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Abstract

The purpose of this study was to identify alterations in preparatory muscle activation patterns 

across different drop heights in female athletes. Sixteen female high school volleyball players 

performed the drop vertical jump from three different drop heights. Surface electromyography of 

the quadriceps and hamstrings were collected during the movement trials. As the drop height 

increased, muscle activation of the quadriceps during preparatory phase also increased (p < .05). 

However, the hamstrings activation showed no similar increases relative to drop height. Female 

athletes appear to preferentially rely on increased quadriceps activation, without an increase in 

hamstrings activation, with increased plyometric intensity. The resultant decreased activation ratio 

NIH Public Access
Author Manuscript
J Appl Biomech. Author manuscript; available in PMC 2014 November 06.

Published in final edited form as:
J Appl Biomech. 2011 August ; 27(3): 215–222.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



of the hamstrings relative to quadriceps before landing may represent altered dynamic knee 

stability and may contribute to the increased risk of ACL injury in female athletes.

Keywords

electromyography; drop vertical jump; anterior cruciate ligament; knee injury; co-contraction

Female athletes suffer anterior cruciate ligament (ACL) injuries at a greater rate than males 

participating in the same landing and pivoting sports (Arendt & Dick, 1995; Malone et al., 

1993). Decreased dynamic neuromuscular control of the knee or active restraint likely 

contributes to increased risk of ACL injury in female athletes (Hewett et al., 2005). 

Decreased neuromuscular control of the joint may increase the stress on passive ligamentous 

structures, including the ACL, in a manner that may ultimately exceed the failure strength of 

the ligament (Li et al., 1999; Markolf et al., 1978).

Increased hamstrings force has been shown, in vitro, to greatly decrease relative strain on 

the ACL during the exion phase of simulated jump landings (Withrow et al., 2008). 

Increased strength and recruitment of the hamstrings musculature may also decrease 

excessive frontal plane rotations (Lloyd & Buchanan, 2001). Female athletes demonstrate 

increased frontal plane motion and moments during a variety of athletic maneuvers 

compared with males (Ford et al., 2003, 2005, 2006; Hewett et al., 2006; Kernozek et al., 

2005; McLean et al., 2004). Decreased ability to control external frontal plane loads in 

female athletes may be the symptom of decreased co-contraction of the hamstrings and 

quadriceps musculature in female athletes (Hewett et al., 2008). Accordingly, increased 

quadriceps activation with decreased relative hamstrings activation may contribute to the 

increased risk of ACL injury in female athletes (Hewett et al., 2005; Myer et al., 2008).

The current study aims to determine the relationship between hamstrings and quadriceps 

activation during plyometric activities with increasing drop heights in female athletes. 

Specifically, the purpose was to identify alterations in muscle activation strategies across 

three different drop heights of a drop vertical jump. The primary hypothesis was that muscle 

activation would be greater at higher drop heights during the preparatory phase of landing in 

the quadriceps, but not the hamstrings, musculature. Secondly, we hypothesized that muscle 

activation would be greater at greater drop heights during the reactive phase of landing in 

the quadriceps but not the hamstrings. An increase in quadriceps activation, in the absence 

of increased hamstrings activation may be indicative of a preferential extensor activation 

pattern in females during increased intensity of plyometric activity.

Methods

Subjects

Sixteen female high school volleyball players volunteered to participate in this study (height 

169 ± 5 cm, mass 61.7 ± 5.4 kg). Informed written consent, approved by Cincinnati 

Children’s Hospital institutional review board, was obtained from the parent or parental 

guardian of each subject. Child assent was also obtained from each subject before 

participation.
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Instrumentation

A telemetry surface electromyography system (TeleMyo 2400, Noraxon) was used to record 

muscle activity on the right lower extremity. A custom backpack was worn by each subject 

during data collection to secure the electromyography transmitter. The unit specifications 

included an amplifier gain of 2000, hardware bandpass filter of 10–500 Hz, an input 

impedance of >1MΩ and a common-mode rejection ratio of >100 dB.

A 10-camera motion analysis system (Eagle cameras, Motion Analysis Corporation, Santa 

Rosa, CA) was used to capture three-dimensional marker trajectories of the right lower 

extremity. Ground reaction force was captured with one force platform (AMTI, Watertown, 

MA) embedded in the laboratory floor. The trials were collected in EVaRT (Version 5, 

Motion Analysis Corporation, Santa Rosa, CA) with synchronized video (240 Hz) and 

analog data (force and electromyography; 1200 Hz).

Procedures

The testing was completed during a single session. The subject’s skin was prepared by 

shaving hair that was present and vigorously cleansing the location with an alcohol swab. 

Disposable, self-adhesive Ag/AgCl dual electrodes with sensor diameter of 1 cm and 

interelectrode distance of 2 cm (Noraxon #272, Scottsdale, AZ) were applied to five muscles 

on the right lower extremity: hamstrings (semitendinosus, biceps femoris) and quadriceps 

(rectus femoris, vastus medialis, and vastus lateralis). Electrode placement was determined 

using protocols described previously in the literature (Boling et al., 2006; Cram et al., 1998) 

and confirmed by visually inspecting waveforms on an oscilloscope (MyoResearch, 

Noraxon) using standard manual muscle testing protocols. Wires were secured with elastic 

tape to reduce movement artifact during testing.

Maximum activation was recorded from each muscle during a maximum voluntary isometric 

contraction. Subjects were seated on a dynamometer (Biodex Medical Systems, Shirley, 

NY) with the trunk perpendicular to floor, the hip flexed to 90°, and the knee flexed to 60° 

(Brindle et al., 2002). Practice trials were performed on the dynamometer with both visual 

and verbal cues on their technical performance. Each subject performed three maximum 

effort isometric contractions of the quadriceps and hamstrings muscle groups. Each 

isometric contraction lasted 5 s with a 30-s rest between each trial. For the dynamic trials, 

three trials of a drop vertical jump were performed at three randomly presented drop heights 

(15 cm, 30 cm, and 45 cm). Participants were instructed to drop directly down off the box 

with both feet leaving the box at the same time and as soon as they touched the ground to 

immediately perform a maximum vertical jump. The first landing on the force platform (i.e., 

the drop from the box) was used for analysis.

Thirty-seven reflective markers were placed on the subject, as previously described (Ford et 

al., 2007), with a minimum of three markers per lower extremity segment. A static trial was 

collected in which the subject was instructed to stand still in the anatomical position with 

foot placement standardized. This static measurement was used as each subject’s neutral 

(zero) alignment.
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Data Analysis

Raw electromyography data were filtered to remove movement artifact with a fourth-order, 

high-pass Butterworth filter with 30-Hz cutoff (Besier et al., 2003). Each rectified signal 

was then filtered with a fourth-order low-pass Butterworth filter with a 6-Hz cutoff to 

generate a linear envelope for each muscle (Besier et al., 2003; Winter, 2005). Linear 

envelope data were divided by the maximum electromyography signal obtained during the 

5-s maximum voluntary isometric contraction trials, which were processed in the exact same 

manner, resulting in a normalized signal. Electromyography data during dynamic trials are 

represented as the percentage of maximum muscle activation. Vertical ground reaction force 

data were used to calculate initial contact with the ground immediately after the subject 

dropped from the box. Initial contact was defined when vertical ground reaction force first 

exceeded 10 N. Preparatory and reactive phases were operationally defined as 100 ms before 

initial contact and 100 ms after initial contact, respectively (Fagenbaum & Darling, 2003; 

Palmieri-Smith et al., 2008).

Normalized electromyography signal was used to calculate the average and peak magnitude 

for each individual muscle during the preparatory and reactive phases. In addition, a 

hamstrings-to-quadriceps activation ratio was calculated during the preparatory and reactive 

phases. Specifically, this first involved the calculation of an average hamstrings 

(semitendinosus, biceps femoris) and an average quadriceps (vastus medialis, vastus 

lateralis, rectus femoris) time series signal. Secondly, the time series hamstrings-to-

quadriceps activation ratio was calculated (hamstrings/quadriceps). The average ratio during 

each phase was then calculated. Data analysis was performed in MATLAB (Version 7.5, 

The Mathworks Inc., Natick, MA).

Right hip and knee exion angles were calculated during the drop vertical jump at each box 

height within Visual3d (Version 4.0, C-Motion, Inc., Germantown, MD) (Ford et al., 2007). 

Marker trajectories from each trial were filtered at a cutoff frequency of 12 Hz (low-pass 

fourth-order Butterworth filter). Based on our kinematic analysis convention, hip and knee 

exion angles are positive. Maximum vertical ground reaction force was calculated after 

initial contact during the drop vertical jump landing.

Statistical Procedures

Statistical analyses were conducted in SPSS (Version 15.0, SPSS Inc. Chicago, IL). 

Statistical means and standard deviations from each drop height for each variable were 

calculated. Multiple one-way repeated-measures ANOVAs were used to assess the effect of 

drop height (15 cm, 30 cm, and 45 cm) on the dependent variables during the preparatory 

phase and reactive phase. An alpha level of 0.05 was chosen a priori to indicate statistical 

significance. A Bonferroni adjustment was performed based on the number of dependent 

variables (11) for each hypothesis (p < 0.0046 was significant). Secondary analyses were 

conducted on maximum vertical ground reaction force, hip exion angle at initial contact, and 

knee exion angle at initial contact with one-way repeated-measures ANOVAs. Post hoc 

pairwise comparisons were performed, with Bonferroni adjustments, to determine if 

differences between the three drop heights were significantly different, adjusting 

significance at p ≤ .0167.
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Results

Preparatory Phase

Figure 1 shows the hamstrings and quadriceps electromyography 100 ms before landing 

through 100 ms after initial contact. In the preparatory phase before landing, the average 

hamstrings-to-quadriceps ratio decreased as the drop height increased (15 cm, 1.9 ± 1.6; 30 

cm, 1.6 ± 1.5; 45 cm, 0.9 ± 0.6; p = .004, Figure 1). A significant 53% decrease in 

hamstrings-to-quadriceps ratio was found from the 15-cm box to the 45-cm box (p = .008). 

At the lower drop heights, the average activity of the hamstring was greater than the average 

activity of the quadriceps. In contrast, at the highest drop height (45 cm), the quadriceps 

were higher than the hamstrings (Figure 1).

Increased average preparatory quadriceps muscle activation was observed with increased 

drop heights within the vastus medialis (p < .001), vastus lateralis (p < .001), and rectus 

femoris (p = .004) muscles (Table 1). Conversely, the magnitude of average muscle 

activation of the hamstrings did not change across drop heights within the semitendinosus or 

biceps femoris (Table 1). Similar results were found with peak muscle activation during the 

preparatory phase. The peak vastus lateralis (p < .001) and rectus femoris (p = .002) muscle 

activities were significantly greater with increased box height (Table 1).

Reactive Phase

Significant differences were not observed in average hamstrings-to-quadriceps ratio during 

the reactive phase with increased box height (15 cm, 0.6 ± 0.7; 30 cm, 0.4 ± 0.3; 45 cm, 0.4 

± 0.3; p = .104, Figure 1). Average rectus femoris activity significantly increased when the 

box height was increased (p = .001; Table 2). Similar results were found with the peak 

muscle activity of two quadriceps muscles, rectus femoris (p = .004), and vastus medialis (p 

= .003; Table 2). The peak vastus medialis activity significantly increased 25% from the 15-

cm to 45-cm box height (p = .005). Significant differences were not observed with increased 

box height in average or peak hamstrings activity (semitendinosus, biceps femoris, Table 2) 

during the reactive phase.

Initial Contact Kinematics and Ground Reaction Force

Figure 2 presents the averaged time series from 100 ms before ground contact to 100 ms 

after ground contact of the vertical ground reaction force, hip exion angle, and knee exion 

angle. Maximum vertical ground reaction force during landing increased at each intensity 

level (15 cm, 928.4 ± 181.6 N; 30 cm, 1,080.0 ± 158.1 N; 45 cm, 1,379.7 ± 189.6 N; p < .

001), as was expected. Interestingly, hip exion angle at initial contact significantly decreased 

as the drop height increased (15 cm, 34.4 ± 8.0°; 30 cm, 29.2 ± 7.1°; 45 cm, 27.2 ± 8.0°; p 

< .001). No differences were found in knee exion angle at initial contact for each drop height 

(15 cm, 24.4 ± 8.3°; 30 cm, 22.3 ± 6.1°; 45 cm, 22.1 ± 5.6°; p = .17).

Discussion

The purpose of this study was to evaluate the influence of task intensity on relative muscle 

activation strategies during landing in female athletes. The current study used increased drop 
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height as a mechanism to increase the overall external load on the lower extremity. 

Correspondingly, the observed increase in vertical ground force with greater drop heights 

indicates that the activity incrementally increased the load on the lower extremity. The 

increased quadriceps muscle activation in response to greater demand on the lower 

extremity to decelerate the body center of mass when landing from greater heights occurred, 

confirming the hypothesis. However, no concomitant changes in hamstrings amplitude were 

found to match increased drop height intensity or increased quadriceps activation as was 

hypothesized. ACL injury occurs under high dynamic loading of the knee joint, when active 

muscle stiffness does not adequately dampen joint loads (Beynnon & Fleming, 1998). Thus, 

the lack of similar activation increases from the hamstrings may increase injury risk in 

female athletes.

Dynamic, or active, stiffness of the neuromuscular system includes both feed-forward and 

feedback motor control loops (Lephart et al., 2002). Feed-forward neuromuscular control is 

likely developed during previously repeated movement patterns and activates muscles 

around the joint before excessive loading in order to absorb force and to decrease stress on 

the ligaments (Beard et al., 1993). Motor control strategies that rely on feedback loops 

(reactive) alter muscle activation in response to situations that load the lower extremity 

joints (Dyhre-Poulsen et al., 1991). The electromechanical time delays that are inherent in 

feedback mechanisms likely limit the effectiveness of muscular joint protection during 

dynamic movements (Lephart & Fu, 2000). Therefore, we analyzed muscle activity 

immediately before landing, in addition to during landing in the current study. Preparatory 

muscle activity can stiffen joints before unexpected perturbations and can be learned and 

adjusted through integration of previous movement experiences or training (Beard et al., 

1993; Dietz et al., 1981; Dyhre-Poulsen et al., 1991; Wojtys & Huston, 1994). Decreased 

relative hamstrings strength and recruitment of the hamstrings musculature may be related to 

an increased risk of ACL injury (Myer et al., 2008). The subjects demonstrated preferential 

quadriceps, not hamstrings, recruitment as the drop height increased during the precontact 

and postcontact phases. This preferential muscle activation strategy may create increased 

loads directly to the ACL as the plyometric activities became more demanding (Withrow et 

al., 2008).

Sex differences have been previously identified during a variety of tasks, with females 

demonstrating increased activation of the quadriceps relative to the antagonistic hamstrings 

musculature (Hanson et al., 2008; Hewett et al., 1996; Malinzak et al., 2001; Padua et al., 

2005; Sell et al., 2007; White et al., 2003; Wojtys et al., 1996; Youdas et al., 2007). While 

additional loading conditions may be related to shear load, the disproportional recruitment of 

the knee extensors may increase anterior shear force at the low knee exion angles (Markolf 

et al., 1995; Myer et al., 2005). In the current study, females showed an increase in 

quadriceps activation as the ground reaction force increased. The quadriceps, through the 

anterior pull of the patellar tendon on the tibia, contributes to ACL loading when knee exion 

is less than 45° (Markolf et al., 1995; Renstrom et al., 1986). The knee exion angle at initial 

contact of landing during the drop vertical jump has been previously reported as 

approximately 20° (Chaudhari et al., 2007; Ford et al., 2007; Myer et al., 2006). Our data are 

similar at initial contact with the knee exion angle approximately 23° over all the drop 

heights. Therefore, during the initial loading conditions of landing, it is hypothesized that 
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increased muscular co-contraction before initial contact would be beneficial during the 

reactive phases by increasing actual muscular force while the knee is less than 45°. 

Adequate co-contraction of the knee exors may balance contraction of the quadriceps, 

compress the joint, and limit high knee extension and abduction torques immediately after 

ground contact (Hewett et al., 1996). Muscle co-contraction compresses the joint, due in part 

to the concavity of the medial tibial plateau, which may protect the ACL against anterior 

drawer (Imran & O’Connor, 1997). Increased balance in strength and recruitment of the 

knee flexor relative to the knee extensor musculature may protect the ACL (Hewett et al., 

1996).

Similar mechanisms apply to muscular protection against torsional loading, in which sex 

differences have been identified (Wojtys et al., 2003). Wojtys et al. demonstrated that 

maximal rotations of the tibia were greater in women than in men in both passive and active 

muscle states (Wojtys et al., 2003). Females exhibited less muscular protection of the knee 

ligaments under internal rotation loading than did males (Wojtys et al., 2003). In addition, 

during single-leg landing maneuvers, females increase quadriceps while decrease gluteus 

maximus activity (Zazulak et al., 2005).

High valgus knee torques have been correlated with increased ground reaction forces 

(Hewett et al., 1996, 1999, 2005) and increased risk of ACL injury (Ford et al., 2003; 

Hewett et al., 2005; Malinzak et al., 2001; McLean et al., 2004). The systematic increase in 

drop height in the current study led to higher ground reaction forces. Different muscle 

activation strategies of quadriceps and hamstrings (quadriceps alone, hamstrings alone, and 

co-contraction) may be used to control the valgus (external abduction) forces at the knee (Li 

et al., 1999; Lloyd et al., 2005). Therefore, the findings of this study indicate that females 

preferentially rely on increased quadriceps activation without an increase in hamstrings 

activation to decelerate the body center of mass and absorb higher ground reaction forces 

before performing a maximum vertical jump.

Muscular co-contraction did not increase during the reactive phase of landing as the drop 

height increased. Similarly, hamstrings muscle activation did not increase during the 

reactive phase of landing. Within the first 100 ms of landing, the maximum ground reaction 

force and estimated peak ACL force typically occur, making this the most hazardous phase 

of a landing (Kernozek & Ragan, 2008). However, based on electromechanical delay, 

muscular activation patterns before landing are partially responsible for the actual muscular 

force during landing. Males can reach a relative isometric force level, compared with 

females, in a shorter amount of time (Blackburn et al., 2009). Therefore, hamstrings may 

need to be activated earlier to produce the critical level of force to maintain knee stability.

Hip exion angle at initial contact significantly decreased as the drop height increased, 

resulting in a greater hip extended position during landing from the highest box. Differences 

have been previously reported in hip exion during a drop vertical jump, with females 

exhibiting decreased hip exion at initial contact compared with males (Ford et al., 2010). 

Decreased hip exion may play an important role in the mechanical efficiency of the 

hamstrings muscles in relation to the quadriceps (Shultz, 2007). For example, increased 

activation of the quadriceps and decreased activation of the hamstrings have been reported 
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with an extended hip and trunk posture compared with a flexed hip and trunk (Shultz, 2007; 

Wilk et al., 1996). Although we did not measure trunk position, this may explain how 

increased quadriceps activation may relate to a more extended hip posture as the drop height 

increased.

One potential limitation to the generalizability of this study was the use of a singular landing 

task performed at different landing intensities. While other studies have examined cutting 

and medial/lateral movements, we chose to focus on a landing task to better control the 

intensity levels (drop heights). Future studies that vary the intensity during cutting and 

pivoting may be warranted. A final limitation to the current study was that only female 

athletes were examined during the landing trials. Therefore, sex differences in quadriceps 

and hamstrings activation based on landing intensity cannot be concluded from this study. 

Both male and female athletes may increase knee extensor force to counteract the greater 

impact velocity due to the higher drop heights.

In conclusion, female athletes preferentially rely on increased quadriceps activation, without 

an increase in hamstrings activation, with increased plyometric intensity. The decreased 

hamstrings-to-quadriceps muscle activation before landing may represent altered 

neuromuscular control patterns and may contribute to the increased risk of ACL injury in 

female athletes. This observed preferential quadriceps muscle activation pattern supports 

previous findings of motor control alterations with quadriceps bias in this population 

(Zazulak et al., 2005). Preferential quadriceps muscle activation may be modifiable with 

specific training that could possibly yield a protective dynamic coactivation for the static 

stabilizers.
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Figure 1. 
Hamstrings, quadriceps, and hamstrings/quadriceps ratio time series averaged for each 

subject during the 15-cm, 30-cm, and 45-cm box drop landing. Hamstrings 

electromyography was calculated from the average of the semitendinosus and biceps femoris 

signals over time. Quadriceps electromyography was calculated from the average of the 

vastus medialis, vastus lateralis, and rectus femoris signals over time. IC—initial contact, 

MVIC—maximum voluntary isometric contraction, EMG—electromyography.
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Figure 2. 
Hip and knee exion–extension and vertical ground reaction force time series averaged for 

each subject during the 15-cm, 30-cm and 45-cm box drop landing. By convention, knee 

exion and hip exion are positive. IC—initial contact.
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