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ABSTRACT OF DISSERTATION 

 

 
ETIOLOGY OF PATELLOFEMORAL PAIN SYNDROME: 

A PROXIMAL LINK TO A DISTAL PROBLEM 

 Patellofemoral pain syndrome (PFPS) is one of the most common, but least 
understood, knee disorders.  Fulkerson (1997) believes that pathology may result from an 
excessive valgus force being applied to the patella.  Researchers have historically 
examined quadriceps strength and neuromuscular activity and knee kinematics.  
However, results from these works have not provided conclusive answers.  Powers 
(2003) has theorized that other structures can influence knee function, and researchers 
have shown that PFPS subjects can exhibit hip weakness and demonstrate altered hip 
kinematics during functional activities.  Although they provide preliminary evidence 
regarding hip influences, investigations that simultaneously examine hip and knee 
function in PFPS subjects are needed. 
  

The primary purpose of this study was to determine functional performance, 
strength, neuromuscular activity (amplitudes and onset timing differences), and 
kinematics of the hip and knee for people diagnosed with PFPS.  Eighteen females 
diagnosed with PFPS and 18 asymptomatic female controls participated.  Subjects 
initially completed a 10-cm visual analog scale.  Next, they completed two functional 
performance tests and underwent a strength assessment for the hip abductors, hip external 
rotators, and knee extensors. Surface electromyography (EMG) electrodes and reflective 
markers were donned in order to collect EMG and kinematic data during a stair-stepping 
task.  For this purpose, subjects ascended and descended two 20-cm high steps at a 
standardized rate.  Seven PFPS and seven control subjects were retested five to seven 
days later to establish measurement reliability. 
  

A repeated measures analysis of variance was used to determine group 
differences.  Correlation coefficients were calculated to identify associations between 
pain and dependent measures; intraclass correlation coefficients were calculated to 
determine measurement reliability for both control and PFPS subjects.  Results from this 
study showed group differences for functional performance, strength, and EMG 
amplitudes but none for onset timing differences or kinematics.  A strong association was 
found between pain and hip external rotator strength and EMG amplitudes during stair-
stepping.

  



   

Most tests provided reliable measures with repeat testing. PFPS subjects 
demonstrated quadriceps dysfunction but even greater hip weakness that was correlated 
more with pain.  Contemporary rehabilitation has focused on quadriceps strengthening; 
however, results from this study support the importance of the hip. 
 
KEYWORDS: patellofemoral pain syndrome, strength, electromyography, kinematics, 
hip 
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CHAPTER ONE 

The Continuing Problem 

Patellofemoral pain syndrome (PFPS) is a common problem experienced by 

active adults and adolescents (Brody & Thein, 1998; Thomee, Augustsson, & Karlsson, 

1999); however, its etiology has remained vague and controversial (Powers, 1998; 

Witvrouw, Lysens, Bellemans, & Peers, 2000; Witvrouw et al., 2005).  Most often, 

patients complain of diffuse peripatellar and retropatellar pain that may limit their ability 

to perform activities of daily living that require loading on a flexed knee.  Such activities 

include ascending and descending stairs, squatting, and sitting for prolonged periods of 

time (Doucette & Goble, 1992; Fulkerson, 2002; Heinjes et al., 2004; Witvrouw, Lysens, 

Bellemans, & Peers, 2000). 

Researchers have described PFPS as abnormal lateral patella movement on the 

femur during non-weight bearing knee extension (Doucette & Goble, 1992; Fulkerson, 

2002); however, PFPS patients typically report impairments during weight bearing 

activities, like squatting and stair climbing.  Therefore, differences in patellar tracking 

may exist during weight bearing and non-weight bearing activities (Powers, 2000). 

Powers et al. (2003) examined movement of the femur and patella during weight 

bearing and non-weight bearing knee extension using kinematic magnetic resonance 

imaging.  They reported lateral patella movement on the femur during non-weight 

bearing exercise.  Moreover, they found increased femoral internal rotation under a 

relatively stable patella during the weight bearing activity.  This finding demonstrated 

that excessive hip internal rotation, not patella movement, caused relative lateral tracking.  

These results are important clinically because they implicated the hip in patellofemoral 

joint pathology.   

Recently, researchers have examined hip neuromuscular influences on the knee.  

Brindle et al. (2003) reported a greater delay in gluteus medius (GM) activation relative 

to the vastus medialis oblique (VMO) during stair climbing in subjects diagnosed with 

PFPS.  Nyland et al. (2004) compared GM and vastus medialis (VM) activation 

amplitude ratios in varying positions of femoral internal rotation and found lower 

amplitudes in subjects exhibiting increased femoral internal rotation.  Other researchers 

have reported significant hip weakness in subjects diagnosed with PFPS (Ireland, 
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Willson, Ballantyne, & Davis, 2003; Niemuth, Johnson, Myers, & Thieman, 2005).  

Although these studies provide preliminary evidence regarding hip influences, additional 

investigations that simultaneously examine hip and knee function in PFPS subjects are 

needed. 

Clinicians use various evaluation tools to identify impairments related to strength, 

muscle activation, and movement.  Examples of measurement tools have included 

functional performance tests (Loudon, Wiesner, Goist-Foley, Asjes, & Loudon, 2002), 

strength (Andrews, Thomas, & Bohannon, 1996; Bohannon, 1997), surface 

electromyography (EMG) (Cowan, Bennell, Hodges, Crossley, & McConnell, 2001), and 

motion analysis (Brechter & Powers, 2002).  A review of the literature failed to identify 

any studies that specifically provided kinematic and EMG measurement reliability for 

PFPS subjects.  Only one has examined measurement reliability for PFPS-specific 

functional performance tests (Loudon et al., 2002).  Since clinicians assess impairments 

using these tools, identification of those capable of differentiating subjects diagnosed 

with and without PFPS may enhance the evaluation process. 

Purpose 

The primary purpose of this research project was to investigate the role of the hip 

on PFPS.  A secondary purpose was to determine measurement reliability for tools 

clinicians commonly use when evaluating people diagnosed with PFPS.  This study was 

designed to address the following questions:   

1. Do functional performance tests, hand-held dynamometry, surface EMG, and 

motion analysis provide reliable measures of function for people diagnosed with 

PFPS? 

2. Can functional performance tests, hand-held dynamometry, surface EMG, and 

motion analysis discriminate between people diagnosed with and without PFPS? 

3. Do people diagnosed with PFPS demonstrate excessive hip weakness compared to 

age-matched controls and, if so, do strength differences result in altered muscle 

activation patterns? 

4. Do people diagnosed with PFPS demonstrate excessive femoral internal rotation, 

femoral adduction, and knee valgus during the descent phase of stair stepping? 
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Overview 

Information specific to each question has been synthesized into the following 

sequence.  Chapter 2 summarizes issues related to measurement reliability.  Chapter 3 

examines the interrelationships between functional performance tests, muscle strength, 

and EMG activity during the descent phase of stair stepping.  Chapter 4 compares hip and 

knee kinematics between people diagnosed with and without PFPS.  Chapter 5 

summarizes findings from all aspects of the study to determine which parameters may be 

more indicative of a person having PFPS.  

Operational Definitions 

 For purposes of this study, the following definitions were used: 

Patellofemoral Pain Syndrome 

 PFPS was defined as retropatellar or peripatellar pain.  It excluded pathology 

resulting from osteoarthritis, direct trauma, soft tissue injury, or specific neurological 

dysfunction. 

Subject Inclusion Criteria 

Female subjects diagnosed with PFPS participated in this study if they 

complained of: 1) anterior knee pain during the descent phase of stair stepping and 2) 

pain during two of the following provocative activities: a) stair ascent, b) squatting, c) 

kneeling, or d) excessive sitting.  They also rated usual knee pain over the previous week 

at a minimum of 3 on a 10-cm visual analog scale (Cowan, Bennell, & Hodges, 2000).  

The most affected lower extremity was tested for PFPS subjects (Powers, Landel, & 

Perry, 1996).  

Control subjects participated in this study if they had 1) no history or diagnosis of 

knee pathology, 2) no pain with any of the above-named provocative activities, and 3) no 

history of hip pathology.  The right lower extremity was tested for control subjects 

(Mohr, Kvitne, Pink, Fideler, & Perry, 2003; Owings & Grabiner, 2002).   

Subject Exclusion Criteria 

Female subjects were excluded from the study if they had 1) previous knee 

surgery or significant injury, 2) traumatic patellar dislocation, 3) any neurologic 

involvement that would affect gait, or 4) previous hip surgery or significant injury 

(Brindle et al., 2003; Powers et al., 1996).  Inclusion and exclusion criteria were 
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consistent with other published literature (Brechter & Powers, 2002; Brindle et al., 2003; 

Cowan et al., 2001; Crossley, Bennell, Green, Cowan, & McConnell, 2002; Ireland et al., 

2003; Powers, Chen, Reischl, & Perry, 2002; Powers et al., 2003). 

Functional Performance Tests 

 Functional performance tests were used to evaluate overall lower limb function in 

subjects diagnosed with PFPS (Risberg & Ekeland, 1994).  These tests were conducted 

under controlled clinical conditions to assess the lower extremity during specific 

activities that typically elicit pain and dysfunction in people diagnosed with PFPS. 

Strength 

 Strength was defined as the maximum isometric torque that subjects generated for 

specific hip and knee muscles during manual muscle testing.  Isometric torque 

represented the force recorded on a hand-held dynamometer (HHD) multiplied by the 

perpendicular distance of the HHD from the specific joint center of rotation. 

Stair-Stepping Task 

 The stair-stepping task required subjects to walk across a level platform, ascend 

and descend 2 steps (using a reciprocal pattern), and continue walking across the level 

platform.  Subjects typically took 3 strides prior to and immediately following stair 

stepping.  The stairs consisted of steps having a 20-cm height, 30-cm tread depth, and 47-

cm width (See Figure 1.1).  

Stair Descent 

Hip and knee EMG activity and kinematic data were collected during stair 

descent.  Stair descent began at the point of initial foot contact as the subject descended 

the third step and ended at the point of ipsilateral foot contact onto the floor (Yu, 

Kienbacher, Growney, Johnson, & An, 1997).  Clinically, PFPS patients typically 

complain of pain and dysfunction during the stance phase of stair descent.  Mascal et al. 

(2003) also demonstrated a possible relationship between faulty hip motion and PFPS 

when observing subjects during the stance phase of stair descent.  Therefore, this study 

only examined EMG activity and kinematics during the stance phase. 

To identify differences in EMG activity throughout the stance phase of stair 

descent, stance was subdivided into the following intervals: 1) loading response, 2) single 

leg stance, and 3) preswing (Mohr et al., 2003).  Loading response began at the initial 
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point where any part of the ipsilateral foot contacted the step and ended as subjects lifted 

the contralateral foot off the previous step (e.g., initial double leg stance).  Single leg 

stance occurred when the test extremity supported the entire body mass during stair 

descent.  Preswing began when any part of the contralateral foot contacted the ground 

and ended as subjects lifted the test extremity’s foot off the stair (e.g., terminal double leg 

stance).  Figures 1.2 through 1.4 illustrate each interval.  

Based on temporal data collected from the subjects during stair descent, the cycle 

for stair descent was divided into the following intervals: 1) loading response = 0% to 7% 

of stair descent, 2) single leg stance = 8% to 46% of stair descent, and 3) preswing = 47% 

to 58% of stair descent.  The remaining 42% of stair descent represented the swing phase.  

See Appendix G for a more detailed explanation. 

Assumptions 

 The following assumptions were made for this study: 

1. It was assumed that all subjects provided their best effort during strength and 

functional performance testing. 

2. It was assumed that PFPS subjects provided an accurate history concerning insidious 

onset of patellofemoral joint pain and no history of any other lower extremity injury. 

3. It was assumed that PFPS subjects had no other knee pathology if not found on 

clinical examination. 

4. It was assumed that all control subjects accurately reported no previous history of 

lower extremity injury. 

5. It was assumed that control subjects had no knee pathology if not found on clinical 

examination. 

6. It was assumed that no subjects had osteoarthritic changes to the patellofemoral joint. 
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Limitations 

 This study was limited by the following factors: 

1. A sample of convenience was utilized for this study. 

2. Some subjects might have had previous exposure to the type of skills used for 

functional performance testing. 

3. Most subjects in both groups represented college-aged students from the University 

of Kentucky. 

4. Some subjects might have practiced the type of skills used for testing between initial 

and repeat testing. 

5. The primary investigator was not blinded to group assignment during data collection 

or data analysis.  

 

Figure 1.1  

Stairs Used for the Stair-Stepping Task. 
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Figure 1.2 

Loading Response Interval of Stair Descent.  Loading response begins at initial foot 

contact with the third step and ends when the contralateral foot is lifted off the second 

step (e.g., initial double leg stance). 
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Figure 1.3 

Single Leg Stance Interval of Stair Descent.  Single leg stance begins when the 

contralateral foot is lifted off the second step and ends when the contralateral foot touches 

the floor.  
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Figure 1.4 

Preswing Interval of Stair Descent.  Preswing begins when the contralateral foot contacts 

the ground and ends as test extremity’s foot is lifted off the third step (e.g., terminal 

double leg stance).     
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CHAPTER TWO 

Reliability of Evaluation Tools for Assessing Patellofemoral Pain Syndrome 

PFPS has remained one of the most commonly seen and clinically challenging 

pathologies (Wilk, Davies, Mangine, & Malone, 1998; Witvrouw, Lysens, Bellemans, & 

Peers, 2000).  Dye (1997) has described PFPS as the “Black Hole of Orthopaedics” 

because of differences in reported etiology.  As such, investigators have examined knee 

strength (Natri, Kannus, & Jarvinen, 1998; Thomee, Renstrom, Karlsson, & Grimby, 

1995; Witvrouw, Lysens, Bellemans, Peers, & Vanderstraeten, 2000), quadriceps 

activation patterns (Cowan, Bennell, Crossley, Hodges, & McConnell, 2002; Cowan, 

Bennell, & Hodges, 2002; Cowan et al., 2001; Owings & Grabiner, 2002; Voight & 

Wieder, 1991; Witvrouw et al., 2003), and knee kinematics (Brechter & Powers, 2002; 

Crossley, Cowan, Bennell, & McConnell, 2004; Nadeau, Gravel, Hebert, Arsenault, & 

Lepage, 1997; Powers, Heino, Rao, & Perry, 1999) in an attempt to better understand 

PFPS etiology. 

Recently, there has been a focus on the importance of the hip musculature on knee 

function.  Researchers have found an association between hip weakness (Ireland et al., 

2003; Niemuth et al., 2005) and delayed GM activation relative to that of the VM and VL  

in subjects diagnosed with PFPS (Brindle et al., 2003).  Furthermore, preliminary 

research has shown that people diagnosed with knee pain respond favorably to 

rehabilitation programs emphasizing hip strength (Fredericson et al., 2000; Mascal et al., 

2003; Pettitt & Dolski, 2000).  Results from these studies suggest that the hip can 

positively influence knee function; however, additional investigations are needed to 

firmly establish this relationship. 

Many measurement tools are available to assess hip and knee function.  Clinicians 

routinely assess strength using HHD and functional performance tests (FPT).  

Researchers have employed surface EMG to determine muscle activation amplitudes and 

temporal characteristics and motion analysis to calculate lower extremity joint angles 

during dynamic activities.  Together, these measurement tools can help identify 

interactions between the hip and knee that may result in patellofemoral pathology. 

An important concept related to measurement is reliability.  Portney and Watkins 

(2000a) have defined reliability as “the extent to which a measurement is consistent and 
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free from error.”  It means that observed changes with repeat testing occur from true 

differences in the parameter being assessed.  Measurement reliability is important 

because it provides evidence that the evaluation tool can detect true differences in subject 

behavior, if in fact they exist.  For example, improved quadriceps strength should reflect 

an increase in torque generated rather than a different application of the measurement 

tool.  

Many investigators have examined the reliability of HHD; yet few have 

determined the reliability of FPT, surface EMG, and motion analysis.  Furthermore, most 

reliability studies have been conducted using a normal subject population  With the 

exception of FPT (Loudon et al., 2002), none have determined the reliability of these 

measurement tools specific to subjects diagnosed with a pathology, like PFPS.  Although 

it would be expected that these tools would provide reliable measures for PFPS subjects, 

data are needed to support this premise. 

Review of the Related Literature 

Functional Performance Tests 

Rivera (1994) states that function depends on the optimal integration of all joints 

and muscles involved in a particular action.  It cannot be adequately measured, trained, or 

predicted from the isolation of a particular muscle group while performing an abnormal 

movement pattern.  Researchers have designed FPT that simulate the stresses about the 

knee encountered during functional or athletic activities (Lephart et al., 1992).  FPT are 

important in assessing lower extremity function because they encompass many variables 

such as pain, neuromuscular coordination, muscle strength, and joint stability (Barber, 

Noyes, Mangine, & DeMaio, 1992).   

Patients diagnosed with PFPS typically complain of pain during activities that 

require loading on a flexed knee.  Loudon et al. (2002) first described the following FPT 

designed to simulate demands placed on the patellofemoral joint during functional 

activities: 1) anteromedial lunge, 2) step-down, 3) single-leg press, 4) bilateral squat, and 

5) balance and reach.  They determined intrarater reliability by testing PFPS and control 

subjects on 2 occasions, 48 to 72 hours apart, and calculating intraclass correlation 

coefficients (ICC [3,1]) and standard errors of measurement (SEM).  They also calculated 

Pearson correlation coefficients to determine associations between FPT values and pain.  
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Results from this study showed that the step-down test was the most reliable 

measurement (ICC = .94; SEM = .53) and was moderately correlated to pain (r = .57).  

The anteromedial lunge had a strong correlation with pain (r = .73) and good reliability 

(ICC = .82; SEM = .38).  Although the remaining tests provided reliable measures, none 

had greater association with pain than the step-down and anteromedial lunge tests.  Based 

on these results, this study used the step-down and anteromedial lunge FPT because of 

their acceptable intrarater reliability and higher correlations with pain. 

Strength 

Strength measurements are an important part of assessment because they provide 

baseline data and information concerning improvement and intervention efficacy 

(Wikholm & Bohannon, 1991).  Historically, clinicians have assessed strength using 

manual muscle testing (MMT), a system based on a 5-point grading scale.  Although 

MMT has been reported to be a reliable tool (Wadsworth, Krishnan, Sear, Harrold, & 

Nielsen, 1987), it has inherent flaws.  Wikholm and Bohannon (1991) have shown that 

MMT may depend on the examiner’s ability to exert sufficient strength to counteract the 

muscle action being tested.  Another limitation of MMT is the inability to detect subtle 

changes in strength (Wadsworth et al., 1987).   

HHD is an alternative method for measuring strength.  HHD may be superior to 

MMT because it enables an objective manner for estimating strength (force applied to the 

HHD times the external moment arm) and is more sensitive to subtle changes.  Although 

HHD may improve measurement precision, it has potential flaws that deserve 

consideration.   

First, like MMT, the examiner must ensure proper stabilization of the limb 

segments to avoid substitution from other muscle groups.  Second, the HHD should be 

applied securely to the test limb.  Agre et al. (1987) have shown that inadequate 

application can affect a subject’s ability to exert a maximum contraction.  Third, exertion 

of a maximum contraction depends on the amount of examiner resistive force applied.  

This means that a smaller-sized examiner may not have sufficient strength to securely 

hold the HHD against resistance applied from a larger subject (Wikholm & Bohannon, 

1991).   
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To alleviate a bias from examiner size or strength, Kramer et al. (1991) 

investigated the efficacy of using a resistive belt to collect HHD measures.  They 

hypothesized that subjects would exert a more consistent force against an immoveable 

strap.  To test this hypothesis, the test-retest reliability of hip abductor isometric strength 

was determined under 2 different test conditions using a group of younger and older 

females.  The first condition required that subjects generate force against a HHD held by 

the examiner.  The second condition was a belt-resisted method, where each subject 

exerted force against a HHD secured to the lateral aspect of the thigh by an immovable 

strap.  They tested subjects on 2 separate occasions; calculated ICCs ranged from .84 to 

.98.  Lower ICCs were found in the younger subjects under the examiner-resisted 

condition.  Higher ICCs were reported for the older subjects under both conditions and 

younger subjects under the belt-resisted condition.   

Because younger subjects were expected to be stronger than older subjects, their 

efforts could have depended on the resistance provided by the examiner.  Therefore, 

differences in examiner resistance applied may have accounted for the younger subjects’ 

greater variability.  Alternatively, the belt-resisted method provided a strong, consistent 

resistance.  All subjects generated greater force using the belt-resisted method, regardless 

of age, and the researchers believed that patients “had a greater tendency to trust their 

own resistance, over which they had control, and were less hesitant to perform strong 

contractions in this manner.” 

Agre et al. (1987) found similar results as the Kramer study.  In this study, they 

examined intrarater and interrater reliability of HHD for the upper and lower extremities.  

Four subjects performed maximal contractions three to four times for each muscle group 

being tested.  Pearson correlation coefficients for the upper extremities ranged from .85 

to .99; those for the lower extremity ranged from -.20 to .96.  The researchers attributed 

differences in reliability coefficients to intratrial variability.  For example, during upper 

extremity testing, the examiner could easily stabilize the HHD.  They could also provide 

greater resistance to the muscle action, which resulted in less variability (5.1% to 8.3%) 

between individual trials.  However, examiners had greater difficulty stabilizing the HHD 

and resisting muscle action for many of the lower extremity muscles.  This resulted in 

intratrial variability that was much higher than upper extremity muscles (11.3% to 

  13



   

17.8%).  Agre et al. concluded that intratrial variability of 10% or less should improve 

HHD reliability. 

More recent studies have found good reliability for measuring lower extremity 

strength.  Nadler et al. (2000) examined intrarater reliability of the hip abductors and 

extensors using a HHD that had a specially designed anchoring station (to improve HHD 

stability and applied resistance).  ICCs for this study ranged from .94 to .98 and 

coefficients of variation between trials did not exceed 8.06%.  Click Fenter, Bellew, Pitts, 

& Kay (2003) conducted a similar study and reported similar ICCs.  Together, these 

studies demonstrate that reliable measures could be obtained for lower extremity HHD 

with the use of adequate stabilization and resistance.  

A limitation of these studies has been unreported data for other lower extremity 

muscles.  It has been hypothesized that hip external rotation strength is associated with 

PFPS (Ireland et al., 2003); however, no studies have assessed the reliability of these 

measures.  With respect to the quadriceps, researchers have only established reliability 

with subjects positioned in 90 degrees of knee flexion.  However, many researchers 

(Mohr et al., 2003; Powers, 2000; Powers, Perry, Hsu, & Hislop, 1997; Selseth, Dayton, 

Cordova, Ingersoll, & Merrick, 2000) have tested the quadriceps in 60 degrees of flexion 

because it is thought that subjects can generate a stronger contraction in this position.  No 

studies have determined quadriceps strength reliability with the knee positioned in 60 

degrees of flexion using HHD. 

In summary, HHD can provide reliable measures of lower extremity strength 

assuming that testing is conducted with adequate HHD stabilization and applied 

resistance.  The current review of the literature has recommended the average of 3 trials 

having coefficients of variation less than 10%.   

Surface Electromyography 

It has been theorized that delayed onset of the VM relative to the VL can cause 

lateral tracking of the patella and contribute to PFPS.  Although researchers (Cowan et 

al., 2001; Owings & Grabiner, 2002; Powers et al., 1996; Sheehy, Burdett, Irrgang, & 

Van Swearingen, 1998; Voight & Wieder, 1991; Witvrouw et al., 2003) have examined 

VM to VL onsets, only two have examined the reliability of such measures.  Gilleard, 

McConnell, & Parsons (1998) determined the test-retest reliability of relative VMO and 
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VL activity onset using 3 asymptomatic subjects during stair stepping.  In this study, they 

reported an ICC [3,1] of .78.  It should be noted that EMG signals were full-wave 

rectified and low pass filtered using a 3 Hz cutoff frequency.  Hodges and Bui (1996) 

have stated that excessive signal smoothing can hinder proper determination of onsets 

and suggest that applying a low pass filter of 50 Hz can result in accurate and consistent 

determinations of EMG onsets.  Therefore, the manner in which Gilleard et al. processed 

their data might have affected proper identification of muscle onsets.  

Cowan et al. (2000) tested 10 asymptomatic subjects on 2 occasions to determine 

test-retest reliability of detecting onset activity of the VMO and VL.  Subjects in this 

study ascended and descended 2 steps (20-cm in height) at a rate of 96 beats per minute, a 

rate used previously by Gilleard et al. (1998).  They chose this rate to standardize 

performance for purposes of increasing repeatability.  EMG data were preamplified at a 

gain of 1000, sampled at 1000 Hz, and band pass filtered between 20 and 500 Hz.  Raw 

EMG signals were then full wave rectified and low pass filtered at 50 Hz. 

Cowan et al. (2000) used a computer algorithm, in combination with visual 

inspection, to identify EMG onsets since an algorithm was thought to increase the 

objectivity of analysis (Hodges & Bui, 1996).  Specifically, they defined an onset of 

muscle activity as the point in which the signal deviated by more than 3 standard 

deviations, for a minimum of 25 ms, over the baseline level taken 200 ms before the trial 

began.  All onsets were also visually confirmed since movement artifact could have 

caused onset activity.  They quantified onset differences by subtracting the VMO onset 

from the VL onset.  A negative difference meant a delay in VMO activation relative to 

the VL where as a positive difference signified VMO preactivation. 

The researchers reported ICCs of .91 and .96 for the concentric and eccentric 

phases of stair stepping, respectively.  These values suggest that the stair stepping test 

and signal processing parameters are reliable measures for determining muscle activity 

onset of the VMO and VL.  A limitation of the study was that it only used asymptomatic 

subjects.  If quadriceps onset timing differences are important parameters to evaluate, 

then additional studies are needed to determine if such differences are reliable for 

subjects diagnosed with PFPS.  For purposes of the current study, the methods described 

by Cowan et al. (2000) were duplicated to enable comparison among studies. 
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Researchers have also examined EMG amplitudes during non-weight bearing 

knee extension (Owings & Grabiner, 2002; Powers, 2000), ambulation (Powers et al., 

1996), and stair stepping (Mohr et al., 2003; Sheehy et al., 1998) between subjects 

diagnosed with and without PFPS.  Some have reported decreased quadriceps amplitudes 

in subjects diagnosed with PFPS where as others have found greater activation.  

Contrasting results support the need for additional studies to better understand muscle 

activity in PFPS patients.  A limitation of these studies has been the varied methods for 

collecting and analyzing EMG activity.  Therefore, the determination of a single, reliable 

method for investigating EMG amplitudes would enhance the current body of knowledge. 

Motion Analysis 

People diagnosed with PFPS typically complain of pain when descending stairs.  

Stair descent has represented an important functional activity that may be a more 

informative clinical evaluation tool than level walking, especially for people diagnosed 

with PFPS (Yu et al., 1997).  In order to use kinematic data during stair-stepping as an 

assessment tool, its reproducibility must be established.   

Few researchers have examined lower extremity kinematics during stair-stepping 

and the reliability of these measures.  Andriacchi et al. (1980) initially investigated 

sagittal plane lower extremity kinematics but did not assess reliability.  McFadyen and 

Winter (1988) examined the intrasubject and intersubject variability of sagittal plane 

motion; however, their study only included 3 subjects.  Sagittal plane of motion can 

provide important information; however, the transverse and frontal planes of motion 

might provide more clinically relevant data (Powers, 2003).   

Yu et al. (1997) are the only researchers who have determined intrasubject 

reproducibility of frontal and transverse plane lower extremity kinematics in 

asymptomatic subjects during stair-stepping.  They collected video data using Expert 

Vision (Motion Analysis Corporation, Santa Rosa, CA) and analyzed data using 

OrthoTrak software (Motion Analysis Corporation).  They normalized all kinematic data 

to 100% of the gait cycle; defined as the time from foot contact on a step until the next 

foot contact of the same foot.  For testing purposes, subjects performed 3 trials of the 

task.  Coefficients of multiple correlations for all joint angles were calculated to 

determine reliability.  Although flexion-extension angles were more reproducible for all 
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lower extremity joints, those for hip and knee adduction-abduction and hip internal-

external rotation were acceptable as evidenced by correlations of .85.  These results 

inferred that the researchers obtained reliable measures of kinematics during stair-

stepping. 

Although Yu et al. (1997) provided preliminary results regarding motion analysis 

reliability during stair-stepping, additional studies are indicated.  First, this study only 

examined intrasubject reproducibility during a single testing session.  If clinicians use 

motion analysis as an evaluation tool throughout a rehabilitation period, then they need 

information regarding between-day reliability.  When studying normal gait, Kadaba and 

colleagues (Kadaba, Ramakrishnan, & Wootten, 1990; Kadaba et al., 1989) found 

variability resulting from day-to-day marker reapplication.  Because of this potential bias, 

further studies should determine day-to-day reliability specific to stair-stepping. 

Second, all previous studies have only included normal subjects.  It is not known 

if subjects diagnosed with PFPS will utilize similar, or consistent, movement patterns of 

the hip and knee during stair-stepping.  Performance may be highly variable when 

assessing a symptomatic subject group, which may limit the clinical utility (ability to 

identify true changes in behavior) of motion analysis.  Therefore, this study will examine 

the reliability of motion analysis in a group of subjects diagnosed with PFPS.     

Purpose and Research Hypothesis 

The purpose of this study was to compare the test-retest reliability of FPT, HHD, 

surface EMG, and motion analysis for subjects diagnosed with and without PFPS.  It was 

hypothesized that all tests would provide reliable measures as evidenced by ICCs 

exceeding .75 (Portney & Watkins, 2000a). 

Methodology 

Subjects 

Seven females diagnosed with PFPS (age = 22.9 + 2.7 years, height = 1.69 + .1 m, 

body weight = 588.6 + 54.9 N, pain = 4.8 + 2.0 cm, duration of symptoms = 14.4 + 12.8 

months) and 7 asymptomatic females (age = 24.0 + 2.9 years, height = 1.66 + .1 m, body 

weight = 588.6 + 103.0 N) participated in this study.  All subjects met the inclusion 

criteria, as summarized in Chapter 1, and signed an informed consent approved by the 

University of Kentucky Institutional Review Board prior to participation. 
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Procedures 

First, subjects completed a 10-cm visual analog scale reflecting usual pain during 

the past week (Crossley, Bennell, Cowan, & Green, 2004).  Next, they rode a stationary 

bicycle ergometer for 3 minutes in a pain-free range of motion at a submaximal speed 

and practiced each functional performance test 3 to 5 times (Loudon et al., 2002).  

Subjects then performed the step-down and anteromedial functional performance tests, as 

described in Appendix E, in a random order to reduce ordering bias.  The number of 

repetitions performed for each lower extremity within a 30-second period was 

documented. 

Next, the distances from the greater trochanter to the lateral femoral condyle and 

the lateral knee joint line to the lateral malleolus were measured.  These measurements 

were conducted to determine the perpendicular distance from the HHD to the hip and 

knee joints, respectively.  This information was used to report all strength values as 

measures of torque in units of newton*meters (N*m).   

Subjects’ skin was prepared for EMG instrumentation by shaving, abrading, and 

cleansing it with isopropyl alcohol prior to application of surface electrodes.  Bi-polar 

Ag-AgCl surface electrodes (Medicotest, Rolling Meadows, IL), measuring 5 mm in 

diameter with an interelectrode distance of approximately 20 mm, were placed in parallel 

arrangement over the muscle bellies of the GM, VM, and VL.  The GM electrode was 

placed 1/3rd the distance between the iliac crest and greater trochanter (Cram & Kasman, 

1998).  The VM electrode was placed approximately 4 cm superior to and 3 cm medial to 

the superomedial border of the patella and oriented 55° to the vertical (Cowan et al., 

2000).  The VL electrode was placed 5 to 7 cm superior to and 6 to 8 cm lateral to the 

superolateral border of the patella and oriented 15° to the vertical (Cram & Kasman, 

1998).  Electrodes were further secured to the skin with an adhesive tape to prevent 

slippage during testing.  Electrode placement sites were recorded on a data collection 

sheet so that they could be repositioned correctly during repeat testing.  A ground 

electrode was placed on the ipsilateral clavicle.  Electrode placements were visually 

confirmed on an oscilloscope using manual muscle testing techniques.  A 3-second 

standing “quiet” file was also recorded to exclude ambient noise.  
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Following EMG placement, strength measures were taken for the hip abductors, 

hip external rotators, and knee extensors.  Subjects were positioned as described in 

Appendix E.  For testing, subjects produced a maximal isometric contraction using the 

“make” test (Andrews et al., 1996; Bohannon, 1997) to the beat of a metronome set at 60 

beats per minute.  They generated maximum force over a 2-second period and maintained 

this force for an additional 5 seconds to the beat of the metronome.  Subjects performed 

one practice (Andrews et al., 1996; Bohannon, 1997) and 3 test trials, with a 30-second 

rest period between trials.  A coefficient of variation was calculated and an additional 

trial was taken, if necessary, to ensure that subjects had 3 measures with variability less 

than 10% (Agre et al., 1987).  The order of muscle testing was counterbalanced to 

account for any potential bias.  All measures were recorded in newtons (N) of force.  

EMG activity was simultaneously collected for the GM, VM, and VL during strength 

testing to determine a maximum voluntary isometric contraction (MVIC) for each 

muscle. 

  Next, retroreflective markers, with a diameter of 20 mm, were placed on subjects 

using a standard Cleveland Clinic marker setup.  After collecting an anatomic calibration 

file, subjects were shown the stair stepping task.  They were instructed to ascend and 

descend two 20-cm high steps, ensuring that the test extremity lifted and lowered the 

body on the first and third steps, respectively.  Subjects also took a minimum of 3 strides 

prior to and immediately following stair stepping in order to maintain a continuous 

movement pattern.  Because movement velocity may influence EMG activity, subjects 

performed the task at a standardized rate of 96 beats per minute (Cowan et al., 2000; 

Gilleard et al., 1998).  Subjects performed 5 practice trials prior to data collection.   

Subjects performed 10 test trials.  During this time, EMG data were sampled at 

960 Hz and recorded synchronously with the video data, which were sampled at 60 Hz.  

Data from the last 5 trials were analyzed because of potential learning effects that might 

have been associated with earlier trials, even though subjects had performed 5 practice 

trials.   Refer to Appendix C for unit specifications of the EMG and motion analysis 

equipment used in this study. 
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All subjects returned to the laboratory within 5 to 7 days for repeat testing.  They 

performed all tests in the same manner described above.  Subjects completed another 

visual analog scale because differences in pain may affect functional test performance.  

Loudon et al. (2002) recommended that repeat visual analog scale scores be + 0.5 cm of 

the original score to prevent confounding of the pain variable.  All subjects participated 

in the second part of this study. 

Data Processing 

Functional performance tests.  For each FPT, the total number of repetitions 

completed by subjects on the involved (PFPS) or the right lower extremity (controls) was 

used for statistical analysis. 

Strength.  Strength was expressed in units of torque by multiplying the force 

recorded on the HHD by the perpendicular distance from the HHD to the joint center of 

rotation.  Average torque was then normalized to subject height and weight (% [body 

weight (N) * height (m)] = torque * {100/[body weight (N) * subject height (m)]}) to 

allow for comparison among subjects (Fredericson et al., 2000).  These values were used 

for statistical analysis. 

EMG data.  Raw EMG signals were processed in the manner described in 

Appendix D.  To determine muscle activation amplitudes, EMG data from the last 5 trials 

were root mean square (RMS) smoothed using a 55 ms time constant and normalized to 

100% of the stair descent cycle.  They were then ensemble averaged and expressed as a 

% MVIC.  Datapac software (Run Technologies, Mission Viejo, CA) then calculated the 

average % MVIC EMG amplitude for each muscle during the 1) loading response, 2) 

single leg stance, and 3) preswing intervals of stair descent (see Appendix G).  The 

resulting values were used for statistical analysis. 

Muscle activation onsets were determined at the beginning of stair descent. After 

processing EMG signals and identifying muscle onsets (See Appendix D), Datapac 

software calculated timing differences.  The program subtracted the GM onset from the 

VM onset and VL onset, respectively, to quantify timing differences between the hip and 

knee musculature.  A negative difference signified a delay in GM activation relative to 

the VM and VL where as a positive difference meant GM preactivation.  The software 

also subtracted the VM onset from the VL onset to quantify quadriceps timing 
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differences.  A negative difference meant a delay in VM activation relative to the VL 

where as a positive difference signified VM preactivation.  The average from the last 5 

trials was later used for statistical analysis.   

Kinematics.  Video data were processed in the manner described in Appendix D.  

Hip transverse plane, hip frontal plane, and knee frontal plane angles for individual trials 

were calculated by OrthoTrak 5.0 software (Motion Analysis Corporation) using methods 

described by Grood and Suntay (1983).  Table 2.1 summarizes the conventions used to 

describe joint angles for the current study.  The last 5 individual trials were then 

normalized to 100% of the gait cycle and ensemble averaged.  Average joint angles from 

the normalized data during the entire stance phase of stair descent were used for 

statistical analysis. 

Statistical Analysis 

ICCs (Shrout & Fleiss, 1979) were used to determine between day reliability; 

standard errors of measurement (SEM) were used to determine measurement precision 

(Denegar & Ball, 1993) for all dependent measures.  ICC [3, 1] was calculated for FPT 

since these measures represented a single value.  ICC [3, 3] was calculated for all 

strength measures since they represented the average of 3 trials; ICC [3, 5] was calculated 

for all EMG and kinematic values since they represented the average of 5 trials.  

Statistical analyses were performed using SPSS version 12.0 (SPSS, Inc., Chicago, IL).  

Level of significance was established at the 0.05 level. 

Results 

Tables 2.2 through 2.6 summarize between day ICCs and SEMs for PFPS subjects 

and controls for FPT, strength, EMG activation amplitudes, EMG timing differences, and 

kinematics.  Tables 2.7 through 2.12 summarize means and standard deviations for all 

dependent measures for testing days 1 and 2.  With the exception of the anteromedial 

lunge test for PFPS subjects, ICC [3, 1] for FPT measures exceeded .76.  ICC [3, 3] for 

strength measures exceeded .85 for control subjects.  PFPS had slightly lower ICCs for 

the hip muscles; however, they had excellent reproducibility for the knee extensors (ICC 

[3, 3] = .97).  ICC [3, 5] for average EMG amplitudes exceeded .71 for all intervals of 

stair descent for controls, except for GM single leg stance, GM preswing, and VL 

preswing.  PFPS subjects also had similar ICCs as controls except for VM loading 
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response, VM single leg stance, VM preswing, and VL preswing.  All groups had 

acceptable reliability for the EMG timing differences.  ICC [3,5] for average kinematic 

data during the stance phase of stair descent for the control groups exceeded .70; 

however, PFPS subjects demonstrated acceptable reliability only for hip abduction and 

knee valgus angles. 

Discussion 

Measurement reliability is critical for data analysis.  It insures that changes in a 

specific measure represent a true change in performance and not one attributable to 

chance alone (Loudon et al., 2002). Overall, results demonstrated that the evaluation tools 

used in this study provided reliable measures.  Most ICCs exceeded .75, an acceptable 

level of reliability (Portney & Watkins, 2000a).  The control group generally had higher 

ICCs than subjects with PFPS. 

  Functional Performance Tests 

 The step-down test provided similar measures of reliability for both groups (ICC 

[3, 1] = .76 and .78 for control and PFPS subjects, respectively).  Although these 

coefficients were acceptable, they were much lower than the .94 coefficient reported by 

Loudon et al. (2002). 

 Results from the current study suggested less reproducibility of the step-down 

test.  An identical step height was used in order to compare results to the Loudon study; 

however, some subjects appeared to have greater difficulty with this task.  Difficulty 

could have resulted from variations in heel cord flexibility because adequate ankle 

dorsiflexion was necessary to perform this task.  Therefore, greater tightness on a 

particular day could have adversely affected performance.  Because heel cord flexibility 

was not measured, this influence could not be answered in the current study.  Future 

investigators should employ a procedure to allow adequate heel cord stretching prior to 

testing. 
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Results for the anteromedial lunge test also differed from Loudon et al (2002).  

Their ICC [3, 1] was .82 whereas the current study ICCs were .89 and .33 for controls 

and PFPS subjects, respectively.  For the current study, control subjects completed this 

test more consistently as evidenced by the higher ICC.  However, this test did not provide 

a reliable measure for PFPS subjects as they showed significant improvements in 

performance on the second day of testing (See Table 2.7).  PFPS subjects might have 

anticipated increased discomfort with the lunge activity during initial testing.  However, 

they reported similar pain ratings (a rating + .05 cm of the original score) prior to the 

second day of testing.  Therefore, PFPS subjects might have performed repeat testing 

more aggressively due to a lower pain expectation, which would account for the lower 

ICC calculation.  Based on this finding, caution should be taken when using the 

anteromedial lunge test.   

Strength 

 Strength reliability for control subjects was good to excellent (ICC [3, 5] range 

from .85 to .97) for all muscles tested; however, hip musculature reliability in PFPS 

subjects was lower (ICC [3, 5] = .69 and .63 for the hip abductors and hip external 

rotators, respectively).  For each test, the HHD was positioned and stabilized, and data 

collected, as recommended by previous researchers (Agre et al., 1987; Andrews et al., 

1996; Kramer et al., 1991; Nadler et al., 2000).  With respect to the hip musculature, 

these procedures resulted in much higher ICCs in controls compared to PFPS subjects.  

Although lower for PFPS subjects, the SEM associated with these hip measures was quite 

small.  This finding suggested limited variability between measures (Bolgla & Keskula, 

1997).  Therefore, these methods may still provide reliable measures of hip strength. 

 For the knee extensor test, control subjects had an ICC of .89; PFPS subjects had 

an ICC of .97.  The belt-resisted method was used to facilitate subject’s willingness to 

perform a maximum contraction (Kramer et al., 1991).  Although every effort was made 

to provide the maximum resistance possible, variations could have occurred.  As will be 

explained in Chapter 3, control subjects demonstrated significantly greater knee extensor 

strength than PFPS subjects.  If the belt felt more stable on one day but not the other, then 

it might have affected the effort exerted by control subjects (Wikholm & Bohannon, 
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1991).  Alternatively, resistance applied for PFPS subjects might have been adequate 

enough so that they provided a consistent day-to-day effort. 

Surface EMG 

Muscle activation amplitudes.  Researchers have quantified quadriceps EMG 

amplitudes during rehabilitation exercises (Gryzlo, Patek, Pink, & Perry, 1994; Selseth et 

al., 2000), level ambulation (Powers et al., 1996), and stair-stepping (Gilleard et al., 

1998; Mohr et al., 2003).  However, limited information has existed regarding 

measurement reliability.  Some studies (Winter & Yack, 1987; Yang & Winter, 1984) 

have examined within day intrasubject and intersubject variability of lower extremity 

muscles during normal gait.  Researchers calculated coefficients of variation for isometric 

and dynamic normalization methods and recommended dynamic normalization methods 

because of their lower variability.  However, these studies were conducted to describe 

patterns of normal gait.  The purpose of the current study was to identify EMG amplitude 

differences between groups of subjects.   

Knutson et al. (1994) stated that lower coefficients of variation inferred group 

homogeneity.  Many studies are conducted to determine differences in parameters 

between subjects.  If researchers use tools that have limited variability (low intersubject 

variability), then they may not be able to identify differences between groups.  Knutson et 

al. compared gastrocnemius activation differences in subjects with and without an 

anterior cruciate ligament - deficient knee using a MVIC and 2 dynamic normalization 

methods.  Although dynamic methods had lower intrasubject and intersubject coefficients 

of variation, ICCs using the MVIC method were higher for both groups of subjects.  

These results supported the use of the MVIC method because it successfully 

discriminated between groups. 

The current study normalized data based on a MVIC.  ICCs for control subjects 

implied acceptable reliability for all stance intervals except the GM during single leg 

stance and preswing (ICC = .49 and .47, respectively) and the VL during preswing (ICC 

= .55).  However, these intervals had low standard errors of measurement (SEM).  The 

small SEM indicated high measurement precision and limited variability between 

measures, findings that support the reliability of these measures. 
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ICCs for PFPS subjects varied from controls for the GM and VM.  Surprisingly, 

PFPS subjects had higher ICCs for the GM, which implied consistent activation for both 

testing days.  As will be explained in Chapter 3, the GM can help stabilize knee frontal 

plane motion.  This stabilizing effect might have required more consistent muscle 

activation and resulted in more reproducible measurements.  Regarding VM activation, 

PFPS subjects had less knee extensor strength (See Chapter 3), and weakness could have 

affected their ability to provide a consistent effort.   

Muscle onset timing differences.  Cowan et al. (2000) are the only researchers 

who examined reliability for VM and VL timing differences using parameters identical to 

those in the current study.  They reported ICC [3, 5] equal to .91 and .96 during the 

concentric and eccentric phases of stair stepping in normal subjects.  ICCs for the current 

study (ICC [3, 5] = .89 for eccentric phase) inferred good to excellent reliability but were 

lower than those reported by Cowan et al.  Since generalization of results would depend 

on study replication, additional investigations are needed to conclusively determine 

reliability for these timing differences.   

 The current study was the first to determine this method’s reliability specifically 

for subjects diagnosed with PFPS.  This determination is important because it is unknown 

if these measures would be reproducible in a patient population.  PFPS subjects 

demonstrated less reproducibility (ICC [3, 5] = .70).  Although a higher ICC was 

desirable, this value may still be acceptable due to the inherent variability associated with 

EMG measures. 

 No study has determined the test-retest reliability of GM, VM, and VL timing 

differences.  Although Brindle et al. (2003) highlighted relationships between hip and 

knee muscle timing onsets, they did not establish measurement reliability.  Findings from 

this study revealed acceptable reliability (ICC [3, 5] ranges from .84 to .90), for both 

control and PFPS subjects, providing support for the use of these measures in further 

investigations.        
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Kinematics 

 Control subjects demonstrated acceptable test-retest reliability for all measures 

during the stance phase of stair descent.  Frontal plane reliability was higher than 

transverse plane and consistent with normal gait (Kadaba et al., 1989).  Although PFPS 

subjects had acceptable reliability for hip and knee frontal plane motion, hip transverse 

plane motion revealed moderate reproducibility (ICC = .55).  Yu et al. (1997) stated that 

variance in kinematic data may result from variation in motor performance.  Therefore, 

PFPS subjects might have used different movement patterns during repeat testing, and the 

resulting variability could have accounted for lower ICC values. 

 Another source of between day variability for both groups could have been 

marker misalignment (Kadaba et al., 1990).  Kadaba et al. (1989) showed that marker 

misalignment can introduce a constant offset to some joint angle measurement patterns.  

For normal gait, they found that an offset had a greater affect on transverse and frontal 

planes of motion.  Marker misalignment could have contributed to lower ICCs in the 

current study.  Although every attempt was made to apply markers in a consistent 

manner, variations could have occurred. 

Conclusion and Future Direction 

 Results from this study indicated acceptable reliability for most of the measures 

examined.  These findings have important clinical implications because measurement 

reliability is paramount for evaluating changes in patient impairments throughout the 

rehabilitation process.  The step-down test provided a more reliable measure of functional 

performance compared to the anteromedial lunge test.  HHD proved to be a very reliable 

tool; however, the clinician must ensure proper application and stabilization. 

Surface EMG provided reproducible data for activation amplitudes during loading 

response and single leg stance.  It also demonstrated good reliability for determining 

timing differences.  It should be noted that subjects completed the stair-stepping task at a 

standard rate (96 beats per minute); it is unknown if similar ICCs would be calculated 

using other cadences.  Finally, motion analysis can provide important information 

regarding joint angles but a continuing problem exists when measuring frontal and 

transverse plane motion.  
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The purpose of this dissertation was to identify differences in hip and knee 

functional performance, strength, muscle activation amplitudes, muscle onsets, and 

kinematics between subjects diagnosed with and without PFPS.  Prior to investigating 

these relationships, it was imperative to determine measurement reliability.  Chapter 2 

has supported the use of these tools for the current study.  
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Table 2.1 

Summary of Kinematic Variables and Descriptions of Joint Motion 

 

 

Joint 

 

Plane of Motion 

 

Positive Value 

 

Negative Value 

 

Hip 

 

Transverse 

 

Internal Rotation 

 

External Rotation 

Hip Frontal Adduction Abduction 

Knee Frontal Adduction 

(Varus) 

Abduction 

(Valgus) 

 

 
 
 

Table 2.2 

Summary of Between Day Intraclass Correlation Coefficients and Standard 

Errors of Measurement for Functional Performance Tests 

 

  

Controls 

 

PFPS 

 

Functional Performance Test 

 

 

ICC 

 

SEM  

 

ICC 

 

SEM  

Step-down .76 2 .78 2 

Anteromedial Lunge .89 1 .33 1 

 

 

ICC = intraclass correlation coefficient model [3,1] 

SEM = standard error of measure expressed as number of repetitions 

PFPS = patellofemoral pain syndrome
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Table 2.3 

Summary of Between Day Intraclass Correlation Coefficients and Standard 

Errors of Measurement for Strength Measures 

 

  

Controls 

 

PFPS 

 

Muscle 

 

 

ICC 

 

SEM  

 

ICC 

 

SEM  

Hip Abductors .97 .46 .69 .49 

Hip External Rotators .85 .31 .63 .32 

Knee Extensors 

 

.89 .64 .97 .40 

 

ICC = intraclass correlation coefficient model [3,3] 

SEM = standard error of measure expressed as strength values normalized to subject 

weight and height 

PFPS = patellofemoral pain syndrome 
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Table 2.4 

Summary of Between Day Intraclass Correlation Coefficients and Standard 

Errors of Measurement for Electromyographic Amplitude Measures 

 

  

Controls 

 

PFPS 

 

Muscle and Phase 

 

 

ICC 

 

SEM  

 

ICC 

 

SEM  

GM Load .71 3 .96 6 

VM Load .88 6 .66 21 

VL Load .93 5 .89 11 

GM SLS .49 3 .70 9 

VM SLS .85 9 .64 12 

VL SLS .93 5 .89 5 

GM Preswing .47 4 .87 2 

VM Preswing .84 8 .52 13 

VL Preswing .55 6 .50 11 

 

 

ICC = intraclass correlation coefficient model [3,5] 

SEM = standard error of measure expressed as a percent maximum voluntary isometric 

contraction 

PFPS = patellofemoral pain syndrome 

GM = gluteus medius 

VM = vastus medialis 

VL = vastus lateralis 

Load = loading response 

SLS = single leg stance 
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Table 2.5 

Summary of Between Day Intraclass Correlation Coefficients and Standard 

Errors of Measurement for Electromyographic Onset Timing Differences 

 

  

Controls 

 

PFPS 

 

Onset Difference 

 

 

ICC 

 

SEM 

 

ICC 

 

SEM 

VM – GM .89 18 .84 14 

VL – GM .90 16 .89 12 

VL – VM .89 2 .70 4 

 

 

ICC = intraclass correlation coefficient model [3,5] 

SEM = standard error of measure expressed in milliseconds 

PFPS = patellofemoral pain syndrome 
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Table 2.6 

Summary of Between Day Intraclass Correlation Coefficients and Standard 

Errors of Measurement for Kinematic Measures 

 

  

Controls 

 

PFPS 

 

Average  Motion 

 

 

ICC 

 

SEM 

 

ICC 

 

SEM 

Hip Transverse Plane .75 4 .55 5 

Hip Frontal Plane .81 1 .74 1 

Knee Frontal Plane .88 4 .70 2 

 

 

ICC = intraclass correlation coefficient model [3,5] 

SEM = standard error of measure expressed in degrees of motion 

PFPS = patellofemoral pain syndrome 
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Table 2.7 

Means and Standard Deviations for Functional Performance Tests 

 

  

Day 1 

 

 

Day 2 

 

 

 Mean* SD Mean* SD p-value 

 

Control Subjects 

Step-down 
 

24.7 6.0 27.6 3.7 0.03 

Anteromedial 
Lunge 

 

12.1 

 

1.9 

 

12.7 

 

2.1 

 

0.10 

 

Patellofemoral Pain Syndrome Subjects 

Step-down 
 

21 3.5 22.7 4.5 0.16 

Anteromedial 
Lunge 

 

 

9.9 

 

0.9 

 

11.7 

 

1.3 

 

0.01 

 

 

* Expressed as number of repetitions 

SD = standard deviation
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Table 2.8 

Means and Standard Deviations for Strength Measures  

 
  

Day 1 

 

 

Day 2 

 

 

 Mean* SD Mean* SD p-value 

 

Control Subjects 

HAD 6.5 2.8 6.2 2.5 0.40 

HER 3.2 0.8 3.3 0.8 0.65 

KE 7.2 1.7 8.0 2.1 0.10 

 

Patellofemoral Pain Syndrome Subjects 

HAD 4.6 0.8 4.5 0.9 0.77 

HER 2.2 0.4 2.4 0.6 0.38 

KE 

 

6.6 2.4 6.3 2.1 0.45 

 

* Expressed as normalized strength value {% [body weight * height] = 

torque*{100/[body weight (N) * subject height (m)]}}  

SD = standard deviation 

HAD = hip abductors 

HER = hip external rotators 

KE = knee extensors 
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Table 2.9 

Means and Standard Deviations for Electromyographic Amplitude Measures for Control 

Subjects 

 

  

Day 1 

 

 

Day 2 

 

 Mean* SD Mean* SD p-value 

 

GM Load 

 

21.9 

 

6.7 

 

21.6 

 

7.0 

 

0.91 

VM Load 36.6 15.0 37.2 23.4 0.89 

VL Load 44.6 17.5 42.1 22.3 0.56 

GM SLS 9.9 5.6 9.7 3.5 0.95 

VM SLS 31.9 20.0 37.1 25.1 0.43 

VL SLS 35.3 18.3 33.0 14.1 0.42 

GM Preswing 6.9 5.0 4.9 2.0 0.27 

VM Preswing 20.4 14.7 25.0 26.1 0.48 

VL Preswing 23.4 8.0 17.9 9.0 0.16 

 

 

* Expressed as a percent maximum voluntary isometric contraction 

SD = standard deviation 

GM = gluteus medius 

VM = vastus medialis 

VL = vastus lateralis 

Load = loading response 

SLS = single leg stance 
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Table 2.10 

Means and Standard Deviations for Electromyographic Amplitude Measures for 

Patellofemoral Pain Syndrome Subjects 

 

  

Day 1 

 

Day 2 

 

 

 Mean* SD Mean* SD p-value 

 

GM Load 

 

46.0 

 

27.0 

 

43.4 

 

32.3 

 

0.60 

VM Load 64.0 33.6 71.0 36.7 0.63 

VL Load 47.4 23.1 54.1 42.0 0.43 

GM SLS 28.1 19.3 24.7 14.1 0.61 

VM SLS 53.0 19.6 59.4 24.5 0.49 

VL SLS 41.1 11.6 41.7 18.8 0.89 

GM Preswing 9.3 5.9 6.9 5.1 0.10 

VM Preswing 24.4 23.5 13.9 11.3 0.22 

VL Preswing 20.7 20.2 10.9 7.2 0.18 

 

 

* Expressed as a percent maximum voluntary isometric contraction 

SD = standard deviation 

GM = gluteus medius 

VM = vastus medialis 

VL = vastus lateralis 

Load = loading response 

SLS = single leg stance 
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Table 2.11 

Means and Standard Deviations for Electromyographic Onset Timing Differences 

 

  

Day 1 

 

 

Day 2 

 
 

 Mean§ SD Mean§ SD p-value 

 

Control Subjects 

VM – GM* -100.1 56.9 -90.0 49.6 0.43 

VL – GM‡ -100.8 54.5 -88.8 49.5 0.32 

VL – VM† 0.0 7.0 -1.6 5.2 0.27 

 

Patellofemoral Pain Syndrome Subjects 

VM – GM -60.9 28.7 -72.1 38.7 0.28 

VL – GM -56.4 32.4 -71.4 42.0 0.10 

VL – VM 

 

-6.7 8.3 -4.4 4.4 0.38 

 

§ Expressed in milliseconds 

* A negative value represents a delay in gluteus medius (GM) activation relative to the 

vastus medialis (VM). 

‡ A negative value represents a delay in GM activation relative to the vastus lateralis 

(VL). 

† A negative value represents a delay in VM activation relative to the VL. 

SD = standard deviation 
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Table 2.12 

Means and Standard Deviations for Kinematic Measures 

 

  

Day 1 

 

 

Day 2 

 

 

 Mean* SD Mean* SD p-value 

 

Control Subjects 

     

Hip Internal/ 

(External) Rotation 

 

(1.7) 

 

12.0 

 

(1.3) 

 

6.1 

 

0.90 

Hip Adduction/ 

(Abduction) 

 

3.2 

 

4.6 

 

2.7 

 

2.8 

 

0.68 

Knee Varus/ (Valgus) 1.0 8.2 (3.1) 11.0 0.08 

 

Patellofemoral Pain Syndrome Subjects 

Hip Internal/ 

(External) Rotation 

 

2.1 

 

8.6 

 

1.5 

 

6.5 

 

0.88 

Hip Adduction/ 

(Abduction) 

2.1 2.9 0.8 1.3 0.13 

Knee Varus/ (Valgus) 

 

4.9 6.4 4.2 3.4 0.73 

 

 

* Expressed in degrees of motion 

SD = standard deviation 
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CHAPTER THREE 

Function, Strength, and Neuromuscular Activity in Subjects Diagnosed  

With and Without Patellofemoral Pain Syndrome 

Historically, research on PFPS etiology has focused primarily on the knee joint.  

Researchers have shown that PFPS results from either quadriceps weakness (Doucette & 

Goble, 1992; Malone, Davies, & Walsh, 2002; Natri et al., 1998; Thomee et al., 1995) or 

delayed activation of the VM relative to the VL (Cowan, Bennell, Crossley et al., 2002; 

Fulkerson, 2002; Witvrouw, Sneyers, Lysens, Victor, & Bellemans, 1996).  It has been 

hypothesized that quadriceps weakness, especially of the VMO, or delayed onsets can 

lead to abnormal patella tracking and irritation to the patellofemoral joint (Grabiner, Koh, 

& Draganich, 1994; Neptune, Wright, & van den Bogert, 2000; Powers, 1998).  Based on 

this theory, quadriceps strengthening has been the gold standard intervention and its use 

has been supported by the literature (Arroll, Ellis-Pegler, Edwards, & Sutcliffe, 1997; 

Harrison, Sheppard, & McQuarrie, 1999; Roush et al., 2000; Witvrouw, Lysens, 

Bellemans, Peers et al., 2000).  To date, the exact mechanism of how quadriceps 

strengthening can decrease patellofemoral joint pain has remained elusive (Grabiner et 

al., 1994; Powers, 1998). 

More current research has implicated the hip musculature in PFPS etiology.  Both 

hip weakness (Ireland et al., 2003; Niemuth et al., 2005) and altered hip-to-knee muscular 

activation patterns (Brindle et al., 2003) have been identified in subjects diagnosed with 

PFPS.  More important, preliminary research has shown that people diagnosed with knee 

pain respond favorably to rehabilitation programs targeting the hip musculature 

(Fredericson et al., 2000; Mascal et al., 2003; Pettitt & Dolski, 2000).  Although studies 

have shown that the hip may positively influence knee function, further studies are 

needed to firmly establish this relationship.  Therefore, instead of looking solely at the 

knee, it has been suggested that researchers adopt a more novel approach for 

investigating PFPS etiology—examining the lower extremity kinetic chain in its entirety 

(Powers, 2003). 

Strength, neuromuscular patterns, and kinematics contribute to human movement 

and deserve consideration when examining the lower extremity kinetic chain and PFPS 

etiology.  As explained in Chapter 1, this dissertation will address functional 
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performance, strength and neuromuscular influences in this chapter and kinematics in 

Chapter 4.  Chapter 5 will integrate findings from Chapters 3 and 4 and explain the 

interrelationships between these factors. 

Review of the Related Literature  

Functional Anatomy of the Hip Musculature 

 The gluteus medius (GM) originates from the iliac crest and inserts onto the 

lateral surface of the greater trochanter.  Although the GM is commonly known as a 

strong hip abductor, it is functionally more important as a hip stabilizer (Gottschalk, 

Kourosh, & LeVeau, 1989).  During a functional activity like level walking, the GM 

maintains a level pelvis during the single leg stance portion of gait (Neumann & Hase, 

1994).  However, GM weakness can cause an increase in: 1) hip adduction (Neumann, 

2002a), 2) knee valgus (Simoneau, 2002), and 3) lateral patella compressive forces 

(Mizuno et al., 2001).  

 The hip external rotators (see Table 3.1) also play an intricate role for hip 

stabilization.  Delp, Hess, Hungerford, & Jones (1999) evaluated 4 hemi-pelvic 

specimens to assess the internal and external rotation moment arms of the quadratus 

femoris, obturator internus, obturator externus, and piriformis.  Although the piriformis 

had an internal moment arm at 90 degrees hip flexion, all others displayed an external 

moment arm independent of hip position.  However, the piriformis had an external 

moment during lesser amounts of hip flexion (positions closer to hip extension).  Many 

functional activities, like gait, are performed in positions of minimal hip flexion, and 

these findings highlight the stabilizing effects that the hip external rotators can provide.  

Results from this study support the importance of the hip external rotators during 

functional activities.  Fibers from these muscles are horizontally oriented and can 

influence the amount of pelvic-on-femoral rotation.  For example, with the lower 

extremity firmly contacted on the ground (e.g. during single limb stance phase of stair 

descent), concentric action of the stance leg hip external rotators moves the pelvis and 

trunk posteriorly to the fixed femur (Neumann, 2002a).   Such movement places the 

femur in an externally rotated position relative to the pelvis.   

Eccentric action of the hip external rotators also influences pelvic-on-femoral 

rotation control.  For example, the pelvis and femur internally rotate during the early 
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stance of the gait cycle.  Throughout this interval, the hip external rotators eccentrically 

contract to control the amount of hip internal rotation (anteriorly-directed movement of 

the contralateral iliac crest).  Clinically, Simoneau (2002) has stated that inadequate hip 

external rotator strength or control may lead to excessive hip internal rotation, a position 

that may increase patellofemoral joint contact pressures (Lee, Morris, & Csintalan, 2003; 

Mizuno et al., 2001). 

Hip Weakness and PFPS 

 Clinicians have incorporated hip strengthening as a comprehensive part of a PFPS 

rehabilitation program because of its stabilizing effects on hip, and ultimately knee, 

position (Crossley et al., 2002; Fulkerson, 2002; Loudon, Gajewski, Goist-Foley, & 

Loudon, 2004; Mascal et al., 2003).  Although clinicians believe that hip strength can 

improve PFPS impairments, few studies have quantified the extent of hip weakness 

specific to this patient population. 

Ireland et al. (2003) were the only researchers to compare hip abductor and hip 

external rotator strength among females diagnosed with and without PFPS.  Using HHD, 

they measured isometric hip abductor and external rotator strength.  Their results showed 

that PFPS subjects demonstrated 26% less hip abductor strength and 36% less hip 

external rotation strength compared to controls.  Although hip abductor weakness has 

been referenced more in the literature, hip external rotator weakness might have a greater 

association with PFPS. 

Niemuth et al. (2005) recently examined hip muscle weakness and overuse 

injuries in a group of injured and uninjured male and female recreational runners.  They 

measured isometric strength of the entire hip musculature using test positions described 

in Appendix E for hip abduction and hip external rotation.  Although some injured 

subjects had pathology other than PFPS, all demonstrated significant hip abductor 

weakness.  However, unlike Ireland et al. (2003), Niemuth et al. did not report significant 

hip external rotator weakness.  A possible reason for this finding was that their subjects 

were of mixed gender and included other overuse injuries besides PFPS.  It is not known 

if the results would have found hip external rotator weakness if only female subjects 

diagnosed with PFPS had been the focus. 
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Neuromuscular Factors and PFPS 

EMG activation amplitudes.  A limited number of researchers have examined 

quadriceps EMG activation amplitudes in subjects diagnosed with PFPS during 

functional activities.  MacIntyre and Robertson (1992) investigated quadriceps 

amplitudes in female runners with and without PFPS but found no differences.  They 

concluded that changes in running patterns between these subjects were undetectable by 

EMG changes.  However, they normalized data based on the maximum amplitude per 

running cycle, a dynamic normalization method similar to that used in gait studies 

(Winter & Yack, 1987; Yang & Winter, 1984).  As explained in Chapter 2, dynamic 

normalization methods reduce intersubject variability and may not identify true group 

differences.  Knutson et al. (1994) have recommended normalizing data based on a 

percent maximum voluntary isometric contraction (% MVIC) to determine group 

differences.     

Powers et al. (1996) compared mean VMO, vastus medialis longus, VL, vastus 

intermedius, and rectus femoris amplitudes during level ambulation, ramp ambulation, 

and stair-stepping in 29 PFPS and 10 control subjects.  Unlike MacIntyre and Robertson 

(1992), they normalized all data to a % MVIC.  PFPS subjects demonstrated decreased 

activity during level and ramp ambulation, a finding suggestive of a quadriceps 

avoidance pattern (Berchuck, Andriacchi, Bach, & Reider, 1990).  Adoption of a 

quadriceps avoidance pattern would minimize knee joint reaction forces that occur during 

knee flexion and possibly reduce patellofemoral pain (Perry, 1992).  However, Powers et 

al. did not find differences in amplitudes during stair ascent or descent.  They concluded 

that stair-stepping required greater muscular demands that were unavoidable.  In other 

words, PFPS subjects could not perform stair-stepping using a quadriceps avoidance 

pattern.   

A possible limitation of Powers et al. (1996) was the manner in which EMG data 

were analyzed; they combined data from all muscles.  However, PFPS has been 

characterized by weakness, or inhibition, of the VMO, and not necessarily other 

quadriceps muscles.  It is not known if differences in VMO activity existed but went 

undetected during stair-stepping. 

  42



   

Sheehy et al. (1998) compared amplitudes by calculating a ratio for peak VMO 

and VL activity during stair-stepping.  Instead of determining mean activity throughout 

the task, they calculated ratios for the concentric and eccentric phases.  Similar to Powers 

et al. (1996), PFPS and controls subjects had similar ratios.  Together, these studies 

suggested that PFPS subjects generated EMG amplitudes similar to asymptomatic 

subjects.  However, further comparisons are not possible due to differences in data 

processing. 

Mohr et al. (2003) conducted a similar stair-stepping study but analyzed data in a 

more detailed fashion.  They collected EMG data for 13 subjects diagnosed with PFPS 

associated with patellar subluxation (11 females and 2 males) and 11 controls (3 females 

and 8 males) while ascending and descending stairs at self-selected pace.  All data were 

expressed as a % MVIC and normalized to 100% of the gait cycle.  Instead of calculating 

mean cycle amplitudes or VMO/VL peak amplitude ratios, they determined median 

amplitudes for each 2% interval of the entire stair-stepping cycle.    

During stair descent, PFPS subjects had greater VMO and VL amplitudes during 

all phases of the gait cycle.  They concluded that PFPS subjects required greater EMG 

activity to complete the task because of quadriceps weakness (Powers, 2000).  However, 

they could not determine the presence or extent of quadriceps weakness, since strength 

was not assessed.   

A possible limitation of Mohr et al. (2003) was the imbalance between male and 

female subjects in each group.  Zeller, McCrory, Kibler, & Uhl (2003) examined EMG 

activation of the lower extremity muscles during a single-leg squat, a task with demands 

similar to stair descent.  Gender differences were identified since females exhibited 

greater EMG amplitudes during the task.  Sheehy et al. (1998) accounted for this possible 

confounding factor by using equal numbers of male and female subjects. 

Mohr et al. (2003) compared amplitudes of symptomatic subjects (2 males and 11 

females) to a group of primarily healthy controls (8 males and 3 females), which could 

have underestimated control subjects’ amplitudes due to the predominance of male 

subjects.  Likewise, the experimental group data might also have been overestimated (due 

to a greater number of female subjects) as compared to controls for the same reason.  
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Emerging studies, especially for ACL injury, have highlighted neuromuscular differences 

among gender (Lephart, Ferris, Riemann, Myers, & Fu, 2002; Zeller et al., 2003).   

This review of the literature indicates mixed findings with respect to greater 

amplitudes for PFPS subjects.  These varied conclusions may be the result of a possible 

gender bias.  Therefore, future studies should examine same gender differences as this 

approach might provide new insight regarding PFPS etiology (Souza & Gross, 1991). 

EMG onset timing differences.  Fulkerson (2002) has cited abnormal patella 

tracking due to an imbalance of VMO and VL muscle onsets as a common cause of PFPS 

pathology.  It has been hypothesized that a delayed contraction of the VMO relative to 

the VL can cause lateral patella tracking and an increase in lateral patellofemoral joint 

compressive forces (Grabiner et al., 1994; Neptune et al., 2000).  Many researchers have 

investigated temporal characteristics of the vasti muscles.  As summarized below, some 

have identified timing differences whereas others have not. 

 Voight and Wieder (1991) examined reflex response times of the VMO and VL in 

subjects with and without PFPS.  They chose this method because it eliminated a 

potential confounding factor from voluntary quadriceps control.  Pilot data suggested that 

normal subjects activated the VMO prior to the VL during a patellar tendon tap.  They 

hypothesized that PFPS subjects would have a delayed VMO response during a similar 

tendon tap.  Findings from this study supported their initial hypothesis.  PFPS subjects 

demonstrated faster VL response times than the VMO; control subjects exhibited faster 

VMO response times than the VL.  They concluded that delayed VMO activation could 

contribute to increased lateral patella tracking and patellofemoral joint irritation. 

 Witvrouw et al. (1996) conducted an identical study and found similar results as 

Voight and Wieder (1991).  Although altered response times differentiated between 

subjects with and without PFPS, the clinical relevance of such differences was not 

known.  To address clinical relevance, Witvrouw et al. (2003) determined reflex response 

times in PFPS subjects prior to beginning a quadriceps strengthening program, at the end 

of the 5-week program, and 3-months following the end of the program.  Although 

subjects demonstrated significant functional improvements, they continued to have a 

similar pattern of delayed VMO response times following a patellar tendon tap.     
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A potential limitation of these studies may have been the assessment of afferent 

pathways.  People diagnosed with PFPS typically complain of pain during dynamic, 

volitional activities.  According to Karst and Willet (1995), it is not known if the 

quadriceps muscles are activated in a similar manner during functional activities.  They 

investigated response times by replicating the Voight study and determining VL-VMO 

onset differences during voluntary non-weight bearing and weight bearing knee extension 

activity.   

VL-VMO response time differences following a patellar tendon tap were similar 

for PFPS (0.01 + 0.44 ms) and control (-0.19 + 0.52 ms) subjects.  Likewise, both groups 

had similar VL-VMO onset timing differences (all differences less than 4 ms) during 

non-weight bearing and weight bearing voluntary knee extension exercise.  Karst and 

Willet also conducted a correlation analysis and did not find any associations between 

relative timing of VMO and VL onsets during reflex and voluntary activities.  This lack 

of association suggested that reflex testing was not a good indicator of muscle activity 

onsets during voluntary knee extension.  Therefore, activation timing during reflex and 

voluntary contractions may not be related in a functionally intuitive manner (Owings & 

Grabiner, 2002). 

Powers et al. (1996), Sheehy et al. (1998), and Brindle et al. (2003) investigated 

onset timing differences during more functional activities, such as ambulation and stair-

stepping.  Like Karst & Willet (1995), neither reported significant VL-VMO timing 

differences in subjects diagnosed with PFPS.  Although these studies reached similar 

conclusions, it has been difficult to compare results because of differences in data 

collection, EMG signal processing, and muscle onset identification.   

In order to make meaningful comparisons among studies, researchers should 

employ a standard methodology for collecting, processing, and analyzing data.  Hodges 

and Bui (1996) have recommended use of computer algorithms, in combination with 

close visual inspection, to objectify muscle onset identification.  Cowan et al. (2000) 

tested different computer algorithms; each developed to identify quadriceps onsets during 

a stair-stepping task for the PFPS population.  They defined a muscle onset as the point in 

which the signal deviated by more than 3 standard deviations, for a minimum of 25 ms, 

over the baseline level taken 200 ms before the trial began.  Cowan et al. recommended 
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this algorithm because of its test-retest reliability ICC [3, 5] of .91 for the concentric 

phase and .96 for the eccentric phase of stair-stepping. 

Using this algorithm, Cowan et al. (2001) compared VL-VMO onsets in PFPS 

and control subjects during stair-stepping.  They found that asymptomatic subjects had 

nearly synchronous VL and VMO activation during stair ascent and descent.  However, 

they reported delayed VMO activation (15.80 ms and 19.39 ms during the concentric and 

eccentric phases, respectively) in PFPS subjects.  Cowan et al. inferred that such delays 

could result in excessive lateral patella tracking and increased patellofemoral joint 

loading.  Neptune et al. (2000) reported that a delay as small as 5-ms could cause 

patellofemoral joint irritation based on a musculoskeletal model and simulation of 

running.  It is not conclusively known from either study if a 5-ms or greater delay in 

VMO activation is clinically relevant. 

Cowan et al. (2002) conducted a study in which PFPS subjects were randomly 

assigned either into a rehabilitation group or a placebo group.  The rehabilitation group 

participated in a 6-week McConnell-based program that included functional VMO 

training, hamstring stretching, patella taping, and gluteus medius strengthening exercise.  

The placebo group received placebo taping, inoperative ultrasound, and light application 

of a nontherapeutic gel.  Researchers assessed VL-VMO timing differences during stair-

stepping as described above.  Both groups had similar VMO delayed activation at the 

beginning of the study.  At the end of the study, subjects in the rehabilitation group 

reported significant improvements in pain.  VMO onset preceded the VL during the 

concentric phase and occurred at the same time during the eccentric phase of stair-

stepping.   

The authors concluded that the rehabilitation program enhanced VMO activation 

and contributed to functional improvement.  It is not known if quadriceps strength 

improvements that might have contributed more to pain reduction, since this parameter 

was not measured.  It should also be noted that Cowan et al. (2002) reported significant 

VL-VMO timing differences (using a specific stair-stepping protocol) during voluntary 

activities whereas others have not.  Therefore, study replication from outside laboratories 

is needed to support their findings.  
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More recent research has focused on the influence of the hip musculature on knee 

function.  Brindle et al. (2003) were among the first researchers to determine differences 

in GM activation to that of the VMO and VL during stair-stepping.  They determined 

GM, VM, and VL onsets during a stair stepping task in PFPS and control subjects.  In 

agreement with other studies, they reported simultaneous VMO and VL activation.  The 

PFPS and control groups both had delayed GM activation in relation to the VMO (52 ms 

and 33 ms GM delay in PFPS and controls, respectively) and the VL (112 ms and 61 ms 

GM delay in PFPS and controls, respectively) during stair descent.  Delays for PFPS 

subjects were significantly different from controls.  The authors concluded that altered 

GM activity could affect movement of the rest of the lower extremity and that additional 

studies were needed to understand the role of the gluteus medius and PFPS etiology. 

The above literature review suggests that little is definitively known regarding 

function, strength, and neuromuscular patterns in subjects diagnosed with PFPS.  

Discrepancies between studies have resulted from differing methodologies, various EMG 

processing methods, and mixed gender subject groups.  Studies examining ACL injury 

have identified gender differences for strength and neuromuscular factors (Huston & 

Wojtys, 1996; Lephart et al., 2002; Myer, Ford, & Hewett, 2005; Zeller et al., 2003).  

Therefore, future studies should: 1) include subjects of the same gender, 2) employ 

reliable testing procedures, and 3) process and analyze data in ways that permit 

comparison to other studies.   

Purpose and Research Hypotheses 

The purpose of this study was to identify differences in function, strength, and 

neuromuscular patterns for females diagnosed with and without PFPS.  Since recent 

studies have suggested gender differences associated with strength and neuromuscular 

activation patterns, only female subjects were included (Huston & Wojtys, 1996; Lephart 

et al., 2002; Myer et al., 2005; Zeller et al., 2003).  It was hypothesized that female 

subjects diagnosed with PFPS would demonstrate the following: 

1. Subjects diagnosed with PFPS would have an average limb symmetry index (LSI) 

less than 90%; control subjects would have average LSI greater than 95% for the 

step-down and anteromedial lunge functional performance tests. 
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2. Subjects with PFPS would demonstrate significantly less hip abductor, hip external 

rotator, and knee extensor strength than control subjects. 

3. Subjects with PFPS would exhibit greater EMG amplitudes of the GM, VM, and VL 

during stair descent than control subjects. 

4. Subjects with PFPS would demonstrate simultaneous activation of the VM and VL at 

the onset of stair descent. 

5. Subjects with PFPS would demonstrate a greater delay in GM activation compared to 

the VM and VL than control subjects. 

Methodology 

Subjects 

Eighteen females diagnosed with PFPS (age = 24.5 + 3.2 years, height = 1.68 + 

0.1 m, body mass = 618.0 + 89.3 N, pain = 4.4 + 1.5 cm, duration of symptoms = 14.4 + 

12.8 months) and 18 asymptomatic females (age = 23.9 + 2.8 years, height = 1.67 + 0.1 

m, body mass = 608.2 + 83.4 N) participated in this study.  All subjects met the inclusion 

criteria, as summarized in Chapter 1, and signed an informed consent approved by the 

University of Kentucky Institutional Review Board prior to participation. 

Procedures 

First, subjects completed a 10-cm visual analog scale reflecting usual pain during 

the past week (Crossley, Bennell et al., 2004).  Next, they rode a stationary bike for 3 

minutes in a pain-free range of motion at a submaximal speed and practiced each 

functional performance test 3 to 5 times (Loudon et al., 2002).  Subjects then performed 

the step-down and anteromedial functional performance tests, as described in Appendix 

E, for each lower extremity in a random order to reduce ordering bias.  The number of 

repetitions performed within a 30-second period for each lower extremity was 

documented. 

Next, the distances from the greater trochanter to the lateral femoral condyle and 

the distance from the lateral knee joint line to the lateral malleolus were measured.  These 

measurements were completed to establish the perpendicular distance from the HHD and 

the hip and knee joints, respectively.  This information was used to report all strength 

values as measures of torque in units of newton*meters (N*m).   
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Subjects’ skin was prepared for EMG instrumentation by shaving, abrading, and 

cleansing with isopropyl alcohol prior to application of surface electrodes.  Bi-polar Ag-

AgCl surface electrodes (Medicotest, Rolling Meadows, IL), measuring 5 mm in 

diameter with an interelectrode distance of approximately 20 mm, were placed in parallel 

arrangement over the muscle bellies of the GM, VM, and VL.  The GM electrode was 

placed 1/3rd the distance between the iliac crest and greater trochanter (Cram & Kasman, 

1998).  The VM electrode was placed approximately 4 cm superior to and 3 cm medial to 

the superomedial border of the patella and oriented 55° to the vertical (Cowan et al., 

2000).  The VL electrode was placed 5 to 7 cm superior to and 6 to 8 cm lateral to the 

superolateral border of the patella and oriented 15° to the vertical (Cram & Kasman, 

1998).  Electrodes were further secured to the skin with an adhesive tape to prevent 

slippage during testing.  A ground electrode was placed on the ipsilateral clavicle.  

Electrode placements were visually confirmed on an oscilloscope using manual muscle 

testing techniques.  A 3-second standing “quiet” file was also recorded to exclude 

ambient noise.  

Following EMG placement, strength measures were taken for the hip abductors, 

hip external rotators, and knee extensors.  Subjects were positioned as described in 

Appendix E.  For testing, subjects produced a maximum voluntary isometric contraction 

(MVIC) using the “make” test (Andrews et al., 1996; Bohannon, 1997) to the beat of a 

metronome set at 60 beats per minute.  They generated maximum force over a 2-second 

period and maintained this force for an additional 5 seconds to the beat of the metronome.  

Subjects performed one practice (Andrews et al., 1996; Bohannon, 1997) and 3 test trials, 

with a 30-second rest period between trials.  A coefficient of variation was calculated and 

an additional trial was taken, if necessary, to ensure that subjects had 3 measures with 

variability less than 10% (Agre et al., 1987).  The order of muscle testing was 

counterbalanced to account for any potential bias.  All measures were recorded in 

newtons (N) of force.  EMG activity was simultaneously collected for the GM, VM, and 

VL during strength testing to determine a MVIC for each muscle. 

Next, retroreflective markers, with a diameter of 20 mm, were placed on subjects 

using a standard Cleveland Clinic marker setup.  This allowed use of video data to 

demarcate the start and end of stair descent.  Subjects were then shown the stair stepping 
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task and allowed 5 practice trials.   They were instructed to ascend and descend two 20-

cm high steps, ensuring that the test extremity lifted and lowered the body on the first and 

third steps, respectively.  Subjects also took a minimum of 3 strides prior to and 

immediately following stair stepping in order to maintain a continuous movement pattern.  

Because movement velocity may influence EMG activity, subjects performed the task at 

a standardized rate of 96 beats per minute (Cowan et al., 2000; Gilleard et al., 1998).   

After demonstrating proficiency with the test, subjects performed 10 test trials.  

During this time, EMG data were sampled at 960 Hz and recorded synchronously with 

the video data, which were sampled at 60 Hz.  Data from the last 5 trials were analyzed 

because of potential learning effects that might have been associated with earlier trials, 

even with subjects having performed 5 practice trials.  Refer to Appendix C for unit 

specifications of the EMG and motion analysis equipment used in this study. 

Data Processing 

Functional performance tests.  For each FPT, the total number of repetitions 

completed by subjects on the involved (PFPS) or the right lower extremity (controls) was 

recorded.  Data were normalized by calculating a limb symmetry index ([number of 

repetitions completed by the test lower extremity/ number of repetitions completed by the 

contralateral lower extremity] * 100%).  The resulting values were used for statistical 

analysis.  

Strength.  Strength was expressed in units of torque by multiplying the force recorded 

on the HHD by the perpendicular distance from the HHD to the joint center of rotation.  

Average torque was then normalized to subject height and weight (% [body weight (N) * 

height (m)] = torque * {100/[body weight (N) * subject height (m)]}) to allow for 

comparison among subjects (Fredericson et al., 2000).  These values were used for 

statistical analysis. 

EMG data.  Raw EMG signals were processed in the manner as described in 

Appendix D.  To determine muscle activation amplitudes, EMG data from the last 5 trials 

were root mean square (RMS) smoothed using a 55 ms time constant and normalized to 

100% of the stair descent cycle.  They were then ensemble averaged and expressed as a 

% MVIC.  Datapac software (Run Technologies, Mission Viejo, CA) then calculated the 

average % MVIC EMG amplitude for each muscle during the: 1) loading response, 2) 
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single leg stance, and 3) preswing intervals of stair descent (see Appendix G).  The 

resulting values were used for statistical analysis. 

Muscle activation onsets were determined at the beginning of stair descent. After 

processing EMG signals and identifying muscle onsets (see Appendix D), Datapac 

software calculated timing differences.  It subtracted the GM onset from the VM onset 

and VL onset, respectively, to quantify timing differences between the hip and knee 

musculature.  A negative difference signified a delay in GM activation relative to the VM 

and VL where as a positive difference meant GM preactivation.  The software also 

subtracted the VM onset from the VL onset to quantify quadriceps timing differences.  A 

negative difference meant a delay in VM activation relative to the VL where as a positive 

difference signified VM preactivation.  The average from 5 trials was used for statistical 

analysis (Cowan et al., 2001).  

Statistical Analysis 

Independent t-tests were used to determine group differences in age, height, and 

weight.  A 2 X 2 (group X functional performance test) analysis of variance (ANOVA) 

for repeated measures on FPT was used to determine differences in LSI for the step-down 

and anteromedial lunge tests.  A 2 X 3 (group X muscle) ANOVA for repeated measures 

on muscle was used to determined differences in strength.  Separate 2 X 3 (group X 

interval) ANOVAs for repeated measures on stance interval were used to identify EMG 

amplitude differences for the GM, VM, and VL, respectively.  A 2 X 3 (group X timing 

difference) ANOVA for repeated measures on muscle was used to determine EMG onset 

timing differences.  An independent 1-group t-test was conducted to determine if timing 

differences varied significantly from 0 (meaning simultaneous VM and VL activation) 

for the PFPS and control groups (Cowan et al., 2001).  All statistical analyses were 

performed using SPSS version 12.0 (SPSS, Inc., Chicago, IL).  Level of significance was 

established at the 0.05 level; the sequentially rejective Bonferroni (Bonferroni-Holm) 

post hoc test (Holm, 1979) was used to determine the significance of interactions for the 

two-factor ANOVAs. 
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Results 

Independent t-tests for subject demographics revealed similar age, height, and 

weight (p > .44) characteristics for both groups.  Results from separate ANOVAs showed 

a significant main effect for group for the functional performance tests (p < .002) and 

strength measures (p < .006).  PFPS subjects had significantly lower LSI scores (Figure 

3.1) and produced less torque during strength testing (Figure 3.2).   

For the GM and VM, a group X interval interaction effect existed for EMG 

amplitudes.  PFPS subjects generated higher EMG amplitudes during the loading 

response but had similar amplitudes during single leg stance and preswing.  For the VL, 

subjects generated similar EMG amplitudes throughout the entire stance phase (p > .066).  

Figures 3.3 through 3.5 summarize this data.   

No differences were identified with respect to EMG timing parameters (p > .55).  

Results from independent 1-group t-test to determine if VL - VM onsets differed 

significantly from 0 were not significant (meaning both groups had simultaneous VM and 

VL activation).  Table 3.2 summarizes descriptive data for the EMG timing differences. 

Discussion 

Historically, researchers have examined knee function and its influence on PFPS 

etiology.  Recently, attention has focused on the hip and results from more current studies 

have shown an association between hip weakness and PFPS etiology (Ireland et al., 2003; 

Powers et al., 2003).  Although researchers have concluded that the hip might have 

influenced knee function, they did not concurrently examine the hip and knee.  In 

contrast, the current study simultaneously examined hip and knee function, strength, 

EMG amplitudes, and EMG timing differences between subjects diagnosed with and 

without PFPS. 

Functional Performance Tests 

 Clinicians typically assess function using functional performance tests (FPT) 

designed to simulate the stresses about the knee encountered during athletic activities 

(Lephart, Perrin, Fu, & Minger, 1991).  Such activities include running, jumping, and 

cutting for people diagnosed with ACL injury (Barber et al., 1992; Lephart et al., 1992).  

However, patients diagnosed with PFPS typically complain of pain and dysfunction 

during activities like squatting and kneeling.  Loudon et al. (2002) developed five FPTs 
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that simulated loading on a flexed knee and established their measurement reliability.  

For the current study, only the step-down and anteromedial lunge tests were used since 

they had the highest reliability and greatest correlation with pain. 

 In the Loudon et al. (2002) study, PFPS subjects had LSI of 80.0% and 85.9% for 

the step-down and anteromedial lunge tests, respectively, while LSI for control subjects 

exceeded 95.1%.  Control subjects in the current study had similar LSI for both tests; 

PFPS subjects had higher LSI than subjects in the Loudon study for both tests.  A 

primary reason for the discrepancy between the step-down test may have been the 

manner of administration.  As discussed in Chapter 2, subjects had greater difficulty 

performing the test, regardless of group membership.  Therefore, instead of touching the 

bottom of the contralateral heel to the ground (as described by Loudon et al.), subjects in 

the current study brushed any portion of that foot.  PFPS subjects in the Loudon et al. 

study might have had greater difficulty performing the test, which could have accounted 

for their lower reported LSI. 

Subjects in the current study performed the anteromedial lunge test as described 

by Loudon et al. (2002).  Control subjects demonstrated LSI very similar to those 

reported by Loudon et al. (97% for both studies).  However, PFPS subjects for this study 

had LSI of 92%, which was higher than that reported by the Loudon et al. (85.9%).  A 

possible reason for the differences could have been the subject sample used for each 

study.  Subjects in the current study had more chronic symptoms and reported average 

pain at a 4.4 on a 10-cm VAS.  Although subjects in the Loudon study had a 5.5 month 

average duration of symptoms, they did not report average pain.  Therefore, they might 

have had higher pain ratings that led to poorer performance, as compared to the 

contralateral extremity.  Greater pain to the test extremity could have accounted for a 

lower reported LSI. 

Hip and Knee Strength 

Hip abductor and hip external rotators.  Fredericson et al. (2000) were among the 

first researchers to report an association between hip weakness and knee overuse injury.  

Although subjects in their study had iliotibial band syndrome (ITBS), it was thought that 

hip weakness contributed to the knee pathology.  As explained above, Fredericson et al. 
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normalized torque to subject height and weight.  The same method was used to allow 

comparisons between studies. 

Fredericson et al. (2000) reported average hip abductor torque of 7.82 and 10.19 

for female ITBS and control subjects, respectively, which were higher than the current 

findings (4.78 for PFPS and 6.45 for controls).  This discrepancy might have been 

attributable to differences in the subject sample.  Subjects in the Fredericson et al. study 

were recreational runners who most likely demonstrated greater fitness levels (as 

reflected by greater strength measures) than subjects in the current study.  However, 

percent differences between groups for each study were similar.  ITBS subjects in the 

Fredericson et al. study demonstrated a 23% strength deficit and PFPS subjects in the 

current study had a 26% strength deficit compared to controls. 

Ireland et al. (2003) measured the force applied to a HHD during hip abduction in 

the same manner as this study.  However, they did not express measures as a unit of 

torque by multiplying the force applied to the HHD by the perpendicular distance from 

the hip joint.  They did normalize force values to subject body weight and found that 

PFPS subjects applied 26% less force to the HHD than control subjects.   

The fact that force measurements in the current study were taken in a manner 

similar to Ireland et al. (2003) enabled comparison of results.  To enable this comparison, 

the force (N) recorded on the HHD by subjects in the current study was expressed as a 

percent body weight (% BW).  Under this method, hip abductor force for PFPS subjects 

was 22.5 + 5.9 % BW, which agreed with the results reported by Ireland et al. (23.3 + 6.9 

% BW).  Although force does not accurately represent strength (torque), the fact that 

PFPS subjects in both studies had significantly lower hip abductor force values indicated 

hip weakness for this patient population. 

Ireland et al. (2003) also examined hip external rotator function and reported that 

PFPS subjects applied 36% less force on the HHD than controls.  For the current study, 

PFPS subjects demonstrated 27% less hip external rotator strength than controls.  

However, PFPS force values expressed as a % BW were similar (like the hip abductors, 

both studies recorded the force applied to the HHD during hip external rotation in a 

similar manner).  PFPS subjects in the current study had values of 11.1 + 3.1 % BW 

whereas PFPS subjects in the Ireland study had values of 10.8 + 4.0 % BW.  These 
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findings indicated that variations in percent differences between groups were attributable 

to control subject differences. 

Knee extensors.  Results from this study supported previous works showing a 

relationship between quadriceps weakness and PFPS (Grabiner et al., 1994; Malone et al., 

2002; Powers et al., 1997; Stiene, Brosky, Reinking, Nyland, & Mason, 1996; Thomee et 

al., 1995).  PFPS subjects demonstrated 20% less quadriceps strength compared to 

control subjects.  These findings are clinically relevant because PFPS patients have 

responded favorably to quadriceps strengthening programs (Malone et al., 2002; Natri et 

al., 1998).   

In summary, although PFPS subjects demonstrated quadriceps weakness, they 

demonstrated even higher hip abductor and external rotator strength deficits.  Findings 

from this study could not determine if hip weakness contributed to or resulted from 

PFPS.  Therefore, additional prospective studies should address this question.     

  EMG Activation Amplitudes 

 Subjects diagnosed with PFPS demonstrated significantly higher EMG amplitudes 

for the VM during the loading response with a trend toward significance (p = 0.018) 

during the single leg stance interval of stair descent.  These findings are in partial 

agreement with those reported previously for subjects diagnosed with lateral patella 

instability (Mohr et al., 2003; Powers, 2000).  Mohr et al. (2003) had subjects descend 

stairs at a self-selected pace and data were analyzed at 2% intervals of the entire stair 

descent cycle.  Data were expressed as a % MVIC and analyzed on a natural log-

transformed scale, a transformation that approximated medians of the data.  Data in the 

current study were also expressed as a % MVIC but analyzed based on the average values 

for loading response, single leg stance, and preswing.  Overall, values in the current study 

exceeded those reported by Mohr et al.; however, patterns of EMG activity between 

groups were very similar.   

  Mohr et al. (2003) concluded that quadriceps weakness contributed to the greater 

EMG activity required for stair descent even though they did not measure strength.  The 

current study differed because it examined EMG activity and strength concurrently.  

PFPS subjects in the current study exhibited quadriceps weakness and showed an inverse 

relationship between strength and muscle activation.   
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Results from the current study also differed from Mohr et al. (2003) because 

PFPS and control subjects had similar VM amplitudes during preswing.  Sheehy et al. 

(1998) identified 2 peaks of eccentric EMG activity for the VM and VL during stair 

descent.  The first corresponded with weight acceptance (loading response).  During this 

interval, researchers have reported greater hip muscle activation in response to 

decelerating and controlling forward and downward motion of the body onto the step 

(Lyons, Perry, & Gronley, 1983; McFadyen & Winter, 1988).  Higher VM amplitudes for 

PFPS subjects during loading response most likely reflected the need for greater 

activation when knee flexion moments are greater (Kadaba et al., 1989).    Sheehy et al. 

referred to the second peak of activity as body lowering, which corresponded to preswing 

in the current study (movement of the center of mass past the stance leg).  During this 

interval, the body was likely positioned with the center of mass located more centrally 

over the foot, which would provide a stable base and require less muscle activation 

(McFadyen & Winter, 1988). 

Results for the VL also differed from Mohr et al. (2003).  No VL differences were 

identified during stair descent and agreed with previous works (MacIntyre & Robertson, 

1992; Powers et al., 1996; Sheehy et al., 1998).  The current study also found differences 

between VM and VL amplitudes, which could possibly imply VM insufficiency relative 

to the VL.  Souza and Gross (1991) found relative differences in VMO and VL activity 

for PFPS subjects during stair-stepping.  Unlike the current study, they reported 

decreased (not increased) VMO activity relative to the VL.  It is unclear why Souza and 

Gross found less VM activity compared to the VL.  However, they did not normalize the 

EMG data and had a smaller sample size compared to the current study.  These 

methodological differences might account for the conflicting findings (Powers et al., 

1996). 

Researchers have reported greater GM activation during the loading response of 

stair descent in asymptomatic subjects (Lyons et al., 1983; McFadyen & Winter, 1988).  

Data from the current study supported these findings as all subjects had greater GM 

activation for the loading response relative to single leg stance and preswing.  Moreover, 

PFPS subjects had significantly higher GM amplitudes and less hip strength compared to 

controls.  As discussed above, GM weakness would reflect the need for greater EMG 
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activity.  To date, no other study has examined GM activation in PFPS during stair 

descent and precluded comparison with this study.  Further studies are needed to 

determine the importance of the hip musculature during stair descent. 

EMG Onset Timing Differences 

VM – VL onset timing differences.  Results from this study showed simultaneous 

activation of the VM and VL at the onset of stair descent, which were in agreement with 

previous reports (Brindle et al., 2003; Karst & Willett, 1995; Powers et al., 1996; Sheehy 

et al., 1998).  However, findings from this study contradicted those reported by Cowan et 

al. (2001), who reported a 19.39 ms delay in VMO activation during stair descent.  

Although the current study determined onsets identical to the Cowan et al. study, 

variations in the sample population might have contributed to differing results.  PFPS 

subjects in the current study were younger (age = 24.5 + 3.2 yr vs. 27.0 + 8.1 yr) in 

comparison to their study.  Cowan et al. included subjects who reported pain at a 

minimum of 3 on a 10-cm visual analog scale but did not report average pain ratings.  

They also did not report the duration of symptoms for the PFPS subjects.  For the current 

study, PFPS subjects reported pain of 4.4 + 1.5 cm and had more chronic symptoms 

(duration = 14.4 + 12.8 mos).  It is not known if subjects with more acute symptoms 

would demonstrate different neuromuscular patterns. 

GM and vastii muscle onset timing differences.  All subjects in the current study 

demonstrated delayed GM activation relative to the VM and VL; however, there were no 

significant between group differences.  Brindle et al. (2003) examined hip and knee 

temporal characteristics.  Control subjects in their study had a GM delay of 33 ms and 52 

ms for the VM and VL; PFPS subjects had a GM delay of 61 ms and 112 ms for the VM 

and VL.  Based on these significant differences, Brindle et al. concluded that changes in 

GM neuromuscular activity patterns may contribute to PFPS pathology. 

 Subjects in the current study had delayed GM activation of approximately 80 ms 

for both the VM and VL.  These findings contradicted those from Brindle et al. (2003) 

because of greater GM delay and between group similarities.  The current study also 

collected and analyzed data in a different manner from Brindle et al.  As stated above, 

variations in methodology and signal processing compromise study comparisons.  
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Therefore, additional studies are needed to better understand timing characteristics 

between the GM, VM, and VL. 

Conclusion and Future Direction 

 The purpose of this study was to determine differences in hip and knee function, 

strength, and neuromuscular patterns in females diagnosed with and without PFPS.  PFPS 

subjects demonstrated lower LSI for functional performance tests.  Overall, PFPS 

subjects had less hip and knee strength than controls.  Although previous works have 

reported quadriceps weakness as a prime etiological factor, the results of this study 

suggested that PFPS subjects had greater percent differences in hip strength.  

Additionally, this study demonstrated that hip external rotator strength may play a more 

significant role in PFPS than originally thought.  However, caution should be taken in 

interpreting this finding, since it is not known if hip weakness was the cause of or a result 

of PFPS.  Finally, EMG amplitudes showed that PFPS required greater muscle activity, 

possibly resulting from hip and knee weakness.  No timing differences existed for the 

GM and vastii muscles.   

 These results support a relationship between the hip musculature and 

PFPS.  Researchers have stated that hip weakness can affect lower extremity kinematics 

and hypothesize that excessive femoral adduction and internal rotation can adversely 

affect knee function (Mascal et al., 2003; Powers et al., 2003; Simoneau, 2002).  In order 

to determine this relationship, Chapter 4 examined hip and knee kinematics during the 

stair stepping task. 
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Table 3.1 

Summary of the Hip External Rotator Musculature 

 

 

Muscle 

 

Origin 

 

Insertion 

 

 

Piriformis 

 

Pelvic surface of the sacrum 

 

Greater trochanter 

Quadratus femoris Proximal part of the ischial tuberosity Femoral intertrochanteric 

crest 

Obturator internus Pelvic surface of  obturator membrane 

and margin of obturator foramen 

Greater trochanter 

Obturator externus Pubic and ischial rami Femoral trochanteric fossa 

Gemellus superior Ischial spine Greater trochanter 

Gemellus internus Ischial tuberosity 

 

Greater trochanter 
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Table 3.2 

Comparison of Meansδ (+ Standard Deviation) for Electromyographic Onset 

Timing Differences 

 

  

Controls 

 

PFPS 

 

VM – GM 

VL - GM 

VL –VM 

 

 

-79 + 64§ 

-83 + 62§ 

-1.28 + 8* 

 

-73 + 65§ 

-75 + 67§ 

-3.83 + 9† 

 

PFPS = patellofemoral pain syndrome 

GM = gluteus medius 

VM = vastus medialis 

VL = vastus lateralis 

δ Expressed in milliseconds 

§ p > .55 

* Not significantly different from 0 (p = .073) 

† Not significantly different from 0 (p = .530) 
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Figure 3.1 

Descriptive Statistics for Limb Symmetry Indexes for Functional Performance Tests. 
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Significant overall main effect (p < .002)
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Figure 3.2 

Descriptive Statistics for Strength Measures*. 
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Figure 3.3 

Comparison of Electromyographic Amplitudes for the Gluteus Medius. 
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* p = .003 (PFPS significantly different from controls) 

† p = .049 (PFPS not significantly different from controls) 
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Figure 3.4 

Comparison of Electromyographic Amplitudes for the Vastus Medius. 
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Figure 3.5 

Comparison of Electromyographic Amplitudes for the Vastus Lateralis. 
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CHAPTER FOUR 

Lower Extremity Kinematics and Patellofemoral Pain Syndrome 

 PFPS has been one of the most common, but challenging, orthopaedic problems 

that clinicians face because of a lack of consensus regarding its true etiology (Witvrouw 

et al., 2005).  Possible etiologic factors have included quadriceps weakness, delayed 

VMO activation, tight lateral retinacular tissues, trauma, overuse, patellar instability, 

osteochondritis dissecans, neurologic disorders, and biomechanical dysfunction (Brody & 

Thein, 1998; Wilk et al., 1998).  Regarding biomechanical dysfunction, much attention 

has focused on the quadriceps angle (Q angle).   

The Q angle (the angle formed by drawing a line from the anterior superior iliac 

spine to the midpoint of the patella and another drawn from the midpoint of the patella to 

the tibial tubercle) represents the resultant quadriceps pull (Herrington & Nester, 2004; 

Livingston, 1998) and is related to normal knee valgus.  The distal femur’s medial 

orientation forms a natural 170 degree knee valgus angle (Neumann, 2002b). This 

angulation explains why the quadriceps normally pull the patella laterally during terminal 

knee extension, a pattern described as the “law of valgus” (Fulkerson, 1997).  Based on 

this relationship, a higher Q angle may cause the quadriceps to exert a greater lateral 

force vector and predispose the patella to excessive lateral tracking (Messier, Davis, Curl, 

Lowery, & Pack, 1991; Powers et al., 2002).   

Typically, clinicians have defined an increased Q angle as one exceeding 15 to 20 

degrees (Livingston, 1998).  However, a review of the literature has not supported the 

relationship between an increased Q angle and PFPS (Caylor, Fites, & Worrell, 1993; 

Fulkerson, 1997; Livingston, 1998).  Powers (2003) explained that most studies have 

taken static Q angle measurements, which may preclude detection of the Q angle’s 

influence during dynamic activities.   

Regarding anterior cruciate ligament (ACL) injury, researchers have examined 

knee valgus during dynamic activities (Hewett, Myer, & Ford, 2004; Hewett et al., 2005; 

Lephart et al., 2002; Malinzak, Colby, Kirkendall, Yu, & Garrett, 2001).  Moreover, 

others have shown that knee valgus can increase lateral patellofemoral joint compressive 

forces (Lee, Anzel, Bennett, Pang, & Kim, 1994; Lee et al., 2003).  Since knee valgus can 
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influence the magnitude of the Q angle, researchers should evaluate its influence on PFPS 

during dynamic activities (Powers, 2003). 

Many researchers have examined sagittal plane knee kinematics (Andriacchi et 

al., 1980; Brechter & Powers, 2002; Crossley, Cowan et al., 2004; Salsich, Brechter, 

Farwell, & Powers, 2002).  The Q angle and knee valgus are affected by lower extremity 

frontal and transverse planes of motion (Powers, Maffucci, & Hampton, 1995); however, 

few authors have examined these influences in people diagnosed with PFPS.  The 

following review of the related literature explains how faulty frontal and transverse 

planes of motion can lead to patellofemoral joint dysfunction and contribute to PFPS 

etiology. 

Review of the Related Literature 

Theoretical Overview of the Lower Extremity Kinetic Chain 

Tiberio (1987) theorized that PFPS could result from extrinsic factors (e.g., hip, 

foot, and ankle influences) and described how excessive subtalar pronation could 

adversely affect knee function.  Specifically, excessive pronation is coupled with tibial 

internal rotation.  During normal gait, the knee must extend from approximately 12% to 

40% of the normal gait cycle (Perry, 1992).  Knee extension occurs when the tibia is in 

an externally rotated position relative to the femur (the screw-home mechanism) (Norkin 

& Levangie, 2001).  Based on this relationship, the femur must compensate for increased 

tibial internal rotation through even greater femoral internal rotation.  In other words, 

greater femoral internal rotation relative to tibial rotation will enable knee extension 

(Tennant et al., 2001).   

It has been shown that excessive femoral internal rotation can facilitate lateral 

patella tracking and increase patellofemoral joint contact pressures (Lee et al., 1994; Lee 

et al., 2003; Powers et al., 2003).  Tiberio (1987) assumed that these rotational influences 

originated from the distal aspect of the lower extremity kinetic chain.  However, it was 

not known if excessive femoral internal rotation may initially occur proximally and if 

excessive subtalar pronation actually contributed to PFPS. 
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Subtalar Pronation, Tibial Rotation, and PFPS 

 Researchers have used both static and dynamic methods to assess relationships 

between subtalar pronation, tibial rotation, and PFPS.  Powers et al. (1995) initially 

measured static rearfoot postures in subjects diagnosed with and without PFPS in a non-

weight bearing (prone) position.  They hypothesized that PFPS subjects would 

demonstrate greater rearfoot varus and require excessive and prolonged pronation to 

achieve medial rearfoot and forefoot contact during gait.  Therefore, excessive pronation, 

coupled with tibial internal rotation, would lead to greater femoral internal rotation and 

contribute to PFPS pathology (Tiberio, 1987).   

Results from this study partially supported this theory.  PFPS subjects had an 

average of 8.9 degrees rearfoot varus compared to 6.8 degrees for controls.  Although 

these amounts varied significantly, it was unclear if differences were clinically relevant.  

Also, Powers et al. (1995) did not determine if PFPS subjects actually demonstrated 

excessive pronation and tibial internal rotation during gait. 

Livingston and Mandigo (2003) examined the magnitude of right and left rearfoot 

angles under a static, weight bearing condition but found no significant differences 

between asymptomatic, unilateral, and bilateral PFPS subjects.  Interestingly, although 

not statistically significant, asymptomatic controls demonstrated greater rearfoot valgus 

angles for both limbs.  Livingston and Mandigo concluded that the magnitude of rearfoot 

valgus may not predict PFPS etiology.   

Other researchers have examined the relationship between rearfoot motion and 

PFPS during dynamic activities.  Messier et al. (1991) compared rearfoot kinematics, 

kinetics, isokinetic strength, and Q angles in runners diagnosed with and without PFPS.  

They found that the magnitude of pronation did not discriminate between groups.  

However, regression analysis showed that the Q angle was the most predictive factor for 

PFPS pathology.  It should be noted that changes in the Q angle can result from other 

lower extremity rotations, like the femur (Powers, 2003).  Therefore, PFPS subjects may 

have greater hip internal rotation not assessed in the study.  Although these findings are 

in contrast with others (who did not find an association between PFPS and the Q angle), 

they suggested that the Q angle might have greater importance when examining subjects 

during dynamic activities.      
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More recently, Powers et al. (2002) investigated the relationship between 

pronation and lower extremity rotations (tibial and femoral) in females diagnosed with 

and without PFPS during gait.  They hypothesized that symptomatic subjects would 

exhibit larger degrees of pronation, tibial internal rotation, and femoral internal rotation, 

as theorized by Tiberio (1987).  Subjects underwent motion analysis while ambulating at 

a self-selected pace and demonstrated similar magnitudes and timing for peak pronation 

and tibial rotation, which were in agreement with Messier et al. (1991).   

Powers et al. (2002) did find significant group differences in femoral movement.  

PFPS subjects demonstrated 2.1 degrees of femoral external rotation compared to 1.6 

degrees of internal rotation for the control group.  Peak femoral rotation for the PFPS 

subjects also occurred later in the gait cycle compared to control subjects.  Powers et al. 

concluded that subjects with PFPS might have used decreased femoral internal rotation as 

a compensatory strategy for decreasing the Q-angle.  They also cautioned that pelvic 

rotation might have influenced femoral position.  Therefore, future research should 

investigate the influence of pelvic position on femoral position and PFPS. 

Femoral Rotation and PFPS   

Historically, researchers have described PFPS etiology as abnormal movement of 

the patella on the femur (typically described during open kinetic chain activities), even 

though PFPS patients typically complain of pain during activities involving a flexed knee 

in a loaded position.  Powers et al. (2003) examined femoral and patella movement 

during non-weight bearing and weight bearing extension using kinematic magnetic 

resonance imaging.  Six females with PFPS and a history of lateral patellar subluxation 

participated.  They obtained axial images as subjects extended their knee from 45 degrees 

to 0 degrees flexion with a load equal to 5% body weight donned on the ankle during the 

non-weight bearing exercise.  For the weight bearing exercise, subjects performed a 

single leg squat from 0 degrees to 45 degrees knee flexion.  The researchers then 

calculated bisect offset index (to determine medial/lateral displacement), patellar tilt 

angle, femoral rotation, and patella rotation.   

Powers et al. (2003) reported greater lateral patellar displacement and lateral 

patellar tilt during the non-weight bearing exercise but increased femoral internal rotation 

during the weight bearing exercise.  They also identified differences between patellar 
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rotation during non-weight bearing and weight bearing exercise.  Lateral patella rotation 

occurred more during non-weight bearing extension and changed very little during 

weight bearing extension.  Powers et al. characterized non-weight bearing extension as 

the patella rotating on the femur and weight bearing extension as the femur rotating 

beneath the patella.  Results suggested that pelvic and femoral position may have a 

significant influence on patella tracking. 

Dynamic Knee Valgus and Hip Motion 

 As discussed above, many studies have not supported the relationship between an 

excessive Q angle and PFPS, possibly because of the static nature of this measure 

(Herrington & Nester, 2004).  However, knee valgus during dynamic activities may 

explain better the relationship between the Q angle and PFPS etiology.  Knee valgus 

represents a frontal plane motion that may result from femoral adduction.  Because the 

hip abductors provide frontal plane stabilization, weakness can lead to excessive hip 

adduction and increased knee valgus (McFadyen & Winter, 1988; Neumann, 2002a; 

Neumann & Hase, 1994; Perry, 1992; Sahrmann, 2002; Simoneau, 2002).  Together, 

these motions can increase the Q angle and adversely affect patellofemoral joint function 

(Powers, 2003). 

 Only a single case study has specifically examined hip frontal, as well as 

transverse, plane motion for subjects diagnosed with PFPS (Mascal et al., 2003).  Two 

females diagnosed with PFPS underwent strength testing using a HHD, while a single 

subject completed a three-dimensional motion analysis (it was not disclosed why only 

one subject underwent motion analysis).  For this purpose, the subject descended a 20-cm 

high step, over a 3-second period, for a total of 3 repetitions.  The investigators then 

calculated average hip adduction and hip rotation angles during the entire stance phase of 

stair descent.  Following the initial evaluation, subjects completed a 14-week intervention 

that focused on hip, pelvis, and trunk musculature function and underwent a post-

intervention evaluation in the same manner. 

At the end of the intervention, both subjects demonstrated improved knee (20% 

and 10% increase) and hip (increase range 42% - 317%) strength.  The subject who 

underwent motion analysis had average hip adduction of 8.7 degrees prior to and 2.3 

degrees immediately following the intervention.  She also improved hip internal rotation 
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from 1.4 degrees to 2.6 degrees external rotation.  Results suggested that a hip, pelvis, 

and trunk muscle strengthening program positively affected lower extremity kinematics 

during stair-stepping in a subject diagnosed with PFPS.  Mascal et al. (2003) concluded 

that a decrease in both hip adduction and internal rotation would move the patella lateral 

relative to the ASIS and decrease the dynamic Q angle.  Although the authors believed 

that this was a clinically relevant finding, additional studies are needed to generalize 

these findings to a broader PFPS patient population. 

Lateral Patellofemoral Contact Pressures 

 Although PFPS can result from a chronic overloading of the patellofemoral joint, 

stress may also develop from abnormal mechanics.  Researchers have demonstrated how 

faulty lower extremity transverse and frontal plane movements can increase 

patellofemoral contact pressures.  The following section explains how femoral and tibial 

rotation (transverse plane) and a higher Q angle (frontal plane) can affect patellofemoral 

contact pressures. 

Rotational influences.  Lee et al. (1994) examined patellofemoral contact 

pressures during different amounts of fixed femoral rotational deformities.  Using a 

cadaveric model, they compared patellofemoral contact pressures at varying amounts of 

femoral internal and external rotation.  They found that smaller amounts (0 to 20 degrees) 

of either internal or external rotation had little effect on patellofemoral contact pressures.  

However, significant increases occurred during greater amounts of rotation.  Specifically, 

femoral external rotation caused more stress to the patella’s medial facets whereas 

internal rotation caused more stress to the lateral facets.  Based on these findings, 

increased femoral internal rotation, which may occur during dynamic activities, could 

lead to patellofemoral joint irritation. 

Others have examined influences from tibial rotation.  Lee, Yang, Sandusky, & 

McMahon (2001) used a cadaveric model to determine the relationship between tibial 

rotation and patellofemoral joint contact pressures.  They found higher contact pressure 

readings during external tibial rotation, compared to tibial internal rotation, which 

occurred primarily at the lateral patellar articular facets.  This finding differed from the 

effect during femoral rotation.  Lateral patellar contact pressures resulted from greater 

femoral internal rotation whereas these same contact pressures increased with higher 
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tibial external rotation.  Together, femoral internal rotation and tibial external rotation 

increase the Q angle and the resultant lateral (valgus) quadriceps pull. 

Csintalan, Schultz, Woo, McMahon, & Lee (2002) also examined the effect of 

tibial rotation on patellofemoral joint contact pressures in cadaveric knees.  Additionally, 

their investigation compared differences between male and female specimens.  Like Lee 

at al (2001), tibial external rotation increased lateral patellar facet contact pressures, 

especially in positions close to terminal knee extension.  They also found that tibial 

internal rotation reduced lateral patella contact pressure with a minimal increase to 

medial patellar facet pressures.  More important, female specimens had greater contact 

pressures compared to males at lower knee flexion angles.  This finding was clinically 

relevant because it may explain why females are at greater risk for developing PFPS. 

Frontal plane influences.  Researchers have also investigated the influence of the 

Q angle (knee valgus) on patellofemoral joint contact pressures.  Using 6 cadaver knees, 

Mizuno et al. (2001) found that a higher Q angle shifted the patella laterally and 

increased lateral patellofemoral joint contact pressures.  However, decreasing the Q angle 

did not shift the patella medially.  These findings were clinically relevant because they 

showed a relationship between a greater Q angle (knee valgus) and patellofemoral joint 

stress. 

 Elias, Cech, Weinstein, & Cosgrea (2004) examined the influence of the Q angle 

using a computer simulation model.  This model, developed to characterize how 

patellofemoral joint loading influences contact pressures, incorporated quadriceps forces 

similar to those generated during 40 to 90 degrees of knee motion.  Like Mizuno et al. 

(2001), Elias et al. found that a 25 degree Q angle applied greater lateral forces and 

contact pressures to the patella.  They also reported that increasing the vastus medialis 

force-generating capabilities had minimal effect on decreasing contact pressures.  Most 

important, Elias et al. found that medialization of the tibial tubercle was the most 

effective alteration for reducing lateral forces applied to the patella.  Medialization of the 

tibial tubercle effectively decreased the Q angle and reduced the magnitude of valgus 

forces transmitted to the patella.  
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The Patellofemoral Pain Syndrome Gender Bias 

Researchers believe that females are at greater risk of developing PFPS because 

of anatomical differences that result in higher Q angles as compared to males  (Almeida 

et al., 1999; Hutchinson & Ireland, 1995).  Horton and Hall (1989) measured Q angles, 

pelvic width, and femoral length in a group of male and female subjects.  Overall, males 

had wider pelvises and longer femurs.  However, females had a greater average Q angle 

(15.8 degrees) compared to males (11.2 degrees). 

Horton and Hall (1989) reported a significant correlation between gender and Q 

angle (r = - 0.517) when controlling the effects of femoral and pelvic width.  

Alternatively, there was no significant correlation between Q angle and the anatomic 

measures when eliminating the effect of gender.  They concluded that females have larger 

Q angles but were unable to provide an anatomical explanation or a new predictor of the 

Q angle.  

Livingston and Gahagan (2001) further examined the relationship between 

gender, pelvic width, and femoral length.  Like the Horton and Hall study, males 

demonstrated greater average pelvic widths and femoral lengths.  Livingston and 

Gahagan also calculated a pelvic width to femoral length ratio for each group and found 

that females had greater ratios than males.  They concluded that a shorter femoral length, 

relative to pelvic width, may affect the magnitude of hip adduction that females might 

require to position their feet under the body’s center of mass during functional activities.  

Therefore, excessive hip adduction could increase knee valgus and facilitate lateral 

patella tracking in females.   

Researchers have examined hip and knee kinematics in females during dynamic 

activities (Ferber, Davis, & Williams, 2003; Hewett et al., 2005; Lephart et al., 2002; 

Malinzak et al., 2001; Noyes, Barber-Westin, Fleckenstein, Walsh, & West, 2005).  They 

have shown that females perform running, cutting, and jumping activities with increased 

femoral adduction, femoral internal rotation, knee valgus, and tibial external rotation.  

Although designed to investigate ACL injury, findings from these studies are relevant to 

PFPS because these combined motions can increase both lateral patella tracking and 

patellofemoral joint compressive forces (Csintalan et al., 2002; Lee et al., 1994; Lee et 

al., 2001; Mizuno et al., 2001; Powers, 2003). 

  73



   

In summary, PFPS was originally thought to result from an excessive Q angle.  

More recent studies have suggested that dynamic knee valgus angles might be more 

indicative of patellofemoral joint dysfunction.  It has also been shown that females 

perform many dynamic activities with the knee in a more valgus position.  Based on these 

findings, the current study was designed to further investigate the relationship between 

hip adduction, hip internal rotation, and knee valgus in subjects diagnosed with and 

without PFPS.  A female subject population was chosen because females are more likely 

to demonstrate these movement patterns (Csintalan et al., 2002; Mascal et al., 2003). 

Purpose and Research Hypotheses 

The purpose of this study was to compare hip and knee kinematics for females 

diagnosed with and without PFPS.  It was hypothesized that female subjects diagnosed 

with PFPS would demonstrate the following: 

1. PFPS subjects would demonstrate greater average hip adduction, hip internal rotation, 

and knee valgus angles during the stance phase of stair descent compared to control 

subjects. 

2. PFPS subjects would demonstrate greater peak hip adduction, hip internal rotation, 

and knee valgus angles during the stance phase of stair descent compared to control 

subjects. 

3. PFPS subjects would achieve peak hip adduction, hip internal rotation, and knee 

valgus angles later in the stair descent cycle compared to control subjects.  This 

hypothesis is clinically relevant because PFPS subjects may demonstrate motions that 

apply a valgus force to the patella over a longer period of time.    

Methodology 

Subjects 

Eighteen females diagnosed with PFPS (age = 24.5 + 3.2 years, height = 1.68 + 

0.1 m, body mass = 618.0 + 89.3 N, pain = 4.4 + 1.5 cm, duration of symptoms = 14.4 + 

12.8 months) and 18 asymptomatic females (age = 23.9 + 2.8 years, height = 1.67 + 0.1 

m, body mass = 608.2 + 83.4 N) participated in this study.  All subjects met the inclusion 

criteria, as summarized in Chapter 1, and signed an informed consent approved by the 

University of Kentucky Institutional Review Board prior to participation. 
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Procedures 

First, subjects completed a 10-cm visual analog scale reflecting usual pain during 

the past week (Crossley, Bennell et al., 2004).  They then rode a stationary bike for 3 

minutes in a pain-free range of motion at a submaximal speed.  Next, retroreflective 

markers, with a diameter of 20 mm, were meticulously placed on subjects using a 

standard Cleveland Clinic marker setup.  After collecting an anatomic calibration file, 

subjects were shown the stair stepping task and allowed 5 practice trials.   They were 

instructed to ascend and descend two 20-cm high steps, ensuring that the test extremity 

lifted and lowered the body on the first and third steps, respectively.  Subjects also took a 

minimum of 3 strides prior to and immediately following stair stepping in order to 

maintain a continuous movement pattern.  All subjects performed the task at a 

standardized rate of 96 beats per minute (Cowan et al., 2000; Gilleard et al., 1998). 

After demonstrating proficiency with the test, subjects performed 10 test trials.  

During this time, video data were sampled at 60 Hz.  Data from the last 5 trials were 

analyzed because of potential learning effects that might have been associated with 

earlier trials, even with subjects having performed 5 practice trials.   Refer to Appendix C 

for unit specifications of the motion analysis equipment used in this study. 

Data Processing 

Video data were processed in the manner described in Appendix D.  Hip 

transverse plane, hip frontal plane, and knee frontal plane angles for the last 5 individual 

trials were calculated using OrthoTrak 5.0 software (Motion Analysis Corporation, Santa 

Rosa, CA) using methods described by Grood and Suntay (1983) (Refer to Table 2.1).  

The individual trials were then normalized to 100% of the gait cycle and ensemble 

averaged.  Average joint angles, peak joint angles, and time to peak joint angle 

(expressed as the percentage of the gait cycle in which it occurred) from the normalized 

data during the stance phase of stair descent were used for statistical analysis. 

Statistical Analysis 

Independent t-tests were used to determine group differences in age, height, and 

weight.  Separate 2 X 3 (group X angle) ANOVAs for repeated measures on angle were 

used to determined differences in average and peak joint angles during stance. A 2 X 3 

(group X time) ANOVA for repeated measures on time was used to determine 
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differences in time to peak angle during stance.  Effect sizes were calculated for all 

measures as described by Cohen (1988).  All statistical analyses were performed using 

SPSS version 12.0 (SPSS, Inc., Chicago, IL).  Level of significance was established at the 

0.05 level; the sequentially rejective Bonferroni (Bonferroni-Holm) post hoc test (Holm, 

1979) was used to determine the significance of interactions for the two-factor ANOVAs. 

Results 

Independent t-tests for subject demographics revealed similar age, height, and 

weight (p > .44) characteristics for both groups.  Results from separate ANOVAs for 

average joint angles and peak joint angles showed neither a significant main effect nor an 

interaction effect (p > .05).  The ANOVA for time to peak angle had a significant 

interaction effect (p = .004).  PFPS subjects demonstrated a greater time to peak angle for 

knee valgus.  Tables 4.1 through 4.3 summarize all descriptive data and effect size 

calculations for each motion. 

Discussion 

Recently, researchers have focused much attention on the association between 

excessive hip motion and PFPS.  They have theorized that excessive hip transverse and 

frontal plane motion may increase knee valgus.  Knee valgus, in turn, can result in greater 

lateral patella tracking and higher patellofemoral joint compressive forces (Fulkerson, 

1997; Lee et al., 1994).  To date, no researchers have simultaneously examined hip 

kinematics and knee valgus to corroborate this theory.  

To better understand this association, the current study evaluated hip adduction, 

hip internal rotation, and knee valgus in subjects diagnosed with and without PFPS 

during stair descent.  It was hypothesized that PFPS subjects would demonstrate greater 

hip adduction, hip internal rotation, and knee valgus compared to controls.  However, 

results did not support the initial premise as PFPS and control subjects demonstrated 

similar average motion and similar peak angles during stair descent. 

Average Hip Internal Rotation 

Only a single case study (Mascal et al., 2003) has examined hip transverse plane 

kinematics in a subject diagnosed with PFPS during the stance phase of stair descent.  In 

this study, the subject demonstrated average hip internal rotation of 1.4 degrees, which 

was comparable to 2.06 degrees for the current study.  However, control subjects in the 
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current study exhibited similar average hip internal rotation (mean = 0.99 degrees; p = 

0.60).  This finding implied that PFPS subjects in both studies had values similar to 

asymptomatic controls. 

It should be noted that subjects in the current study demonstrated much 

variability, which would preclude the ability to attain statistically significant differences.  

As discussed in Chapter 2, researchers have had great difficulty measuring transverse 

plane motion, especially for the hip (Kadaba et al., 1989).  Therefore, a limitation of these 

findings could be ongoing problems associated with capturing hip rotation movement.  

This might also explain why other researchers (Powers et al., 2003; Tennant et al., 2001) 

have utilized kinematic magnetic resonance imaging techniques to refine this 

measurement. 

Average Hip Adduction 

 Control subjects demonstrated 2.07 degrees more hip adduction than PFPS 

subjects.  It was interesting to note that the p -value of 0.15 might have inferred a trend 

toward statistical significance.  As noted above, subjects demonstrated high variability 

that would preclude attaining statistical significance.  Post hoc power analysis (β = .80), 

based on the current study’s mean hip adduction motion and subject variability, showed 

that a minimum of 27 subjects per group would be required.  Therefore, differences 

between PFPS and control subjects might have existed, but were not detected, because of 

the relatively low sample size (Portney & Watkins, 2000b). 

Effect size calculations are another way to assess group differences.  Effect sizes 

are important because they may identify clinically relevant differences not found with 

statistical inference (Portney & Watkins, 2000c).  The current study’s effect size for 

average hip adduction was 0.55, which represented a medium-to-large effect (Cohen, 

1988).  This finding suggested greater between group differences that could be clinically 

relevant for the following reason. 

Subjects in the current study had chronic symptoms and reduced hip adduction 

might have represented a compensatory strategy.  By limiting hip adduction, PFPS 

subjects could decrease the Q angle (valgus angle) and minimize the lateral force vector 

applied to the knee (Fulkerson, 1997).  Powers et al. (2002) found a similar pattern with 

respect to femoral rotation for subjects with and without PFPS during normal gait.  PFPS 
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subjects maintained an average of 2.1 degrees femoral external rotation, compared to 1.6 

degrees of femoral internal rotation for control subjects.  They concluded that PFPS 

subjects could reduce the Q angle by maintaining greater femoral external rotation.  

Therefore, the medium-to-large effect size (0.55) could have highlighted a clinically 

relevant compensatory strategy exhibited by PFPS subjects.  

The subject in the Mascal et al. study (2003) demonstrated greater hip adduction 

(8.7 degrees) than the average for all subjects in the current study.  One reason for this 

variation may result from methodological differences.  In the Mascal et al. study, the 

subject lowered her center of mass slowly over a 3-second period.  Descending a single 

step at a slower pace most likely represented a more difficult maneuver.  It would require 

greater hip control and might represent a better way for identifying between group 

differences in hip adduction. 

The current study used a standardized rate (96 beats per minute) for stair descent 

because it provided a reliable measure and represented an activity of daily living that has 

typically provoked patellofemoral joint pain.  It was a relatively easier task, compared to 

the Mascal study, that subjects completed using smaller amounts of hip adduction.  

Therefore, future researchers may wish to compare hip adduction between subjects 

during a more demanding task. 

Average Knee Valgus 

 It was originally hypothesized that PFPS subjects would descend stairs with 

greater knee valgus.  Surprisingly, the results did not support this hypothesis as all 

subjects, on average, maintained a varus position.  Average knee varus was 2.89 degrees 

for control and 5.70 degrees for PFPS subjects. 

To my knowledge, no studies have reported knee frontal plane kinematic values 

for normal or PFPS subjects during stair descent.  Yu et al. (1997) examined knee valgus 

during stair-stepping for healthy subjects but only reported intratrial reliability, and not 

descriptive, data.  However, Zeller et al. (2003) examined knee frontal plane motion 

during a single-legged squat, a maneuver similar to stair descent.  During the actual squat 

movement, healthy female subjects demonstrated knee varus similar to those for the 

current study’s control subjects.   
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PFPS subjects in the current study, on average, maintained a greater knee varus 

position compared to controls.  Like hip internal rotation, high variability probably 

accounted for lack of statistical significance found between groups.  A medium effect 

size (0.41) was calculated and might have highlighted a clinically relevant finding.  PFPS 

subjects might have used knee varus as another compensatory strategy to reduce the Q 

angle and lateral valgus force applied to the knee. 

Peak Angles and Time to Peak Angles 

 Other researchers have also examined peak motion and time to peak motion to 

differentiate movement patterns between subjects diagnosed with and without PFPS 

(Messier et al., 1991; Powers et al., 2002).  They believed that greater and prolonged 

subtalar, tibial, and femoral rotations could adversely affect knee function.  Based on 

these studies, it was hypothesized that PFPS subjects would move toward greater 

amounts of hip adduction, hip internal rotation, and knee valgus during stair descent.  

Results from the current study did not support this premise as PFPS and control subjects 

demonstrated similar peak values for hip and knee kinematics.  Effect sizes for all 

measures were also minimal (< 0.35). 

 Subjects also demonstrated similar time to peak motion for hip kinematics.  They 

achieved maximum hip internal rotation and hip adduction at approximately 42% of the 

stair descent cycle.  Conversely, PFPS subjects achieved maximum knee valgus at 32% 

of the stair descent cycle while controls reached maximum knee valgus at 17% of the 

cycle.  These values were significantly different and inferred that PFPS subjects moved 

toward a valgus position over a longer period of time compared to controls.  Therefore, 

prolonged valgus might apply a lateral force vector over a longer duration that could 

stress patellofemoral joint structures. 

Conclusion and Future Direction  

 Caution should be taken when interpreting kinematic data from the current study.  

As noted earlier, data for subjects within both groups was highly variable.  The stair-

stepping task used would be less demanding than others that incorporate jumping and 

landing.  Subjects within each group might have utilized different hip and knee strategies, 

which would make it more difficult to identify between group differences.  Therefore, 
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additional studies should continue to investigate frontal and transverse plane hip and knee 

kinematics but using more demanding activities (Powers, 2003). 

 It has also been reported that PFPS subjects can reduce forces applied to the knee 

by walking at slower velocities (Brechter & Powers, 2002; Powers et al., 2002; Powers et 

al., 1996).  As discussed in Chapter 2, a standardized rate was used to facilitate between 

day reliability.  Subjects in the current study might have utilized a different cadence, if 

given the choice, for purposes of reducing ground reaction forces that might be 

transmitted through the lower extremity kinetic chain (Powers et al., 1999).  Future 

studies should incorporate kinetics to identify differences between subjects diagnosed 

with and without PFPS. 

In summary, PFPS and control subjects demonstrated similar hip and knee 

kinematics.  PFPS subjects had chronic symptoms and may have compensated for faulty 

movement patterns that might have contributed to PFPS pathology.  It is unknown if 

subjects with more acute symptoms might have exhibited different movement patterns.  

Finally, researchers have proposed different classifications of PFPS etiology (Wilk et al., 

1998; Witvrouw et al., 2005), and the current study used inclusion criteria based on 

clinical practice (pain during provocative activities like stair-stepping, prolonged sitting, 

and squatting).  Therefore, future studies should refine inclusion criteria to assess PFPS 

subjects who exhibit hip weakness that may result in excessive hip adduction, hip internal 

rotation, and knee valgus. 
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Table 4.1 

Summary of Hip Internal Rotation Angles and Time to Peak Hip Internal Rotation Angle 

 

  

Controls 

 

PFPS 

 

p-value 

 

Mean Hip Internal (External) Rotation Angle 

Mean (degrees) 0.99 2.06 0.60 

SD 8.02 7.19  

Cohen’s d   0.14δ 

 

Peak Hip Internal (External) Rotation Angle 

Mean (degrees) 5.64 6.62 0.76 

SD 7.72 7.94  

Cohen’s d   0.13δ 

 

Time to Peak Hip Internal (External) Rotation Angle 

Mean (percent of 

stair descent cycle) 

42.28 42.72 0.86 

SD 7.04 6.16  

Cohen’s d   0.07δ 

 

 
SD = standard deviation 

PFPS = patellofemoral pain syndrome 

δ Small effect (Cohen, 1988) 
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Table 4.2 

Summary of Hip Adduction Angles and Time to Peak Hip Adduction Angle 

 

  

Controls 

 

PFPS 

 

p-value 

 

Mean Hip Adduction (Abduction) Angle  

Mean (degrees) 2.61 0.54 0.15 

SD 3.87 3.72  

Cohen’s d   0.55§ 

 

Peak Hip Adduction (Abduction) Angle 

Mean (degrees) 5.43 3.99 0.31 

SD 3.51 4.57  

Cohen’s d   0.35β 

 

Time to Peak Hip Adduction (Abduction) Angle 

Mean (percent of 

stair descent cycle) 

43.11 39.78 0.42 

SD 9.19 13.94  

Cohen’s d   0.28‡ 

 

 

SD = standard deviation 

PFPS = patellofemoral pain syndrome 

§ Medium to large effect (Cohen, 1988) 

β Medium effect (Cohen, 1988) 

‡ Small to medium effect (Cohen, 1988) 
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Table 4.3 

Summary of Knee Valgus Angles and Time to Peak Knee Valgus Angle 

 

  

Controls 

 

PFPS 

 

p-value 

 

Mean Knee Varus (Valgus) Angle 

Mean (degrees) 2.89 5.70 0.28 

SD 8.05 5.42  

Cohen’s d   0.41β 

 

Peak Knee Varus (Valgus) Angle 

Mean (degrees) (0.64) 1.20 0.38 

SD 7.72 4.48  

Cohen’s d   0.29‡ 

 

Time to Peak Knee Valgus Angle 

Mean (percent of 

stair descent cycle) 

17.28 32.11 0.004α 

SD 14.22 15.79  

Cohen’s d   0.99± 

 

 
SD = standard deviation 

PFPS = patellofemoral pain syndrome 

β Medium effect (Cohen, 1988) 

‡ Small to medium effect (Cohen, 1988) 

α PFPS significantly different from control subjects 

± Large effect (Cohen, 1988) 
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CHAPTER FIVE 

Etiology of Patellofemoral Pain Syndrome. A proximal link to a distal problem 

 Witvrouw et al. (2005) recently stated that PFPS continues to be one of the most 

challenging musculoskeletal pathologies clinicians face.  It remains a multifactorial 

problem, one not even having a consensus regarding the terminology for pain.  Although 

often referred to as anterior knee pain, PFPS has encompassed other diagnoses such as 

chondromalacia patellae, runner’s knee, jumper’s knee, and patellar arthralgia.  The 

common bond among diagnoses has been the thought that PFPS was solely a “knee” 

disorder.  Based on this premise, interventions have focused primarily on knee articular 

structures and musculature.  Recently, though, researchers have shown that subjects 

diagnosed with knee pain report significant pain reduction after completing a 

rehabilitation program that focused on hip strengthening (Cornbleet, Sahrmann, & 

Norton, 2005; Crossley et al., 2002; Fredericson et al., 2000; Mascal et al., 2003; Pettitt 

& Dolski, 2000).  Although the hip may contribute to pathology, few have specifically 

examined hip function and its influence on PFPS. 

Past and Present Findings 

The primary purpose of this dissertation was to determine the association, if any, 

between hip impairments and PFPS.  As summarized in Chapter 3, subjects diagnosed 

with PFPS had knee extensor weakness but even greater hip abductor and external rotator 

weakness, findings in agreement with Ireland et al. (2003).  Weakness was also apparent 

during functional performance testing, as evidenced by PFPS subjects having lower limb 

symmetry indexes (Loudon et al., 2002).  Regarding EMG measures, researchers have 

reported higher quadriceps activity during stair-stepping and knee extension exercise for 

PFPS subjects (Mohr et al., 2003; Powers, 2000).  They inferred that greater motor 

recruitment was necessary to compensate for quadriceps weakness, although strength was 

not measured.  Results from the current study corroborated their premise as PFPS 

subjects had greater muscle activity, especially during the loading response and single leg 

stance intervals of stair descent. 

Others have hypothesized that quadriceps and gluteus medius activation onsets 

may be altered in subjects diagnosed with PFPS.  Some have found delayed VM 

activation relative to the VL (Cowan, Bennell, Crossley et al., 2002; Cowan et al., 2001; 
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Voight & Wieder, 1991); whereas others have reported delayed GM onset relative to the 

quadriceps (Brindle et al., 2003).  Results from the current study did not support these 

findings and agreed with others who were unable to substantiate this theory (Karst & 

Willett, 1995; Powers et al., 1996; Sheehy et al., 1998).  Therefore, it remains elusive if 

delayed muscle activations are present and significant, if in fact, any exist. 

The data from Chapter 4 summarized hip and knee kinematics.  Although it was 

hypothesized that PFPS subjects would demonstrate excessive hip adduction, hip internal 

rotation, and knee valgus, results from this study did not support this premise.  An 

ongoing problem was significant subject variability and inherent difficulties with 

measuring frontal and transverse plane motion (McFadyen & Winter, 1988).  Another 

reason for similar movement patterns among subjects might have been compensatory 

strategies that PFPS subjects developed (Powers et al., 2002).  Excessive hip and knee 

motions might have preceded the development of PFPS.  Therefore, prospective studies 

are needed to further understand these biomechanical influences on PFPS etiology. 

Enhancing the Evaluation Process for PFPS 

Nonoperative treatment is the gold standard treatment for PFPS, with physical 

rehabilitation being the most recommended intervention (Fulkerson, 2002).  An important 

aspect of rehabilitation is the evaluation process.  However, difficulty arises with pain as 

the primary complaint, since it is hard to objectively measure and quantify.  Based on this 

subjectivity, a secondary purpose of this dissertation was to identify reliable measurement 

tools that may enhance the evaluation process. 

Measurement reliability is critical because clinicians must use tools capable of 

identifying not only initial impairments but also changes throughout the rehabilitation 

process.  Unfortunately, few researchers have addressed measurement reliability, with 

most only examining reliability specific to asymptomatic subjects.  It is not known if 

subjects with pathology would respond similarly with repeat testing. 

This study examined measurement reliability for evaluation tools commonly used 

to assess PFPS impairments: 1) functional performance tests, 2) hand-held dynamometry, 

3) surface electromyography, and 4) motion analysis.  Functional performance tests had 

acceptable ICCs, with exception of the anteromedial lunge test for PFPS subjects.  For 

this test, PFPS subjects improved significantly on the second day of testing (See Table 
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2.6).  PFPS subjects might have anticipated increased discomfort with the lunge activity 

during initial testing.  However, they reported similar pain ratings (a rating + .05 cm of 

the original score) prior to the second day of testing.  Therefore, PFPS subjects might 

have performed repeat testing more aggressively due to a lower pain expectation.   

HHD was conducted using a belt-resisted method and the “make” test.  ICCs 

reflected good reproducibility but some variability in hip measures for PFPS subjects.  

ICCs for PFPS subjects also had low standard errors of measurement (SEM).  The small 

SEM indicated high measurement precision and limited variability between measures, 

findings that would support the reliability of these measures.   

Overall, ICCs for EMG amplitudes and muscle onset were acceptable.  Electrode 

placement was meticulously documented, and subjects completed the stair-stepping task 

in a standardized manner.  Together, these procedures likely enhanced reproducibility.  

Finally, ICCs for kinematic measures exceeded .70 for all motions, except for the hip 

transverse plane in PFPS subjects.  This finding suggested greater biological variability in 

the PFPS subjects. 

Associations between Pain and Clinical Measures 

PFPS is a diagnosis based primarily on a patient’s complaint of pain and 

perceived loss of function.  Clinicians routinely assess these parameters using a 10-cm 

visual analog scale (VAS) and Anterior Knee Pain Scale (Kujala et al., 1993), tools 

capable of providing reliable and valid outcome measures (Crossley, Bennell et al., 

2004).  As discussed above, clinicians measure other parameters, such as functional 

performance, strength, neuromuscular activity, and kinematics.  Although these measures 

are routinely evaluated, limited data exist regarding associations between these 

impairments and patellofemoral joint pain.   

Pain does not necessarily affect muscle or joint mechanical function; however, 

identifying parameters that have stronger associations with pain may assist clinicians 

with the evaluation process.  For example, if the step-down functional performance test 

has a stronger association with pain, compared to the anteromedial lunge, then it may 

represent a better evaluation tool specific for patients diagnosed with PFPS.     
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To better understand associations between impairments and pain, correlation 

analyses were conducted.  As described in previous chapters, all subjects documented 

their usual pain over the previous week using a 10-cm VAS (See Appendix E).  This 

measure was chosen because of its reliability, validity, and responsiveness for measuring 

outcomes specific to PFPS subjects (Crossley, Bennell et al., 2004).  The Spearman’s rho 

(ρ) coefficient was calculated for most measures since these data (control and PFPS 

treated as a single sample) did not meet the assumption of normality (Shapiro-Wilks 

(1965) W statistic p < .05).  Data for VM-VL timing differences and peak hip kinematics 

were normally distributed (Shapiro-Wilks W statistic p > .05) and therefore evaluated 

using the Pearson product moment coefficient (r). 

Results from Correlation Analyses 

The step-down functional performance test had a moderate, and significant, 

inverse correlation with pain (ρ = -0.66) while the anteromedial lunge had a weak 

association (ρ = -0.25).  For strength, hip abduction (ρ = -0.36) and external rotator (ρ = -

0.60), but not knee extensor (ρ = -0.27), measures were significantly correlated with pain.  

EMG amplitudes during the loading response and single leg stance intervals of stair 

descent had a moderate and significant correlation with pain (ρ range = 0.41 - 0.65; p < 

.05).  Only GM activity during the preswing interval showed a moderate association with 

pain (ρ = 0.42).  Significant associations were not identified for either pain and EMG 

onsets or pain and kinematics.  Tables 5.1 through 5.5 summarize correlation coefficients 

for all measures. 

Interpretation of Correlation Analyses 

Functional Performance Tests 

 Loudon et al. (2002) were the only researchers who have performed a correlation 

analysis on the functional performance tests used in this study.  The step-down and 

anteromedial lunge tests were chosen because they reported higher ICCs and higher 

correlation coefficients for these tests.  They calculated correlation values of 0.57 and 

0.73 for the step-down and anteromedial lunge test, respectively.   

Results from the current study were only in partial agreement with Loudon et al. 

(2002).  The correlation value for the step-down test (ρ = -0.66) was significant (p = 0.01) 

and showed a moderate inverse association between pain and limb symmetry index.  
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Correlation values between studies appeared similar, although it was unclear why the 

Loudon study’s coefficients showed a positive relationship.  It would have seemed more 

logical that PFPS subjects, having higher pain levels, would have lower levels of 

performance, implying an inverse relationship between pain and function.   

The anteromedial lunge test correlation value (ρ = -0.25) was much lower than 

that reported by Loudon et al. (2002), even though subjects in the current study 

performed this test in an identical manner.  One possible explanation may be differences 

in reported pain.  PFPS subjects in the current study had an average pain rating of 4.4 on 

a 10-cm VAS; Loudon et al. did not report this parameter.  Therefore, subjects in the 

Loudon et al. study might have experienced greater pain during the anteromedial lunge 

test, compared to controls, which could have accounted for differing associations with 

pain. 

Hip and Knee Strength 

 Researchers have shown that subjects diagnosed with PFPS experience 

quadriceps weakness (Powers et al., 1997; Roush et al., 2000; Stiene et al., 1996).  

Recently, researchers have also identified hip weaknesses in this patient population 

(Ireland et al., 2003; Niemuth et al., 2005).  These findings have provided preliminary 

evidence regarding relationships between the hip musculature and PFPS. 

 Results from the current study supported previous works since subjects with PFPS 

demonstrated hip and knee weakness.  However, the degree of correlation between pain 

and strength varied by structure.  The association between knee extensor strength and 

pain was both weak (ρ = -0.27) and non-significant, findings that agreed with Powers et 

al. (1997).  Like the current study, Powers et al. measured quadriceps strength with the 

knee flexed to 60 degrees, since females can generate greater torque in this position (Lieb 

& Perry, 1971).  This position also maximized patella contact within the trochlear groove 

and possibly minimized pain during strength testing (Steinkamp, Dillingham, Markel, 

Hill, & Kaufmen, 1993).  It was not known if PFPS subjects might have generated lower 

torque values in test positions that reproduced their pain.  For example, testing knee 

strength close to full extension (one that would decrease overall patella contact) might 

have elicited greater pain, resulted in smaller torque values, and highlighted a stronger 

association between pain and knee extensor strength.   
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Alternatively, hip abductor strength showed a weak (ρ = -0.36), but significant, 

inverse correlation with pain.  Hip external rotator strength showed a greater (ρ = -0.60), 

and significant, inverse association.  As discussed in Chapter 3, the hip abductor and 

external rotators provide a stabilizing effect on the entire lower extremity and contribute 

to normal knee function (Simoneau, 2002).  Even though knee extensor strength deserves 

consideration (Natri et al., 1998), the current findings showed that the hip musculature 

may have an even greater influence on PFPS than originally thought. 

Gluteus Medius and Vastii EMG Amplitudes and Kinematics 

Although data showed a stronger association between pain and hip strength, EMG 

activity may reflect better the muscle demands required for functional activities.  Results 

from this study showed moderate and significant correlations between pain and EMG 

activity for all muscles during loading response and single leg stance.  Results also 

showed a moderate and significant association between pain and GM activity during 

preswing.   

Loading response.  McFadyen and Winter (1988) have described the loading 

response interval as the most demanding throughout the stair descent cycle.  During this 

interval, the hip and knee muscles decelerated and controlled forward and downward 

motion of the body onto the step.  Moreover, researchers have reported relatively higher 

hip and knee muscle EMG activity during this interval for asymptomatic subjects 

(Kadaba et al., 1989; Lyons et al., 1983; McFadyen & Winter, 1988).  These findings 

identified the stabilizing effects provided by the hip and knee musculature (eccentric 

muscle action) during the initial phase of stair descent.  

Correlation coefficients for the GM (ρ = 0.55), VM (ρ = 0.65), and VL (ρ = 0.41) 

revealed moderate to high associations with pain and support results from strength testing 

(See Chapter 3).  PFPS subjects had significantly less hip and knee strength compared to 

controls and would require greater EMG activity during the more demanding intervals of 

stair descent.  Moreover, it is interesting to note that the correlation between knee 

extensor strength and pain was both weak and non-significant.  This finding suggested 

that EMG activity may reflect better the relationship between muscular demands and pain 

during a functional activity. 
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Single leg stance.  Like the loading response, moderate associations between 

EMG activity and pain were found for the GM (ρ = 0.46), VM (ρ = 0.46), and VL (ρ = 

0.42).  These findings suggested a stronger association between pain and higher VM and 

VL activation than that between pain and quadriceps strength.  Higher EMG activity for 

the VM and VL, and not only the VM, might reflect an overall decrease in quadriceps 

function (Malone et al., 2002). 

Preswing.  During preswing, subjects lowered their body to contact the 

contralateral foot onto the next step.  It was thought that greater muscle activation would 

be required to control this forward movement; yet this premise was not corroborated.  

According to McFadyen and Winter (1988), the body was likely positioned with the 

center of mass located more centrally over the foot, which would provide a stable base.  

Therefore, increased stability could have accounted for less EMG activity required during 

the preswing interval. 

Correlation coefficients for the VM (ρ = 0.11) and VL (ρ = -0.03) with pain were 

weak.  Conversely, the GM correlation (ρ = 0.42) showed a moderate and significant 

association with pain.  Although unclear for this finding, this association showed that 

PFPS subjects had greater GM activation throughout the entire stance phase of stair 

descent.  It is not known if such activation may stabilize the knee (prevent valgus 

motion). 

EMG onset timing differences and kinematics.  Tables 5.4 and 5.5 showed weak 

and non-significant associations between EMG timing differences and kinematics and 

pain.  This finding was not unexpected since data related to these parameters from 

Chapters 3 and 4 did not show significant group differences.  Based on these group 

similarities, it was not expected that pain would have been strongly correlated to these 

variables. 

Final Concluding Thoughts 

The overall purpose of this dissertation was to gain additional information 

regarding the relationship between hip function and PFPS.  Unlike previous studies, the 

hip and knee were examined simultaneously.  Results from this study showed that PFPS 

subjects demonstrated hip and knee impairments, especially for functional performance, 

strength, and EMG activation.  Conversely, data from this study did not identify 
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neuromuscular timing or kinematic differences.  Therefore, additional studies are 

required to better understand these parameters. 

Pain is a determining factor for the diagnosis of PFPS.  Findings from this study 

have provided preliminary evidence regarding significant associations between pain and 

hip musculature function.  More importantly, these data support previous studies that 

have reported improvements in patient impairments following an intervention that 

focused on hip musculature strengthening. 

My primary purpose for choosing this dissertation topic was to collect pilot data 

for future intervention studies.  Originally, it was my intent to measure functional 

performance, strength, EMG activity, and kinematics variables for PFPS subjects prior to 

and immediately following a 6-week intervention.  However, important questions needed 

to be answered before conducting this type study.  Will the evaluation tools provide 

reliable measures for both PFPS and control subjects?  Do differences in these parameters 

actually exist between subjects diagnosed with and without PFPS?  Are these measures 

correlated with pain and, therefore, meaningful for assessing changes in pain following 

an intervention? 

Results from this study showed the clinical tools can provide reliable measures.  It 

was also shown that subjects with PFPS demonstrated greater deficits in hip strength and 

required greater hip and knee muscle activation during stair-stepping as compared to 

controls.  However, PFPS subjects exhibited similar EMG activation onsets and 

kinematics as controls.  Finally, a moderate association existed between pain and LSI for 

the step-down test.  Hip strength demonstrated a stronger correlation with pain compared 

to that for quadriceps strength.  GM, VM, and VL EMG amplitudes during the more 

demanding intervals of stair descent had moderate associations with pain.  

Data from this study support the hip as a proximal link to a distal problem.  It 

remains elusive if pure hip weakness or perhaps decreased hip control during functional 

activities is responsible for PFPS.  Although future studies should employ interventions 

that focus on the hip, it might be more meaningful to determine if a hip strengthening 

program or a functional rehabilitation program may benefit PFPS subjects the best.  
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Table 5.1 

Summary of Spearman’s rho (ρ) Correlation Coefficients for Functional Performance 

Tests and Pain 

 

 

Functional Performance Test 

 

ρ 

 

p-value 

 

Step-down 

 

-0.66 

 

0.01 

Anteromedial Lunge -0.25 0.05 

 

 

 

 

Table 5.2 

Summary of Spearman’s rho (ρ) Correlation Coefficients for Strength Measures and Pain 

 

 

Strength Measure 

 

ρ 

 

p-value 

 

Hip Abductors 

 

-0.36 

 

0.05 

Hip External Rotators -0.60 0.01 

Knee Extensors -0.27 > 0.05 
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Table 5.3 

Summary of Spearman’s rho (ρ) Correlation Coefficients for Gluteus Medius, Vastus 

Medialis, and Vastus Lateralis Electromyographic Amplitudes and Pain 

 

 

EMG Amplitude 

 

ρ 

 

p-value 

 

GM Load 

 

0.55 

 

0.01 

VM Load 0.65 0.01 

VL Load 0.41 0.05 

GM SLS 0.46 0.01 

VM SLS 0.46 0.01 

VL SLS 0.42 0.01 

GM Preswing 0.42 0.05 

VM Preswing 0.11 > 0.05 

VL Preswing -0.03 > 0.05 

 

 

GM = gluteus medius 

VM = vastus medialis 

VL = vastus lateralis 

Load = loading response 

SLS = single leg stance 
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Table 5.4 

Summary of Spearman’s rho (ρ) and Pearson’s Product (r) Correlation Coefficients for 

Gluteus Medius, Vastus Medialis, and Vastus Lateralis Electromyographic Onset Timing 

Differences and Pain 

 

 

EMG Timing Difference 

 

Coefficient 

 

p-value 

 

GM - VM 

 

ρ = 0.03 

 

> 0.05 

GM - VL ρ = 0.02 > 0.05 

VL -VM r = 0.24 > 0.05 

 

 

GM = gluteus medius 

VM = vastus medialis 

VL = vastus lateralis 
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Table 5.5 

Summary of Spearman’s rho (ρ) and Pearson’s Product (r) Correlation Coefficients for 

Hip and Knee Kinematics and Pain 

 

 

Motion 

 

Coefficient 

 

p-value 

 

Average Hip Internal Rotation 

 

ρ = 0.10 

 

> 0.05 

Average Hip Adduction ρ = -0.20 > 0.05 

Average Knee Varus ρ = 0.12 > 0.05 

Peak Hip Internal Rotation r = 0.11 > 0.05 

Peak Hip Adduction r = -0.23 > 0.05 

Peak Knee Valgus ρ = 0.10 > 0.05 

Time to Peak Hip Internal Rotation ρ = 0.08 > 0.05 

Time to Peak Hip Adduction ρ = 0.04 > 0.05 

Time to Peak Knee Valgus ρ = 0.24 > 0.05 
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APPENDICES 

Appendix A 
________________________________________________________________________ 

Consent to Participate in a Research Study 
 
 
WHY ARE YOU BEING INVITED TO TAKE PART IN THIS RESEARCH? 
 
You are being invited to take part in a research study that involves understanding how the 
hip joint can cause patellofemoral knee pain syndrome, commonly referred to as anterior 
knee pain.  You are being invited to take part in this research study because you have 
been diagnosed with patellofemoral pain syndrome or you have been asked to participate 
because you do not have knee problems and will serve as a control subject.  If you 
volunteer to take part in this study, you will be one of about 30 people to do so. 
 
WHO IS DOING THE STUDY? 
 
The person in charge of this study is Lori A. Bolgla, MS (PI) of the Rehabilitation 
Sciences Doctoral Program.  She is being guided in this research by Terry Malone, EdD 
and Timothy L. Uhl, PhD.  There may be other people on the research team assisting at 
different times during the study. 

 
WHAT IS THE PURPOSE OF THIS STUDY? 
 
The purpose of this study will be to better understand the effect that excessive hip motion 
may have on the development of patellofemoral pain syndrome.  Another purpose will be 
to determine if evaluation techniques commonly used by physicians, physical therapists, 
and certified athletic trainers can provide reliable measures of hip motion, hip strength, 
and knee function. 

 
WHERE IS THE STUDY GOING TO TAKE PLACE AND HOW LONG WILL IT 
LAST? 
 
The research procedure will be conducted at the University of Kentucky Wenner-Gren 
Biomedical Laboratory.  The study will require that you report to the laboratory for two 
sessions that should last approximately 90 minutes each. 
 
WHAT WILL YOU BE ASKED TO DO? 
 
We will ask you for a brief medical history so that we may determine if you can 
participate in the study.   If you are a control subject, then you may participate as long as 
you do not meet any exclusion criteria.  If you meet the inclusion criteria, then you will 
sign this consent inform to signify your willingness to participate.  To facilitate taking 
accurate tests measurements, we will ask that you wear a pair of Lycra shorts and tank top 
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(which we will provide if necessary).  You will be compensated for your time and parking 
expense associated with study participation.     
 
Pain and Function Assessment: 
You will also be asked to look at a scale in which you will rate the pain that you have had 
in your knee during the past week.  The scale will be a 10-centimeter (cm) long line 
having increments numbered from 0 to 10.  You will be asked to place a mark on the line 
that represents the amount of knee pain during the past week (0 means no pain; 10 means 
the worst pain imaginable).  You will also complete this scale at the time of your second 
testing session.  If your knee rating is significantly different on the second test day, then 
you may not participate on the second testing date because this change in pain may affect 
the validity of results from the second test.  Next, you will ride a stationary bike for 3 
minutes in a manner that does not cause pain to your knee.  You will then practice two 
functional performance tests commonly used to assess people having patellofemoral pain 
3 to 5 times.  You will perform the following functional performance tests: 
 
1. Step-Down Test 

For the step-down test, you will stand on an 8” step using the test leg.  You will lower 
your body enough to brush the heel of the opposite leg on the floor (in front of the 
step), and then raise your body upward by straightening your test knee.   
 

2. Anteromedial Lunge Test 
For the anteromedial lunge test, you will stand behind a start line and then lunge (to a 
90o knee angle) forward and slightly across your body with the uninvolved leg three 
times.  We will measure the distance from the start line to the back of your heel for 
each trial and take 80% of the longest measure.  A piece of tape placed 80% the 
distance of the longest measure will give you a target that you must lunge past during 
actual testing. 

 
After you demonstrate proper technique (past literature has recommended three to five 
practice trials), you will perform as many repetitions as you can properly in 30 seconds 
for each test.  We will test both legs to determine a limb symmetry index to compare your 
measurements to that of other subjects.  
 
Strength Assessment 
We will measure strength using a hand-held dynamometer (a spring-like gauge that 
measures muscle strength).  We will measure three muscles: 
  
Muscle #1 (Hip Abductors)  
You will lay on your side so that we may measure the muscle on the outside of your leg.  
You will lay on your side with both legs parallel to each other, with the test leg on top.  
We will place the dynamometer on the outside of your thigh just above your knee.  You 
will push outward into the dynamometer for one practice trial and three test trials.  You 
will hold the muscle contraction for 5 seconds and rest 1 minute between each trial.  
During this time, we will simultaneously gather surface electromyographic (EMG) data to 
provide a measure of the maximal amount of force you can produce.  EMG data will 
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provide a representation of the electrical activity within your muscles when you muscles 
are working actively.  This measurement is necessary so that we can compare your muscle 
activity to that of other subjects. 
 
Muscle #2 (Hip External Rotators) 
You will then sit in a position with the hips and knees bent 90 degrees.  We will place the 
dynamometer on the inside of the test leg just above the ankle.  You will push inward 
against the dynamometer for one practice trial and three test trials.  You will hold the 
muscle contraction for 5 seconds and rest 1 minute between each trial.   
 
Muscle #3 (Knee Extensors) 
You will then sit in a position with the hips bent to 90 degrees and your test knee bent to 
60 degrees.  We will place the dynamometer on the front of your leg just above your 
ankle.  You will push outward against the dynamometer for one practice trial and three 
test trials.  You will hold the muscle contraction for 5 seconds and rest 1 minute between 
each trial.  During this time, we will simultaneously gather EMG data to provide a 
measure of the maximal amount of force you can produce.  This measurement is necessary 
so that we can compare your muscle activity to that of other subjects.    
  
Motion Analysis and EMG Preparation: 
Next, we will prepare you for motion analysis and electromyographic (EMG) data 
collection.  Motion analysis will provide a means for evaluating motion of your hip and 
knee joints during a stair-stepping activity and EMG will measure electrical activity of 
your muscles as they contract while performing the task.  You will have approximately 35 
reflective markers placed on certain landmarks of your body to allow the motion analysis 
system to record hip and knee movement.  You will also have five conductive (sticky) 
pads placed on your leg.   The conductive pads will measure the amount of electrical 
activity in your muscles while you are going up and down the stair platform.  Hair 
overlying the skin will be shaved, if necessary, and the skin will be cleaned thoroughly 
with an abrasive pad and alcohol swab prior to application of all conductive pads. 
 
Stair-stepping Task: 
You will perform five practice and five test trials of a stair-stepping that you will 
complete at your own walking pace.  You will go up and down two 20-cm (8 inch) high 
steps, making sure that the test leg lifts your body on the first step and lowers your body 
on the third step.  We will collect motion analysis and EMG data during this activity.   

 
You will return to the laboratory within 5 to 7 days for repeat testing.  The principal 
investigator will provide you an appointment time that will be convenient for you to return 
to the laboratory during this 5 to 7 day period.  The principal investigator will also contact 
you by either telephone or e-mail (according to your preference of being reminded) to 
remind you of the second testing day.  You will perform all tests in the same manner 
described above.  You will complete another visual analog scale because differences in 
pain may affect your functional test performance.  You may be excluded if you have a 
significant difference in the visual analog scale pain assessment on the second testing day. 
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ARE THERE REASONS WHY YOU SHOULD NOT TAKE PART IN THIS 
STUDY? 
 
You should not participate in this study if you have had knee surgery, are participating in a 
lower extremity rehabilitation program at this time, have lower extremity injury/s other 
than patellofemoral pain syndrome, have an allergy to tape, and are under 18 years of age 
or over 35 years of age.  If you are a control subject, then you should not participate if you 
have had any lower extremity injury or under 18 years of age or over 35 years of age. 
 
WHAT ARE THE POSSIBLE RISKS AND DISCOMFORTS? 
 
Risks are minimal in this study.  You may experience a skin reaction from the adhesive 
pads or joint or muscle soreness from activities that you will perform.  To reduce the 
possibility of muscle soreness and joint fatigue, you will perform a warm-up activity prior 
to testing.  We will also ask that you refrain from physical activity, other than normal 
walking, for a 24-hour period following the end of the study.   
 
There is always a chance that exercise may harm you.  We will do everything we can to 
keep you from being harmed.  Additionally, you may experience a previously unknown 
risk or side effect. 
 
WILL YOU BENEFIT FROM TAKING PART IN THIS STUDY? 
 
You will not get any personal benefit from taking part in this study. 
 
DO YOU HAVE TO TAKE PART IN THE STUDY? 
 
If you decide to take part in the study, it should be because you really want to volunteer.  
You can stop at any time during the study.  If you decide not to take part in this study, 
your decision will have no effect on your grades or standing at the University of 
Kentucky. 
 
IF YOU DON’T WANT TO TAKE PART IN THE STUDY, ARE THERE OTHER 
CHOICES? 
 
If you do not want to be in the study, there are no other choices except not to take part in 
the study. 
 
WHAT WILL IT COST YOU TO PARTICIPATE? 
 
There are no costs associated with your participation other than the time committed for 
participation.  
 
WHO WILL SEE THE INFORMATION THAT YOU GIVE? 
 
We will keep private all research records that identify you to the extent allowed by law. 
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Your information will be combined with information from other people taking part in the 
study. When we write about the study to share it with other researchers, we will write 
about the combined information we have gathered. You will not be identified in these 
written materials. We may publish the results of this study; however, we will keep your 
name and other identifying information private.   
 
We will make every effort to prevent anyone who is not on the research team from 
knowing that you gave us information, or what that information is.  For example, your 
name will be kept separate from the information you give, and these two things will be 
stored in different places under lock and key. You should know, however, that there are 
some circumstances in which we may have to show your information to other people.  For 
example, the law may require us to show your information to a court. 
 
CAN YOUR TAKING PART IN THE STUDY END EARLY? 
 
If you decide to take part in the study, you still have the right to decide at any time that 
you no longer want to continue.  You will not be treated differently if you decide to stop 
taking part in the study. 
 
The individuals conducting the study may need to withdraw you from the study.  This may 
occur if you are not able to follow the directions they give you or if they find that your 
being in the study is more risk than benefit to you. 
 
WHAT HAPPENS IF YOU GET HURT OR SICK DURING THE STUDY? 
 
If you believe you are hurt or if you get sick because of something that is done during the 
study, you should call Lori A. Bolgla at 859-333-6356 immediately.  It is important for 
you to understand that the University of Kentucky will not pay for the cost of any care or 
treatment that might be necessary because you get hurt or sick while taking part in this 
study.  That cost will be your responsibility.  Also, the University of Kentucky will not 
pay for any wages you may lose if you are harmed by this study. 
 
Medical costs that result from research-related harm can not be included as regular 
medical costs.  The University of Kentucky is not allowed to bill your insurance company.  
You should ask your insurer if you have any questions about your insurer’s willingness to 
pay under these circumstances. 
 
WILL YOU RECEIVE ANY REWARDS FOR TAKING PART IN THIS STUDY? 
 
You will receive $20 for each testing session (for a maximum of $40) to cover your time 
and parking expenses associated with participating in this study.  If you are excluded from 
the second testing day (because of a significant change in pain), you will not receive the 
second $20 payment (you will only be paid for the first day of testing). 
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WHAT IF YOU HAVE QUESTIONS? 
 
Before you decide whether to accept this invitation to take part in the study, please ask any 
questions that might come to mind now.  Later, if you have questions about the study, you 
can contact the investigator, Lori A. Bolgla at 859-333-6356.  If you have any questions 
about your rights as a volunteer in this research, contact the staff in the Office of Research 
Integrity at the University of Kentucky at 859-257-9428 or toll free at 1-866-400-9428.  
We will give you a copy of this consent form to take with you. 
 
WHAT ELSE DO YOU NEED TO KNOW? 
 
You will be told if any new information is learned which may affect your condition or 
influence your willingness to continue taking part in this study. 
 
_________________________________________  ________________ 
Signature of person agreeing to take part in the study   Date 
 
_________________________________________ 
Printed name of person agreeing to take part in the study 
 
_________________________________________       ________________ 
Name of person providing information to subject    Date 
 
_________________________________________ 
Signature of Investigator   
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Appendix B 
________________________________________________________________________ 
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Appendix C 
_________________________________________________________________ 

 

Measurement Tool Instrumentation 

Hand-held Dynamometer 

All isometric strength testing was performed using the Commander PowerTrack II™ 

(JTech Medical, Salt Lake City, UT) hand-held dynamometer (HHD).  This digital strain-gauge 

dynamometer has a maximum load cell capacity of 125.0 lb (556.3 N), with a manufacturer-

reported accuracy of 99%.  The dynamometer’s calibration was confirmed prior to the study by 

placing known weights on the HHD and comparing this to the HHD’s reported weight.  Accuracy 

was verified after every tenth testing session. 

Surface EMG 

A 16-channel Myosystem 1400 EMG system (Noraxon USA, Inc., Scottsdale, AZ) 

recorded muscle activity.  Unit specifications for this system included a common ratio rejection 

ratio exceeding 100 dB, an amplifier gain of 1000, and input impedance exceeding 10 Mohm.  

EMG data were sampled at 960 Hz and initially band pass filtered from 10 to 1000 Hz.  They 

were then converted from analog to digital using a 12-bit A/D board (National Instruments, 

Austin, TX), synchronized with the video data, and stored on a personal computer.   

Motion Analysis 

Video data were recorded using 7 high-speed, high-resolution (320 X 240) video cameras 

(Motion Analysis Corporation, Santa Rosa, CA) operating at 60 Hz.  A three-dimensional volume 

of approximately 2.0 m X 1.2 m X 1.8 m was calibrated in accordance with procedures 

recommended by Motion Analysis Corporation.  According to the manufacturer’s manual, the 

calibration process calculates eleven calibration coefficients, which implicitly define the 

configuration of a particular view.  The calibration coefficients can define the path of an optical 

ray from the target (marker) to the camera through the object-space.  The 3-dimensional position 

of a target can be determined when rays from 2 cameras intersect simultaneously in space.  The 

tracking process uses data from intersecting optical rays from different views of the same event.  

EVaRT employs a “best fit” tracking algorithm using only good camera views.  The 

manufacturer-reported accuracy for detection of marker position has been reported as + 1 mm.  

Video and analog data were collected using the EVaRT 4.2 hardware-software system (Motion 

Analysis Corp.) and stored on a personal computer.       
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Appendix D 
__________________________________________________________________________________________ 

 

Procedures for Processing EMG and Kinematic Data 

Surface EMG Data 

1. Muscle Activation Amplitudes 

EMG data were initially band pass filtered at 10 to 1000 Hz (during data collection using 

the Myosystem 1400 EMG system) and further band pass filtered at 20 to 480 Hz (during data 

processing) using Datapac Software (Run Technologies).  For purposes of determining activation 

amplitudes, data were converted to root mean square (RMS) values using a 55 msec time constant 

(Sheehy et al., 1998).  Resting and MVIC data were processed in an identical manner and used to 

express activation amplitudes as a percent MVIC.  The MVIC for each muscle was determined by 

calculating the RMS amplitude recorded over a 500 millisecond (ms) window (Bamman, Ingram, 

Caruso, & Greenisen, 1997).  This amount was assumed to represent 100% isometric muscle 

activity for each muscle.   

2. Muscle Activation Onsets 

For purposes of determining activation onsets, data were full wave rectified and low pass 

filtered at 50 Hz (Cowan et al., 2000).  A muscle onset was defined as the point in which the 

signal deviated by more than 3 standard deviations, for a minimum of 25 ms, over the baseline 

level taken 200 ms before the trial began. 

Kinematic Data 

Video data were sampled at 60 Hz, tracked, and smoothed using a fourth order 

Butterworth zero phase-lag low-pass filter, with a cutoff frequency of 6 Hz, using EVaRT 4.2 

software (Motion Analysis Corporation).  Processed data were then analyzed using OrthoTrak 5.0 

software (Motion Analysis Corporation).  This software used a joint coordinate system based on 

work by Grood and Suntay (1983) to describe knee motion.  Based on this convention, joint 

motion was described as follows: 

 
Motion Positive Negative 

Hip transverse plane Internal rotation External rotation 

Hip frontal plane Adduction Abduction 

Knee frontal plane Adduction 

(Varus) 

Abduction 

(Valgus) 
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Appendix E 
__________________________________________________________________________________________ 

 

Summary of Pain, Functional Performance Test, and Strength Testing  

Pain 

 Researchers (Chesworth, Culham, Tata, & Peat, 1989; Crossley, Bennell et al., 

2004) have determined the reliability for using a 10-cm visual analog scale to measure 

subjective pain.  The extreme left side of the visual analog scale stated “no pain” whereas 

the extreme right side stated “worse pain imaginable.”  Subjects placed a mark on the 

scale that most likely describes their usual pain over the previous week.  The measured 

distance from the extreme left side of the scale to the subject’s mark was used for 

statistical analysis. 

Functional Performance Tests 

Lower extremity function was assessed using the step-down and anteromedial 

lunge functional performance tests.(Loudon et al., 2002)  For the step-down test, subjects 

stood on an 8” step using the test extremity, lower their body enough to brush the foot of 

the opposite lower extremity on the floor (in front of the step), and returned to full knee 

extension.  For the anteromedial lunge test, subjects stood behind a start line and lunged 

(to 90o knee flexion) forward and across midline with the uninvolved lower extremity 

three times.  I measured the distance from the start line to the back of the heel for each 

trial and took 80% of the longest measure.  A piece of tape placed 80% the distance of 

the longest measure gave subjects a target they lunged past (the back of the test heel was 

placed in front of the target) during this test.  For each test, the number of repetitions 

completed for each lower extremity in a 30-second time period was counted. 

Strength Testing Protocol 

1. Hip Abductor Strength 

Subjects were positioned in sidelying with the test leg in a neutral position by 

placing pillows between the lower extremities.  The HHD was placed over the lateral 

femoral condyle and secured with a Velcro strap (Ireland et al., 2003).  Subjects produced 

maximal isometric contractions using the “make” test (Andrews et al., 1996; Bohannon, 

1997).  They generated maximum force over a 2-second period and maintained this force 

for an additional 5 seconds.  Subjects performed one practice (Andrews et al., 1996; 
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Bohannon, 1997) and three test trials of a maximal isometric hip abductor contraction, 

with a 30-second rest period between trials. 

2. Hip External Rotation Strength 

 Hip external rotator isometric strength was measured using methods previously 

described in the literature (Ireland et al., 2003; Jaramillo, Worrell, & Ingersoll, 1994; 

Niemuth et al., 2005).  Subjects sat with the hips and knees in 90 degrees of flexion.  The 

HHD was placed just proximal to the medial malleolus and secured with a strap.  

Subjects were instructed to pull against the strap and the primary investigator ensured 

that subjects did not simultaneously flex or adduct the hip.  As described above, they 

generated force using the “make” test (Andrews et al., 1996; Bohannon, 1997).  Subjects 

performed one practice and three test trials of a maximal isometric hip external rotator 

contraction, with a 30-second rest period between trials. 

3. Knee Extensor Strength 

Knee extensor isometric strength was measured using methods described 

previously in the literature (Mohr et al., 2003; Powers, 2000).  Subjects were positioned 

with the hip in 90 degrees of flexion and the knee in 60 degrees of flexion.  The HHD 

was placed just proximal to the malleoli and secured with a strap.  As described above, 

they generated force using the “make” tests (Andrews et al., 1996; Bohannon, 1997).  

Subjects performed one practice and three test trials of a maximal isometric quadriceps 

contraction, with a 30-second rest period between trials.  I chose this position because 

asymptomatic females can generate maximum isometric force at 60 degrees knee flexion 

(Lieb & Perry, 1971).   

  106



   

Appendix F 
_______________________________________________________________________ 

 

A Priori Power Analysis 

A priori power analysis using α = .05 and β = .20 was used to determine the 

number of subjects required to protect against type I and II errors.  For FPT, Loudon et al. 

(2002) found significant differences using 15 subjects per group.  For isometric strength 

measures, 15 subjects per group would be adequate based on strength difference of 15% 

(Ireland et al., 2003) and previously reported variability (Bohannon, 1997).  For EMG 

amplitudes, Mohr et al. (2003) reported significant differences using 13 PFPS and 11 

control subjects in a study that examined EMG amplitudes during a similar stair-stepping 

task.  For quadriceps timing differences, a similar study conducted at the UK 

Musculoskeletal Lab found significant VM to VL timing differences using 14 PFPS and 

14 control subjects (Boling, Bolgla, Mattacola, et al., 2004, unpublished data).  Brindle et 

al. (2003) reported significant GM to VM and VL timing differences in a group of 16 

PFPS and 12 control subjects.     

Limited information existed regarding kinematic parameters specific to subjects 

diagnosed with PFPS.  From clinical experience, I believe that a 10 degree difference in 

hip abduction, hip internal rotation, and knee abduction would discriminate between 

subjects diagnosed with and without PFPS. Using this difference and a standard deviation 

of + 10 degrees, a minimum of 16 subjects would be needed for each group.  Based on all 

previous data, the current study included 18 subjects in each group. 
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Appendix G 
_______________________________________________________________________ 

 

Normalization of Stance Phase of Stair Descent for EMG Data 

The stance phase of stair descent was divided into the following intervals: 1) 

loading response, 2) single leg stance, and 3) preswing (Mohr et al., 2003).  Loading 

response began at the initial point where any part of the ipsilateral foot contacted the step 

and ended as subjects lifted the contralateral foot off the previous step (e.g., initial double 

leg stance).  Single leg stance occurred when the test extremity supported the entire body 

mass during stair descent.  Preswing began when any part of the contralateral foot 

contacted the ground and ended as subjects lifted the test extremity’s foot off the stair 

(e.g., terminal double leg stance).   

OrthoTrak software (Motion Analysis Corp.) ensemble averaged (5 trials for each 

subject) and normalized data to 100% of the stair descent cycle.  The software also 

summarized the percent of the entire cycle spent during loading response, single leg 

stance, and total stance.  Based on this information, preswing was determined by 

subtracting the percent for loading response and single leg stance from total stance [% 

preswing = % total stance – (% loading response + % single leg stance)].   

The Table below summarizes the percent of the stair descent cycle associated with 

loading response, single leg stance, and preswing for control and PFPS subjects.  

Independent t-tests were then conducted to test for the presence of group differences in 

these intervals.  All subjects descended the stairs in a similar manner and between-subject 

variability was low.  Therefore, the average percent time that all subjects required during 

each interval (all data combined) was used to normalize EMG data.   

Based on these average values, stance phase was divided and expressed as a 

percentage of total stair descent in the following intervals: 

 

Loading Response 0% - 7% of stair descent 

Single Leg Stance 8% - 46% of stair descent 

Preswing 47% - 58% of stair descent 

 

  108



   

 
Table. 

Summary of Average Time (expressed as a percent of the stair descent cycle) for 

Intervals of the Stance Phase of Stair Descent 

 
  

PFPS 
 

 
Control 

 

Interval Mean SD† Mean SD† p – value 
 

Load 
Response 

 
 

6.6 

 
 

1.1 

 
 

7.5 

 
 

1.6 

 
 

.07 
 

Single Leg 
Stance 

 
 

39.8 

 
 

1.7 

 
 

38.7 

 
 

1.7 

 
 

.09 
 

Preswing 
 

11.6 
 

1.7 
 

12.8 
 

2.5 
 

.11 
 

 
† SD = standard deviation 
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Appendix H 
_______________________________________________________________________ 

Data Collection Sheet 

 

Subject # ________ Age ________ Hgt. ________ Wgt. ________ 

 

Lower extremity        Left     Right 

Duration of symptoms     __________  

Do you have a history of significant lower extremity injury other than patellofemoral pain 

syndrome (except for control subjects)? Yes No 

Shoe Size __________ 

Distance from greater trochanter to lateral femoral condyle __________ 

Distance from lateral knee joint line to lateral malleolus __________ 

 

Visual Analog Scale Measurement 

Day 1 __________ Day 2 __________ 

 

Functional Performance Tests 

  Day 1 Day 2 

Test Order 
 

_______ 

Test 
 

Step-down 

Left 
 

_______ 

Right 
 

_______ 

Left 
 

_______ 

Right 
 

_______ 
 

_______ 
 

Lunge 
 

_______ 
 

_______ 
 

_______ 
 

_______ 
 

Distance used for Lunge test __________ 
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Strength Measurements 

  Day 1 Day 2 

Test Order 
 

_______ 

Muscle 
 
Hip abductors 

Trial 1 
 
______ 

Trial 2 
 
______ 

Trial 3 
 
______ 

Trial 1 
 
______ 

Trial 2 
 
______ 

Trial 3 
 
______ 

 
_______ 

 
Hip external rotators 

 
______ 

 
______ 

 
______ 

 
______ 

 
______ 

 
______ 

 
_______ 

 
Knee extensors 

 
______ 

 
______ 

 
______ 

 
______ 

 
______ 

 
______ 

 

Surface Electrode Placement (in cm): 

Gluteus Medius 1/3 the distance from iliac crest and 

greater trochanter 

 

__________ 

Vastus Medialis Oblique Distance superior to patella 

Distance medial 

__________ 

__________ 

Vastus Lateralis Distance superior to patella 

Distance lateral 

__________ 

__________ 

 
Muscle Onset Timings (conversion to time): 

 Day 1 Day 2 

Trial 1 __________ __________ 

Trial 2 __________ __________ 

Trial 3 __________ __________ 

Trial 4 __________ __________ 

Trial 5 __________ __________ 

 
 
Muscle Onset Timings Differences for Day 1: 

 VMO-GM VL-GM VL-VMO 

Trial 1 __________ __________ __________ 

Trial 2 __________ __________ __________ 

Trial 3 __________ __________ __________ 

Trial 4 __________ __________ __________ 

Trial 5 __________ __________ __________ 
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Muscle Onset Timings Differences for Day 2: 

 VMO-GM VL-GM VL-VMO 

Trial 1 __________ __________ __________ 

Trial 2 __________ __________ __________ 

Trial 3 __________ __________ __________ 

Trial 4 __________ __________ __________ 

Trial 5 __________ __________ __________ 

 

Muscle Amplitude (frame number): 

 Begin End Duration 

 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 

Trial 1 ________ ________ ________ ________ ________ ________

Trial 2 ________ ________ ________ ________ ________ ________

Trial 3 ________ ________ ________ ________ ________ ________

Trial 4 ________ ________ ________ ________ ________ ________

Trial 5 ________ ________ ________ ________ ________ ________

 

Muscle Amplitude (conversion to time): 

 Begin End Duration 

 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 

Trial 1 ________ ________ ________ ________ ________ ________

Trial 2 ________ ________ ________ ________ ________ ________

Trial 3 ________ ________ ________ ________ ________ ________

Trial 4 ________ ________ ________ ________ ________ ________

Trial 5 ________ ________ ________ ________ ________ ________
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Calibration: 

 

Muscle Zero Off-Set (rest) 1-volt Scale (maximum) 

 Day 1 Day 2 Day 1 Day 2 

Gluteus Medius ________ ________ ________ ________ 

Vastus Medialis Oblique ________ ________ ________ ________ 

Vastus Lateralis ________ ________ ________ ________ 

 

Muscle Amplitudes (% MVIC): 

Load Response Midstance Pre-swing  

GM VMO VL GM VMO VL GM VMO VL 

Day 1 _____ _____ _____ _____ _____ _____ _____ _____ _____ 

Day 2 _____ _____ _____ _____ _____ _____ _____ _____ _____ 
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Appendix I 
________________________________________________________________________ 
 

Visual Analog Scale 
 
 

 
Subject #   _______ 
 
 
Testing Day     1       2 
 
 
Indicate your greatest level of knee discomfort during the past week 

 

 

 
 

 
 

 
No pain at all Worse pain 

imaginable 
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Appendix J 
_________________________________________________________________________ 

Summary of Procedures 

 

Warm-up Procedures 

1. Explain the procedures and obtain informed consent 

2. Complete 10-cm VAS 

3. Ride a stationary bike for 3 minutes at a submaximal speed 

4. Obtain the following demographic information: 

 Age 

 Duration of symptoms 

 Height 

 Weight 

 Thigh length (greater trochanter to distal femur at the lateral knee joint line) 

 Tibia length (proximal tibia at the lateral knee joint line to lateral malleolus) 

 

Functional Performance Tests 

Step-Down Test 

1. Subjects stand on an 8” step 

2. Subjects step forward and down toward the floor 

3. The down limb only brushes the floor with the heel and then returns to full knee 

extension (counts as 1 repetition) 

4. Count the number of repetitions subjects can perform in 30 seconds 
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Anteromedial Lunge 

1. Line the subject behind a start line 

2. Subject lunges forward with the uninvolved leg so that the front knee flexes to 90o 

and crosses midline 

3. Record the distance from the start line to the back of the heel of the lead leg 

4. Subject performs this task 3 times 

5. Calculate 80% of the maximal distance and mark with a piece of tape to provide a 

target for testing purposes 

6. Count the number of lunges that a subject can perform in 30 seconds 

 

Manual Muscle Testing and EMG Normalization 

1. Don EMG electrodes to GM, VMO, and VL 

2. Take a 3-second resting file 

3. Take MVIC simultaneously during manual muscle testing 

 

Hip Abductors  

1. Place subjects in 10o abduction with pillows between thighs 

2. Secure the dynamometer just proximal to the lateral condyle 

3. Allow subjects 1 practice using the “make test”  gradually generate maximal 

contraction over a 2-second period and hold for 5 seconds 

4. Repeat the process for 3 trials 

5. Rest 1 minute between trials 

 

Hip External Rotation 

1. Subjects sit with the hip and knees in 90o flexion with the hips and trunk stabilized 

with straps 

2. Place the dynamometer 2-cm proximal to the medial malleolus 

3. Allow subjects 1 practice using the “make test”  gradually generate maximal 

contraction over a 2-second period and hold for 5 seconds 

4. Repeat the process for 3 trials 

5. Rest 1 minute between trials 
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Knee Extension 

1. Subjects sit with the hip in 90o flexion and knees in 60o flexion with the hips and 

trunk stabilized with straps 

2. Place the dynamometer 2-cm proximal to the malleoli 

3. Allow subjects 1 practice using the “make test”  gradually generate maximal 

contraction over a 2-second period and hold for 5 seconds 

4. Repeat the process for 3 trials 

5. Rest 1 minute between trials 

 

Kinematic and EMG Data Collection 

1. Don reflective markers 

2. Allow subjects to practice the task 5 times to a metronome set at 96 bpm 

3. Place a piece of tape on the walkway where subjects will use the test extremity to hit 

the second and third steps 

4. Confirm that cameras read all markers 

5. Take a 1-second static trial 

6. Remove all knee and ankle markers 

7. Collect a minimum of 10 walking trials 
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Appendix K 
________________________________________________________________________ 

Participant Sign-up Sheet 

Name e-mail Phone 

_______________________ _______________________ _______________________

_______________________ _______________________ _______________________

_______________________ _______________________ _______________________

_______________________ _______________________ _______________________

_______________________ _______________________ _______________________

_______________________ _______________________ _______________________

_______________________ _______________________ _______________________

_______________________ _______________________ _______________________

_______________________ _______________________ _______________________

_______________________ _______________________ _______________________

_______________________ _______________________ _______________________

_______________________ _______________________ _______________________

_______________________ _______________________ _______________________

_______________________ _______________________ _______________________

_______________________ _______________________ _______________________

_______________________ _______________________ _______________________
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