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ABSTRACT OF DISSERTATION 

 

 

MOLECULAR AND FUNCTIONAL INVESTIGATION OF CANCER-TYPE AND LIVER-
TYPE VARIANTS OF ORGANIC ANION TRANSPORTING POLYPEPTIDE 1B3 

 

OATP1B3 belongs to the OATP (organic anion transporting polypeptides) superfamily, 

responsible for mediating the transport of various endogenous and xenobiotic substrates. 

OATP1B3 was initially reported to be expressed exclusively in the hepatocytes where it 

mediates the uptake of numerous endogenous substrates (e.g. bile acids, steroid hormone 

conjugates) and several clinically relevant drugs including anticancer drugs. Later, a 

number of studies reported that OATP1B3 is also frequently expressed in multiple types 

of cancers and may be associated with differing clinical outcomes. However, a detailed 

investigation on the expression, localization and functions of OATP1B3 expressed in 

cancer has been lacking. In this thesis work, we confirmed that colon and pancreatic 

cancer cells express a cancer-specific OATP1B3 variant (csOATP1B3), different from 

OATP1B3 wild-type (WT) expressed in the normal liver. The csOATP1B3 utilizes an 

alternative transcription initiation site and the translated product of csOATP1B3 lacks the 

first 28 amino acids at the N-terminus of OATP1B3 WT. Our results show that csOATP1B3 

has modest uptake transporter functions and reduced plasma membrane localization 

compared to OATP1B3 WT. In our efforts to investigate the regulatory mechanism 

underlying the expression of csOATP1B3, we found that hypoxia inducible factor-1α (HIF-

1α) may play a key role in the regulation of csOATP1B3 in colon and pancreatic cancer 

cells. In a separate study, we tested whether the N-terminal sequence of OATP1B3 WT 

plays an important role in the membrane trafficking. This is based on the observation that 

csOATP1B3 lacking the first 28 amino acids at N-terminus of OATP1B3 WT displays a 

predominantly cytoplasmic localization pattern. Using the constructs with N-terminal 

truncations and point mutations, we verified that the N-terminus of OATP1B3 WT contains 

important motifs in its membrane trafficking. In particular, the amino acids within a putative 

β-turn-forming tetrapeptide appear to be important in regulating the membrane trafficking 

of OATP1B3 WT. The findings from this thesis work provide important insights into the 

functional and clinical significance of OATP1B3 in cancer and normal liver. 

KEYWORDS: OATP1B3, splicing variants, colon cancer, pancreatic cancer, hypoxia, 

membrane trafficking, normal liver 
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Chapter 1 

Rationale for Theis Work 

(Each chapter of this thesis contains its own introduction and therefore this 

chapter is intended to provide a brief rationale for the entire thesis.) 

The roles of efflux drug transporters in cancer therapy are extensively investigated, in 

particular due to their contribution to multi-drug resistance by expelling cancer drugs from 

cells. In contrast, the roles of uptake transporters in cancer therapy are not as well 

understood. The organic anion transporting polypeptides (OATPs, gene symbol SLCO) 

represent one of the major superfamilies of solute carriers and they are expressed in 

different tissues throughout the body. OATPs function as multispecific transmembrane 

carriers that can transport a structurally diverse array of endogenous and xenobiotic 

compounds. Substrates of OATPs include organic dyes, bile acids, prostaglandins, cyclic 

nucleotides, steroid hormone conjugates, thyroid hormones, drugs, and environmental 

toxins. OATPs are known to transport their substrates in a sodium-independent manner. 

Common structural features of the OATP superfamily include twelve transmembrane 

domains with intracellular amino and carboxy termini as well as a large extracellular loop 

between the ninth and tenth transmembrane regions [1, 2] . 

Among 11 human OATP members, OATP1B3 was initially reported to be expressed 

exclusively in hepatocytes where it mediates the uptake of various endogenous substrates 

(e.g., conjugates of bile acids or steroid hormones) and clinically relevant drugs such as 

methotrexate, imatinib, SN-38, paclitaxel [3, 4]. Subsquent investigations have also 

reported that OATP1B3 is frequently expressed in multiple cancer tissues derived from 

the gastrointestinal tract, lungs, breast, pancreas, prostate, and testis, while no expression 

was detected in nonmalignant tissues of these organs [3, 5-7]. Although some 

investigations suggested a potential association between OATP1B3 expression and 
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differing clinical outcomes [8], a molecular and functional understanding of OATP1B3 in 

cancer was incomplete.  

In majority of the previous reports, it was assumed that OATP1B3 detected in cancer is 

identical to that in the normal hepatocytes. These findings were based on the results from 

RT-PCR analyses amplifying different regions in the OATP1B3 transcript and 

immunodetection methods using antibodies against the C-terminal region of OATP1B3 

protein [3, 5-7, 9]. In our previous report, we had noted that the immunohistochemical 

staining for OATP1B3 frequently showed a cytoplasmic pattern in clinical colon cancer 

tissues, in contrast to the membranous staining in normal hepatocytes [6]. This led us to 

hypothesize that cancer cells may express alternative form(s) of OATP1B3 

transcript/protein, different from wild-type (WT) OATP1B3 expressed in normal 

hepatocytes.  

This thesis consists of several chapters, each of which contains relevant background 

information, results and discussions for the molecular and functional investigations of 

OATP1B3 expressed in cancer and normal liver. Chapter 2 reviews the literature findings 

on the expression and functions of different OATPs in cancer. In Chapter 3, we report the 

identification of cancer-specific variant forms of OATP1B3 resulting from alternative 

splicing in colon and pancreatic cancer. Our results indicated that colon and pancreatic 

cancer cells express the cancer-specific variant of OATP1B3 (csOATP1B3) which has 

limited transport activity and reduced plasma membrane trafficking compared to WT 

OATP1B3 expressed in the normal liver. In Chapter 4, we investigated the mechanisms 

regulating the expression of csOATP1B3. Based on the initial clues from a report by Winter 

et al. [10] we investigated the role of hypoxia and the involvement of hypoxia inducible 

factor-1a (HIF-1α) in regulating the transcription of csOATP1B3. Our results showed that 

csOATP1B3, but not OATP1B3 WT is induced under ambient and chemical hypoxia. We 
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were also able to identify a functional hypoxia response element (HRE) located in the 

proximal upstream region that physically interacts with HIF-1α.  

Despite intense interest in understanding the transporter functions of OATP1B3 WT and 

its role in drug-drug interactions, little has been known about the mechanisms regulating 

the cellular trafficking of OATP1B3. In Chapter 5, we investigated whether the N-terminal 

sequence of OATP1B3 WT contains important motifs responsible for its membrane 

trafficking. This is based on the observation that the OATP1B3 variant lacking the N-

terminal 28 amino acids was localized predominantly in cytoplasm. Our results indicated 

that the truncation of N-terminal amino acids 12-23 leads to substantially reduced 

expression and membrane localization of OATP1B3. In particular, the amino acids within 

a putative β-turn-forming tetrapeptide appear to be important in regulating the membrane 

trafficking of OATP1B3 WT. 

In summary, the findings from this thesis work provide a better molecular and functional 

understanding of cancer-type OATP1B3, which had been incorrectly presumed to be 

identical to OATP1B3 WT expressed in the liver. This thesis work also provides important 

insights into the regulation of cellular trafficking and expression of OATP1B3, potentially 

applicable to other members of the OATP family. 
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Chapter 2 

Literature review: Role of Organic Anion Transporting Polypeptides (OATPs) in 

Cancer Therapy 

(The contents of this chapter have been submitted for publication in the AAPS Journal, 

currently under revision).  

2.1 Introduction 

The Organic Anion Transporting Polypeptides (OATPs) represent an important 

superfamily of solute carriers expressed in various tissues throughout the body. The 

OATPs can mediate the bidirectional transport of a diverse array of endogenous and 

xenobiotic compounds, including organic dyes, bile acids, prostaglandins, cyclic 

nucleotides, steroid hormones and their conjugates, thyroid hormones, drugs and 

environmental toxins. The majority of OATP substrates are large amphipathic organic 

anions (molecular weights greater than 300 kDa), but OATPs can also transport cationic 

and neutral compounds. OATPs are known to transport their substrates in a sodium-

independent manner. Common structural features of the OATP superfamily include twelve 

transmembrane domains with intracellular amino and carboxy termini as well as a large 

extracellular loop between the ninth and tenth transmembrane regions. 

The OATP superfamily belongs to the SLCO gene family and is divided into six families 

based on sequence similarities [11]. Currently, 11 human OATPs are known with the 

OATP1 family being most well characterized. The OATP1 family includes four members, 

OATP1A2, OATP1B1, OATP1B3 and OATP1C1, which display broad and overlapping 

substrate specificity. The OATP2 family includes two members, OATP2A1 and OATP2B1, 

both of which display relatively narrow substrate specificity compared to other OATPs. 

The OATP4 family includes OATP4A1 and OATP4C1. The OATP3, OATP5 and OATP6 
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families include OATP3A1, OATP5A1 and OATP6A1, respectively. Orthologs of human 

OATPs are reported in other species, but there are cases that no single ortholog is shared 

between humans and animals. For example, human OATP1B1 and OATP1B3 have a 

single rodent ortholog of Oatp1b2 [11].  

Early investigations primarily focused on the identification and characterization of OATPs 

expressed in various organs throughout the body and the roles of OATPs in determining 

the disposition of substrates in vitro and in vivo. Subsequent reports revealed that the 

expression of OATPs can be altered in different disease conditions including cancer, 

implying that OATPs may play a role in the development and progression of cancer as 

well as the disposition of anticancer drugs. In this chapter, we will summarize the recent 

progress delineating the role of OATPs in cancer therapy. We will first summarize the 

current understanding of the roles of OATPs on the disposition of anticancer drugs and 

the impact of their genetic polymorphisms on the expression and function of OATPs, as 

well as the use of animal models to study the role of OATPs in anticancer drug disposition. 

In the later section, we will provide an update on the current knowledge about OATPs 

expressed in cancer and their potential roles in cancer development, progression and 

treatment. 

2.2 Role of OATPs in the disposition of substrates implicated in cancer therapy  

OATPs can mediate the transport of a wide range of endogenous and xenobiotic 

substrates in various tissues. The endogenous substrates of OATPs include cyclic and 

linear peptides, prostaglandins, bile acids, steroid hormone and their conjugates and 

thyroid hormones. Diverse classes of drugs, including anticancer drugs are also 

substrates of OATPs [11, 12]. In particular, the transporters of the OATP1 family have a 

number of substrates relevant in cancer therapy (Table 2.1). 
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Endogenous steroid hormones have been implicated in enhancing the survival and 

proliferation of cancer cells. Estrone-3-sulfate (E3S) is a major form of circulating 

estrogens and serves as an important source of estrogenic activity in postmenopausal 

women, the population with a high incidence rate of hormone-dependent cancers. Due to 

its hydrophilic and charged nature, E3S is not readily permeable across the plasma 

membrane and it often relies on a transporter-mediated mechanism to enter the cells. 

Among the eleven human OATP members, seven (OATP1A2, OATP1B1, OATP1B3, 

OATP1C1, OATP2B1, OATP3A1 and OATP4A1) are shown to transport E3S [4, 13]. 

These OATPs may facilitate the uptake of E3S not only in the major organs such as the 

liver, kidney, intestine and brain, but also in hormone-dependent cancers [13-15]. Similar 

to E3S, dehydroepiandrosterone sulfate (DHEA-S) is transported by multiple OATPs 

(OATP1A2, OATP1B1, OATP1B3 and OATP2B1) and may gain entry to cells via these 

transporters [4]. On the other hand, testosterone appears to be transported only by 

OATP1B3 [7, 16]. Many of these investigations however focused on the uptake of steroid 

hormones and their conjugates into cancer cells and the subsequent impact on cancer 

cell proliferation and related cellular pathways, rather than the disposition of hormonal 

substrates in the whole body.  

In case of anticancer drugs handled by OATPs, a number of investigations have examined 

whether the expression/function of OATPs can influence the pharmacokinetic profiles of 

anticancer drugs, and consequently therapeutic effects and toxicities. The most well 

studied substrates include methotrexate, doxorubicin and taxanes (paclitaxel and 

docetaxel). For these drugs, multiple reports indicated that these agents are handled by 

OATP1A2, OATP1B1 and OATP1B3 [3, 17-19]. The results were obtained from various 

models, ranging from in vitro heterologous expression systems, in vivo preclinical 

knockout and humanized mouse models and clinical studies. Docetaxel is reported to be 
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a substrate of human OATP1B1 and OATP1B3 and rat and mouse Oatp1b2 in vitro [20, 

21]. However, the pharmacokinetic profiles of docetaxel were not substantially altered in 

a cohort of patients harboring genetic variations associated with decreased OATP1B1 or 

OATP1B3 activity [22]. These results might be related to the presence of other uptake 

transporters with overlapping functions in the human liver. Indeed, a recent study using 

humanized transgenic mice indicated that elevated plasma levels of docetaxel observed 

in the knockout mice lacking Oatp1a/1b can be rescued by liver-specific expression of 

human OATP1B1, OATP1B3 or OATP1A2, confirming the relevance and overlapping 

nature of these OATP transporters in determining in vivo disposition of docetaxel [18]. 

When the involvement of OATPs in the handling of taxanes is considered, there was also 

a report indicating that taxanes are not handled by OATP1B3 [20]. These apparent 

discrepancies may be due to differences in the expression systems (Xenopus laevis 

oocytes vs HEK293). Other well-studied anticancer drugs handled by OATP1B1 and 

OATP1B3 are rapamycin (sirolimus) and SN-38 (7-ethyl-10-hydroxycamptothecin, an 

active metabolite of irinotecan) [20, 23-26]. Additionally, OATP1B1 transports CP-724,714 

(a Her2 tyrosine kinase inhibitor), cis-diammine-chloro-cholylglycinate-platinum II (a bile-

acid cisplatin derivative) and gimatecan (a camptothecin analog) [27-29]. Imatinib, used 

for leukemia therapy, is reported to be transported by OATP1A2 and OATP1B3 [30, 31]. 

Further investigations will be necessary to elucidate the clinical relevance of these 

transporters in influencing the in vivo disposition and therapeutic effects of these substrate 

drugs. 

The magnetic resonance imaging agent gadolinium-ethoxybenzyl-diethylenetriamine 

pentaacetic acid (Gd-EOB-DTPA) is also shown to be transported by OATP1B1 and 

OATP1B3 [32-34]. In a retrospective study involving 22 patients with hepatic cancer, high 

OATP1B3 expression levels were significantly correlated with increased uptake of Gd-
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EOB-DTPA [32]. In individuals carrying certain genetic variations associated with 

decreased OATP1B1 activity, the liver enhancement by the gadolinium-based imaging 

agent was substantially attenuated [34]. These findings suggest that the activity of OATPs 

and genetic variations may be potential confounders leading to a reduced signal intensity 

in liver magnetic resonance imaging. However, a recent retrospective study took 

advantage of this relationship and attempted to use the signal intensity of Gd-EOB-DTPA 

as a marker for hepatic vascularity and OATP-related activity and potentially as a 

prognostic factor for patients with early-staged hepatic cancer [35]. Additional 

investigations will be important to evaluate the prognostic utility of these findings in 

improving the classification and management of early-staged hepatic cancer. 

2.3 Impact of OATP polymorphisms on the pharmacokinetics of anticancer drugs 

A number of naturally occurring single nucleotide polymorphisms (SNPs) in the genes 

encoding OATPs have been reported and extensively investigated for their impact on the 

expression and function of the corresponding OATPs and consequently on the disposition 

and efficacy of anticancer drugs. In particular, polymorphic variants of genes encoding 

OATP1A2, OATP1B1 and OATP1B3 have been reported to be clinically relevant. 

Comprehensive reviews on this topic are already available elsewhere [4]. Thus, only a 

brief summary and update involving the disposition of anticancer drugs is provided below. 

For OATP1A2, the initial investigation was carried out using Xenopus laevis oocytes 

expressing genetic variants of OATP1A2 and methotrexate [17]. Four out of the twelve 

OATP1A2 variants examined displayed altered transport of E3S and methotrexate; the 

p.I13T (rs10841795) variant displayed enhanced transport activity, the p.R168C 

(rs11568564) and p.E172D (rs11568563) variants demonstrated decreased transport 

activity and the p.N278DEL (rs11568555) variant produced a nonfunctional protein. 

However, the impact of these OATP1A2 variants on the pharmacokinetics of methotrexate 
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in patients remains to be determined. More recently, a similar line of investigation was 

carried out with imatinib and genetic variations present in the coding and promoter regions 

of the gene encoding OATP1A2 [31]. The authors were able to identify polymorphic 

variations in the promoter region of OATP1A2 (−1105G>A (rs4148977) in linkage 

disequilibrium with −1032G>A (rs4148978), and −361G>A (rs3764043)) which correlated 

with the clearance of imatinib in patients with chronic myeloid leukemia [31]. Further 

clinical studies are required to confirm these findings in a larger group of patients and to 

verify whether the identified OATP1A2 variations correlate with therapeutic effects or 

toxicities of imatinib. 

For OATP1B1, there are several commonly occurring SNPs and in particular, the 

OATP1B1*15 (harboring variations causing two amino acid substitutions, p.N130D 

(rs2306283) and p.V174A (rs4149056)) variant has been most extensively investigated. 

Compared to the wild-type OATP1B1 (OATP1B1*1a), the OATP1B1*15 displayed 

reduced uptake of SN-38 (an active metabolite of irinotecan), when tested in in vitro cell 

line models stably expressing OATP1B1 variant proteins [24]. The clinical relevance of 

these findings was subsequently validated by comparing the pharmacokinetics and toxicity 

profiles in patients receiving irinotecan therapy [36, 37]. Patients with the OATP1B1*15 

genotype showed increased systemic exposure and toxicities of SN-38 compared to those 

with the wild-type OATP1B1 [36, 37]. Similar findings have been reported with patients 

treated with methotrexate. In particular, recent reports validating the relevance of the 

OATP1B1*15 genotype in determining the pharmacokinetics and toxicities of 

methotrexate were from genome-wide association studies or studies involving a large 

number of patients and cohorts from different institutions [38-40]. Continued investigations 

examining the prospective utility of the OATP1B1 genotypes in improving therapeutic 

effects and safety profiles of these anticancer drugs are warranted. 
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As a closely related member to OATP1B1, OATP1B3 displays substantial overlapping 

substrate specificity, yet harbors fewer genetic variations. Initially, the functional impact of 

three nonsynonymous SNPs of OATP1B3 (p.S112A (rs4149117), p.M233I (rs7311358) 

and p.G522C (rs72559743)) were examined using in vitro models [41]. However, none of 

these three SNPs were found to have a significant impact on the clearance and other 

pharmacokinetic parameters of paclitaxel in cancer patients [42]. For docetaxel, a potential 

association between OATP1B3 genotypes and toxicity (leukopenia/neutropenia) has been 

recently reported in patients [43, 44]. Additional investigations will be required to validate 

the clinical relevance of these findings. 

2.4 Animal models to investigate the role of OATPs in the disposition of anticancer 

drugs 

Given the increasingly recognized roles that OATPs play in determining the disposition of 

many drugs, it has become important to assess the potential of OATPs and their genetic 

variations as a source for variable drug disposition and response in vivo. In recent years 

a number of transgenic mouse models have been reported including the knockout mouse 

models lacking the orthologs of human OATP1A and OATP1B subfamily members and 

the humanized mouse models where human OATPs are introduced after deleting the 

genes for mouse orthologs.  

In rodents, there is only one member of the Oatp1b subfamily and it is considered to be 

the closest ortholog for both human OATP1B1 and OATP1B3. The knockout mouse 

models lacking Oatp1b2 have been developed by three independent groups and have 

served as useful tools to delineate and extrapolate the in vivo relevance of both human 

OATP1B1 and OATP1B3 to the disposition of environmental toxins (e.g. phalloidin, 

microcystin-LR), statin drugs (e.g. cerivastatin, lovastatin, pravastatin, simvastatin) and 

antibiotics (e.g. rifampicin, rifamycin SV) [45-47]. Given the large overlap in tissue 
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distribution and substrate specificity within the OATP1 family, another transgenic mouse 

model deficient for all five established Slco1a and Slco1b genes (Slco1a/1b-/- mice ) has 

been developed [48]. These mice lacking Oatp1a1, Oatp1a4, Oatp1a5, Oatp1a6 and 

Oatp1b2 displayed drastically reduced hepatic uptake of methotrexate, fexofenadine and 

paclitaxel and subsequently increased systemic exposure for all of these drugs [48, 49].  

In addition, humanized transgenic mouse models expressing OATP1A2, OATP1B1 and 

OATP1B3, in the absence of the background expression of the mouse orthologs, have 

been developed and used to account for possible species-dependent differences between 

the mouse and human OATP orthologs. For example, a humanized OATP1B1 mouse 

model with liver-specific expression of OATP1B1 was generated and the disposition of 

methotrexate was investigated. The plasma concentrations of intravenously administered 

methotrexate in the humanized OATP1B1 transgenic mice were substantially lower than 

in the control animals [50]. In addition, the humanized OATP1B1 transgenic mice 

displayed a greater amount of methotrexate in the liver as well as a higher liver to plasma 

ratio of methotrexate than the control animals [50]. Similarly, transgenic humanized 

OATP1A/1B mouse models were generated with liver-specific expression of OATP1B1, 

OATP1B3 and OATP1A2 in an Oatp1a/1b knockout background. This model was utilized 

to show that paclitaxel, methotrexate, SN-38, docetaxel and doxorubcin are transported 

by OATP1A/1B in vivo [18, 19, 51, 52].  

These findings have provided further insights regarding the contribution of OATP1A/1B 

transporters to the disposition, response and toxicity of anticancer drugs. Importantly, 

those investigations have provided the impetus for additional studies to elucidate the role 

of other OATPs and commonly observed polymorphisms in the pharmacokinetics and 

pharmacodynamics of anticancer drugs. Together, these tools will continue to provide a 
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useful guide to inform anticancer drug development and optimization of anticancer drug 

therapy.  

2.5 OATPs expressed in cancer  

There is a substantial body of evidence indicating that the expression of OATPs can be 

altered in various types of cancers. In this section we will summarize the current literature 

about different OATPs expressed in cancer tissues, their proposed functions and cancer-

specific mechanisms of regulation. 

2.5.1 OATP1A2 (Gene symbol, SLCO1A2) 

OATP1A2 expression has been confirmed in several normal tissues and cell types 

including the blood-brain barrier, enterocytes, cholangiocytes and kidneys [53, 54]. 

OATP1A2 can mediate the transport of endogenous hormonal substrates (e.g. E3S, 

DHEA-S) and several cancer drugs (e.g. imatinib, paclitaxel, doxorubicin, docetaxel) 

(Table 2.1). Thus, a number of studies have examined the expression and functional 

impact of OATP1A2 in cancer. OATP1A2 expression was first reported in breast cancer 

and subsequently in additional types of cancer including colon, prostate and bone (Table 

2.2) [55-59]. To date, the potential functional significance of OATP1A2 has been reported 

in breast cancer, but not in other types of cancer.  

The expression of OATP1A2 mRNA and protein in breast cancer was first reported by Miki 

et al. [55]. The results from RT-PCR analyses indicated that OATP1A2 is expressed in 

human breast cancer tissues, but not in noncancerous breast, adipose tissues or stromal 

cells [55]. These findings are consistent with the reports showing that OATP1A2 mRNA 

was barely detectable in non-malignant mammary epithelial cells (below the level of 

quantification) [60]. Interestingly, Miki et al. also reported a significant correlation between 

the expression of OATP1A2 and the nuclear receptor PXR (pregnane X receptor) 
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providing possible insights into the regulation of OATP1A2 expression [55]. These findings 

were further validated in breast cancer cell line models [56] where treatment of T47-D cells 

with rifampicin (a well-known PXR activator) increased the expression of OATP1A2 and 

cellular uptake of E3S and promoted breast cancer cell proliferation in vitro. In line with 

these findings, a more recent study using mouse xenograft models reported that 

OATP1A2 may play a role in regulating in vivo tissue distribution of E3S and the growth 

of hormone-dependent breast cancer [14]. In the clinical setting, the expression of 

OATP1A2 combined with another transporter OCT6 in patients with triple negative breast 

cancer (which displays no detectable expression for estrogen receptor, progesterone 

receptor and Her2/neu and has very poor prognosis) was predictive of response to 

anthracycline/taxane-based neoadjuvant chemotherapy [61]. Further investigations will be 

required to evaluate the clinical relevance of these findings in patients with hormone-

dependent or triple negative breast cancers. 

Although detailed functional investigations have not been reported, the expression of 

OATP1A2 has been observed in other cancers. Arakawa et al. reported that OATP1A2 is 

expressed in human prostate cancer cell lines (LNCaP and 22Rv1) and facilitates the 

uptake of DHEA-S and enhances cancer cell growth under androgen-depleted conditions 

[58]. The levels of OATP1A2 mRNA were reported to be elevated in human osteosarcoma 

cell lines (HOS and MG-63) and human kidney cancer cells metastasized to bone tissue 

[59]. On the other hand, colon polyps and colon cancer tissues were reported to have 

reduced OATP1A2 mRNA levels compared to healthy colon tissue [57].  

As noted above, the nuclear receptor PXR may play a role in regulating OATP1A2 

expression in cancer [56]. A PXR response element present in the human OATP1A2 

promoter was confirmed to have physical interactions with PXR and to play a role in the 

transactivation of OATP1A2 in breast cancer cells [56]. If OATP1A2 is eventually identified 
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to have an important role in cancer development, progression or therapy, its regulation 

through PXR may be a key relationship to investigate.  

2.5.2 OATP1B1 (Gene symbol, SLCO1B1) 

OATP1B1 is abundantly expressed in the normal liver and was initially considered to be 

liver-specific [62, 63]. OATP1B1 mediates the uptake of several endogenous substrates 

including hormones (E3S and DHEA-S) and anticancer drugs (rapamycin, SN-38, 

gimatecan, flavopiridol, docetaxel) (Table 2.1) (reviewed in [4] and [64]). Several 

investigations have been carried out to assess the expression levels and functions of 

OATP1B1 in cancer. To date, OATP1B1 is reported to be expressed in colon cancer, 

ovarian cancer and variably expressed in hepatocellular carcinoma (HCC).  

 

A number of reports indicate that the expression of OATP1B1 is decreased in HCC 

compared to non-malignant liver. Since the first report on the decreased OATP1B1 protein 

levels in HCC cell lines [65], many subsequent investigations have reported similar 

findings using HCC tissue samples and cell lines [66-69]. However, there is also a report 

noting no significant reduction of OATP1B1 in HCC tissues compared to non-malignant 

liver tissues [70].  

In contrast to the variable expression of OATP1B1 in HCC, OATP1B1 expression was 

reported to be elevated in cancers derived from nonhepatic tissues which normally do not 

express OATP1B1. For instance, OATP1B1 expression has been reported in colon polyps 

and colon cancer tissue [57] as well as ovarian cancer tissue samples and cell lines (SK-

OV-3) [9]. In regards to its transport functions in cancer, OATP1B1 is implicated to play a 

role in paclitaxel uptake in ovarian cancer cells [9]. Overall, further investigations will be 
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necessary to examine the clinical significance of altered expression of OATP1B1 in 

cancers. 

2.5.3 OATP1B3 (Gene symbol, SLCO1B3)  

When OATP1B3 was cloned for the first time, it was found to be abundantly expressed in 

the normal liver, but not in any other non-malignant tissues [3]. This initial report also noted 

that OATP1B3 is expressed in multiple types of cancer. These findings have been 

confirmed by a number of subsequent investigations and OATP1B3 is arguably the most 

extensively investigated OATP member with regard to cancer-related alterations in 

expression. Recently there has been substantial progress in our understanding of cancer-

specific expression of OATP1B3 including the identification of cancer-specific variants.  

 

OATP1B3 mediates the transport of several endogenous substrates including hormones 

(E3S, DHEA-S, testosterone), cancer drugs (methotrexate, imatinib, paclitaxel, SN-38, 

rapamycin, docetaxel, doxorubicin), microcystins and MRI contrast agents (gadolinium-

ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)) [32, 71]. Similar to 

the decreased expression of the closely related member OATP1B1 in HCC, OATP1B3 

expression was shown to be decreased in primary and metastatic liver cancers [68, 70, 

72]. It has been suggested that the decreased expression of OATP1B3 and OATP1B1 in 

hepatic cancer tissues may be related to poor differentiation status in the malignant 

tissues. On the other hand, OATP1B3 is frequently expressed in several cancerous 

tissues derived from the gastrointestinal tract, pancreas, lung, breast, prostate, and testes, 

all of which do not express any detectable level of OATP1B3 in noncancerous settings. 

This frequent expression of OATP1B3 across multiple cancer types prompted many 

investigators to probe the functional role of OATP1B3 in cancer.  
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The expression of OATP1B3 in multiple types of cancer was first reported by Abe et al. 

[3]. Specifically, northern blot analyses showed the expression of OATP1B3 in various 

established cancer cell lines (derived from the colon, stomach, pancreas, gall-bladder and 

lung) and clinical samples (from gastric, colon and pancreatic cancer) [3]. This finding was 

subsequently corroborated by multiple studies which utilized RT-PCR and 

immunohistochemical detection methods (Table 2.2). In human breast cancer, OATP1B3 

was detected in approximately 50% of the clinical tissue samples examined by 

immunohistochemistry and OATP1B3 immunoreactivity was associated with a decreased 

risk of recurrence and improved prognosis [5]. The authors speculated that OATP1B3 

overexpression may be associated with hormone-dependent growth mechanisms 

considering that OATP1B3 transports E3S. In line with these findings, subsequent studies 

have also suggested that OATP1B3 contributes to the growth of estrogen-dependent 

breast cancer [13, 15]. OATP1B3 is also reported to be expressed in prostate and 

colorectal cancers [7, 8, 16]. In reference to colorectal cancer, OATP1B3 is found to be 

expressed in the majority (56%) of clinical tissue specimens examined, and possibly 

associated with improved clinical outcomes [8]. During these investigations, it was also 

noted that the immunohistochemical staining for OATP1B3 showed predominantly a 

cytoplasmic pattern, clearly different from the membranous pattern in normal hepatocytes 

[6, 8]. 

 Our laboratory has probed possible reasons for different localization patterns of 

OATP1B3 expressed in cancer cells vs normal hepatocytes. Through those efforts, we 

recently reported the presence of a cancer-specific OATP1B3 variant (csOATP1B3 or 

OATP1B3 V1) which utilizes an alternative transcription initiation site from wild-type (WT) 

OATP1B3 expressed in normal liver [73]. The protein translated from the longest open 

reading frame (ORF) lacks 28 amino acids at the N-terminus of OATP1B3 WT. Our 
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findings showed that in comparison to OATP1B3 WT, csOATP1B3 has defective plasma 

membrane trafficking, resulting in reduced transport activity of cholecystokinin-8 (a 

prototype OATP1B3 substrate) [73]. Similarly Nagai et al. reported that lung, colon and 

pancreatic cancer tissues and cell lines express an alternative OATP1B3 transcript [74]. 

However, this study proposed the four potential ORFs resulting in much shorter amino 

acid sequences than the ORF reported by our laboratory and another subsequent report 

[73, 75]. Currently, csOATP1B3 is found to be the major isoform expressed only in cancer 

cells, but not in normal tissues. Further studies are required to delineate the biological 

significance of csOATP1B3 in cancer, specifically whether csOATP1B3 confers any 

survival advantage or chemotherapy resistance to cancer cells.  

With regard to the regulatory mechanisms for OATP1B3 expression, several 

investigations implicated the involvement of the liver-enriched transcription factor, 

hepatocyte nuclear factor 3β, (HNF3β) as well as epigenetic and hypoxia mediated 

mechanisms [70, 75-77]. The contribution of these reported mechanisms may vary 

depending on the tissue types and disease states. In an earlier report, Vavricka et al 

showed that HNF3β is responsible for the transcriptional repression of OATP1B3 

expression in HCC [70]. A later study showed that epigenetic mechanisms by DNA 

methylation-dependent gene silencing are involved in the regulation of OATP1B3 in 

different cancer cell lines [76]. A more recent study showing that DNA methylation-

dependent gene silencing involving the Methyl-DNA Binding protein 2 (MBD2) regulates 

the expression of csOATP1B3 confirmed the previous methylation-dependent gene 

silencing findings [75].  Our laboratory showed that csOATP1B3, but not OATP1B3 WT is 

transcriptionally activated by hypoxia. A functional hypoxia response element (HRE) within 

the promoter regions of csOATP1B3 was shown to physically interact with hypoxia 

inducible factor-1α (HIF-1α) in colon and pancreatic cancer cells [77]. We postulated that 
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hypoxia-induced regulation of csOATP1B3 may be operating in line with epigenetic 

regulation. This hypothesis is based on the observation that the HRE site proposed in our 

recent study [77] is located in close proximity to the potential methylation site [75]. Thus, 

we examined the effect of in vitro methylation on the transactivation of a reporter construct 

of the csOATP1B3 promoter containing the proposed HRE and methylation sites. Our 

results showed no substantial changes by in vitro methylation, suggesting that hypoxia 

and epigenetic mechanisms likely work independently in regulating the csOATP1B3 

(unpublished data). 

2.5.4 OATP1C1 (Gene symbol, SLCO1C1) 

OATP1C1 was identified as a high affinity transporter for thyroid hormones in brain, Leydig 

cells of the testis [78] and ciliary bodies [79]. Thus far, no cancer drugs have been 

identified to be substrates of OATP1C1. A study by Liedauer et al. showed that OATP1C1 

mRNA expression was detected in several human osteosarcomas, samples of metastases 

from kidney tumors and the highest expression was observed in aneurysmal bone cysts 

[59]. This is the only study to report the expression of OATP1C1 in cancer and the 

functional role of OATP1C1 in bone cancers is currently unknown. 

2.5.5 OATP2A1 (Gene symbol, SLCO2A1) 

OATP2A1 was initially cloned and identified as a prostaglandin transporter [80]. Currently, 

no cancer drugs have been reported to be substrates of OATP2A1. In non-cancerous 

tissues, OATP2A1 is expressed ubiquitously. Altered expression of OATP2A1 is reported 

in various types of cancers (Table 2.2). OATP2A1 expression is reported to be increased 

in breast cancer, HCC, cholangiocarcinoma and liver metastases from colon cancer [16, 

81]. On the other hand, reduced OATP2A1 levels are reported in other types of cancer 

from colon, stomach, ovary, lung, and kidneys [82]. Interestingly, the reduced expression 

of OATP2A1 was linked with increased extracellular levels of the proinflammatory 
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prostaglandin E2 (PGE2) in colorectal cancer [82]. Higher extracellular levels of PGE2 

may activate various signaling cascades in colorectal cancer by interacting with G protein-

coupled receptors on the surface. Further investigations are required to better understand 

the impact of altered OATP2A1 expression in cancer. 

2.5.6 OATP2B1 (Gene symbol, SLCO2B1) 

OATP2B1 is a ubiquitously expressed uptake transporter that was initially cloned by Tamai 

et al. [83] (Table 2.2). OATP2B1 transports various substrates including steroid hormone 

conjugates, thyroid hormones, prostaglandins and other drugs. Although no cancer drugs 

are currently known to be substrates of OATP2B1, its altered expression is reported in 

different cancers (Table 2.2). In breast cancer, increased OATP2B1 expression was 

reported in clinical samples as well as cell lines and was correlated with high tumor grades, 

but not with an altered clinical outcomes [84]. OATP2B1 expression was also shown to be 

higher in bone cysts compared to osteosarcoma tissues [59]. Alternatively, Pressler et al. 

showed that OATP2B1 mRNA expression was lower in liver and pancreatic cancers 

compared to non-malignant tissues [85]. However, these findings have not been validated 

at the protein level. Currently, the role of OATP2B1 in cancer cells is not well understood 

and needs further investigation.  

2.5.7 OATP3A1 (Gene symbol, SLCO3A1) 

In non-malignant tissues, OATP3A1 is expressed ubiquitously where it transports various 

hormones, prostaglandins and drugs [4]. Altered expression of OATP3A1 is reported in 

various types of cancers (Table 2.2). Increased expression of OATP3A1 transcripts have 

been reported in multiple cancer cell lines [4, 83]. Higher OATP3A1 mRNA was detected 

in aneurysmal bone cysts as compared to osteosarcomas [59]. In breast cancer, 

OATP3A1 is localized both on the plasma membrane and in the cytoplasm [86]. Wleck et 
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al. showed that OATP3A1 levels were increased in primary and metastatic liver cancer 

[87]. Further studies are required to investigate the role of OATP3A1 expressed in cancer. 

2.5.8 OATP4A1 (Gene symbol, SLCO4A1) 

OATP4A1 is expressed ubiquitously and plays a role in the transport of several 

endogenous (hormones, prostaglandins and bile acids) and drug substrates (reviewed in 

[4]). Similar to OATP3A1, OATP4A1 is also overexpressed in multiple cancer cell lines, 

aneurysmal bone cysts, liver cancers and breast cancers [59, 81, 83, 87]. In colorectal 

neoplasia specimens, OATP4A1 mRNA levels were reported to be elevated [88]. 

Additionally, the authors suggested that increased expression of PGE2 transporting 

OATP2B1 and OATP4A1 may lead to decreased sensitivity to cyclic nucleotides in 

colorectal neoplasia. However further validation is required to better delineate the role of 

OATP4A1 in these conditions. 

2.5.9 OATP4C1 (Gene symbol, SLCO4C1) 

OATP4C1 expression in non-cancerous tissues is mainly limited to the kidney where it 

mediates the uptake of thyroid hormone, cAMP, cardiac glycosides, and methotrexate 

[89]. In breast cancer tissues and cell lines, Wleck et al. showed that elevated OATP4C1 

mRNA levels were present [81]. However, little is known regarding the expression and 

role of OATP4C1 in other cancers.  

2.5.10 OATP5A1 (Gene symbol, SLCO5A1) 

OATP5A1 is reported to be expressed in the epithelial cells lining the mammary ducts [86]. 

To date, the tissue distribution and substrates of OATP5A1 are poorly understood. 

Different studies report the expression of OATP5A1 in cancers (Table 2.2). 

Immunohistochemical analyses confirmed that OATP5A1 is expressed on the membrane 

and in the cytoplasm of breast cancer cells [86]. OATP5A1 at both the mRNA and protein 
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levels was found to be upregulated in liver cancer [87] and small cell lung cancer (SCLC) 

[90]. As a potential marker of chemotherapy resistance, HEK-293 cells transfected with 

OATP5A1 showed resistance to satraplatin treatment [90]. Further studies may be 

warranted to elucidate the impact of OATP5A1 on tumor resistance and better understand 

the role OATP5A1 in cancer. 

2.5.11 OATP6A1 (Gene symbol, SLCO6A1) 

OATP6A1 was initially identified as a gonad-specific transporter expressed predominantly 

in the testes [91, 92]. Its expression is also reported in cancer tissues (lung esophageal, 

and bladder) and lung cancer cell lines [92]. However, little is currently known regarding 

the role of OATP6A1 expression in cancer. 

2.6 Conclusions and Outlook 

OATPs are expressed in multiple tissues and organs and mediate the transport of a wide 

range of substrates in a sodium-independent manner. It is increasingly recognized that 

OATPs play an important role in the disposition of substrates implicated in cancer therapy. 

In particular, the variable expression/activity of OATP1 family members and their genetic 

variations have been extensively investigated as a possible source for altered 

pharmacokinetics and pharmacodynamics of anticancer drugs. There is a long list of 

anticancer drugs recognized as OATP substrates, but further research is required to 

elucidate the in vivo relevance of these interactions. The increasing availability of 

transgenic mouse models is moving the field forward, yet further clinical validation in terms 

of disposition, response and toxicity to anticancer drugs will be crucial.  

It is now well recognized that certain OATPs are differentially regulated in normal and 

cancer tissues. Certain OATPs differentially regulated in cancer may have pathogenic 

roles during cancer development and progression and potentially serve as therapeutic 
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targets. Further studies are necessary to obtain more comprehensive profiles of OATPs 

differentially regulated in cancer cells, along with a better understanding of molecular 

mechanisms underlying altered expression of OATPs in cancer. So far, many of the 

reports focused on the altered expression of certain OATPs and it will be important to 

clarify the functional implications of OATPs during the development and progression of 

cancers. Recently there has been progress in our understanding of the OATP1 family in 

terms of their expression, regulation and potential functions in cancer cells. With the 

wealth of provocative data generated, further studies are warranted to investigate the 

potential roles of other OATP family members expressed in cancer. 
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Table 2.1 Selected endogenous substrates, anticancer drugs and imaging agents transported by OATPs 

OATPs Substrates Reference(s) 

OATP1A2 Endogenous hormones and conjugates   
Estrone-3-sulfate, DHEA-S  
Anticancer drugs 
Imatinib, Methotrexate, Paclitaxel, Doxorubicin, Docetaxel 

 
[93, 94]  

 
[17-19, 30, 52] 

OATP1B1 Endogenous hormones and conjugates   
Estrone-3-sulfate, DHEA-S  
Anticancer drugs 
Methotrexate, Paclitaxel, Rapamycin, Flavopiridol, SN-38, 
Gimatecan, Doxorubicin, Docetaxel, CP-724,714 , Cis-
diammine-chloro-cholylglycinate-platinum(II)  
Imaging agents 
Gd-EOB-DTPA 

 
[83, 95] 

 
[3, 19, 96], 23, 24, 97]  

[18, 27, 29, 52] 
[28] 

 
[33] 

OATP1B3 Endogenous hormones and conjugates  
Estrone-3-sulfate, DHEA-S, Testosterone 
Anticancer drugs 
Rapamycin, Methotrexate, Paclitaxel, Doxorubicin, Docetaxel, 
Imatinib, SN-38 
Imaging agents 
Gd-EOB-DTPA 

 
[7, 95, 97] 

 
[3, 19, 21, 23, 52]  
[18, 20, 21, 30] 

 
[32] 
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Table 2.2 Expression of OATPs in non-malignant and malignant tissues  

OATPs 
Non-malignant 

tissues 

Malignant tissues and cells 

Alterations Detection method 

OATP1A2 Blood-brain barrier [53] 
Enterocytes [54] 
Cholangiocytes [54] 
Kidney [98] 

 in breast cancer [55, 56] 
 in colon polyps and colon 
cancer [57] 
 in prostate cancer cells [58] 
 in bone cancer [59] 

RT-PCR, IF 
RT-PCR 

 
qRT-PCR 
RT-PCR 

OATP1B1 Liver [62, 63]  in liver cancer [65-68, 85] 
 in colon polyps and colon 

cancer [57]  
 in ovarian cancer [9] 

RT-PCR, IF, IB 
RT-PCR 

 
RT-PCR 

OATP1B3 Liver [3, 99]  in liver cancer [70] 
 in colon cancer [6, 73, 74] 
 
 in pancreatic cancer [73, 74, 
100] 
 in lung cancer [67] 
 
 in prostate cancer [7, 16, 85, 
101] 
 in breast cancer [5] 
 in testicular cancer [85] 
 in ovarian cancer [9] 

qRT-PCR, IB 
RT-PCR, qRT-PCR, 

IB, IHC 
RT-PCR, qRT-PCR, 

IB, IHC 
RT-PCR, qRT-PCR, 

IF 
qRT-PCR, IF 

 
qRT-PCR, IHC 
qRT-PCR, IF  

RT-PCR 

OATP1C1 Brain [78] 
Testes [78] 
Ciliary body [79] 

 in bone cancers [59] RT-PCR 
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OATP2A1 Ubiquitous [102]  in breast cancer [81] 
 in liver cancer [87] 
 in bone metastases from kidney 
cancer [59] 
 in cancers of bowel, stomach, 
ovary, lung and kidney [82] 

qRT-PCR 
 

qRT-PCR, IF 
qRT-PCR, IB 

RT-PCR 

OATP2B1 Blood-brain barrier [103] 
Heart [104] 
Enterocytes [105] 
Liver [106] 
Placenta [107] 

 in bone cancer [59] 
 in breast cancers [81, 84] 
 in liver and pancreatic cancers 
[85] 

RT-PCR 
qRT-PCR, IF, IB 

qRT-PCR 

OATP3A1 Ubiquitous [108]  in bone cysts [59] 
 in breast cancer tissues and cell 
lines [86] 
 in primary and metastatic liver 
cancer [87] 
 in cancer cell lines of multiple 
tissues [83] 

RT-PCR 
qRT-PCR, IF, IHC 

 
qRT-PCR, IF 

 
RT-PCR 

OATP4A1 Ubiquitous [83]  in bone cysts [59] 
 detected in breast cancer [81] 
 in primary and metastatic liver 
cancer [87] 
detected in cancer cell lines of 
multiple tissues [83] 
 in colon cancer [88] 

RT-PCR 
RT-PCR 

qRT-PCR, IF 
 

RT-PCR 
 

qRT-PCR 

OATP4C1 Kidney [89] detected in breast cancer cell lines 
[81] 

RT-PCR 
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OATP5A1 Lactiferous ducts of 
breast [86] 

 in breast cancer [86] 
 in primary and metastatic liver 
cancer [87] 
 in small cell lung cancer [90] 

qRT-PCR, IF, IHC 
qRT-PCR, IF 

 
qRT-PCR, IF 

OATP6A1 Testes [91] detected in lung, bladder and 
esophageal cancer [92] 

RT-PCR 

, increased; , decreased; detection methods represented as reverse transcriptase-polymerase reaction (RT-PCR), 
quantitative RT-PCR (qRT-PCR), immunofluorescence (IF), immunoblotting (IB), immunohistochemistry (IHC) 
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Chapter 3 

A cancer-specific variant of the SLCO1B3 gene encodes a novel human organic 

anion transporting polypeptide 1B3 (OATP1B3) localized mainly in the cytoplasm 

of colon and pancreatic cancer cells 

(The work in this chapter has been published in Molecular Pharmaceutics (2013) [73]) 

3.1 Introduction 

Organic anion transporting polypeptide 1B3 (OATP1B3) belongs to the OATP superfamily 

that mediates transmembrane transport of endogenous and xenobiotic compounds in 

various organs [2]. OATP1B3 was initially reported to be expressed exclusively in 

hepatocytes, mediating the uptake of various endogenous substrates (e.g. conjugates of 

bile acids or steroid hormones) and clinically relevant drugs such as methotrexate and 

paclitaxel [109]. Several investigations including one from our own laboratory have shown 

that OATP1B3 is also expressed in cancer tissues derived from the gastrointestinal tract, 

breast, lung, pancreas and prostate, while expression was not detected in nonmalignant 

tissues of these organs [3] [5-7, 67, 110]. Although some reports suggested a possible 

association between OATP1B3 expression and differing clinical outcomes, a molecular 

and functional understanding of OATP1B3 in cancer has been incompletely investigated 

[5, 8].  

In the majority of previous reports, it was assumed that OATP1B3 detected in cancer is 

identical to that in normal hepatocytes [3, 5-7, 9, 67]. These findings were based on results 

from RT-PCR analyses amplifying various regions in the OATP1B3 transcript and 

immunodetection methods using antibodies against the C-terminal region. In our previous 

study, we however noted that the immunohistochemical staining for OATP1B3 frequently 

showed a cytoplasmic pattern in clinical colon cancer tissues, in contrast to the 
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membranous staining in normal hepatocytes [6, 8]. This led us to hypothesize that cancer 

cells may express alternative form(s) of OATP1B3 transcript/protein, different from wild-

type (WT) OATP1B3 expressed in normal hepatocytes. In our current study, we have 

identified multiple variant forms of OATP1B3 resulting from alternative splicing in colon 

and pancreatic cancer. In a similar line of work, Nagai et al. recently reported that colon, 

lung and pancreatic cancer tissues and cell lines express an alternative OATP1B3 

transcript and its sequence is identical to the most prevalent variant form, OATP1B3 V1 

identified from our current study [74]. Using the sequence information for this cancer-

specific OATP1B3 isoform (Ct-OATP1B3 or OATP1B3 V1), Nagai et al. proposed the four 

putative open reading frame (ORF) sequences and reported the detection of GFP 

expression following transfection of the expression plasmids containing the proposed ORF 

sequences fused with GFP [74]. However, further investigation is necessary to determine 

whether any of the putative ORF sequences proposed by Nagai et al. is indeed translated 

into proteins in clinical cancer tissues or established cancer cell lines [74]. 

In this chapter, we report our findings on the presence of multiple OATP1B3 mRNA 

isoforms and further validation of the OATP1B3 V1 protein expression in clinical colon and 

pancreatic cancer tissues and established cell lines. Our immunohistochemical analyses 

support that colon and pancreatic cancer tissues express OATP1B3 V1 protein lacking 28 

amino acids at the N-terminus. Compared to OATP1B3 WT, OATP1B3 V1 was found to 

undergo a differing extent of post-translational modifications, proteasomal degradation, 

and plasma membrane trafficking, and showed only limited transport activity toward 

cholecystokin-8 (CCK-8, a prototype OATP1B3 substrate).  

3.2 MATERIALS AND METHODS 

3.2.1 Chemicals and Reagents  
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Peptide: N-glycosidase F (PNGase F) was purchased from New England Biolabs Inc. 

Sodium butyrate, ammonium sulfate, and rifampin were purchased from Sigma-Aldrich. 

Epoxomicin was synthesized and kindly provided by Dr. Kyung Bo Kim (University of 

Kentucky). [3H]-Cholecystokinin-8 ([3H]-CCK-8, 104.2 Ci/mmol, > 90% purity) was 

purchased from Perkin Elmer. Immunohistochemistry reagents were purchased from 

Biogenex.  

3.2.2 5′-RACE (Rapid Amplification of cDNA Ends) 

 Total RNAs (1 g) from 5 clinical colon cancer tissues (Biochain) and 8 colon cancer cell 

lines (CaCO2, HCT8, RKO, SW480, SW620, HCA7, HCT116, and DLD1) were converted 

to RACE-ready cDNA using the SMARTerTM RACE cDNA amplification kit (Clontech). 

Subsequently, reverse transcription-PCR (RT-PCR) was performed using the Advantage 

2 PCR kit (Clontech), the universal primer provided in the SMARTerTM Race kit and 

primers designed to target OATP1B3 at exon 5 (5´-

GCCACGAAGCATATTCCCCATGAAGACA-3´) or exon 10 (5´-

CCGGCAACTGATTTGCTTTCGCAGAT-3´). Amplified products of different sizes were 

cloned into pCR2.1-TOPO (Invitrogen) and analyzed by direct sequencing. 

3.2.3 Quantitative and Qualitative RT-PCR 

 Total RNAs (1 µg) from clinical cancer tissues (n=5 for colon and n=10 for pancreas) and 

multiple established cancer cell lines (n=8 for colon and n=6 pancreas) were converted to 

single-stranded cDNA using the SuperScriptTM III cDNA synthesis kit (Invitrogen). For 

quantitative RT-PCR analyses of OATP1B3 WT or V1, primers were designed to amplify 

the regions unique to WT or V1. The following primer sequences were used; for WT, sense 

5´-TCAAAGTCAAGGTGATCATT-3´ (exons 1 and 2) and antisense 5´-

CCAAGAACATCTTGAATCCA-3´ (exons 2 and 3); for V1, sense 5´-

AAAACTAGCAGATGTTCTTG-3´ (exons 2a and 3) and antisense 5´-
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ATACCTATAATATCCCATGAAGAA-3´ (exons 4 and 5); for β–actin, sense 5´-

GCATCCTCACCCTGAAGTAC-3´ and antisense 5´-GATAGCACAGCCTGGATAGC-3´. 

Quantitative RT-PCR was performed in duplicate using iCycler with the iQ SYBR-green 

Supermix (Bio-Rad). The condition of quantitative RT-PCR was as follows: annealing at 

60°C with 40 cycles for OATP1B3 WT or V1; annealing at 65°C with 40 cycles for β–actin. 

In order to obtain the transcript copy numbers for OATP1B3 WT, V1 or β-actin, serial 

dilutions of the plasmids containing each amplicon were used as calibration samples. The 

specificity of each PCR run was verified by melting curve and agarose gel analyses as 

well as by confirming the mutually exclusive amplification of OATP1B3 WT or V1 using 

the respective primers.  

In order to examine the presence of full-length transcripts of OATP1B3 WT or V1 spanning 

from the first to the last exons, qualitative RT-PCR was performed using Platinum 

Supermix (Invitrogen) and the following primers; for WT (exons 1-15, expected size of 

2214 bp), sense 5´-GGATGGACTTGTTGCAGTTG-3´ and antisense 5´-

TTAGTTGGCAGCAGCATTGT-3´; for V1 (exons 2a-15, expected size of 2077 bp), sense 

5´-CAATGTATGGCCACGTTACT-3´ and antisense 5´-TTAGTTGGCAGCAGCATTGT-3´. 

Each PCR cycle consisted of a denaturation step at 94°C for 30 sec, a primer-annealing 

step at 55°C for 1 min, and an extension step at 72°C for 1 min. The PCR products were 

visualized on 1% agarose gel. 

3.2.4 Antibodies 

In addition to the polyclonal OATP1B3 antibody, SKT (epitope: the C-terminal peptide 

sequence SKTCNLDMQDNAAAN) validated previously,2 the polyclonal OATP1B3 

antibody MFL (epitope: the N-terminal sequence of OATP1B3 V1, MFLAALSFSY) was 

developed by immunizing a rabbit with the synthesized epitope sequence (Pocono Rabbit 

Farm & Laboratory, Inc.). The monoclonal Myc antibody (Cell Signaling) was used in 
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detecting the exogenously expressed OATP1B3 V1 or WT containing Myc tag sequence. 

β-actin, Na+/K+ ATPase and calnexin (Cell Signaling) were used as gel loading controls or 

a fractionation marker. 

3.2.5 Immunohistochemistry 

Paraffinized tissue sections of normal liver, colon and pancreatic cancer (US Biomax, Inc) 

were stained to detect the expression of OATP1B3 protein. Briefly, the tissue sections 

were subjected to the antigen retrieval using citrate buffer, followed by blocking with 2% 

BSA. Subsequently, the sections were incubated with polyclonal OATP1B3 antibodies, 

SKT or MFL, detecting the C-terminal or N-terminal sequence of OATP1B3 V1, 

respectively. The tissue sections were incubated with avidin-biotin blocking reagents, 

followed by incubation with biotinylated anti-rabbit IgG and streptavidin-HRP conjugates. 

The positive signals were visualized using 3,3’-diaminobenzidine (DAB). The nuclei were 

counterstained using hematoxylin. As a negative control, the same tissue sections were 

incubated with blocking buffer lacking the primary antibody. The specificity of MFL 

antibody was also validated using the antibody preincubated with 100 µg of antigenic 

peptide (ThermoFisher Scientific). 

3.2.6 Cloning and Plasmid Construction 

OATP1B3 WT-Myc/pCMV6-Entry, the expression plasmid containing the ORF of 

OATP1B3 WT and Myc tag sequence, was purchased from Origene. OATP1B3 V1-

Myc/pCMV6-Entry, the expression plasmid containing the ORF of OATP1B3 V1 and Myc 

tag sequence was prepared by replacing the OATP1B3 WT sequence with the OATP1B3 

V1-specific sequence cut from the cloned sequences of 5´-RACE products. An expression 

plasmid containing the exon 2a sequence in front of the ORF of OATP1B3 V1 sequence 

was also prepared for comparison purposes. All plasmids were verified by direct 

sequencing.  
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3.2.7 Cell Culture and Plasmid Transfection 

Human cancer cell lines derived from colon cancer (CaCO2, HCT8, RKO, SW480, 

SW620, HCT116 and DLD1) and pancreatic cancer (AsPC-1, BxPC-3, Panc-1, 

MiaPaCa2, Capan-1 and Capan-2) were obtained from American Type Culture Collection 

(ATCC) and maintained in culture conditions recommended by ATCC. HCA7 cells were 

kindly provided by Dr. R. Coffey (Vanderbilt University) and maintained in DMEM 

supplemented with 10% FBS (HyClone). For further investigation of OATP1B3 V1 or WT 

expression and function, HCT116, HCT8 and Panc-1 cells were transiently transfected 

with the expression plasmids for OATP1B3 V1-Myc or WT-Myc as well as the empty 

vector, using Lipofectamine 2000 (Invitrogen) (for HCT116) or Fugene HD (Promega) (for 

HCT8 and Panc-1). Protein expression analysis, immunofluorescence microscopy and 

transport assays were typically carried out 48 hours after transfection.   

3.2.8 Immunoblotting Analysis 

Cell lysates were prepared in lysis buffer (10 mM Tris, 150 mM NaCl, 1% sodium 

deoxycholate, 0.1% SDS, 1% Triton X-100, pH 7.4) containing protease inhibitors 

(Roche). In order to reduce the formation of protein aggregates, cell lysates were mixed 

with 4x Laemmli buffer and incubated for 30 min at room temperature. Equivalent amounts 

of protein from whole cell lysates were separated by SDS-PAGE and transferred to a 

PVDF membrane. The membranes were incubated overnight with the following primary 

antibodies: OATP1B3 (SKT), Myc tag, β-actin, Na+/K+ ATPase, calnexin. The 

immunoreactive proteins were detected using a secondary antibody conjugated with 

horseradish peroxidase and an enhanced chemiluminescence substrate (Pierce).  

In order to examine the extent of glycosylation of OATP1B3 V1-Myc and WT-Myc proteins, 

cell lysates were prepared following transient transfection of HCT116 with the 

corresponding constructs. OATP1B3 V1-Myc and WT-Myc proteins were pulled down 
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from total lysates prepared as described above using the Myc antibody and Protein G-

agarose beads. For preclearing, 500 μg of total lysate was incubated with Protein G-

agarose beads (Roche) for 30 min at 4 °C. After centrifugation, the precleared supernatant 

was collected and incubated with Myc antibody and Protein G-agarose beads overnight 

at 4 °C. After centrifugation, beads were washed five times with PBS (pH 7.4). Proteins 

bound to the beads were treated with PNGase F and subsequently incubated with 

Laemmli buffer for 30 min at room temperature. The resulting samples were analyzed by 

immunoblotting as described above.  

To investigate the involvement of the proteasomal and lysosomal degradation pathways 

in handling of OATP1B3 V1 or WT, HCT116 cells were incubated with epoxomicin (50 nM, 

a proteasome inhibitor) or ammonium chloride (20 mM, a lysosomal inhibitor) for 6 hours 

following transient transfection of OATP1B3 V1 or WT. The cell lysates were subjected to 

immunoblotting as described above. 

3.2.9 Transport Activity Assay Using Radiolabeled Cholecystokinin-8 

In order to assess the transport activity of OATP1B3 V1, cellular uptake of CCK-8, a 

prototype OATP1B3 substrate, was measured following transient transfection. First, 

HCT116, HCT8 and Panc-1 cells were seeded onto a 12 well plate (2.5×105 cells per well) 

24 hours before transfection. Subsequently the cells were transfected with the expression 

plasmids for OATP1B3 V1 or WT as well as the empty vector. Twenty-four hours after 

transfection, the cells were treated with 5 mM sodium butyrate overnight. On the day of 

the experiment, cells were washed three times with pre-warmed Opti-MEM (Invitrogen) at 

37 °C. The uptake was initiated by adding 0.5 ml Opti-MEM containing 3H-Cholecystokinin-

8 (3H-CCK-8, 0.01 µM) with or without rifampin (100 µM, an OATP1B3 inhibitor) to each 

well. After a 6 min incubation (verified to be in the linear range from a separate time-

dependent uptake study) at 37°C, the uptake solution was removed and each well was 
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washed thrice in ice-cold PBS. The cells were lysed with 0.5 N NaOH on a shaker for 30 

min. The lysates were normalized in 2.5 N HCl and 250 µl of lysate was added to 3 ml of 

LSC cocktail and radioactivity was measured using the TriCarb LSC counter (Perkin 

Elmer). The 3H-CCK-8 uptake in each well was normalized to the protein amount 

measured using the BCA protein assay (Pierce). The protein expression of OATP1B3 V1 

or WT in each experiment was also verified by immunoblotting analyses. 

3.2.10 Cell Fractionation Using Surface Biotinylation 

In order to further investigate subcellular localization of OATP1B3 V1, fractionation using 

surface biotinylation was carried out in HCT116 (expressing endogenous OATP1B3 V1) 

and HCT8 cells (following transient transfection with OATP1B3 V1-Myc or OATP1B3 WT-

Myc). Briefly, cells were washed with ice-cold PBS-Ca2+/Mg2+ (138 mM NaCl, 2.7 mM KCl, 

1mM MgCl2, 1.5 mM KH2PO4, 0.1 mM CaCl2) and then treated with a membrane-

impermeable biotinylating agent (1.5 mg/ml sulfo-NHS-SS-biotin, Pierce) at 4 °C for 1 hr. 

Subsequently, the cells were washed three times with ice-cold PBS-Ca2+/Mg2+ containing 

100 mM glycine and incubated for 20 min at 4 °C with the same buffer to remove the 

remaining labeling agent.  After washing, cells were disrupted with a lysis buffer containing 

protease inhibitors (Roche). Following centrifugation, streptavidin agarose beads (Pierce) 

were added to cell lysates and incubated for 1 hr at 4 °C. The beads were centrifuged and 

supernatant was collected as the cytoplasmic fraction. The beads were washed three 

times with ice-cold lysis buffer, and biotinylated proteins were released by incubation of 

the beads with Laemmli buffer for 30 min at room temperature. The biotinylated 

(membrane fractions) and cytoplasmic fractions were subjected to immunoblotting. 

3.2.11 Immunofluorescence Microscopy 

HCT8 cells were transfected with OATP1B3 WT or V1 (myc tagged and untagged) as 

described above. Twenty-four hours after transfection, cells were seeded onto 4 chamber 
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culture slides (BD Biosciences) and stabilized in growth media containing 5 mM sodium 

butyrate. Forty-eight hours after transfection, the cells were fixed with 4% 

paraformaldehyde in ice-cold PBS for 30 min. The cells were then permeabilized with PBS 

containing 0.3% Triton X-100 for 20 min at room temperature and blocked using PBS 

containing 2% BSA for 1 hour at room temperature. The cells were incubated in the Myc 

tag antibody followed by incubation with a secondary antibody conjugated to Alexa fluor 

488 or Alexa fluor 546 dye (Invitrogen). Nuclear DNA was stained with DAPI (Vector 

Laboratories Inc.). The immunofluorescence was detected using a Nikon (Eclipse Ti-U) 

fluorescence microscope. 

3.2.12 Statistical Analysis 

The results are expressed as mean ± SD. The statistical significance between groups in 

the transport studies was determined using one-way ANOVA followed by the Newman-

Kuels test. P values of ≤ 0.05 were considered to be statistically significant. The 

calculations were done using GraphPad Prism 5.04. 

3.3 RESULTS 

3.3.1 Identification of OATP1B3 V1 as the Predominant Variant Expressed in Colon and 

Pancreatic Cancer 

To examine whether cancer cells express OATP1B3 variants differing from the WT 

expressed in the normal liver, we performed 5′-RACE and RT-PCR using RNAs isolated 

from clinical colon cancer tissues and established colon cancer cell lines. Subsequent 

cloning and sequencing analyses revealed the identity of novel variants of OATP1B3. 

Among 16 OATP1B3 variants identified so far, OATP1B3 V1 was found to be most 

prevalent, detected in 10 out of 13 samples initially tested. The OATP1B3 V1 transcript is 

almost identical to the WT sequence, with exception to an alternatively spliced exonic 
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sequence, termed as exon 2a, in place of exons 1 and 2 in the WT transcript (Fig. 3.1A). 

The intron-exon organization of OATP1B3 WT and V1 is summarized in Table 3.1. All 

intron/exon boundaries are in accordance with the canonical splicing consensus motifs.  

 

To determine the presence of the full-length transcript of OATP1B3 V1 or WT in clinical 

colon and pancreatic cancer tissues, we performed qualitative RT-PCR with primers 

amplifying the regions encompassing the entire ORFs for OATP1B3 V1 or WT (Fig. 3.1B). 

RT-PCR results indicated that majority of the tested clinical colon and pancreatic cancer 

samples express OATP1B3 V1, but not OATP1B3 WT. On the other hand, neither 

OATP1B3 V1 nor WT was detected in nonmalignant colon and pancreatic tissue samples, 

suggesting that OATP1B3 V1 is expressed in a cancer-specific manner. As expected, 

OATP1B3 WT was detected readily in normal liver control whereas V1 was not. Next, we 

further quantified the expression levels of OATP1B3 V1 and WT in colon and pancreatic 

cancer cell lines by quantitative RT-PCR (Fig. 3.1C). In line with the results obtained using 

clinical tissue samples (Fig. 3.1B), OATP1B3 V1 was detected in the majority of these cell 

lines at varying levels. In contrast, OATP1B3 WT was not detectable in any of the tested 

samples except the normal liver. Taken together, our data showed that colon and 

pancreatic cancer cells express OATP1B3 V1 containing the initial exonic sequence 

different from OATP1B3 WT.  
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Table 3.1. Intron-exon organization of OATP1B3 gene 

Exonic boundaries of OATP1B3 WT and OATP1B3 V1 with the 5´ and 3´ splice sites are 

listed. 

 

  

Exon bases length(bp) bases length(bp) 5' Splice site 3' Splice site

1 1-61 61 GTCAAGgtaaga

2 62-210 149 TTCAAGgtagaa taacagGTGATC 

2a 1-135 135 TAGCAGgtaagg ttcttcAGTTAC 

3 211-352 142 136-277 142 AAATTGgtaact ttttagATGTTC

4 353-485 133 278-410 133 GGGATAgtaagt ttctagGAAATT 

5 486-607 122 411-532 122 AAAAAGgtaaga ttacagTTATAG 

6 608-754 147 533-679 147 ATTTAGgtaacg cgatagATTGTG

7 755-853 99 680-778 99 ATCTGAgtaagt ttacagGTAGTT 

8 854-1096 243 779-1021 243 TGACTGgtaggt tcctagGCACTA 

9 1097-1261 165 1022-1186 165 TGTTGGgtaaga ctatagGTTTTT

10 1262-1457 196 1187-1382 196 TGATGGgtttgt ttctagGAATCA

11 1458-1623 166 1383-1548 166 CATACAgtgagt tttcagAAATAA

12 1624-1808 185 1549-1733 185 TGTGAAgtaagt ttttagGTGTTT 

13 1809-1873 65 1734-1798 65 CACTAGgtatga tttcagGATTGT

14 1874-1991 118 1799-1916 118 TTTTGGgtaagt ttgcagGAGGAA 

15 1992-2712 721 1917-2637 721 tcacagAAGGGT 

OATP1B3 WT OATP1B3 V1
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Figure 3. 1 Frequent expression of OATP1B3 V1, a novel splicing variant, in colon 

and pancreatic cancer 

(A) Schematic representation of OATP1B3 V1 and WT transcripts. Exonic regions are 

shown in boxes and translation start and stop codons are marked. (B) Qualitative RT-PCR 

analyses show that OATP1B3 V1, but not WT is abundantly expressed in clinical colon 

and pancreatic cancer tissues. In contrast, normal liver tissue was shown to express 

OATP1B3 WT, but not V1. The primers used amplify the regions encompassing the first 
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and last exons of OATP1B3 V1 or WT. β-actin was used as a loading control. (C) 

Quantitative RT-PCR analyses show that OATP1B3 V1 is expressed at varying levels in 

the majority of colon and pancreatic cancer cell lines. In contrast, OATP1B3 WT was 

detected only in normal liver tissue. Data show the number of OATP1B3 V1 or WT 

transcript per 106 copies of β-actin.  
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3.3.2 Immunohistochemical Detection of OATP1B3 Variants in Colon and Pancreatic 

Cancer 

After detecting the mRNA transcript of OATP1B3 variants in the majority of colon and 

pancreatic cancer tissues and cell lines, we set out to analyze the protein expression of 

OATP1B3 variants in clinical tissues. First, we searched for the possible ORF sequences 

of OATP1B3 variants (V1 ~ V16) using an ORF finder 

(http://www.ncbi.nlm.nih.gov/gorf/gorf.html). For OATP1B3 V1, the search results yielded 

many potential ORFs including the longest translated sequence of 674 amino acids. On 

the other hand, other variant forms of OATP1B3 (V2 ~ V16) have insertions or deletions 

(either in-frame or out-of-frame) at various locations, leading to substantial differences in 

the overall peptide sequences compared to OATP1B3 WT. Thus, based on the sequence 

similarity to OATP1B3 WT and relative abundance, we chose to focus our investigations 

on the V1 isoform. The longest translated product for OATP1B3 V1 utilizes the putative 

translation start site (underlined) at the beginning of exon 3 encoding the peptide 

sequence MFLAALSFSY at the N-terminus (Fig. 3.2A). The resulting protein is identical 

to OATP1B3 WT except lacking 28 amino acids at the N-terminus (Fig. 3.2B). Since our 

initial attempt to verify the protein sequence of OATP1B3 V1 using mass spectrometry 

was not successful, we developed an antibody detecting the N-terminal sequence (MFL 

epitope) of OATP1B3 V1 as an alternative way to verify the peptide sequence of OATP1B3 

V1 (Fig. 3.2B). Our immunohistochemical analyses using two polyclonal OATP1B3 

antibodies, MFL and SKT produced similar positive cytoplasmic staining patterns in colon 

and pancreatic cancer cells (Figs. 3.2C and D). Consistent with the previous findings, 

neither MFL nor SKT produced any positive staining in nonmalignant colon and pancreatic 

tissue sections (Fig. 3.2C and D). As a control, normal liver tissue sections were also 

stained with MFL or SKT (data not shown). Both SKT and MFL antibodies produced 

http://www.ncbi.nlm.nih.gov/gorf/gorf.html


 

41 
 

immunopositive signals around the central veins, which were previously reported to 

express high levels of OATP1B3. However, differences in staining patterns were noted; 

SKT showed a membranous staining pattern while MFL showed a mainly cytoplasmic 

staining pattern. These differences were not entirely surprising given that the MFL epitope 

sequence is located in the first transmembrane domain of OATP1B3 WT and may not be 

readily accessible for antibody-mediated interactions. As another way of validating the 

specificity of MFL, normal liver and colon cancer sections were stained using neutralized 

MFL antibody and the results showed that peptide blocking led to substantially attenuated 

signals (data not shown). Overall, these results support that the predicted ORF sequence 

starting from exon 3 is indeed utilized for translation of the sequence starting with 

MFLAALSFSY.   
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Figure 3. 2 Immunohistochemical staining of colon and pancreatic cancer tissue 
sections using the MFL or SKT antibodies generated against N- or C-terminal tails 
of OATP1B3 V1 

 (A) The sequences of OATP1B3 V1 transcript and translated product. Exons are indicated 

and the translation start site located at the beginning of exon 3 is underlined. (B) 

Schematic representation of epitope sequences used to develop the antibodies MFL and 

SKT. The MFL antibody was generated against MFLAALSFSY located at the N-terminal 

tail of OATP1B3 V1. The SKT antibody was generated against SKTCNLDMQDNAAAN 

located at the C-terminal tails of OATP1B3 V1 and WT.  
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Figure 3. 3 Immunohistochemical staining of colon and pancreatic cancer tissue 
sections using the MFL or SKT antibodies generated against N- or C-terminal tails 
of OATP1B3 V1 

 (C & D) Both MFL and SKT antibodies generated similar positive staining patterns in 

tissue sections from colon cancer (C) and pancreatic cancer (D). Neither MFL nor SKT 

antibodies produced positive staining in non-malignant colon and pancreatic tissue 

sections. Cancer tissue sections following the exact procedure except omitting the primary 

antibody were included as negative controls.  
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3.3.3 Detection of OATP1B3 V1 in Colon and Pancreatic Cancer Cell Lines 

In further investigating the expression and function of OATP1B3 V1, we utilized HCT116, 

HCT8 and Panc-1 cells expressing varying levels of OATP1B3 V1 (Fig. 3.1C). 

Amplification of OATP1B3 V1 using qualitative RT-PCR confirmed expression of the full-

length V1 transcript in HCT116 cells. Additionally, it was noted that HCT116 expressed 

higher levels of V1 compared to HCT8 or Panc-1 cells (Fig. 3.3A). Immunoblotting 

analyses with the SKT antibody detected OATP1B3 V1 protein at approximately 75 kD 

and also demonstrated higher protein expression in HCT116 cells compared to HCT8 and 

Panc-1 cells (Fig. 3.3B). We have attempted to use the MFL antibody for immunoblotting, 

but our results indicated that the MFL antibody is not suitable due to high background and 

non-specific signals.  

Using these cell line models, OATP1B3 V1 or WT was transiently expressed by 

transfecting the constructs containing the respective ORF and Myc-tag sequences. 

Initially, we also included a construct containing the exon 2a sequence prior to the 

OATP1B3 V1 ORF and Myc sequence. The resulting protein showed the same 

electromobility as that produced from the construct containing the ORF sequence starting 

from exon 3, further supporting the usage of the translation start site at the beginning of 

exon 3 (data not shown). Interestingly, our immunoblotting results indicated that the 

expression level of OATP1B3 V1 is much lower than that of WT in both HCT116 and Panc-

1 cells despite the same amounts of OATP1B3 V1 or WT constructs used (Fig. 3.3C). 

Similar results were obtained in all three cell lines tested (HCT116, HCT8 and Panc-1 

cells), even after further increasing the transfected amount of the constructs (data not 

shown). In addition, substantial size differences were noted between OATP1B3 V1 and 

WT. OATP1B3 V1-Myc was detected at molecular weight above 75 kD, whereas 
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OATP1B3 WT-Myc was detected as multiple bands with the most prominent band at 

approximately 120 kD (Fig. 3.3C).  
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Figure 3. 4 Detection of OATP1B3 V1 in colon and pancreatic cancer cell lines  

(A) Qualitative RT-PCR results show the expression of OATP1B3 V1 at varying levels, but 

no detectable WT in the cancer cell lines tested. (B) Immunoblotting analyses using SKT 

detect the expression of OATP1B3 V1 protein at varying levels in the cancer cell lines 

tested. (C) HCT116 and Panc-1 cells were transiently transfected with the constructs 

containing the ORF sequences of OATP1B3 V1 or WT fused with Myc tag as well as the 

empty vector. Immunoblotting analyses detected the expression of OATP1B3 V1 or WT 

proteins with differing electromobility and expression levels. β-actin was used as a loading 

control.  
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Post-translational modifications such as glycosylation are commonly observed for many 

membrane transporters including OATP1B3. Thus, we examined whether the observed 

differences in the electromobility of OATP1B3 V1 and WT are due to varying extents of 

glycosylation. Following PNGase F treatment, a substantial shift in molecular weight was 

seen for OATP1B3WT, which was detected at the expected size of approximately 75 kD 

(calculated from 702 amino acids with Myc tag sequence). A similar shift in molecular 

weight was also seen for OATP1B3 V1-Myc following the PNGase F treatment, but to a 

much lesser extent than OATP1B3 WT (Fig. 3.4A). Taken together, these results suggest 

that OATP1B3 V1 is subjected to a much lesser extent of glycosylation, compared to the 

WT protein. 

Since the exogenous expression of OATP1B3 V1 was much lower than OATP1B3 WT 

(Fig. 3.3C), we investigated whether this low expression level of V1 was a result of 

decreased protein stability. Following transient transfection, HCT116 cells expressing 

OATP1B3 WT or V1 were treated with epoxomicin (a proteasome inhibitor) or ammonium 

chloride (a lysosomal inhibitor) (Fig. 3.4B). Epoxomicin treatment led to a substantial 

increase in the protein levels of OATP1B3 V1 (especially at higher molecular sizes), but 

not OATP1B3 WT. Ammonium chloride treatment had no impact on the protein levels of 

OATP1B3 V1 or WT. These results suggest that OATP1B3 V1 may be more susceptible 

to proteasomal degradation than OATP1B3 WT.  
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Figure 3. 5 Glycosylation and proteasomal degradation of OATP1B3 V1 

(A) Immunoblotting analyses were performed using HCT116 lysates transiently 

transfected with the constructs, OATP1B3 V1-Myc or WT-Myc. The PNGase F treatment 

led to substantial shifts in the electromobility of OATP1B3 V1 and WT, but to a differing 

extent. (B) Immunoblotting analyses were performed using lysates prepared from HCT116 

cells transiently transfected with the constructs, OATP1B3 V1-Myc or WT-Myc and 

subsequently treated with epoxomicin (Epx, a proteasomal inhibitor), ammonium chloride 

(A.C., a lysosomal inhibitors) or vehicle alone (DMSO). The epoxomicin treatment led to 

a marked increase of the immunoreactive signals of higher molecular sizes, consistent 

with accumulation of polyubiquitinated proteins. Neither epoxomicin nor ammonium 

chloride treatment influenced the expression of OATP1B3 WT.  
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3.3.4 Transporter Activity of OATP1B3 V1 in Colon and Pancreatic Cancer 

To investigate whether OATP1B3 V1 functions as an uptake transporter in colon and 

pancreatic cancer, we performed cellular uptake studies using [3H]-CCK-8 (a prototype 

OATP1B3 substrate) in three cell line models; HCT116 (high endogenous OATP1B3 V1 

levels), HCT8 and Panc-1 (low endogenous OATP1B3 V1 levels). Transient expression 

of OATP1B3 V1 in these cell lines led to modest increases in the uptake of [3H]-CCK-8; 

1.4, 2.1 and 2.9-fold increase in HCT116, HCT8 and Panc-1, respectively (Fig. 3.5, upper 

panel). Rifampin, a known OATP1B3 inhibitor,  effectively inhibited the uptake of [3H]-

CCK-8 in cells transfected with OATP1B3 V1, supporting that the increased [3H]-CCK-8 

uptake was likely mediated by OATP1B3-related transport activity. Interestingly, 

immunoblotting analysis of OATP1B3 V1 in HCT116, HCT8 or Panc-1 cells showed 

slightly different electromobility patterns, possibly related to a varying extent of post-

translational modifications across different cell types (Fig. 3.5, lower panel). In order to 

compare the transport activity of OATP1B3 V1 to that of WT, we also examined the uptake 

of [3H]-CCK-8 following transient transfection of OATP1B3 WT in the same cell line 

models. Considering our observations that the cellular expression levels of OATP1B3 WT 

are much higher than those of OATP1B3 V1 following the transfection of the same amount 

of constructs (Fig. 3.3C), we reduced the transfected amount of OATP1B3 WT construct 

up to 10-fold and verified that the intensity of immunoreactive signals detected using Myc 

antibody are comparable between OATP1B3 V1 and WT (data not shown). Our results 

indicated that transient expression of OATP1B3 WT markedly increases CCK-8 uptake in 

HCT116, HCT8 or Panc-1 cells (41.7, 26.8 and 29.5-fold increase, respectively). In 

separate experiments, we also examined whether endogenously expressed OATP1B3 V1 

can mediate the uptake of [3H]-CCK-8 using HCT116 cells (high endogenous OATP1B3 

V1 levels) with rifampin. The results indicated that there is only a very minor decrease in 
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the CCK-8 uptake by rifampin; 2.0 ± 0.8 vs 1.6 ± 0.1 nmol/mg total protein. Taken together, 

our results suggest that OATP1B3 V1 has only a modest uptake transporter function in 

colon and pancreatic cancer compared to the OATP1B3 WT. 
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Figure 3. 6 OATP1B3 V1 shows only a modest increase in cellular uptake of CCK-8 

in colon and pancreatic cancer cells 

HCT116, HCT8 and Panc-1 cells were transiently transfected with OATP1B3 V1-Myc or 

empty vector. When cellular uptake of 3H CCK-8 was compared, the expression of 

OATP1B3 V1 led to only a modest (~2-3 fold) increase compared to the empty vector 

control. In the bottom panel shown are the immunoblotting results confirming the 

OATP1B3 V1 expression for each experiment. Data are represented as percentiles 

relative to the empty vector controls. Data are expressed as mean ± SD. 
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3.3.5 Subcellular Localization of OATP1B3 V1  

To investigate whether the relative inefficiency of OATP1B3 V1 as a transporter was 

related to a defective membrane trafficking, we examined subcellular localization of 

OATP1B3 V1 by detecting OATP1B3 V1 in the cytoplasmic and membrane fractions 

prepared from HCT116 (to monitor endogenously expressed OATP1B3 V1) or HCT8 cells 

following transient transfection of OATP1B3 V1 (to monitor exogenously expressed 

OATP1B3 V1) using cell surface biotinylation. Our results indicated that OATP1B3 V1 

(either endogenous or exogenous) is located abundantly in the cytoplasmic fraction 

although a small amount of OATP1B3 V1 was detected in the surface membrane fraction 

(Figs. 3.6A and B). These results are in contrast to OATP1B3 WT, which showed a much 

stronger signal in the surface membrane fraction than in the cytoplasmic fraction (Fig. 6B). 

Of note, OATP1B3 protein in the surface fraction displayed higher apparent molecular 

sizes than that in the cytoplasmic fraction (Figs. 3.6A and B). These results are consistent 

with a greater extent of post-translation modifications with matured proteins presented to 

the surface membrane. Fluorescence microscopy images further verified that OATP1B3 

V1 (either Myc-tagged or untagged) is predominantly localized in the cytoplasm of HCT8 

cells, while OATP1B3 WT was mainly localized on the plasma membrane (Fig. 3.6C). 
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Figure 3. 7 Subcellular localization of OATP1B3 V1 in colon and pancreatic cancer 

cells 

(A) Surface (S) and cytoplasmic (C) fractions were prepared using HCT116 cells 

expressing endogenous OATP1B3 V1. Immunoblotting analyses using SKT show that 

OATP1B3 V1 is present in both surface and cytoplasmic fractions. The immunoreactive 

band detected in the surface fraction showed a higher apparent molecular size than those 

in the cytoplasmic fraction, consistent with a greater extent of post-translational 

modifications. (B) HCT8 cells were transfected with the constructs OATP1B3 V1-Myc or 

WT-Myc. Similar to the results obtained with HCT116 cells, OATP1B3 V1-Myc was 

detected in both surface and cytoplasmic fractions with differing electromobility. In 

contrast, OATP1B3 WT-Myc showed much stronger signals in the surface fraction than in 

the cytoplasmic fraction, suggesting that OATP1B3 WT is mainly localized in the surface 



 

54 
 

membrane. (C) Immunofluorescent images were obtained in HCT8 cells transiently 

transfected with OATP1B3 V1-Myc or WT-Myc. Cells transfected with OATP1B3 V1-Myc 

showed the immunoreactive signals mainly localized in the cytoplasm. In contrast, cells 

transfected with OATP1B3 WT-Myc showed the immunoreactive signals mainly localized 

on the surface membrane. 
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3.4 DISCUSSION 

Despite several reports on the ectopic expression of OATP1B3 across multiple types of 

cancer, it is unclear whether OATP1B3 expressed in cancer has biological functions 

similar to that in normal liver. In our current study, we demonstrate that colon and 

pancreatic cancer cells express variant forms of OATP1B3, different from OATP1B3 WT 

expressed in the normal liver. Using OATP1B3 V1, the most prevalent variant lacking 28 

amino acids from its N-terminal tail, we show that OATP1B3 V1 has only limited transport 

activity and differs from OATP1B3 WT with regard to the extent of post-translational 

modifications and subcellular localization. While the mRNA sequence of OATP1B3 V1 is 

identical to the one recently reported by Nagai et al. [74], our results provide the first 

evidence that the molecular and functional properties of OATP1B3 V1 in cancer differ from 

those of OATP1B3 WT. These observed differences need to be taken into account when 

further investigating the biological and clinical significance of OATP1B3 variants in cancer. 

Using the sequence information of the OATP1B3 V1 transcript, the longest translated 

product was predicted to be 674 amino acids. This product utilizes the translation start site 

located at the beginning of exon 3 and encodes MFLAALSFSY peptide at the N-terminus. 

The previous report by Nagai et al. proposed a translated product of 655 amino acids 

starting with MKISITQIE at its N-terminus [74]. This product proposed by Nagai et al. 

utilizes the translation start site located further downstream, but in frame with our proposed 

translation site (Fig. 3.2A). As a way of verifying the protein sequence of OATP1B3 V1, 

we initially attempted to utilize mass spectrometry. However, the results did not provide 

adequate protein sequence data, possibly related to the general difficulties associated 

with proteomic analyses of membrane-associated proteins [111]. As an alternative 

approach, we developed MFL, an OATP1B3 antibody targeting the N-terminal sequence 

of OATP1B3 V1. The immunohistochemical analyses showed that the staining patterns 
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using MFL were very similar to those obtained using SKT targeting the C-terminal 

sequence (Figs. 3.2C and D). These results provide the first evidence for the presence of 

the translated product containing the MFLAALSFSY peptide at the N-terminus in clinical 

colon and pancreatic cancer tissues. However, we cannot rule out the possibility that other 

translated products may exist including the translated products proposed by Nagai et al. 

[74] and those from additional OATP1B3 variants identified (data not shown). Of note, it 

should be mentioned that MFL may cross-react with OATP1B1, given the close similarity 

of the peptide sequences shared between OATP1B3 and OATP1B1 in the N-terminal 

region (80% sequence homology). However, the observed positive signals in our tissue 

sections are not likely due to OATP1B1 since several reports have indicated that 

OATP1B1 is not expressed in colon and pancreatic cancer [3] [4].  

With regard to the transport activity, OATP1B3 V1 showed only limited activity for CCK-8 

in colon and pancreatic cancer cells, in contrast to OATP1B3 WT which showed a much 

higher activity (Fig. 3.5). These findings are consistent with OATP1B3 V1 having less 

surface membrane localization compared to OATP1B3 WT (Fig. 3.6). So far little is known 

about the mechanisms by which OATP1B3 is localized to the plasma membrane. However, 

our results suggest that the missing 28 amino acids at the N-terminal tail of OATP1B3 may 

play an important role in membrane trafficking and transporter activity. Interestingly, a 

recent study reported that the variant form of human concentrative nucleotide transporter 

3 (hCNT3, SLC28A3) missing the N-terminal tail is mainly located in the endoplasmic 

reticulum [112]. A follow-up investigation by the same group provided further insights into 

the motifs important for surface trafficking of hCNT3 [113]. In nonpolarized cells, acidic 

and hydrophobic motifs in the N-terminal tail of hCNT3 were important, whereas a putative 

β-turn domain was important in polarized cells. We were not able to locate similar motifs 

in the N-terminal tail sequence missing in OATP1B3 V1, but the investigations are on-
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going to further narrow down sequence segments or motifs important for plasma 

membrane trafficking of OATP1B3 WT. Interestingly, our current results showed that the 

expression of OATP1B3 V1 leads to statistically significant increases in the CCK-8 uptake 

in HCT8 and Panc-1 cells (polarizable cell lines), but not in HCT116 cells (non-polarizable 

cell line) (Fig. 3.5). Thus, it remains to be determined if OATP1B3 variants are 

preferentially localized in certain intracellular organelles and whether localization patterns 

or transport activity of OATP variants would depend on the polarizing ability or status. 

Although we observed major differences in the membrane trafficking between OATP1B3 

V1 and WT, it should be noted that alternative mechanisms (e.g. differences in post-

translational modifications, mRNA/protein stability) may contribute to the limited transport 

activity of OATP1B3 V1.  

In our current study, we observed that OATP1B3 V1 localized mainly in the cytoplasm has 

only limited transporter function in colon and pancreatic cancer. Although alternative 

splicing is increasingly recognized as a common event in eukaryotic cells, the abundance 

of OATP1B3 variants across multiple types of cancer argues for this protein being 

selectively generated for a purpose. Previously, we suggested that OATP1B3 may confer 

a survival advantage in colorectal cancer cells via p53-dependent pathways [6]. However, 

at that time, the presence of OATP1B3 V1 was not known and the studies were performed 

using the OATP1B3 WT sequence. We are currently investigating whether OATP1B3 V1 

may have other biological functions, especially its potential as an antiapoptotic or 

prosurvival protein. In the literature, several reports indicate that membrane transporters 

may have functions independent of their transport activity. For example, P-glycoprotein 

(Pgp) encoded by the MDR1 gene was shown to be localized intracellularly in several 

human leukemia, breast cancer and hepatoma cell lines [114, 115], [116, 117] and to serve 

as an anti-apoptotic protein in several types of cancers [118-123]. In particular, Pgp was 
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able to suppress apoptosis even in the absence of ATP-dependent drug efflux, suggesting 

that the antiapoptotic function of Pgp may be independent of its transporter activity [123]. 

Alternative splicing is increasingly recognized as a mechanism that generates protein and 

functional diversity and there are a number of reports on the splicing variants of membrane 

transporters. In particular, the expression of alternative mRNA transcripts of murine 

oatp1b2, an ortholog for both human OATP1B3 and OATP1B1, has been reported [56]. 

These alternative transcripts of oatp1b2 show quite different splicing patterns with human 

OATP1B3 variants, in that they share the same transcription start site as oatp1b2 WT, but 

lack the exonic sequences located in the middle region. The presence of alternative 

transcripts has also been reported with other human transporters such as OAT2 [124] and 

OATP3A1 [125]. However, the presence of cancer-specific variants appears to be unique 

for OATP1B3. In particular, no cancer-specific variants have been reported with OATP1B1 

which shares more than 70% sequence homology and numerous substrates with 

OATP1B3. An effort to examine the mechanisms by which the cancer-specific expression 

of OATP1B3 variants is achieved may be warranted.  

In conclusion, we report that colon and pancreatic cancer cells express variant forms of 

OATP1B3 mRNA and protein. OATP1B3 V1, the most prevalent form, appears to lack a 

full transport activity compared to OATP1B3 WT. Our results indicate that OATP1B3 V1 

is located mainly in the cytoplasm and the extent of plasma membrane trafficking was 

much lower in OATP1B3 V1 than in WT. Although the biological significance of OATP1B3 

variants in cancer is yet to be defined, our findings should be taken into consideration 

when further exploring the potential role of OATP1B3 expressed in cancer. 
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Chapter 4 

Role of Hypoxia Inducible Factor-1α in the Regulation of the Cancer-Specific 

Variant of Organic Anion Transporting Polypeptide 1B3 (OATP1B3)  

in Colon and Pancreatic Cancer 

(The work in this chapter has been published in Biochemical Pharmacoloy (2013) [77]) 

4.1 Introduction  

Organic Anion Transporting Polypeptide 1B3 (OATP1B3) belongs to the superfamily of 

OATP transporters and mediates the hepatic uptake of various endogenous and 

xenobiotic compounds [2]. Although OATP1B3 was initially considered to be a liver-

specific transporter, subsequent investigations revealed that OATP1B3 is also expressed 

in human cancers derived from multiple organs including colon, pancreas, prostate, breast 

and lung [3, 5-9, 67, 110, 126, 127]. Considering that OATP1B3 is not detected in any 

other non-malignant tissues except the liver, a question was raised whether or not 

OATP1B3 expression in cancer has any pathogenic and functional significance. Recently, 

our group and others reported the distinct identity of OATP1B3 expressed in cancer cells, 

namely cancer-specific OATP1B3 variants (csOATP1B3) that utilize an alternative 

transcription initiation site and lack the first two exons of the wild-type (WT) OATP1B3 

expressed in the normal liver [73, 128]. Our previous investigations focused on 

csOATP1B3 V1, the most prevalent cancer-specific variant form and reported that 

csOATP1B3 V1 lacking the N-terminal 28 amino acids displays only a modest transport 

activity and a defective membrane trafficking compared to OATP1B3 WT [73]. While 

further investigations are under way to better understand the functional significance of 

csOATP1B3, the molecular mechanisms underlying the expression of csOATP1B3 may 

provide important clues about the role of csOATP1B3 in cancer.  
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Hypoxia arises from an imbalance between the supply and consumption of oxygen and it 

is recognized as a characteristic feature of locally advanced solid cancers [129-131]. In 

multiple types of cancers, hypoxia has been associated with adverse clinical outcomes 

including cancer cell invasion and metastasis [129-133]. Adaptation to the hypoxic 

environment involves changes in the expression of numerous genes encoding 

erythropoietic, vasoactive, and proangiogenic molecules and metabolic enzymes [131]. A 

crucial component in the induction of hypoxia-regulated genes is the hypoxia inducible 

factor-1 (HIF-1) complex, composed of HIF-1α and HIF-1β subunits. While the HIF-1β 

subunit (also known as aryl hydrocarbon nuclear translocator, ARNT) is constitutively 

expressed, the HIF-1α subunit is accumulated only under hypoxic exposure by escaping 

proteasome-mediated degradation [134, 135].  Under the hypoxic conditions, the HIF-1α/β 

heterodimer is translocated to the nucleus and binds to a specific cis-acting regulatory 

sequence referred to as the hypoxia response element (HRE) in target genes, thereby 

causing transcriptional activation.  

Interestingly, a previous report by Winter et al. [10] suggested a possible link between 

hypoxia and the expression of OATP1B3 in cancer cells. In the process of defining an in 

vivo hypoxia gene signature (hypoxia metagene) in head and neck cancer, the authors 

found SLCO1B3 encoding OATP1B3 among the highly upregulated genes under hypoxia 

[10]. This hypoxia metagene including SLCO1B3 was associated with adverse outcomes 

in patients with head and neck cancer as well as breast cancer [10]. Since the presence 

of csOATP1B3 was not known at the time of publication of this report, it remained unknown 

whether hypoxia induces the expression of csOATP1B3, OATP1B3 WT or both.   

Using colon and pancreatic cancer cells, our current study establishes that hypoxia 

induces the expression of csOATP1B3, but not OATP1B3 WT. In addition, we report that 

the csOATP1B3 promoter contains a functional HRE, which the HIF-1α protein binds to. 
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Selective knockdown of HIF-1α also decreased the basal expression level of csOATP1B3 

and attenuated the extent of csOATP1B3 induction by hypoxia. Taken together, the 

current findings described in this chapter demonstrate that the transcription of csOATP1B3 

is actively engaged during hypoxia, via a HIF-1α-dependent mechanism. 

4.2 Materials and Methods 

4.2.1 Cell culture and hypoxic treatments  

Human cancer cell lines derived from colon (Caco-2, SW480, HCT-8, DLD-1, and HCT116) 

and pancreas (AsPC-1, MiaPaCa-2, and BxPC-3) were obtained from the American Type 

Culture Collection (ATCC, Manassas, VA) and maintained in the recommended conditions. 

For hypoxic treatment, cells at approximately 50% confluence were placed in a hypoxic 

chamber maintaining 1% O2, 5% CO2 and 94% N2 or exposed to CoCl2, a chemical inducer 

of HIF-1α for the time periods indicated. The medium was replaced every 24 h during 

hypoxic exposure.  

4.2.2 RT-PCR   

Single-stranded cDNA was synthesized from 1 µg of total RNA using the SuperScriptTM III 

cDNA synthesis kit (Invitrogen, Carlsbad, CA). To examine the presence of full-length 

transcripts (spanning from the first to the last exons) of OATP1B3 WT or csOATP1B3 V1 

in the resulting cDNA samples, RT-PCR was performed using Platinum® Supermix 

(Invitrogen, Carlsbad, CA) and the previously reported primers; OATP1B3 WT (exons 1-

15, expected size: 2214 bp) or csOATP1B3 V1 (exons 2a-15, expected size: 2077 bp) 

[73]. In order to examine the effect of hypoxia on other OATP members closely related to 

OATP1B3, RT-PCR analyses of OATP1A2 and OATP1B1 transcripts were performed 

using the following primers; for OATP1A2, sense (5’-ATGGGAGAAACTGAGAAAAG-3’) 

and anti-sense (5’- GCATGTTCTCTAATTCTGAA-3’); for OATP1B1, sense (5’-
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TGAACACCGTTGGAATTGC-3’) and anti-sense (5’-TCTCTATGAGATGTCACTGGAT-

3’). PCR products were visualized on 1% agarose gel. Band intensities were 

densitometrically quantified using the Quantity One software (Bio-Rad, Hercules, CA) and 

normalized using the band intensities of the housekeeping control β-actin. 

4.2.3 Immunoblotting analysis 

Cell lysates were prepared in lysis buffer (10 mM Tris, 150 mM NaCl, 1% sodium 

deoxycholate, 0.1% SDS, 1% Triton X-100, pH 7.4) containing protease inhibitors (Roche, 

Mannheim, Germany). To minimize the formation of protein aggregates, cell lysates were 

incubated at room temperature for 30 min after mixing with 4x Laemmli buffer. Equivalent 

amounts of total protein were resolved by SDS-PAGE and subsequently transferred to 

PVDF membranes. After blocking with 5% skim milk prepared in Tris-buffered saline 

containing 0.5% Tween 20, the membranes were incubated overnight with the following 

primary antibodies: OATP1B3 (SKT; generated against the C-terminal epitope and 

validated previously [73, 136]), HIF-1α (BD Biosciences, San Jose, CA), β-actin (Cell 

Signaling, Danvers, MA). The immunoreactive proteins were detected using a secondary 

antibody conjugated with horseradish peroxidase purchased from Cell Signaling 

(Danvers, MA) and an enhanced chemiluminescence substrate purchased from Pierce 

(Rockford, IL). Band intensities were densitometrically quantified using the Quantity One 

software (Bio-Rad, Hercules, CA) and normalized using the band intensities of the gel 

loading control β-actin. 

4.2.4 Construction of plasmid vectors  

The promoter region upstream of the first exon of OATP1B3 WT (−2023 to +100) or 

csOATP1B3 (−1853 to +151) was amplified by PCR using a BAC clone (RP11-269H12, 

Empire Genomics, Buffalo, NY) as a template. The amplified DNA was subcloned into 

pGL4.1 (Promega, Fitchburg, WI), and termed as OATP1B3 WT (-2023) and csOATP1B3 
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(-1853), respectively. The 5-deletion constructs of the csOATP1B3 promoter were 

prepared by subcloning the PCR products using the specific primers into pGL4.1. The 

resulting constructs were termed as csOATP1B3 (-1053), csOATP1B3 (-553), 

csOATP1B3 (-263), respectively. The csOATP1B3 (-263)-mut-HRE construct was created 

by mutating the putative HRE located at +23 - +27 (from 5′-ACGTG-3′ to 5′-AAAAG-3′) 

using a site-directed mutagenesis kit obtained from Stratagene (Wilmington, DE). The 

sequences of each of the prepared plasmids was verified by direct sequencing.  

4.2.5 Reporter assay 

HCT-8 cells were plated onto 24 well plates and transfected with the reporter plasmid (360 

ng/well) along with pRL-TK (40 ng/well, an internal control obtained from Promega, 

Fitchburg, WI). Twenty-four hours after transfection, the cells were exposed to either CoCl2 

(100 or 200 µM) or hypoxia (1% O2) for another 24 h. After extensive washing with 

phosphate-buffered saline, cells were harvested and firefly and Renilla luciferase activities 

were determined using the Dual Luciferase Reporter Assay kit (Promega, Fitchburg, WI) 

and a Veritas microplate luminometer (Turner Biosystems, Sunnyvale, CA). The data were 

plotted using GraphPad Prism 5.04 (La Jolla, CA). 

4.2.6 Electrophoretic mobility shift assay (EMSA) 

Nuclear extracts were prepared from HCT-8 cells following the treatment with CoCl2 (200 

μM, 24 h) as reported previously [137]. Briefly, binding reactions were prepared in tubes 

containing 6 μg of nuclear extracts, 1.25 μg of Poly(dI-dC), 7.5 μl binding buffer (containing 

20 mM HEPES, pH 7.9, 1 mM DTT, 0.1 mM EDTA, 50 mM KCl, 5 % glycerol, and 200 

μg/μl bovine serum albumin) and water adjusted to make the final reaction volume of 20 

μl. The binding reactions were carried out for 10 min on ice. Subsequently, the biotinylated, 

annealed probe containing the HRE of the csOATP1B3 promoter (5’-Biotin-

triethyleneglycol-CATCTCGGCGTATACGTGCAAGTCACAG-3’, synthesized by MWG 
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Biotech, Huntsville, AL) was added to the binding reaction mixtures and further incubated 

for 20 min at room temperature. For competition experiments, a 200-fold excess of the 

unlabeled, annealed probe was added to the reaction mixture. DNA-protein complexes 

were resolved by 4.5% polyacrylamide gel electrophoresis run at 4 C. Signals from the 

biotinylated probe on the gel were detected using the EMSA gel shift Kit obtained from 

Affymetrix (Santa Clara, CA) according to the manufacturer’s instructions. The sequences 

for the oligonucleotide probes with the intact HRE or mutated HRE sites as well as a 

consensus HRE probe (a positive control from the endothelin-1 gene [138]) were as 

follows; csOATP1B3 probe, 5- CATCTCGGCGTATACGTGCAAGTCACAG-3; 

csOATP1B3-mut-HRE probe, 5-CATCTCGGCGTATAAAAGCAAGTCACAG-3; 

consensus HRE probe, 5-AGCTTGCCCTACGTGCTGTCTCAGA-3. 

4.2.7 siRNA-mediated knockdown of HIF-1α   

Cells were transfected with siRNA duplexes targeting HIF-1α (pooled siRNA, Dharmacon, 

Lafayette, CO) or control scrambled siRNA (Santa Cruz biotechnology, Dallas, TX) using 

Lipofectamine 2000 transfection reagent (Invitrogen, Carlsbad, CA), according to the 

manufacturer’s protocol. The mRNA and protein levels of HIF-1α and csOATP1B3 were 

analyzed 48 hours after transfection. 

4.3 Results 

4.3.1. Impact of hypoxia on the expression of csOATP1B3 in human colon and pancreatic 

cancer cell lines 

We assessed a potential association between csOATP1B3 and HIF-1α by comparing the 

endogenous expression levels of csOATP1B3 V1 and HIF-1α in a panel of human colon 

and pancreatic cancer cell lines (Fig. 4.1). Our results indicated that the cell lines 

expressing detectable levels of csOATP1B3 V1 (i.e., DLD-1, HCT116, BxPC-3, MiaPaCa-
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2) display HIF-1α protein accumulation. In contrast, the cell lines lacking csOATP1B3 V1 

(i.e. Caco-2, SW480, HCT-8, AsPC-1) did not have any detectable levels of HIF-1α. This 

apparent association between csOATP1B3 and HIF-1α accumulation prompted us to 

further probe the involvement of HIF-1α in regulating the csOATP1B3 expression.  

Using MiaPaCa-2 and HCT116 cell lines expressing detectable levels of csOATP1B3, we 

initially examined the effect of hypoxia (1% O2) on csOATP1B3 expression levels. Our 

results show that hypoxia leads to a modest increase in csOATP1B3 levels in MiaPaCa2 

cells, but not in HCT116 cells (Fig. 4.2A). Of note, OATP1B3 WT was detected in neither 

MiaPaCa-2 nor HCT116 cells, regardless of hypoxia treatment. In order to examine the 

cell line-dependency of the hypoxia effect on csOATP1B3 expression, we also performed 

similar experiments using HCT-8 cells. In HCT-8 cells, hypoxia markedly increased the 

levels of both HIF-1α and csOATP1B3 in a time-dependent manner (Fig. 4.2B). However, 

there were no hypoxia-induced changes in the levels of OATP1B1 or OATP1A2 in HCT-8 

cells (Fig. 4.2B).   
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Figure 4. 1 Expression of csOATP1B3, OATP1B3 WT and HIF-1α in human colon 

and pancreatic cancer cell lines 

(A) Schematic representation of the transcripts for csOATP1B3 V1 and OATP1B3 WT. 

The sequence of csOATP1B3 V1 differs from that of OATP1B3 WT, in that it contains the 

alternative exonic sequence (termed as exon 2a) instead of exons 1 and 2. Arrows 

represent the landing sites of primers used for amplification of OATP1B3 WT (exons 1-15) 

or csOATP1B3 (exons 2a-15). (B) RT-PCR and immunoblotting results showing varying 

levels of endogenous csOATP1B3 and HIF-1α expression in human colon (Caco-2, 

SW480, HCT-8, DLD-1, HCT116), pancreatic cell lines (AsPC-1, MiaPaCa-2, BxPC-3) 

and normal liver tissue. β-actin was used as a housekeeping control. Relative band 

intensities normalized to β-actin are represented as arbitrary units (AU).  
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Figure 4. 2 Hypoxia leads to upregulation of csOATP1B3, but not OATP1B3 WT 

 (A) MiaPaCa-2 and HCT116 cells exposed to normoxia (Nor) or hypoxia (1% O2, Hyp) for 

48 h. (B) HCT-8 cells were exposed to hypoxia for 0, 8 and 24 h. RT-PCR analyses were 

performed to determine the expression level of csOATP1B3, OATP1B3 WT, OATP1B1 or 

OATP1A2. Immunoblotting analyses were performed to detect HIF-1α protein. β-actin was 

used as a housekeeping control Relative band intensities normalized to β-actin are 

represented as arbitrary units (AU). 
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4.3.2. Effects of hypoxia on the transactivation of csOATP1B3 promoter and identification 

of a functional HRE 

Based on our results showing hypoxia-induced upregulation of csOATP1B3 in HCT-8 

cells, we investigated whether the mechanism involves transcriptional activation. We 

performed in silico analyses of the csOATP1B3 promoter sequence, in search for any 

putative cis-acting elements responsive to hypoxia. Our results using the MatInspector 

database (Genomatix Software Inc, Ann Arbor, MI) indicated the presence of a putative 

HRE located within Exon 2a (Fig. 4.3A). In further validating the DNA sequences involved 

in the csOATP1B3 transactivation, we utilized a hypoxia mimetic agent CoCl2 [139]. As 

expected, the exposure of HCT-8 cells to CoCl2 led to a marked increase in the HIF-1α 

and csOATP1B3 levels, with no changes in the levels of OATP1B3 WT, OATP1B1 and 

OATP1A2 observed (Fig. 4.3B). These findings are consistent with those obtained using 

ambient hypoxia (Fig. 4.2B).  

We then determined the effect of CoCl2 treatment on the promoter activity of csOATP1B3 

or OATP1B3 WT, using the reporter constructs of csOATP1B3 (-1853) and OATP1B3 WT 

(-2023) (Fig. 4.3A). The results indicated that CoCl2 treatment increases the reporter 

activity of the csOATP1B3 (-1853), but not that of the OATP1B3 WT (-2023) (Fig. 4.3C). 

To further narrow down the cis-elements responsible for the hypoxia-mediated 

transactivation of csOATP1B3 promoter, we compared a series of 5-end deletion mutants 

for their extent of activation by CoCl2. Our results indicate that all three deletion mutants 

and the csOATP1B3 (-1853) construct were comparable in their extent of CoCl2-induced 

transactivation (Fig. 4.3C). Using the smallest construct csOATP1B3 (-263), we prepared 

a construct where the putative HRE sequence is mutated. The csOATP1B3 (-263)-mut-

HRE construct showed no increase in the reporter activity following the exposure to CoCl2 
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treatment (Fig. 4.3C) or 1% O2 (Fig. 4.3D). These results suggest that the putative HRE 

site may be responsible for the hypoxia-induced transactivation of csOATP1B3. 

To determine whether HIF-1α indeed binds to the putative HRE in the csOATP1B3 

promoter, EMSA was performed using the probe containing the putative HRE of 

csOATP1B3. Nuclear extracts isolated from HCT-8 cells treated with CoCl2 (200 μM, 24 

h) produced a unique band shift (Fig. 4.4, indicated by an arrow). This shift was competed 

away by unlabeled probe containing the intact HRE, but not by the unlabeled probe 

containing the mutated HRE (Fig. 4.4). As a positive control, a previously validated 

consensus HRE sequence from the endothelin-1 gene [138] was used and produced a 

similar band shift when incubated with the same nuclear extract. These results suggest 

that HIF-1α can physically interact with the HRE site in the csOATP1B3 promoter. 
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Figure 4. 3 Hypoxia-induced transactivation of csOATP1B3 promoter 

(A) Schematic representation of the reporter constructs containing the promoter 

sequences for OATP1B3 WT or csOATP1B3. A consensus hypoxia-responsive element 

(HRE) present in exon 2a (underlined) is shown along with the mutated HRE sequence 

used in subsequent experiments. (B) Effect of CoCl2, a hypoxia mimetic agent on the 

expression of csOATP1B3 and HIF-1α. HCT-8 cells exposed to CoCl2 (100 or 200 µM, 24 

h) were analyzed for the expression of csOATP1B3, OATP1B3 WT, OATP1B1, OATP1A2 
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and HIF-1α via RT-PCR and immunoblotting. (C) Effects of chemical hypoxia on the 

promoter activity using various reporter constructs of csOATP1B3 or OATP1B3 WT. The 

extent of CoCl2-induced transactivation was compared among various promoter 

constructs following the transient transfection in HCT-8 cells and subsequent treatment 

with CoCl2 (200 μM, 24 h).  (D) Effects of ambient hypoxia on the promoter activity using 

various reporter constructs of csOATP1B3 promoter. The extent of hypoxia-induced 

transactivation was compared among various promoter constructs following the transient 

transfection in HCT-8 cells and subsequent exposure to 1% O2 (24 h). Experiments were 

performed in triplicates, and their values are expressed as mean ± S.D.  
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Figure 4. 4 Electrophoretic mobility shift assay (EMSA) results showing that HIF-1α 

binds to a hypoxia response element (HRE) in the csOATP1B3 promoter 

Nuclear extracts from HCT-8 cells exposed to CoCl2 (200 μM, 24 h) show a specific band 

shift when incubated with the biotinylated csOATP1B3-HRE probe or a consensus HRE 

probe (indicated by the arrow). The band shift was competed away by an excess of 

unlabeled csOATP1B3-HRE probe, but not by an excess of unlabeled csOATP1B3-mut-

HRE probe where the consensus HRE is mutated. 
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4.3.3. Effects of HIF-1α knockdown on csOATP1B3 expression 

In order to further validate the role of HIF-1α on csOATP1B3 expression, we examined 

the effect of siRNA-based HIF-1α knockdown on the csOATP1B3 levels in HCT-8 cells 

exposed to hypoxia and additional cell lines expressing basal levels of csOATP1B3. The 

extent of csOATP1B3 upregulation by CoCl2 was substantially reduced in HCT-8 cells 

transfected with siRNA targeting HIF-1α, compared to those transfected with control 

siRNA (Fig. 5A). The siRNA-based HIF-1α knockdown also led to down-regulation of 

csOATP1B3 at both the mRNA and the protein levels in HCT116 cells expressing high 

basal levels of HIF-1α and csOATP1B3 (Fig. 5B). Similar results were obtained using 

additional cell lines (DLD-1 and BxPC-3 cells, data not shown). 
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Figure 4. 5 HIF-1α knockdown decreases the expression of csOATP1B3 

(A) The siRNA-based HIF-1α knockdown leads to a marked decrease in the extent of 

csOATP1B3 upregulation in HCT-8 cells exposed to CoCl2. (B) The siRNA-based HIF-1α 

knockdown markedly decreases csOATP1B3 levels in HCT116 cells. β-actin was used as 

a housekeeping control Relative band intensities normalized to β-actin are represented as 

arbitrary units (AU).  
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4.4 Discussion 

Alternative splicing is recognized as a common, yet important event of adding diversity in 

the proteomic world of eukaryotic cells. For an increasing number of membrane efflux and 

influx transporters including Oatp2 (the rodent ortholog of OATP1B3), the presence of 

alternatively spliced transcripts has been reported [125, 140-144]. Many of these splicing 

variant products have been detected in the organs or cell types normally expressing their 

WT transcripts. In contrast, the recently identified splicing variants of OATP1B3 are 

detected only in cancer settings and do not coexist with the WT OATP1B3 [73, 128]. These 

findings led us to hypothesize that the expression of csOATP1B3 may be influenced by 

oncogenic signaling pathways and may have potential roles in cancer development and 

progression. Following up on the previous reports suggesting a potential link between 

hypoxia and OATP1B3 expression in cancer [10, 145], our current study further 

investigated the regulatory mechanisms underlying hypoxia-induced upregulation of 

OATP1B3 in cancer. Our current findings provide evidence that hypoxia can induce the 

expression of csOATP1B3, but not OATP1B3 WT and that HIF-1α plays an important role 

in regulating csOATP1B3 expression in colon and pancreatic cancer cells. Further 

investigations would be necessary to address the relative importance of this HIF-1α-

dependent mechanism on csOATP1B3 expression in clinical cancer tissues, in particular, 

in comparison to other reported mechanisms [76]. Our findings provide for the first time a 

mechanistic understanding of the csOATP1B3 regulation in colon and pancreatic cancer 

and underline the rationale for the investigation of functional and pathogenic significance 

of csOATP1B3.  

HIF-1α is often accumulated in multiple types of human cancers derived from lung, breast, 

prostate and gastrointestinal tissues [45, 146-150]. For colon and pancreatic cancer, it has 

been reported that HIF-1α expression is predictive of poor prognosis and short disease-



 

76 
 

free survival [151-154]. This association of HIF-1α with clinical outcomes has been often 

attributed to subsequent changes in downstream effectors important in tumor growth and 

survival as well as tumor metabolism [131, 148, 155]. Currently, it is not known whether 

csOATP1B3 serves as one of downstream effectors of the HIF-1α pathway, potentially 

providing tumor growth/survival advantages. In that regard, our laboratory had previously 

reported that OATP1B3 may serve as an antiapoptotic or prosurvival protein in colorectal 

cancer cells [6]. However, such findings were obtained using cancer cell line models stably 

transfected with OATP1B3 WT, as the presence of csOATP1B3 was not known at that 

time. Given the close sequence similarity (~96%) of the csOATP1B3 and OATP1B3 WT 

(amino acid sequence of csOATP1B3 V1 identical to OATP1B3 WT except missing N-

terminal 28 amino acids), it is plausible that csOATP1B3 may confer apoptotic resistance 

or growth advantage in a similar manner to OATP1B3 WT. Supporting such a possibility, 

Ramachandran et al. [145] recently reported that selective knockdown of OATP1B3 

expressed in colorectal cancer cell lines leads to a decrease in cell size and 3-dimensional 

spheroid volume. Similarly, Silvy et al. [156] reported that OATPs expressed in human 

melanoma cells may reduce the anticancer activity of cisplatin in a protein kinase C-

dependent manner. Using clinical pancreatic cancer tissues and precancerous lesions, a 

recent report also suggested that OATP1B3 can serve as a potential diagnostic marker 

for early stage pancreatic cancer [127]. These findings are certainly intriguing and warrant 

further investigations to verify the functional roles and prognostic/predictive implications 

of csOATP1B3 in colon and pancreatic cancer.  

Our current findings provide evidence for the involvement of HIF-1α in regulating 

csOATP1B3, but it is possible that other regulatory mechanisms may play a role in the 

expression of csOATP1B3. A previous report by Ichihara et al. demonstrated that 

OATP1B3 expression in cancer cell lines can be upregulated by the treatment with the 
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DNA-methylating agent, 5-aza-2’-deoxycytidine (5-Aza), suggesting the involvement of 

DNA-methylation based gene-silencing in the regulation of OATP1B3 expression [76]. We 

briefly examined whether the exposure of HCT-8 cells to 5-Aza induces the expression of 

csOATP1B3, OATP1B3 or both. Our results indicated that 5-Aza treatment leads to an 

increase in the level of csOATP1B3, but not OATP1B3 WT (unpublished data). Although 

not directly tested for the case of csOATP1B3 regulation, there exists evidence suggesting 

interplay among hypoxia, epigenetic modulation, and alternative splicing. For instance, it 

has been reported that hypoxia can influence cellular epigenetic status and that DNA 

demethylation can augment hypoxia-induced effects by positive auto-regulation of HIF-1α 

[157, 158]. A recent report also suggested that DNA methylation status of a HRE sequence 

can influence the interactions of HIF-1α with the HRE site, subsequently the hypoxic 

inducibility of the target gene [159]. More intriguingly, it was reported that HIF-1 proteins 

may regulate alternative splicing of many target genes [160]. For better understanding of 

csOATP1B3 regulation, further investigations are necessary to explore the interplay 

between different regulatory mechanisms.  

In conclusion, we report for the first time that csOATP1B3, but not OATP1B3 WT, is 

transcriptionally regulated in response to hypoxia in colon and pancreatic cancer. Our 

results identified a functional HRE site in the csOATP1B3 promoter that physically 

associates with HIF-1α. Our data suggests that HIF-1α may play a key role in regulation 

of csOATP1B3 in colon and pancreatic cancer cells. Our findings may provide important 

clues about the functional and clinical significance of csOATP1B3 in colon and pancreatic 

cancer 

 

Copyright © Nilay Thakkar 2015  
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Chapter 5 

Roles of N-terminal motifs in plasma membrane trafficking of Organic Anion 

Transporting Polypeptide 1B3 (OATP1B3)  

5.1 INTRODUCTION 

Organic anion transporting polypeptide 1B3 (OATP1B3) belongs to the OATP (gene 

symbol SLCO) superfamily of solute carriers. OATP1B3 is abundantly expressed in the 

hepatocytes and mediates the transmembrane uptake of a variety of endogenous and 

xenobiotic substances. The endogenous substrates of OATP1B3 include bile salts, steroid 

hormone conjugates, thyroid hormone, peptides and natural toxins phalloidin and 

microcystin-LR [3, 4, 67]. OATP1B3 plays an important role in the disposition of several 

important therapeutic agents including cholesterol-lowering statins, anti-cancer drugs, 

antibiotics, cardiac glycosides and antidiabetics [4, 161]. In recent years, OATP1B3 is 

identified as an important determinant of transporter-mediated drug interactions [162]. 

Despite the increasingly recognized importance of OATP1B3 in drug therapy, little is 

known about the mechanisms regulating the intracellular trafficking of OATP1B3. Similar 

to other members of OATP superfamily, OATP1B3 is predicted to have 12 transmembrane 

domains (TMs) [2]. A previous study reported that TM10 of OATP1B3 is important for the 

recognition of the OATP1B3-specific substrate cholecystokinin-8 (CCK-8) [163]. These 

findings were based on the results obtained using a series of chimeric proteins between 

OATP1B3 and its closely related family member, OATP1B1 [163]. Other investigations 

probed the contribution of individual amino acids on the transport activity and membrane 

trafficking of OATP1B3 using the constructs harboring point mutations at several 

conserved positions (K41, K361, K399 and R580 located in the TMs 1, 7, 9 and11, 
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respectively) [164, 165]. Overall, our understanding of intracellular trafficking processes 

of OATP1B3 remains to be limited.  

Our laboratory and others have recently reported the identity of a cancer-specific 

OATP1B3 variant which utilizes an alternative transcription initiation site and lacks the N-

terminal 28 amino acids [73-75]. In contrast to the wild-type (WT) OATP1B3 expressed in 

normal liver, the cancer-specific variant was found to be localized predominantly in the 

cytoplasm [73]. These findings provided us an interesting clue that the N-terminus of 

OATP1B3 may play an important role in regulating its intracellular trafficking. Here, we set 

out to follow up on our previous observations and further identify N-terminal motifs 

important for regulation of the expression and membrane trafficking of OATP1B3. Utilizing 

the sequential truncation and point mutation approaches, we report that the N-terminal 

region at amino acid positions 14 to 17 with a putative β-turn-forming tetrapeptide is 

important for regulating the expression and membrane localization of OATP1B3.  

5.2 MATERIALS AND METHODS 

5.2.1 Chemicals and Reagents 

Sodium butyrate and poly-lysine hydrobromide were purchased from Sigma-Aldrich. [3H]-

Cholecystokinin-8 ([3H]-CCK-8, 104.2 Ci/nmol, >90% purity) was purchased from Perkin-

Elmer.  

5.2.2 In-silico analyses for potential signaling motifs at the N-terminal region of OATP1B3 

In-silico algorithms such as PROSITE, CLOUDES, and BetaTPred were utilized to predict 

the potential amino acids motifs involved in cellular signaling and processing of 

OATP1B3[113]. The propensity of forming β-turn tetrapeptides (Δ scores) was calculated 

using the previously published method by Chou [166] . 
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5.2.3 Construction of expression plasmids for truncation and point mutants of OATP1B3 

at the N-terminus 

The expression plasmid for WT OATP1B3 containing the ORF sequence fused with Myc 

tag sequence at the C-terminus was purchased from Origene [73]. Truncation mutants of 

OATP1B3 were generated by swapping the incrementally truncated sequences which 

were PCR amplified with the restriction sites SgfI and PacI using the primers listed in Table 

5.1. The insertion of the corresponding sequences (represented as Δ11, Δ23 and Δ28 

respectively) was verified by direct sequencing. The expression plasmids for point mutants 

of OATP1B3 were prepared using QuikChange® site-directed mutagenesis (SDM) kit 

(Agilent) and the primers listed in Table 5.1. Direct sequencing was performed to verify 

whether the correct point mutation was introduced. 

5.2.4 Cell culture and plasmid transfection 

Human colon cancer cell lines HCT116 and HCT8 were purchased from American Type 

Culture Collection (ATCC). HEK293 cells were kindly provided by Dr. Markos Leggas 

(University of Kentucky). For expression and functional investigations, OATP1B3 and 

mutants were transiently transfected using Lipofectamine 2000 (Invitrogen) (for HCT116 

and HEK293 cells) or Fugene HD (for HCT8 cells). Protein expression analyses and 

transport experiments were typically carried out 48 h after transfection. Initially comparable 

transfection efficiencies of the truncation and SDM constructs were verified by checking 

green fluorescence signals following co-transfection of a separate plasmid expressing 

green fluorescent protein (GFP). 

  



 

81 
 

Table 5.1: Primer sequences and combinations for generation of OATP1B3 

truncation and point mutants  

 

 

  

Construct Sequence (5’-3’) Restriction 

site(s) 

OATP1B3 Δ11  CGATGCGATCGCATGGAGTCAGCATCTT (Fw) Sgf1 

 CCATTGAATGATAAGGTTTGATTAATTAAACAGG(Rv) Pac1 

OATP1B3∆23 CGATGCGATCGCATGTGCAATGGATTCA (Fw) Sgf1 

 CCATTGAATGATAAGGTTTGATTAATTAAACAGG(Rv) Pac1 

OATP1B3∆28 CGATGCGATCGCATGTTCTTGGCAG (Fw) Sgf1 

 CCATTGAATGATAAGGTTTGATTAATTAAACAGG(Rv) Pac1 

OATP1B316AA17 GCAGAGTCAGCATCTGCAGCGAAAAAGAAAACAAGACGC (Fw)  

 GCGTCTTGTTTTCTTTTTCGCTGCAGATGCTGACTCTGC (Rv) 

OATP1B3S13A GAATAAAACAGCAGAGGCAGCATCTTCAGAGAAAAAG (Fw) 

 CTTTTTCTCTGAAGATGCTGCCTCTGCTGTTTTATTC (Rv)  

OATP1B3S15A AAAACAGCAGAGTCAGCAGCTTCAGAGAAAAAGAAAAC (Fw)  

 GTTTTCTTTTTCTCTGAAGCTGCTGACTCTGCTGTTTT (Rv)  

OATP1B3S16A CAGCAGAGTCAGCATCTGCAGAGAAAAAGAAAACAAG (Fw)  

 CTTGTTTTCTTTTTCTCTGCAGATGCTGACTCTGCTG (Rv)  
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5.2.5 Immunoblotting analyses 

Cell lysates were prepared using the lysis buffer (containing 10 mM Tris, 150 mM NaCl, 

1% Sodium deoxycholate, 0.1% SDS, 1% Triton X-100, pH 7.4) containing protease 

inhibitors (cOmplete, Roche). Cell lysates were mixed with 4X Laemmli buffer and 

incubated at room temperature for 30 min. Cell lysates containing equivalent protein 

amounts were separated by SDS-PAGE and transferred to a PVDF membrane. After 

blocking, the membranes were incubated overnight with a primary antibody against Myc 

tag or β-actin (Cell signaling). The immunoreactive proteins were detected using a 

secondary antibody conjugated with horseradish peroxidase and an enhanced 

chemiluminescence substrate (Pierce).  

5.2.6 Radioactive uptake assay 

[3H]-Cholecystokinin-8 (CCK-8), a prototype OATP1B3 substrate was utilized to assess 

the transport activity of OATP1B3 WT and mutants, following transfection as described 

previously.[73] Briefly, MDCKII and HEK293 cells were seeded onto a 12 well plate (2.5 x 

105 cells/well). After 24 h, the cells were transfected with OATP1B3 WT, its mutants and 

empty vector. The experiment was performed 24 h after transfection. Following three 

washes with pre-warmed Opti-MEM (Invitrogen), the uptake was initiated by adding 0.5 

mL of Optim-MEM containing [3H]-CCK-8 (0.01 μM). To further validate the involvement 

of OATP1B3 in the uptake of CCK-8, rifampin (an OATP1B3 inhibitor, 100 μM) [73] was 

added in an additional set of wells. The uptake was stopped at 5 min (verified to be in the 

linear range from a separate time-dependent uptake experiment) by rinsing the cells three 

times with ice-cold PBS. The cells were lysed with 0.5 N NaOH on a shaker for 30 min. 

The lysates were then neutralized with 2.5N HCl and 250 µL of lysate was added to 3 mL 

of LSC cocktail. Radioactivity was measured using TriCarb LSC counter (Perkin-Elmer). 
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The uptake of [3H] CCK-8 in each well was normalized to the protein amount measured 

using the BCA protein assay kit (Pierce).  

5.2.7 Cell surface biotinylation 

In order to investigate the subcellular localization of OATP1B3 WT and mutants, surface 

biotinylation assays were performed in HEK293 cells, following transient transfection 

similar to the protocol described previously [73]. Briefly, cells were rinsed with ice-cold 

PBS-Ca2+/Mg2+ and then treated with the membrane impermeable biotinylating agent (1.5 

mg/mL sulfo-NHS-SS-biotin, Pierce) at 4⁰C for 1h. Later, the cells were washed three 

times with ice-cold PBS-Ca2+/Mg2+ containing 100 mM glycine and incubated at 4⁰C for 20 

min to remove the excess biotinylating agent. The cells were then lysed in lysis buffer 

containing protease inhibitors (Roche). After centrifugation, streptavidin agarose beads 

(Pierce) were incubated with cell lysates at 4⁰C for 1 h. The beads were separated from 

the supernatant (cytoplasmic fraction) by centrifugation. The beads were washed three 

times with ice-cold lysis buffer and incubated in Laemmli buffer for 30 min to release the 

biotinylated (membrane) fraction.  

5.2.8 Immunofluorescence assays  

HEK293 cells were seeded onto 4 chamber culture slides (BD Biosciences). After twenty-

four hours, cells were transfected with myc-tagged OATP1B3 WT, Δ11, Δ23, Δ28 

truncation mutants and point mutants at the putative β-turn tetrapeptide site as described 

above. Twenty four hours after transfection, the cells were fixed with 4% 

paraformaldehyde in ice-cold PBS for 30 min. Later, the cells were permeabilized with 

PBS containing 0.3% Triton X-100 for 20 min at room temperature and blocked using PBS 

containing for 1 h at room temperature. The cells were then incubated with a primary 

antibody against the Myc tag (Cell Signaling), followed by a secondary antibody 

conjugated to Alexa Fluor 488 (Invitrogen). Nuclear DNA was stained using DAPI (Vector 
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Laboratories Inc.). The immunofluorescence signal was detected using a Nikon (Eclipse 

Ti-U) fluorescence microscope or Leica Confocal microscope (Leica TCS SP5). 

5.2.9 Statistical Analyses 

The results are presented as mean ± SD. In the transport studies, the statistical 

significance between groups was determined using one-way ANOVA followed by 

Newman-Kuels test. P values of ≤0.05 were considered to be statistically significant. The 

calculations were performed using GraphPad Prism 5.04. 
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5.3 RESULTS 

5.3.1 Identification of putative amino acid signal sequences at the N-terminus of OATP1B3 

WT involved in its plasma membrane trafficking  

To probe the signal sequence(s) important for the plasma membrane localization of 

OATP1B3, we performed in-silico analyses for the N-terminus of OATP1B3. Using various 

prediction algorithms such as PROSITE, CLOUDES, and BetaTPred, we identified several 

putative consensus hits that may be involved in cellular signaling (Fig 5.1A). Based on the 

location of predicted consensus hits on the OATP1B3, we prepared three myc-tag-fused 

truncation mutants with the N-terminus of OATP1B3 incrementally deleted (represented 

as Δ11, Δ23, Δ28, respectively, Fig. 5.1B).  
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Figure 5.  1 In silico analyses of N-terminus of OATP1B3 wild-type (WT) 

(A) Identification of putative amino acid motifs likely to be involved in cellular trafficking 

and localization signal of OATP1B3 by utilizing in silico algorithms. (B) Schematic 

representation of the prepared truncation mutants (myc-tag fused at C-terminus); deletion 

mutants of 11, 23 and 28 amino acids were represented as Δ11, Δ23 and Δ28, 

respectively.  
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5.3.2 Truncation of N-terminus leads to reduced plasma membrane localization of 

OATP1B3 

Immunofluorescence imaging analyses indicated that the deletion of the first 11 amino 

acids at the N-terminus does not affect the plasma membrane localization in OATP1B3 

(Fig. 5.2A). However, further deletion of 23 and 28 amino acids led to substantially reduced 

plasma membrane localization (Fig. 5.2A). Consistent results were also obtained using 

surface fractionation assays. While the truncation of the first 11 amino acids of OATP1B3 

does not affect its surface expression level, the deletions of 23 and 28 amino acids at N-

terminus result in the substantial reduction of OATP1B3 in the surface membrane fraction 

as well as in total lysates (Fig. 5.2B). These results suggest that important motif(s) 

regulating the surface localization and expression level of OATP1B3 may be present 

between amino acids 12 and 23. 
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Figure 5. 2 Comparison of N-terminus truncation mutants of OATP1B3 WT 

(A) Confocal microscopy analyses revealed that truncation of 23 and 28 amino acids at 

N-terminus of OATP1B3 led to reduced plasma membrane localization compared to 

OATP1B3 WT. (B) Immunoblotting analyses indicated that OATP1B3 Δ23 and Δ28 

mutants have much reduced protein expression levels in surface and total fractions 

compared to OATP1B3 WT. 
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5.3.3 Comparison of point mutants at positively charged and putative phosphorylation 

sites located between amino acids 12 and 23 of OATP1B3  

To further identify the important residues between amino acids 12 to 23, we utilized the 

SDM approach. Lysine and arginine residues were individually mutated to alanine at 

positions 18, 19, 20, 22 and 23 (represented as K18A, K19A, K20A, R22A and R23A 

respectively) and transiently expressed in HEK293 cells. The results from immunoblotting 

analyses of fractionated samples indicated that mutating the lysine or arginine sites at 

these positions did not affect the total protein expression or the surface levels as compared 

to OATP1B3 WT (Fig. 5.3). Similarly, mutating the serine sites at position 13, 15 and 16 

(represented as S13A, S15A and S16A) did not impact total protein levels or surface 

expression as compared to OATP1B3 WT (Fig. 5.4). These findings suggest that lysine 

or serine residues at the amino positions 12 to 23 may not be important in regulating the 

expression or surface localization of OATP1B3.  
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Figure 5.3 Comparison of point mutants of positively charged lysine or arginine 

residues located at the N-terminal region of OATP1B3 wildtype 

Immunoblotting analyses reveal that the total and surface expression levels of point 

mutants at the N-terminal lysine and arginine residues are not substantially different from 

those of the OATP1B3 WT. 
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Figure 5. 4 Comparison of point mutants of putative phosphorylation sites located 

at the N-terminal region of OATP1B3 wildtype 

Immunoblotting analyses reveal that the total and surface expression levels of point 

mutants at the N-terminal serine residues are not substantially different from those of the 

OATP1B3 WT. 
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5.3.4 Comparison of point mutants at the putative β-turn forming tetrapeptide site between 

amino acids 12 and 23 of OATP1B3  

As a next step in interrogating the sequence(s) important in regulating OATP1B3 

trafficking, we analyzed the β-turn forming propensity (Δ score) of the OATP1B3 WT 

sequence (14ASSE17) as well as mutants 14ASaE17 and 14ASaa17 (Fig. 5.5A). These 

mutated constructs were prepared by SDM and transiently transfected in HEK293 cells 

along with GFP (included to ensure comparable transfection efficiencies). The results from 

cell surface fractionation assays indicated that compared to OATP1B3 WT, the 14ASaa17 

mutant displays a significantly reduced expression level in the total lysate as well as in the 

surface membrane fraction (Fig. 5.5B). As expected, the 14ASaa17 mutant was found to 

have a much reduced uptake of 3H-CCK-8 compared to OATP1B3 WT.  
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Figure 5.5 Comparison of point mutants at putative β-turn forming tetrapeptide sites 

at the N-terminus of OATP1B3 

(A) In silico calculation using Chou algorithm revealed that the N-terminus of OATP1B3 

WT contains a putative tetrapeptide (14ASSE17) with the highest Δ-score and propensity to 

form a β-turn. Sequential mutation of this position leads to substantial reduction in Δ-score. 

(B) Immunoblotting results showing that the 14ASaa17 mutant at the putative β-turn forming 

sequence has lower total and surface expression levels than OATP1B3 WT. Na+/K+ 

ATPase was used as an internal control to ensure comparable surface membrane protein 

loading. (C) Comparison of cellular uptake of 3H-CCK-8 in cells expressing 14ASaa17 

mutant and OATP1B3 WT in the presence and absence of rifampin (the inhibitor of 
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OATP1B3 transport activity). Data are represented as percentiles relative to the empty 

vector controls. Data are expressed as mean ± SD. 

5.4 DISCUSSION 

While the functional significance of OATP1B3 in hepatic drug disposition and overall drug 

response has been extensively investigated, little has been known about its mechanisms 

of expression and membrane localization. The findings from our current study for the first 

time identified the motifs at the N-terminus of OATP1B3 that may play a key role in 

regulating the membrane localization and expression of OATP1B3. Using sequential 

truncation and point mutation approaches, we report that the amino acid region between 

12 to 23, specifically 14ASSE17 with a high β-turn forming potential may be important. Our 

findings may provide important starting points in understanding the molecular processes 

of regulating intracellular trafficking of OATP1B3 and potentially other related members of 

the OATP family. 

For certain OATP family members, the PDZ consensus sequences have been reported to 

play a role in regulating their membrane trafficking. However, no PDZ consensus 

sequences have been predicted for OATP1B3 and other members of the OATP1 family 

[167, 168]. Similar to our results supporting the involvement of a β-turn forming 

tetrapeptide (14ASSE17) in the membrane trafficking of OATP1B3, other studies have 

implicated the role of β-turn forming tetrapeptides in the membrane localization of 

transporters such as rat ileal apical sodium-dependent bile acid transporter (Asbt), human 

sodium-dependent vitamin C transporter (hSVCT1) and the human concentrative 

nucleoside transporter 3 (hCNT3) [113, 169-171]. In these previous investigations, 

disruption of the β-turn forming potential by SDM or deletion resulted in partial to complete 

mislocalization of these transporters [113, 169-171]. The prediction of the β-turn structures 

is currently dependent on mathematical calculation, partly due to the lack of state-of-art 
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technologies that can provide structural resolution. While the N-terminal β-turn structure 

that we propose in the current report remains to be structurally verified, our results do 

provide an interesting lead for further investigations on potential partnering proteins that 

may interact with OATP1B3 at the N-terminal region identified to form a β-turn.  

Our results obtained from the point mutations at lysine, arginine and serine residues at the 

N-terminal region of OATP1B3 appear to indicate that these residues are not critically 

involved in the regulation of membrane trafficking or expression levels of OATP1B3 (Figs. 

5.3 and 5.4). Interestingly, a recent report by Powell et al. indicated that OATP1B3-

mediated transport activity can be impaired by protein kinase C (PKC) activation [172]. 

However, it needs to be investigated whether this effect occurs via direct phosphorylation 

of OATP1B3 and phosphorylation of other intermediary proteins. OATP2B1 is also 

reported to undergo PKC-mediated internalization [173]. However, specific motifs involved 

in the PKC-mediated internalization of OATP2B1 have not been identified. 

In our current study, we observed that the N-terminal region of OATP1B3 may play a role 

in regulating not only protein localization, but also the expression level of OATP1B3. It is 

plausible that the processes regulating the localization and stability of OATP1B3 may be 

operating co-dependently. For instance, the ABCB11 gene encoding bile salt export pump 

(BSEP) harbors naturally occurring mutations causing progressive familial intrahepatic 

cholestasis type 2 (PFIC2) [174]. These mutations (E297G and D482G) in BSEP led to 

the impairment of its surface trafficking as well as the reduced expression level. When the 

surface trafficking of BSEP was in part restored by 4-phenylbutyrate treatment, the authors 

observed an increased expression level of BSEP at the surface fraction and total lysates 

as well as the restoration of its transport activity [175].  

In summary, we identified for the first time the N-terminal motifs of OATP1B3 important in 

regulating its expression and membrane localization. In particular, the amino acids within 
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a putative β-turn-forming tetrapeptide appear to be important.  Our findings provide 

important starting points in further mechanistic investigations for the regulation of 

OATP1B3 trafficking and expression, potentially applicable to other OATP family 

members. 
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Chapter 6 

 

Conclusions and future directions 

(Each chapter of this thesis contains its own conclusion section and therefore this 

chapter is intended to provide a brief overview of the findings from this work.) 

The results from this thesis work showed that colon and pancreatic cancer cells express 

a cancer-specific variant of OATP1B3 (csOATP1B3), which differs from OATP1B3 WT at 

its N-terminus (Chapter 3). Our findings also revealed that csOATP1B3 is regulated under 

hypoxia by a mechanism involving hypoxia-inducible factor 1α (Chapter 4). These 

findings add to the biological and mechanistic understanding of OATP1B3 in cancer. Our 

results highlight that the molecular entities and regulatory mechanisms of ectopically 

expressed proteins in cancer, including other OATP transporters may be dissimilar to 

those detected in the nonmalignant tissues. Careful investigations at the molecular level 

may lead to unexpected and exciting discoveries. We believe that these findings will help 

us better design future studies to investigate the clinical significance of csOATP1B3 in 

cancer patients. Some of the further investigations that may be designed are outlined 

below.  

It would be important to investigate the functional impact of csOATP1B3 on the behavior 

of cancer cells. A previous report from our laboratory showed that OATP1B3 can confer 

cell survival advantages in colon cancer cells by p53-dependent mechanisms [6]. 

Because the presence of csOATP1B3 was not known previously, this particular 

experiment was carried out using cancer cells lines stably expressing the liver-type 

OATP1B3 [6]. To verify whether csOATP1B3 also confers cancer cell survival 

advantages in a similar manner to the liver-type OATP1B3, we carried out additional 

experiments using siRNA-based knockdown. Our preliminary results showed that the 
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knockdown of csOATP1B3 enhances cell death in colon cancer cells treated with 

oxaliplatin (data not shown). Further studies are required to elucidate the exact cellular 

mechanisms that provide cancer cell survival through csOATP1B3.  

Recently, there have been multiple reports on the detection of OATP1B3 in multiple types 

of cancers [3, 5-7, 9, 67]. The majority of these reports utilized antibodies targeting the 

C-terminus epitope of OATP1B3 [5, 6, 8]. In future studies, it would be informative to 

obtain the expression patterns with antibodies targeting N-terminus of csOATP1B3 [73]. 

In addition, the investigation of intracellular locations of csOATP1B3 expressed in 

cytoplasm may shed light on the functional studies of csOATP1B3 in cancer.  

More importantly, it would be important to gain a better understanding of the clinical 

significance of csOATP1B3. Future studies can be designed to examine the prognostic 

and predictive values of csOATP1B3 expression in clinical tissue samples (by examining 

any associations between the csOATP1B3 expression levels and clinical outcomes such 

as survival and response/resistance to chemotherapy). Depending on the results from 

these investigations, subsequent molecular investigations may be designed. For instance, 

if csOATP1B3 expression would be associated with resistance to chemotherapy, further 

investigations may be designed to interrogate the role of csOATP1B3 in conferring cell 

survival advantages. In fact, a very recent report by Teft et al. [124] utilized this approach 

and their findings suggest that OATP1B3 expression in cancer patients treated with 

irinotecan-based chemotherapy are associated with shorter progression-free survivals.   

Another potential aspect is to examine the expression of csOATP1B3 in hepatic cancer 

tissues. The majority of research groups, including ours have reported the expression of 

csOATP1B3 expression in cancers derived from non-hepatic tissues. It would be 

interesting to determine whether csOATP1B3 is the predominant variant in other forms 

of cancers, especially in hepatocellular carcinoma (HCC). A previous report by Vavricka 
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et al. suggested that OATP1B3 mRNA levels were reduced in HCC [70]. Given that non-

cancerous hepatocytes express only OATP1B3 WT, it would be interesting to investigate 

whether any csOATP1B3 is expressed in HCC and to compare the levels and functional 

impact of OATP1B3 WT and csOATP1B3. 

Following up on our observations with csOATP1B3 in cancer, our results showed that the 

putative β-turn forming region at the N-terminus of OATP1B3 WT is important for its 

membrane localization and expression (Chapter 5). These studies provide foremost 

evidence regarding the role of the N-terminus in the expression and localization of 

OATP1B3. Further studies may be designed to determine whether there are any 

partnering proteins that interact with the N-terminal regions of OATP1B3 and play a role 

in the plasma membrane localization of OATP1B3 WT. One of the initial investigations 

could be aimed to understand the mechanisms of basolateral sorting of OATP1B3. Out of 

the different partnering proteins, AP-1B (from the AP family of clathrin adaptor proteins) is 

well-studied for its role in basolateral sorting [176]. Experiments that can be performed 

may include quantitative live imaging after selective knockdown of clathrin in cell line 

models expressing OATP1B3. These studies may assist in delineating whether the Golgi 

complex and clathrin mediated sorting mechanisms exist for OATP1B3.  

Given our investigations focused on OATP1B3, it would be interesting to examine if these 

findings are applicable to the closely related family member, OATP1B1. Our in silico 

analyses revealed that the amino acid region at the N-terminus of OATP1B1 displays the 

highest propensity to form β-turn tetrapeptides. Studies may be designed to truncate the 

N-terminus and specifically mutate the β-turn tetrapeptide region of OATP1B1. 

Experiments including surface localization and transporter assays would demonstrate 

whether our findings may be applicable to other members of the OATP family. 

Copyright © Nilay Thakkar 2015  
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