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Presentation Title 

Predictive Archaeological Modeling using GIS-Based Fuzzy Set Estimation 

 

Presentation Abstract 

Analytic predictive archaeological models can have great utility for state Departments of 

Transportation, but it is difficult to model the likelihood of prehistoric settlement using 

geographical proxy predictor variables because of the complexity of how settlement choices 

were actually made, and the complex interaction between these variables using GIS. In many 

cases classic statistical modeling approaches require too much data to be useful. This research 

reports on a preliminary predictive model that combines Spatial Analyst and fuzzy logic 

modeling to capture expert archaeological knowledge and convert this into predictive surface. A 

test area was defined in Woodford County, KY and five influencing factors were defined and 

calculated using ArcMap. Locations were sampled and probabilities estimated using both small 

and large group structured processes from a range of archeologists that fed an iterative fuzzy 

logic induction process. An output probability function was generated to create a predictive 

decision support layer.  

Presentation Will Feature the Following ESRI Software 

ArcInfo, Spatial 
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Predictive Archaeological Modeling using GIS-Based Fuzzy Set Estimation: A Case Study 

in Woodford County, Kentucky 

 

This paper reports on the development and testing of a GIS/fuzzy-logic based predictive 

model for an area of the Inner Bluegrass physiographic region in Kentucky.  The objective of 

this research was to develop a spatial decision support system, or SDSS that would allow the 

Environmental Division of the Kentucky Transportation Cabinet to better spatially estimate the 

probability of encountering archaeological artifacts of a given progeny and epoch, in this case 

prehistoric lithic scatters. This information would be useful to most state DOT’s at the initial 

stages of developing preferred corridors for new highways, in that it would aid in developing 

corridors that minimize the likelihood of encountering, and thus being delayed by, significant 

archeological finds.  Although predictive archaeological modeling is not a new field (1,2), the 

method reported here is novel in several ways.  It represents an integration of geographic 

variables with expert judgments.  This model integrated physiographic predictive factors derived 

from archeological literature into a geospatial platform, ArcGIS, with expert judgments 

regarding the interaction effects of the combinations of factors governing the probability of 

prehistoric settlement placement. The factors used were judged by the archeologists to be the 

most fundamental, or universal, types of factors, with the expectation that they would form the 

basis of a robust modeling logic in many regions.  Those factors include level ground, the 

relative proximity to a water supply, and elevations that avoid frequent flooding.  Additional 

regionally-specific factors such as springs and sinkholes were introduced as the model was 

developed, but the foundational considerations were not altered.  

The combination of fuzzy logic based nonlinear system modeling and geospatial 

information management has not been applied to this domain before.  Fuzzy logic techniques are 

well-established in fields such as systems engineering (3) and biological systems modeling (e.g. 

4).  They are used to model input-output relationships between variables where data is 

insufficient to support statistical analysis.  Fuzzy logic approaches involve categorizing inputs, in 

this case the variables that affect settlement likelihood, and outputs, in this case probability of 

discovering artifacts in that location, into small number of discrete classes, and then using neural 

network or cellular automata algorithms to model the input-output response function based on 

the available, usually sparse data.  For example, the output, probability of encountering 

prehistoric lithic scatters, was categorized into five classes: very low probability, low, medium, 

high and very high.  Numerical value correspondence was defined for each of these categories.  

Similarly, inputs were also categorized: for example, slope consisted of very low, low, high and 

very high categories, each of which corresponds to a specific gradient range.  This classification 

of variables is performed by expert groups using verbal descriptors, thus setting the appropriate 

level of precision and accuracy for the problem set.  The output is a database in the fuzzy model 

builder software that can be explored graphically to determine probabilities for input 

combinations that were not sampled (5).   

Fuzzy logic approaches deliver effective predictive capacity within the domain of their 

outputs.  Fuzzy systems offer advantages for this type of work: in addition to allowing robust 

input-out models to be built in data-sparse conditions, they effectively handle nonlinear 

relationships between variables where there are too many interactions to model effectively and 

comprehensively using standard statistical techniques.  Comparisons between classic statistical 

modeling techniques and fuzzy approaches are not generally appropriate because fuzzy logic is 

best used in domains where the sample size is a small fraction of the total decision space, 
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conditions under which statistical models are useless.  In this case, the potential sets of 

combinations of inputs was large and the actual domain of knowledge was small, leading to the 

selection of fuzzy logic as an appropriate and meaningful modeling approach.  One disadvantage 

of fuzzy systems is that they operate using categorical variables, and although these can be 

translated into numerical ranges, they cannot be relied on to generate precise estimates for output 

variables measured on interval or ratio scales.  Nevertheless, the logic of a fuzzy-set based model 

allows for more classes of outputs than the classic Boolean presence/absence dependent variable.  

Integrating the fuzzy logic model in this way allowed a range of spatial analytic operations to be 

performed on multiple layers of data and it facilitated comprehensive visualization of final 

probability distributions across a relatively large geographic area. 

Over a two year period, from summer 2006 to 2008, the Kentucky Transportation 

Cabinet’s archaeological team consulted with team members with expertise in nonlinear 

modeling using fuzzy set estimation methods and geospatial platform development to develop 

and apply the methodology.  In this paper the aims of the modeling process are defined, the 

selection of the case study area is explained, the process of generating the model is described and 

the iterative refinement procedure is detailed.  Results from the case study area of Woodford are 

presented, lessons learned during model build are discussed, and the strengths and weaknesses of 

the method are summarized. 

 

Aims and Scope 

The utility of an effective predictive archaeological model is significant for State 

Departments of Transportation.  For new highway builds, or rehabilitation, or for the many other 

infrastructure development processes that involve the exercise of eminent domain, 

archaeological inspection is a costly and time-intensive process.  Potential legal challenges and 

EIS mandates require good faith efforts to investigate and dig to locate and identify potential 

sites. The Kentucky Transportation Cabinet’s archaeological team desired a geospatial decision 

support tool that would help them visually understand the distribution of probabilities of 

encountering artifacts from a given period over a meaningful area of interest.  The tool was also 

required to provide a reasonable quantitative categorical estimate of probability mapped to 

specific locations.  

With this context in mind, the model described here is designed explicitly to be deployed 

by archeologists as a first step in the assessment of likelihood for prehistoric artifacts.    The 

model is not intended to be interpreted and employed without considerable archaeological 

expertise, because it is designed to accommodate professional archeological knowledge in 

addition to the parameters contained within the model. Its purpose is to allow rapid broad-picture 

summarization, and to focus archaeological expertise more efficiently on areas of high interest, 

not to eliminate areas from consideration. The primary utility of the model is to aid in selection 

of a corridor when there are multiple corridors under consideration, as is often the case in early 

planning stages. The model can be used to aid in sorting corridors that have the least probability 

of encountering archaeological sites.  It can provide supporting data for automated tools for 

alignment evaluations similar to the research team’s Analytic Minimum Impedance Surface, or 

AMIS, method (6).  

The focus of this model is on prehistoric, open-air lithic scatters, partly because it 

allowed the use of a fairly robust database for testing model results. While it would undoubtedly 

be desirable to model only the locations of National Register of Historic Places (NRHP)-eligible 

sites, such sites are so sparsely located and highly variable in age and type that there is 
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insufficient data to attempt to model.  Significance is associated with factors such as integrity, 

site type, or the actual age of the site, variables not used in this locational predictive model. This 

is a model of simple site location, and therefore will most accurately reflect the distribution of 

the most common site types. Thus, while the model cannot predict site significance, it can 

provide an estimate of potential site density. Statistically, the corridor with the greatest site 

density also has the greatest potential for NRHP-eligible sites. 

Initially, the appropriate spatial scale of the model was debated.  It was considered that 

statewide application would not be feasible because Kentucky contains a number of 

physiographic regions that exhibit widely differing landscape characteristics.  Modeling rules 

derived to represent the influence of factors such as distance above water, for example,  could 

not be expected to be consistent across different landforms.  The individual physiographic 

region, within which landscape form, characteristics and variations were predictable and similar, 

was felt to be a suitable domain.  The Inner Bluegrass geological region of central Kentucky, a 

raised Karst landscape, was considered to be a good candidate.  It is an area within which a 

number of projects are underway, or will soon be, requiring archaeological survey.  This area 

also had considerable historic data concerning archaeological discoveries, essential for model 

testing and verification.  Finally, each member of the archaeological team also possessed a 

number of years experience working on surveys and sites within this region.  This factor was 

critical because the modeling process sought to capture the expert knowledge of the team, 

beyond literature reviews, and convert this into the probability surface.   

One advantage of using fuzzy logic approaches to system modeling is that it facilitates 

the capture of this implicit knowledge; that is, system knowledge that participants or respondents 

possess but are not necessarily capable of articulating though description of formal mathematical 

relationships between input variables.  They may have what they call “gut feelings,” or 

“intuition,” or “best guess” knowledge that is based on years of experience, observations and 

analysis in the field.  This knowledge cannot be accessed explicitly, but it can be captured and 

implicitly decomposed using a structured approach to knowledge creation such as multivariable 

modeling (7,8). 

 

Predictive archaeological modeling  

  

Archaeologists have been attempting to model potential archaeological site locations 

since the early 1980’s, and with the availability of desktop GIS packages these types of studies 

have increased over the past couple of decades.  Previous attempts to model sites have had only 

limited success and principally focused on inductive methodologies where known sites were 

correlated to environmental variables (9).   These projects employ statistical techniques such as 

linear regression on existing site databases and modern environmental data to map areas that 

have either a high or low probability for containing archaeological sites. In North Carolina, 

nearly 5000 archeological sites and a “wide range of environmental variables” were used as data 

to build a logistic regression model that sorted the landscape into High, Medium, or Low 

probabilities (10).  The study funded by the Minnesota Department of Transportation Mn/Model 

used a similar approach and, after three interations, settled on 44 different environmental 

variables to use in predicting the location of archeological sites (11). 

A more local example of this approach is a project undertaken by the authors for 

predicting the location of Archaic Period archaeological sites in Henderson County, Kentucky in 

2001, with the goal of examining the influence of representing sites as a singular point or as 
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polygons for GIS locational modeling (12).  It successfully developed a robust GLM model for 

predicting potential site locations (approximately 75% of site locations were correctly predicted 

within a high probability area that covered roughly 30% of the study area) and demonstrated the 

benefits of using polygon site boundary locations for archaeological modeling.  However, the 

model’s performance was limited by the lack of linearity in the relationship between 

archaeological sites and environmental variables.   

This complexity stems from many factors.  First, the locations may have been in use 

intermittently or continuously from several hundred years ago up to 12,000 years ago. Many 

kinds of disturbances to sites can occur over that time span, so sites that are correctly modeled as 

having been inhabited may nonetheless yield no evidence of the people, or artifacts, either 

because it too faint to see or has been obliterated by later prehistoric or modern human activity.   

The second major issue is attempting to understand and reconstruct the culture and 

decision-making of humans from an entirely different culture.  For example, previous 

archaeological research indicates that the most recent Native American farmers would tend to 

place villages near good farmland and water, and prior to them hunters and gathers would have 

had smaller campsites located in an area with good visibility and in good habitat for deer, turkey 

and other animals. Both groups produced quarries and other resource extractions sites such as 

chert outcrops.   However, much less is known about their decisions guiding the location of 

religious, ceremonial, or burial sites.  Thus, any predictive modeling attempt should draw most 

strongly on those relationships that are best understood, and capitalize on the existing body of 

archeological knowledge.  Because not all relationships and decisions are yet fully understood, a 

modeling attempt cannot expect to decisively ‘predict’ the locations of all artifacts, but should 

yield predictive outputs that are consistent with archeologists’ understandings, and, of course, the 

evidence in the field.  Consequently, constructing predictive rules should rely more on 

relationships regarding water access and quality, suitability for habitation, visibility for hunting, 

etc. 

Steps to Model Build 

 The first step was to determine significant factors that influence likelihood of settlement 

during the period in question and to arrange these into discrete categories amenable to a fuzzy set 

mapping.  Following a literature review, a structured brainstorming and group classification 

session was hosted with the archaeology team.  Five key predictor factors were identified by 

archaeological team members and the output variable, probability, was defined as shown in 

Table 1. 

 

Table 1.  Variables matrix 

 

Degrees Slope

Minutes Walk to 

Water

Minutes Walk to 

Confluence

Distance Above Water in 

Feet

Stream Rank in 

Strahler Order Probability Scale

1 = (VL <= 5) L <= 2 L <= 10 VL <= 10 L = 1 VL <= 1.2

2= (L, 5 - 10) M = 2 - 4 H = >10 L = 10 - 25 M = 2 - 3 L = 1.2 to 2.5

3 = (H, 11 - 20) H = >5 H = 25 - 60 H = >3 M = 2.7 to 3.2

VH = >20 VH = >60 H = 3.3 to 3.9

VH = >3.9  
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Each input variable was divided into classes that made sense to the archaeologists.  These 

classifications are shown in Table 1.  The number of classes for each variable represents the 

judgment of the team regarding the number of discrete categories that influence human 

behaviors, and therefore that control settlement and habitation patterns for each.  These were 

based on a combination of the teams’ knowledge of archaeological literature and a discussion 

held during the meeting.  It is important to note that, while these parameters were generally 

identified as fundamental to habitation decisions of prehistoric peoples,  this particular 

classification system of distances and heights might not have validity outside of the defined 

study area.  It was developed specifically to match the team’s expert knowledge of the 

topography, hydrology,  and physical geography of the Woodford County study area.  For 

example, for the height above water categories, three significant classes were defined.  To 

establish category boundaries, attention was paid to local terrace topography in the vicinity of the 

Ohio and Kentucky Rivers. These parameters were also restricted to those that were derivable 

from existing GIS data, so that the model could be developed using available Kentucky data 

without demanding significant new data gathering. 

The first factor identified was Slope in Degrees of the surface.  The basic argument here 

is that it is difficult to maintain a habitation on ground that is too steep, and increasingly difficult 

to impossible as slope reaches certain values.  Slope was given four categories: VL = <=5, L= 5-

10, H= 10-20, and VH=20+ degrees of slope.  

The second interactive factor identified was Minutes walk to nearest walkable water 

(using Tobler's algorithm for computing walking time).  This factor was divided into three 

categories: L<=2, M=2-4, and H=4+ minutes.  Again, the general presumption was that access to 

water promotes the likelihood of settlements, but this is conditioned by other factors in the 

model. 

The third interactive factor identified was Minutes walk to nearest walkable 

confluence on streams with a Strahler order of 3 or higher (13).  This factor was divided into 

only two categories: L=<=10, H=10+ minutes.  The inclusion of this factor was meant to account 

for the significance of confluences of larger streams as an attractive factor for habitation 

location. 

The fourth interactive factor identified was Elevation difference to nearest walkable 

water (not direct line) in feet.  This was divided into four categories: VL=<=10, L=10-25, 

H=25-60, and VH=60+ feet.  This factor helps account for the risk of flooding at very low 

elevations and the attractiveness of various landforms high above river bottoms. 

The fifth interactive factor identified was the Strahler order of the streams.  Although 

the Strahler system allows for stream orders as high as 10, the factor was divided into three 

categories: L, M, and H.  For purposes of the model, two different definitions of category 

membership were used. Under one definition set, L=1, M=2,3, and H=4+.  Under the second 

definition set, L=1,2, M=3, and H=4.  This factor helps mediate the relative impact of distances 

to water by the size and reliability of the water source, as indicated through the Strahler order. 
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After being defined in this way, several of these inputs needed to be converted into 

spatial dependence functions that represented accessibility.  Horizontal distance from water, for 

example, was converted into minutes walking time.  This variable was computed geospatially, 

using a custom non-istrotropic cost-distance function created in ArcGIS to measure the distance 

to the nearest watercourse, adjusted for topographical variation along that least horizontal 

distance path, and divided by average walking speed to produce time to water.  The Strahler 

stream order model, while seemingly conceptually simple, required the derivation of a set of 

rules for automating the designation of streams consistently in a landscape heavily dissected by 

all manner of watercourses. “Neighboring” was defined as the most proximate watercourse.  One 

problem with this was that while some points were located near only one watercourse, others 

were located within almost equal adjacency of two or three watercourses. 

Once coverages were generated, they were categorized into polygons according to the 

rules set out above.  This yielded six new coverages, each with anywhere from two to four 

polygon categories.  These coverages were then spatially intersected to produce all the possible 

combinations of the classifications.  This potential number is given by multiplying the number of 

categories for each factor by the number of categories for the next factor and so on, yielding a 

total of 4x3x2x4x3=288 possible unique spatial landscape categories.    In fact the actual 

intersection yielded about 180 unique landscape categories within the boundaries of the testing 

county (Figure 1).   

 

Figure 1. Color-coded GIS surface illustrating 180 unique spatial landscape categories 

resulting from combinations of feature coding categories: Woodford County, KY.  
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A GIS output surface showing the topography of the region was used to elicit probability 

estimations from the team.  At the structured meeting, the archaeological team was asked to 

evaluate the probability of encountering an artifact in a set of sample locations (cells in the raster 

surface) under consideration on a scale of 1 (extremely unlikely) to 5 (extremely likely).  The 

valuations of the team were computed using the arithmetic mean.  A default value of ‘Moderate’ 

was assigned to all locations where insufficient knowledge or conditions existed to indicate 

either higher or lower likelihoods of artifacts.  This position was adopted because it was judged 

more accurate to incorporate no bias in either direction about unknown areas.  The input 

valuations to the cell were interrogated using the GIS query function and recorded.  This 

produced an input-ouput mapping function and was recorded in a spreadsheet.  The process was 

repeated for all fifty sample points.  Toward the end of this process, some points were found to 

represent duplicates of earlier points and if there was divergence from the previous probability 

value, the reasons were discussed.  When all fifty points had been captured, they were input into 

the FuzzyKnowledgeBuilder software.The software’s cellular automata function was invoked and 

a knowledge base was built.  This final knowledge base contained a complete functional 

mapping of outputs (probability) across the full range of all six input parameters.  The process is 

similar to the generation of the community knowledge base used by the authors in CAVE 

protocols for visual evaluation, with the exception that in this case the output is probability 

(14,15).  The output from the software was interrogated across the full range of each of the input 

parameters and each corresponding input-ouput mapping was recorded in a spreadsheet lookup 

table.  The final lookup table contained all 288 possible landscape combinations.  Table 2 shows 

a small sample of the output. 

 

Table 2.  Sample input-output lookup table extracted from knowledge base, diagramming the 

relationship between various coded combinations of landform factors and the probability, on a 

scale of 1-5, of encountering prehistoric artifacts 

 

 

 

 The researchers also explored the robustness of the input by presenting a strategic subset 

of the landform samples to a statewide meeting of professional archeologists.  Using the GIS, 

they explained the logic of the predictive system. Then, for each of about 30 sites, the relevant 

landform properties were supplied and discussed, and then the group scored each site on a scale 

of 1-5, corresponding to the five categories of likelihood specified earlier.  Approximately 70 

professionals entered their individual judgments anonymously through the use of electronic 

keypads, and the means of these scores were reviewed by, and compared to, the initial scores 

developed by the research team.  Based on the scores and discussion at the meeting, adjustments 

were made to specific cell combinations as appropriate. 

Slope Mins to Water Mins to Confluence Dist Above Water Stream Rank Probability
1 1 1 1 1 3

1 1 1 1 2 2

1 1 1 1 3 2

1 1 1 2 1 3

1 1 1 2 2 3

1 1 1 2 3 5
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At a subsequent structured meeting, the GIS surfaces showing the physical and 

environmental variables and the probability surface was displayed in tandem with the 

spreadsheet, and a careful evaluation was made for consistency of judgment.  This evaluation 

resulted in recategorizing approximately 30% of the total observations.  Appropriate manual 

adjustments were made to these individual values in the knowledge base, preserving the 

remainder of the modeled values. 

 Finally, these tabular probability values were converted into a continuous geographic 

probability surface in ArcGIS.  The input parameters for each cell in the landscape were 

converted to outputs using the lookup table data applied using the ArcGIS platform’s 

“Reclassify” function for raster data.  The output, probability, was color coded across the range 

of 1 through 5, showing all probabilities ranging from very low to very high across the 

Woodford County study area.  The team inspected the surfaces and the distribution.  The purpose 

of this inspection was to ensure that spatial patterns at the larger scale matched the expert 

knowledge of the archaeological team.  This led to a round of backward iteration, i.e. an 

adjustment of the rules and the knowledge base.   

The use of the GIS distribution to evaluate coherence allowed team members to 

adjudicate spatial mismatches between the modeled probabilities and their assessments.  This 

phase was valuable, because in certain higher-level topographic areas far from water, probability 

showed as low or very low when team members felt it should be much higher.  This effect 

recurred on many higher plateau, and it was considered sufficiently regular to point to a systemic 

omission in the input variables.  The team decided that the presence of sinkholes in the Karst 

landscape was responsible for this apparent mismatch.  Sinkholes were considered to be 

locations around which the probability of prehistoric settlement was higher, regardless of the 

other factors.   

Consequently, sinkholes were treated as independent, additive adjustments to the final 

probability model i.e. as a second spatial layer that could be overlain onto the original probability 

surface, and arithmetically combined using raster addition, or subtraction, logic.  The presence of 

sinkholes was considered to modify the probability of settlement, all other factors held equal, 

depending on net distance from the sinkhole.  Beyond a certain distance from source, the 

sinkhole enhancement effect diminished to zero.  To geocode this probability adjustment, a 

known sinkhole location layer was registered and added, and a two-zone buffer was created 

around each sinkhole location.  Within 100 feet of the sinkhole, probability was assigned a +2 

rating, and from 100 to 500 feet it was assigned a +1 rating.  A raster addition operation was 

performed on the sinkhole adjustment and the original probability layers to generate a final 

probability layer. The effect of this additional layer was to double the potential number of unique 

combinations of landscape features from 288 to 576 (Table 3).  Also, it increased the numeric 

probability scores up to 7 (5+2), however scores from 5-7 all remained classified as ‘very high 

probability.’  
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Table 3. Modification of original probability model (see Table 2) to accommodate proximity to 

sinkholes as an additive factor. 

Init ia l Model 

Probability 

Distance to Spring Result ing Change 

in Probability 

Final Probability 

Value 

3 < 100’ +2 5 

2 100-500’ +1 3 

2 >500’ 0 2 

3 100-500’ +1 4 

3 >500’ 0 3 

5 <100’ +2 7 

 
 
 
 

The parameter ranges were evaluated by the archaeological team and a number of 

adjustments were proposed.  These were incorporated into the input-output lookup tables.  

Because the effects of certain classifications were not easy to gauge from the lookup tables, it 

was proposed to develop a series of models that provided coverage across input element 

variation.  This process was constrained by group discussion and agreement to six specifications.  

Six models were then built that each incorporated slight changes in the categories shown 

in Table 1.  For example, “Minutes Walk to Water” coding might have been reclassified as 

L<=3, M= 4-5, and H = 6+ for one alternate model.  A typical result, this one for “Model 3” is 

shown in Figure 2. 
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Figure 2.  Typical archaeological probability mapping output for Woodford County, KY, where 

increasing likelihood of encountering prehistoric artifacts is indicated by increasingly red color 

codes 1-7. This surface is derived from the application of the rating ‘rules’ to the 180 unique 

surface categories shown in Figure 1. 

 

 
 

 

 

Results of verification 

 Results for known artifact locations for Woodford County were extracted from the state 

database.  These were independently plotted by one of the team members, separately from the 

modeling team.  Half of the points (about 50) were used to compare with the predicted model 

outputs and discrepancies were tabulated.  To ensure integrity for the verification process, the 

team members responsible for modeling did not come into contact with the verification database 

at any point.   The performance of the models is shown below, in Table 4. 

 

Discussion 

 Avoiding overprediction errors was considered a more important design objective than 

dealing with the effects of underprediction.  The model was calibrated to load uncertainty into 

the probability class 3, or moderate.  Therefore, these cells displaying this value can be 
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interpreted either to mean moderate probability of encountering artifacts, or as cells about which 

little is known.  The rationale for this approach was to focus the predictive capacity of the model  

on the more extreme probabilities, both high and low.  Engineering the systemic uncertainty into 

this region was intended to increase the discrimination of the model at the margins, particularly 

in the extreme probability categories 1 (very improbable) and 5 (likely to encounter artifacts).   

The results validate this design characteristic.  Each model performs slightly differently 

in absolute terms across its range, but the basic pattern of the results is similar.  The models show 

high performance for all categories other than medium category (Very Low, Low, High, Very 

High).  These ratio values range from a low of .77 to a high of .98, where “1” represents 100% 

efficiency (Table 4).   By comparison, the Minnesota Archeological Predictive Model shows 

efficiency ratio values for their predicted “High” probability zones of between .49 and .92, and 

lower efficiencies of  .28-.89 for High/Medium categories.  However, reaching these predictive 

ratios required the use of 44 variables in logistic regression equations (16).  

 

Table  4: Comparison of the technical 

”efficiency”  of six model iterations in correctly 

predicting the relative density of artifacts in a 

landscape. The efficiency ratio is computed as 1-

(% of area/% of sites) so that a perfectly efficient 

model would  yield a ratio of 1, and a completely 

random model would yield a ratio around 0.  This 

ratio was developed by Kvamme as a way of 

comparing the efficiency of various archeological 

predictive models (9). 

 
 
The major problem created by the 

concentration of uncertainty in the moderate 

probability category is the difficulty this creates 

for interpretation.  Another problem is the degree 

to which the chosen predictor variables capture 

all the potential influences on settlement location.  

The five variables chosen clearly cannot account 

for all the possible reasons for choosing 

settlement location.  Models of this type can 

never be 100% efficient, because of the 

considerable simplification of complex, historical 

decisionmaking processes forced by this logic.  

Another problem was the variable definitions.   

The boundaries between categories were based on 

existing literature and team experience, and 

adjusted as part of the overall model adjustment 

process. 

 

Conclusions 

 This county-scale model shows promising 

 VL (1) Sink 1             0.9713 

L (2) Sink 1             0.8041 

M (3) Sink 1             0.3722 

H (4) Sink 1             0.9283 

VH (5) Sink 1             0.9242 

VL (1) Sink 2             0.9831 

L (2) Sink 2             0.7871 

M (3) Sink 2             0.3748 

H (4) Sink 2             0.9234 

VH (5) Sink 2             0.9316 

VL (1) Sink 3             0.9832 

L (2) Sink 3             0.7759 

M (3) Sink 3             0.3749 

H (4) Sink 3             0.9249 

VH (5) Sink 3             0.9412 

VL (1) Sink 4             0.9892 

L (2) Sink 4             0.7817 

M (3) Sink 4             0.3751 

H (4) Sink 4             0.9242 

VH (5) Sink 4             0.9297 

VL (1) Sink 5             0.9838 

L (2) Sink 5             0.7920 

M (3) Sink 5             0.3913 

H (4) Sink 5             0.9110 

VH (5) Sink 5             0.9218 

VL (1) Sink 6            0.9840 

L (2) Sink 6            0.7785 

M (3) Sink 6            0.3880 

H (4) Sink 6            0.9162 

VH (5) Sink 6            0.9333 
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preliminary results.  The major success of this approach is shown by the capacity of the models 

to meet or exceed the measured efficiency of existing statistical models using a much more 

modest set of input variables.  Given the limited time and human resource expended on 

constructing the model, and the efficiency with which the prediction surface was built, the team 

considers this to be a successful result. These initial models are somewhat more efficient at 

predicting archeological resources than are existing linear regression archaeological models, 

despite our cautious approach of assigning most ‘unknowns’ into the ‘medium’ probability 

category.   

The application area is currently limited to a county.  Moreover, the team does not 

consider it feasible to use this approach to build a monolithic model beyond the scale of the 

physiographic region because the sensitivity of the input parameters, and therefore the 

performance of the model, would be diminished.  However, for applications over large areas, 

such as entire states, it would be possible to mosaic a series of regional models, effectively 

providing much larger coverage, using ArcGIS functionality.  The team is now working in 

collaboration with other Kentucky Transportation Cabinet to extend the modeling approach to 

the entire surrounding physiographic region, and to enhance the accuracy of the current model by 

further iterative refinement. 
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