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The governing magneto-hydrodynamic (MHD) equations contain classical fluid dynamics 

equations along with coupled Maxwell’s magnetic induction equations. These equations 

model both advection and diffusion effects of electromagnetic field. However, available 

literature indicates that some previous investigations neglect the diffusion of magnetic field 

and considered only ideal MHD equations for modeling a typical MHD problem. In this 

work, the effects of magnetic field diffusion term also known as viscous magnetic term have 

been investigated over flow structure. Low magnetic Reynolds number approximation and 

ideal full MHD set of equations have been considered and solved using a four-stage modified 

Runge-Kutta scheme augmented with the Davis-Yee symmetric Total Variation Diminishing 

model in post-processing stage. Results obtained from viscous and ideal flow computations 

without applied magnetic field have been found in close agreement. However, results 

obtained from viscous MHD and ideal MHD computations substantially disagree from each 

other which indicate that the effect of magnetic diffusion term on overall flow structure is 

significant.  

Nomenclature 

B0 = magnetic field strength at stagnation point 


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











=

z

y

x

B

B

B

B
r

 = magnetic field vector 

te  = total energy per unit mass 

E = convective flux vector in x-direction 

Ev = diffusion flux vector in x-direction 

F = convective flux-vector in y-direction 

Fv = diffusion flux-vector in y-direction 

I  = identity tensor 

J  = Jacobian of transformation 

J
r

 = current density vector 

∞M  = free stream Mach number 

p  = pressure 

q  = dynamic pressure 

Q = field vector 

mR  = magnetic Reynolds number 

MHD
S  = source term in low mR  formulation 

t  = time 
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
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w

v

u

U
r

 = velocity vector 

x , y  = Cartesian coordinates 

γ  = ratio of specific heats 

η ,ξ   = generalized coordinate 

xη , yη  = transformation metrics 

eoµ  = free space magnetic permeability 

ρ  = density 

eσ  = electrical conductivity 

xξ , yξ  = transformation metrics  

subscripts 

∞  = free stream condition 

ref  = reference or free stream condition 

e  = electromagnetic quantity 

v  = diffusion quantity 

superscripts 

n = iteration (time) level 

indices 

i = index in ξ-direction 

j = index in η-direction 

 

I. Introduction 

IGH-SPEED flow over a compression corner has many applications with respect to future hypersonic flight 

where fluid properties such as pressure, temperature and density change abruptly as they cross the shock. 

Extremely complex flow field observed in a hypersonic flow regime involves high temperature gradients and 

chemical reactions. Magneto-Hydrodynamics (MHD) control of flow is one of the important techniques available 

amongst various flow control technologies. In fact, recent developments in superconducting materials and 

improvements in artificial ionization techniques have resulted in consideration of electromagnetic field as a tool for 

modifying heat transfer rates, drag, skin friction and shockwave boundary layer interaction for hypersonic flow 

regime. 

Several studies have been devoted to understanding MHD high-speed flows. Shang et al. 
1
 used ideal MHD 

equations for infinitely conducting fluids. They utilized finite volume numerical method for modeling the flow over 

two-dimensional cylindrical nose blunt body and predicted that application of magnetic field not only causes an 

increase in shock stand off distance, but also generates a secondary shock wave in the stagnation region. 

Gaitonde and Poggie 
2
 used full MHD equations of finitely conducting fluid to simulate inviscid flow over two-

dimensional cylindrical body with non-uniform magnetic field distribution. They identified fluid electrical 

conductivity as one of the most critical parameters for enhancing the interaction between fluid and magnetic field. 

The low magnetic Reynolds number approach was utilized by Poggie and Gaitonde
3
 to model viscous and 

inviscid flows over a hemisphere. They showed that the application of magnetic field was causing an increase in 

shock stand off distance for both viscous and inviscid flows and concluded that qualitative changes in pressure field 

obtained by applying magnetic field were negligibly affected by viscous effects for simple blunt body 

configurations. 

Damevin et al.
4
 utilized ideal MHD equations under the assumption of infinitely conducting fluid. Increase in 

shock stand off distance with the formation of secondary expansion wave and decrease in surface pressure were 

observed with the application of magnetic field. 

In Ref. 5, Khan et al. explored the aspects of different types of magnetic field distribution under the low 

magnetic Reynolds number approximation for two-dimensional inviscid high speed flows. It was found that 

electromagnetic forces caused flow compression in the post shock region. They concluded that maximum stand off 

distance for a shock can be obtained with vortex type of magnetic field distribution. 
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Conservation form of ideal MHD equations for modeling supersonic flow of real gas in equilibrium over a blunt 

body was used by MacCormack 
6
. Implicit modified algorithm based on finite volume approach of discretization 

was implemented. Bow shock wave displacement towards upstream region and reversal of magnetic field near the 

exit section at the body shoulder was observed for the MHD computation. 

MacCormack 
7
 further investigated viscous MHD flow over the surface of an axisymmetric sphere/cone with 

dipole type of magnetic field placed at the center of sphere. Supersonic flow of real gas in equilibrium and 

hypersonic flow of nonequilibrium gases with chemical and thermal effects were considered. Different types of 

boundary conditions for magnetic field at the body surface have been implemented. For the boundary condition of 

zero normal derivatives of all magnetic components at the body surface, a decrease in heat transfer rate, decrease in 

velocity gradient (skin friction) and increase in total drag with the increase of magnetic field strength for isothermal 

wall boundary condition was noted. In the case of applied magnetic field at the wall, less interaction between plasma 

and magnetic field was achieved. 

Lee, Huerta and Zha 
8
 investigated hypersonic blunt body flow using low magnetic Reynolds number approach. 

They considered chemically equilibrium and chemically frozen states of gas over a hemispherical blunt body 

configuration. For MHD analysis, a dipoler type of magnetic field distribution is generated by placing a dipole at the 

body center. An increase in shock stand off distance and decrease in body surface temperature are observed after the 

application of magnetic field. It has been reported that increase in shock stand off distance and decrease in 

temperature levels were relatively less when chemical equilibrium condition is considered.  

In Ref. 9, Bisek et al. introduced the MHD effects into an unstructured three-dimensional fluid dynamic code 

named LeMANS for investigating plasma-assisted hypersonic flow regime. MHD terms have been added to the 

conservation form of Navier-Stokes equations for a perfect gas flow under low magnetic Reynolds number 

approximation. Several electrical conductivity models have been implemented including Boltzmann’s model. The 

developed MHD model has been validated with the existing closed form solution with Dirichlet boundary conditions 

and flow between two electrode plates with a potential difference.  

Recently, Bisek et al.
10

 investigated MHD hypersonic flow over a hemisphere-capped cylinder with improved 

electrical conductivity model. Dipolar type of magnetic field is generated by placing a magnet at the center of the 

body. Increase in shock stand off and decrease in heat transfer at the stagnation portion is observed, however, a 

slight increase in heating at aft section of the body caused increase in total heat to the geometry. They reported that 

the results obtained with newly developed electrical conductivity model, closely match with the experimental data 

available in the literature. 

Available literature indicates that some research efforts have considered ideal form of MHD equations for 

modeling a typical MHD flow field; for example, Ref. 1, 4 and 6. However, present investigation indicates that 

omission of magnetic viscous effects for modeling MHD flow may not provide correct results in regions of shock 

boundary layer interaction. In present work, comparison of results obtained from viscous and ideal MHD solvers 

have been presented for simulating flow over compression and expansion ramps. 

II. Basic Governing Equations 

The basic governing equations for modeling MHD flow consist of fluid dynamics equation coupled with 

Maxwell’s magnetic induction equations. For a neutrally conducting medium, MHD equations termed as full MHD 

equations are summarized below: 

A. Full MHD Equations 

Full MHD equations involve coupled magnetic field equation along with fluid dynamics equations that also 

contain magnetic terms such as magnetic pressure and advection in momentum and energy equations. These 

equations in vector form can be expressed as 
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0

2

2

212

1

e

t

Bp
Ue

µγ
ρρ +

−
+=  (2) 

 

The above set of equations contains continuity, momentum, energy and Maxwell’s magnetic induction 

equations. By turning-off the magnetic field terms, conventional Navier-Stokes equations of fluid dynamics can be 

obtained.  

Subsequently, these equations can be rearranged in compact flux-vector formulation and presented for a two-

dimensional flow field in Cartesian coordinates: 

 
yxyxt

vv

∂

∂
+

∂

∂
=+

∂
∂

+
∂
∂

+
∂
∂ FE

H
FEQ

 (3) 

where Q is the unknown flux vector 

 [ ]Ttzyx eBBBwvu ρρρρρ=Q  (4a) 

and  
212

1 2
2 Bp

Uet +
−

+=
γ

ρρ  (4b) 

E , F  are the inviscid flux vectors, vE , vF  are diffusion flux vectors and H  is the additional term. This 

additional term has been introduced based on Gauss’ law of magnetism for overcoming the singularity associated 

with the flux Jacobian matrices. The details of additional term H  and flux vectors are provided in Ref. 11. 

The above governing equations are known as full MHD equations in the available literature. From these 

equations, ideal MHD equations can be obtained by setting right-hand side of equation (3) equal to zero. That is, 

ideal MHD equation is 

 0=+
∂
∂

+
∂
∂

+
∂
∂

H
FEQ

yxt
 (5) 

In this equation the definitions of unknown flux vector Q , inviscid flux vectors E , F and additional term H  

will remain the same. Besides, full MHD set of equations there exists an approximate formulation known low 

magnetic Reynolds number approximation, for modeling restricted MHD flows. Details of this approach are 

provided in the next section. 

B. Low Magnetic Reynolds Number Approximation 

This formulation contains set of governing equations that approximate electromagnetic effects by adding source 

terms in the fluid dynamics equations. The governing equations for the unsteady flow of viscous fluid under low 

magnetic Reynolds number formulation are 

 
MHD

S+
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

yxyxt

vv
FEFEQ

 (6) 

where Q  is the unknown vector, E , F , vE  and vF are the inviscid and viscous flux vectors. The additional source 

term is represented by
MFD

S . 

where [ ]Ttewvu ρρρρρ=Q  (7a) 

with 
12

1 2

−
+=

γ
ρρ

p
Uet  (7b) 

Details of inviscid E , F  and viscous , vE , vF  flux vectors and source term 
MHD

S  are provided in Ref. 11. 

Moreover, equations of full MHD approach and low magnetic Reynolds number approximation have been non-

dimensionalized according to the procedure outlined in Ref. 11. 

III. Generalized Coordinates 

Full MFD Equations 

The governing equations in physical space are transformed to a computational space for both modeling 

approaches. First, the nondimensionalized full MFD equation (3) in flux-vector formulation has been represented in 

generalized curvilinear coordinates as follows: 

 
ηξηξ ∂

∂
+

∂

∂
=+

∂
∂

+
∂
∂

+
∂
∂ vv

t

FE
H

FEQ
 (8) 
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where 

 
J

Q
Q =  (9a) 

E , F , and vE , vF  represent the convective and diffusion flux vectors, respectively. The detail of each flux-

vector has been provided in Ref. 11. The MFD equation (8) can be rewritten as follows by definition of the Jacobian 

matrices, 

 
ηξηξ ∂

∂
+

∂

∂
=

∂
∂

+
∂
∂

+
∂
∂ vv

t

FEQ
B

Q
A

Q
 (9b) 

where A  and B  are the flux Jacobian matrices, their eigenvalues represent the wave speeds in ξ  and η  directions 

respectively. Details of these transformation matrices have been discussed Ref. 11. 

Low Magnetic Reynolds Number Approach 

The governing equation (6) for the low magnetic Reynolds number approximation is transformed to a 

computational space and expressed as 

 MFD
vv

t
S

FEFEQ
+

∂

∂
+

∂

∂
=

∂
∂

+
∂
∂

+
∂
∂

ηξηξ
 (10) 

where 

 MFDMFD
J

SS
1

=  (11a) 

The MHD equation (10) can be rewritten as follows by definition of the Jacobian matrices, 

 MFD

vv

t
S

FEQ
B

Q
A

Q
+

∂

∂
+

∂

∂
=

∂
∂

+
∂
∂

+
∂
∂

ηξηξ
 (11b) 

Details of transformation matrices A  and B  for low magnetic Reynolds number approximation can be found in 

Ref. 12. It is important to mention that flux Jacobian matrices A  and B  are simpler than those obtained from full 

MFD equation. 

IV. Numerical Method 

The modified Runge-Kutta scheme stabilized with TVD scheme for damping the numerical oscillations 

associated with convective fluxes is used to obtain numerical solutions. The scheme can be expressed as 

 n

j,i

)(

j,i QQ =0  (12a) 

for 4    to1=m  and 1   to4=mα  

 
( )1−∆

−= m

j,i

m

n

j,i

)m(

j,i f
t

α
QQ  (12b) 

where   
ηξηξ ∂

∂
−

∂

∂
−+

∂
∂

+
∂
∂

= vvf
FE

H
FE

, for full MFD equations 

   MFD

vvf S
FEFE

−
∂

∂
−

∂

∂
−

∂
∂

+
∂
∂

=  
ηξηξ

, for low  mR approximation 

Second-order central difference approximations have been utilized for the convective and diffusion terms according 

to the procedure outlined in Ref. 13. The post-processing stage is the last stage of computation and consists of 

correcting the last calculated unknown vector. Mathematically, it can be expressed as, 

 
( )

 
41

n

j,i

n

j,i TVDQQ +=+
  

The TVD model is based on the eigenstructure of the convective flux Jacobian matrices. The eigenstructure and 

numerical method for general ideal MHD equations are provided in Ref. 13. For the low magnetic Reynolds number 

approximation, the eigenstructure and numerical method are the same as those used for Euler equations, which are 

also described in Ref. 13. 
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V. Results 

Supersonic flows over compression and expansion ramps have been considered for the present investigation. 

First, the flow field over a compression ramp is computed and results are presented in this section. The wedge angle 

for compression corner is set to 10 degrees with a ramp of 0.6 meter length; whereas, inlet section length is set equal 

to 0.4 meter. The computational grid system is shown in Figure 1; grid clustering has been implemented near the 

wall region to capture viscous effects accurately. 

 

 
 

Figure 1: Computational grid used for present analysis. 

 

For numerical simulation, free stream conditions are set according to the atmospheric conditions at an altitude of 

40 km with a free stream Mach number of 10 as  

Pressure: Pa 52.277=∞p  

Temperature: K 05.251=∞T  

Mach number 0.10=∞M  

 

The boundary conditions are specified as: 

Wall  








adiabatic

gradient pressure zero

condition slip/slip-no

 

Inflow  




field magnetic zero

conditions stream free
 

Outflow {  variablesprimitive allfor ion extrapolatorder -zero  

Uniform magnetic field along the y-direction is applied for MHD computation. The results of compression corner 

analysis are summarized in Figs 2 through 9.  

Figure 2 illustrates the pressure pattern for Mach 10 flow over the compression ramp for the Navier-Stokes 

analysis. Formation of an oblique shock wave at the corner is evident. Figure 3 indicates the pressure contours for 

the inviscid flow computation. A similar shock wave angle is noted; however, absence of viscous boundary layer is 

also evident for this case. 

For MHD analysis, pressure contours with applied uniform magnetic field of strength 0.025 T along the y-

direction are shown in Fig. 4 for the viscous MHD computation; the corresponding magnetic Reynolds number is 

0.0379. The Lorentz force has caused an increase in the shock-wave angle and displacement of shock-wave towards 

the inlet section. Moreover, shock thickening occurred after the application of magnetic field, is also obvious in this 

figure. 

Figure 5 shows pressure contours obtained from the ideal MHD calculations. It is interesting to observe that the 

applied magnetic field not only causes an increase in shock-wave angle but also results in formation of a secondary 

wave. The two (viscous and ideal) MHD solutions differ substantially as evident from the figures, for viscous MHD 

computation (Fig. 4), application of magnetic field has caused a significant movement of shock towards the inlet 

outflow 

Inflow 

outflow 

wall 
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section and no secondary shock-wave is observed. However, for ideal MHD analysis (Fig. 5), a slight movement of 

shock towards the inlet section is occurred and a secondary shock-wave is observed after the application of 

electromagnetic field. Further investigation of pressure field for the ideal MHD analysis, shows an increase in 

pressure after crossing the primary shock-wave; whereas, a significant drop in pressure values is observed after 

crossing the secondary shock-wave. Thus, it can be inferred that the secondary shock-wave is actually an expansion-

wave. 

 
Figure 2: Pressure contours for the Navier-Stokes computation. 

 

 
Figure 3: Pressure contours for ideal flow computation. 

 

 
Figure 4: Pressure contours for the viscous MHD computation with By = 0.025 T. 

 

 
Figure 5: Pressure contours for the ideal MHD computation with By = 0.025 T. 
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Furthermore, a comparison of velocity streamlines has also been made for the viscous and ideal flow 

computations without and with the application of magnetic field. Figure 6 shows the velocity streamlines for the 

Navier-Stokes analysis, formation of a circulation region at the ramp corner is obvious. For viscous MHD analysis, 

the Lorentz force generated after the application of magnetic field; has resulted in an increase in the size of 

circulation zone as depicted in Fig. 7. 

Similarly, Fig. 8 illustrates the streamline patterns for the ideal flow computation without the application of 

magnetic field. As expected, streamlines are depicting the absence of boundary layer at the near wall region. The 

application of magnetic field has changed the streamline patterns in overall flow region as shown in Fig. 9; however, 

MHD interaction at the near wall region cannot be explored for this case due to the absence of viscous effects. 

 

 
 

Figure 6: Velocity streamlines for the Navier-Stokes analysis. 

 

 
 

Figure 7: Velocity streamlines for the viscous MHD analysis with By = 0.025 T. 

 

 
 

Figure 8: Velocity streamlines for the ideal flow analysis. 

 

 
 

Figure 9: Velocity streamlines for the ideal MHD analysis with By = 0.025 T. 
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Subsequently, flow over an expansion corner has been considered as a second case for investigating the magnetic 

viscous effects over flow field. The expansion corner angle is set to 10 degrees, length of ramp is 0.6 meter and inlet 

section length is set equal to 0.4 meter. The computational grid system is shown in Figure 10. 

Free stream conditions have been set according to the previous case of compression corner at an altitude of 40 km 

with a free stream Mach number of 10. At the wall, no-slip boundary conditions for the velocity components, zero-

order extrapolation for the pressure and adiabatic condition for the temperature have been imposed. Zero-order 

extrapolation for all primitive variables is implemented at the outflow boundaries. 

Figure 11 shows pressure contours for the viscous fluid dynamics computation of supersonic flow over an 

expansion corner. As expected, an expansion fan is observed in this flow field; however, the Mach lines are not 

converging at the corner because of boundary layer existence.  

 

 
 

Figure 10: Computational grid used for expansion corner analysis. 

 

 
 

Figure 11: Pressure contours for the Navier-Stokes analysis of expansion corner. 

 

 
 

Figure 12: Pressure contours for ideal flow analysis of expansion corner. 
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Computations for the similar operating conditions with the assumption of an inviscid flow field are also 

performed and corresponding pressure contours are presented in Fig. 12. Formation of an expansion fan is apparent 

with a converging trend in Mach lines near the corner region in contrast to the viscous flow field which is primarily 

due to absence of viscous effects. Thus, it can be concluded that the viscous effects for supersonic/hypersonic flow 

regimes over expansion corner significantly influence the flow parameters and affect merging of Mach lines at the 

corner.  

Subsequent to performing the viscous and ideal fluid dynamic analyses without magnetic field application, MHD 

computations are executed with a uniform imposed magnetic field of 0.025 T along y-direction for both viscous and 

ideal MHD flow conditions. For viscous MHD analysis, Lorentz force has caused an increase in Mach wave angle 

and movement of Mach lines beyond the expansion corner as evident in Fig. 13. Moreover, coalescence in Mach 

waves is also observed after the application of magnetic field, this conjoining of Mach waves indicates that the 

Lorentz force has resulted in compression of the flow field for expansion ramp. 

For ideal MHD analysis, pressure contours obtained from a converged solution are shown in Fig. 14. It is 

important to note that the Lorentz force has caused significant compression of flow field resulting in formation of 

primary and secondary shock-waves. A comparison between ideal and viscous MHD results for expansion corner 

flow field shows that both solutions significantly differ from each other. Additional probe of pressure field for the 

ideal MHD calculation reveals that pressure is increased after crossing the primary (upper) shock-wave; however, a 

substantial decrease in pressure values is observed after crossing the secondary (lower) shock-wave. Thus, 

indicating that the secondary shock-wave is an expansion-wave. It is interesting to note that pressure fields for 

compression and expansion ramps obtained from ideal MHD analysis have similar characteristic behavior. Results 

obtained from ideal MHD analysis suggest that magnetic viscous terms have dominant effects and their omission 

may not provide correct solution.  

 

 
 

Figure 13: Pressure contours for viscous MHD flow analysis of expansion corner with By = 0.025 T. 
 

 
 

Figure 14: Pressure contours for ideal MHD flow analysis of expansion corner with By = 0.025 T. 
 

Finally, velocity streamlines have been presented for viscous and ideal flow fields with and without the 

application of magnetic field. Fig. 15 illustrates the velocity streamlines for the Navier-Stokes computation; a 

deflecting trend in streamlines towards the downward direction is evident due to formation of expansion fan at the 

corner. Later, a uniform magnetic field of 0.025 T is imposed along the y-direction for performing viscous MHD 

analysis, the corresponding velocity streamlines are shown in Fig. 16. Bending of stream traces towards the upper 

direction with slight shriveling confirms the flow compression phenomenon at the expansion ramp after the 

application of magnetic field. 
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Moreover, velocity streamlines for the inviscid flow field with and without imposed magnetic field are also 

drawn. Figure 17 shows streamline patterns for the ideal flow computation without the application of magnetic field. 

As anticipated, streamlines have been deflected after crossing the expansion fan occurred at the corner. The stream 

traces are smoother for this flow field as compared to the stream traces obtained from the Navier-Stokes analysis. 

For ideal MHD analysis, an overall change in streamlines is obvious as shown in Fig. 18. Flow compression is 

substantial as compared to the viscous MHD effects; however, MHD interaction at the near wall region cannot be 

explored due to the absence of viscous effects. 
 

 
 

Figure 15: Velocity streamlines for the Navier-Stokes analysis. 

 

 
 

Figure 16: Velocity streamlines for the viscous MHD analysis with By = 0.025 T. 

 

 
 

Figure 17: Velocity streamlines for the ideal flow analysis. 

 

 
 

Figure 18: Velocity streamlines for the ideal MHD analysis with By = 0.025 T. 
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VI. Conclusion 

Flow over compression and expansion ramps has been considered with and without the application of magnetic 

field. The effects of viscous terms on overall flow structure have been investigated before and after imposing the 

magnetic field. For compression ramp flow, results indicate that viscous and ideal flow solvers provide similar 

results in the absence of applied magnetic field. However, when magnetic field is turned on, results obtained from 

viscous MHD and ideal MHD solvers differ substantially. That is, for viscous MHD analysis of compression corner, 

the applied magnetic field has caused displacement of shock-wave and increase in shock-wave angle; however, for 

ideal MHD analysis, slight displacement of shock-wave with formation of a secondary shock-wave is observed after 

the application of magnetic field. In contrast to compression corner flow, presence of boundary layer significantly 

affects the flow structure for expansion ramp flow regime even before the application of magnetic field. That is, for 

the Navier-Stokes analysis dispersed Mach lines are obtained at region near the expansion corner; however, for 

inviscid analysis convergence in Mach lines is observed near the expansion corner region. Likewise, results obtained 

from viscous MHD and ideal MHD calculations significantly disagree from each other. For viscous MHD analysis, 

application of magnetic field has caused merging of Mach lines, thereby, causing flow compression at the expansion 

ramp. Nonetheless, for ideal MHD computation, a strong shock-wave followed by a primary shock-wave is noticed. 

Results obtained from compression and expansion corner flow regimes, suggest that the effects of magnetic 

diffusion term are significant and its elimination may not provide correct solution. Moreover, velocity stream 

patterns obtained from viscous and ideal MHD analyses of compression and expansion ramps indicate that the 

effects of viscous magnetic term are essential when investigating the influence of applied electromagnetic field for 

flow regime having low values of magnetic Reynolds number. 
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