are efficient boronic acid mediate carbohydrate separation platform. The 

non-polar lipid loaded core is expected to provide reservoirs for the sugar species 

transported by the boronic acid. Preliminary investigations in our laboratory indicate a 

2.4 fold increase in selective glucose transport into particle supported membranes with 

boronic acid transporter, as compared membrane uptake without the acid transporter. 

Tuning of boronic acid concentrations within bilayers is expected to optimize uptake of 
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carbohydrates from solution while future work aims to transfer supported bilayer 

technology from particles to thin film platforms for bulk membrane separations.  

 Chapter 6 demonstrated the effectiveness of porous silica particles as supports for 

cell derived plasma membranes. In addition to confirming location on particles, 

membrane receptor activity was confirmed via selective ligand binding. Future work will 

focus on increasing the variety of membrane receptors expressed and supported on 

porous particles with a focus on the use of receptors in lipid membranes for the 

identification of therapeutics from plant derived metabolites. While metabolite and 

therapeutic receptors and ligands have been identified, incorporation and methods of 

confirming ligand binding were yet to be discussed. We can now imagine using cell lines 

capable of transfection and expressing receptors of interest, separating their membranes 

and wrapping on particles to probe receptor function and transport potential. This method 

is significantly easier than re-incorporation of purified membrane proteins, allowing 

research methods to focus on tailored particle interactions with transported species and 

potential commercial applications. 
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APPENDIX A 

Confidence Intervals of Bilayer Diffusivity Calculations 

 The following tables present the upper and lower 95% confidence intervals from 

diffusivity models of FRAP data.  

Table A1. Calculated diffusivity 

values of SBAS-3.0 Cap FRAP 

measurements along with 95% 

confidence intervals 

Sample Diffusivity ± C.I.  

1 4.30E-05 1.52E-05 

2 5.90E-05 9.75E-06 

3 1.80E-05 3.85E-06 

4 5.00E-05 1.64E-05 

5 5.80E-05 1.13E-05 

6 1.80E-05 7.10E-06 

7 4.40E-05 2.04E-05 

8 6.10E-05 1.69E-05 

Average 4.39E-05   

Std Dev 1.73E-05   

 

Table A2. Calculated diffusivity 

values of SBAS-5.4 Core FRAP 

measurements along with 95% 

confidence intervals 

Sample Diffusivity ± C.I.  

1 2.47E-04 5.20E-05 

2 3.23E-04 5.20E-05 

3 3.46E-04 1.09E-04 

4 3.96E-04 8.60E-05 

5 3.83E-04 9.15E-05 

6 3.60E-04 9.55E-05 
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7 1.99E-04 5.15E-05 

Average 3.22E-04   

Std Dev 7.30E-05   

 

Table A3. Calculated diffusivity 

values of SBAS-5.4 Mid-Core 

FRAP measurements along with 

95% confidence intervals 

Sample Diffusivity ± C.I.  

1 2.68E-04 7.15E-05 

2 3.80E-04 6.40E-05 

3 3.05E-04 6.40E-05 

4 2.21E-04 4.70E-05 

5 3.28E-04 1.01E-04 

6 3.58E-04 7.85E-05 

7 2.69E-04 7.60E-05 

Average 3.04E-04   

Std Dev 5.58E-05   

 

Table A4. Calculated diffusivity 

values of SBAS-5.4 Cap FRAP 

measurements along with 95% 

confidence intervals 

Sample Diffusivity ± C.I.  

1 3.34E-04 8.30E-05 

2 2.66E-04 6.25E-05 

3 3.63E-04 7.55E-05 

4 3.39E-04 7.75E-05 

5 4.85E-04 1.20E-04 

6 2.95E-04 6.65E-05 

7 3.81E-04 1.00E-04 
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Average 3.52E-04   

Std Dev 7.05E-05   

 

Table A5. Calculated diffusivity 

values of SBAS-9.1 Core FRAP 

measurements along with 95% 

confidence intervals 

Sample Diffusivity ± C.I.  

1 4.39E-04 7.15E-05 

2 5.41E-04 7.20E-05 

3 4.63E-04 9.30E-05 

4 6.39E-04 1.32E-04 

5 5.00E-04 7.25E-05 

6 5.03E-04 7.10E-05 

Average 5.14E-04   

Std Dev 7.06E-05   

 

Table A6. Calculated diffusivity 

values of SBAS-9.1 Mid-Core 

FRAP measurements along with 

95% confidence intervals 

Sample Diffusivity ± C.I.  

1 4.79E-04 5.75E-05 

2 5.02E-04 7.80E-05 

3 4.58E-04 6.70E-05 

4 4.08E-04 6.20E-05 

5 4.61E-04 7.20E-05 

6 5.83E-04 8.40E-05 

7 7.39E-04 1.20E-04 

8 5.27E-04 7.65E-05 

Average 5.20E-04   
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Std Dev 1.03E-04   

 

Table A7. Calculated diffusivity 

values of SBAS-9.1 Cap FRAP 

measurements along with 95% 

confidence intervals 

Sample Diffusivity ± C.I.  

1 7.77E-04 2.12E-04 

2 6.51E-04 1.89E-04 

3 4.61E-04 1.05E-04 

4 8.63E-04 1.75E-04 

5 5.21E-04 1.48E-04 

6 6.74E-04 1.34E-04 

7 8.69E-04 2.59E-04 

Average 6.88E-04   

Std Dev 1.59E-04   

 

Table A8. Calculated diffusivity 

values of TLB-5.4 Cap FRAP 

measurements along with 95% 

confidence intervals 

Sample Diffusivity ± C.I.  

1 1.160E-04 4.650E-05 

2 8.700E-05 1.300E-05 

3 1.340E-04 1.850E-05 

4 8.700E-05 2.030E-05 

6 7.600E-05 1.685E-05 

7 1.000E-04 1.920E-05 

8 6.300E-05 1.145E-05 

Average 9.471E-05   

Std Dev 2.415E-05   
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Table A9. Calculated diffusivity 

values of TLB-9.0 Core FRAP 

measurements along with 95% 

confidence intervals 

Sample Diffusivity ± C.I.  

1 4.630E-04 4.700E-05 

2 3.720E-04 3.650E-05 

3 4.560E-04 1.070E-04 

4 3.970E-04 5.450E-05 

5 4.040E-04 5.100E-05 

6 4.050E-04 5.300E-05 

7 5.150E-04 7.100E-05 

Average 4.303E-04   

Std Dev 4.957E-05   

 

Table A10. Calculated diffusivity 

values of TLB-9.0 Mid-Core FRAP 

measurements along with 95% 

confidence intervals 

Sample Diffusivity ± C.I.  

1 3.690E-04 3.550E-05 

2 4.550E-04 5.050E-05 

3 3.400E-04 5.150E-05 

4 3.250E-04 4.450E-05 

5 4.710E-04 5.450E-05 

6 4.930E-04 

-6.000E-

06 

7 4.300E-04 6.500E-05 

8 5.960E-04 9.900E-05 

Average 4.349E-04   
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Std Dev 8.983E-05   

 

Table A11. Calculated diffusivity 

values of TLB-9.0 Cap FRAP 

measurements along with 95% 

confidence intervals 

Sample Diffusivity ± C.I.  

1 2.300E-04 5.200E-05 

2 4.920E-04 1.100E-04 

3 3.890E-04 1.095E-04 

4 3.820E-04 6.950E-05 

5 4.000E-04 7.400E-05 

6 2.580E-04 4.500E-05 

Average 3.585E-04   

Std Dev 9.761E-05   
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APPENDIX B 

Quercetin Adsorption and Stability on Functionalized Silica Nano-Particles 

B.1 Abstract 

 The interaction of flavonoids with silica surfaces is of interest for separation and 

recovery of these natural products with potential anti-oxidant and anti-inflammatory 

properties.  The benefit of tailored silica materials for natural product separation is based 

on the ability to readily tune their surface functionality and pore structure.  In this work, 

the adsorption of quercetin, a model plant-derived flavonoid, was measured on silica 

particles (450 nm diameter) that were non-functionalized, hydrophobically functionalized 

(16.2 mg decyl groups/g) or titania modified (0.33 to 9.83 mg TiO2/g). Quercetin 

interactions with these functionalized silica particles were interpreted from adsorption 

measurements on non-porous silica particles, which eliminate the potential diffusional 

and steric constraints of pores. Titania functionalized particles are found to exhibit 

significantly increased adsorption capacities compared to non-functionalized and decyl 

functionalized materials, presumably due to chelation of quercetin to the metal oxide, and 

this capacity increased linearly with surface coverage of titania. The ability to recover the 

activity of chelated quercetin is demonstrated using a 2,2-diphenyl-1-picrylhydrazyl 

(DPPH) assay. This investigation provides guidelines for the surface modification of both 

porous and nonporous silica for the recovery of natural product flavonoids, taking 

advantage of the polarity or chelating properties of the silica surface.    

B.2 Introduction 

 Quercetin is a common secondary plant metabolite possessing a variety of 

therapeutic medicinal uses. A known antioxidant, quercetin has been shown to reduce the 

effects of oxidative stress on a variety of cell lines by scavenging free radical oxygen 

species. [185, 186] Quercetin has been investigated for disease prevention, for example 

its roles in modulating signal transduction pathways associated with carcinogenesis as 

well as Alzheimer’s disease. [187, 188] The anti-thrombosis and anti-inflammatory 

effects of quercetin may aid in the reduction of obesity. [189] Secondary metabolites 

produced by plants, such as quercetin,  are of high value, although traditional methods of 

metabolite recovery are expensive, detrimental to plant cells and require large quantities 

of plant cell tissue. [190] A common method of recovery is exudation, or altering of the 
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cell membrane permeability for release of produced molecules. [191] An alternative 

proposed method is the use of nanoparticles for recovery of metabolites in plant cell 

cultures. [192] Understanding the interaction of nanoparticle systems with plant 

metabolites is a crucial first step in designing nano-particle based metabolite scavenging 

systems.  

Silica nanoparticles are increasingly investigated for the loading of therapeutics 

and for topical delivery applications.  [193, 194] Silica materials are robust, employ well 

known aqueous-based synthesis protocols and are widely used in the fields of catalysis, 

chromatography and therapeutics delivery. [16, 17, 31]  Versatile synthesis techniques 

have been developed for silica thin films and particles of controlled pore structure, and 

pore size.  Using modified silanes, hydrophilic silica can be functionalized with a variety 

of organic moieties to modify surface properties including charge and hydrophobicity. 

[195, 196]Deposition of reactive metal oxide precursors on the silica surface results in 

different metal oxide coatings, including titania. [50] Titania coated silica 

nanocomposites, in particular,  have been identified as an alternative to pure titania 

particles because the ability to control particle properties  (porosity, morphology, and 

particle size) is better established in silica than titania. [197-199]   

Quercetin is a hydrophobic, polar polyphenolic flavonoid, with an octanol/water 

partition coefficient of 1.82.[200] Quercetin shows an unusually low solubility in both 

octanol and water, which is why high uptake and bioavailability of free quercetin is 

difficult to achieve.[200] As a model antioxidant, the adsorption of quercetin onto 

nanoparticles has been investigated, primarily with a focus on the delivery of therapeutics 

and metal chelation. [49, 196, 201, 202]  Previous investigations of quercetin adsorption 

examined its interactions with silica or silica modified with pharmaceutical binders.  The 

adsorption of quercetin drastically increased on silica modified with the pharmaceutical 

binder polyvinylpyrolidone (PVP , terminated with carboxylic acids) as compared  to 

unmodified silica (terminated in hydroxyl groups), due to the increase in quercetin 

hydrogen bonding sites and stabilization within the polymer.[202] With hydrogen 

bonding playing a direct role in quercetin binding, a clearer comparison of quercetin 

adsorption between hydrophilic and hydrophobic surfaces, such as unmodified and alkyl 

chain modified silica, respectively, is needed. 



121 
 

 The chelation of quercetin and titania provides a strong interaction for the design 

of adsorbents for quercetin.   Bulk titania, while possessing powerful optic, catalytic and 

chelating properties,  has an isoelectric point near pH = 6.5 [203], which is expected to 

lead to particle flocculation near plant physiological pH values (5.5 to 7.5).  In contrast, 

silica has an isolectric point near pH = 2 [204] and would be expected to remain 

colloidally stable near pH 7.  In addition, titania is polymorphic and may undergo phase 

transformations upon aging in aqueous solution or heating during regeneration, whereas 

titania dispersed on silica spheres has significantly increased thermal stability and 

catalytic activity properties.[205, 206] Pure nonporous titania nanoparticles (2.8 ± 1.4 

nm) have been investigated for the recovery of quercetin in plant cells. [192] Quercetin 

chelation to the metal oxide TiO2 was indicated by a noticeable color shift in the 

adsorbate.  Quercetin, which is light yellow in solution, turns dark orange upon 

adsorption to a titania surface, corresponding to a readily measurable bathochromic 

shift.[192]   This coloration shift has been employed in TiO2 modified silica xerogel 

materials for the spectroscopic detection of a variety of polyphenolic compounds 

including catechol, quercetin, rutin, gallic, caffeic and ferulic acids. [207] Quercetin has 

also been demonstrated to stabilize silica from hydrolysis when investigated on a 

quercetin-functionalized, titania-capped silica, used for mercury chelation and removal. 

[201]  
This work examines the interaction of the model antioxidant, quercetin, with 

modified silica surfaces for the design of silica platforms for flavonoid recovery. Non-

porous silica particles, synthesized by the  Stöber method [208] with average particle 

diameters of 450 nm, were functionalized by post-synthesis grafting with decyl groups 

(using n-decyltriethoxysilane silane) or with a reactive titania precursor (titanium (IV) 

ethoxide). While non-porous particles do not have the high surface area of mesoporous 

silica,  they allow for the investigation of solute-surface interactions in the absence of 

steric and diffusional limitations of pores, with evenly accessible exterior particle 

surfaces for functionalization, solute adsorption and activity assays.[209]  The titania 

precursor concentration was varied to achieve lightly-functionalized to near-monolayer 

coverage of titania on nonporous silica, as verified by a colorimetric titania dissolution 

assay.  The quercetin loading of unmodified, hydrophobically modified, and titania 
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coated particles was measured via solution depletion experiments. The ability to recover 

the antioxidant activity of quercetin adsorbed on titania-coated silica particles was 

demonstrated using a 1,1-diphenyl-2-picryl-hydrazyl reduction assay.  The results 

provide a basis for tuning silica surfaces with titania for the recovery of active 

antioxidants from solution, and can be extended to mesoporous silica platforms with high 

surface area for the selective separation and recovery of antioxidant compounds.   

B.3 Experimental  

B.3.1 Materials 

Ethanol (200 proof), de-ionized ultra purified water and ammonium hydroxide 

(14.8 M, ACS grade) were purchased from Fisher Scientific. Tetraethyl orthosilicate 

(TEOS) (98%) was purchased from Acros Organics. n-decyltriethoxysilane (D-TEOS) 

was purchased from Gelest, Morrisville PA. Quercetin (≥95%), Titanium (IV) ethoxide 

(TEO, technical grade) and anhydrous toluene (99.8%) was purchased from Sigma-

Aldrich. 2,2-diphenyl-1-picrylhydrazyl (DPPH, 95%) was purchased from Alfa-Aesar. 

B.3.2 Materials Synthesis 

  Stöber particles were synthesized using a modified Stöber method. [208]  

Particles were prepared by mixing ethanol (58.22 g), concentrated ammonium hydroxide 

(9.8 mL), DIUF water (10.8 g) and TEOS (5.26 g). Turbidity was seen after 10 minutes. 

Particles solutions were stirred for 24 hours and the particles were recovered from 

solution by centrifugation at 5000 RPM. After centrifugation, particles were dried in an 

oven at 80°C for 12 hours. After drying, particles were washed 3 times in ethanol (20 

mL) followed by repeated vortexing and centrifugation. Particles were re-dried at 80°C 

for a minimum of 12 hours prior to characterization or functionalization. 

B.3.3 Titania Functionalization of Stöber Particles (SP-T) 

SP-T particles were synthesized using a modified version of the method of 

Hanprasopwattana  et al. [50]. A stock solution of titanium (IV) ethoxide (TEO) was 

prepared in an inert atmosphere.  In nitrogen purged bag, TEO (1, 20, 100 or 300 µL) was 

pipetted into dry ethanol (7.15 mL). This solution was sealed prior to use. In a 250 mL 

round bottom flask, dry ethanol (100 mL) and synthesized SPs (900 mg) were sonicated 

for 15 minutes. This solution was refluxed (~78°C) for 1.5 hours under vigorous mixing 

with DIUF water (1.62 mL), ethanol (142.55 mL) and the  dilute TEO solution previously 
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prepared in an inert environment.  After refluxing, particles were removed from solution 

by centrifugation at 5000 RPM for 5 minutes. Particles were washed 3 times in ethanol 

(20 mL) with repeated vortexing and centrifugation and dried in an oven at 80°C for 24 

hours.  

B.3.4 Decyl Functionalization of Stöber Particles (SP-D) 

SP-D particles were prepared using a modified version of Berlier’s method. [196] 

In anhydrous toluene (30 mL), prepared SPs (1 g) were added and sonicated for 15 

minutes. This solution was refluxed (~110°C) under vigorous mixing and D-TEOS (0.8 

mL) was added. This solution was refluxed for 8 hours followed by centrifugation to 

recover the particles. Particles were washed 3 times in ethanol (20 mL) with repeated 

vortexing and centrifugation followed by drying overnight at 80°C. 

B.3.5 Materials Characterization 

Particle size distributions before and after functionalization were measured by 

dynamic light scattering (DLS) using a Delsa Nano C particle analyzer (Beckman 

Coulter, Pasadena Ca). The particles were suspended via sonication in DIUF prior to 

DLS measurements. Nitrogen adsorption experiments (Micromeritics Tristar 3000) 

conducted at 77 K were used to confirm that particles were non-porous.  Samples were 

degassed at 120°C for a minimum of 4 hours under flowing nitrogen gas before analysis. 

Particles were imaged using a Hitachi S-4300 Scanning Electron Microscope (SEM).  

SEM samples were prepared by sprinkling the particles onto double sided carbon tape 

and attaching the tape to a 15 mm aluminum mount.  Excess silica materials were blown 

off of the sample with nitrogen.  Samples were prepared 24 hours in advance and left in a 

desiccator prior to being sputter coated in a gold-palladium alloy before analysis. Particle 

diameters were measured from SEM images using Image J Software. [210] Particle 

diameter averages and standard deviations were calculated from the measurement of 14 

random particles throughout the SEM images. 

B.3.6 Quercetin Adsorption Isotherms 

Quercetin adsorption measurements were performed using a solution depletion 

method and performed in triplicate at room temperature. Quercetin loading onto SP, SP-

D and SP-T particles was measured at equilibrium by prewetting 25 mg of particles in a 2 

mL centrifuge tube with 1 mL of ethanol under vortex mixing. After 24 hours, particles 
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were centrifuged for 15 minutes at 17,000×G and the supernatant was discarded. To pre-

wet SP and SP-D particles, 1 mL of .0025, .005, .01, .025, or .05 mg/mL of quercetin 

dissolved in ethanol was added. To pre-wet SP-T particles 1 mL of .0025, .005, .01, .025, 

.05, .1, .25, .5 or 1 mg/mL quercetin dissolved in ethanol was added. After vortex mixing 

for 24 hours, particles were centrifuged for 15 minutes at 17,000 x g and a 200 µL sample 

of the supernatant was analyzed in a clear 98 well plate with clear top. The 98 well plate 

was read using a BioTek (Winooski, VT) plate reader at 371 nm.  Absorbance readings 

for the initial solution concentrations were measured simultaneously and adsorbed 

quercetin was calculated from the difference between initial and final solution 

concentrations. A Shimadzu Prominence LC-20 AB HPLC system installed with a 

Waters 2410 refractive index detector with a Phenomenex Luna 5um C18 column (25 cm 

x 4.6 cm) was used to confirm quercetin was stable and non-degraded during adsorption 

measurements.  

B.3.7 Thermo Gravimetric Analysis (TGA) 

 TGA was used to determine the quantity of grafted decyl groups on the surface of 

silica nanoparticles. A TA Instruments (New Castle, DE) Q600 was used under nitrogen 

flow with approximately 3 mg of sample and a ramp rate 10°C / minute from 30° C to 

700° C. Particles were first stabilized at 100°C for 10 minutes prior to the ramp to drive 

off any remaining solvent residue. The percentage difference in mass loss between SP 

and SP-D particles in the 435° C - 700° C was associated with the decomposition of the 

decyl functional group.  

B.3.8 Titania Quantification 

The quantity of titania coated on the surface of Stöber particles was determined 

by dissolving the titania from the surface of the particles and quantified using the reaction 

of titania with H2O2, which is detectable using UV-Vis. In 2 M H2SO4 (20 mL) at 90°C, 

SP-T particles (50 mg) were mixed vigorously for 20 minutes. The dissolved particle 

solution was then filtered through a 0.2 µm PTFE syringe filter. To 1 mL of filtrate, 

H2O2 (1 µL) was added and the solution turned yellow. Absorbance of the titania- H2O2 

complex was measured at 407 nm. A calibration curve was developed by adding SP 

particles (50 mg) to refluxing 2 M H2SO4 (20 mL) with 4% titanium(IV) ethoxide (500 

µL) in anhydrous ethanol and letting the solution mix vigorously for 20 minutes. After 
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mixing, the sample was filtered and analyzed in the same manner as the SP-T particles. 

The filtrate was diluted to a variety of different concentrations with 2 M H2SO4 to 

develop a calibration curve.  Particles were named based on their titania grafting densities 

i.e. SP-T functionalized at 9.8 mg TiO2 / g silica was named SP-T-9.8. 

B.3.9 Quercetin Activity Assay 

 The antioxidant activity of quercetin adsorbed on SP-T particles was measured 

relative to the activity of the same amount of quercetin dissolved in ethanol solutions 

(free quercetin).  The quantity of quercetin adsorbed on the particles was determined 

using the quercetin adsorption procedure described previously.  Free quercetin solutions 

with concentrations of 0, 0.1, 1.0, 5.0, 10.0, and 250.0 µg/mL quercetin in ethanol were 

prepared. SP-T-9.8 particles (50 mg) were loaded with quercetin, using the solution 

depletion method above, to approximately 0.5 mg quercetin / gram particle. After 

centrifugation, the supernatant was removed and the particle / quercetin complex was 

diluted to a quercetin concentration in solution matching the free quercetin concentration 

solutions prepared. The antioxidant activity of quercetin adsorbed on SP-T particles was 

determined from the reduction of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical ion 

in the presence of antioxidants, as measured by the corresponding reduction in DPPH 

absorbance at 517 nm.  The antioxidant activity is reported as the radical scavenging 

activity (RSA)[211] and is measured using the absorbance of DPPH before and after 

exposure to quercetin or quercetin / particle complex. RSA is calculated by dividing the 

decrease in DPPH absorbance after exposure to quercetin or quercetin adsorbed on 

particles by the initial DPPH absorbance.   To determine the RSA, one mL of a 70 µm 

DPPH in ethanol solution was mixed with .05 mL of either free quercetin or quercetin on 

SP-T particle suspension in ethanol for 5 minutes. After 5 minutes the absorbance of 

DPPH was measured.  For quercetin complexed to titania particles, the solution was 

rapidly filtered through a 0.2 µm filter prior to analysis of DPPH absorbance.  

B.4 Results and Discussion  

 Non-porous silica particles were synthesized using the modified Stöber method. 

[208] Stöber particles were chosen as adsorbents because of their non-porous, spherical 

morphology and ease of functionalization and characterization. The unmodified (SP), 

decyl-modified (SP-D) and titania-modifid (SP-T) silica particles are smooth, spherical 
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and homogenous (SEM images in Figure B.1), and indicate no major change in particle 

morphology after surface functionalization. Dynamic light scattering (DLS) 

measurements confirm mono-modal particle size distributions with diameters of 452 ± 

52.6 nm, 464.5 ± 27.2 nm and 516.7 ± 24.9 nm for SP, SP-D and SP-T-9.8 materials, 

respectively. Mono-modal distributions are consistent with the absence of secondary 

particle formation during surface functionalization with n-decyltriethoxysilane (D-TEOS) 

or titanium (IV) ethoxide (TEO). Nitrogen adsorption on particles follows Type II 

adsorption isotherms, with no evidence of capillary condensation, confirming the 

synthesis of non-porous particles (Figure B.2).  
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Figure B.1 SEM images of A) Stöber 

particles B) decyl functionalized particles 

and C) titania coated particles (SP-T-9.8). 
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Figure B.2 2,2-diphenyl-1-picrylhydrazyl 

(DPPH) quercetin assay calibration curve as 

a function of absorbanceat 517 nm. 

 

 

 Post synthetic grafting of non-polar D-TEOS on nonfunctionalized particles was 

used impart hydrophobicity for adsorption of quercetin, which is considered to be 

hydrophobic  (log(Kow)= 1.82).[200] Thermogravimetric analysis of SP-D particles 

reveals a characteristic mass loss due to the decomposition of decyl functional groups 

above 435°C relative to non-functionalized (SP) particles (Figure B.3).[81, 196] The 

increased mass loss of 1.62% corresponds to a grafting of 16.2 mg decyl groups / gram 

silica.   

  

 
Figure B.3 Results of thermogravimetric 

(TGA) analysis of SP and SP-D particles. 
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The quantity of titania grafted to the surface of non-porous particles was 

determined following  titania dissolution and complexation with H2O2, where the 

complex absorbs light at 407 nm (calibration curve, Figure B.4).[212] The amount of 

grafted titania on the particles increased linearly with the amount of titania precursor used 

during grafting (Figure B.5). From this analysis, the amount of titania on the particle 

surface is determined to be 0.33, 1.17, 2.61 and 9.83 mg of TiO2 per gram silica. Guo 

et.al. determined that monolayer coverage of titania corresponds to approximately 1.9 mg 

TiO2 / m2 surface area.[205] The average diameter of non-functionalized particles (450 

nm) and the approximate density of silica (2.2 g/cm3) were used to convert the measured 

values of TiO2 grafted to the particles (in mg TiO2/g silica) to surface coverage (in mg 

TiO2/m2 silica).Titania coating densities for synthesized particles are 0.05, 0.19, 0.43 and 

1.6 mg TiO2/m2, which ranges from a light to near monolayer titania coverage (2.6% - 

84% of a monolayer) on the nonporous particles. The use of non-porous, spherical silica 

particles ensured that all surfaces were uniform and equally accessible to functional 

groups during functionalization as well as dissolution analysis.   

 
Figure B.4 Nitrogen adsorption isotherms of 

SP, SP-D and SP-T materials. SP-D and SP-

T isotherms are shifted upwards 2 and 4 

cm3/g, respectively, for clarity. 
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Figure B.5 Grafting densitites of titania on 

metal oxide functionalized Stöber particles 

as a function of metal oxide precursor 

addition. 

 

Adsorption isotherms of quercetin onto SP, SP-D and SP-T particles were 

measured by the solution-depletion method using quercetin concentrations between 0.0 

mg/mL and 0.05 mg/mL in ethanol for SP and SP-D particles and 0.0 to 1.0 mg/mL for 

SP-T particles. Quercetin stability in ethanol solutions was evaluated via HPLC. The 

elution of quercetin solutions during use was compared to freshly prepared quercetin in 

ethanol solutions to ensure the molecule was not degraded. No small molecular weight 

fragments were seen in prepared or used solutions, indicating intact molecules. 

Adsorption isotherms for all materials mimicked a Type II adsorption isotherm, with 

evident multilayer quercetin adsorption at concentrations above 0.015, 0.0045 and 0.09 

mg/mL quercetin for SP, SP-D and SP-T particles, respectively. The portion of the 

adsorption isotherms corresponding to monolayer (i.e., Langmuir adsorption) adsorption 

is shown in Figure 4 (for bare silica and decyl-functionalized silica) and Figure 5 (for 

titania-modified silica).  The adsorption of quercetin on unmodified Stöber particles can 

be described by a Langmuir adsorption isotherm (Figure B.6), with an adsorption 

capacity of approximately 0.3 mg quercetin / g silica. Although quercetin is generally 

recognized as a hydrophobic molecule, and is sparingly soluble in water, quercetin has 

multiple hydroxyl groups and hydrogen bonding dominates the interaction of quercetin 

with silica surfaces. [202]  



131 
 

 
Figure B.6 Adsorption isotherm of quercetin 

from ethanol solutions onto A) non-

functionalized Stöber Particles (SP) and B) 

decyl functionalized Stöber particles (SP-D) at 

room temperature. Error in measurement 

reproducibility is less than 10%.  

 

The adsorption of quercetin on SP-D (Figure B.6B) particles follows a similar 

Langmuir adsorption isotherm to SP particles with a monolayer adsorption capacity of 

approximately 0.01 mg quercetin / gram SP-D.  Adsorption capacities above 0.01 mg/g 

are not presented as they follow type II adsorption kinetics, indicating multilayer 

quercetin adsorption on particles.  Investigations by Berlier et.al. into the stabilization of 

quercetin on silica and alkane modified silica particles via IR surface measurements 

indicate van der Waals type interactions between quercetin and non-polar octyl chains are 

much weaker than the hydrogen bonding based interactions between quercetin and 
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unmodified silica. [196] Relative to adsorption on SP materials (Figure B.6A), SP-D 

materials (Figure B.6B) possess significantly reduced adsorption capacities potentially 

due to the reduced bonding strength between non-polar decyl groups and quercetin in 

solution.  

Quercetin adsorption on titania coated silica particles is a strong function of 

titania grafting density (Figure B.7). Titania grafting densities between 0.3 mg TiO2/g 

particle – 9.8 mg TiO2/g particle result in quercetin capacities of 0.52, 0.65, 0.88, and 

1.66 mg quercetin / g silica, respectively, corresponding to a linear increase in capacity 

with grafting density (Figure B.8). This relationship between quercetin capacity and 

grafting density results in tunable adsorption of quercetin on materials for the design of 

tailored adsorption properties. The interaction of quercetin with titania is based on a 

chelation of the compound to the metal oxide, which is characterized by a shift in the 

color of quercetin from light yellow to an orange / brown chelated product. [192, 

213]This transition was seen in these adsorption studies as a function of both increasing 

titania grafting density and quercetin concentration.   

 
Figure B.7 Adsorption isotherms of 

quercetin in ethanol on titania coated Stober 

particles (SP-T) as a function of titania 

grafting density.   
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Figure B.8 TiO2 dissolution assay 

calibration curve. 

 

The antioxidant activity of titania-bound, adsorbed quercetin and free quercetin 

was compared using the DPPH assay of antioxidant activity. [214] In its radical form 

DPPH adsorbs light at 515 nm, which is reduced in intensity as DPPH is chemically 

reduced by quercetin.[214, 215] The DPPH assay was chosen due to its greater accuracy 

in alcohol, amenable to the quercetin adsorption from ethanol system used in this study.. 

The nonporous nature of titania coated silica particles simplifies the interpretation of this 

time-based measurement by eliminating assay reactant and product diffusion times in 

pores. Quercetin complexed to SP-T-9.8 retains antioxidant capacity nearly equivalent to 

the same concentration of quercetin freely dissolved in ethanol, with minimal reduction 

in antioxidant capacity due to chelation with titania (Figure B.9). Standard t-tests 

between free quercetin and particle adsorbed quercetin activities indicate statistically 

different activities (P ≤ 0.05) for 0.0, 1.0 and 10 µg/mL. The ability to recover bioactive 

molecules is critical in designing nanoparticles for the separation of metabolites from 

cultures using strong specific interactions such as chelation.    
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Figure B.9 Radical scavenging activity of 

free quercetin (Free Q) and quercetin 

complexed to titania particles (Q on SP-T). 

Statistically different (P ≤ 0.05) values based 

on unpaired t-tests are indicated with (*). 

 

B.5 Conclusions 

 Functionalized silica nanoparticles are promising materials platforms for the 

adsorption and recovery of polyphenol compounds. Non-polar decyl functional groups 

showed minimal affinity for quercetin (0.01 mg quercetin / g particles), while hydrogen 

bonding interactions between quercetin and unmodified silica substantially increased 

nanoparticle loading capacity (0.3 mg quercetin/g particles). Chelation to the metal oxide 

titania not only showed the greatest capacity for titania adsorption (1.66 mg quercetin /g 

particles), but also provided tunable loading capacities as a function of titania grafting 

densities. Titania coated on silica particles is expected to be significantly more stable than 

bulk titania, and  advances in the synthesis of mesoporous silica (different morphologies, 

particle and pore diameter control, surface functionality) make titania coated silica 

materials a more versatile materials platform than pure TiO2 materials. Additionally, 

quercetin chelated to titania retains the same antioxidant activity as the equivalent amount 

of quercetin free in solution. Retention of antioxidant capacity is critical for the use of 

these materials in separations and recovery of polyphenolic bioactive compounds.  
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