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ABSTRACT OF THESIS

HUMIDITY SENSOR CIRCUIT USING REAL TIME OPERATING SYSTEM
(FREERTOS) KERNEL

A humidity sensor can be used to measure the moisture content of the environment.
The physical change of the sensor expresses as the change of electrical property like
capacitance, resistance, voltage, current, frequency, etc. In order to process these
analog signals digitally, microprocessor is involved in the measurement. This thesis
presents design of a circuit to measure low moisture levels. The 16-bit RISC mixed
signal microcontroller MSP430F249 from Texas Instruments will be used. The
circuit has good performance at extremely low humidity levels.
Meanwhile, a small real time operating system kernel FreeRTOS, a market leading
RTOS from Real Time Engineer Ltd is ported to the microcontroller. The basic
concept about FreeRTOS and how to port this RTOS to MSP430F249
microcontrollers will be the topics of this thesis as well.
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Chapter 1 Introduction

1.1 Background

A humidity sensor measures the humidity level by measuring the change in

the resistance of an element or the change in the electrostatic capacity of that element

as it absorbs or releases moisture. Humidity sensors can be used not only to measure

the humidity in an atmosphere, but also to automatically control humidifiers,

dehumidifiers, and air conditioners for humidity adjustment (1).They are important

for extremely environment where water or vapor has vital influence. These sensors are

widely used in industry, agriculture, medicine, and many other areas today. People are

trying to use different materials to develop humidity sensor with good performance.

At the present time, much has been reported about humidity sensors making use of

materials such as electrolytes, organic polymers, alumina thin films, and other metal

oxides (2). However, many humidity sensors suffered from serious drawbacks, e.g.

long term instability, large humidity hysteresis, and slow response, etc (3).

According to the measurement range and the responded physical variable, humidity

sensors are divided into two types: relative humidity (RH) sensors and absolute

humidity (moisture) sensors. Relative humidity sensors are used to measure the ratio

of water vapor pressure to the saturated water vapor pressure at a fixed temperature,

in the range from 10% to 100% RH, referred to as high humidity. Absolute humidity

sensors are used to detect the water vapor concentration in a flow of gas or in a sealed

package, ranging from -80°C to +20°C dew/ frost point. Absolute humidity covers a
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wide range of humidity compared with relative humidity, i.e. -80°C to -10°C frost

point corresponding to 0. 5 to 2300 parts per million (ppmv), at 1 atmosphere, is

referred to as trace moisture, and -10°C to +20°C dew/frost point corresponding to 10%

to 100% RH at 20°C , overlaps the relative humidity at 20°C (3).

The research of this thesis is based on an alpha alumina-based humidity sensor, which

is reliable and drift-free humidity sensor. It is essential to have a robust sensor to

design a competitive product. Long time repeatability, long term stability, slow

response time, wide measurement range, high resolution, good sensitivity, calibration,

and temperature independence are the main factors decide the performance of the dew

point transmitter.

1.2 Motivation

A Sensor can be used to measure physical quantities of environment. Usually, these

physical quantities are in electrical property like capacitance, resistance, voltage,

current, frequency, magnetic field, etc. Sensor is a bridge between physical world and

engineering world. Through sensor, engineers can measure lots of physical parameters

of the world. People develop temperature sensor, pressure sensor, flow sensor,

biosensor, image sensor, acceleration sensor, and speed sensor, just name a few. The

physical quantities need to be converted to analog signal or digital data which can be

read by an experiment observer, instrument, digital equipment, or microcontroller.

General speaking, microcontroller is the first choice for developing of the transmitter,

especially for the purpose of intelligent operation. The transmitter should have
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abilities to measure capacitance automatically, finish calculation quickly, show

humidity or dew point to users, and output an industry standard 4-20mA analog

current signal.

Sensor acts as the vital interface between environment and electrical system.

Microcontroller is a digital chip. It is capable of dealing with “1” and

“0”.Nevertheless, it cannot process the analog signal from outside directly. For the

analog signal to be processed by digital microcontroller, it needs A/D analog to digital

convertor. How to convert the capacitance to digital data is the key part of the

research. Due to the SoC (system on a chip) technology, it is quite feasible to

implement this conversion on a single chip. SoC is a concept that semiconductor

manufacturer integrates analog unit, digital unit and mixed-signal all on one chip.

In order to develop a functional humidity analyzer (Dew Point meter), the research

has to solve the following main issues:

1). Analog sensor conditioning circuit design

2). Embedded hardware design (circuit schematic design, PCB design, manufacture,

PCB assembly, and test)

3). Embedded firmware design

4). Sensor calibration

5). 4-20mA current loop design (output analog signal to user)

6). Final test
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1.3 Problem Statement

As I mentioned earlier, the dew point meter has an alpha-alumina based humidity

sensor inside, which is highly sensitive for detection of a wide range of moisture

levels (-80 C - +20 C dew point). It is a capacitive sensor. In the lab, I used Agilent

4284A precision LCR meter to measure the sensor’s capacitance and resistance,

which showed excellent performance for moisture measurement. This instrument is

designed specifically for the LCR measurement. So I need to design an electronic

circuit to measure the capacitance of this sensor, or to capture data which is in

proportion to the capacitance. The data can be converted to dew point or ppmv

moisture levels after calibration. The circuit converts the physical change into

microprocessor accessible data.

The capacitance of the sensor is about 1nf to 10nf. The sensor has voltage limitation,

lower than 5V. Experiment suggests it is better to measure the sensor under low

frequency condition, lower than 2KHz. On the market, there are some chips designed

particularly for small capacitance measurement. However, they cannot meet the

requirements of this sensor. Some chips provide low resolution. Some supply high

voltage on their pins, which may break the sensor. The solution to these problems is to

build a circuit, which is dedicated to this sensor to achieve very high accuracy for

detection of extremely low moisture levels (<1 ppmv or -80 C dew point).

1.4 Thesis Overview

This thesis research, as illustrated throughout the Chapter 1, leads to the development
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of a microcontroller based embedded system. In Chapter 2, the definition of Dew

Point is presented. Chapter 3 describes some analog sensor conditioning circuits.

Chapter 4 concentrates on an economic measurement technology, slope A/D

conversion, which is the research topic of this thesis. Chapter 5 introduces a

microcontroller, TI MSP430F249, which is a mixed signal processor. Chapter 6

explains two lines 4-20mA current loop design. Chapter 7 described IN4148 diode

temperature sensor. Chapter 8 introduces the FreeRTOS real time operation system,

and how to port FreeRTOS to this processor. Chapter 9 is about the test and

calibration. Chapter 10 is the conclusion and future work.
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Chapter 2 Dew Point Measurement

2.1 Concepts of Humidity and Dew Point

The dew point is the temperature below which the water vapor in air at

constant barometric pressure condenses into liquid water at the same rate at which it

evaporates. The condensed water is called dew when it forms on a solid surface. The

dew point is a water-to-air saturation temperature (4). Humidity is the amount

of water vapor in the air. Water vapor is the gaseous state of water and is invisible (5).

Absolute, relative, and specific humidity are the three main different measurements of

humidity. This research focuses on absolute humidity measurement. Absolute

humidity is the mass of water vapor per unit volume of total air and water vapor

mixture.

The Dew Point is a temperature at which water vapors condense on a mirror surface,

which uses the same unit as the temperature, Celsius or Fahrenheit. The Dew Point is

always lower than (or equal to) the air temperature. When the water vapor which is

mixed with the air, can no long stay in the air as the gas state, some of the water vapor

needs to condense into liquid water. At this point, the temperature equals to the Dew

Point temperature, and the relative humidity is 100%, whereas the Dew Point is lower

than temperature if the air can mix with more water vapor. During daytime, the

temperature is higher than the Dew Point temperature. The air can hold more water

vapor. So we cannot see dew (liquid water) on leaves, grass, or ground. When the

temperature falls below the Dew Point temperature at night or on early morning, the
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water vapor cannot stay in the air any more. The water must condense into liquid

water, which makes leaves, grass, ground, and car windows wet. This is a natural

phenomenon. Dew Point also has influence on human body. Below is a table from

Wikipedia, it shows the dew point influence on human body.

Table 2.1: Dew Point has influence on human comfort

Dew Point (°C/°F) Human perception Relative humidity at

at 32 °C (90 °F)

Over 26 Over 80 Severely high. Even deadly

for asthma related illnesses

65% and higher

24-26 75-80 Extremely uncomfortable, fairly

oppressive

62%

21-24 70-74 Very humid, quite uncomfortable 52-60%

18-21 65-69 Somewhat uncomfortable for most

people at upper edge

44-52%

16-18 60-64 OK for most, but all perceive the

humidity at upper edge

37-46%

13-16 55-59 Comfortable 38-41%

10-12 50-54 Very comfortable 31-37%

Under 10 Under 50 A bit dry for some 30%

2.2 Relation between Absolute Humidity and Dew Point

In order to measure Dew Point temperature, people develop many different devices.
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One of the devices uses polished metal mirror which is cooled as air is passed over it.

The Dew Point is the temperature at which dew forms on the surface of mirror. This

type of device is very expensive and usually is used as lab reference instrument to

calibrate other humidity sensors.

For this research, I used alpha-alumina based humidity sensor, which can measure

absolute humidity. Dew Point is the temperature below which the water vapor in air

must condense into liquid water, which means the water vapor is saturated in air. The

moisture content stays the same in air when the temperature falls below the Dew Point.

As long as the Dew Point temperature is measured, the absolute humidity is known.

The Dew Point and absolute humidity have one to one relation. The same reason if I

measure the absolute humidity of air, I can find out the Dew Point temperature.

2.3 Dew Point Absolute Humidity Conversion Table

A Dew Point vs. PPM vs. Absolute humidity conversion table is presented below.

Formula for Celsius vs. Fahrenheit conversion:

The formula above calculates the Dew Point in Celsius to Fahrenheit. The conversion

table provides data in Celsius.
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Table 2.2: Dew Point vs. PPM vs. Absolute Humidity table(6)

DP(°C) PPM Absolute

Humidity(g/m*3)

DP(°C) PPmv Absolute

Humidity(g/m*3)

0 6033 4.517 -50 38.89 0.02912

-2 5111 3.827 -52 30.32 0.02270

-4 4318 3.233 -54 23.51 0.01761

-6 3640 2.725 -56 18.16 0.01360

-8 3060 2.292 -58 13.96 0.01045

-10 2566 1.921 -60 10.68 0.007998

-12 2145 1606 -62 8.128 0.006087

-14 1789 1.339 -64 6.154 0.004608

-16 1487 1.113 -66 4.635 0.003471

-18 1233 0.9233 -68 3.471 0.002599

-20 1019 0.7629 -70 2.584 0.001935

-22 840 0.6291 -72 1.914 0.001433

-24 690.2 0.5169 -74 1.409 0.001055

-26 565.3 0.4233 -76 1.031 0.0007717

-28 461.3 0.3454 -78 0.7492 0.0005610

-30 375.3 0.2810 -80 0.5410 0.0004051
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Table 2.2: Dew Point vs. PPM vs. Absolute Humidity table (Continued…)

-32 304.1 0.2278 -82 0.3881 0.0002906

-34 245.8 0.1841 -84 0.2764 0.0002070

-36 197.8 0.1481 -86 0.1955 0.0001464

-38 158.7 0.1189 -88 0.1372 0.0001028

-40 126.8 0.09491 -90 0.09564 0.00007161

-42 100.9 0.07555 -92 0.06611 0.00004950

-44 80.03 0.05993 -94 0.0452 0.00003394

-46 63.19 0.04732 -96 0.03087 0.00002308

-48 49.67 0.03720 -98 0.02077 0.00001555

-100 0.01387 0.00001039

2.4 Alpha-Alumina Based Dew Point (DP) Transmitter

The Dew Point vs. Absolute humidity conversion table is used for better

understanding of the relation between Dew Point and absolutely humidity. In order to

design a good transmitter, for this research, I need a good humidity measurement

device to calibrate the transmitter. When using this Alpha Alumina DP sensor, the

microprocessor actually is measuring the change of capacitance, and relating the

capacitance to the humidity. It is the relation between humidity and capacitance. If the

microprocessor can avoid errors in capacitance measurements, and process the

relations between capacitance and humidity more accurately. The transmitter may
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have better performance. It is quite hard to measure accurate capacitance of the

humidity sensor, even with the precision LCR meter. The microcontroller needs

toapply different techniques to minimize the measurement errors. Based on the good

design of hardware and software, in the end, calibration is critical for the DP

transmitter. In this research, I used another DP transmitter, FA410 (CS

INSTRUMENTS), to calibrate the Alpha-Alumina based DP transmitter in the lab

temporarily. The calibration condition in the lab needs to be improved in the future

for the sake of better device performance.
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Chapter 3 Analog Sensor Conditioning Circuit

Analog sensors produce a change in an electrical property, which needs to be

conditioned by analog circuit before conversion to digital data. This chapter explains

some analog sensor conditioning circuits that used to convert capacitance into

property like voltage, frequency, time, impedance. The preparation helps me gain new

insight into the world of circuit design.

3.1 Capacitance to Frequency Convertor (555 Timer Chip)

The 555 timer integrated circuit is a very common chip used in a variety of

applications such as timer, pulse generation, oscillator circuit, and pulse width

modulation. The 555 timer has three operation modes: monostable, astable, and

bistable. For the purpose of capacitance measurement, astable mode is used. Figure

3.1 is the circuit diagram of the capacitance to frequency convertor.

Figure 3.1 Capacitance to frequency convertor

In astable mode, pin 3 of 555 timer outputs a rectangular pulse at a specific frequency.

Resistor R1 is connected between +5V power supply and the discharge pin (pin7),
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another resistor R2 is connected to R1 and pin7, the trigger (pin 2), and threshold (pin

6), pin 2 and pin 6 share a common node. The capacitance C_SEN which represents

the sensor is charged through R1 and R2, and discharged through R2 only. R1, R2,

and C_SEN together decide the frequency. Figure 3.2 is the inside schematic of 555

timer chip.

Figure 3.2 Inside schematic of 555

Table 3.1: Input and output relation of 555

Input Output

Rd Vt1 Vt2 Q Td Vo

0 -- -- 0 on 0

1 >2/3Vcc >1/3Vcc 0 on 0

1 <2/3Vcc >1/3Vcc No

change

No

change

No

change

1 <2/3Vcc <1/3Vcc 1 off 1

1 >2/3Vcc <1/3Vcc 1 off 1



14

Figure 3.3 Astable waveforms

Figure 3.3 shows the output of the 555 timer at different input voltage. Rd is the reset

signal, it has to be high voltage. In actual use, Rd is connected to power supply Vcc.

The 555 chip is in an astable mode to form an astable multi-vibrator, it produces a

square wave. The frequency is independent of supply voltage. Usually, the frequency

of this wave can be captured by microprocessor. The frequency includes two parts, T1

and T2.

The charge time is:

The discharge time is:

Thus the total time is:

The frequency is:

Given the R1, R2, and frequency, the capacitance is:
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Thus the sensor capacitance is:

For this design, the microprocessor should have a timer module to capture the

frequency of the square wave. The frequency is represented as the count number of

timer. The key advantage of this circuit is that an analog to digital convertor ADC is

not needed.

3.2 Indirect Capacitance to Voltage Convertor

An indirect capacitance to voltage convertor is described (7). From 3.2, the output

frequency of 555 is described as:

For this equation, if R1, R2, and C are fixed, the frequency f is fixed as well. LM2917

is a linear frequency to voltage chip, so LM2917 can be used as a frequency to

voltage convertor (FVC), the equation is given:

Where:

fin - the frequency of output square wave of 555 timer

R3 - the resistance that is connected to pin 3 of LM2917.

Vcc - supply voltage that is connected to LM2917
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Figure 3.4 TI LM2917 inside diagram (8)

Figure 3.4 is the inside view of LM2917 chip. Pin 3 of 555 is connected to Pin 1 of

LM2917. Pin 2 is connected to a capacitance. There are some typical application

circuits in the Texas Instruments LM2917 datasheet (8). The indirect capacitance to

voltage converter circuit diagram is given:

Figure 3.5 Capacitance to voltage convertor (7)

This circuit provides linear relation between capacitance and voltage. This is the

advantage of this indirect capacitance to voltage C/V convertor. It outputs a voltage

which is directly proportional to the change of measured capacitance. An analog to

digital convertor ADC is needed to measure the output voltage.
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3.3 Direct Capacitance to Voltage Convertor

Voltage divider is a circuit where two resistors are connected in series. It is a linear

circuit has an output voltage that is a fraction of its input signal. It also applies to

inductive and capacitive. For the measurement of capacitance, a capacitive divider is

introduced to build a direct capacitance to voltage convertor. The capacitance voltage

divider schematic diagram is shown below:

Figure 3.6 Direct capacitance to voltage convertor diagram

Vin should be a sinusoidal signal or AC signal which is applied to the capacitive

voltage divider as shown in Figure 3.6, then the output voltage Vout can be described

by:

Where: C_x is the measured capacitance while C1 is a fixed capacitance.

To achieve good linearity, the paper (7) suggests the fixed capacitance C1 must be at

least ten times bigger than the C_x. Under this condition:

Thus the C_x equals to:
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Where: Vout, Vin, and C1 are known values.

This circuit implies good linear relation between C_x and input signal. A new direct

capacitance to voltage convertor is described based on the capacitance voltage divider

(7). The schematic diagram is given:

Figure 3.7 Direct capacitance to voltage convertor circuit

The input stage of this circuit is a sine wave generator. It provides the input signal to

the capacitance voltage divider. The right part is an AC/DC convertor. The big

capacitance C of the AC/DC is a capacitance filter. The rest of the right circuit is a

precision half wave rectifier. For precision rectifier, it is useful for precision signal

processing as well as very small signal processing. C_x in the range of 1 F to 1 mF

is tested use this circuit. Experiment data shows this direct capacitance to voltage

convertor has very good linear characteristic. This method requires an analog to

digital convertor to interactive with microprocessor.

3.4 Relaxation Oscillator

Another good circuit for conditioning a capacitive sensor is to change capacitance into

oscillation frequency. The similar method is introduced in Microchip’s Application
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note AN866 and AN895 (10) (11). The oscillator generates a square wave. The change

of the wave frequency is a function of the capacitance. Operational amplifier(op

amp)is used to build a relaxation oscillator. An ideal op amp is a three terminals

device consists of inverting and non-inverting terminal and the output. Transfer

characteristic of ideal op amp is given below:

Figure 3.8 Transfer characteristic of an ideal op amp

If the voltage on non inverting terminal is higher than the voltage on inverting

terminal, the output of the amplifier goes to high voltage Vcc. On the contrary, the

voltage on inverting terminal is higher than the voltage on non inverting terminal, the

output goes to low voltage –Vcc. Operational amplifier is widely used for analog

signal processing.

A relaxation oscillator is a circuit that combines a comparator, some resistors and one

capacitor. Output voltage oscillates from +Vcc to –Vcc back and forth, as a result, the

oscillator generates a square wave. Change of the output voltage automatically charge

the capacitor C or discharge it. The relaxation oscillator schematic diagram is given:
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Figure 3.9 Relaxation oscillator circuit

The analysis of this circuit begins by assuming that the output voltage is high (+Vcc),

so the voltage on the non inverting terminal (pin 3) is:

Inverting terminal is on potential:

The output voltage starts to charge the capacitor through the feedback resistor Rf with

time constant . When the voltage across the capacitor becomes slightly

higher than the Vin+, the output voltage oscillates from +Vcc to –Vcc, and the voltage

on non inverting terminal is:

This process takes time:

After this, the voltage across the capacitor discharges through Rf with time constant

.When the voltage across the capacitor becomes slightly lower than the Vin+,

the output voltage swings from -Vcc to +Vcc, and the voltage on non inverting terminal
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is:

The discharging process takes the same time:

Thus the total time:

The frequency of the output wave:

If R3 equals to R2 in the circuit, f equals to . Capacitor value can be

calculated based on the frequency.

Online circuit simulator is available(12). For instance, when C equals to 5.501nf, Vcc

to 12V, Rf to 5K, R3 to 10K, and R2 to 10K, the square wave is shown:

Figure 3.10 Relaxation oscillator waveform

Relaxation oscillator offers some advantages over other circuits. The main advantage



22

of the oscillator is that an ADC is not required. Another key attribute of oscillators is

that these circuits can produce accuracy and resolution that is much better than an

analog output voltage circuit (11). The accuracy of the frequency to capacitance

conversion is limited only by the accuracy of microprocessor’s timer unit.

Furthermore, relaxation oscillator only needs a comparator, a few resistors, and one

capacitance. It is pretty easy to implement this circuit into actual application. The

relaxation oscillator will be a good alternative method for the humidity capacitive

sensor measurement in the future.

3.5 Switched Capacitor Circuit

There is another strategy which is illustrated in an application note (AN1014) for the

measurement of small change of capacitance. Although this circuit is not appropriate

for this project, it is very helpful for my research. It helps me to broaden my

knowledge in the area of circuit. This application note describes a switched capacitor

circuit, which only needs a microprocessor, minimal external passive components, to

measure small changes in capacitance (e.g., 0.001pf)(13).

Analog circuit design most often requires the use of resistors, capacitors, and

integrated active devices. It is the nature of integrated circuitry that small, accurate

resistors are harder to build and more expensive than capacitors. Given that making

capacitors is easier and cheaper, it follows that techniques would be developed to use

capacitors to build accurate analog circuitry. These techniques lead to switched

capacitor (SC) architectures that control the movement of charge between capacitors
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with the precise timing of switches, instead of relying on resistors to move current

from one node to another (14). Figure 3.11 shows charge movement for a resistor and

for a switched capacitor.

Figure 3.11 Charge movement for R and C (14)

The current flows from a power supply source to ground through a resistor can be

expressed as:

(1)

When the switch φ1 is closed, and the switch φ2 is open, the capacitor C is charged to

full voltage, the charging process is:

(2)

When the switchφ1 is open, and the switch φ2 is closed, all the charge which stores in

the capacitor C moves to ground. If these switches are controlled at the rate of fs, the

charge quanta also move at this rate (13). Equation describes the current as:

(3)

Based on these three equations, we have:

(4)

The two switches and the capacitance behave like a resistor whose value is inversely

proportional to the capacitance and the switching frequency. The switched capacitor
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has a benefit that the resistor’s value can be altered by merely changing the switching

frequency.

The switched capacitor Csen transfers charge from a voltage source Vs to an

integrating capacitor Cint. Figure 3.12 shows the schematic diagram for this design.

Each time S1 closes and S2 opens, charge is transferred from Vs to Csen, then

Figure 3.12 Switched capacitor schematic diagram

Figure 3.13 Equivalent model for switched capacitor

S1 opens and S2 closes, charge is transferred from Csen to Cint to equalize the voltage,

which causes the voltage exponentially approaches Vdd on both capacitors Csen and

Cint. The comparator of the MCU monitors the voltage across the Cint. Once the

comparator captures an event, which means the voltage on Cint is higher than the

threshold voltage value programmed in the comparator, the timer records the time for

the charging process. Based on the capacitor charging equation, Rsen can be calculated,
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which equals to Tsw / C (Tsw is the switching cycle for the two switches). As a

consequence, the capacitor Csen can be measured successful.
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Chapter 4 Single Slope A/D Conversion

4.1 Theory of Operation

As the thesis mentioned above, analog to digital conversion is critical to

microprocessor based applications. Most real-world signals are analog signals. To

implement this conversion, an analog to digital convertor ADC is necessary for this

process. However, if an ADC module is not available on a specific chip, it is possible

to develop an ADC with the resources inside the chip. Single slop A/D conversion is a

technique using the integrated comparator and timer.

Slop A/D conversion actually is an analog to digital convertor, which can be

implemented with a comparator, a voltage source, a resistance, a capacitor and a timer.

The technique is based on the charge or discharge time of a capacitor with a known

value. The number of clock cycles necessary to charge or discharge the capacitor is

then counted. Longer charge or discharge times indicate larger voltages. The voltage

is derived from the charge or discharge time using the standard equation for capacitor

charge or discharge process (15). Some applications use a fixed value for the

capacitor for the sake of measuring resistance(16) (17). This technique is valuable in

measuring any component that has a characteristic of varying resistance. For

measurement of voltage, the relationship is between voltage and time while the

resistance is unchanging. For measurement of resistance, the relationship is between

resistance and time while the capacitor is constant.
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Figure 4.1 Measurement of resistors (15)

Figure 4.1 shows the hardware diagram of a slope A/D conversion for measurement

of resistance using MSP430. The circuit measures the resistance of Rsen by charging or

discharging capacitor Cm. The resistance of Rref is also measured using the same

method, and then used as a reference value to calculate Rsen.

To measure the resistor value Rsen, capacitor Cm is first discharged fully to zero

voltage by outputting a low level voltage on either P1.x or P1.y. After configuring the

timer, the capacitor is charging through Rsen by outputting a high level voltage. At the

beginning of charging, register TAR of timer is cleared, and the timer is started to run.

When the voltage across capacitor Cm reaches a value of 0.5Vcc or 0.25Vcc, which

equals the comparator reference voltage on the inverting terminal. Once the voltage

on non inverting terminal is slightly higher than the voltage on inverting terminal, the

positive edge of the comparator output CAOUT causes the TAR to be captured in

register CCR1. This value is the charging time for the RC circuit. The reference

resistor Rref value is measured in the same process to capture another time. This time

will be used to translate Tsen into the resistor value Rsen. The most important step for
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this strategy is that the capacitor should be discharged fully before each measurement.

4.2 Comparator_A+

Comparator is an essential part of single slope A/D conversion, which supports

precision slope analog to digital conversion. It cannot perform a conversion by itself,

it needs to be used together with timer module to measure time-constant of an external

RC circuit. An analog comparator compares the voltages on its two input terminals,

V+ and V-. Its output CAOUT is high if V+ is more positive than V- and low if V+ is

lower than V-. The comparator can be switch on or off using CAON bit. The output

CAOUT only has two states, so the comparator behaves like a 1 bit ADC. The

comparator should be turn off when not in use to reduce current consumption.

The comparator module is controlled by two registers, CACTL1 and CACTL2. Figure

4.2 is a block diagram of the Comparator_A+:
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Figure 4.2 Comparator_A+block diagram,

Source: MSP430x2xx datasheet

The non inverting input V+ can be connected to external signals CA0-CA2 or without

an external connection when CAEX equals to 0. P2CA4 and P2CA0 control the

CA0-CA2.

P2CA3, P2CA2, and P2CA select the inverting input from CA1-CA7 when CAEX

equals to 0. CAEX exchanges the comparator inputs and inverts the comparator

output. The bit CAREFx selects the reference voltage Vcaref, which can be chosen

from 1/4Vcc, 1/2Vcc or diode reference voltage (about 0.6V). The bit CARSEL

decides which terminal the Vcaref is applied to.

The output is brought to an external pin CAOUT. This voltage level can be measured

from outside of chip. The output is also connected to input CCI1B of Timer_A
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internally. CCI1B can trigger Timer_A to capture a switch from comparator. This

allows precise timing without delays if communication is needed between different

modules, for example when Timer_A is used to record the capacitor

charging/discharging time. The rising or falling edge of the comparator output can be

used to set flag CAIFG.

4.3 Single Slope A/D Conversion Applications

4.3.1 Resistance Measurement

Single slope A/D conversion provides an economic measurement technology to

perform precise analog measurement. The slope ADC consists of an on chip

comparator, timer, and an external RC circuit. This technique is usually optimized to

precisely measure resistive element. The MSP430x2xx datasheet has a temperature

measurement system example. Figure 4.3 shows the system diagram:

Figure 4.3 Temperature measurement system

source: MSP430x2xx datasheet

The example implements discharge strategy. Figure 4.4 is the timing for the

temperature measurement system. Equations show below:
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Figure 4.4 Timing for temperature measurement system

source: MSP430x2xx datasheet

The timing diagram shows the charging phase and discharging phase. The Tref

represents the discharging time through Rref, and the Tmeans is the discharging time

through Rmeans. For each cycle, the capacitors are charged to Vcc, and then the

capacitors are discharged by setting Px.x or Px.y to low level voltage. This example

proves the availability of the slop A/D conversion for resistance measurement.

4.3.2 Capacitance Measurement

The same single slope A/D conversion circuit applies to capacitance measurement.

The only difference for capacitance measurement is that the circuit uses a resistor

with a fixed value. The resistor and the capacitor form a RC circuit. Here the



32

capacitor value is changeable. This method is optimized to precisely measure

capacitive element, such as capacitive sensor. A proposed slope A/D conversion

schematic diagram is shown:

Figure 4.5 Capacitance measurement schematic

The inverting terminal is configured to internal reference voltage Vcc, the non

inverting terminal is configured to CA0, which is the pin for analog input. The

internal reference voltage has to be proportional to the Vcc. P1.0 charges the RC

circuit here by outputting a high level voltage. P1.0 discharges the RC circuit by

outputting a low level voltage. There are some different ways to operate this circuit.

The Csen represents a humidity sensor, and the R has to be a low temperature

coefficient resistor.

4.4 Slope Measurement of Capacitance

The exact same circuit and equations as the resistance measurement can be used when
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the single slope A/D conversion technique applies to capacitance measurement. In

addition, several different methods can be used to obtain capacitance value: 1) The

Timer_A captures the time to charge the capacitance to 0.5Vcc or 0.25Vcc from zero

voltage. 2) The Timer_A captures the time to discharge the capacitance to 0.25Vccc

from Vcc. 3) The Timer_A captures the time to charge and discharge the capacitance

between 0.25Vcc and 0.5Vcc.

4.4.1 Charge the Capacitance to 0.5Vcc

For this method, the same circuit schematic as the Figure 4.5 is used. P1.0 of the

microprocessor is used to charge the capacitance to 0.5Vcc. CA0 is used to monitor

the voltage across the capacitance, which is also configured to connect to the non

inverting terminal of the comparator. The inverting terminal of the comparator is

programmed to 0.5Vcc. This is the sequences of operations to take measurement by

charging the capacitance through the resistor:

1. Configure the comparator and timer correctly.

2. Drive the output pin P1.0 low for a long time to make sure the capacitor is

discharged fully. This is a critical step for this method. The voltage across the

capacitance has to be zero.

3. Drive the output pin P1.0 high to start to charge the capacitor.

4. Wait until the voltage across the capacitance rises above the reference voltage on

the inverting terminal. The output of the comparator switches and generates a

capture in TACCR1.
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Equation for the capacitor to be charged from zero voltage to V (t):

Where ,

Where , N is the value captured by timer, f is the frequency of the

microcontroller.

Partial code for the operations described below:

////////////////////////////////////////////////////////

P1DIR |=0x01; //configure P1.0 to output

P1OUT |=0x00;

Delay (0xffff); //discharge C for a long time

/////configure the comparator and timer/////////

CACTL1 = CAON+CAREF_2+CARSE; // Enable comp, Vref = 0.5*Vcc

CACTL2 = P2CA4+CAF // Pin 2.4 non inverting terminal to CA0

//CACTL1 |= CAIE;    // Setup interrupt for Comparator

TACCTL1=CCIS_1+SCS+CAP+CCIE+CM_1; //set the timer to capture

TACTL|=TACLR;   //Clear timer

TACTL = TASSEL_2+ID_0+MC_2;
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P1OUT |=0x01; //set P1.0 to charge the C

_NOP();

_NOP();

_NOP();

__low_power_mode_0();  //wait for timer interrupt

////////////////////////////////////////////////////////////////

4.4.2 Discharge the Capacitance to 0.25Vcc

Another different method can be applied to this circuit. This method measures the

capacitance discharging time. First, pin P1.0 charges the capacitance fully to the

supply voltage. CA0 monitors the voltage across the capacitance. The sequences of

operations to take measurement by discharging the capacitance through the resistor:

1. Configure the comparator and timer correctly.

2. Drive the output pin P1.0 to high level voltage to charge the capacitance fully for

a long time. It is better to configure timer in compare mode (reset mode) for the

most accurate timing. If the compare mode is selected, the output pin has to be a

pin with alternative function of compare output. Otherwise, TAR has to be

recorded.

3. Drive the output pin P1.0 to low level voltage to start to discharge the capacitance.

4. Wait until the voltage across the capacitance falls below the reference voltage

0.25*Vcc on the inverting terminal. The output of the comparator switches and

generates a capture in TACCR1.
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5. The difference of the two times is the capacitance discharging time.

Equation to describe the discharging process:

Where

Where , N is the discharging time, f is the frequency of the

microcontroller.

Partial code for the operations described below:

/////configure the comparator and timer/////////

CACTL1 = CAREF_1+CARSE; // Enable comp, Vref = 0.5*Vcc

CACTL2 = P2CA4+CAF // Pin 2.4 non inverting terminal to CA0

//CACTL1 |= CAIE;    // Setup interrupt for Comparator

TACTL|=TACLR;   //Clear timer

TACTL = TASSEL_2+ID_0+MC_2;

For ( ; ; )

{

CACTL1 |=CAON; // turn on comparator

//compare mode, set output high first, charge C fully, reset output, wait for capture

TACCR0 = Charging_Time; //charge fully
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TACCTL0 = OUTMODE_5; //reset output to start discharge

TACCTL1=CCIS_1+SCS+CAP+CCIE+CM_1; //set the timer to capture

///////enter low power mode, wait for timer capture////////

__low_power_mode_0();

Discharging_Time = TACCR1 – TACCR0;//capacitance charging time

}

4.4.3 Charge the Capacitance from 0.25Vcc to 0.5Vcc

For this method, the operation is almost the same as the 4.4.1. Both of the 0.25Vcc and

the 0.5Vcc should be detected for this method. The timer needs to capture both of the

output of Comparator_A, and save the charging times. The difference of the two times

is the capacitance charging time. The trick for this method is the reference voltage on

the inverting terminal has to be changed between the two events. This method offers

some advantages. The voltage at which charging starts is not important, as long as the

voltage is below 0.25Vcc. This method depends entirely on capture, so only one

channel of timer is needed. However, this method has a disadvantage the voltage

range from 0.25Vcc to 0.5Vcc is too small, which results in a small count number.

Example code is given:

//////////////////////////////////////////////////////////////////////////

P1DIR |=0x01;

P1OUT &=~BIT0;

Delay (0xffff); //do nothing, just delay
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CACTL1 = CAON+CAREF_1+CARSEL; // Enable comp, Vref = 0.25*Vcc

CACTL2 = P2CA4+CAF;             // Pin 2.4 to CA0

CACTL1 |= CAIE;                  // Setup interrupt for Comparator

TACTL|=TACLR;                   //Clear timer

P1OUT |=0x01;                     //set P1.0 to charge the C

_BIS_SR (LPM0_bits + GIE);          // Enter LPM0, interrupts enabled

////Changingre ference voltage in the ISR of Compartor_A+////

/////Comp_A interrupt service routine///////////////////

#pragma vector=COMPARATORA_VECTOR

__interrupt void Comp_A_ISR (void)

{

CACTL1 = CAON+CAREF_2+CARSEL;       //Vref=0.5Vcc

TACTL = TASSEL_2+ID_0+MC_2;

TACCTL1=CCIS_1+SCS+CAP+CCIE+CM_1;   //set timer to capture

CACTL1 &= ~CAIFG; // Clear Interrupt flag

}
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Chapter 5 Introduction to MSP430F249

In this Chapter, the mixed signal processing chip MSP430F249 is introduced. This

microprocessor incorporates a 16-bit RISC CPU, some basic digital and analog

peripheral modules, and a flexible clock system. Furthermore, MSP430F249 provides

some low power operation modes, which is good to save power when the chip is not

in use. The chapter concentrates on the modules which are used in this research.

5.1 MSP430F249 Architecture

Figure 5.1 MSP430 architecture

source: TI MSP430x2xx datasheet

Figure 5.1 shows the internal architecture of the MSP430F249. MSP430F249 can run

at different clock. MCLK determines the system clock. The chip has ADC12 module,

Timer_A3 module, and Comparator_A+ module. Those modules have abilities to deal
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with analog signal from outside. The single slope A/D conversion is the example

which is implemented by the Timer_A3 and the Comparator_A+. The ADC12 can

convert analog voltage directly into digital data. The chip has port P1 to port P6,

totally 48 pins. JTAG is used to download and debug the chip. Other peripheral

modules like watchdog, hardware multiplier, SPI, I2C, etc.

5.2 Basic Clock Module

The clock module is the most important part of a microcontroller. The clock module

decides how fast the chip can run. For some 16-bit, 32-bit microcontrollers, they have

very complicated clock system. They have both internal and external clock source,

high speed and low speed clock source. Software needs to configure the clock system.

High speed clock enables microcontroller to have the best performance, while low

speed clock usually put chip into low power mode in order to save power.

The basic clock module of MSP430F249 supports low system cost and low power

consumption. The basic clock module can be configured to operate without any

external components, with only one low speed crystal or with two crystals. The basic

clock module has three clock sources, which is shown in the Figure 5.2.

1. LFXT1CLK: Low-frequency/high-frequency oscillator that can be used with

32768 Hz watch crystal or with standard crystal source in 400-kHz to 16-MHz

rang.

2. XT2CLK: External high frequency source in 400-kHz to 16-MHz can be selected

3. DCOCLK: Internal digital controlled oscillator (DCO)
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Three clock signals are available from the basic clock module:

ACLK: Auxiliary clock. ACLK is selected as LFXT1CLK in MSP430F249. ACLK is

divided by 1, 2, 4 or 8.

SMCLK: Sub-main clock. SMCLK is selected as one of LFXT1CLK, XT2CLK, or

DCOCLK. It is also divided by 1, 2, 4, or 8.

MCLK: Master clock. MCLK is selected as one of LFXT1CLK, XT2CLK, or

DCOCLK. It is also divided by 1, 2, 4, or 8. MCLK is used to clock the CPU and

system.

Figure 5.2 MSP430 basic clock module block diagram

source: TI MSP430x2xx datasheet
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Register DCOCTL, BCSCTL1, BCSCTL2, BCSCTL3, IE1, and IFG1 are used to

configure the basic clock module. Clock is the heart beat for a CPU, the clock system

has to be configured right to enable the chip function correctly.

5.3 Comparator_A+

In Chapter 4, the Comparator_A+ has been introduced to form a single slope A/D

conversion. The internal architecture and the detailed operation are explained in this

chapter. Comparator_A+ control register 1 CACTL1, Comparator_A+ control register

2 CACTL2, and Comparator_A+ port disable CAPD are used to configure the

Comparator_A+.

5.4 Timer_A3

Timer_A is a 16-bit timer/counter with multiple capture/compare registers in the

MSP430F249 and is included in all devices. Timer_A plays an important role in the

slope A/D conversion. This part describes Timer_A and its operation. Timer_A+

consists of two main parts: Timer block and Capture/Compare channels. Figure 5.3

shows the timer block:

Figure 5.3 Basic timer block

source: MSP430x2xx datasheet



43

The timer block has different clock sources: TACLK, ACLK, SMCLK, and INCLK.

The frequency can be divided down by 2, 4, or 8. The 16-bit TAR register is shared

by all the channels in Timer_A. There is no output for timer block, just a flag TAIFG

is used to get into an interrupt. MCx configures the timer to four different operation

modes: stop mode, continues mode, up mode, or up/down mode. For the stop mode,

the timer is halted. The counter runs from 0x0000 to 0xFFFF at continues mode. The

up mode is that the counter counts from 0 to a value in TACCR0. For the up/down

mode, the counter counts from 0 to TACCR0, and back to 0 again.

Figure 5.4 Timer_A channel 2 internal diagram

source: MSP430x2xx datasheet

Timer_A has three Capture / Compare channels in most MSP430 chips. Capture mode

is used to record the TAR register at which the input changes. The input signal to the

TACCR0 can be external or internal. For this research, the output of Comparator_A+



44

triggers the capture. Compare mode is used to compare the value of TAR register with

the value of TACCR0, as long as the two numbers match, an update an output. The

figure x above shows the architecture of channel 2. The register TACCTLn controls

each channel.

Table 5.1: The TACCTLn register

CMx_2 CMx_1 CCISx_2 CCISx_1 SCS SCCI ---- CAP

OUTMODx_3 OUTMODx_2 OUTMODx_1 CCIE CCI OUT COV CCIFG

Table 5.2: Timer_A signal connection for CCI1B

source: MSP430x2xx datasheet

TA0 CCI0A

TACCR0 TA0

TA0 CCI0B

DVss GND

DVcc Vcc

TA1 CCI1A

TACCR1 TA1

CAOUT(internal) CCI1B

DVss GND

DVcc Vcc

TA2 CCI2A

TACCR2 TA2
ACLK(internal) CCI2B

DVss GND

DVcc Vcc
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In this thesis, the capture mode is used in the slope A/D conversion. For capture mode,

there should be an input to the TACCR0. Bits CMx_2 and CMx_1 select the rising

edge, falling edge, or either edge. Bits CCISx_2 and CCISx_1 select the inputs

CCInA or CCInB to be captured. The internal connection of CCInA and CCInB for

MSP430F249 is shown in Table 5.2.

Usually, CCInA is connected to external resource. CCInB is connected to an internal

module. Different chips have different connections. This table is the signal connection

for MSP430F249. For the slope A/D conversion technique, the output of comparator

needs to be captured by timer. Here CCI1B of channel 1 TACCR1 is used, because

the CAOUT of comparator is connected to CCI1B. The internal connection enables

peripherals to work together more effectively. The biggest advantage of this

connection is to avoid delays between different modules. It is important to respond

rapidly to capture an accurate time for the slope A/D conversion.

Interrupt is another key part of the timer, which can be generated by the timer block

and each capture/compare channel. TACCR0 has its own interrupt vector,

TIMERA0_VECTOR. It is the highest vector among the other timer

vectors.TIMERA0_VECTOR interrupt service routine code:

#pragma vector=TIMERA0_VECTOR

__interrupt void Timer_A (void)

{

//code to execute in the ISR
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}

TIMERA1_VECTOR is shared by the remaining channels and the time block. For

those interrupts, the interrupt service routine (ISR) needs to find out the source of the

interrupt. The MSP430 provides an interrupt vector register (TAIV) to identify the

source of the interrupt. So when one or more of those shared interrupts is set, TAIV is

loaded with the value for the source with highest priority. Table 5.3 listed below is the

TAIV values for Timer_A:

Table 5.3: Interrupt vector register TAIV for Timer_A

TAIV values Source Flag Priority

0x0002

0x0004

0x000A

Capture/compare channel 1

Capture/compare channel 2

Timer overflow

CCIFG1

CCIFG2

TAIFG

Highest

Middle

Lowest

Timer_A3 Interrupt Vector (TAIV) handler:
#pragma vector=TIMERA1_VECTOR
__interrupt void Timer_A(void)
{

switch( TAIV )
{

case 2:  // code to execute in the ISR
break;                        // CCR1 not used

case 4:// code to execute in the ISR
break;                        // CCR2 not used

case 10:  // code to execute in the ISR
break;// overflow

}
}
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The channel 1 TACCR1 is used to capture the output CAOUT of comparator. Once

the interrupt flag CCIFG1 is set, which means the output CAOUT switches. Then ISR

is serviced, and code in case 2 will be executed.

5.5 Low Power Operation Modes

The MSP430 has one active mode and five low-power modes. The six difference

modes are: active mode, low-power mode 0 (LPM0), low-power mode1 (LPM1),

low-power mode2 (LPM2), low-power mode3 (LPM3), and low-power mode 4

(LPM4). Bits CPUOFF, OSCOFF, SCG0, and SCG1 in the status register are used to

configured the low-power modes 0 to 4.

Table 5.4: MSP430 Low Power Operating Modes

SCG1 SCG0 OSCOFF CPUOFF Mode

0 0 0 0 ACTIVE

0 0 0 1 LPM0

0 1 0 1 LMP1

1 0 0 1 LMP2

1 1 0 1 LMP3

1 1 1 1 LMP4
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Chapter 6 4-20mA Current Loops

This chapter is dedicated to 4-20mA current loops. 4-20mA is a very common and

robust sensor signaling standard. Analog 4–20mA and 10–50mA current loops are

commonly used signals for industrial control instruments. 4mA represents the lowest

range and 20mA is the highest. The key advantages of the current loop are that the

accuracy of the signal is not affected by voltage drop in the interconnecting wiring,

and that the loop can supply operating power to the device (18). The Dew Point

transmitter has a 1602LCD to display Dew Point and temperature. The Dew Point

transmitter also needs to generate a 4-20mA analog current signal for the purpose of

control. 4mA represents the lowest Dew Point for this transmitter, and 20mA is the

highest Dew Point.

6.1 4-20mA Current Loop Basics

In a 4-20mA current loop, the same current signal flows through the whole system.

All the components in the loop have voltage drops due to the current flowing through

them. However, the current signal is not affected by the voltage drops as long as the

power supply is strong enough than all the voltage drops happen along the loop. This

is the main reason why 4-20mA current is chosen as a standard industry signal. The

current signal is also insensitivity to electrical noise. At the receive terminal, the

analog current signal can be converted into voltage using a precision resistor. Usually,

there are four components in a current loop:

1. A DC power supply
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2. A 2-wire transmitter

3. A receiver resistor that converts the current signal into a voltage

4. The wire that interconnect it all (19)

Figure 6.1 Basic current loop (15)

The power supply should be a DC source because the change in current represents the

measured parameter. If AC were used, the current in the loop would be changing all

the time. This is difficult to measure the exact change of the parameter. For 4-20mA

current loop, 36VDC, 24VDC, 15VDC and 12VDC are commonly used.

In Figure 6.1, a precision receiver resistor 250 ohm is used to convert the current

signal into a voltage. Voltage is easier to be measured than current signal. For the 250

ohm resistor, the voltage will be 1V at 4mAand 5V at 20mA of loop current. 250 ohm

is the most common receiver resistor in a 4-20mA current loop.

The greatest advantage of 4-20ma current loop is the loop’s inherent insensitivity to

electrical noise. The current transmitter usually has a very large output resistance.

This huge resistance can be represented as a series resistance in the circuit.
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Figure 6.2 Current loop noise model

Figure 6.2 shows the circuit schematic for 4-20mA current loop with a noise source.

Due to the high output resistance of the transmitter (in several Meg ohms), the most of

the noise voltage is dropped across the transmitter, only a very small fraction is added

to the receiver terminal. The noise has almost no influence on the current loop. A

noise reduction example is given (19):

Suppose Rreceiver equals to 250 ohm, Rwire equals to 10 ohm, Rtransmitter equals to

3.64Meg ohm. The noise source has amplitude of 20 Volts, so the voltage across the

Rreceiver is only 0.0014 Volts, which is a very small voltage to the receiver.

Five of the most basic 4-20mA current loop configurations are described in the

4-20mA current loop configuration application note (20):

1. A two-wire transmitter with external power and an external resistor

2. A two-wire transmitter with controller power and a 4-20mA input
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3. A two-wire transmitter with external power and a 4-20mA input

4. A three-wire transmitter with one 4-20mA signal

5. A three-wire transmitter with two independent 4-20mA signals

6.2 Develop 4-20mA Current Loop for Dew Point Transmitter

In thesis, a two-wire transmitter is developed for the Dew Point Transmitter. Texas

Instruments has some 4-20mA current loop transmitters which are dedicated to

produce analog 4-20mA signals, such as XTR115, XTR116, and XTR110. Another

digital to analog convertor DAC7611 is essential to provide an input current to the

XTR115/6.

6.2.1 XTR115/6

Figure 6.3 XTR115 internal diagram

source: Texas Instruments XTR115 (21)



52

The +5V on-chip voltage regulator can be used to provide power to external module.

An on-chip precision reference voltage can be used as a reference voltage to ADC or

DAC. For XTR115, the reference voltage is 2.5V, and for XTR116, the reference

voltage is 4.096V. Vin from DAC7611 is applied on pin 2, and generates an input

current to the chip. This input current Iin controls the output current Io. XTR115/6 is a

current input device with a gain of 100:

In the Figure 6.3, resistor R1 is 2.475kohm which is connected to the input non

inverting terminal. Resistor R2 is 25ohm which is connected to the inverting terminal.

The voltage on the non inverting terminal equals to the voltage on the inverting

terminal, which leads to

Where I+ is Iin, I- is the current flows through R2.

The output current Io:

Where I- is:

So the output current Io:

The XTR115/6 is designed to use virtually any NPN transistor with sufficient voltage,
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current and power rating. Case style and thermal mounting considerations often

influence the choice for any given application (21). The purpose of the external

transistor is to avoid on-chip thermal-induced errors. It is important to locate this NPN

transistor away from sensitive analog circuit and the XTR115/6 in order to minimize

the heat effects.

Figure 6.4 Reverse voltage protection and over-voltage surge protection

source: Texas Instruments XTR115 (21)

Figure 6.4 shows reverse voltage protection and over voltage surge protection circuit

schematic. The diode bridge circuit acts as a rectifier which guarantees normal

operation even when the power is supplied in reverse. The diode bridge causes an

approximately 1.4V voltage drop. The zener diode is used to limit the maximum surge

voltage applied to the XTR115/6, keep the XTR115/6 operates safely.

6.2.2 DAC7611

DAC7611 is a 12-bit serial input digital to analog convertor chip. It requires a single

+5V supply and contains an input shift register, latch, 2.435V reference, DAC, and
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high speed rail-to-rail output amplifier (22). The synchronous serial interface is

compatible with many DSPs and microprocessors. The serial interface consists of a

serial clock (CLK), a serial data (SDI), and a load strobe LD . CS is the chip select

input, and CLR is the asynchronous clear input.

Figure 6.4 DAC7611 diagram block (22)

Figure 6.5 DAC7611 timing diagram (22)

Figure 6.6 DAC7611 basic connection (22)
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CS has to be low to enable the chip to work. The analog output voltage is 0V if CLR

is set to low. In practical use, CLR is connected to power to keep it high. The 12-bit

serial data can be transferred into the DAC register with a high to low transition of the

LD pin. The timing diagram shows the whole process.
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Chapter 7 Temperature Calibration

The humidity sensor is not a temperature independent device. In order to measure

Dew Point more accurately, the Dew Point transmitter needs to do temperature

calibration. Otherwise the measured value will introduce error to the final result.

Another purpose of the temperature calibration is to provide a temperature module to

the transmitter, which acts as a temperature indicator for the system. Temperature

sensors are widely used to collect temperature data. Different temperature sensors are

developed such as thermocouples, resistive temperature sensor (negative temperature

coefficient and positive temperature coefficient), infrared radiator, bimetallic devices,

liquid expansion devices, molecular change of state and silicon diode (23). The first

task of the temperature sensor in this research is to do temperature calibration, which

measures the surface temperature of the humidity sensor. A small temperature sensor

has to be located close enough to the humidity sensor in the air filter. Based on the

previous long term experiment results, the humidity sensor does not have huge

temperature drift effect. 1°C is a good resolution to do temperature calibration for the

humidity sensor.

7.1 Temperature Sensor Selection

Temperature sensors such as DS18B20, precision thermistor (both NTC and PTC) are

discussed. These sensors have good performance and are widely used in real product

development. The precision thermistor is suitable for this transmitter development.

However, it is not simpler to use the NTC or PTC precision thermistor. Thermistor has



57

non linear resistance temperature relation. The DS18B20 digital thermometer

provides 9-bit to 12-bit Celsius temperature measurements and has an alarm function

with nonvolatile user-programmable upper and lower trigger points. The DS18B20

communicates over a 1-Wire bus that by definition requires only one data line (and

ground) for communication with a central microprocessor (24).

Figure 7.1 DS18B20 temperature sensor (24)

DS18B20 only has three lines to communicate with a central microprocessor. One is

GND, one is Vdd, and the third one is a data line. The operation temperature range is

from -55°C to +125 °C and is accurate to ±0.5°C over the range of -10°C to 85°C. So

the DS18B20 is simple to use. It can be used in applications like thermostatic controls,

industrial systems, consumer products, thermometers, or any thermally sensitive

system. However, it cannot be fit into the air filter with the humidity sensor.
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DS18B20 is not the ideal temperature sensor for the project even through it offers

good advantages.

NTC or PTC precision thermistor is small enough to be fit into the air filter together

with the humidity sensor. It offers features like low price, easy to use, high accuracy,

high stability, fast thermal response, and long life. A thermistor actually is a type of

resistor whose resistance value is temperature dependent, the value varies

significantly with temperature. As long as the resistance is measured, the temperature

is known based on the RT curve of the thermistor. The schematic diagram to measure

the resistance of thermistor is given below:

Figure 7.2 Thermistor schematic diagram

R1 and thermistor form a voltage divider. Vt is the voltage across the thermistor, and

the R1 is a fixed value low temperature coefficient resistor. So Vt is:

The resistance is:
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Where Vt is measured by microprocessor.

It is easy to measure the resistance of the thermistor with a microprocessor, an analog

to digital convertor ADC, and a voltage divider. Each thermistor has a resistance vs.

temperature curve (RT curve) shown as below:

Figure 7.3 RT curve date from U.S. SENSOR

This RT curve is for a precision thermistors from U.S. SENSOR, part number

PX102E3. This curve shows the temperature range from -50°C to 80°C. Thermistors

have non linear R/T relationship for the whole temperature range. Piecewise linear is

one of the common techniques which can be applied to build “linear” relationship

between resistance and temperature. Piecewise linear divides the whole temperature

range into small temperature ranges. During each small range, the RT relationship can
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be treated as linear relationship, and the R/T linear equations can be built.

Microprocessor calculates temperature value based on these equations. For the same

precision thermistor from U.S. SENSOR, part number PX102E3, the piecewise linear

applies to the 0°C to 5°C:

Figure 7.4 Piecewise linear for thermistor during 0°C to 5°C

Figure 7.4 shows a small temperature range from 0°C to 5°C, during the small range,

the RT is in linear relationship. The temperature calibration range for the humidity

transmitter is from -10°C to 60°C, which means there are 14 small ranges and results

in 14 R/T linear equations.

Theoretically, thermistor meets all design requirements. It is a perfect temperature

measurement device. However, this strategy cannot be implemented easily. A large

amount of time is needed to acquire the equations or R/T table. An alternate way uses

just one common diode as the temperature sensor will be described later. The diode
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shows very good linear characteristic.

7.2 Diode based Temperature Sensor

A different but simple temperature measurement technique is presented here. This

application offers a huge advantage that is the linear relationship between the voltage

drop across the diode and the temperature. The temperature coefficient is

approximately -2mV/°C for a normal diode. The temperature coefficient is negative,

an increase in the temperature reduces the voltage across the diode needed to produce

the same current (25). The diode characteristics are calculated by the SPICE model

for temperature T=100°C, 27°C, and -50°C to illustrate the temperature effects in

(25).

Figure 7.5 Temperature dependence of the diode characteristic (25)

The temperature coefficient -2mV/°C means when the temperature increases by 1°C,
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the voltage across the PN junction drops about 2mV. So when the temperature

decreases by 1°C, the voltage across the PN junction increases by 2mV. The forward

voltage of diode is temperature dependent, and shows good linear relationship

between the temperature and the voltage. This characteristic can be used to detect the

temperature as long as the voltage across the PN junction is measured. The only

problem goes to how to measure the small change of the PN junction voltage

accurately. Some good analog to digital convertors ADC can capture the small change

of 2mV per degree. However, the whole range of the voltage change is not obviously

even the temperature changes dramatically. A big conversion range is desired for

software process. The simplest way is to use an op-amp to amplify the voltage across

the diode, which leads to a much bigger voltage change. The schematic diagram

shows below:

Figure 7.6 Diode based temperature measurement circuit
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In Figure 7.6, the fast speed diode is IN4148, which features small shape, fast

switching speed and fast reverse recovery. The voltage across the diode is connected

to the non-inverting of the op-amp. The voltage +5V supplies power to the R1 and the

diode. The close loop negative feedback (R3 and R5) determines the voltage gain

(1+R3 / R2) of the entire circuit. In this circuit, the gain is 6. So the small voltage

2mV/°C change across the PN junction produces 12mV/°C on the output terminal of

op-amp chip, which is easy to be detected.

The operational amplifier I am using is the OPA2241 from Texas Instruments. It

features single supply (+5V), wide supply range, high open loop gain, low offset

voltage, and low power consumption. The OPA241 series is designed for portable

application, low power supply application. The chip can be operated ordinary under

voltage +2.7V to +36V single power supply. For some operational amplifiers, they

need to work under dual power supply, positive and negative voltage. The negative

voltage usually brings extra components and effect to the design.

Figure 7.7 OPA224, OPA2251

source: Burr-Brown datasheet

The output of the OPA2411 is still an analog signal. In order to interact with
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microcontroller, the analog signal has to be converted into digital value. An analog to

digital converter ADS7818 is used together with OPA2241 to convert temperature

into digital value.

ADS7818 is a 12-bit high speed successive approximation register (SAR) low power

sampling analog to digital converter. It features 2.5 internal reference, low power

consumption, single power supply (+5V), serial interface, and mini DIP-8/MSOP-8

package. Low power, small size, and high-speed make the ADS7818 ideal for battery

operated systems such as wireless communication devices, portable multi-channel

data loggers, and spectrum analyzers (26).

Figure 7.8 ADS7818 diagram block(26)
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Figure 7.9 ADS7818 basic connection (26)

Figure 7.10 ADS7818 SPI interface timing (26)

Pin1 is the 2.5V reference output, which can be used as the input reference voltage

resource to DAC. Pin2 is non-inverting input. Pin3 is inverting input, which is

connected to ground. CONV is the convert input, DATA is the serial data output, and

CLK is the clock input. The ADS7818 requires an external clock source to run the

conversion. The voltage on Pin Vref determines the range of the analog input. With the

internal 2.5V voltage only, the input analog range is 0-5V. An external voltage

2.0V-2.55V can be placed on Pin Vref, which leads to an input voltage range of 4.0V

to 5.1V. The communication between the chip and the microcontroller is in serial

manner. CONV and CLK control the conversion process, and the result is provided

most significant bit first.

Figure 7.10 shows the typical timing diagram for a serial peripheral interface (SPI).
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CLK, DATA, and CONV are connected to the general I/O pins of microcontroller,

respectively. The transition from high to low of CONV means the beginning of the

conversion. After second clock cycle, the 12-bit are read into microcontroller. The

CLK may be kept low or high after the conversion.

Analog input voltage is calculated as:

Where FS means full scale

The temperature is:

V V°C
2mV

Where n is the gain of OPA2241, which equals to 6 in this design. V°Cis the voltage

across the diode at a known temperature and used as the calibration value. 2mV is the

temperature coefficient of the diode. V analog is the analog voltage value calculated by

ADS7818.

7.3 Self-Heating Effect

The diode based temperature sensor offers several advantages, such as reliable, low

cost, linear relationship between temperature and voltage, easy to operate, and decent

resolution. When a large current flows through a diode, it will generate heat that will

raise the diode temperature. This phenomenon introduces temperature measurement

error to the system. The easiest way to solve this problem is to minimize the current

flows through the diode. A small current around 1mA is good enough to bias the

diode. In this design, a 10k ohm resistor is connected to the diode in series, which
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results in a very small current. The self-heating effect is negligible under this

condition.
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Chapter 8 Study of FreeRTOS Kernel

FreeRTOS is a mini, free, and open source real time operating system from Real Time

Engineers Ltd. It is designed to be concise, portable, and simple, specifically for

embedded system. Currently, the FreeRTOS supports 34 architectures from 8-bit

small MCUs to 32-bit powerful ARM chips. The main part of kernel consists of only

three C files, which are list.c, queue.c, and task.c. Those files are all written in C

language that makes the FreeRTOS easy to read, to port, and to maintain. In addition,

there are a few assembly files for the purpose of adapting to different architectures.

FreeRTOS provides basic services such as multi-tasks, binary semaphore, counting

semaphore, queue, and memory allocation methods. There are no more advanced

features like device driver, advanced memory management, network communication,

and file system. FreeRTOS provides pre-emptive and cooperative scheduling policies.

8.1 Tasks in FreeRTOS

FreeRTOS allows an unlimited number of tasks to be run as long as hardware and

memory can handle it. As a real time operating system, FreeRTOS is able to handle

both cyclic and acyclic tasks. In RTOS, a task is defined by a simple C function,

taking a void* parameter and returning nothing (void) (27).

Tasks have priority in FreeRTOS. Tasks with high priority can preempt tasks with

low priority if the scheduler is configured in pre-emptive. Tasks have several states in

FreeRTOS: running state, blocked state, suspended state, and the ready state. The

FreeRTOS scheduler is the only decision maker who puts tasks in the running state, or
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not running states. The not running states include all the task states except the running

state.

Figure 8.1 Full task state machine(28)

There are several reasons for a task not in the running state. A high priority task

preempts low priority task, which makes the low priority task goes into the not

running state. When a task is waiting for the CPU, its state is in the ready state. This

can happen when a higher priority is using the CPU now. When a task is delayed or in

sleep mode, the task is in the blocked state. A task can also be suspended by scheduler.

But a call to vTaskResume() can switch the task back to the ready state. Figure 8.1

describes all the transitions between the different task states. FreeRTOS provides all
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the necessary API for Task_Create(), Task_Delete(), Task_Suspend(), Task_Delay(),

TaskPriority_Set(), etc.

8.2 Scheduling

The scheduler is the most important part of the kernel responsible for deciding which

task should be executing at any particular time. The kernel can suspend and later

resume a task many times during the task lifetime. The scheduling policy is the

algorithm used by the scheduler to decide which task to execute at any point in time

(29). FreeRTOS achieves this purpose with priorities given to tasks while they are

created. Priority of a task is the only element the scheduler takes into account to

decide which task has to be switched in (27).

The maximum number of priorities can be configured in the system configuration

head file FreeRTOSConfig.h. FreeRTOS doesn’t limit the maximum value of

priorities. However, the more priorities are assigned, the more RAM the kernel is

consumed. FreeRTOS allows any number of tasks share the same priority. Each task

also can be configured to have its unique priority. For the FreeRTOS, low numeric

priority means low priority tasks. Priority zero is the lowest priority task. High

numeric priority denotes high priority tasks. The scheduler always chooses the highest

priority task and puts it in the running state. When more than one task of the same

priority is ready to run, the scheduler switches each of them into and out of the

running state in turn. For those tasks have the same priority, each task executes for a

time slice. Task enters the running state at the beginning of the time slice and exits the
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running state at the end of the time slice.

In order to switch between the different priorities tasks, a timer interrupt (the RTOS

tick interrupt) enables the scheduler to choose the next highest priority task to run in

the tick ISR. Real time kernel uses a variable called tick count to measure the time.

Whenever the tick interrupt happens, the tick count increases by one. RTOS tick is the

heart beat of the OS. Usually, it sources from external oscillator. So the tick provides

accurate timing to the RTOS tick interrupt. The tick rate is configured by

configTICK_RATE_HZ in the FreeRTOSConfig.h file. For example, if the tick rate is

set to 1000 (Hz), then the tick interrupt is generated each 1ms.

Each time the tick count is incremented the real time kernel must check to see if it is

now time to unblock or wake a task. It is possible that a task woken or unblocked

during the tick ISR will have a priority higher than that of the interrupted task. If this

is the case the tick ISR should return to the newly woken/unblocked task - effectively

interrupting one task but returning to another (29).

Figure 8.2 The tick interrupt makes the scheduler to run a higher priority
task(28)
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In the tick ISR, the scheduler puts the higher priority task2 in the running state. After

the completion of the task2, task2 enters into not running state. The tick ISR returns

task1 to the running state.

8.3 Inter-task communication

FreeRTOS provides several ways to enable tasks communicate with each other, such

as queue, binary semaphore, counting semaphore, etc. A queue can store a finite

number of fixed size data. They have a length which is the maximum number of items

that the queue can hold. Both the data size and the queue length are given when the

queue is created. Queue can be accessed by multiple tasks. Some tasks can write

(copy) data to the queue and some tasks can read (copy) data from the queue. This is a

very important mean for multiple tasks to talk to each other.

Binary semaphore is the easiest way to synchronize tasks. A binary semaphore uses

the existing queue mechanism. The binary semaphore actually is a special queue, the

length is 1 and the data size is 0. It can be used to unblock a task each time a

particular interrupt occurs, effectively synchronizing the task with the interrupt. This

allows the majority of the interrupt event processing to be implemented within the

synchronized task, with only a very fast and short portion remaining directly in the

ISR (28).
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Figure 8.3 The implementation of binary semaphore to synchronize the task with
the interrupt(28)

In Figure 8.3, the handler task has higher priority than task1. It processes data from

the ISR. The scheduler needs to synchronize the ISR handler task with the ISR. An

interrupt happens to interrupt the running task1. In the ISR, the ISR implementation

uses a binary semaphore to unblock the handler task. The ISR returns directly to the

handler task if the handler task has the highest priority.

Counting semaphore has the same mechanism as the binary semaphore. It can be

thought as a queue that has a length more than one. The counting semaphore can be

taken several times before it becomes unavailable. It has a count value which is

increased when the semaphore is given, and decreased when the semaphore is taken.

As long as the semaphore is unavailable, tasks can’t take semaphores any more, they

have to be blocked and wait for the available semaphore. In the figure x, a counting

semaphore is created without any available semaphores. An interrupt gives one

semaphore to the count, which adds value one to the count. The task takes the

semaphore leads to the unavailability of the semaphore. Another two interrupts
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happen while the task is processing the last event. The ISR gives two semaphores to

the semaphore count. After the completion of the last event, the task takes another

semaphore without entering the blocked state. With the counting semaphore, tasks

would not miss any interrupt events.

8.4 Introduction to some Basic FreeRTOS API

Create a task:

portBASE_TYPE xTaskCreate(

pdTASK_CODE pvTaskCode,

const portCHAR * const pcName,

unsigned portSHORT usStackDepth,

void *pvParameters,

unsigned portBASE_TYPE uxPriority,

xTaskHandle *pvCreatedTask

);

This API is used to create a new task and add it to the ready to run task list.

PvTASK_Code is the pointer to the task entry function. pcNAME is the name for the

task. usStackDepth is the size of the task stack. pvParameters is the pointer that will

be used as the parameter for the task being created. uxPriority is the priority for the

task. pvCreatedTask is used to pass back a handle by which the created task can be

referenced.

Delete a task:
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Void vTaskDelete ( xTaskHandle pxTask );

This API is used to remove a task from RTOS. The task will be removed from all

ready, blocked, suspended and even lists.

Delay a task:

Void vTaskDelay ( portTickType xTicksToDelay);

Void vTaskDelayUntil (portTickType *pxPreviousWakeTime,

portTickType xTimeIncrement);

Those API are used to delay a task. The first API delays a task for a given number of

ticks. The actual time delay time depends on the tick rate. The second API can delay a

task for a specific time.

Start scheduler:

Void vTaskStartScheduler (void)

This API is used to start the real time kernel tick processing. The idle task is created

automatically when vTaskStartScheduler() is called.

Stop scheduler:

Void vTaskEndScheduler (void)

This API is used to stop the real time kernel tick. All tasks will be automatically

deleted and the scheduler will stop.

Create a Queue:

xQueueHandle xQueueCreate(

unsigned portBASE_TYPE uxQueueLength,
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unsigned portBASE_TYPE uxItemSize

);

This API is used to create a new queue. uxQueueLength is the maximum number of

items that the queue can hold. uxItemSize if the number of bytes each item in the

queue needs.

Write to a Queue:

portBASE_TYPE xQueueSend(

xQueueHandle xQueue,

const void * pvItemToQueue,

portTickType xTicksToWait

);

This API writes an item in a queue. xQueue is the handle to the queue on which the

item is to be posted. pvItemToQueue is a pointer to the item that is to be placed on the

queue. xTickToWait is the maximum time to wait before the queue becomes

available.

Read from a Queue:

portBASE_TYPE xQueueReceive(

xQueueHandle xQueue,

void *pcBuffer,

portTickType xTicksToWait

);
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This API reads an item from a queue. xQueue is the handle to the queue on which the

item is to be posted. pcBuffer is a pointer to the buffer where the read item will be

placed to. xTicksToWait defines the maximum time to wait.

Create a semaphore:

vSemaphoreCreateBinary( xSemaphoreHandle xSemaphore );

xSemaphore to be created.

Take a semaphore:

xSemaphoreTake(

xSemaphoreHandle xSemaphore,

portTickType xBlockTime

);

xSemaphore is the handle to the semaphore. This is returned by

vSemaphoreCreateBinary(). xBlockTime is the time, in clock ticks, to wait for the

semaphore to be available.

Give a semaphore:

xSemaphoreGive( xSemaphoreHandle xSemaphore );

xSemaphore is the handle to the semaphore being released. This is returned by

vSemaphoreCreateBinary().

Create a counting semaphore:

xSemaphoreHandle xSemaphoreCreateCounting(

unsigned portBASE_TYPE uxMaxCount,



78

unsigned portBASE_TYPEuxInitialCount

);

uxMaxCount is the maximum number of semaphores can be taken. uxInitialCount is

the initial value after the counting semaphore is created.

8.5 Port FreeRTOS to MSP430F249

FreeRTOS is a concise, portable, and simple real time operating system. It is designed

specifically for small embedded system. It can be ported to more than 30 architectures.

FreeRTOS has demo projects for different architectures. Westmoreland Engineering

also provides a demo project to port FreeRTOS to MSP430F169 (30).

Figure 8.4 The top level directories (28)

The core FreeRTOS source code can be downloaded from the FreeRTOS.org website.

The three core kernel C files are located under the source directory. They are common

for all ports. Nothing needs to be modified to them. The port specific files are located

under the portable directory too. These files are complier and architecture related.

Those files are located within the FreeRTOS\Source\Portable\ [complier]\

[architecture] directory, where [complier] is the tool chain being used and

[architecture] is the microcontroller being used. For this thesis, MSP430 and IAR are
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used. So the port specific files can be found under FreeRTOS\Source\Portable\ IAR\

MSP430. They are port.c, portasm.h, portext.s43, and portmacro.h.

In order to port FreeRTOS to MSP430F249, the three core C files and the three port

specific files should be included to the project. In addition, there are some places need

to be modified. The head file FreeRTOSConfig.h should include msp430x24x.h

instead of msp430x4x.h.

#ifndef FREERTOS_CONFIG_H
#define FREERTOS_CONFIG_H
#include <msp430x24x.h>///////////use msp430x24x.h here////////////////////
#define configINTERRUPT_EXAMPLE_METHOD 1
#define configUSE_PREEMPTION 1
#define configUSE_IDLE_HOOK 1
#define configUSE_TICK_HOOK 0
#define configCPU_CLOCK_HZ ( ( unsigned long ) 7995392 ) /* Clock setup
from main.c in the demo application. */
#define configTICK_RATE_HZ ( ( portTickType ) 1000 )
#define configMAX_PRIORITIES ( ( unsigned portBASE_TYPE ) 5 )
#define configMINIMAL_STACK_SIZE ( ( unsigned short ) 100 )
#define configTOTAL_HEAP_SIZE ( ( size_t ) ( 1800 ) )
#define configMAX_TASK_NAME_LEN ( 8 )
#define configUSE_TRACE_FACILITY 0
#define configUSE_16_BIT_TICKS 1
#define configIDLE_SHOULD_YIELD 1

/* Co-routine definitions. */
#define configUSE_CO_ROUTINES 0
#define configMAX_CO_ROUTINE_PRIORITIES ( 2 )
/* Set the following definitions to 1 to include the API function, or zero
to exclude the API function. */
#define INCLUDE_vTaskPrioritySet 0
#define INCLUDE_uxTaskPriorityGet 0
#define INCLUDE_vTaskDelete 0
#define INCLUDE_vTaskCleanUpResources 0
#define INCLUDE_vTaskSuspend 0
#define INCLUDE_vTaskDelayUntil 1
#define INCLUDE_vTaskDelay 1
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#define INCLUDE_uxTaskGetStackHighWaterMark             0
#endif /* FREERTOS_CONFIG_H */

The MSP430 chip needs to provide a RTOS tick rate to the kernel. In the demo

project, they use Timer_A0 to generate the tick interrupt. However, in my project, the

Timer_A0 is used for other purpose. So Timer_B0 is used instead of Timer_A0. First,

the Timer_B0 has to be initialized in the port C file.

/*
* Hardware initialisation to generate the RTOS tick.  This uses Timer_B0
* but could alternatively use the watchdog timer or timer 1.
*/

void vPortSetupTimerInterrupt( void )
{

/* Ensure the timer is stopped. */
TBCTL = 0;

/* Run the timer of the ACLK. */
TBCTL = TASSEL_1;

/* Clear everything to start with. */
TBCTL |= TACLR;

/* Set the compare match value according to the tick rate we want. */
TBCCR0 = portACLK_FREQUENCY_HZ / configTICK_RATE_HZ;

/* Enable the interrupts. */
TBCCTL0 = CCIE;

/* Start up clean. */
TBCTL |= TACLR;

/* Up mode. */
TBCTL |= MC_1;

}
/*-----------------------------------------------------------*/

After initialization of Timer_B0, Timer_B0 has to be enabled to generate interrupt.

This is modified in the porttext.s43 file.
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/*-----------------------------------------------------------*/
/* Install vTickISR as the timer B0 interrupt. */

//ASEG
COMMON INTVEC:CODE:ROOT(1)
ORG TIMERB0_VECTOR
DW vTickISR

/*
* The RTOS tick ISR.
*
* If the cooperative scheduler is in use this simply increments the tick
* count.
*
* If the preemptive scheduler is in use a context switch can also occur.
*/

vTickISR:
portSAVE_CONTEXT

call #vTaskIncrementTick

#if configUSE_PREEMPTION == 1
call #vTaskSwitchContext

#endif

portRESTORE_CONTEXT
/*-----------------------------------------------------------*/

The vTickISR is used to switch context of tasks. This is the key part of scheduler

when a high priority task needs to preempt a low priority task. The whole process is

accomplished by hardware.
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Chapter 9 Implementation and Testing

A prototype dew point meter can be built based on the previous 8 chapters. The meter

has one 1602LCD module, one capacitance measurement module, one 4-20mA

current loop module, one temperature measurement module and one humidity

calibration module. Each module is deeply elaborated above except the humidity

calibration module. The calibration part is not covered in this thesis.

9.1 Firmware Architecture and Flowchart

Totally, the firmware of this system can be separated into 6 parts: one main file,

1602LCD driver, sensor capacitance measurement, ADS7818 driver, DAC7611 driver

and dew point calibration section.

The main file is used to initialize hardware, create tasks, and start task scheduler. For

the rest modules, each of them has a header file and an executable body. The header

provides an interface between different modules.

main.c

Figure 9.1 Firmware architecture
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Figure 9.2 Main flowchart

Figure 9.3 Task1 flowchart
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Figure 9.4 Task3 flowchart

Figure 9.5 Task4 flowchart
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Figure 9.6 Task 5 flowchart

Each task is an infinite loop. At the end of each task, task needs to call a delay API,

which puts the calling task into the blocked state for a fixed period. That’s why all

tasks with different priorities have opportunity to run.

9.2 Hardware Prototype

The CadSoft EAGLE PCB design software is used for schematic and PCB design.

EAGLE represents for easily applicable graphical layout editor. A freeware edition of

the software is used in this project. This version has some limitation: the useable

board area is 100 * 80 mm (4 *3.2 inches), only two signal layers can be used (top

and bottom), the schematic can only be one sheet, only for non-profit applications or

evaluation purposes. The software can be updated to standard or professional version

if the application exceeds the non-profit domain.

9.3 Experimental Results

Currently, there are two humidity sensors under test in the lab. Those two samples are
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made at the same time using same technology. They have been tested under Agilent

4284A precision LCR meter for more than two years. Sample IV is a reference sensor,

and the sample V is used in the transmitter prototype. Another dew point sensor

FA410-H2 from CS Instruments is used as the calibration sensor for the prototype.

The output of FA410-H2 is 4-20mA current. A better calibration sensor is highly

needed in the future, especially for the low dew point calibration.

Ultra high purity grade nitrogen compressed gas and water are controlled by flow

meter to create an adjustable environment for transmitter test. Below is a table for 8

different points which covers from low dew point to high dew point test.

Table 9.1: Different Dew Point Test Points

N2(lit/min) H2O(lit/min) FA410(mA) DP(°C) Time

0 ~800 19.7 18.2 30(min)

~750 ~600 18.23 8.9 30(min)

~1100 ~300 16.80 0 30(min)

~1100 ~200 15.68 -7 1(hr)

~1100 ~40 13.28 -22 1(hr)

~1100 ~10 11.07 -34 1(hr)

~1100 ~5 9.0 -50 1(hr)

~1100 ~0 Dry(exceed range) Dry(exceed range) 1(hr)
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Figure 9.7 Humidity sensor IV (from -80°C to 20°C) by Agilent LCR Meter

Figure 9.7 shows the capacitance-dew point characteristic of humidity sensor IV. This

plot has 4 different groups of test data. Each group starts at high dew point to low dew

point, and stays overnight at low dew point to reach the lowest dew point. For the next

day, each sensor starts at lowest dew point to highest dew point. This is an entire cycle

for one measurement. The DP value is calibrated by the FA410.
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Figure 9.8 Humidity sensor V (from -80°C to 20°C) by Circuit Board

Figure 9.8 shows the capacitance vs. dew point characteristic of humidity sensor V.

This plot also has 4 different groups of test data. It has the same test procedure as the

sensor IV. The Y axis represents the time captured by the Timer_A inside the MSP430.

The circuit is tested under room temperature 23°C, and the resistor in series with the

sensor is 125K . A different resistor will have a different capacitance vs. dew point

plot, because of the time constant RC. The sensor has temperature coefficient, which

is not considered here now. Further research concerns temperature coefficient will be

performed in the future. From Figure 9.8, it can be found that stable, drift free, highly

sensitive, and low dew point measurement are the main characteristics of this sensor.



89

Chapter 10 Conclusion and Future Work

10.1 Conclusion

The dew point meter developed in this thesis is based on an alpha-alumina-based

humidity sensor, which is a reliable and drift-free humidity sensor. The sensor has

shown good performance for long term measurement. This thesis develops a

microprocessor based circuit to interface with the sensor. The analog sensor

conditioning circuit successfully converts the sensor capacitance into digital data. An

economic measurement technology slope A/D conversion is implemented in this

conditioning circuit. MSP430F249 plays an important role in the whole system, which

is the key part of the slope A/D convertor and the entire circuit. MSP430 can add

more new features to the system in the future.

Another two modules of the sensor meter are 4-20mA current loop and temperature

sensor. The current loop enables the meter to have a standard output current signal,

which represents the dew point. It provides current input for other system. The

temperature sensor actually is a common diode. Due to the reliable and linear

temperature coefficient characteristic of the diode, it can be easily used as a

temperature detector. The humidity sensor needs the detector to calibrate temperature

influence. The diode also provides temperature measurement for the meter.

10.2 Future Work

The prototype dew point meter has been built in the lab. It is running quite stable for
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more than one year. Some new features need to be added to the system. Meanwhile,

more temperature controlled measurement should be done to further improve the

performance of the sensor meter.

In future, a few buttons are necessary for the transmitter, which act as the

human-machine interface. A custom design LCD display is also important for the

sensor meter instead of the common 1602LCD.
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