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ABSTRACT OF THESIS 

 

EXPERIMENTAL STUDIES ON THE DETERMINATION OF ACOUSTIC BULK 

MATERIAL PROPERTIES AND TRANSFER IMPEDANCE 

 

Soft trim absorbing parts (i.e., headliners, backwalls, side panels, etc.) are normally 

comprised of different layers including films, adhesives, foams and fibers. Several 

approaches to determine the complex wavenumber and characteristic impedance for 

porous sound absorbing materials are surveyed and the advantages and disadvantages of 

each approach are discussed.  It is concluded that the recently documented three-point 

method produces the smoothest results.  It is also shown that measurement of the flow 

resistance and the use of empirical equations is sufficient for many common materials.  

Following this, the transfer impedance of covers, adhesives, and densified layers are 

measured using an impedance difference approach.   The transfer matrix method was then 

used to predict the sound absorption of a multi-layered materal which included a 

perforated cover, fiber layers, and an adhesive. The predicted results agree well with 

measurement. 

 

KEYWORDS: Sound Absorbing Materials, Sample Variation, Bulk Properties, Covers and 

Adhesives, Transfer Impedance 
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CHAPTER 1 INTRODUCTION 

1.1 Background 

Sound absorbing materials are widely used to reduce sound levels in industry.  The 

two most common classes of materials are foams and fibers.  Sound is “absorbed” 

by converting sound energy to heat within the material, resulting in a reduction of 

the sound pressure.  There are two primary mechanisms for achieving this 

reduction in sound pressure level.  One is via vibration of the material skeleton 

where material damping converts sound to heat.  This mechanism is important at 

low frequencies but is normally small.  The far more important mechanism is 

viscous friction of the fluid (i.e., air) on the material skeleton.  Fluid particles 

oscillate and rub against the material matrix producing heat (Fahy, 2001). 

 

 

 

 

 

 

Figure 1.1 Layered sound absorbing materials. 

When developing materials, material manufacturers prefer to know the bulk 

properties (characteristic impedance and complex wave number) instead of the 

specific boundary impedance or sound absorption.  There are several reasons 

why.  First, the sound absorption performance of a material can be determined as 

a function of the thickness of the sample. Second, models can simulate materials 

that are stacked or layered (as shown in Figure 1.1) once the bulk properties are 

known. Additionally, bulk properties can be used directly in finite element analysis 

and boundary element analysis models. In that case, Jiang and Wu (Jiang and 
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Wu, 2010) found that the local reacting approximation is not appropriate for 

materials with lower flow resistivity or for thick sound linings. 

Soft trim absorbing parts (i.e., headliners, backwalls, side panels, etc.) are 

normally comprised of different layers including films, adhesives, foams and 

fibers. Fiber or foam layers are often fused to one another or a facing using an 

adhesive or glue (as shown in Figure 1.2 (a)). These layers are often pressed or 

glued together.  Often, a scrim or film facing is used as a cover which adds mass 

improving the low frequency sound absorption (as shown in Figure 1.2(b)).  

Recently, a number of suppliers have densified one side of the material so that it 

performs acoustically similar to a facing.  Depending on the process, the densified 

layer can be permeable or impermeable and is generally lightweight. 

 

                     

Figure 1.2 Sound absorbing materials with (a) adhesive (b) cover. 

 

1.2 Overview 

The overall objective of this work is to develop a method for simulating layered 

sound absorbing materials which include covers and adhesives.  In this work, 

compression of the foam or fiber itself is not included.  In the first part of this 

thesis, the procedure for measuring the normal incident impedance and sound 

absorption is reviewed.  The standards which describe the measurement are 

ASTM E1050 (1998) or the similar ISO 10534-2 (1998).  Though the 

measurement is commonly performed in academia and industry, users of 
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impedance tubes know that sample fit has a significant impact on the quality of 

the measurement. Measurement uncertainty is investigated and 

recommendations for reducing the uncertainty are summarized.  The knowledge 

gained was used to establish best practices for the measurements that followed. 

Designers of acoustic materials commonly use the acoustic wave number and 

characteristic impedance of the material to predict the performance if the sound 

absorber thickness is changed or if it is combined with other materials in a 

layered absorber.  There are a number of different ways to determine these bulk 

properties using an impedance tube.  There are two main classes of 

measurement approaches.  The first class is to directly measure the bulk 

properties using either the two-load, two-cavity, or three-point approaches with 

an impedance tube.  The second is to measure the flow resistivity or the sound 

absorption and estimate the bulk properties from empirical or analytical 

equations.  Each of these methods are surveyed and recommendations are 

made. 

Thin layers like perforates, foil covers, adhesives, or densified layers are 

normally modeled as a transfer impedance.  The transfer impedance is 

commonly measured using an impedance difference approach (Wu et al, 1988).  

In prior research, the impedance difference approach has been used to 

determine the transfer impedance of rigid perforated materials.  In this thesis, the 

approach is extended and applied to the measurement of adhesives and 

densified layers.   

The aforementioned procedures were then validated for a multi-layer sound 

absorber which included a perforated cover, and separate layers of fiber and 

foam bonded together by an adhesive.  The transfer impedances of the cover 

and adhesive were measured using the impedance difference approach.  The 

bulk properties of the fiber and foam were measured using the three-point 

method.  The transfer matrix approach was then used to predict the sound 
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absorption of the layered sound absorber.  The predicted results agreed well with 

measurement.  

1.3 Organization 

This thesis contains eight chapters which can be divided into four main parts: 

Chapter 2 examines the uncertainty in impedance tube measurements to 

determine the sound absorption using ASTM E1050. Several ways to reduce 

measurement uncertainty are also discussed in this chapter. 

Chapter 3 and Chapter 4 survey the different methods for determining the bulk 

properties of fibers and foams. Chapter 3 details the procedures and equations 

used and chapter 4 compares results between the methods. 

Chapter 5 and Chapter 6 detail the impedance difference approach to determine 

the transfer impedance of glues and covers.  Chapter 5 illustrates the effect of 

glues, covers, and material compression on the sound absorption.  The 

impedance difference approach is also detailed and validated.  Chapter 6 shows 

transfer impedance results for glues and covers.  In addition, an empirical model 

is used to predict the transfer impedance for a commercially available adhesive. 

In Chapter 7, the sound absorption of a layered absorber is predicted using the 

transfer matrix approach and validated via measurement.  Results show good 

agreement and demonstrate that the approaches documented can be used to 

predict the performance of a layered material.  Results suggest that complicated 

layered materials including adhesives and covers can be designed. 

Chapter 8 concludes the thesis by summarizing the major findings, the 

contribution made, and includes some recommendations for future work. 
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CHAPTER 2 EFFECT OF SAMPLE VARIATION 

2.1 Sample Variation 

The most useful metric for assessing the effectiveness of a sound absorbing 

material is the normal incident sound absorption coefficient.  It is defined as the 

ratio of the absorbed to incident sound power. The metric assesses the 

effectiveness of the material and is a repeatable and relatively inexpensive test.  

This measurement procedure has been standardized in ASTM E1050 (1998). A 

typical apparatus is shown in Figure 2.1.  A loudspeaker placed on one end of an 

impedance tube is used to generate sound and a cylindrical sample is placed at 

the other end of the tube.  The transfer function between the two microphones is 

measured and the reflection coefficient (𝑅) can be determined.  

 
𝑅 =

𝐻12 − 𝑒−𝑗𝑘𝑠

𝑒𝑗𝑘𝑠 − 𝐻12
𝑒2𝑗𝑘𝑥1 

(2.1) 

 

where 𝑘 is the wave number (2πf/c) where f is the frequency in Hertz and c is the 

speed of sound. The normalized surface impedance of the sample can be 

calculated from the reflection coefficient (𝑅) and is expressed as: 

 
𝑧 =

𝑍

𝜌𝑐
=

1 + 𝑅

1 − 𝑅
 

(2.2) 

where 𝝆 is the air density. The normal incident sound absorption (α) is expressed 

as 

 𝛼 = 1 − |𝑅|2 (2.2) 

The impedance tube used for the measurements that follow is a Spectronics 1.375 

inch diameter tube equipped with PCB ½ inch ICP microphones (377B11) and a 

JBL 70W compression driver (JBL 2426H). 
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Samples were cut using a cylindrical steel blade in a drill press. Care was taken to 

avoid hourglassing or deforming the sample. 

 

Figure 2.1 Schematic diagram of two microphone method apparatus. 

Despite proper care, there will be variations between measurements due to sample 

variation and the measurement procedure itself. Foams are manufactured by 

mixing chemicals at high temperature until the foam rises in a process similar to 

baking. The foam often is not homogeneous. In addition, there are often variations 

from batch to batch. Accordingly, variation in the normal impedance and sound 

absorption is expected. Glass fiber manufacturing is the high-temperature 

conversion of various raw materials into a homogeneous melt, followed by the 

fabrication of this melt into glass fibers (Office of Air Planning and Standards, 

1995). Glass fiber has less sample variation than foam due to the manufacturing 

procedure. 

In addition, the measurement procedure itself can lead to variability. Several 

factors can contribute. These include: 

1. Sample size. Considerable care should be taken when preparing the material 

sample for measurement. The sample should fit snugly but not be 

compressed in the tube (Seybert, 2013, Hua, 2013, Stanley, 2012). If the 

sample is cut too small, there will be gaps between the sample and the tube 

x
2
 s 

x
1
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which will lead to poor results. If the sample is compressed, additional 

structural resonances of the solid frame are introduced. 

2. Sample shape. The sample geometry should be that of a uniform concentric 

cylinder. Hourglassing of the sample can occur if the sample is not carefully 

cut or if the cutting procedure is faulty (Stanley, 2012). 

3. Sample mounting. The sample should be mounted so that it is flush against 

the back of the holder. 

Stanley provided some suggestions in sound absorption coefficient measurement 

(Stanley, 2012) and they are summarized as followed (Seybert, 2013, Hua, 

2013): 

1. Start with material sheets of uniform thickness without warps and free of dirt 

and moisture. 

2. Material sheets that meet the above criteria must meet chemical and physical 

specifications of the manufacturer. 

3. The best samples are cut using a waterjet cutter, but rotating blade cutters may 

also be used. 

4. Cut at least three and preferably five samples for testing to obtain a good 

average. 

5. Samples should be right, circular cylinders – no bulges, cups, and without 

inclination. 

6. Mark and test the same side of all samples.  

7. Sample fit in the sample holder is critical. When the sample holder is held 

vertically, the sample should remain in the sample holder but only barely. 

8. Facings must not extend beyond the diameter of the sample – careful trimming 

may be needed. 

The remainder of this chapter examines the measurement variation in glass fiber 

and melamine foam. 
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2.1.1 Variability of Melamine Foam 

6 Samples of 0.5 inch and 0.75 inch thick 0.6 lbs/ft³ melamine foam were measured 

in an impedance tube according to ASTM E1050. All the samples are cut from the 

same sheet of foam. Figures 2.2 and 2.3 show the sound absorption for 6 samples 

of 0.5 inch and 0.75 inch thick melamine foam respectively. Figure 2.4 shows the 

standard deviation of the sound absorption coefficient for 6 samples each of 0.5 

inch and 0.75 inch melamine foam. Most variation occurs between 3000 to 4000 

Hz for 0.5 inch samples and 2500 to 3000 Hz for 0.75 inch samples. These 

variations are likely due to shearing resonances of the sample due to the edge 

constraints (Song and Bolton, 2001). 

 

Figure 2.2 Sound absorption coefficient of 6 samples of 0.5 inch 0.6 lbs/ft³ 

melamine. 
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Figure 2.3 Sound absorption coefficient of 6 samples of 0.75 inch 0.6 lbs/ft³ 

melamine. 

There is also significant variation below 500Hz. The sound source is a 

compression driver loudspeaker that has insufficient strength at lower frequencies. 

In addition, the sound absorption coefficient is very low and sound absorption in 

the tube itself will lead to inaccuracies (Seybert, 2013, Hua, 2013). An example 

using a high power compression driver is shown in Section 2.2.1. 

 

Figure 2.4 Standard deviation of 6 samples of 0.5 and 0.75 inch melamine foam. 
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2.1.2 Variability of Glass Fiber 

8 samples of 2 inch glass fiber are measured and the sound absorption coefficient 

is shown in Figure 2.5. The variability is much lower in the case of a glass fiber. 

The reason is primarily due to the cutting. Fiber does not hourglass as much as 

foam and it will not deform the entire sample even if the fit in the impedance tube 

is a little too snug. 

 

Figure 2.5 Sound absorption coefficient of 8 samples of 2 inch fiber. 

Figure 2.6 shows the standard deviation of 8 samples of 2 inch glass fiber. Larger 

deviations occur under 800 Hz due to shear resonances of the elastic frame that 

are inconsistent between samples. 
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Figure 2.6 Sound absorption coefficient standard deviation for 8 samples of 2 

inch fiber. 

 

2.1.3 Effect of Impedance Tube Size 

8 Samples of 2 inch fiber glass are measured in both 1.370 inch and 3.875 inch 

diameter impedance tube. The averaged absorption coefficient of 8 samples for 

each size of impedance tube is shown in Figure 2.7. The average sound absorption 

coeffcient measured by both 1.370 and 3.875 inch tubes compare well except at 

frequencies below 500 Hz. 
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Figure 2.7 Effect of impedance tube size on 8 samples of 2 inch fiber. 

 

Figure 2.8 shows the sound absorption coefficient standard deviation for 8 samples 

of 2 inch fiber measured in both 1.370 and 3.875 inch impedance tubes. The 

standard deviation is slightly lower for the larger impedance tube. There are 

several likely reasons. First, all the samples are cut by rotating blade cutters. The 

cutter size for the 1.370 inch diameter tube is 0.005 inch larger while the cutter 

size for the 3.875 inch tube is the same with the size of the tube. The sample size 

should not exceed the size of the impedance tube to avoid adding additional edge 

constraints on the frame of the material (Song and Bolton, 2001). Details about the 

effect of sample size are covered in Section 2.2. In addition, edge effects are more 

important in a smaller tube since the perimeter to cross-sectional area ratio is 

higher. Morever, The sound source used in the 3.875 inch impedance tube has 

higher sound power at low frequencies than that used in the small impedance tube. 

This will reduce the measurement variability at low frequencies (Seybert, 2013, 

Hua, 2013). 
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Figure 2.8 Standard deviation of 8 samples of 2 inch fiber in 1.370 and 3.875 

inch impedance tubes. 

 

2.2  Minimizing Sample Variation 

The measurement variation can be controlled by carefully preparing the samples 

and using an adequate source. 

2.2.1 Sample Preparation   

8 samples of 1 inch thick 0.6 lbs/ft³ Melamine were cut using 1.375 inch and 1.360 

inch diameter cutters, respectively, and measured using the 1.370 inch diameter 

impedance tube. The averaged sound absorotion coefficient of two sets of foam 

samples is shown in Figure 2.9. Both of the results compare well except at the 

shear resonance in the 1.375 samples. This resonance occurs because the 

sample is oversized and consequently compressed.. 

Samples should be cut to match or be slightly smaller than the size of the 

impedance tube. A grinding machine or sandpaper can be used to trim the edge 

of oversized samples. One can also use vaseline to seal the small gaps between 

the sample and the tube wall to increase the accuracy. 
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Figure 2.9 Effect of cuter size on 8 samples of 1 inch 0.6 lbs/ft³ melamine foam. 

 

4 Samples of 0.5 inch 0.6 lbs/ft³ Melamine foam cut by the 1.375 inch cutter were 

filed using sandpaper and measured using the 1.370 inch diameter impedance 

tube. The unfiled sample measurement result was shown in Figure 2.2. Figure 2.10 

shows the absorption coefficient result for the filed samples. Note that a higher 

power loudspeaker (JBL 2447H, 100W) was used in place of the original (JBL 

2426H, 70W). The standard deviations for both filed and unfiled samples are 

shown in Figure 2.11. The standard deviation is greatly reduced over the entire 

frequency range. This is especially the case for the resonance frequencies around 

500 and 3500 Hz. 
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Figure 2.10 Variability of 4 samples of 0.5 inch 0.6 lbs/ft³ melamine. 

 

Figure 2.11 Standard deviation comparison of 0.5 inch 0.6 lbs/ft³ melamine. 

 

2.2.2 Adding Needles in Samples 

If the sample diameter is greater than the tube diameter, shear resonances may 

occur and the accuracy will be reduced. There is an alternative way to treat 
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samples appears to minimize the resonant behavior of the sample (ESI Group, 

2010). 

 

 

Figure 2.12 Adding needles in 1 inch 0.6 lbs/ft³ melamine. 

Figure 2.12 shows a photograph where 25 needles were added to a sample of 1  

inch thick melamine foam. Adding needles in a material appears to constrain the 

motion of its elastic frame. As shown in Figure 2.13, resonance behavior moves to 

higher frequencies by increasing the number of needles in the sample. Adding 25 

needles increases the resonance frequency outside the frequency range of 

interest. 

 

Figure 2.13 Effect of adding needles on 0.5 inch 0.6 lbs/ft³ melamine foam. 
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Figure 2.14 compares the sound absorption coefficient of the oversized sample 

with and without needles. Note that the sound absorption in the sample is not 

affected greatly by adding needles. 

 

Figure 2.14 Effect of adding 25 needles on 0.5 inch 0.6 lbs/ft³ melamine foam. 

 

 

Figure 2.15 Averaged sound absorption coefficient for 8 Samples of 1 inch 0.6 

lbs/ft³ melamine foam. 
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Figure 2.16 Sound absorption coefficient standard deviation of 8 Samples of  1 

inch 0.6 lbs/ft³ melamine foam. 

Sample variation can be minimized by a proper sample size and adding needles 

in the material. Figure 2.15 compares the averaged absorption coefficient of three 

sets of foam samples. One set is 0.005 inch larger than the diameter of the 

impedance tube, while the other set is slightly smaller than the size of the 

impedance tube. The third set is oversized but treated by adding 25 needles. 8 

samples were used for each set of measurements. The standard deviation is 

shown in Figure 2.16. Note that the standard deviation can be decreased by either 

cutting the sample size slightly smaller than the tube or by adding needles. 

 

2.3  Summary 

The effect of sample variation was investigated for both melamine foam and 

glass fiber. Sample variation at high frequencies can be minimized by a proper 

sample size and adding needles in the sample. Sample variation at low 

frequencies can be improved by using a higher power sound source.  
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CHAPTER 3 METHODS FOR MEASURING BULK PROPERTIES 

3.1 Introduction 

Bulk material properties consist of the complex wavenumber and characteristic 

impedance, or, alternatively, the complex speed of sound and density. Bulk 

properties can be measured directly using the two load (ASTM, 2009), two source 

(Tao, 2003), or two cavity (Utsuno, 1989) methods. Iwase et al. (1998) developed 

a three microphone method and Salissou and Panneton (Salissou and Panneton, 

2010) recently modified the method to use measured transfer functions in the 

algorithm.  Direct measurement of the bulk properties requires an impedance tube, 

and considerable care should be taken when preparing samples and positioning 

them.  

Alternatively, the bulk properties are often found using indirect means by 

estimating them from a measurement of the flow resistivity (ASTM 2003) or the 

sound absorption (Simon, 2006, ESI, 2007). These methods utilize empirical 

(Delay and Bazley, 1970, Mechel, 1988, Wu, 1988) or theoretical (Allard, 2009) 

equations. 

This chapter will review the many methods (summarized in Figure 3.1) to 

determine the bulk properties of sound absorbing materials.  Direct measurement 

of the bulk properties will be discussed first followed by a look at the approximate 

methods. The advantages and disadvantages of each approach will be 

summarized in the next chapter. 

Figure 3.1 summarizes the methods that can be used to determine the bulk 

properties of a sound absorbing material.  The bulk properties can be determined 

by: 

1. Direct measurement using an impedance tube. 

2. Measuring the flow resistance and inputting the result into empirical 

equations. 
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3. Measurement of the sound absorption and curve fitting to determine the 

flow resistivity or the Biot parameters. 

Each of these approaches are examined in detail. 

 

Figure 3.1 Methods for finding bulk sound absorbing properties. 

   

3.2 Direct Measurement Methods 

3.2.1 Two-Load Method 

In the case of the two-load method, a sample is placed inside the impedance tube.  

There is a cavity between the sample and the end of the impedance tube and 

measurements are made with two different acoustic loads.  A transfer matrix of the 

sample can be found using the process outlined as follows. 

A schematic illustrating the two-load method is shown in Figure 3.2.  Transfer 

functions are measured between Microphone 1 and the other 3 microphones for 

each of the two load cases.  The acoustic load is most easily modified by changing 

the termination. ASTM E2611 (ASTM, 2009) details the recommended algorithm 
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for determining the four-pole matrices and bulk properties for the material.  The 

essentials of the algorithm are presented next. 

 

 

Figure 3.2 Schematic diagram of two load method apparatus. 

 

The transfer matrix, which relates the sound pressure and particle velocity on one 

side of a sample to that on the other, can be determined in the following manner 

from the measurements. The incident pressure amplitudes upstream and 

downstream are expressed as 

 

 

𝑃𝐴 = 𝑗
𝑒−𝑗𝑘𝑙1 − 𝐻21𝑒−𝑗𝑘(𝑙1+𝑠1)

2 sin 𝑘𝑠1
    𝑃𝐵 = 𝑗

𝐻21𝑒𝑗𝑘(𝑙1+𝑠1) − 𝑒𝑗𝑘𝑙1

2 sin 𝑘𝑠1
 

𝑃𝐶 = 𝑗
𝐻31𝑒𝑗𝑘(𝑙2+𝑠2) − 𝐻41𝑒𝑗𝑘𝑙2

2 sin 𝑘𝑠2
    𝑃𝐷 = 𝑗

𝐻41𝑒−𝑗𝑘𝑙2 − 𝐻31𝑒−𝑗𝑘(𝑙2+𝑠2)

2 sin 𝑘𝑠2
 

(3.1) 

where 𝐻21 , 𝐻31 , and 𝐻41 are the respective transfer functions assuming 

microphone i is used as a reference for phase.  𝑙1, 𝑙2, 𝑠1 and 𝑠2 are dimensions 

between microphones and the sample as shown in Figure 3.2. The sound pressure 

and particle velocity at the inlet and outlet to the sample can be expressed as 

Load 1 

Load 2 

Loudspeaker 

Impedance tube 

Microphones 

Sample 1 2 3 4 

1 2 3 4 

s

1
 

l
1
 l

2
 s

2
 d 
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𝑝1 = 𝑃𝐴 + 𝑃𝐵    𝑢1 = (𝑃𝐴 − 𝑃𝐵) 𝜌𝑐⁄  

𝑝2 = 𝑃𝑐𝑒−𝑗𝑘𝑑 + 𝑃𝐷𝑒𝑗𝑘𝑑    𝑢2 = (𝑃𝐶𝑒−𝑗𝑘𝑑 − 𝑃𝐷𝑒𝑗𝑘𝑑) 𝜌𝑐⁄  
(3.2) 

and then the transfer matrix can be expressed as 

 {
�̃�1

𝑆1�̃�1
} = [

𝑝1𝑎𝑢2𝑏 − 𝑝1𝑏𝑢2𝑎

𝑝2𝑎𝑢2𝑏 − 𝑝2𝑏𝑢2𝑎
𝑆

𝑝1𝑏𝑝2𝑎 − 𝑝1𝑎𝑝2𝑏

𝑝2𝑎𝑢2𝑏 − 𝑝2𝑏𝑢2𝑎

𝑆
𝑢1𝑎𝑢2𝑏 − 𝑢1𝑏𝑢2𝑎

𝑝2𝑎𝑢2𝑏 − 𝑝2𝑏𝑢2𝑎

𝑝2𝑎𝑢1𝑏 − 𝑝2𝑏𝑢1𝑎

𝑝2𝑎𝑢2𝑏 − 𝑝2𝑏𝑢2𝑎

] {
�̃�2

𝑆2�̃�2
} (3.3) 

where the subscripts 𝑎 and 𝑏 indicate the respective loads. The 2 × 2 matrix in 

Equation 4 can be related to the complex wavenumber and characteristic 

impedance as 

 

[
𝐴 𝐵
𝐶 𝐷

] = [
cos (𝑘𝑐𝑑)

𝑗

𝑆
𝜌′𝑐′sin (𝑘𝑐𝑑)

𝑗𝑆sin(𝑘𝑐𝑑)/𝜌′𝑐′ cos (𝑘𝑐𝑑)
] 

(3.4) 

The characteristic impedance and complex wavenumber can then be expressed 

as 

 

𝑧𝑐 = √
𝐵

𝐶
 

(3.5) 

and 

 

𝑘𝑐 =
arctan (

𝐵
𝑗𝐴𝑧𝑐

)

𝑑
 

(3.6) 

respectively. 

Sometimes the bulk properties are alternatively expressed as a complex speed of 

sound and density.  These quantities are typically used in acoustic simulation 

software as inputs for boundary and finite element models.  In that case, the 
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complex speed of sound and density can be expressed in terms of the complex 

wavenumbers and characteristic impedance as 

 𝑐′ =
𝜔

𝑘𝑐
 (3.7) 

and 

 
𝜌′ =

𝑘𝑐𝑧𝑐

𝜔
 

(3.8) 

 

 

Figure 3.3 Schematic diagram of two source method apparatus. 

 

Though not often used, a similar two-source method (Tao, 2003) can also be used 

to find the bulk properties.  Measurements are made with the source in two 

configurations.  The source is placed on the left end of the impedance tube and 

then it is placed on the right end of the tube (See Figure 3.3).  If the sample is 

placed symmetrically between the two microphones and the material can be 

assumed isotropic, the measurement need only be made once.  The algorithm is 

identical to the two-load method except loads a and b now refer to source 

configurations a  and b . 

Configuration 1 

Configuration 2 

Loudspeaker 

Impedance tube 

Microphones 

Sample 1 2 3 4 

1 2 3 4 
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3.2.2. The Two Cavity Method 

Alternatively, the bulk properties can be ascertained by measuring the normal 

incidence impedance for two different cavity lengths (Utsuno,1989) using ASTM 

E1050.  Figure 3.4 shows a schematic of the measurement setup. The primary 

advantage of this approach is that measurements are not required behind the 

sample.  Normally, there is higher signal to noise for a microphone that is placed 

between the source and the sample so the measured data should be better-quality.        

 

Figure 3.4 Schematic diagram of two cavity method apparatus. 

 

The characteristic impedance can be calculated using 

 

𝑧𝑐 = ±√
𝑧1𝑧1

′ (𝑧2 − 𝑧2
′ ) − 𝑧2𝑧2

′ (𝑧1 − 𝑧1
′ )

(𝑧2 − 𝑧2
′ ) − (𝑧1 − 𝑧1

′ )
 

(3.9) 

Where )cot(2 kLcjz   and )cot( ''

2 kLcjz  . The complex wavenumber is 

determined using 

 
𝑘𝑐 = (

1

2𝑗𝑑
) ln (

(𝑧1 + 𝑧𝑐)(𝑧2 − 𝑧𝑐)

(𝑧1 − 𝑧𝑐)(𝑧2 + 𝑧𝑐)
) 

(3.10) 

Cavity 1 

Cavity 2 

Loudspeaker 
Piston 

Impedance tube 

Microphones 

Sample 

d L 

d L’ 

z

1
 

z
1

’
 z

2

’
 

z

2
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3.2.3. The Modified Three Microphone Method 

The three microphone method was originally developed by Iwase et al. (1998) to 

measure the bulk properties. Salissou and Panneton (2010) improved the method 

by positioning the microphones upstream and not flush against the sample and 

used measured transfer functions in the algorithm. The test setup is similar to the 

two-microphone method (ASTM, 1998) except a third microphone is placed at the 

rear of the sample as shown in Figure 3.5.  The advantage of the method is that a 

single load is sufficient. 

The justification by Salissou and Panneton for the method follows. Sound pressure 

at any point of the tube can be expressed as: 

 𝑝(𝑥) = 𝐴𝑒−𝑗𝑘𝑥 + 𝐵𝑒𝑗𝑘𝑥 (3.11) 

It follows that the transfer function between points 1 and 2 can be expressed as: 

 
𝐻12 =

𝑃(𝑥2)

𝑃(𝑥1)
=

𝐴𝑒𝑗𝑘𝐿 + 𝐵𝑒−𝑗𝑘𝐿

𝐴𝑒𝑗𝑘(𝑠+𝐿) + 𝐵𝑒−𝑗𝑘(𝑠+𝐿)

=
𝑒𝑗𝑘𝐿 + 𝑅𝑒−𝑗𝑘𝐿

𝑒𝑗𝑘(𝑠+𝐿) + 𝑅𝑒−𝑗𝑘(𝑠+𝐿)
 

(3.12) 

Where R  is the reflection coefficient. 

 

Figure 3.5 Schematic diagram of three microphone method apparatus. 

 

Solving for R : 

Rigid End

Ls

Microphones

Loudspeaker

Sample

d
x

x = 0

1 2

3

A
B
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𝑅 =

𝑒𝑗𝑘𝑠 − 𝐻12

𝐻12 − 𝑒−𝑗𝑘𝑠
𝑒2𝑗𝑘𝐿 

(3.13) 

 And the specific boundary impedance (𝑍𝑠) of the sample can be expressed as: 

 
𝑍𝑠 = 𝑍0

1 + 𝑅

1 − 𝑅
 

(3.14) 

The transfer function between point 0 and point 3 can be expressed as: 

 
𝐻03 =

𝑝(3)

𝑝(0)
=

𝑝(3)𝑝(2)

𝑝(2)𝑝(0)
=

𝑝(2)

𝑝(0)
𝐻23 =

𝑒𝑗𝑘𝐿 + 𝑅𝑒−𝑗𝑘𝐿

1 + 𝑅
𝐻23 

(3.15) 

The four-pole transfer matrix of the sample is given as: 

 
{
𝑃0

𝑢0
} = [

cos (𝑘𝑐𝑑) 𝑗𝑍𝑐sin (𝑘𝑐𝑑)

𝑗 sin(𝑘𝑐𝑑) /𝑍𝑐 cos (𝑘𝑐𝑑)
] {

𝑃3

𝑢3
} 

(3.16) 

If we assume the termination is rigid, 𝑢3 will be equal to zero and the surface 

impedance can be expressed as: 

 
𝑍𝑠 =

𝑃0

𝑢0
=

cos (𝑘𝑐𝑑)

𝑗 sin(𝑘𝑐𝑑) /𝑍𝑐
= −𝑗𝑍𝑐cot (𝑘𝑐𝑑) 

(3.17) 

The transfer function between points 0 and 3 is 

 𝑃3

𝑃0
=

1

cos (𝑘𝑐𝑑)
= 𝐻03 

(3.18) 

Setting Equations 3.15 and 3.18 equal to each other, one obtains: 

 
𝐻03 =

𝑒𝑗𝑘𝐿 + 𝑅𝑒−𝑗𝑘𝐿

1 + 𝑅
𝐻23 =

1

cos (𝑘𝑐𝑑)
 

(3.19) 

Thus, the complex wave number can be calculated using 
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𝑘𝑐 =

1

𝑑
𝑐𝑜𝑠−1 (

1 + 𝑅

𝑒𝑗𝑘𝐿 + 𝑅𝑒−𝑗𝑘𝐿
) 𝐻23 

(3.20) 

Setting equations 3.14 and 3.17 equal to one another, 

 
𝑍𝑠 = 𝑍0

1 + 𝑅

1 − 𝑅
== −𝑗𝑍𝑐cot (𝑘𝑐𝑑) 

(3.21) 

and the characteristic impedance is: 

 
𝑧𝑐 = 𝑗𝑧0

1 + 𝑅

1 − 𝑅
tan (𝑘𝑐𝑑) (3.22) 

 

3.3. Measurement of Flow Resistivity 

Over 40 years ago, Delaney and Bazley (1970) developed empirical formulas 

which related the bulk properties to the flow resistivity of a material.  In similar work, 

they found that the sound absorption curves of different densities of rock wool 

collapsed on themselves when plotted versus the non-dimensional frequency 

parameter  /f . In the intervening years, additional models were developed for 

fibers (Mechel, 2002) and plastic foams (Wu, 1988).  

 

 

Figure 3.6 Schematic showing flow resistance measurement setup. 
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Determining the flow resistivity is comparatively less expensive than measurement 

using an impedance tube. Moreover, the measurement is comparatively easy. The 

measurement process has been standardized in ASTM C522. A schematic 

showing the testing apparatus is shown in Figure 3.6. And the testing apparatus at 

the University of Kentucky is shown in Figure 3.7. The static pressure drop (∆𝒑) 

across a sample is measured along with the flow velocity (𝒖).  The flow resistivity 

can be expressed as 

 
σ =

∆𝑝

𝑢𝑡
 (3.23) 

where 𝑡 is the thickness of the sample. 

 

 

Figure 3.7 Flow resistance measurement apparatus. 

 

Note that the quality of the estimated bulk properties depends on the measurement 

itself but also on the validity of the semi-empirical equation used.  Many newer 

types of foam have flow resistivities in excess of 50,000 Rayls/m which are much 

higher than those used to develop the semi-empirical equations in the first place.  

Moreover, ASTM C522 indicates that the measurement procedure is intended for 

flow resistances below 10,000 Rayls.  However, flow resistances beyond this limit 

are often measured.  In spite of these limitations, the method is inexpensive and 
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simple, and provides sound absorption values that are acceptable to engineering 

accuracy for many industrial applications. 

The semi-empirical equations are written in terms of the non-dimensional 

frequency parameter ( 𝑋 = 𝑓𝜌/𝜎 ).  Mechel (1988) improved the Delaney and 

Bazley (1970) model for fibers.  The bulk properties are expressed as  

For 𝑋 ≤ 0.025 

 𝑘𝑐/𝑘 = (1 + 0.136𝑋−0.641) − 𝑗0.322𝑋−0.502 

 
(3.24a) 

 𝑧𝑐/𝑧 = (1 + 0.081𝑋−0.699) − 𝑗0.191𝑋−0.556 (3.24b) 

For 𝑋 > 0.025 

 𝑘𝑐/𝑘 = (1 + 0.103𝑋−0.716) − 𝑗0.322𝑋−0.663 

 
(3.24c) 

 𝑧𝑐/𝑧 = (1 + 0.0563𝑋−0.725) − 𝑗0.127𝑋−0.655 (3.24d) 

The limits for Mechel’s model are 0.002 < 𝑋 < 0.5 though the model is sometimes 

used beyond this range in practice. 

Wu (1988) developed the similar model for plastic foams that follows. 

 𝑘𝑐/𝑘 = (1 + 0.188𝑋−0.554) − 𝑗0.163𝑋−0.592 

 
(3.25a) 

 𝑧𝑐/𝑧 = (1 + 0.209𝑋−0.548) − 𝑗0.105𝑋−0.607 (3.25b) 

The limits for Wu’s model are 0.01 < 𝑋 < 0.83 with 2,900 < 𝜎 < 24,300. 
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3.4 Curve Fitting Methods 

3.4.1 Curve Fitting to Determine Flow Resistivity 

Simón et al. (2006) proposed using the measured absorption to determine the flow 

resistivity.  The absorption is first measured using ASTM E-1050.  Then, the flow 

resistivity is varied in the empirical equations (Equations 3.25a and 3.25b) until the 

least squares error is minimized.  In so doing, a flow resistivity can be selected so 

that the sound absorption will best match the measurement.  After that, the bulk 

properties can be determined using the empirical models of Mechel or Wu which 

were introduced previously. This method is attractive for a few reasons.  First, there 

are several commercially available impedance tubes that are easy to use and 

sound absorption can be easily obtained.  Moreover, this approach guarantees 

that the sound absorption will at least be correct at one thickness.  On the other 

hand, the method again assumes that the empirical model is appropriate for the 

material measured.  

3.4.2 Curve Fitting to Determine Biot Parameters 

Similarly, the Johnson-Champoux-Allard (Allard, 2009) theoretical model can be 

used for the curve fit.  The inputs to the model are the 5 Biot parameters (flow 

resistivity, porosity, tortuosity, thermal characteristic length, and viscous 

characteristic length).  While flow resistivity is relatively easy to measure, the other 

4 Biot parameters are difficult to measure and are only occasionally measured in 

industry.  Pan and Jackson (Pan and Jackson, 2009) reviewed the methods for 

determining these parameters. 

 As an alternative, the Biot parameters can be estimated from the measured 

sound absorption coefficient.  This procedure is used in the ESI Foam-X (ESI, 

2007) software.  The algorithm breaks the sound absorption into three frequency 

regimes (low, middle, and high) shown in Figure 3.8.  The frequency regimes and 

the corresponding Biot parameters determined for each range are as follows. 

Low Frequencies – Flow resistivity, porosity, and thermal characteristic length. 
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Middle Frequencies – Flow resistivity, viscous characteristic length, and tortuosity. 

High Frequencies – Porosity, thermal characteristic length, and viscous 

characteristic length. 

 

 

Figure 3.8 Frequency zones of a typical sound absorption coefficient. 

 

3.5 Summary 

This chapter surveys several approaches to determine the bulk properties 

(complex wavenumber and characteristic impedance) for sound absorbing 

materials. These approaches can be broken down into two classes; 1) direct and 

2) indirect approaches. Details of each method were introduced. 



32 

 

CHAPTER 4 BULK PROPERTIES RESULTS AND COMPARISON  

4.1 Direct Measurement Results 

Three direct measurement approaches (two load, two cavity and three microphone 

method) to measure the bulk properties of porous materials were introduced in the 

previous chapter. In the following sections, results between the three approaches 

are compared for melamine foam and glass fiber. 

4.1.1 Determination of Sound Absorption and Transmission Loss 

Once the characteristic impedance and complex wave number have been 

determined, the transfer matrix can be expressed as 

 
{
𝑃1

𝑢1
} = [

𝐴 𝐵
𝐶 𝐷

] = [
cos (𝑘𝑐𝑑) 𝑗𝑍𝑐sin (𝑘𝑐𝑑)

𝑗 sin(𝑘𝑐𝑑) /𝑍𝑐 cos (𝑘𝑐𝑑)
] {

𝑃2

𝑢2
} 

(4.1) 

The sound absorption coefficient can be found in the following way.  Assume a 

rigid termination so that 𝑢2 = 0.  In that case, the normal incidence impedance 

can be expressed as 

 
𝑍 =

𝐴

𝐶
=

𝑧𝑐cos (𝑘𝑐𝑑)

𝑗𝑠𝑖𝑛(𝑘𝑐𝑑)
 

(4.2) 

The reflection coefficient and sound absorption coefficient can be wrote as 

 
𝑅 =

𝑍 − 1

𝑍 + 1
 

(4.3) 

and  

 𝛼 = 1 − |𝑅|2 (4.4) 

respectively.  In addition, the transmission loss can be expressed directly in 

terms of the transfer matrix terms as 
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𝑇𝐿 = 20𝑙𝑜𝑔10 |𝐴 +

𝐵

𝜌𝑐
+ 𝐶𝜌𝑐 +

𝐷

2
| 

(4.5) 

 

4.1.2 Results for Foam 

The characteristic impedance and complex wave number determined using the 

three direct measurement approaches is shown in Figures 4.1 and 4.2 for a 1 inch 

thick 0.6 lbs/ft3 melamine foam. Figure 4.1 shows the real and imaginary 

characteristic impedance. Results between the three approaches agree above 800 

Hz though there are some differences below 800 Hz. Figure 4.2 shows similar 

results for the complex wave number. Results agree over the entire frequency 

range. 

 

Figure 4.1 Direct measurement results of characteristic impedance for 1 inch 0.6 

lbs/ft3 melamine foam. 
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Figure 4.2 Direct measurement results of complex wave number for 1 inch 0.6 

lbs/ft3 melamine foam. 

  

The characteristic impedance and complex wave number were then used to 

calculate the sound absorption coefficient using Equations 4.1 through 4.4. The 

transmission loss was calculated using Equations 4.1 and 4.5. Results are 

compared for sound absorption and transmission loss in Figures 4.3 and 4.4 

respectively.  
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Figure 4.3 Direct measurement results of absorption coefficient for 1 inch 0.6 

lbs/ft3 melamine foam. 

 

 

Figure 4.4 Direct measurement results of transmission loss for 1 inch 0.6 lbs/ft3 

melamine foam. 
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As shown in Figure 4.3, the sound absorption coefficient compares well above 

1200 Hz and the three microphone method is smoother than the other two 

approaches. The three methods are also compared to the directly measured sound 

absorption coefficient for a 1 inch thick sample using ASTM E1050 with good 

agreement. The result shows that the three microphone method compares more 

closely with ASTM E1050 than the other methods. However, it is recognized that 

these are results for a single sample of a particular material so no general 

conclusions can be made. 

Figure 4.4 shows similar comparisons for transmission loss. The two load 

method (ASTM E2611, 2009) is the approach that is commonly used to measure 

transmission loss directly.  It can be seen that both the two cavity and three 

microphone results agree well though the three microphone results are a little 

smoother.  However, the three microphone results are a little high above 2500 Hz 

which is due to differences in the imaginary part of the complex wave number. 

 

4.1.3 Results for Fiber 

A similar set of measurements was performed on a 1 inch thick 1 lbs/ft3 glass fiber. 

Figures 4.5 and 4.6 show the characteristic impedance and complex wave number 

measured using the direct measurement approaches. The characteristic 

impedance compares well above 800 Hz though there are some differences at low 

frequencies. The complex wave number compares well over the entire frequency 

range. 
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Figure 4.5 Direct measurement results of characteristic impedance for 1 inch 1.0 

lbs/ft3 glass fiber. 

  

 

Figure 4.6 Direct measurement results of complex wave number for 1 inch 1.0 

lbs/ft3 glass fiber. 

 

-4

-2

0

2

4

0 1000 2000 3000 4000 5000

N
o
rm

a
liz

e
d
 C

h
a
ra

c
te

ri
s
ti
c
 

Im
p
e
d
a
n
c
e

Frequency (Hz)

Two Load (Re)
Two Load (Im)
Two Cavity (Re)
Two Cavity (Im)
Three Microphone (Re)
Three Microphone (Im)

-40

0

40

80

120

0 1000 2000 3000 4000 5000

C
o
m

p
le

x
 W

a
v
e
 N

u
m

b
e
r 

(1
/m

)

Frequency (Hz)

Two Load (Re)
Two Load (Im)
Two Cavity (Re)
Two Cavity (Im)
Three Microphone (Re)
Three Microphone (Im)



38 

 

Figure 4.7 compares the sound absorption coefficient computed using each of the 

three direct methods to ASTM E1050. All three methods compare well over most 

of the frequency range. However, the sound absorption found using the two-load 

method determined properties is noisy and high at low frequencies. The three 

microphone method is the smoothest curve and compares best to the direct 

measurement (ASTM E1050).  

Figure 4.8 compares the transmission loss computed using the two-cavity and 

three-microphone method to that measured directly by the two-load measurement. 

Once again, the curve obtained using the three microphone method is smoother. 

However, the two-cavity approach compares better with direct measurement 

(ASTM E2611) above 3000 Hz. 

 

 

Figure 4.7 Measurement results of absorption coefficient for 1 inch 1.0 lbs/ft3 glass 

fiber. 

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000

A
b
s
o
rp

ti
o
n
 C

o
e
ff
ic

ie
n
t

Frequency (Hz)

ASTM E1050

Two Cavity

Two Load

Three Microphone



39 

 

 

Figure 4.8 Measurement results of transmission loss for 1 inch 1.0 lbs/ft3 glass 

fiber. 

 

4.1.4 Direct Measurement Methods Comparison 

The results suggest that the three microphone method should be recommended 

over the two cavity and two load approaches. There are a few reasons. First, the 

three microphone method is the simpler measurement approach. It requires only 

a single measurement. Secondly, results are smoother, especially at low 

frequencies, than the alternative methods. 

 

4.2 Indirect Characterization Results     

Three indirect characterization approaches to determine the bulk properties of 
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find the flow resistivity based on the empirical equation, and c) measurement of 
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4.2.1 Results for Foam 

Results are compared for the indirect measurement approaches in Figures 4.9 and 

4.10 for 1 inch 0.6 lbs/ft3 melamine foam. There is good agreement between each 

of the indirect approaches.  It can be observed that these results generally 

compare well with the direct measurement as shown in Figures 4.11 and 4.12. 

However, note that the characteristic impedance determined using the curve fitted 

Biot parameters varies from the measured bulk properties at low frequencies.   

 

Figure 4.9 Indirect characterization results of characteristic impedance for 1 inch 

0.6 lbs/ft3 melamine foam. 

 

The flow resistivities for melamine foam determined using direct measurement and 

determined by measuring the sound absorption coefficient and curve fitting to the 

empirical model of Wu (1988) are 12,100 Rayls/m and 11,400 Rayls/m 

respectively.  When input into the empirical models, the difference between the 

bulk properties will be minimal as shown in Figures 4.9 and 4.10.  
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Figure 4.10 Indirect characterization results of complex wave number for 1 inch 

0.6 lbs/ft3 melamine foam.  

 

Figure 4.11 Indirect characterization results of absorption coefficient for 1 inch 

0.6 lbs/ft3 melamine foam. 
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Figure 4.12 Indirect characterization results of transmission loss for 1 inch 0.6 

lbs/ft3 melamine foam. 
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E1050) and transmission loss (ASTM E2611). 
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model developed by Mechel (1988) are 7120 Rayls/m and 6700 Rayls/m 

respectively. 

 

Figure 4.13 Indirect characterization results of characteristic impedance for 1 

inch 1.0 lbs/ft3 glass fiber. 

 

Figure 4.14 Indirect characterization results of complex wave number for 1 inch 

1.0 lbs/ft3 glass fiber. 
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Figures 4.15 and 4.16 compare the differences in predicted sound absorption and 

transmission loss. It is evident that there is little difference in the final result 

regardless of the approach used. The predicted sound absorption and 

transmission loss using the indirect approaches compare well with direct 

measurement using ASTM E1050 and ASTM E2611 respectively. 

 

Figure 4.15 Indirect characterization results of absorption coefficient for 1 inch 

1.0 lbs/ft3 glass fiber. 

 

Figure 4.16 Indirect characterization results of transmission loss for 1 inch 1.0 

lbs/ft3 glass fiber. 
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4.2.3 Indirect Characterization Methods Comparison 

Each of the three indirect characterization approaches compare well against 

each other for the melamine foam and glass fiber selected. However, it should be 

borne in mind that the flow resistivity approaches depend on the suitability of the 

empirical model for a given sound absorptive material. Though each of the three 

approaches are straightforward, direct measurement of the flow resistivity can be 

accomplished using a low cost system that is relatively easy to assemble.  In 

addition, samples do not need to be as carefully prepared as those used in 

impedance tube tests. 

 

4.3 Comparison  

All six direct and indirect measurement methods can be categorized into three 

groups as shown in Figures 3.1 which are: 

1. Direct measurement using an impedance tube. 

2. Measuring the flow resistance and inputting the result into empirical 

equations. 

3. Measurement of the sound absorption and curve fitting to determine the 

flow resistivity or the Biot parameters. 

One approach from each group are selected and compared in Figures 4.17 and 

4.18 for sound absorption coefficient and transmission loss respectively. 

Figure 4.17 compares the sound absorption coefficient calculated by the bulk 

properties for 1 inch 1.0 lbs/ft3 glass fiber. There  is good agreement regardless of 

the method used. 
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Figure 4.17 Absorption coefficient results comparison for 1 inch 1.0 lbs/ft3 glass 

fiber. 

 

Figure 4.18 compares the transmission loss for 1 inch 1.0 lbs/ft3 glass fiber. The 

transmission loss compares well regardless of the approach used with some 

differences above 3000 Hz. 

 

Figure 4.18 Transmission loss results comparison for 1 inch 1.0 lbs/ft3 glass fiber. 
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4.4 Summary  

The results indicate that each method is acceptable and the selection of the 

method will depend on the capabilities at hand.  If an impedance tube is available, 

direct measurement using the three-microphone method is preferred though the 

two load and two cavity methods are certainly acceptable.  If an impedance tube 

is not available, a flow resistivity measurement rig can be designed in accordance 

with ASTM C522 (ASTM, 2003) and the measured flow resistivity can be used in 

appropriate empirical equations.  Alternatively, the sound absorption can be 

measured in accordance with ASTM E1050 (ASTM,1998) and the flow resistivity 

or Biot parameters that produce the best fit sound absorption using empirical or 

theoretical equations can be determined.  Even though these approaches require 

an impedance tube, measurement of sound absorption is comparatively easier 

than direct measurement of the bulk properties. 
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CHAPTER 5 ACOUSTIC CHARACTERIZATION OF GLUES, 

COVERS AND DENSIFIED MATERIALS 

5.1 Introduction 

Allard and Atalla (2009) have detailed theoretical models for determining the sound 

absorption for layered materials, which include the response of both the frame and 

fluid.  Similarly, Mechel (Mechel, 2008) has also developed both theoretical and 

empirical models describing porous absorbers.  Though the models are 

implemented in different software packages, they have limited application to trim 

components for a number of reasons.  Specifically, the models do not take into 

account: 

1. Bonding agents such as glue and other adhesives. 

2. Densified materials. 

3. Compression of sound absorbing materials. 

Though Allard and Atalla (2009) consider films, the properties of the film and the 

bonding of the film to the fiber are difficult to properly account for using the models.  

As a result, trim components are normally designed using a cut-and-try approach. 

 

5.2 Effect of Glues, Covers and Compression 

5.2.1 Effect of Glue 

Glue is commonly used for bonding individual absorbing layers to one another or 

to a cover in sound absorbing materials. However, it is difficult to model or directly 

measure the acoustic properties of glue. Figures 5.1 and 5.2 show the effect of 

glue applied in between two glass fiber and foam layers respectively. Adding glue 

shifts the sound absorption peak to a lower frequency, but generally degrades the 

performance above 1000 Hz. 
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Figure 5.1 Effect of Glue between Two Glass Fiber Layers.  

 

Figure 5.2 Effect of Glue between Two Foam Layers.  

Figure 5.3 shows the effect of different coatings of glue. In this experiment, single, 

double and triple layers of glue were sprayed in between two foams and the sound 

absorption coefficient was measured using ASTM E1050 and compared. The 

results demonstrate that increasing the amount of glue further diminishes the 

performance above 1000 Hz. 
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Figure 5.3 Effect of Coatings of Glue between Two Foam Layers.  

 

5.2.2 Effect of Cover  

Scrims or densified material layers are often used as covers. The acoustic 

properties of covers depend on their mounting. Sometimes the cover is bonded 

onto a porous material, and sometimes the cover is loosely attached and can be 

peeled away easily. Figure 5.4 shows the effect of a densified layer bonded to a 

glass fiber. The cover is a 1.5 mm 15.36 lbs/ft3 high density glass fiber. Figure 5.5 

shows the effect of a scrim placed in front of a glass fiber. In this case the scrim is 

not bonded to the material. Both figures indicate that covers improve the 

absorption coefficient at low frequencies but decrease the absorption at higher 

frequencies.  
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Figure 5.4 Effect of Densified Layer on Fiber.  

 

Figure 5.5 Effect of Scrim on Fiber.  

5.2.3 Effect of Compression 

The effect of compression was also investigated. A custom testing fixture was 

designed and used to measure compressed foam in the impedance tube using 

ASTM E1050. 

0.0

0.2

0.4

0.6

0.8

1.0

0 1000 2000 3000 4000 5000

A
b
s
o
rp

ti
o
n
 C

o
e
ff
ic

ie
n
t

Frequency (Hz)

Fiber with Cover

Fiber Only

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000

A
b
s
o
rp

ti
o
n
 C

o
e
ff
ic

ie
n
t

Frequency (Hz)

Fiber Only

Fiber with Cover



52 

 

As is shown in Figure 5.6, a mesh and a ring are used to compress foam evenly 

and hold it inside of the impedance tube. The total thickness of the mesh and ring 

is 0.1 inches. Figure 5.7 illustrates the procedure for compressing the sample in 

the holder. The procedure for mounting the sample is described as follows. 

Step 1: Move the piston in the sample holder so that the depth in the holder is the 

intended thickness after the sample is compressed. 

Step 2: Insert sample material in the sample holder. 

Step 3: Compress the sample and then add mesh and ring in front of the sample 

to hold in place. Press the plastic ring so that it fits snugly in the impedance tube 

and holds the mesh in place. 

 

Figure 5.6 Schematic showing compression measurement procedure.   

 

 

Figure 5.7 Schematic illustrating material compression procedure.  
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Compress 
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Before measuring compressed sound absorbing materials, the effect of the screen 

and ring were examined. A 1 inch foam was measured in the impedance tube using 

ASTM E1050. The measurement was then repeated with the screen and then with 

the ring and screen together. As we can see in Figure 5.8, adding a mesh in front 

of the foam has minimal impact on the sound absorption coefficient. Adding the 

ring has some effect above 3000 Hz but the impact is still minor. 

 

 

Figure 5.8 Effect of ring and screen on sound absorption.  

 

A 1 inch foam was compressed to 0.75 inch, 0.5 inch, and 0.25 inch using the 

apparatus shown in Figure 5.6 and measured in the impedance tube using ASTM 

E1050. Results are shown in Figure 5.9. For this particular foam (1 inch thick and 

0.6 lbs/ft³), the absorption coefficient decreases over the entire frequency range. 

Also, additional shearing resonances in the solid matrix are evident due to the edge 

constraint (Song and Bolton, 2001).  
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Figure 5.9 Effect of Compression of a 1 Inch 0.6 lbs/ft³ Foam. 

 

Figure 5.10 compares the sound absorption coefficient of compressed and 

uncompressed 0.75 inch foam. The original blank for the compressed foam was 1 

inch in thickness. For this particular foam, the sound absorption coefficient 

improves when it is compressed due to the increased density of the compressed 

foam. A similar comparison is shown in Figure 5.11 for a 1 inch foam that has been 

compressed to 0.25 inches. It is compared with 0.25 inch uncompressed foam. In 

both cases, an identical foam type and density was used for the compressed and 

uncompressed measurements. However, the foam samples were undoubtedly 

from different batches so there are likely some differences in the material. 
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Figure 5.10 Effect of Compression of a 1 Inch 0.6 lbs/ft³ Foam.  

 

Figure 5.11 Effect of Compression of a 1 Inch 0.6 lbs/ft³ Foam. 

 

5.3 Acoustic Characterization of Glues and Covers 

5.3.1 Transfer Impedance Approach 

A transfer impedance approach is commonly used to model perforates, covers and 

source impedance. A number of procedures have been used to measure the 

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000

A
b
s
o
rp

ti
o
n
 C

o
e
ff
ic

ie
n
t

Frequency (Hz)

0.75 in Uncompressed

0.75 in Compressed

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000

A
b
s
o
rp

ti
o
n
 C

o
e
ff
ic

ie
n
t

Frequency (Hz)

0.25 in Uncompressed

0.25 in Compressed



56 

 

transfer impedance of perforates. Ren and Jacobsen (1993) used an impedance 

tube with one microphone upstream and another downstream of the sample. Wu 

et al. suggested a simpler approach recognizing that the transfer impedance is 

simply a series impedance.  The transfer impedance was determined by taking the 

difference between the impedances anterior and posterior to the perforate or 

cover. The impedance anterior to the perforate or cover is the combined 

impedance of the perforate or cover itself and the backing cavity. The impedance 

posterior to the cover is the impedance of the backing cavity alone.  Both of these 

quantities can be measured using the two-microphone method and the transfer 

impedance is simply the difference between them.  

 

Figure 5.12 Schematic Illustrating Transfer Impedance. 

The impedance difference method was used to measure the transfer impedance 

of covers and adhesive layers in the current work as shown in Figure 5.12. The 

sound pressure and particle velocity with and without the cover are p1, u1 and p2, 

u2, respectively.  

Thus, the transfer impedance of a cover or perforate can be expressed as: 

 𝑍𝑡𝑟 =
𝑝1 − 𝑝2

𝑢
= 𝑍1 − 𝑍2 (5.1) 

Figures 5.13 through 5.15 shows how the transfer impedance can be measured in 

an impedance tube using the impedance difference approach. The impedance of 

the material was measured with (𝑍2) and without (𝑍1) the cover or bonding and the 

difference in impedances is the transfer impedance. The procedure shown in 

p 1 

u 1 

p 2 

u 2 

z t r 
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Figures 5.13 has been used in the past for measuring panels or perforates. The 

setup shown in Figure 5.14 is suggested as an alternative for measuring adhesive 

layers, densified layers, and film covers. Figure 5.15 is an alternative way for 

measuring adhesive layers and covers where the sample is simply reversed. It is 

assumed in this particular case that the material is homogeneous. The material 

was measured with adhesive or cover first facing the source and then the sample 

is flipped. The advantage of using this method is that the same sample can be 

used for both tests without having to peel off the cover or densified layer. 

 

Figure 5.13 Transfer impedance measurement method 1 (a) Impedance with 

panel or perforate (b) Impedance without panel or perforate. 

 

Figure 5.14 Transfer impedance measurement method 2 (a) Impedance with 

adhesive layer or bounded cover (b) Impedance without adhesive layer or 

bounded cover. 
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Figure 5.15 Transfer impedance measurement method 3 (a) Impedance with 

adhesive layer or bounded cover (b) Impedance without adhesive layer or 

bounded cover (sample flipped over to the other side). 

 

Figure 5.16 show the transfer impedance results of a densified fiber layer 

measured using the three methods introduced above. The densified layer was 

bonded to a 1 inch homogeneous fiber. Method 2 and method 3 have good 

agreement with each other while method 1 is quite different from the other two 

methods. The results suggest that method 1 is not appropriate for measuring 

layers that are limp and bonded to the substrate material.  

 

Figure 5.16 Transfer impedance result comparison using three measurement 

methods. 
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5.3.2 Transfer Matrix Approach 

One of the most commonly used approaches for simulating the properties of a 

layered sound absorber is the transfer matrix approach (Munjal, 1987).  The sound 

pressure and particle velocity on opposing sides of a sound-absorbing layer as 

shown in Figure 5.17 can be related to each other via 

 
{

𝑝1

𝑢1
} = [

cos(𝑘𝑐𝐿) 𝑗𝑧𝑐 sin(𝑘𝑐𝐿)
𝑗

𝑧𝑐
⁄ sin(𝑘𝑐𝐿) cos(𝑘𝑐𝐿)

] {
𝑝2

𝑢2
} (5.2) 

where 𝑘𝑐 is the complex wavenumber, 𝑧𝑐 is the characteristic impedance, and 𝐿 is 

the length of the sample.  The transfer matrix for a perforate or cover can be 

expressed in terms of the transfer impedance as 

 {
𝑝1

𝑢1
} = [

1 𝑧𝑡𝑟

0 1
] {

𝑝2

𝑢2
} (5.3) 

where it is assumed that the particle velocity is equal on each side of the element 

and the transfer impedance is defined as 

 𝑧𝑡𝑟 =
𝑝1 − 𝑝2

𝑢1
 (5.4) 

 

 

 

 

 

 

Figure 5.17 Schematic illustrating transfer matrix for a) a foam or fiber absorber 

or b) a transfer impedance. 
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Figure 5.18 Schematic illustrating multi-layered materials. 

 

Once transfer matrices are obtained for each element, the transfer matrix ([𝑇]) for 

the complete absorber (Figure 5.18) can be combined by matrix multiplication.  

Accordingly, 

 [𝑇] = [
𝑇11 𝑇12

𝑇21 𝑇22
] = [𝑇1][𝑇2][𝑇3] … [𝑇𝑛] (5.5) 

where [𝑇𝑖] is the transfer matrix for the ith layer.  The impedance of the sample can 

be expressed as 

 
𝑍 = 𝑟𝑛 + 𝑥𝑛𝑗 =

𝑇11

𝑇21
 (5.6) 

where 𝑟𝑛 and 𝑥𝑛 are the real and imaginary parts of the impedance.  The reflection 

coefficient 𝑅 can be expressed as 

 
𝑅 =

𝑍 − 1

𝑍 + 1
 (5.7) 

And the normal incident sound absorption coefficient can be expressed as 

 𝛼 = 1 − |𝑅|2 (5.8) 

Layer 1 Layer 2 Layer 3 

Cover Glue 1 Glue 2 
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5.3.3 Validation of Transfer Impedance Approach  

5.3.3.1 Validation Procedure for Glue 

The suggested transfer impedance approach was tested for glue or adhesive.  

The transfer impedance of glue or adhesive layer was measured first using the 

impedance difference approach. Then the measured transfer impedance was 

used to predict the case where the layer was placed on a thicker sample or used 

to bond two samples. The predictions were compared to direct measurement 

using ASTM E1050.  

 

Figure 5.19 Schematic illustrating glue bonded to 2 inch glass fiber. 

As shown in Figure 5.19, a layer of glue was initially applied on a 1 inch glass 

fiber, and the transfer impedance of glue (𝑍𝑡𝑟) can be calculated using the 

impedance difference approach. The substrate material the glue was attached to 

was changed by adding another layer of 1 inch fiber posterior to the original 

sample. The bulk properties of the 2 inch glass fiber were measured using three 

microphone method prior to the glue application. The transfer matrix of glue (𝑇𝑔) 

and fiber (𝑇𝑎) can be calculated using Equations 5.2 and 5.3. And the absorption 

coefficient (𝛼) of glue bonded to 2 inch glass fiber can be calculated then using 

Equations 5.5 to 5.8.  

Glass Fiber 

Glue 

2 in 
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Figure 5.20 Transfer impedance of glue applied on glass fiber. 

 

Figure 5.21 Comparison of sound absorption for glue bonded to 2 inch glass 

fiber. 

Figure 5.20 shows the transfer impedance of glue measured using the impedance 

difference method. Figure 5.21 shows good agreement between the directly 

measured and predicted sound absorption for two 1 inch thick fibers with glue on 

the side facing the source below 3500 Hz. For comparison, the sound absorption 

without adhesive is also shown.  Notice the good agreement between the predicted 
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and directly measured results which demonstrates that the transfer impedance 

approach can be used to determine the acoustic properties of glue applied to a 

porous material.  

 

Figure 5.22 Schematic illustrating glue bonded between two glass fiber layers. 

 

Figure 5.23 Comparison of sound absorption for glue bonded between two glass 

fiber layers. 

Since glue is commonly used to bond two layers together, two layers of sound 

absorption with an adhesive between them was considered next and is illustrated 
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matrix Tg can be expressed using Equation 5.3. The transfer matrices (𝑇𝑎 and 𝑇𝑏) 

of layers A and B were measured using the three microphone method. Then, the 

sound absorption of the composite can be calculated using Equations 5.5 

through 5.8 and compared with the result measured using ASTM E1050. Figure 

5.23 compares the measured and transfer matrix predicted results with good 

agreement. 

 

5.3.3.2 Validation Procedure for Cover 

A validation example was considered where fiber was densified on one side to act 

as a facing. As shown in Figure 5.24, a densified layer was originally bonded to a 

0.8 inch glass fiber. The transfer impedance of this densified cover was measured 

using the impedance difference method and the result is shown in Figure 5.25. The 

thickness of the glass fiber backing was then increased to 1.6 inches. The bulk 

properties for the 1.6 inch glass fiber were then measured using the three 

microphone method. The transfer matrix for the densified layer (𝑇𝑔) and 1.6 inch 

glass fiber (𝑇𝑎) was then calculated using Equations 5.2 and 5.3 and the sound 

absorption coefficient predicted using transfer matrix method. 

 

Figure 5.24 Schematic illustrating fiber with densified layer. 
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Figure 5.25 Transfer Impedance of Densified Layer. 

Figure 5.26 shows good agreement between the directly measured and transfer 

matrix theory sound absorption. For comparison, the sound absorption without the 

densified layer is also shown.  The results confirm that the transfer impedance 

approach can be used to model the acoustic properties of densified layer.  

 

 

Figure 5.26 Comparison of sound absorption for fiber with densified layer. 
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5.4 Summary  

The effect of covers, adhesives and compression of foams was investigated in this 

chapter. The transfer impedance of covers and adhesives was determined using 

an impedance difference approach. One way to validate the approach is to use the 

transfer matrix method to predict the absorption coefficient of a built-up sound 

absorber and compare with ASTM E1050. The good agreement between predicted 

and measured results suggest that the acoustic properties of the cover and 

adhesive can be measured using the suggested approach. 

  



67 

 

CHAPTER 6 TRANSFER IMPEDANCE RESULTS AND 

COMPARISON 

6.1 Glue Transfer Impedance 

6.1.1 Transfer Impedance of Increasing Levels of Glue 

The transfer impedance for an adhesive (bonded to melamine foam) was 

measured using the procedure outlined in Chapter 5.3.1. Adhesive was weighed 

in 0.1-gram increments and then brushed onto the surface of the sample. Figure 

6.1 shows the absorption coefficient of increasing levels of glue brushed on to the 

0.5 inch 0.6 lbs/ft3 melamine foam. The effect is similar to adding a film cover to a 

fiber or foam. 

 

Figure 6.1 Sound absorption of increasing levels of glue brushed on to 0.6 lbs/ft3 

melamine foam. 

 

The transfer impedance was measured after each brushing.  The real and 

imaginary parts of the transfer impedance for different levels of glue are shown in 

Figures 6.2 and 6.3 respectively. Notice that the real part of the transfer impedance 

is roughly constant with frequency while the imaginary part increases linearly with 
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frequency. Brushing on additional layers of glue primarily increases the imaginary 

part of the transfer impedance (i.e., a mass effect).  There is also some increase 

in the real part of the transfer impedance but the effect is less pronounced.   

 

Figure 6.2 Transfer impedance (real part) of increasing levels of glue brushed on 

to 0.6 lbs/ft3 melamine foam. 

Figure 6.3 Transfer impedance (imaginary part) of increasing levels of glue 

brushed on to 0.6 lbs/ft3 melamine foam. 
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6.1.2 Transfer Impedance of Glue Applied on Different Substrates 

An equivalent mass of glue was applied to different substrates and the transfer 

impedance was measured. Substrates considered included melamine foam, 

polyester foam, and glass fiber. 

Figure 6.4 and 6.5 show the real and imaginary parts respectively of transfer 

impedance for 0.6g of glue applied. Results show that the transfer impedance of 

the same amount of glue applied on different substrates are quite different. The 

main reason is due to glue application. The glue used in this test is a hot melted 

glue, and the glue was placed on a hot plate until it was melted and was carefully 

brushed on to the substrates. Glue can be easily and evenly applied to the surface 

of a melamine foam. However, it is difficult to brush the glue on to polyester and 

glass fiber. While glue completely covered the melamine, there were gaps in the 

coverage for the polyester and glass fiber. Note that the transfer impedance is 

highest for the melamine and lowest for the glass fiber.  

 

Figure 6.4 Transfer impedance (real part) of 0.6g glue applied different 

substrates. 
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Figure 6.5 Transfer impedance (imaginary part) of 0.6g glue applied on different 

substrates. 

 

6.2 Cover Transfer Impedance 

6.2.1 Transfer Impedance of Cover and Perforated Panel 

The transfer impedance for a cover and a perforated panel were measured using 

the procedure outlined in Section 5.3.1. The cover is made of armaglas fabrics 

which provides added heat protection and the perforated panel is made of steel 

with 0.35 porosity and a hole diameter of 0.1875 inch. Figure 6.6 shows a 

photograph of the cover and perforated panel.  

 

 

 

 

 

Figure 6.6 Photograph of a) Cover (armaglas fabrics) b) Perforated panel (steel) 
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Figure 6.7 shows the effect in absorption coefficient of adding a cover and 

perforated panel to 1.2 inch glass fiber. The sound absorption coefficient was 

measured and averaged for 5 samples in each case. 

 

 

Figure 6.6 Sound absorption of 1.2 inch glass fiber with cover and perforated 

panel. 

 

Figures 6.8 and 6.9 show the transfer impedance of a cover and a perforated panel 

respectively. Results were averaged for 5 samples. 
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Figure 6.7 Transfer impedance of a cover. 

 

Figure 6.8 Transfer impedance of a perforated panel. 
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the samples. Figure 6.12 shows the standard deviation for the 4 samples. There 

are noticeable differences between samples but the standard deviation is relatively 

low. 

 

Figure 6.9 Variability of 4 samples of a cover (real part of transfer impedance). 

 

 

Figure 6.10 Variability of 4 samples of a cover (imaginary part of transfer 

impedance). 
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Figure 6.11 Standard deviation of transfer impedance for 4 samples of a cover. 

 

6.3 Summary 

The transfer impedance of increasing levels of glue was measured and compared 

in this chapter. Results show that both the real and imaginary parts of the transfer 

impedance increase with increasing levels of glue though the increase in the real 

part is less pronounced than the imaginary part of the transfer impedance. A similar 

amount of glue was applied to different substrates and compared. Results indicate 

that the transfer impedance can be quite different depending on the substrate. The 

transfer impedance of a fabric cover and a steel perforated panel were also 

measured using the impedance difference approach. 
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CHAPTER 7 SIMULATION OF BUILT-UP MATERIALS 

7.1 Multi-Layer Material Test Case 

The transfer matrix approach described in Section 5.3.2 was applied to layered 

materials. The built-up layered material is shown in Figures 7.1 and 7.2.  The 

absorber consisted of a perforated cover, foam, and fiber.  The cover was bonded 

to the foam and the foam and fiber were bonded together.  The cover plus bonding 

was considered as a transfer impedance as was the bonding in between the foam 

and fiber. In this case, the bulk properties of the fiber and foam were measured 

using the three-microphone method introduced in chapter 3 and the transfer 

impedances of adhesive and top cover were measured using the impedance 

difference method introduced in chapter 5. After determining the properties of each 

layer, the transfer matrix approach which was introduced in Section 5.3.2 was used 

to predict the sound absorption and was then compared to the measured sound 

absorption. 

 

Figure 7.1 Composition of a multi-layer sound absorber. 
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Figure 7.2 Schematic illustrating the composition of a multi-layer sound absorber. 

The multi-layered material was separated in to two parts. The top cover with foam 

substrate was the first part and adhesive bonded with fiber was the second part. 

Each part was measured and compared with the transfer matrix method. The two 

parts were regrouped into the original lay-ups after achieving good agreement 

between measured and simulated results for each part.    

The transfer impedance for the top cover is shown in Figure 7.3. Figure 7.4 shows 

the absorption coefficient of the top cover bonded with foam substrate. The transfer 

matrix method was compared to direct measurement result with good agreement.  

 

Figure 7.3 Transfer impedance of top cover. 
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Figure 7.4 Sound absorption of top cover and foam substrate. 

Figure 7.5 shows the transfer impedance of the adhesive determined via the 

impedance difference approach. Figure 7.6 shows the sound absorption of 

adhesive bonded with glass fiber. Both measurement and transfer matrix method 

compare very well, especially below 3000 Hz. There are some slight differences 

between the two methods above 3000 Hz. 

After getting good agreement between measured and simulated results on each 

part, the two parts were then recombined to the original material lay-up. The sound 

absorption of the multi-layer sound absorber predicted by the transfer matrix 

method is compared to direct measurement in Figure 7.7 with good agreement up 

to 3000 Hz.  
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Figure 7.5 Transfer impedance of adhesive. 

 

 

Figure 7.6 Sound absorption of adhesive bonded with glass fiber. 
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Figure 7.7 Sound absorption of a multi-layer sound absorber. 

 

7.2 Summary 

A procedure has been suggested in this chapter for the simulation of materials 

with covers and bonding materials. An impedance difference approach was used 

to determine the transfer impedance of the covers and bonding materials. The 

three-microphone approach was used to determine the characteristic impedance 

and complex wavenumber of the foam and fiber layers. After measuring the 

properties of the individual layers, the transfer matrix method was used to 

simulate the absorption of a layered absorber. The transfer matrix method was 

compared to measurement with good agreement. The suggested procedure 

would seem useful when simulating trim materials consisting of adhesives and 

densified covers. 
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CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS 

8.1 Conclusions 

The primary objective of this thesis was to determine the normal incident sound 

absorption coefficient of layered sound absorbers after determining the 

properties for the individual layers via measurement.  The transfer matrix 

approach was used to calculate the sound absorption coefficient for the layered 

sound absorber.  This thesis consists of four related investigations.  In the first, 

the standard deviation of normal incident sound absorption impedance tube 

measurements was investigated.  Secondly, several different methods for 

determining the acoustic properties of porous sound absorbing materials such as 

fibers and foams were compared to one another.  In the third study, an 

impedance difference technique was proposed for determining the transfer 

impedance of adhesive layers, densified layers, and covers.  After which, transfer 

matrix theory was used to simulate the acoustic performance of a layered sound 

absorber which consisted of layers of fiber and foam plus a cover and adhesive 

layer. 

The effect of sample variation was investigated using 6 samples of melamine 

foam and 8 samples of glass fiber. Sample variation is mainly caused by 1) 

uneven thickness and density during material manufacturing, 2) sample size and 

shape, and 3) mounting the sample in the impedance tube. In order to minimize 

sample variation, considerable care was taken when preparing the sample for 

measurement. The sample was cut to fit snugly so that it was not compressed in 

the tube which can lead to shear resonances of the sample. Adding needles to 

samples was shown to be an effective method to eliminate shear resonances if 

the sample was slightly compressed. In addition, the cutting technique should be 

selected so that sample will not have an hourglass shape. Moreover, the use of a 

higher power sound source was shown to improve the measurement at low 

frequencies. After taking the precautions noted, it was shown that the standard 

deviations for the sound absorption coefficient of a melamine foam and glass 
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fiber were on average 0.03 and 0.02 respectively.  It was also found that that the 

standard deviation could be as high as 0.07 for a slightly oversized sample.  

The complex wavenumber and characteristic impedance are often used to 

characterize porous sound absorbers like foams and fibers.  They are commonly 

referred to as bulk properties and are used for designing layered sound 

absorbers and can also be input into finite and boundary element models.  In the 

second study, the many different measurement approaches for determining the 

bulk properties were surveyed.  These approaches can be broken down into two 

classes; 1) direct and 2) indirect approaches.  

The direct measurement approaches include the two load method (ASTM 

E2611), the two cavity method, and a newly developed three microphone 

method. The results demonstrated that all three approaches compared well 

though the three microphone method was demonstrated to produce the 

smoothest curve especially at low frequencies.  

Three indirect methods were then examined.  One approach is to measure the 

flow resistivity and then determine the bulk properties using an appropriate 

empirical equation.  Alternatively, the sound absorption coefficient can be 

measured and then either the flow resistivity or the Biot properties can be 

determined using a least squares curve fit.  The flow resistivity is curve fit using 

empirical equations while the Biot properties are determined based on an 

analytical model.  It was shown that all three methods agreed well with one 

another.  It was noted that measurement of the flow resistivity is the simplest and 

least expensive approach provided that the empirical equation is appropriate for 

a given material. 

In the third study, the transfer impedance of covers and adhesives was 

determined using an impedance difference approach. The normal incident 

impedance of the sample was measured with and without the cover or adheive in 

place.  The transfer impedance is the difference between the two measurements.  

Alternatively, the sample can be flipped and the difference between the two 
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measurements taken.  The approach was validated by changing the thickness of 

the fiber or foam layer and insuring that the sound absorption could be predicted. 

The approach seems suitable as an engineering approximation in place of 

phenomenological models.  

In the fourth study, the bulk properties and transfer impedance were integrated 

into a transfer matrix model of a multi-layer sound absorber.  There was good 

agreement between the predicted and directly measured sound absorption 

coefficient for a multi-layer sound absorber consisting of a layer of foam, fiber, a 

cover, and an adhesive in between the fiber and foam layers.  The good 

agreement demonstrates that the approaches can be used to determine the 

sound absorptive properties of layered sound absorbers. 

 

8.2 Recommendations for Future Work 

Based on the research in this thesis, the following recommendations can be 

made. 

 Sample cutting and preparation is critical in order to obtain repeatable results 

in impedance tube measurements. 

 The three-microphone method is recommended for directly measuring the 

bulk properties of fibrous or foam sound absorbers. 

 The bulk properties can be indirectly predicted by measuring the flow 

resistivity.  This approach, while approximate, is inexpensive and simpler than 

impedance tube measurements. 

 An impedance difference approach can be used to determine the transfer 

impedance of an adhesive, perforate, cover, or densified layer. 

 The aforementioned approaches could be used to determine the properties of 

individual layers and then combined to determine the sound absorption of a 

multi-layer sound absorber. 
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