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Cellular/Molecular

In Vivo Identification of Eugenol-Responsive and Muscone-
Responsive Mouse Odorant Receptors

X Timothy S. McClintock,1 Kaylin Adipietro,5 William B. Titlow,1 Patrick Breheny,2 Andreas Walz,3†
Peter Mombaerts,3,4 and Hiroaki Matsunami5,6

1Department of Physiology, University of Kentucky, Lexington, Kentucky 40536, 2Department of Biostatistics, University of Iowa, Iowa City, Iowa 52242,
3Rockefeller University, New York, New York 10065, 4Max Planck Research Unit for Neurogenetics, D-60438 Frankfurt, Germany, 5Department of
Molecular Genetics and Microbiology and 6Duke Institute for Brain Sciences, Department of Neurobiology, Duke University Medical Center, Durham,
North Carolina 27710

Our understanding of mammalian olfactory coding has been impeded by the paucity of information about the odorant receptors (ORs)
that respond to a given odorant ligand in awake, freely behaving animals. Identifying the ORs that respond in vivo to a given odorant
ligand from among the �1100 ORs in mice is intrinsically challenging but critical for our understanding of olfactory coding at the
periphery. Here, we report an in vivo assay that is based on a novel gene-targeted mouse strain, S100a5–tauGFP, in which a fluorescent
reporter selectively marks olfactory sensory neurons that have been activated recently in vivo. Because each olfactory sensory neuron
expresses a single OR gene, multiple ORs responding to a given odorant ligand can be identified simultaneously by capturing the
population of activated olfactory sensory neurons and using expression profiling methods to screen the repertoire of mouse OR genes. We
used this in vivo assay to re-identify known eugenol- and muscone-responsive mouse ORs. We identified additional ORs responsive to
eugenol or muscone. Heterologous expression assays confirmed nine eugenol-responsive ORs (Olfr73, Olfr178, Olfr432, Olfr610, Olfr958,
Olfr960, Olfr961, Olfr913, and Olfr1234) and four muscone-responsive ORs (Olfr74, Olfr235, Olfr816, and Olfr1440). We found that the
human ortholog of Olfr235 and Olfr1440 responds to macrocyclic ketone and lactone musk odorants but not to polycyclic musk odorants
or a macrocyclic diester musk odorant. This novel assay, called the Kentucky in vivo odorant ligand–receptor assay, should facilitate the
in vivo identification of mouse ORs for a given odorant ligand of interest.

Key words: cell sorting; expression profiling; G-protein coupled receptor; odor detection; olfaction; sensory coding

Introduction
Mammals can detect numerous odorants, and humans may be
able to discriminate as many as 1 trillion different odorant mix-
tures (Bushdid et al., 2014). Remarkably, this enormous capacity
for sensory detection and discrimination is not achieved at the
expense of specificity. For example, mice have been shown to
discriminate every pair of odorant enantiomers tested thus far
(Laska and Shepherd, 2007). Underlying this discriminatory
power is the expression of a single allele of one odorant receptor

(OR) or trace amine-associated receptor (Taar) gene in a mature
olfactory sensory neuron (OSN; Mombaerts, 2004; Johnson et al.,
2012). In addition, this singularity of expression allows receptor-
specific axonal inputs to coalesce into glomeruli of the olfactory
bulb (Mombaerts et al., 1996), an anatomical organization that
contributes to maximizing the capacity for odor discrimination.

The discriminatory power of olfaction rivals that of the visual
and auditory systems, but the patterns of receptor activation by
odorant ligands remain elusive. Resolution of this problem has
been hampered by the sheer number of ORs (�1100 intact OR
genes in the mouse) and the retention of ORs in the endoplasmic
reticulum of heterologous cells as opposed to native mature
OSNs (McClintock et al., 1997; Gimelbrant et al., 2001; Lu et al.,
2003; Dalton et al., 2013). Nevertheless, odorant ligands for �100
mammalian ORs have been identified. These data indicate that a
typical OR is capable of being activated by several structurally
related odorants, with some receptors more narrowly and others
more broadly tuned (Malnic et al., 1999; Malnic, 2007; Grosmai-
tre et al., 2009; Kato and Touhara, 2009; Saito et al., 2009; Nara et
al., 2011). However, translating these data into an understanding
of in vivo OR activation by odorants is difficult. To advance and
refine these ideas further will require in vivo assays that go beyond
the characterization of individual ORs (Zhao et al., 1998; Malnic
et al., 1999; Kajiya et al., 2001; Oka et al., 2006; Shirasu et al.,
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2014) to assay instead simultaneously the entire repertoire of ORs
so that sets of ORs activated by odorants may be identified.

Here, we demonstrate the ability of a novel in vivo assay in
mice, supported by heterologous expression data, to identify ORs
that respond to a given odorant ligand. With this approach, we
identified or re-identified nine eugenol-responsive ORs, includ-
ing all four previously identified eugenol-responsive ORs, and
four muscone-responsive ORs, including the sole OR known pre-
viously to respond to muscone. Eugenol is a major component of
the oil of several spice plants, especially the clove plant, Szygium
aromaticum. Muscone is a large macrocyclic odorant discovered
in scent glands of male deer of the family Moschidae and has a
long history of use in fragrances (Kraft and Fráter, 2001). The
mouse ORs responsive to muscone successfully predicted a hu-
man OR that we find to be strongly responsive to macrocyclic
ketone and macrocyclic lactone musk odorants.

Materials and Methods
Materials.Sigma-Aldrichwasthesourceofeugenol[4-allyl-2-methoxyphenol
(catalog #35995)], mineral oil (catalog #M5904), Tonalid [Chemical
Abstracts Service (CAS) 21145-77-7; catalog #W526401], Astrotone
(ethylene brassylate; CAS 105-95-3; catalog #W354309), Exaltone (cyclo-
pentadecanone; CAS 502-72-7; catalog #C111201), and isopropyl myris-
tate (IPM; CAS 110-27-0; catalog #172472). Muscone (racemic mixture,
50% in IPM; CAS 10403-00-6) was purchased from Perfumer’s Appren-
tice. Galaxolide (CAS 1222-05-5) was obtained from International Fla-
vors & Fragrances. Mineral oil was the vehicle for eugenol and IPM for
muscone.

S100a5–tauGFP mouse strain. Using 129/SvJ genomic DNA and the
GeneAmp XL PCR kit (Life Technologies), DNA segments flanking the
coding exons of S100A5 were cloned after PCR amplification. The up-
stream arm was amplified using primers 5�-TATATGCGGCCGCTGC-
CATGATGTGCAATGAATTCTTTGAGGG and 5�-TAGGTGGCG
CGCCGATATGTACCCTGGACTAGGAGAGAGGACAATCAC. The
downstream arm was amplified using primers 5�-TATATGGCGCGC-
CAGGACACTGGCAGCTCCTGATCCTG and 5�-CGCGCGTTAATTA-
AGTGGCTGTCCAACAACGTGGTAAGACCAGG. An upstream 4 kb
NotI-Asc1 fragment and a downstream 3.8 kb Asc1–PacI fragment were
cloned into pBS–SKII that had been modified to accept these sites. An
Asc1 fragment consisting of IRES–tauGFP and a loxP–pgk–neomycin–
loxP sequence was subcloned into the Asc1 site. A clone of the correct
orientation was identified by sequencing. The targeting vector was lin-
earized with PmeI and electroporated into E14 embryonic stem cells that
were cultured and selected using G418 as described previously (Mom-
baerts et al., 1996). Homologous recombination in embryonic stem cell
colonies and in mutant mice was determined by PCR using primers
5�-AGCTTTGGCTCCCATCCACGGTG and 5�-TGTTGGACAGCCA-
GAGGGTCCCC. The pgk–neomycin fragment was removed by breeding
heterozygotes to EIIa–Cre transgenic mice (Lakso et al., 1996), and the
Cre recombinase transgene was subsequently removed by intercrossing
S100a5–tauGFP mice hemizygous for the transgene. S100a5–tauGFP
mice were in a mixed 129 � C57BL/6J background. This strain is publicly
available from The Jackson Laboratory as stock number 6709, official strain
name B6;129P2-S100a5�tm1Mom�/MomJ. Mice homozygous or
heterozygous for the S100a5–tauGFP mutation (hereafter referred to as
S100a5–tauGFP mice) have similar numbers of GFP-positive (GFP�) OSNs
in the same mosaic pattern across the main olfactory epithelium, 22� 8/mm
along the olfactory epithelium for homozygotes and 32 � 5/mm for
heterozygotes in 10-�m-thick tissue sections (n 	 5; p 	 0.0741). Both
genotypes were used interchangeably in the experiments described herein.
As a precaution for hidden effects of genotype, heterozygous and homozy-
gous mice were distributed equally between vehicle control and odorant
treatments. All procedures with mice were done according to protocols ap-
proved by the Institutional Animal Care and Use Committees of Rockefeller
University and the University of Kentucky.

Odor stimulation in vivo. Exposing live mice to odor or vehicle was
performed with groups of eight S100a5–tauGFP mice of both sexes aged

7–12 weeks. Each mouse was housed individually in chambers under a
flow of 1.5 l/min filtered air as described previously (Fischl et al., 2014)
for 40 h without food but with ad libitum distilled water. This chamber
system minimizes ambient odor sufficiently such that the effect of odors
on activity-dependent genes in OSNs, which cannot be detected when
introduced in a standard cage environment, can be measured (Fischl et
al., 2014). This protocol also minimizes the effects of previous odor
exposure by allowing for protein turnover to reduce GFP levels. (Naris
occlusion data show that GFP fluorescence is significantly reduced by
24 h and reaches a minimum by 48 h.) After a period of 26 h of filtered air
in these chambers, intermittent odor exposure was initiated and per-
formed for a period of 14 h. This 14 h period allows odor-stimulated GFP
fluorescence to develop (preliminary experiments revealed that in-
creased GFP expression can be detected as early as 6 h) but is too brief for
GFP fluorescence to fade (25% reduction in fluorescence 24 h after naris
occlusion). Electronically controlled valves were activated for 10 s to
divert the flow of air through the headspace of 30 ml tubes containing 200
�l of odorant (a 1:1 mix of odorant and vehicle) or vehicle alone. This
switch was activated every 5 min until the completion of the experiment
14 h later. There were thus 168 odor exposures lasting 10 s each, or 28 min
total exposure to the odorant ligand over the course of 14 h. Four mice
were exposed to the odorant, whereas the other four were simultaneously
exposed to vehicle. When mice from two litters were used, litters were
distributed equally between the two treatment groups.

RNA isolation and measurement. At the completion of odor exposure,
olfactory mucosae were dissected and cells dissociated in a procedure
involving papain, trypsin, deoxyribonuclease, and low calcium saline as
described previously (Yu et al., 2005; Sammeta et al., 2007). Cells from
four identically treated mice were pooled, and fluorescence-activated cell
sorting (FACS) was performed using an iCyt Synergy cell sorting system
(Sony) to collect GFP � and GFP-negative (GFP 
) cell samples in the
University of Kentucky Flow Cytometry and Cell Sorting Facility. Total
RNA was isolated using the Qiagen RNeasy Micro kit (catalog #74004),
and samples were pooled until the GFP � sample reached at least 50 ng of
RNA, which required 8 –16 mice per replicate of each treatment. RNA
quantity was measured using Affymetrix Mouse GeneChip 1.0 ST arrays
in the University of Kentucky Microarray Facility. This microarray con-
tains 1176 probe sets for mRNAs from ORs and Taars, including all of the
1098 intact OR genes and 14 Taar genes. Data were initially processed
using Affymetrix GeneChip Command Console software to generate
normalized quantities for each OR and Taar transcript cluster. Addi-
tional processing to generate GFP �/GFP 
 ratios was done in Microsoft
Excel. No OR or Taar transcript clusters were consistently in the bottom
10% of signals or below 2 SDs of the mean signal for all transcript clusters,
so all OR and Taar transcript clusters were used in these analyses. The
microarray data are available in the Gene Expression Omnibus under the
accession number GSE59336.

Statistical analyses. The stability of OR GFP �/GFP 
 ratios makes it
possible to screen the entire set of ORs and Taars and identify activated
receptors using a relatively small number of replications. We used a
Bayesian hierarchical model to obtain normalized measures of odorant
effect, accounting for four sources of variation: (1) basal receptor effect,
(2) odorant effect, (3) nonspecific effect (change in both odorant and
vehicle control), and (4) random measurement error. We find that 86%
of the variation in the data are attributable to receptor identity and odor-
ant, and only 14% are attributable to experimental noise. For each odor-
ant effect, the posterior mean divided by the posterior SD provides a
measure (Z-statistic) that is approximately normally distributed. Local
false discovery rates (FDRs; Efron, 2008, 2010) were used to estimate the
probability that each receptor is responsive to the odorant under the
conservative assumption that the majority of the receptors are not re-
sponsive to the odorant. A 10% FDR was found to be a suitable level of
risk for the identification of activated receptors.

Luciferase assay for OR function in Hana3A cells. Heterologous expres-
sion of ORs was performed as described previously (Saito et al., 2004,
2009; Zhuang and Matsunami, 2007; Dey et al., 2011; Li and Matsunami,
2011; Duan et al., 2012). Briefly, this assay is based on OR-driven in-
creases in cAMP to activate CREs that result in expression of firefly
luciferase. Plasmids (pCI; Promega) containing cDNAs encoding
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ORs (C57BL/6 sequences) tagged with the
N-terminal 20 aa of rhodopsin were transiently
transfected along with RTPS1 (an OR chaper-
one), Renilla luciferase, CRE–firefly luciferase,
and pRL–SV40 into Hana3A cells using Lipo-
fectamine2000 (Life Technologies). Cells were
plated into 96-well BioCoat plates (BD Biosci-
ences). One day after transfection, the medium
in each well was changed to CD293, a chemi-
cally defined medium from Life Technologies
(catalog #11913 � 019), for 30 min at 37°C.
This medium was then exchanged for 25 �l of
CD293 containing either vehicle or the odor-
ant ligand at concentrations ranging from
10 
7 to 10 
2

M and incubated for 4 h at 37°C
and 5% CO2. Each concentration of odorant
ligand was tested in triplicate wells. Luciferase
activity was then measured using the Dual-Glo
Luciferase Assay System (Promega) according
to the protocols of the manufacturer. A Wallac
Victor 1420 plate reader (PerkinElmer Life and
Analytical Sciences) was used to measure lumi-
nescence. To control for transfection efficiency,
the firefly luciferase luminescence of each well
was divided by the Renilla luciferase activity of the
well. Normalized luciferase activity was calcu-
lated as (LN 
 Lmin)/Lmax 
 Lmin), where LN is
the corrected firefly luminescence, Lmax is the
maximum firefly luminescence on the plate, and
Lmin is the minimum firefly luminescence on the
plate.

Results
The S100a5–tauGFP mouse strain
To screen for activation of ORs in native
mouse OSNs in vivo, we devised an ap-
proach that is based on the activity-
dependent expression of GFP from the
S100a5 locus and the expression of one
OR gene per OSN (Fig. 1).

The S100a5 gene encodes a 93 aa calcium-
and zinc-binding protein (Schäfer et al.,
2000; Streicher et al., 2010). The abun-
dance of S100a5 mRNA in OSNs is depen-
dent on odor stimulation (Serizawa et al.,
2006; Bennett et al., 2010; Fischl et al.,
2014). The S100a5 protein is located in

Figure 1. The gene-targeted S100a5–tauGFP mouse strain allows for activity-dependent fluorescent marking of OSNs. A, The
design of the targeted mutation of the mouse S100a5 locus, replacing the coding exons with tauGFP. Boxes, Exons; light blue,
coding sequence; dark blue, noncoding sequence; triangles, loxP sites; arrow, translation start site. B, Exposure for 4.5 s detects
fluorescent OSNs in a 12 �m coronal section at midseptum, showing the mosaic pattern and variable levels of GFP expression in a
male mouse, 25 d postnatal, that is wild type for the Cnga2 locus. C, Exposure for 49 s reveals a near absence of fluorescent OSNs in
a Cnga2-deficient male mouse, 25 d postnatal. Scale bars, 100 �m. D, FACS of dissociated cells from olfactory mucosae of a
wild-type C57BL/6 mouse is used to set sorting gates (circumscribed with magenta lines) for subsequent capture of GFP � and

4

GFP 
 cells from S100a5–tauGFP mice. E, F, FACS capture of
GFP � and GFP 
 cells from a set of four S100a5–tauGFP mice
exposed to vehicle (E) and four mice exposed in parallel to
muscone (F). G, In the in vivo assay, OSNs that exhibit GFP
fluorescence above background are captured in the GFP �

sample. The distribution of each OSN subtype in GFP � and
GFP 
 FACS samples from S100a5–tauGFP mice exposed to an
odorant ligand differs from that of S100a5–tauGFP mice ex-
posed to vehicle only in those few OSN subtypes that express
ORs responsive to the odorant ligand, as exemplified by OR6 in
this diagram. Odorant-evoked activity in OR6-expressing OSNs
results in an increase of the fraction of these OSNs with GFP
fluorescence above background, thus causing a redistribution
of these OSNs from the GFP 
 FACS sample into the GFP �

FACS sample. Differing intensities of GFP fluorescence above
background exist among OSNs but are not relevant in this as-
say, which is based on a binary grouping of fluorescence inten-
sities (GFP 
 vs GFP �).

McClintock et al. • In Vivo Assay for Mouse Odorant Receptors J. Neurosci., November 19, 2014 • 34(47):15669 –15678 • 15671



both the dendritic cilia and the axons of OSNs (Schäfer et al.,
2000; Kuhlmann et al., 2014). The biological function of S100a5
is not known. We generated a novel gene-targeted mouse strain
with a tauGFP reporter replacing the two coding exons and in-
tervening intron of the S100a5 gene (Fig. 1A), causing a deletion
of the S100a5 gene. Thus far, we have not identified deficits in
mice lacking S100a5: homozygous mice are indistinguishable
from wild-type littermates. Consistent with the activity depen-
dence of S100a5 expression, GFP expression from the mutant
locus is reflected in a mosaic pattern of fluorescent OSNs in the

main olfactory epithelium (Fig. 1B). GFP fluorescence is nearly
undetectable in a Cnga2-deficient genetic background (Zheng et
al., 2000), in which nearly all odorant-evoked electrical activity in
OSNs is eliminated (Fig. 1C). Unlike the robust activity-
dependent expression of S100a5 in OSNs, neither S100a5 mRNA
in C57BL/6 mice nor GFP fluorescence in S100a5–tauGFP mice
could be detected in vomeronasal sensory neurons (data not
shown).

We used FACS to collect separately GFP-fluorescent (GFP�)
OSNs and nonfluorescent cells (GFP
) from olfactory mucosae
of S100a5–tauGFP mice that had been maintained in filtered air
chambers for 40 h and exposed intermittently to odorant for the
last 14 h of this period (Fig. 1D–F). Because the OSNs that re-
spond to the odorant ligand tested represent only a small fraction
of the total number of GFP� OSNs, similar numbers of GFP�

OSNs are captured by FACS from mice exposed to vehicle (Fig.
1E) versus odorant (Fig. 1F). Because of the GFP-dependent cap-
ture of more OSNs expressing the few ORs that respond to the
odorant ligand, the mRNAs encoding these responsive ORs are
the only mRNAs that show an increase in abundance in the GFP�

FACS sample relative to the GFP
 FACS sample (Fig. 1G).
Odorant-specific effects are confirmed by the absence of effect on

Figure 2. Eugenol exposure has significant effects on three ORs in S100a5–tauGFP mice. A,
The distribution of OR mRNAs between GFP � and GFP 
 samples is consistent across experi-
ments. GFP �/GFP 
 ratios from mice exposed to vehicle (mineral oil) from four replications,
distinguished by color (red, blue, green, and black), plotted against the mean GFP �/GFP 


ratios of these four vehicle treatments. B, Mean OR mRNA GFP �/GFP 
 ratio values after
exposure to eugenol plotted against the mean ratios after exposure to vehicle (n 	 4 groups of
mice). Three ORs (Olfr961, Olfr958, and Olfr960) show significant elevation (FDR � 0.10) after
eugenol exposure. To illustrate the change, their GFP �/GFP 
 ratio values in this experiment
(green diamonds) are compared with the GFP �/GFP 
 ratio coordinates in other experiments
that did not use eugenol (blue circles). C, Chemical structure of eugenol. D, Mean GFP �/GFP 


ratios and corresponding FDR probabilities for the seven ORs with FDR probabilities �0.5.

Figure 3. Heterologous expression assay data for ORs responsive to eugenol. A–C, Eugenol
concentration–response relationships for Olfr961, Olfr958, and Olfr960, previously identified
eugenol-responsive ORs that gave significant differences in the in vivo assay. D, Eugenol con-
centration–response relationship for Olfr73, the first eugenol-responsive OR to be identified
(Kajiya et al., 2001).

15672 • J. Neurosci., November 19, 2014 • 34(47):15669 –15678 McClintock et al. • In Vivo Assay for Mouse Odorant Receptors



GFP�/GFP
 ratios in samples from mice exposed to vehicle
only. To identify responsive ORs in this assay, we measured their
mRNAs via GeneChip microarray.

Eugenol-responsive mouse ORs
We find that, in the minimal odor conditions in which mice are
exposed to vehicle only, each OR mRNA has a characteristic
GFP�/GFP
 ratio (Fig. 2A), which may result from the sum of
the distinctive basal, constitutive activity of each OR (Imai et al.,
2006; Reisert, 2010; Nakashima et al., 2013) and the effects of
odors that may arise from the mouse itself or the chamber system.
This characteristic GFP�/GFP
 ratio is consistent across exper-
iments: OR identity accounts for 86% of the variation in these
data. This consistency is apparent when the mean of GFP�/
GFP
 ratios taken from four experiments is plotted against the
four individual datasets of GFP�/GFP
 ratios used to generate
these mean values (Fig. 2A). When S100a5–tauGFP mice are ex-
posed to an odorant ligand in the in vivo assay, only the mRNAs
encoding the few responsive ORs will shift up from their char-
acteristic positions near the line of equality, as is shown in
Figure 2B for exposure to eugenol. The reason for this upward
shift is that an odorant ligand acting as an agonist specifically

elevates GFP fluorescence only among the OSNs expressing an
OR that is activated by this odorant, thereby shifting more
OSNs expressing this OR from the GFP 
 FACS sample into
the GFP � FACS sample. Because most mature OSNs express
only one OR, statistically significant increases in the GFP �/
GFP 
 ratio for OR mRNAs thereby allow for the simultaneous
identification of the ORs that are activated by the odorant in
question.

Eugenol (Fig. 2C) is known to activate at least four mouse ORs
(Kajiya et al., 2001; Oka et al., 2006). After exposure to eugenol,
the GFP�/GFP
 ratios of three of the four known eugenol-
responsive ORs were significantly elevated: Olfr961, Olfr958, and
Olfr960 (Fig. 2B,D). When these three ORs were tested in the
Hana3A heterologous expression assay (Saito et al., 2004, 2009;
Zhuang and Matsunami, 2007; Dey et al., 2011; Li and Matsu-
nami, 2011; Duan et al., 2012), cells separately expressing these
three ORs responded robustly to eugenol (Fig. 3A–C). The fourth
eugenol-responsive OR, Olfr73 (mouse olfactory receptor
MOR174-9, mOR–EG), gave no increase in its GFP�/GFP
 ratio
in the in vivo assay, but heterologous cells expressing Olfr73 re-
sponded to eugenol (Fig. 3D).

Figure 4. Muscone exposure has significant effects on five ORs in S100a5–tauGFP mice. A, Chemical structure of muscone. B, Mean OR mRNA GFP �/GFP 
 ratios after exposure to muscone
plotted against the mean ratios after exposure to vehicle (n 	 4 groups of mice). Five ORs (Olfr1440, Olfr1433, Olfr235, Olfr1431, and Olfr1437) show significant differences (FDR � 0.10) after
muscone exposure (green triangles) compared with vehicle exposure. Blue circles reflect the GFP �/GFP 
 ratio coordinates of these five ORs in other experiments that did not use muscone. C, Mean
GFP �/GFP 
 ratios and corresponding FDR probabilities for the 13 ORs with FDR probabilities �0.5. D, A portion of the mouse OR phylogenetic tree depicting the relatedness of the members of the
MOR214 and MOR215 mouse OR families that gave significant responses to muscone (green).
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Muscone-responsive mouse and human ORs
We next exposed S100a5–tauGFP mice to muscone, a macrocy-
clic ketone musk odorant (Fig. 4A). A single mouse OR,
Olfr1440, has been shown recently to respond to muscone (Shi-
rasu et al., 2014). We find that in vivo exposure to muscone has
significant effects on five ORs, all from the MOR214 and
MOR215 families (Fig. 4B–D). In vitro testing using the heterol-
ogous expression assay confirmed the ability of muscone to acti-
vate Olfr1440 and Olfr235 (Fig. 5). Limitations in the odorant
concentrations that can be applied in this assay prevent these
dose–response relationships from reaching saturation. Cells
transfected with plasmids encoding Olfr1431, Olfr1437, and
Olfr1433 did not respond to muscone (data not shown).

Based on the sequence similarity between the muscone-
responsive mouse ORs identified by our in vivo assay, we deter-
mined that the most similar human OR is OR5AN1: its
percentage identity to the five mouse OR proteins ranges from
68% (Olfr1440) to 81% (Olfr1433). Predicting that OR5AN1 is
responsive to musks, we tested both macrocyclic and polycyclic
musk odorants against OR5AN1 in vitro. Hana3A cells expressing
OR5AN1 responded to three musks: muscone and Exaltone,
which are macrocyclic ketone musks, and Exaltolide, a macrocy-
clic lactone musk (Fig. 6A). OR5AN1 gave robust responses to
these macrocyclic musks but did not give responses different
from pCI plasmid vector controls when exposed to two polycyclic
musks, Galaxolide and Tonalid, or to Astrotone, a macrocyclic
diester musk (Fig. 6B–F), confirming and extending previous
observations (Shirasu et al., 2014).

Figure 5. Confirmation of muscone responses from two mouse ORs by heterologous expres-
sion. A, Olfr1440. B, Olfr235. C, Rho-pCI, empty plasmid vector control. IPM used as vehicle.

Figure 6. Activation of muscone-responsive mouse and human ORs by certain macrocyclic musk
odorants in heterologous expression assays. A, OR5AN1, a human OR, responded to the macrocyclic
ketone musks muscone and Exaltone and to the macrocyclic lactone musk Exaltolide. B, The OR5AN1
response to muscone is stronger than responses of mouse ORs. C, Olfr1440 and Olfr235 responses to
muscone. D, E, Polycyclic musk odors fail to evoke responses different from the plasmid vector nega-
tive control, Rho-pCI, in cells transfected with OR5AN1 or the mouse ORs responsive to muscone. Data
for some ORs cannot be seen because of overlap of the curves. F, Astrotone, a macrocyclic diester musk
odorant, also fails to evoke responses different from the plasmid vector negative control, Rho-pCI, in
cells transfected with OR5AN1 or the mouse ORs responsive to muscone. Data for some ORs cannot be
seen because of overlap of the curves.
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Weakly eugenol- or muscone-responsive mouse ORs
In both the eugenol and muscone experiments, a few dozen ORs
had elevated GFP�/GFP
 ratios, but only eight exceeded our
criterion for statistical significance. The in vivo assay thus pro-
duces strong distinctions between responsive ORs and unrespon-

sive ORs, with relatively few ORs showing intermediate responses
(Fig. 7). ORs that failed to reach significance in the in vivo assay
likely fall into one of three categories: (1) ORs that are insensitive
or nonresponsive to the odorant (i.e., true negatives), (2) ORs
that are capable of responding to the odorant but responded too
weakly in vivo to achieve statistical significance, and (3) ORs that
responded in some replications in vivo but too inconsistently to
achieve significance. The reasons why ORs fall into the latter two
categories are likely attributable to effects related to odorant con-
centrations. These ORs may require higher concentrations than
they can experience in native OSNs during the in vivo assay, and
the actual concentrations reached may differ across mice as a
result of breathing patterns or other biological variables.

Using heterologous expression, we tested 36 ORs likely to fall
into these latter two categories (Table 1). One, Olfr73, is known
to respond to eugenol, and we confirmed this (Fig. 3D). Among
the other 35 ORs, we identified only seven responsive ORs: five
responsive to eugenol (Fig. 8A–E) and two responsive to mus-
cone (Fig. 8F,G). All seven of these were previously orphan re-
ceptors. These findings argue that the majority of ORs lacking a
significant response in the in vivo assay are not responsive to the
odorant ligand and that these nonsignificant in vivo responses are
true negative responses, as one would expect from the FDR cal-
culations. In contrast, heterologous expression confirmed the re-
sponses of five of the eight significant ORs from the in vivo assay
(Figs. 3A–C, 5A,B). These results demonstrate the ability of the in
vivo assay to discriminate response from nonresponse.

Discussion
To identify chemosensory receptors that are activated by a given
odorant ligand, we developed a novel in vivo assay in live, unanes-
thetized, freely breathing and freely behaving mice. We demon-
strate that this assay re-identified ORs known to be responsive to
eugenol and muscone. We identified ORs for muscone and eu-
genol that respond in vivo and in vitro to these odorants. The ORs
that are responsive to eugenol in vivo in S100a5–tauGFP mice
encompass three of the four previously identified eugenol-
responsive ORs, all of which are related to each other and all of
which have been confirmed to respond to eugenol in heterolo-
gous expression systems (Kajiya et al., 2001; Katada et al., 2003,
2005; Oka et al., 2006). We do not understand the lack of an in
vivo response from the other eugenol-responsive OR, Olfr73, in
our assay. We have not yet excluded any of the possible explana-
tions, which range from the presence of an antagonist in the
experiments to a polymorphism or differences in expression of
the Olfr73 gene in the S100a5–tauGFP strain.

The ORs that are responsive to muscone in vivo encompass
five related ORs, and two of these ORs gave muscone responses in
heterologous expression assays: Olfr235 and Olfr1440. Our data
confirm and extend previous evidence that Olfr1440 is a
muscone-responsive receptor and also help explain the activation
of a small number of olfactory bulb glomeruli by muscone (Shi-
rasu et al., 2014). In the absence of positive responses in a heterol-
ogous expression assay, the other three ORs, Olfr1431, Olfr1433,
and Olfr1437, must be considered only as candidate muscone-
responsive ORs. The absence of responses does not prove they are
unable to respond to muscone, because confounding factors may
have prevented them from responding in heterologous cells.
Confounding factors, especially involving membrane trafficking,
affect a fraction of ORs expressed in heterologous expression
systems, even when OR chaperones and sequence modifications
are used to enhance delivery of ORs to the plasma membrane
(Peterlin et al., 2014). Only if proof of function of these ORs in the

Figure 7. Distribution of the 50 lowest FDR probabilities from the in vivo eugenol and mus-
cone experiments illustrate the ability of the assay to separate odorant-responsive receptors
from nonresponders. Receptors with FDR probabilities �0.001 were truncated at 0.001.

Table 1. ORs tested in the Hana3A cell heterologous expression assay

Eugenol Muscone

Olfr MOR FDR Olfr MOR FDR

Olfr961* MOR224-5 0.0002 Olfr1433 MOR214-4 0.0000
Olfr958* MOR224-9 0.0188 Olfr1440* MOR215-1 0.0000
Olfr960* MOR188-5 0.0728 Olfr235* MOR214-3 0.0000
Olfr1101 MOR179-3 0.3015 Olfr1437 MOR214-6 0.0024
Olfr1085 MOR191-1 0.3283 Olfr1431 MOR214-5 0.0074
Olfr1501 MOR212-3 0.3516 Olfr1020 MOR201-2 0.4447
Olfr97 MOR156-2 0.4372 Olfr769 MOR114-4 0.4480
Olfr1160 MOR173-1 0.9179 Olfr867 MOR143-2 0.4587
Olfr610* MOR9-2 0.9197 Olfr250 MOR170-14 0.4630
Olfr1052 MOR172-1 0.9245 Olfr1257 MOR232-1 0.4773
Olfr1234* MOR231-2 0.9832 Olfr1496 MOR127-1 0.4837
Olfr73* MOR174-9 1.0000 Olfr74* MOR174-4 0.5204
Olfr151 MOR171-2 1.0000 Olfr488 MOR204-15 0.5354
Olfr1031 MOR200-1 1.0000 Olfr816* MOR113-1 0.6397
Olfr178* MOR184-6 1.0000 Olfr394 MOR135-8 0.8547
Olfr922 MOR161-3 1.0000 Olfr1213 MOR233-7 1.0000
Olfr1274 MOR228-4 1.0000
Olfr821 MOR109-1 1.0000
Olfr811 MOR110-6 1.0000
Olfr1090 MOR188-4 1.0000
Olfr1325 MOR102-1 1.0000
Olfr1496 MOR127-1 1.0000
Olfr904 MOR167-3 1.0000
Olfr591 MOR24-1 1.0000
Olfr215 MOR119-2 1.0000
Olfr432* MOR123-2 1.0000
Olfr1054 MOR188-2 1.0000
Olfr1014 MOR213-5 1.0000
Olfr360 MOR159-1 1.0000
Olfr913* MOR165-10 1.0000

*Positive responses.
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heterologous expression assay were ob-
tained, for example by demonstrating re-
sponses to a different odorant, would we
have evidence sufficient to conclude that
these ORs are unresponsive to muscone.

The subsets of ORs we identified as re-
sponsive to either muscone or eugenol in
vivo each consist of related ORs. Some odor-
ants, including eugenol and muscone, tend
to activate clusters of neighboring glomer-
uli, which are often innervated by OSNs
expressing related ORs (Malnic et al., 1999;
Oka et al., 2006; Johnson and Leon, 2007; Ma-
tsumoto et al., 2010; Nara et al., 2011; Falas-
coni et al., 2012; Shirasu et al., 2014).
However, because these data are based on
just two odorants, they are insufficient to
conclude that odorants typically activate
sets of related ORs. Future experiments
will reveal if some odorants instead acti-
vate unrelated ORs.

The sequence similarity of the muscone-
responsive ORs identified by the in vivo as-
say predicted an orthologous human OR
that is highly sensitive to muscone and some
other macrocyclic musk odorants, confirm-
ing recent results obtained independently
(Shirasu et al., 2014). Musks are a particu-
larly interesting class of odorants because
deficits in detecting these odorants are
among the most common anosmias and hy-
posmias in humans (Whissell-Buechy and
Amoore, 1973; Gilbert and Kemp, 1996).
These sensory deficits are typically not gen-
eralized to all musks but rather to subclasses
of musks (Triller et al., 2008), consistent
with the activation of OR5AN1 by macrocy-
clic ketone and macrocyclic lactone musks
but not polycyclic musks. We speculate that
the sets of mouse ORs responsive to other
classes of musk odorants, such as polycyclic
musk odorants, intersects poorly with those
responding to muscone.

Odorant concentration is often positively correlated with the
number of OSNs or glomeruli activated (Malnic et al., 1999; Ma
and Shepherd, 2000). This correlation predicts that a single mod-
erate concentration of an odorant should show strong activation
of a few ORs and weaker activation of other, less sensitive, ORs.
Our data are consistent with this prediction. Whether our ap-
proach identifies all ORs capable of being activated by any given
odorant is difficult to determine, but this completeness can be
estimated by comparing the number of responsive ORs to the
number of responsive glomeruli per olfactory bulb. We identified
four muscone-responsive ORs, which is very similar to the one to
three dorsomedial glomeruli and the occasional few ventral
glomeruli per olfactory bulb reported to respond to muscone
(Shirasu et al., 2014). The nine eugenol-responsive ORs we de-
tected are significantly fewer than the 37–56 eugenol-responsive
glomeruli per olfactory bulb reported recently (Shirasu et al.,
2014), but the concentration of eugenol was twofold lower in our
experiments. The S100a5–tauGFP assay is able to identify many
of the ORs capable of responding to an odorant, but it may not
identify some ORs, especially weakly responding ORs that are

capable of evoking detectable responses in glomeruli because of
the amplification effect of axonal convergence, or in heterologous
expression assays in which higher concentrations can be applied.
When odorants are applied as volatiles in air to live mice, the
odorant concentration reaching dendritic cilia of OSNs is not
known and is potentially variable because of factors differen-
tially affecting the access of odorants to ORs in the dendritic
cilia. In other respects, however, the in vivo assay is resistant to
factors that could limit the breadth of the set of responsive
ORs detected. The assay gives stable and consistent outcomes
in the absence of odor exposure, no OR mRNA is found solely in the
GFP� sample, and even ORs with high GFP�/GFP
 ratios after
exposure to vehicle are capable of further elevation in their ratio
during exposure to an odorant. In fact, ORs with significant re-
sponses to the few odorants tested thus far already span control
GFP�/GFP
 ratios of 0.2–3.9, a range that includes 89% of ORs
(T.S.M. and W.B.T., unpublished data). In general, the S100a5–
tauGFP assay successfully identifies sets of ORs responsive to an
odorant ligand and is resistant to false positives.

In summary, we have developed a novel in vivo assay to iden-
tify ORs responding to a given odorant ligand in awake, unanes-

Figure 8. Heterologous expression assay data for additional ORs responsive to eugenol or muscone. A–E, Eugenol concentra-
tion–response relationships for five eugenol-responsive ORs that were previously orphan receptors. F, G, Muscone concentration–
response relationships for two muscone-responsive ORs that were previously orphan receptors. Rho–pCI, Expression plasmid used
as a negative control. IPM used as vehicle.
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thetized, freely breathing and freely behaving mice. Mimicking a
mouse encountering an ambient odor in its environment, this
assay begins with an odorant ligand and returns the identities of
ORs that responded. Our assay covers the entire OR repertoire
simultaneously in a multiplex manner. Therefore, it has a higher
capacity than ex vivo approaches that also rely on the expression
of one OR gene per OSN but are based on individual odorant-
responsive OSNs (Malnic et al., 1999; Touhara et al., 1999; Kajiya
et al., 2001; Nara et al., 2011). Another recently developed in vivo
approach differs in that it targets single OSNs and relies on anes-
thetized mice (Shirasu et al., 2014). Our assay should in principle
detect responses from any OR. It is stable and robustly distin-
guishes a response from the lack of a response. To reduce vari-
ability and further increase sensitivity, we are backcrossing the
S100a5–tauGFP mice to C57BL/6 mice to place the reporter gene
into the inbred genetic background that is the basis for most
expression profiling methods. This backcrossing will also facili-
tate testing of whether other mRNA quantification methods,
such as NanoString (Khan et al., 2011) or RNA sequencing, may
improve performance. Given the place of origin of our new assay,
we have named it the Kentucky in vivo odorant ligand–receptor
assay.
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