
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Theses and Dissertations--Entomology Entomology 

2014 

Insecticide Resistance in the Bed Bug Insecticide Resistance in the Bed Bug 

Jennifer R. Gordon 
University of Kentucky, jgord13@gmail.com 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Gordon, Jennifer R., "Insecticide Resistance in the Bed Bug" (2014). Theses and Dissertations--
Entomology. 14. 
https://uknowledge.uky.edu/entomology_etds/14 

This Doctoral Dissertation is brought to you for free and open access by the Entomology at UKnowledge. It has been 
accepted for inclusion in Theses and Dissertations--Entomology by an authorized administrator of UKnowledge. For 
more information, please contact UKnowledge@lsv.uky.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/232565141?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/entomology_etds
https://uknowledge.uky.edu/entomology
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu


STUDENT AGREEMENT: STUDENT AGREEMENT: 

I represent that my thesis or dissertation and abstract are my original work. Proper attribution 

has been given to all outside sources. I understand that I am solely responsible for obtaining 

any needed copyright permissions. I have obtained needed written permission statement(s) 

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing 

electronic distribution (if such use is not permitted by the fair use doctrine) which will be 

submitted to UKnowledge as Additional File. 

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and 

royalty-free license to archive and make accessible my work in whole or in part in all forms of 

media, now or hereafter known. I agree that the document mentioned above may be made 

available immediately for worldwide access unless an embargo applies. 

I retain all other ownership rights to the copyright of my work. I also retain the right to use in 

future works (such as articles or books) all or part of my work. I understand that I am free to 

register the copyright to my work. 

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE 

The document mentioned above has been reviewed and accepted by the student’s advisor, on 

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of 

the program; we verify that this is the final, approved version of the student’s thesis including all 

changes required by the advisory committee. The undersigned agree to abide by the statements 

above. 

Jennifer R. Gordon, Student 

Dr. Kenneth F Haynes, Major Professor 

Dr. Charles W Fox, Director of Graduate Studies 



 

INSECTICIDE RESISTANCE IN THE BED BUG 

 

 

 

 

 

__________________________________ 

DISSERTATION 

__________________________________ 

 

 

 

A dissertation submitted in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy in the College of Agriculture, Food and Environment at the 

University of Kentucky 

By  

Jennifer R. Gordon 

Lexington, Kentucky  

Director: Dr. Kenneth F Haynes, Professor of Entomology 

Lexington, Kentucky  

Copyright © Jennifer R. Gordon 2014 

 

 

 

 



 

ABSTRACT OF DISSERTATION 

 

INSECTICIDE RESISTANCE IN THE BED BUG 

Populations of Cimex lectularius, the bed bug, have resurged around the world 

posing significant challenges for pest management professionals and causing physical, 

economic, and emotional strife.  Pyrethroid resistance has been found in the vast majority 

of populations making pest management more difficult.  The objectives of my 

dissertation research were to document the evolution of resistance to pyrethroid and 

neonicotinoid combination products (called combination products here) and to a 

neonicotinoid in the laboratory, to record potential fitness costs to resistance to the 

combination products, and to compare the efficacy of nine insecticides on six 

populations.  In the laboratory, populations of bed bugs evolve resistance rapidly to a 

combination product and that resistance translates into cross resistance to another 

combination product.  In a follow up experiment, resistance to a neonicotinoid occurred 

after three generations of selection.  Cross resistance between neonicotinoid and 

pyrethroid resistance was also found, likely due to a common detoxification mechanism 

(cytochrome P450 mediated metabolism).  Resistance was associated with life history 

costs in three populations that had been selected with a combination product. Therefore, 

in the absence of selection pressure, populations of bed bugs should revert towards 

increasing susceptibility.  Two pyrethroid products and three combination products were 

effective at killing three populations of bed bugs but were relatively ineffective against 

three other populations.  However, the combination product, Transport GHP®, the single 

action pyrrole product, Phantom SC®, and the single action desiccant, CimeXa®, killed 

95 to 100% of all populations investigated over a 14-day exposure.  Taken together, 

results reported in this dissertation suggest that insecticide resistance management may 

be a useful tool for extending the efficacy of insecticides for control of C. lectularius. 
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Chapter 1.  Introduction 

Bed bug biology 

Populations of the bed bug, Cimex lectularius, have reemerged globally during 

the 21st century after a nearly 50 year period of near absence in Canada, North America, 

Europe and Australia (Eddy and Jones 2011).  Before the decline in populations, much 

was known about this bug (Usinger 1966).  Bed bugs are dorso-ventrally flattened, 

brownish-red insects that belong to the order Hemiptera and the family Cimicidae 

(Usinger 1966).  The bugs are hemimetabolous consisting of three stages (egg, nymph 

and adult) and five instars (Usinger 1966).  Longevity can be greater than 12 months, and 

bed bug females can have high reproductive rates (Usinger 1966). Each instar requires a 

blood meal to further development, and adult bed bugs require blood meals for oogenesis 

and spermatogenesis (Usinger 1966, Reinhardt and Siva-Jothy 2007) making this bug an 

obligate parasite.  Ramifications of bed bug life history and infestations can be severe and 

directly impact people by causing physical and emotional distress, economic hardships 

and negative societal consequences. 

Impact of bed bugs 

The potential for disease transmission and the physical and emotional distress 

associated with living with populations of bed bugs cause this bug to be of significant 

importance to public health.  Bed bugs are not known to actively vector disease; however, 

passive transmission of mutli-drug resistant Staphylococcus aureus (MRSA) and 

Trypanasoma cruzi, the causative agent of Chagas disease, have been implicated in the 

laboratory (Shaw 2011; Salazar et al. 2014).   Human reactions to bed bugs bites vary 

ranging from no reaction to severe localized reactions and even death (Potter et al. 

2010a); however, death due to anaphylaxis is rare (Goddard and deShazo 2009).  Often, 
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the psychological problems attributed to living with an infestation of bed bugs can be just 

as serious as the threat to physical health.  One survey asked individuals with confirmed 

bed bug infestations what symptoms they attributed to these populations other than 

allergic responses to the bites, and the respondents cited insomnia and various other 

stresses (Potter et al. 2010).  Additionally, the emotional ramifications can be more 

severe and include delusional parasitosis and thoughts of suicide (Goddard and deShazo 

2009).   

Infestations of bed bugs can have severe economic and social impacts in the form 

of extermination costs, decreases in productivity, damage to brand names and lawsuits.  

The average cost to treat a bed bug infestation in a single family residence is ≥ $500 

(Potter et al. 2010) and to heat treat an apartment costs between $800-1200 (Stedfast and 

Miller 2014).  Taken as a whole, millions of dollars per year are spent trying to control 

this pest in private residences (Potter and Haynes 2014).  Similarly, the hospitality and 

agricultural industries spend millions of dollars on control due to the financial impact this 

pest has on the damage to brand names and product (Axtell 1999, Reinhardt and Siva-

Jothy 2007, Doggett et al. 2012).  In addition to costs incurred by the presence and 

control of this pest, millions of dollars are spent on bed bug litigation (Doggett et al. 

2012).  Finally, people with bed bugs in their homes often face social rejection and 

damaged reputations.  Given the adverse social, economic and health related issues 

associated with this pest, many tactics have been developed to control this pest. 

Classes of insecticides 

Chemical insecticides are the most common method used to control populations 

of C. lectularius (Potter et al. 2011).  In the past, wide spread use of DDT and other 
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chlorinated insecticides followed by the rotation to other highly effective classes 

(organophosphate, carbamate and pyrethroid) probably caused the decline in infestations 

(Potter 2011).  Many of these classes are no longer registered for use in most countries.  

Chlorinated hydrocarbon insecticides (CHC) contain at least one chlorine attached to a 

carbon and generally affect the central nervous system (O’Brien 1970).  These 

insecticides are known for their fast action against insects, high toxicity and long residual 

activity.  Some CHCs share a common target site with pyrethroids (sodium ion channels; 

O’Brien 1970), and selection for target site mediated resistance by one compound should 

result in cross resistance to the other.  Two of the other groups of insecticides used 

against bed bugs in the past (organophosphates and carbamates) inhibit acetylcholine 

esterase (AChE), an enzyme always present in the synapse that metabolizes the 

neurotransmitter acetylcholine, resulting in paralysis and death (O’Brien 1970).  High 

mammalian toxicity and long environmental persistence has led to the ban or limited use 

of most organophosphates, carbamates and CHCs (Costa 2006, Fishel 2014).   

Today, multiple classes of insecticides are registered for bed bug control globally 

(Wang and Wen 2011, Doggett 2013, Potter and Haynes 2014).  Currently, insecticidal 

formulations containing a pyrethroid are the most commonly used products against this 

pest (Wang and Wen 2011, Potter et al. 2012, Doggett 2013, Potter and Haynes 2014); 

however, other classes including the neonicotinoids, pyrroles, desiccant dusts, insect 

growth regulators, organophosphates, and carbamates are also used worldwide (Wang 

and Wen 2009, Romero et al. 2010, Doggett 2013, Goodman et al. 2013, Gordon et al. 

2014a, Potter et al. 2014).  Both pyrethroids and neonicotinoids are neurotoxins acting at 

different target sites on the neuron.  Pyrethroids kill by interfering with sodium ion 
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channels along the nerve axon (Soderlund and Bloomquist 1989); whereas neonicotinoids 

bind to nicotinic acetyl choline receptors on the postsynaptic membrane (Tomizawa and 

Cassida 2005).  Unlike pyrethroids, the use of neonicotinoids is restricted and limited to 

fewer countries (Wang and Wen 2009, Doggett 2013, Potter and Haynes 2014).  

Combination products utilizing both of these active ingredients are favored in the field 

(Potter et al. 2011), but the evolution of insecticide resistance in the field is a concern 

(Gordon et al. 2014a).   

Some other less commonly used insecticides include the pyrroles, desiccant dusts, 

insect growth regulators, carbamates and organophosphates.  The pyrroles act by 

interrupting the electron transport chain in the mitochondria of all cells (Romero et al. 

2010).  Research contained within this dissertation found that one product containing the 

pyrrole chlorfenapyr ultimately controlled 100% of populations challenged in the 

laboratory.  Desiccant dusts act by adhering to the insect cuticle and adsorbing lipids, 

which accelerates desiccation (Doggett et al. 2012).  Two examples of desiccant dusts are 

diatomaceous earth and amorphous silica gel; however, research from the field indicates 

that silica gel is the more effective product (Potter et al. 2014).  Insect growth regulators 

mimic insect hormones and disrupt normal biological functions by preventing eclosion 

and molting, however, the overall effectiveness of these products is debated (Moore and 

Miller 2009, Goodman et al. 2013).  Regardless of country, chemical control methods in 

general are favored by pest management technicians due to the ease of use and residual 

properties of many insecticides.  However, nonchemical control methods can sometimes 

be equally or more effective and are not regulated by government agencies. 
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Alternative control tactics 

Management of C. lectularius often requires many methods including early 

detection, mechanical removal and the use of heat and steam.  Early detection of small, 

localized infestations of bed bugs can be instrumental at effectively eliminating this pest, 

because locating and managing all members of a small population is easier compared to a 

large infestation.  To detect bed bugs, pest management professionals (PMPs) use traps 

and trained dogs.  Intercepting traps (often resembling pitfall traps) capture bed bugs as 

they move to and from the bed or around the floor.  They allow PMPs to detect bed bug 

presence and sometimes give information about the source location (Doggett et al. 2012, 

Wang et al. 2009a).  In addition to passive traps, active traps use chemical attractants, 

carbon dioxide and/or heat (Wang et al. 2009b).  Dogs trained to react to the smell of bed 

bugs have also been used to detect their presence (Pfiester et al. 2008).  Upon the 

discovery of an infestation, a significant proportion of the infestation can often be 

removed through mechanical means.  Homeowners can eliminate a portion of the 

population by entombing bed bugs with mattress encasements and creating a permanent 

barrier between the bugs and the person (Koganemaru and Miller 2013).  Similarly, 

vacuuming has been proven effective at removing bed bugs.  Unfortunately, people living 

with bed bugs can only mechanically remove bugs that can be found; however, 

eliminating an infestations requires the control of all members of a population, especially 

hidden individuals.  Heat and steam have been demonstrated to control populations and 

can frequently kill bugs that were not detected during the initial inspection (Potter et al. 

2008, Pereira et al. 2009, Potter et al. 2011 Doggett et al. 2012).     
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Insecticide resistance 

Insecticide resistance is a world-wide phenomenon that has been observed in 

hundreds of insect species of medical, urban and agricultural importance (Melander 1912, 

Forgash 1984, Hemmingway and Ranson 2000).  Any chemical that kills applies 

selection pressure, which together with genetic heterogeneity within the population, 

results in evolution that may translate into the loss of effectiveness of the insecticide.  In 

a naïve population, susceptibility is normally distributed with a small proportion of 

individuals dying at low concentrations and an equally low proportion of individuals 

surviving exposure to high concentrations of the same insecticide.  Individuals that 

survive an insecticide treatment are the progenitors for the next, more resistant 

generation.  Increasing levels of resistance with repeated applications reflect an 

increasing proportion of the population containing alleles conferring resistance.  This 

“treadmill” may continue until the insecticide fails to control the population, sometimes 

with several molecular mechanisms of resistance contributing to that result (Mamidala et 

al. 2011, Zhu et al. 2013). 

 Molecular mechanisms of insecticide resistance fall within three categories: 

reduced cuticular penetration, target site insensitivity and enhanced metabolism 

(Hemmingway and Ranson 2000, Mamidala et al. 2011).  Changes to the insect cuticle 

can decrease the rate of penetration into the hemocoel allowing the pest more time to 

detoxify or eliminate the insecticide.  One study investigated penetration of the 

pyrethroid deltamethrin into Helicoverpa armigera, the cotton boll worm, and found that 

the time required for a susceptible cuticle to absorb 50 % of the applied insecticide was 1 

h but the cuticle of a resistant strain took 6 h (Ahmad et al. 2006).  Similarly, Wood et al. 
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(2010) found that there was a positive correlation between cuticle thickness and the time 

for knockdown in resistant Anopheles funestus.  Whereas reduced cuticular penetration 

results in significant loss of susceptibility, more frequently, maximal resistance is 

associated with (co)expression of reduced target site sensitivity and/or enhanced 

metabolism.  

 Mutations of genes resulting in the production of altered target sites can convey a 

level of resistance if the new phenotype results in the insecticide’s inability to interact 

lethally.  As the target site of pyrethroids and DDT, point mutations that alter sensitivity 

of voltage gated sodium channels have been extensively studied and much is known 

about the mutations that cause knockdown resistance and super-knockdown resistance 

(kdr and super-kdr).  The phenomenon of kdr refers to a single point mutation and usually 

results when a switch from leucine to one of three different amino acids (phenylalanine, 

histidine or serine) occurs at the S6 hydrophobic segment of domain II of insect sodium 

ion channels (Williamson et. al. 1996, Park and Taylor 1997, Martinez-Torres et. al. 

1999); however, other novel point mutations can occur and result in a similar resistance 

(Yoon et al. 2008).  Super-kdr refers to the addition of a second point mutation in 

conjunction with the leucine switch (Guerrero et al. 1997).  Sodium ion channels are not 

the only target site that loses sensitivity due to point mutations.  A single point mutation 

of AChE can convey a high degree of resistance to both organophosphates and 

carbamates (Weill et. al 2004).  Fixation of target site mutations within a population can 

lead to the loss of entire classes of insecticides forcing stakeholders to utilize alternative 

classes.  However, selection favoring metabolic resistance can lead to the loss of multiple 

classes of insecticides.  
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Enhanced metabolism results from altered expression of one of three major 

classes of detoxifying enzymes: glutathione S-transferases (GST), P450 monooxygenases 

and esterases.  A change in enzymatic activity may be either qualitative or quantitative.  

A qualitative change in an enzyme results in expression of a mutant, detoxifying enzyme 

with a heightened affinity for an insecticide. For example, a mutant carboxylesterase in 

Culex tarsalis exhibited an increased ability to hydrolyze malathion (Ziegler et al. 1987). 

Similarly, a mutant GST could dechlorinate DDT in a resistant strain of the house fly, 

Musca domestica (Clark and Shamaan 1984).  Whereas qualitative changes in enzymes 

convey resistance, more commonly, quantitative changes in enzyme expression occurs.  

Overproduction of a wild-type, insecticide-detoxifying enzyme by either gene 

amplification or upregulation occurs for all three classes of detoxifying enzymes 

(Hemingway et al. 1998).  The enzymes often have slow catalytic rates but act as a sink 

and prevent the insecticide from interacting with the intended target site.  Devonshire and 

Moores (1982) showed that 3 % of the total proteins of Myzus persicae, the peach aphid, 

were esterases that conveyed cross-resistance to organophosphates, carbamates and 

pyrethroids.  The mechanism of enzymatic overproduction occurs through either gene 

amplification or modification of transcription factors (Devonshire and Moores 1982, Zhu 

et al. 2012).  In resistant Culex quinquefasciatus, Mouches et al. (1986) originally 

estimated that there were 250 copies of an esterase gene.  More commonly, however, 

over-expression of detoxifying enzymes occurs via upregulation of a gene coding for an 

enzyme through an alteration in the transcription of the gene (Hemingway and Ranson 

2000, Zhu et al. 2012).  Since the resurgence in populations of insecticide resistant bed 

bugs, much effort has been spent investigating the underlying molecular mechanisms. 
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Insecticide resistance in C. lectularius 

 Insecticide resistance in the bed bug involves multiple molecular mechanisms of 

resistance. Changes in the bed bug cuticle have been implicated in conveying a level of 

resistance in populations of bed bugs by delaying absorption and producing metabolizing 

enzymes in epidermal cells (Koganemaru et al. 2013, Zhu et al. 2013).  One study found 

genes associated with the bed bug cuticle were upregulated in resistant strains compared 

to susceptible, and that susceptibility to a pyrethroid was significantly increased when the 

mode of administration changed from topical application to injection (Koganemaru et al. 

2013).  Another study confirmed the upregulation of cuticular genes but also found that 

the epidermal cells of the cuticle were producing enzymes involved in actively 

metabolizing insecticides (Zhu et al. 2013).  The production of metabolizing enzymes via 

the cuticle is unique to the bed bug and has not been documented in any other insect.  

Similarly, decreased target site sensitivity has been recorded in resistant populations of C. 

lectularius.  Zhu et al. (2010) surveyed populations of bed bugs from across the United 

States for kdr mutations and found that 89% of all populations had at least one mutation. 

Insecticide detoxification has been implicated in many resistant populations of C. 

lectularius (Yoon et al. 2008, Romero et al. 2009, Adelman et al. 2011, Mamidala et al. 

2011, Zhu et al. 2012, 2013).  Of the three classes of enzymes generally involved in 

insecticide resistance, the esterase and cytochrome P450 classes are the most important.  

Recent studies have implicated at least two different esterases involved in detoxification 

of pyrethroids (Adelman et al. 2011, Zhu et al. 2013); however, esterase involvement is 

still unclear as one study could find no implication of this class’ involvement in 

insecticide resistance (Yoon et al. 2008).  On the contrary, the majority of studies 
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investigating the molecular mechanisms of pyrethroid resistance in populations of C. 

lectularius have obtained evidence to implicate P450s (Yoon et al. 2008, Romero et al. 

2009, Adelman et al. 2011, Bai et al. 2011, Zhu et al. 2012, 2013).   

Fitness costs due to insecticide resistance 

 Fitness costs due to insecticide resistance are manifested in physiological and 

behavioral traits.  Physiological fitness costs of insecticide resistance may be reflected in 

traits such as decreases in longevity, fecundity, body mass, and/or increases in 

development time (Carriere et al. 1994, Mebrahtu et al. 1997, Liu and Han 2006, Pereira 

et al. 2011, Martins et al. 2012, Kliot and Ghanim 2012, Otali et al. 2014).  Resistant 

populations of Aedes aegypti collected from Brazil and selected in the laboratory all 

experienced a decrease in female longevity and reduction in eggs laid (Martins et al. 

2012).  Behavioral costs have also been observed with insecticide resistance (Kliot and 

Ghanim 2012).  One study investigating M. persicae found that resistant aphids were less 

likely to leave senescing leaves and less able to respond to alarm pheromone compared to 

susceptible aphids, which could favor susceptible alleles in environments not containing 

insecticides if resistant aphids died from starvation or predation (Foster et al. 2003). The 

same study found that insecticide resistant house flies, M. domestica, were less able to 

respond to temperature gradients compared to susceptible, which could increase the risk 

of mortality to resistant individuals by being trapped in cold environments (Foster et al. 

2003).  Quantifying the tradeoffs between life history and insecticide resistance is only 

part of the story.  To understand the evolution of insecticide resistance, one must also 

understand the mechanisms of fitness costs as well (see Chapter 6).  
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Mechanisms of fitness costs 

Tradeoffs between life history and insecticide resistance can be driven by either 

an accumulation of antagonistically pleiotropic genes and/or a linkage disequilibrium 

between genes affecting the level of resistance and other fitness parameters.  Sometimes 

these genetic mechanisms manifest as a tradeoff between a finite amount of resources 

such as energy spent on body size verses longevity (Stearns 1989, Roff 2002).  

Antagonistic pleiotropy occurs when the same gene that influences insecticide resistance 

also negatively affects a separate life history parameter.  For instance, if the same gene 

that leads to an overproduction of a detoxifying enzyme also shunts resources away from 

egg production, this gene will be favored in an environment perturbed by insecticides; 

however, as soon as the perturbation is removed, the frequency of resistant individuals 

will decrease as more fecund, susceptible individuals are favored.  Boivin et al. (2004) 

observed a correlation between hastened diapause and insecticide resistance in temperate 

aphids and suggested that the fitness consequences of earlier diapause in resistant 

individuals could affect population susceptibility.  Similarly, the frequency of genes 

resulting in a tradeoff between resistance and life history parameters may be influenced 

by linkage disequilibrium.  If an insecticide resistance conveying gene has a tight genetic 

linkage with a separate gene negatively affecting a life history parameter, the second gene 

will have an equal likelihood of being passed onto the next generation in environments 

containing insecticides.  One study found that the location of two genes coding for two 

different detoxifying esterases were head to head on one amplicon and led the authors to 

infer that this linkage disequilibrium could be the cause for maintaining both genes in the 

population (Vaughan et al. 1997).  In M. persicae, there exists a linkage disequilibrium 
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between an esterase gene and an altered gene creating a mutant AChE (target site for the 

organophosphate class), and the authors hypothesize that the high frequency of resistant 

populations with multiple mechanisms of resistance is due to this linkage disequilibrium 

(Devonshire et al. 1998).   Either of these proximate mechanisms can ultimately result in 

an allocation tradeoff between life history parameters and the molecular mechanism of 

resistance (Roff 2002).  Proving a tradeoff exists due to reallocation of resources between 

a molecular mechanisms of resistance and life history traits is difficult.  However, the 

technique of RNA interference has the potential to allow research into this area to begin 

(see chapter 6).  Understanding the costs that exist in insecticide resistant populations 

compared to susceptible has important practical impactions for insecticide resistance 

management.   

Insecticide resistance management (IRM) 

Fitness costs associated with resistance allow for the management of insecticide 

resistance by favoring reversion toward susceptibility in the absence of the insecticide 

(assuming that resistant alleles have not been fixed; Brown et al. 2013).  The ability to 

preserve classes of insecticides allows for the continued control of pest populations over 

time; however, in order to manipulate these costs and utilize insecticide resistance 

management methods effectively, active profiling of the pest population must occur.  

Two major components of resistance management include surveying insecticide 

susceptibility of the target pest and exploring molecular mechanisms that underlie any 

observed resistance.  Surveying insecticide susceptibility allows PMPs to choose the most 

effective insecticide while avoiding those insecticides that would be ineffective (Bennett 

2003, Dang et al. 2014a).  Once an insecticide resistance profile of a population has been 
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established, an appropriate insecticide resistance management strategy can be 

implemented.  

Many different insecticide resistance management tactics exist such as stacking 

(combining insecticides with more than one mode of action) active ingredients, rotating 

between classes or utilizing a synergist in conjunction with the current insecticide (Croft 

1990, Bennett et al. 2003, Onstad 2008).  The concept of rotating between chemistries 

with different modes of action to manage chemical resistance has been proven in 

bacterial (Dortch et al. 2011) and insect systems (Zhao et al. 2010).   If a population of 

insects is resistant to pyrethroids, choosing insecticides with an alternative mode of 

action could favor a rapid reversion toward pyrethroid susceptibility assuming that there 

is a cost to maintaining such resistance.  Implementation of an insecticide rotation 

program alternating between an organophosphate and a pyrethroid reduced the levels of 

resistance in populations of Grapholita molesta, the oriental fruit moth, in apple orchards 

(Kanga et al. 2003).  An alternative insecticide resistance management strategy utilizes 

multiple classes of insecticides at one time with the idea that stacking insecticidal classes 

will prevent the evolution of resistance by creating a selection pressure that does not 

favor a single mechanism of resistance (Croft 1990, Bennett 2003, Onstad 2008).  If 

enhanced metabolism is the mechanism of resistance, inhibiting detoxifying enzymes 

may be another IRM option.  Insecticide synergists are compounds that inhibit insecticide 

metabolism and when used properly in conjunction with an insecticide, can greatly 

increase susceptibility of a resistant population. For example, the known P450 inhibitor 

piperonyl butoxide has been shown to synergize the toxicity of insecticides used to 

control urban pests such as cockroaches and bed bugs (Scott et al. 1990, Romero et al. 
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2009).  Cytochrome P450sare not the only class of enzymes that can be synergized. The 

synergist S, S, S-tributyl phosphorotrithioate (DEF) has been shown to synergize the 

efficacy of organophosphates and pyrethroids in multiple dipteran pests by inhibiting 

activity of detoxifying esterases (Qiao et al. 1998, Zhang et al. 2007). 

Goals and objectives 

 The goal of my research was to investigate different aspects of insecticide 

resistance in C. lectularius.  In Chapter 2, I investigated the evolutionary response of 

multiple populations of bed bugs with varying evolutionary histories (i.e., collected from 

the field or maintained within the lab for many years) to combination insecticidal 

products that contain both a pyrethroid and a neonicotinoid (Gordon et al. 2014a).  In 

Chapter 3, I investigated the evolutionary response of one population to selection by a 

neonicotinoid and the potential cross resistance between other classes.  In Chapter 4, I 

explored fitness costs associated with selection for resistance to Temprid SC® in the three 

populations from Chapter 2.  In Chapter 5, I documented susceptibility levels to nine 

commercial products containing one or two classes of insecticides (pyrethroid, 

neonicotinoid, pyrrole and desiccant dust) using six different populations of bed bugs.  In 

the final chapter, I discussed the implications of my research for the development and 

implementation of an insecticide resistance management strategy that will delay 

resistance and prolong effective control of pest populations of bed bugs.  I also discussed 

four new lines of research that could further help to characterize resistance and its 

consequences in the bed bug. 

Copyright © Jennifer R. Gordon 2014 
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Chapter 2. Population variation in and selection for resistance to pyrethroid-

neonicotinoid insecticides in the bed bug 

Introduction 

Bed bugs, Cimex lectularius, are hematophagous parasites that are resurging 

throughout the world (Doggett and Russell 2008, Mumcuoglu and Shalom 2010, Omudu 

and Kuse 2010, Potter et al. 2010, Bencheton et al. 2011, Kilpinen et al. 2011, Tawatsin 

et al. 2011).  These bugs became scarce during the second part of the twentieth century, 

likely because they were effectively controlled by DDT and other broad-spectrum 

insecticides. While infestations worldwide were declining, insecticide resistance was 

being reported (Busvine 1958, Mallis and Miller 1964). 

Insecticide resistance is a world-wide phenomenon that has been observed in 

hundreds of insect species of medical, urban and agricultural importance (Melander 1914, 

Forgash 1984, Hemmingway and Ranson 2000).  Recently, pyrethroid resistance has 

been found in populations of bed bugs (Romero et al. 2007, Steelman et al. 2008, Yoon et 

al. 2008, Mamidala et al. 2011, Zhu et al. 2010) and has been implicated as one of many 

factors in the current resurgence of these insects.  There are only a few classes of 

insecticides with different modes of action approved for use against bed bugs (Davies et 

al. 2010); thus, when pyrethroids fail, there are few options for rotation.  Two classes of 

insecticides now commonly used to control bed bugs are pyrethroids (interfering with 

sodium ion channels; Soderlund and Bloomquist 1989) and neonicotinoids (acting at 

nicotinic acetylcholine receptors; Tomizawa and Casida 2005).   

Recently, insecticidal products containing both a pyrethroid and a neonicotinoid 

have become available for bed bug control and are being widely used by pest 
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management professionals (Potter et al. 2012).  Two such products are Temprid SC® (β-

cyfluthrin and imidacloprid) and Transport GHP® (bifenthrin and acetamiprid).  

Preliminary testing of these products has been promising, but evolution of resistance is a 

concern, particularly given that resistance to the pyrethroid component is common.   

The purpose of this study was twofold.  First, to gauge susceptibility to current 

combination products, residual bioassays were conducted using ten populations of bed 

bugs.  Second, to determine the evolutionary response of three of these populations to a 

pyrethroid/neonicotinoid combination product, two hypotheses were tested: selection 

imposed by Temprid SC results in decreased susceptibility to this product that also 

translates into cross resistance (broadest sense) to Transport GHP (a second 

pyrethroid/neonicotinoid combination product); and both pyrethroid and neonicotinoid 

resistance are increased by selection with Temprid SC. 

Materials and Methods 

Insects.  Ten populations of bed bugs were used in this study (Table 2.4).  Insects 

were housed in incubators away from any insecticide exposure at 26.7° C, 65 ± 5% RH, 

and a photoperiod of 14:10 (L:D) h. All bed bugs were fed weekly on warmed 

defibrinated rabbit blood (Quad Five, Ryegate, MT) through a parafilm membrane 

(Montes et al. 2002).  

Population survey of susceptibility.  A residual bioassay (Romero et al. 2007) 

was used to survey susceptibility of 10 bed bug populations to Temprid SC (Bayer, 

Research Triangle Park, NC) and Transport GHP (FMC, Philadelphia, PA).  Individual 

wells of a 24-well cell culture plate (Costar, Corning, NY) were lined with filter paper 

disks (Whatman #2, cut to 1.7 cm diam.).  Label rate solutions (Temprid SC 0.075% a.i 
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and Transport GHP 0.11% a.i.) were made by diluting the concentrated insecticide in 

water. Next, 50 μL of each solution was pipetted onto filter papers fitted into individual 

wells, and then allowed to dry completely before bugs were placed on the surface.  

Mortality was scored after 1, 2, 3, 7 and 14 d continuous exposure to the treated filter 

papers.  Six groups of ten bugs (60 individuals; Table 2.4) were used for each strain of 

bed bugs and treatment (Temprid, Transport or water), with the exceptions of NY1, CIN1 

and FF1 (all strains and treatments utilized 120 bugs) and LEX7 and LEX8 experiments 

using Transport (n= 59; n=51 respectively).  Insects were classified as dead if they 

showed no movement or were unable to right themselves within 15 s of being inverted 

with soft forceps.  Abbott’s formula (Abbott 1925) was used to correct for control 

mortality.  

Selection experiment. A residual deposit bioassay was used to select three strains 

and determine susceptibility of offspring at strain specific exposure times calculated to 

cause 80 % mortality (ET80).  Filter paper disks (Whatman #2; 4.25 cm diam.) were 

treated with Temprid SC (0.075%). This insecticide was applied until the paper was 

uniformly wetted using a fine mist sprayer (ProChemical and Dye, Somerset, MA). A 

second series of disks were handled similarly but treated with water to serve as a control. 

Disks were allowed to dry overnight. Dry disks were placed into 6-well cell culture plates 

(Costar; Corning, NY) with the treated surface facing up.  Individuals of each strain were 

exposed for strain-specific exposure times (LA1 0.1 h, CIN1 1 h, NY1 19 h).  Because 

80% mortality was expected, large numbers of females and males from each strain were 

used to start selected lines (Table 2.1). After this exposure, bugs were removed from the 

treated surface and placed individually in wells of a 24-well plate lined with untreated 
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filter paper. Mortality was scored 24 h after removal from treated substrates. To serve as 

a control, a second group of 100 females and 40 males per strain and replicate were 

exposed for the same amount of time to filter papers saturated with water.  Two 

independent pairs of selected and unselected groups were created for each laboratory 

population (CIN1, LA1 and NY1).  After initial selection, F1 and F2 progeny were used 

for all subsequent experiments and received no further selection.  For both selected and 

unselected groups, survivors were removed after 24 h and placed in feeders (75 ml plastic 

jars with organza covered lids; Consolidated Plastics, Stow, OH) at a sex ratio of 5 

females to 2 males (to reduce detrimental effects on females caused by traumatic 

insemination).  Parental females were allowed to oviposit on blotter paper in the feeder.  

Adults were transferred to a new feeder weekly leaving a group of 0 to 7 day-old eggs 

behind.  

  Offspring were reared to the adult stage using the same methods described 

earlier (Montes et al. 2002).  These offspring were used in bioassays to measure 

susceptibility to Temprid SC and cross resistance to Transport GHP using the same 

residual assay as described above for selection with Temprid SC at the established ET80s. 

Susceptibility to β-cyfluthrin and imidacloprid. Adults from the F2 generation 

were used to evaluate susceptibility to imidacloprid and β-cyfluthrin (technical grade; 

99.5% purity, Chem Services), the active ingredients of Temprid SC.  Because numbers 

of bed bugs from the NY1 replicate two were adequate, the F1 generation was used.  

Topical bioassays were performed using doses ranging from 0.4 to 4000 ng/insect of 

either β-cyfluthrin or imidacloprid dissolved in acetone that was then applied to 

individual bed bugs with a repeating dispenser (Hamilton, Reno, NV).  An aliquot (0.5 
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μL) of a single insecticide dose was applied to the abdomens of equal numbers of males 

and females housed in individual wells of a 24-well plate.  For each dose, between 60 and 

180 individuals were used.  Bugs treated with acetone served as a control.  Mortality was 

observed at 24 h.  No control mortality was observed. 

Data analysis. Correlation analysis was used to examine the relationship between 

Temprid SC and Transport GHP susceptibility in the ten tested populations (Analytical 

Software 2003). The dependence of mortality on selection was explored using a log-

linear analysis with treatment (selected vs. unselected), mortality (dead vs. alive), and 

replicate as three dimensions of a contingency table (Sokal and Rohlf 1981).  Individual 

replicates from the selection experiment were analyzed using χ2 analysis (Analytical 

Software 2003).   Probit analysis was used for analysis of topical bioassays [AnalystSoft 

Inc. BioStat v2009 - Statistical analysis program. (2009)]. The hypotheses that test if 

strains are identical in terms of slope, intercept and LD50 were evaluated using Polo Plus 

software (Robertson et al 2003).  LD50 values are significantly different between 

unselected and selected lines if the 95% confidence interval for their ratio does not 

include the ratio of 1. 

Results 

 Population survey of susceptibility. Susceptibility to both Temprid SC and 

Transport GHP varied among populations of bed bugs (Figure 2.1).  CIN10, FF1, LEX5, 

LEX7, LEX8, and RO1 were less susceptible to both products than CIN1, FD, LA1, and 

NY1 (Figure 2.1; 1d-3d). After 1 d exposure to Temprid SC, RO1, LEX5, LEX7 and 

LEX8 were unaffected (0% mortality), and CIN10 and FF1 had less than 5 % mortality.  

This same exposure time resulted in intermediate mortality for two populations (CIN1 
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and NY1) and 100 % mortality for LA1 and FD.  However, exposure to Transport GHP 

resulted in three populations with initially high mortality (CIN1, FD and LA1), five 

populations with intermediate mortality (FF1, LEX5, LEX7, NY1 and RO1), and only 

two populations with 0 % mortality (CIN10 and LEX8).  The correlation between 

susceptibility of these populations to Temprid SC and Transport GHP was initially high 

at 1d (r=0.88) but progressively dropped to its lowest value at 14d (r=0.01).  The initially 

high correlation likely reflects the common mode of action of the active ingredients of the 

two products (both contain a pyrethroid and a neonicotinoid). The lack of correlation at14 

d was due to the convergence of all populations on 100% mortality with Transport GHP 

(all at 100% except LEX7 which had 96.5% mortality).  After 14 d exposure to Temprid 

SC, CIN1, FD, and LA1 had 100% mortality with NY1 at 97.5%. At this same time, five 

other populations showed intermediate levels of mortality (FF1 = 16.7%; RO1 =19.6%; 

LEX5 = 32.6%; CIN10 = 57.6%; LEX7 = 61.4%).  Survival of LEX8 was not affected by 

Temprid SC (no mortality after 14 days).   

The wide variation in susceptibility observed between populations could reflect 

independence of their evolutionary history of exposure to pyrethroids, neonicotinoids, or 

combinations of these active ingredients.  FD and LA1 are susceptible to pyrethroids 

(Romero et al. 2007).  FD is a strain that has been maintained without insecticide 

exposure since the early 1970s (Bartley and Harlan 1974).  CIN1 was found to be highly 

resistant to deltamethrin and λ-cyhalothrin (pyrethroids) when it was first established as a 

laboratory colony but subsequently has reverted toward susceptibility (now only 

moderately resistant; Zhu et al. 2013).   Synergist and RNAi studies indicate that CIN1 

has P450 mediated enhanced metabolism of pyrethroids (Romero et al. 2009; Zhu et al. 
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2010 and 2013).  The reversion toward susceptibility could be due to a fitness cost from 

metabolic insecticide detoxification (Kliot and Ghanim 2012).  NY1 also had an initially 

high level of resistance to pyrethroids (Zhu et al. 2010), which had declined somewhat 

before the current study (Zhu et al. 2013).    NY1 was initially resistant to deltamethrin 

via two kdr target site mutations (Zhu et al. 2010) and P450-mediated enhanced 

metabolism (Zhu et al. 2013).  All remaining populations were collected from the field 

after pyrethroid/neonicotinoid products became more widely used by the pest control 

industry for bed bugs. Thus their susceptibilities to these combination products could 

reflect a history of selection with either pyrethroids alone or in combination with 

neonicotinoids.  A single action neonicotinoid product was not widely used for bed bug 

management before this study was initiated. 

Selection experiment.  Because of initial population variation in susceptibility, 

we exposed CIN1, LA1, and NY1 for different times to Temprid SC to impose selection 

(kill approximately 80%; Figure 2.2). The actual mean mortality achieved by exposing 

CIN1, LA1, and NY1 for 1h, 0.1h, and 19h were 83.6 (s.e.m. ± 1.0), 81.7 (s.e.m. ± 0.5), 

82.4 (s.e.m. ± 3.9) % for females and 81.3 (s.e.m. ± 1.3), 85.2 (s.e.m. ± 3.8), and 93.5 

(s.e.m. ± 1.3) % for males, respectively (mean of two replicates, see Table 2.1).  We 

observed decreased susceptibility to Temprid SC within one generation in each strain. 

Mortality at the exposure time to the label rate material that causes an ET80 decreased 

significantly as a result of selection in CIN1 (G2= 146; df= 1; p< 0.001), LA1 (Figure 2.3; 

G2= 101; df= 1; p<0.001), and NY1 (G2=71; df=1; p< 0.001; Table 2.2).  When these 

populations were tested with an alternate combination product, Transport GHP (using the 

same ET80s for Temprid SC) mortality decreased as a response to selection imposed with 
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Temprid SC for CIN1 (G2=169; df=1; p<0.001) and LA1 (Figure 2.4; G2= 54; df=1; 

p<0.001; Table 2.2) indicating cross resistance between combination products utilizing 

alternate active ingredients.  Because there were insufficient numbers of bed bugs in the 

first offspring generation, NY1 was not evaluated for cross resistance between Temprid 

SC and Transport GHP. 

Susceptibility to β-Cyfluthrin and Imidacloprid.  The evolution that we 

observed as a result of selection with combination products could be due to changes in 

susceptibility to either insecticidal component or to both. Probit regression lines for all 

three selected strains compared to unselected strains were shifted to higher doses for β-

cyfluthrin but not for imidacloprid (Figure 2.5 and Figure 2.6).  All three populations 

showed a significant increase in the dose that kills 50% of the population (LD50) after 

selection compared to unselected strains for β-cyfluthrin (Table 2.3).  Susceptibility to 

imidacloprid only changed significantly in LA1 and NY1 (Table 2.3); however, LD50 

values were relatively unaffected especially compared to β-cyfluthrin. The contrast 

between selected and unselected lines for all three populations significantly departed 

from parallelism for β-cyfluthrin but remained unchanged for imidacloprid (Table 2.3).  

The departure from parallelism results in the convergence of regression lines for CIN1 

and NY1 and a divergence for LA1 at higher doses (Figure 2.5).  This result suggests that 

after selection with Temprid SC the distribution of susceptibility to β-cyfluthrin changed 

within all populations but not to imidacloprid and further indicates that selection occurs 

due to the pyrethroid but not the neonicotinoid.     

Discussion 

There are few effective classes of insecticides available today for bed bug 
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management, in part because the predominant use of pyrethroid-based products has led to 

selection for resistance in many populations of bed bugs (Potter et al. 2010 and 2011).  

Phantom® (chlorfenapyr), a pyrrole insecticide acting on oxidative phosphorylation rather 

than sodium channels of nerve cells, killed pyrethroid-resistant bed bugs (Romero et al. 

2010), but the relatively slow action of chlorfenapyr has prompted continued interest in 

alternatives.   Dual action products containing both pyrethroids and neonicotinoids are 

now favored by a majority of pest management professionals (Potter et al. 2013).  Given 

the prevalence of pyrethroid resistance in field populations, resistance to 

pyrethroid/neonicotinoid combination products is a concern, especially considering the 

diverse toxicological defenses inherent in this insect (Zhu et al. 2013).  All populations of 

bed bugs collected in the field during the last two years were less susceptible to a 

pyrethroid/neonicotinoid combination than our longer maintained laboratory colonies 

(Table 2.4).  This included one strain (LEX8) that showed no mortality after resting on 

freshly dried residues of Temprid SC for two weeks and three other populations with less 

than 50% mortality at that time.  In addition to a survey of susceptibility among 

laboratory populations, we also investigated the potential of three of our established 

populations to evolve resistance to combination products under laboratory conditions. 

 Three populations of bed bugs (CIN1, LA1, and NY1) responded to selection 

with Temprid SC within one generation.  This is the first laboratory documented case of 

decreased susceptibility as a result of selection to a pyrethroid/neonicotinoid product in 

bed bugs.  In the absence of insecticide exposure, CIN1 and NY1 had been evolving 

away from the high levels of pyrethroid resistance that were initially observed (Romero 

et al. 2007, Zhu et al. 2010 and 2013), perhaps indicating a tradeoff between insecticide 
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resistance and some unknown life history characteristics.  However, if genes for 

pyrethroid resistance were still common in these two populations, then selection could 

have a large effect quickly.        

Cross resistance between insecticides with the same mode of action is expected 

and can result in the loss of use of an entire class of insecticides (Hemmingway and 

Ranson 2000).  Here we show that cross resistance between two pyrethroid/neonicotinoid 

combination products with different active constituents occurs as would be expected 

since collectively these constituents target the same neuronal sites (i.e., pyrethroids target 

sodium channels on neurons and neonicotinoids target nicotinic acetylcholine receptors).  

In addition, cross resistance between pyrethroids and neonicotinoids has been 

documented in other insects (Liu and Yue 2000, Basit et al. 2011) and is likely due to 

shared mechanisms of detoxification.  For example, the cytochrome P450 class of 

enzymes is known to detoxify both pyrethroids and neonicotinoids (Scott 1999, Nauen 

and Denholm 2005).  However, our results indicate that the change in susceptibility to 

Temprid SC is largely effected by a change in pyrethroid susceptibility but not 

neonicotinoid susceptibility.   

Monitoring insecticide susceptibility and managing insecticide resistance are core 

principles of successful integrated pest management (Georghiou 1994, Bennett et al. 

2003, Onstad 2008).  The practicality of some of the principles developed in open 

agricultural systems are limited by zero tolerance for bed bug populations, lack of gene 

flow between susceptible and resistant populations, and limited number of available 

insecticides with different modes of action for rotation.  In contrast, the return to 

susceptibility that has been noted in laboratory-reared populations indicates that 



25 
 

resistance conferring genes may not be fixed within all populations of bed bugs. Selection 

of control tactics based on population specific resistance profiles could make bed bug 

management more effective.  Heterogeneous populations make it unlikely that one 

universally favored product will be an enduring solution. Prescription treatments would 

need to be implemented on a building by building basis, because within building genetic 

diversity is low (indicating a genetically restricted founding effect) and between building 

diversity is high even within a small geographic location (Booth et al. 2012). While not 

always economically feasible, use of alternative approaches such as whole building heat 

treatments or fumigation could be particularly helpful when insecticide resistance is 

indicated.  Employing multiple tactics (heat, cold, vacuuming, bed encasement, etc.) 

along with vigilance and early detection may be the best way to mitigate resistance within 

populations of bed bugs.   

Copyright © Jennifer R. Gordon 2014 
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Table 2.1.  Percentage mortality realized when each strain 

was exposed to dry residues of the label rate (0.075% A.I.) of 

Temprid SC for an exposure time targeting 80% mortality 

(ET80), and thus expected to impose strong selection 

Strain Replicate % Mortality a (number treated) 

  ♀b          ♂ 

LA1 Rep 1 82.2(370)       81.4(70) 

 Rep 2 81.2(410)        89.0(100) 

CIN1 Rep 1 

Rep2 

84.5(360)       82.5(120) 

82.6(390)       80.0(100) 

NY1 Rep 1 78.5(492)      92.2(180) 

 Rep 2 86.3(490)      94.8(210) 

a Groups of bugs were treated with the strain respective 

ET80 (LA1 0.1h, CIN1 1 h, NY1 19 h; Figure 2).   

b More females were exposed than males to achieve a sex 

ratio of 5:2 ♀:♂ to reduce the deleterious impact of excessive 

traumatic matings. 
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Table 2.2. Mortality of unselected and selected offspring to Temprid SC and 

Transport GHP using an exposure time estimated to kill 80% of the initial 

population prior to selection 

Insecticide Strain Treatment % Mortality 

(±s.e.m.)a 

nb G2 (df; p-value)c 

Temprid SC CIN1 Unselected 69.2 (± 9.2) 120 

146 (1, <0.001)* 

 CIN1 Selected 1.6 (± 0.0) 120 

 LA1 Unselected 96.7 (±1.7) 120 

101 (1, <0.001)* 

 LA1 Selected 40.9 (±4.2) 120 

 NY1 Unselected 70.0 (±5.0) 120 

71 (1; <0.001)* 

 NY1 Selected 18.3 (±10.0) 120 

Transport 

GHP 

CIN1 Unselected 85.0 (± 6.7) 120 

169 (1; 0.001)* 

 CIN1 Selected 10.2 (±1.9) 120 

 LA1 Unselected 100.0 (±0.0) 120 

54 (1; <0.001)* 

 LA1 Selected 71.7 (±10.0) 120 

 

*P≤0.05 

a Average percent mortality and standard error calculated from each 

replicate of selection.  Each laboratory colony was selected twice.  

 b Total individuals exposed to insecticide impregnated filter papers pooled 

between each replicate of selection. 

 c The dependence of mortality on selection was explored using a log-linear 
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analysis with treatment (selected vs. unselected), mortality (dead vs. alive), and 

replicate as three dimensions of a contingency table (Sokal and Rohlf 1981). 

Individual replicates were analyzed using χ2 analysis (Analytical Software 2003); 

Figures 2.3 and 2.4). 
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Table 2.3.  Probit analysis of topical exposure of F2 Temprid SC-selected and unselected lines to the active ingredients 

(A.I.), β-cyfluthrin and imidacloprid 

 

a Slope, dose that kills 50% of the population (LD50), and goodness-of-fit were calculated using BioStat 2009 

A.I. Strain Treatment n Slope 

(±s.e.m.)a 

LD50 ng 

(95% CI)a 

LD50 ratio 

(95% CI)b 

χ 2 (df)a 

β-cyfluthrin      Selected/ 

Unselected 

Goodness- 

of-fitc 

Parallelismd 

 CIN1 Unselected 480 0.27 ± 0.15 0.8 (0-403,148) 
51,458 (1,304-

20.3X105)* 

2.90(2) 

3.90(1)*   Selected 480 0.53 ± 0.10 41,518 (9,043-

1,147,076) 

1.24(2) 

 LA1 Unselected 478 1.39 ± 0.13 1.3 (1.0-1.7) 
23.8 (15.1-

37.4)* 

0.56(1) 
4.57(1)* 

  Selected 479 1.05 ± 0.20 30.5 (4.3-1,437) 2.74(2) 

 NY1 Unselected 660 0.55 ± 0.16 315.0 (17.8-5,562) 
15.9 (7.3-

34.5)* 

7.34(2)* 

          9.34(1)*   Selected 480 0.96 ± 0.12 5,005 (3,104-

9,956) 

2.27(1) 

Imidacloprid         

 CIN1 Unselected 480 1.04 ± 0.11 103.6 (70.1-169.2) 

0.7 (0.4-1.3) 

0.35(2) 

0.31(1) 
  Selected 480 0.96 ± 0.10 71.6 (48.3-115.8) 1.73(2) 

 LA1 Unselected 480 1.24 ± 0.11 8.0 (6.0-10.8) 

1.8 (1.1-2.8)* 

1.95(1) 

0.67(1) 
  Selected 480 1.11 ± 0.11 14.1 (10.2-20.4) 0.01(1) 

 NY1 Unselected 460 0.93 ± 0.12 45.3 (23.0-73.1) 

2.8 (1.5-5.3)* 

0.06 (1) 

0.43(1) 
  Selected 660 1.02 ± 0.19 126.2 (8.2-1,522)         4.81(2) 
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(AnalystSoft Inc. 2009). LD50 ratio and parallelism tests were performed using PoloPlus (Robertson et al. 2003).  

b LD50 values are significantly different between unselected and selected lines if 1 does not fall within the 95% 

confidence interval for the ratio test (Robertson et al. 2003). * P≤0.05 

 c Larger values of χ 2 for goodness-of-fit indicate a poorer fit on the probit regression line. * P≤0.05 

 d Parallelism challenges the hypothesis that the slopes are identical for selected and unselected lines (Robertson et al. 

2003). * P≤0.05 
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Table 2.4. Origins and resistance status of bed bug populations that were evaluated for 

their susceptibility to two pyrethroid/neonicotinoid combination products 

Name City Collection 

Date 

Pyrethroid Resistancea Temprid 

SC® (n)b 

Transport 

GHP® (n)c 

CIN1 Cincinnati, OH 2005 Initially highly resistant, 

now moderately resistant 

100 (120) 100 (120) 

CIN10 Cincinnati, OH 2012 Highly resistant 57.6 (60) 100 (60) 

FD Fort Dix, NJ <1974 Susceptible 100 (60) 100 (60) 

FF1 Frankfort, KY 2012 Unknown 16.7 (120) 100 (119) 

LA1 Los Angeles, CA 2007 Susceptible 100 (60) 100 (60) 

LEX5 Lexington, KY 2011 Unknown 32.6 (60) 100 (60) 

LEX7 Lexington, KY 2012 Highly resistant 61.4 (60) 96.5(59) 

LEX8 Lexington, KY 2012 Unknown 0.0 (60) 100 (51) 

NY1 New York, NY 2007 Initially highly resistant, 

now moderately resistant 

97.5 (120) 100 (120) 

RO1 Royal Oaks, MI 2012 Unknown 19.6 (60) 100 (60) 

 a Pyrethroid resistance categorization using a residual bioassay and discriminating 

dosage of deltamethrin (0.6%). Populations were considered susceptible if mortality was 

>95%, moderately resistant if mortality was <50%, and highly resistant if mortality was 

<5%.  

 b Percent mortality of adult bugs after 14 days of exposure to label rate Temprid. 

 c Percent mortality of adult bugs after 14 days of exposure to label rate Transport. 

 



 

32 

 

 

Figure 2.1 

 

Regression between proportion of bed bugs killed by residues of Temprid SC and 

Transport GHP for ten populations (1 corresponds with CIN1, 2 corresponds with CIN10, 

3 corresponds with FD, 4 corresponds with FF1, 5 corresponds with LA1, 6 corresponds 

with LEX5, 7 corresponds with LEX7, 8 corresponds with LEX8, 9 corresponds with 

NY1 and 10 corresponds with RO1) of bed bugs at 1 to 14d of exposure. Data shown 

were corrected for control mortality.  
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Figure 2.2

 

Susceptibility to Temprid between three strains of bugs.  Groups of 10 bugs were 

exposed to filter papers saturated with label rate Temprid for different exposure times 

then removed.  Mortality was scored after 24 h as the insect’s inability to right itself after 

15 s and converted to probit.  No control mortality was observed. 
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Figure 2.3 

 

Susceptibility to Temprid SC in selected and unselected lines from CIN1, LA1, and NY1.  

In the parental generation adult bed bugs were exposed to residues of Temprid SC for 

intervals expected to kill 80% at 24 h after exposure for selected lines. Unselected lines 

were treated in the same way but without insecticide exposure.  In each replicate of each 

strain there was a significant decrease (each χ2 analysis had 1 df) in offspring mortality 

from the same exposure as parents received (see text for log linear analysis). 
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Figure 2.4 

 

Susceptibility to Transport GHP in selected and unselected lines from CIN1 and LA1 

showing cross resistance to Temprid SC. In the parental generation, adult bed bugs were 

exposed to residues of Temprid SC for intervals expected to kill 80% at 24 h after 

exposure for selected lines. Unselected lines were treated in the same way but without 

insecticide exposure.  NY1 was not evaluated because of insufficient numbers of test 

insects.  In each replicate of both populations, there was a significant decrease (each χ2 

analysis had 1 df) in offspring mortality from Transport GHP exposure (see text for log 

linear analysis). 
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Figure 2.5 

 

Probit regression data for the relationship between dose of β-cyfluthrin and mortality at 

24 h for topical bioassays. Open diamonds and dotted lines represent unselected strains; 

whereas solid squares and solid lines represent selected strains.  
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Figure 2.6 

 

Probit regression data for the relationship between dose of imidacloprid and mortality at 

24 h for topical bioassays.  Open diamonds and dotted lines represent unselected strains; 

whereas solid squares and solid lines represent selected strains. 
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Chapter 3. Resistance and cross resistance to a neonicotinoid insecticide in the bed 

bug 

Introduction 

 Pyrethroid resistance in the bed bug, Cimex lectularius is common and 

widespread (Romero et al. 2007, Steelman et al. 2008, Yoon et al. 2008, Zhu et al. 2010, 

Mamidala et al. 2011). This resistance has prompted the pest management industry to 

switch to products with additional or new modes of action, such as neonicotinoids, 

pyrroles and desiccant dusts (Romero et al. 2010, Potter et al. 2012, Gordon et al. 2014a, 

Potter et al. 2014).  However, a more sustainable approach to bed bug control could 

include an effort to manage resistance before it is widely established by rotating between 

insecticides with alternate modes of action when pyrethroid resistance is encountered in 

the field (Bennett 2003, Onstad 2008).   

In the United States, two neurotoxic classes of insecticides currently registered for 

bed bug control are the pyrethroids and the neonicotinoids.  Pyrethroids kill by interfering 

with sodium ion channels along the nerve axon (Soderlund and Bloomquist 1989); 

whereas neonicotinoids bind to nicotinic acetyl choline receptors on the postsynaptic 

membrane of the neuron (Tomizawa and Cassida 2005).  A third class of insecticides 

registered for bed bug control includes the pyrroles, which act by interrupting the electron 

transport chain in the mitochondria of insects (Hollingworth and Gadelhak 1998, Romero 

et al. 2010), and thus it is expected to affect all cells in addition to nerve cells.  Currently, 

these three classes of insecticides are used in single action (commercial products 

containing only one active ingredients) and dual action (commercial products that utilize 

two classes in tandem) formulations.   



 

39 

 

 

Resistance to the neonicotinoid class of insecticides has been documented for 

multiple insects (Markussen and Kristensen et al. 2010, Basit et al. 2011, Wan et al. 

2013).  When the molecular mechanisms of neonicotinoid resistance have been 

investigated, target site mutations and changes in enzymatic detoxification have been 

implicated (Weill et. al 2004, Yoon et al. 2008, Markussen and Kristensen et al. 2010, 

Wan et al. 2013).  In the cases of enhanced metabolism, the cytochrome P450 class of 

enzymes has been implicated, in particular, the cyp6 family within this class (Wan et al. 

2013).   

The current study set out to investigate three related hypotheses.  First, a 

population’s resistance to a neonicotinoid (imidacloprid) will increase with selection with 

this insecticide.  Second, P450 mediated enhanced metabolism is the mechanism of the 

resultant neonicotinoid resistance.  Third, an increase in resistance to imidacloprid will 

result in a decrease in resistance to insecticides utilizing a different mode of action, i.e., 

negative cross resistance. 

Materials and Methods 

Insects.  One strain of bed bugs (CINTS) was used in this study.  The strain was 

originally collected from Cincinnati, OH in 2005 and was resistant to pyrethroids 

(Romero et al. 2007, it was referred to as CIN1 at that time).  However, after having been 

maintained in the laboratory for multiple years, this population had begun to revert back 

toward pyrethroid susceptibility, until it was selected in 2011 with the 

pyrethroid/neonicotinoid combination product Temprid SC®, resulting in increased 

pyrethroid resistance but not neonicotinoid resistance (Gordon et al. 2014a).  Insects were 

housed in incubators away from any insecticide exposure at 26.7° C, 65 ± 5% RH, and a 
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photoperiod of 14:10 (L:D) h. All bed bugs were fed weekly on defibrinated rabbit blood 

warmed to 39°C (Quad Five, Ryegate, MT) through a parafilm membrane (Montes et al. 

2002).  

Selection experiments. A topical bioassay was used to select for imidacloprid 

resistance in CINTS.  First, individual bugs were housed in single wells of a 24-well plate 

covered with parafilm and a plastic lid (the parafilm ensured that the lid would not easily 

fall off and that individual bed bugs could not leave their wells).  Second, a dose of 

insecticide calculated to kill 80% of the respective generation diluted in acetone (0.5 μL) 

was applied to the abdomens of individual bugs using a repeating dispenser (Hamilton, 

Reno, NV).  In addition, a group of bugs (100 females and 40 males) from the original 

starting population receiving no exposure to imidacloprid was treated with acetone to 

serve as a control.  Mortality was scored after 24 h (Table 3.1).  For both treated and 

untreated groups, survivors were removed after 24 h and placed in feeders (75 ml plastic 

jars with organza covered lids; Consolidated Plastics, Stow, OH) at a sex ratio of 5 

females to 2 males (to reduce detrimental effects on females caused by traumatic 

insemination) and immediately fed.  Parental females were allowed to oviposit on blotter 

paper in the feeder.  Adults were transferred to a new feeder weekly leaving a group of 0 

to 7 day-old eggs behind.  Offspring were reared to the adult stage using the same 

methods described earlier (Montes et al. 2002) and used in subsequent experiments.   

Selection occurred over the course of four generations and used two, 

nonsynchronous replicates; however, due to a lack of available bugs, only three 

generations (P, F2 and F3) were treated with imidacloprid (Figure 3.1).  Doses of 

imidacloprid used in selection ranged from 112 ng/insect to 3000 ng/insect, an amount 
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that was adjusted based on documented susceptibility.  Adult, bugs from the F4 

generation were used in all experiments. 

Susceptibility to imidacloprid and β-cyfluthrin. Adult bugs from the F4 

generation were used to evaluate susceptibility to imidacloprid and β-cyfluthrin (technical 

grade; 99.5% purity, Chem Services).  Topical bioassays were performed using doses 

ranging from 0.4 to 4000 ng/insect of either imidacloprid or β-cyfluthrin dissolved in 

acetone that was then applied to individual bed bugs.  An aliquot (0.5 μL) of a single 

insecticide dose was applied to the abdomens of equal numbers of males and females 

housed in individual wells of a 24-well plate.  For each dose, between 79 and 120 

individuals were used (Table 3.1).  Bugs treated with acetone served as a control.  The 

number of bugs alive was observed at 24 h.  Abbott’s (1925) formula was used to correct 

for control mortality which never reached 2 %. 

Susceptibility to chlorfenapyr (Phantom).  Unlike all other bioassays, a residual 

bioassay (Romero et al. 2007) was used to determine susceptibility to chlorfenapyr in the 

commercial formulation Phantom SC (BASF; Research Triangle Park, NC) using F4, 

adult bed bugs.  Individual wells of a 24-well cell culture plate (Costar, Corning, NY) 

were lined with filter paper disks (Whatman #2, cut to 1.7 cm diam.).  Label rate 

solutions were made by diluting the concentrated insecticide in water.  Fifty μL of each 

solution was pipetted onto the filter papers fitted into the wells, and then allowed to dry 

completely before bugs were placed on the surface.  Mortality was scored after 4, 24, 48, 

96, 192 and 336 h of continuous exposure to the treated filter papers.  Insects were 

classified as dead (including moribund) if they showed no movement or were unable to 

right themselves within 15 s of being inverted with soft forceps.   
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Synergism using PBO. Adults from the F4 generation were used to evaluate the 

potential synergistic effect of the known P450 synergist piperonyl butoxide (PBO; Casida 

1970) on imidacloprid susceptibility.  The same topical bioassay previously described 

was used to obtain LD50 values for imidacloprid using groups of bugs pretreated with 1 

µL of either 0.1 % PBO (1 µg/insect) dissolved into acetone or acetone alone.  These 

bugs were treated individually and housed in a 24-well plate where they remained for the 

duration of the experiment.  Once pretreated, bugs were allowed 1 hour before being 

treated with 0.5 µL of a dose of either imidacloprid or acetone. Doses of imidacloprid 

ranged from 0.4 to 4000 ng/insect dissolved in acetone.  For each dose, 80 individuals 

from each strain were used.  Bugs treated with acetone and acetone, PBO and acetone 

and acetone and imidacloprid served as controls.  Mortality was observed at 24 h.  No 

control mortality was observed for any control treatments except for the PBO+acetone 

combination, which never exceed 2 % and was corrected for using Abbott’s (1925) 

formula. 

Data analysis. Probit analysis was used for analysis of topical bioassays 

[AnalystSoft Inc. BioStat v2009 - Statistical analysis program. (2009)]. Tests comparing 

treatment differences in slope, intercept and LD50 were evaluated using Polo Plus 

software (Robertson et al 2003).  LD50 values are significantly different between 

unselected and selected lines if the 95% confidence interval for their ratio does not 

include the ratio of 1. 

Results 

 Susceptibility to imidacloprid and β-cyfluthrin.  For imidacloprid, the LD50 

increased from 15.2 to 344.0 ng/insect (Table 3.2) after three generations of selection 
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with this compound.  At this time, the resistance ratio  (LD50 selected/LD50 unselected) 

was 21.7, with 95% confidence intervals not including 1.0, i.e., a significant impact on 

resistance level (Table 3.2, Figure 3.2).  Additionally, the slope of the probit line for bugs 

selected with imidacloprid became steeper relative to those not selected suggesting that 

the population became more homogenous in regards to neonicotinoid susceptibility, an 

expected result as selection presumably removes those individuals that are most 

susceptible to imidacloprid.  The LD50 for β-cyfluthrin, an active ingredient that was not 

used in selection, was 16.7-fold greater in the selected strain than the control strains.  

However this level of resistance did not represent a significant change (95% CI for 

resistance ratio includes 1.0; Figure 3.3).  The slopes remained shallow and unchanged 

between selected and unselected strains in regards to susceptibility to β-cyfluthrin 

suggesting that both strains were heterogeneous for susceptibility to the pyrethroid 

regardless of selection with a neonicotinoid. 

 Susceptibility to chlorfenapyr (Phantom).  After three generations of selection 

with imidacloprid, the LT50 of Phantom remained unchanged with a resistance ratio of 

1.1 (Table 3.3, Figure 3.4).  The slopes of both selected and unselected strains were high 

compared to all other insecticides investigated suggesting that these populations are 

homogenous in regards to susceptibility with Phantom.  However, the high chi-square 

values of both probit lines suggests that the fit of the lines are poor due to a great amount 

of variance from the predicted model of the line.  

 Synergism using PBO.  Pretreatment with PBO caused a greater synergistic 

effect in the selected group compared to the unselected controls (Figure 3.5).  Groups of 

bed bugs that were selected with imidacloprid became 16.3-times more susceptible to 
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imidacloprid after exposure to PBO and were significantly different from selected bugs 

not pretreated with PBO as evidenced by the 95% confident interval of this ratio not 

overlapping with 1.  However, pretreatment with PBO depressed resistance 2-fold in 

unselected bugs (Table 3.4) but was not significantly different due to the 95% confidence 

intervals overlapping with the number 1.  Treatment with PBO made the slopes of both 

unselected and selected strains steeper, indicating that P450s may be involved in 

resistance as inhibition of this class of enzymes causes both populations to become more 

homogenous in regards to imidacloprid susceptibility. 

Discussion 

 Insecticides with neurotoxic modes of action are favored by pest management 

professionals for insect management due to the quick knockdown associated with these 

modes of actions.  Pyrethroid and neonicotinoid classes of insecticides are two of the 

neurotoxic classes currently available for managing populations of bed bugs in the United 

States.  Many commercial products utilize these two classes in different formulations 

(Potter et al. 2012).  Many pyrethroid-only products are on the market today (i.e: Suspend 

SC®, Demand SC® and Tempo SC®); whereas, just one neonicotinoid-only product is 

approved for bed bug control (Alpine® formulations).  However, the most used 

neurotoxic insecticides on the market for bed bug control are combination products that 

contain both a pyrethroid and a neonicotinoid (e.g.: Transport GHP®, Temprid SC® and 

Tandem SC®; Potter et al. 2012, Gordon et al. 2014a).  Given that resistance to one of the 

two classes within combination products is common, resistance to these dual action 

insecticides in the field is a concern.   

Previous work showed that populations of bed bugs evolve greater resistance to a 
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pyrethroid-neonicotinoid product in one generation in the laboratory (Gordon et al. 

2014a).  In this study, three generations of exposure to imidacloprid resulted in a 21-fold 

increase in LD50 when compared to the unselected strain.  The rapid development of 

resistance to a neonicotinoid in the laboratory has potential ramifications for the field, 

considering that the rate of evolution of resistance in the bed bug is relatively fast 

compared to other insects (May and Dobson 1986).  Given this information, pest 

management technicians should monitor insecticide susceptibility and may want to 

consider insecticide resistance management to prolong the use of effective insecticides. 

As mentioned above, previous research showed that three different populations of 

bed bugs with varied histories of pyrethroid resistance developed increased resistance to 

the dual action product Temprid SC in the laboratory after one exposure (Gordon et al. 

2014a).  Further investigation revealed that the observed resistance to the combination 

product was driven by the pyrethroid component but not the neonicotinoid.  In the current 

study, exposure to the neonicotinoid imidacloprid resulted in a significant decrease in 

susceptibility after three generations of selection.  Unfortunately, even though the 

observed cross resistance between the neonicotinoid and the pyrethroid was not 

significant, the increased LD50 to β-cyfluthrin after exposure to imidacloprid suggests that 

rotating between these two classes will likely not manage pyrethroid resistance in this 

bug.   

The documented neonicotinoid resistance and cross resistance to a pyrethroid is 

the first for a population of bed bugs.  Cross resistance between these two classes has 

been observed in other insects (Basit et al. 2011), and cytochrome P450s have been 

implicated as the causative mechanism (Liu and Yue 2000). Cytochrome P450 mediated 
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resistance to pyrethroids has been well documented in populations of bed bugs 

(Mamidala et al. 2011, Zhu et al. 2012, 2013); however, no mechanism of resistance has 

been investigated for neonicotinoid resistance in the bed bug before this study.  Results 

from the current study implicate P450-enhanced metabolism as one mechanism of 

resistance to imidacloprid and cross resistance to β-cyfluthrin.  The known P450 

synergist PBO increased susceptibility to imidacloprid by over 16-fold in the 

neonicotinoid selected strain.  However, more work needs to be done to investigate the 

involvement of P450s in resistance to neonicotinoids and cross resistance to pyrethroids.  

Work from other groups found that increased expression of different enzymes in the same 

(CYP6) family of cytochrome P450s is responsible for the detoxification of insecticides 

in both pyrethroid and neonicotinoid classes (Markussen and Kristensen 2010, Wan et al. 

2013, Zimmer et al. 2014), and thus, a P450 in that family of genes could be responsible 

for most of the observed resistance.   

 Classically, in situations where managing a pest becomes difficult due to chemical 

resistance, rotation between compounds having different modes of action and other 

chemical resistance management strategies (e.g.: stacking modes of action, adding 

synergists) can result in pest populations fluctuating between resistance and susceptibility 

to the two control methods.  The concept of rotating between chemistries with different 

modes of action to manage chemical resistance has been proven in bacterial (Dortch et al. 

2011) and insect systems (Zhao et al. 2010).  Work from this study suggests that rotation 

between pyrethroids and neonicotinoids is not likely to be effective, but rotations with 

other classes of insecticides should be investigated.  Multiple classes of insecticides are 

available for bed bug control (such as organophosphates, pyrroles and desiccant dusts) 
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and could be useful alternatives to traditional control using pyrethroids (Romero et al. 

2010, Potter et al. 2014).  Given that few classes of effective insecticides are available for 

bed bug control, managing insecticide resistance may be difficult, but nonetheless a 

critical component to all bed bug control programs. 

Copyright © Jennifer R. Gordon 2014 
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Table 3.1. Realized mortality after topical treatment of 

imidacloprid targeting 80% mortality (LD80), and thus 

expected to impose strong selection 

Generation Replicate % Mortality a (number treated) 

  ♀b          ♂ 

Parental Rep 1 81.2(500)       90.5(200) 

 Rep 2 93.5(500)       91.0(200) 

F2 Rep 1 65.2(460)       61.7(240) 

 Rep 2 67.2(321)       55.0(160)   

F3 Rep 1 78.5(400)       78.9(180) 

 Rep 2 82.9(310)       88.0(200) 

a Groups of bugs were initially treated with the an LD80 

(Gordon et al. 2014a).   

b More females were exposed than males to achieve a sex 

ratio of 5:2 ♀:♂ to reduce the deleterious impact of excessive 

traumatic matings. 
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Table 3. 2. Analysis of mortality of bed bugs from the F4 generation treated topically with either imidacloprid 

or β-cyfluthrin  

Selection Treatment Slope (±SE)a LD50 ng/insect (95% CI)a LD50 ratio (95% CI)b χ 2 (df)a 

    Selected/ 

Unselected 

Goodness-

of-fit 

Imidacloprid       

 Unselected 0.7 (±0.1) 15.2 (3.2-35.5) 

21.7(7.0-67.6)* 

1.1 (3) 

 Selected 1.1(±0.2) 344.0 (128.4-778.4) 3.0 (3) 

β-cyfluthrin      

 Unselected 0.4 (±0.1) 2.1X104 (6.5X104-

3.2X105) 

16.7(0.25-1132.4) 

3.8 (3) 

  

Selected 

 

0.4 (±0.1) 

 

3.5X105 (3.1X105-

3.0X109) 

 

1.0 (3) 

 a Slope, dose that kills 50% of the population (LD50), and goodness-of-fit were calculated using BioStat 

(AnalystSoft Inc. 2009).  

b LD50 ratio tests were performed using PoloPlus (Robertson et al. 2003).LD50 values are significantly 

different between unselected and selected lines if 1 does not fall within the 95% confidence interval for the ratio 

test (Robertson et al. 2003). *P≤0.05 
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Table 3.3. Analysis of exposure time to Phantom using imidacloprid selected and unselected bugs 

from the F4 generation 

Treatment Slope (±SE)a LD50 ng/insect (95% CI)a LD50 ratio (95% CI)b χ 2 (df)a 

   Selected/Unselected Goodness-of-fit 

Unselected 4.8 (±0.4) 92.9 (84.2-101.8) 

1.1(1.0-1.3) 

2.3X107 (4)* 

Selected 4.7 (±0.4) 104.3 (94.5-114.0) 6.2X107 (4)* 

a Slope, dose that kills 50% of the population (LD50), and goodness-of-fit were calculated using 

BioStat (AnalystSoft Inc. 2009). *P≤0.05 

b LD50 ratio and parallelism tests were performed using PoloPlus (Robertson et al. 2003). LD50 

values are significantly different between unselected and selected lines if 1 does not fall within the 95% 

confidence interval for the ratio test (Robertson et al. 2003). 
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Table 3.4. Analysis of mortality of imidacloprid after pretreatment with either piperonyl butoxide (PBO) or 

acetone using F4 imidacloprid-selected and unselected bed bugs  

Strain Treatment Slope (±SE)a LD50 ng/insect (95% CI)a Synergism ratio 

(95% CI)b 

χ 2 (df)a 

Unselected    Selected/ 

Unselected 

Goodness-of-fit 

 Imidacloprid 0.7 (±0.1) 15.2 (3.2-35.5) 

2.0 (0.7-6.0) 

1.1 (3) 

 Imidacloprid 

PBO 

2.2(±0.2) 8.0 (6.7-9.6) 1.8 (3) 

Selected      

 Imidacloprid 1.1(±0.2) 344.0 (128.4-778.4) 

16.3(11.2-23.8)* 

3.0 (3) 

 Imidacloprid 

PBO 

1.5(±0.2) 21.0 (10.3-47.0) 4.7 (3) 

 a Slope, dose that kills 50% of the population (LD50), and goodness-of-fit were calculated using BioStat  

(AnalystSoft Inc. 2009).  

b Synergism ratio tests were performed using PoloPlus (Robertson et al. 2003).  Synergism ratio compares 

LD50 values between pretreatments of either PBO or acetone.  Vales are significantly different between unselected 

and selected lines if 1 does not fall within the 95% confidence interval for the ratio test (Robertson et al. 2003). 

*P≤0.05 
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Figure 3.1 

 

Experimental design for selection experiment.  For each insecticide treatment, one dose 

of imidacloprid in solution with acetone calculated to kill 80% of the respective 

generation was topically applied to the abdomens of bed bugs.  The selection experiment 

was performed twice (two replicates).  Replicates were not synchronous and separated by 

weeks. 
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Figure 3.2

 

Probit regression data for the relationship between dose of imidacloprid and mortality at 

24 h for topical bioassays after three generations of selection. Open diamonds and dotted 

lines represent unselected strains; whereas solid squares and solid lines represent selected 

strains. 
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Figure 3.3 

 

Probit regression data for the relationship between dose of β-cyfluthrin and mortality at 

24 h for topical bioassays after three generations of selection. Open diamonds and dotted 

lines represent unselected strains; whereas solid squares and solid lines represent selected 

strains. 
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Figure 3.4 

 

Probit regression data for the relationship between exposure time to Phantom SC and 

time. Open diamonds and dotted lines represent unselected strains; whereas solid 

squares and solid lines represent selected strains. 
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Figure 3.5 

 

Synergistic effect of piperonyl butoxide (PBO) on susceptibility to imidacloprid. 
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Chapter 4. Life history tradeoffs associated with insecticide resistance in the bed 

bug 

Introduction 

 Adaptation to a new environmental stress is often associated with an alteration of 

one or more life history parameters (Stearns 1989, Roff 2002). Ultimately, these tradeoffs 

may be the result of a physiological constraint, such as shunting resources into survival in 

the new environment that can no longer be used for egg production or rapid development. 

More proximately, a genetic correlation between life history traits may explain the 

intergenerational response.  In the case of insecticide resistance, increased production of 

enzymes leading to insecticide detoxification or increased production of cuticular 

components that reduce penetration of the toxicant may have correlated effects on life 

history characters. Among various species, reduced longevity, delayed maturation and 

decreased egg production have been observed to accompany insecticide resistance 

(Carriere et al. 1994, Liu and Han 2006, Pereira et al. 2011, Kliot and Ghanim 2012, 

Martins et al. 2012, Otali et al. 2014).  The net result of the adaptations to insecticide 

exposure is enhanced fitness with insecticide perturbation but decreased fitness in an 

insecticide-free environment.   

Such tradeoffs open the possibility of insecticide resistance management by 

rotation between compounds with different modes of action (and hence different 

physiological costs) or to non-insecticidal control tactics. When there are tradeoffs 

associated with resistance in environments away from the insecticide, by removing the 

insecticide, the susceptible individuals should be favored, and the population should 

revert toward susceptible (Croft 1990, Bennett et al. 2003, Onstad 2008).  If no costs 
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existed for maintaining resistance, insecticide resistance management would not be 

effective (Brown et al. 2013).   

 In the past ten to fifteen years there has been a resurgence of pyrethroid resistant 

populations of Cimex lectularius, the bed bug (Romero et al. 2007, Steelman et al. 2008, 

Yoon et al. 2008, Mamidala et al. 2011).  Alleles for pyrethroid resistance are widespread 

in the United States, Australia and presumably elsewhere (Zhu et al. 2010, Dang et al. 

2014b).  Resistance to pyrethroid-only insecticides has prompted a shift by pest 

management professionals (PMPs) to commercial insecticide products containing both a 

pyrethroid and a neonicotinoid (Potter et al. 2012, Gordon et al. 2014a).  These two 

classes of insecticides act at different target sites on the insect neuron (Soderlund and 

Bloomquist 1989, Tomizawa and Cassida 2005).   

Our previous work investigating the evolutionary response of multiple 

populations of bed bugs to these combination products showed that resistance began to 

evolve in one generation in the laboratory (Gordon et al. 2014a).  This rapid evolution 

under laboratory conditions gave us an opportunity to explore the hypothesis that life 

history costs would be associated with decreased susceptibility to the combination 

insecticide.   

Material and Methods 

 Insects. Three strains of bed bugs were used for this study.  The LA1 strain was 

collected from Los Angeles in 2007 and was susceptible to pyrethroids (Romero et al. 

2007).  The strain CIN1 was originally collected from Cincinnati, OH in 2005 and was 

resistant to pyrethroids (Romero et al. 2007). Subsequently, its originally high level of 

pyrethroid resistance has declined but not to the level of the susceptible colony LA1 (Zhu 
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et al. 2013).  The NY1 strain was collected from New York City, NY in 2007 and was 

resistant to pyrethroids (Zhu et al. 2010).  However, a reversion toward susceptibility has 

also been recorded for this strain, though not to the degree of CIN1 (Zhu et al. 2013).  For 

each strain, two samples of bugs were selected overtime, and two separate lineages of 

selected and unselected strains were initiated for LA1, CIN1 and NY1 by exposing these 

strains to residual deposits of the pyrethroid/neonicotinoid combination product Temprid 

SC® for a time calculated to kill 80 % of the population (ET80) at the label rate (Gordon et 

al. 2014a).  Bugs from the F1 generation were used to evaluate susceptibility and establish 

an F2 generation (Figure 4.1).  Insects were housed in incubators away from any 

insecticide exposure at 26.7° C, 65 ± 5% RH, and a photoperiod of 14:10 (L:D) h. All 

bed bugs were fed weekly on defibrinated rabbit blood (Quad Five, Ryegate, MT) 

warmed to 39°C with a circulating water bath (Montes et al. 2002).  

 Insecticide bioassays.   Susceptibility to the combination product was followed 

through the F3 generation using the residual bioassay described by Gordon et al. (2014a) 

to ensure that the change in resistance recorded was evidence of an evolutionary response 

and not the result of a different mechanism (i.e., maternal effect).  Filter paper disks 

(Whatman #2; 4.25 cm diam.) were treated with Temprid SC at the labeled concentration 

(0.075% total active ingredients or 0.05% imidacloprid and 0.025% β-cyfluthrin). This 

insecticide was applied until the paper was uniformly wetted using a fine mist sprayer 

(ProChemical and Dye, Somerset, MA). A second series of disks were handled similarly 

but treated with water to serve as a control. Disks were allowed to dry overnight. Dry 

disks were placed into 6-well cell culture plates (Costar; Corning, NY) with the treated 

surface facing up.  Because of major differences between starting populations in 
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susceptibility to Temprid SC, groups of 10 bugs from each strain were exposed to 

previously determined, strain-specific exposure times calculated to kill 80% of the 

population (LA1 0.1 h, CIN1 1 h, NY1 19 h; Gordon et al. 2014a; Figure 4.2).  After this 

exposure, bugs were removed from the treated surface and placed individually in wells of 

a 24-well plate lined with untreated filter paper. Mortality was scored 24 h after removal 

from treated substrates.    

Life history variables. Life history data was collected for each strain and 

treatment.  A group of 20 eggs was gathered within a 24 hour period from three to 12 

females and maintained within a small petri dish (5.1 cm diameter) lined with black filter 

paper (Table 4.1).  These eggs were allowed to eclose and the resulting individuals were 

fed weekly for the duration of their lives.  Adult offspring were allowed to mate ad 

libitum.  The percentage of eggs hatching, the percentage of individuals reaching the 

adult stage, the number of eggs per female, the sex ratio at maturity, the duration of 

oviposition, and time course from egg to egg in the two generations was recorded weekly.  

In addition, this information was used to generate weekly survival (lx) and birth curves 

(mx). These observed values were used to calculate survival (lx; female specific longevity 

could not be calculated due to a lack of information about sex until eclosion to the adult 

stage) and birth rates, in this case oviposition rates (mx), and then net reproductive rate 

(Ro).  Because sex determination was only made during the adult stage, estimates of lx, 

mx, and Ro were based on the assumption of a 1:1 sex ratio of eggs laid by adult females.  

The F2 generation for each replicate was followed for up to 71 weeks when the last 

individual died.  Within strains, samples of replicates 1 and 2 were separated in time by 2 

to 4 weeks.   
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 Data analysis.  A general linear model was used to investigate the effects of 

strain, treatment and replicate within strain on the hatch rate of eggs laid by F1 mothers, 

the per cent of those eggs that reach adulthood, the mean reproductive rate assuming a 

1:1 sex ratio of eggs laid by F2 females, the number of eggs per female, the observed sex 

ratios and the mean oviposition duration (Systat Software 2008).  Net reproductive rate 

(Ro) was calculated as the sum of lx*mx for each weekly interval for each replicate with 

the assumption of a 1:1 sex ratio of eggs laid by F2 females.  

Results 

 Insecticide bioassays.  Susceptibility to Temprid SC remained relatively 

consistent through the F3 generation for both selected and unselected groups (Figure 4.2).  

In all strains, those lineages that had been selected by exposure to residues of Temprid 

SC in the parental generation remained more resistant in the F1, F2, and F3 generations 

than their counterparts not exposed to insecticide.   

 Life history variables.  Previous treatment with Temprid SC significantly 

affected some, but not all, measured parameters.  Longevity, percent hatch and percent 

reaching the adult stage were not affected by the history of selection (Figures 4.3, 4.4 and 

4.5).  The longest lived individual was a male from the NY1 selected line that lived for 

71 weeks.  Reproductive rate (Ro) decreased in all groups exposed to insecticide relative 

to their unselected counterparts and there was a significant effect of strain on this 

characteristic (Figure 4.6). The average number of eggs per female was less in all 

populations with a history of insecticide exposure in the laboratory compared to those not 

treated (Figure 4.7).   The sex ratio at maturity was biased towards females in unselected 

lines and biased towards males in selected lines (Figure 4.8). Additionally, the total time 
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of oviposition duration from the first egg laid to the last egg laid was significantly shorter 

for those groups exposed to insecticides compared to those not exposed (Figure 4.9). 

Discussion 

 Three different strains of bed bugs with different evolutionary histories incurred 

significant life history costs after selection with the pyrethroid/neonicotinoid combination 

product Temprid SC.  In all three strains, we recorded a decrease in fecundity, longevity, 

Ro, oviposition duration and percent of females in selected lineages relative to unselected 

lines. In general, the costs of resistance increased as the level of resistance increased (i.e., 

NY1> CIN1> LA1).  Additionally, there was a significant effect of strain on Ro 

suggesting that as resistance increased the strain’s Ro decreased.  Similar tradeoffs 

between insecticide resistance and life history parameters have been recorded in other 

insect pests as well (Carriere et al. 1994, Mebrahtu et al. 1997, Liu and Han 2006, Pereira 

et al. 2011, Martins et al. 2012, Kliot and Ghanim 2012, Otali et al. 2014).   

In this system, one possible mechanism of the observed costs could be a tradeoff 

between production of detoxifying enzymes and allocation of resources for fecundity.  A 

previously published study investigating the molecular mechanisms of resistance in the 

CIN1 selected strain found that four cytochrome P450s and one carboxylesterase was 

significantly over expressed compared to the CIN1 unselected line (Zhu et al. 2013).  

Whereas molecular mechanisms of resistance were not investigated for the LA1 and NY1 

selected strains, increased detoxification is likely at least one mechanism of resistance in 

the LA1 and NY1 selected strains as well.  Research investigating mechanisms of 

resistance in many populations of C. lectularius found that the P450 class of enzymes 

frequently confers a level of resistance to pyrethroid insecticides (Romero et al. 2009, 
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Adelman et al. 2011, Bai et al. 2011, Mamidala et al. 2012, Zhu et al. 2012 and 2013).  

Given this information, resources may be shunted from fecundity to the production of 

detoxifying enzymes.  Further experiments involving the use of RNA interference could 

be used to elucidate the molecular mechanism of the observed costs. 

A similar study investigating population growth potential of different strains of 

bed bugs with different insecticide susceptibility profiles also found that insecticide 

resistant strains had fitness costs compared to more susceptible strains (Polanco et al. 

2011).  However, the present study is the first time that fitness costs in multiple 

populations of C. lectularius can be attributed to the evolution of insecticide resistance.  

In the Polanco et al. (2011) study, three different strains of bed bugs with different 

evolutionary histories and susceptibility profiles were compared.   Thus, any observed 

costs could be due to the different origins of the populations and not necessarily 

insecticide resistance.  However, the significant effect treatment had on several life 

history parameters investigated in the current study suggests that previous exposure to 

residues of an insecticide resulted in decreased insecticide susceptibility and increased 

fitness costs away from the insecticide compared to the same populations never exposed 

to the insecticide.  Strain was also found to have a significant effect on Ro and eggs per 

female, which could be explained by different evolutionary histories or provide further 

evidence that insecticide resistance carries fitness costs (i.e., NY1> CIN1> LA1). 

The evolution of resistance in all three strains of bed bugs was rapid (Gordon et 

al. 2014a) especially relative to other insects (May and Dobson 1986); however, given 

that the Ro ratios of selected and unselected lines is 0.70, 0.42 and 0.57 for LA1, CIN1 

and NY1, respectively, a reversion to susceptibility should occur rapidly in environments 
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no longer containing insecticides.  To further investigate the idea of reversion, an 

estimate of the time course to 50 and 90% recovery of pre-insecticide selection levels of 

susceptibility was modeled (May and Dobson 1986) where 𝑇𝑟  denotes the time required 

to reach a significant degree of susceptibility, 𝑇𝑔 denotes generation time, 𝑝𝑓 denotes the 

proportion of the population required to be susceptible, 𝑝0 denotes the initial proportion 

susceptible, 𝑤𝑠 denotes the fitness of the susceptible and 𝑤𝑟  denotes the fitness of the 

resistant. 

𝑇𝑟 ≅ 𝑇𝑔[
ln (

𝑝𝑓

𝑝0
)

ln (
𝑤𝑠

𝑤𝑟
)

] 

Generation time was calculated by taking the summation of lx*mx*x divided by the 

summation of lx*mx (Price 1975), and the Ros for each treatment and strain were used for 

the fitness variables 𝑤𝑠 and 𝑤𝑟.  Results from the model found that the generations 

required for a strain to contain 50% susceptible individuals was 3.03, 4.88 and 0.71 for 

LA1, CIN1 and NY1, respectively.  Additionally, the same model predicted that the 

generations required for a strain to contain 90% susceptible individuals was 6.51, 5.95 

and 2.06 for LA1, CIN1 and NY1, respectively.  Actual results from monitoring 

susceptibility away from insecticidal exposure contradicted the predications of this model 

(Figure 4.2).  The disparity between the model’s predictions and actual results is likely 

because resistance in populations of bed bugs violates the assumption that resistance 

involves only one locus and two alleles (May and Dobson 1986).  Research investigating 

the molecular mechanisms of insecticide resistance in the bed bug supports this idea, 

because resistance in this pest is often polygenic (Zhu et al. 2010, Adelman et al. 2011, 

Bai et al. 2011, Mamidala et al. 2012, Zhu et al. 2013).  Alternatively, the model’s 



 

65 
 

predictions may have been incorrect, because the differences in fitness between selected 

and unselected individuals is an unknown (and perhaps unlikely) artifact of selection bias 

rather than a difference in insecticide susceptibility.   

Currently, the combination pyrethroid/neonicotinoid products are some of the 

most effective choices for control in the field (Potter et al. 2012).  In theory, rotation to 

products utilizing alternative modes of actions could stop or even reverse resistance 

(Carriere et al. 1994, Bennett et al. 2003 and Onstad 2008) assuming that alleles for 

pyrethroid susceptibility still exist in the population. For bed bugs, effective alternative 

insecticides for rotation might include chlorfenapyr, a disruptor of mitochondrial 

oxidative phosphorylation, and silica gel, a desiccant dust that efficiently removes 

cuticular waxes (Romero et al. 2010, Potter et al. 2014).  Integrated pest management 

utilizing a variety of non-pesticidal methods combined with rotation of chemistries will 

be vital for the continued management of C. lectularius. 

Copyright © Jennifer R. Gordon 2014 
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Table 4.1. Number of female bed bugs from the F1 

generation used to collect 20 eggs from each 

replicate and sample 

a Selected individuals were exposed to label 

rate Temprid SC for a time expected to kill 80 % of the 

populations (Gordon et al. 2014a).  

b Replicate refers to the asynchronous exposure 

of two different groups of each strain to Temprid SC. 

c Sample refers to the asynchronous collection 

of 20 eggs from each replicate, treatment and strain. 

 

Strain Treatmenta Replicate 1b Replicate 2 

  ac b a b 

LA1      

 Unselected 9 6 12 6 

 Selected 6 3 11 6 

CIN1      

 Unselected 7 9 12 6 

 Selected 11 9 11 7 

NY1      

 Unselected 9 9 9 6 

 Selected 9 10 8 7 
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Figure 4.1 

 

Experimental design for selection experiment.  Bugs were exposed to label rate Temprid 

SC® for a time calculated to kill 80% of the respective strain of bed bugs.  The selection 

experiment was performed twice (two replicates) per strain.  Replicates were not 

synchronous and separated by weeks. 
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Figure 4.2 

 

Mortality of all strains through the F3 generation.  Susceptibility of strains was evaluated 

by exposing groups of bugs to residual deposits of Temprid SC following the protocol of 

Gordon et al. (2014a). Individuals from each strain were exposed for strain-specific 

exposure times (LA1 0.1 h, CIN1 1 h, NY1 19 h) calculated to kill 80 per cent of the 

population (ET80).   Open diamonds and dotted lines represent unselected strains; 

whereas solid squares and solid lines represent selected strains. 
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Figure 4.3 

 

Survival (lx; left axis and curve) and oviposition rate (mx; right axis and histogram) over 

time for unselected and selected strains.  Grey represents the unselected strains, and black 

represents the selected strains.  Adult survival reached 50% at 31.1 (± 0.94), 31.6 (± 2.60) 

and 34.0 (± 3.30) weeks for the unselected LA1, CIN1 and NY1 strains, respectively, and 

at 32.5 (± 1.58), 30.6 (± 2.34) and 28.6 (± 2.77) weeks for the paired selected strains.  

The average time from the egg to adult molt was 10.8 (± 0.63), 10.0 (± 0.70), 10.3 (± 

0.25) weeks for the unselected LA1, CIN1 and NY1 strains, respectively, and 10.5 (± 

0.87), 9.3 (± 0.63), 10.3 (± 0.85) weeks for the paired selected strains (Figures 4.3, 4.4 

and 4.5).  Once oviposition began for a cohort of bugs, it was sustained for 11-34 weeks. 
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Figure 4.4 

 

 

Mean per cent hatch rate of eggs laid by F1 mothers.  For unselected LA1, CIN1 and 

NY1, the mean was 91.3 (± 2.4), 86.3 (± 8.0) and 96.3 (± 2.4), respectively, and for 

selected it was 93.8 (± 3.8), 83.8 (± 3.8) and 91.3 (± 4.3), respectively.  The table 

includes statistics describing the effects of treatment, strain and replicate within strain. 

 

Source of variation Sum of Squares d.f. Mean square  F-stat Significance 

Treatment 16.67 1 16.67 0.23  0.636 

Strain 358.33 2 179.17 2.50  0.112 

Replicate(strain) 300.00 3 100.00 1.39  0.279 
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Figure 4.5 

 

Source of variation Sum of Squares d.f. Mean square  F-stat Significance 

Treatment 1.04 1 1.04 0.01   0.925 

Strain 758.33 2 379.17 3.30  0.062 

Replicate(strain) 3,284.38  3 1,094.79 9.52 0.001 

 

Mean per cent of eggs that reached adulthood.  For unselected LA1, CIN1 and NY1, the 

mean was 86.3 (± 3.1), 78.8 (± 8.3) and 71.3 (± 13.1), respectively, and for selected it 

was 85.0 (± 3.5), 80.0 (± 4.6) and 72.5 (±12.3), respectively.  The table includes statistics 

describing the effects of treatment, strain and replicate within strain. 
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Figure 4.6 

 

Source of variation Sum of Squares d.f. Mean square  F-stat Significance 

Treatment 1,362.45 1 1,362.45 12.17  0.003 

Strain 2,078.11 2 1,039.05 9.28  0.002 

Replicate(strain) 821.55 3 273.85 2.45  0.099 

 

Mean reproductive rate.  For unselected LA1, CIN1 and NY1, the mean was 59.2 (± 5.2), 

52.6 (± 6.4) and 38.7 (± 5.6), respectively, and for selected it was 50.0 (± 6.5), 30.2 (± 

3.2) and 25.0 (± 7.7), respectively.  The table includes statistics describing the effects of 

treatment, strain and replicate within strain. 
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Figure 4.7

 

Source of variation Sum of Squares d.f. Mean square  F-stat Significance 

Treatment 17,463.62 1 17,463.62 15.41  0.001 

Strain 11,634.39 2 5,817.20 5.13  0.018 

Replicate(strain) 138.10 3 46.03 0.041 0.989 

 

Average number of eggs per female. For unselected LA1, CIN1 and NY1, the mean was 

165.8 (± 17.7), 154.0 (± 24.9) and 126.8 (± 11.6), respectively, and for selected it was 

134.2 (± 11.5), 84.9 (± 9.7) and 65.7 (± 13.9), respectively.  The table includes statistics 

describing the effects of treatment, strain and replicate within strain. 
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Figure 4.8 

 

Source of variation Sum of Squares d.f. Mean square  F-stat Significance 

Treatment 0.10 1 0.10 7.00  0.017 

Strain 0.00 2 0.00 0.01 0.982 

Replicate(strain) 0.03 3 0.01 0.74  0.542 

 

Proportion of adults that are female. For unselected LA1, CIN1 and NY1, the mean was 

58.0 (± 4.9), 58.2 (± 5.0) and 56.1 (± 3.2), respectively, and for selected it was 45.1 (± 

9.7), 42.6 (± 4.6) and 45.8 (± 7.3), respectively. The table includes statistics describing 

the effects of treatment, strain and replicate within strain. 
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Figure 4.9 

 

Source of variation Sum of Squares d.f. Mean square  F-stat Significance 

Treatment 416.67 1 416.67 9.08  0.008 

Strain 56.583 2 28.29 2.86  0.085 

Replicate(strain) 20.28 3 6.76 1.39  0.279 

 

Mean oviposition duration in week. For unselected LA1, CIN1 and NY1, the mean was 

27.3 (± 2.7), 27.3 (± 2.3) and 28.3 (± 4.5), respectively, and for selected it was 23.5 (± 

5.4), 19.3 (± 1.8) and 15.0 (± 2.2), respectively.  Oviposition duration was calculated by 

halving the difference of the last week of oviposition by the first week.  The table 

includes statistics describing the effects of treatment, strain and replicate within strain. 
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Chapter 5. Variation in susceptibility to commonly used insecticides among 

populations of bed bugs: Is there an opportunity for resistance management? 

Introduction 

 The recent global resurgence in populations of the bed bug, Cimex lectularius, has 

proven to be a difficult challenge for pest management professionals (Potter et al. 2010, 

2011 and 2013).  Bed bugs were nearly eliminated in North America, Europe and 

elsewhere after the discovery and widespread use of DDT and other chlorinated 

insecticides in the 1940s (Doggett et al. 2008, Kilpinen et al. 2011, Mumcuoglu and 

Shalom 2010, Omudu and Kuse 2010, Bencheton et al. 2011 and Tawatsin et al. 2011).  

The bugs’ resurgence is likely due to several factors, including the evolution of resistance 

to insecticides that target sodium ion channels, including pyrethroids and DDT (Romero 

et al. 2007, Steelman et al. 2008, Yoon et al 2008, Mamidala et al. 2011 and Zhu et al. 

2010).  Pyrethroid resistance has created a demand for insecticides with different modes 

of action, as well as alternative control tactics such as heat, mattress encasements, steam, 

and different classes of insecticides (Wang et al. 2009a, Romero et al. 2010, Potter et al. 

2011 & 2012, Gordon et al. 2014a).     

Integrated pest management (IPM) is an approach that has been used to 

successfully control many different pest species safely and effectively by utilizing 

multiple control tactics.  For many pest systems, a successful IPM strategy will utilize 

mechanical, cultural and chemical control methods to manage the pest and additional 

approaches to monitor or detect pest numbers (Croft 1990, Bennett et al. 2003, Onstad 

2008).  For bed bugs, this means using visual inspections, traps and canines for detection 

and mattress encasements, heat, steam, vacuums and other methods in conjunction with 
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insecticides (e.g., pyrethroids, neonicotinoids, pyrroles, desiccant dusts and essential oils) 

for control (Pfiester et al. 2008, Wang et al. 2009b & 2011, Potter et al 2011, Gordon et 

al. 2014, Potter et al. 2014).  In addition to multiple methods, a sustainable IPM program 

will monitor insecticide resistance and make insecticide recommendations based on the 

results (Bennett et al. 2003).  For bed bugs, no such resistance monitoring device exists, 

nor does it exist for other urban pests such as cockroaches. However, one research group 

recently showed the validity of this idea (Dang et al. 2014a), and our group is working 

with a commercial entity to bring such a diagnostic tool to market.  Although many pest 

management companies utilize IPM strategies, the industry as a whole still relies heavily 

on insecticides (Potter and Haynes 2014). 

 Currently, the industry standard for bed bug control is the use of residual 

insecticides containing a pyrethroid component.  In a recent survey conducted by the 

National Pest Management Association, eight out of the top 10 products used for bed bug 

control by pest management professionals contained a pyrethroid (Potter et al. 2013).  

However, some of these products are more effective than others (Moore and Miller 2006, 

Romero et al. 2007, Gordon et al. 2014a). 

 In the current study, we investigated the effectiveness of nine commercial 

insecticides on six populations of bed bugs.  Based on earlier work, we expected that 

susceptibility would vary among populations based on the history of insecticide exposure. 

Insecticide bioassays were used to investigate this hypothesis. 

  Materials and Methods 

Insects.  Six populations of bed bugs were used in this study (Table 5.1).  Insects 

were housed in incubators at 26.7° C, 65 ± 5% RH, and a photoperiod of 14:10 (L:D) h. 
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All bed bugs were fed weekly on defibrinated rabbit blood (Quad Five, Ryegate, MT) 

using the methods of Montes et al. (2002).  

Product Evaluations.  A residual bioassay (Romero et al. 2007) was used to 

determine susceptibility of six different populations of bed bugs to nine different 

commercial insecticides: Temprid SC (β-cyfluthrin/imidacloprid; Bayer; Research 

Triangle Park, NC), Suspend SC (deltamethrin; Bayer; Research Triangle Park, NC), 

Tempo SC (β-cyfluthrin; Bayer; Research Triangle Park, NC), Transport GHP and 

Mikron (bifenthrin/acetamiprid; FMC; Philadelphia, PA), Tandem SC (λ-

cyhalothrin/thiamethoxam Syngenta; Greensboro, NC), Alpine WSG (dinotefuran; 

BASF; Research Triangle Park, NC), Phantom SC (chlorfenapyr; BASF; Research 

Triangle Park, NC) and CimeXa (silica gel; Rockwell Labs; North Kansas City, MO).  

Individual wells of a 24-well cell culture plate (Costar, Corning, NY) were lined with 

filter paper disks (Whatman #2, cut to 1.7 cm diam.).  Label rate solutions (Table 5.2) 

were made by diluting the concentrated insecticides in water.  Fifty μL of each solution 

was pipetted onto the filter papers fitted into the wells, and then allowed to dry 

completely before bugs were placed on the surface.  Mortality was scored after 4 h, 1, 2, 

4, 8 and 14 d continuous exposure to the treated filter papers.  Insects were classified as 

dead (including moribund) if they showed no movement or were unable to right 

themselves within 15 s of being inverted with soft forceps.   

Data Analysis. Biostat 2009 was used to perform probit analysis that calculated 

the lethal time that kills 50 % of the population (LT50; AnalystSoft Inc. 2009).   Abbott’s 

(1925) formula was used to correct for control mortality for probit analysis.  Minitab was 

also used to perform a multiple comparison test for proportions to compare differences in 
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mortality among populations (Zar 1999).  Correlation analysis was performed using 

Statistix 10.0 (Analytical Software 2013) to investigate the relationship between different 

insecticidal product efficacies. 

Results and Discussion 

Product evaluations.   Insecticidal products can be divided somewhat arbitrarily 

into two groups based on speed of action: fast-acting or slow-acting.  Similarly, the 

relative effectiveness at killing entire populations can be divided into three categories: 

ultimately effective, moderately effective or ineffective.  CimeXa, a desiccant dust, was 

the only insecticide that was uniformly both fast-acting and ultimately effective. Phantom 

SC was slow-acting but ultimately effective.  The rate of effectiveness to Transport GHP 

ranged from slow-acting to fast-acting but was ultimately effective with variation among 

populations in shape of the mortality curves.  Suspend SC, Tempo SC, Temprid SC and 

Tandem SC were fast-acting when exposure resulted in any mortality.  Transport Mikron 

was slow-acting, and the efficacy ranged from ultimately effective to ineffective.  Alpine 

WSG was the only insecticide that was uniformly ineffective (Figure 5.1).  

Suspend SC. The LT50s for Suspend SC ranged from <4 hours to >336 hours 

(Table 5.3); however, an accurate LT50 could not be calculated for CIN10, FF1 or LEX6 

due to low mortality after 336 continuous hours of exposure (Figure 1 A).  A multiple 

comparisons test placed the six populations into three distinct groups [here we call them 

susceptible (LA1 and CO1), moderately resistant (LEX8) and resistant (CIN10, FF1 and 

LEX6)] after 24 hours of exposure (Table 5.4).  By 96 hours of exposure, the sequence of 

susceptibilities of the populations was similar (Table 5.5).   

 Tempo SC.  An accurate LT50 could only be calculated for one population due to 
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extremely high initial mortality after 4 hours or no mortality after 336 h (Table 5.3).  The 

Tukey-like test for comparison of multiple proportions created the same three groups of 

susceptibility delineated from susceptibility to Suspend SC (CO1 = LA1 > LEX8 > 

CIN10 = FF1 = LEX6; Tables 5.4 and 5.5).  Tempo SC has the same pyrethroid 

component as Temprid SC (ß-cyfluthrin); however, Tempo SC was more effective than 

Temprid SC against LA1 despite Temprid SC containing an additional active ingredient 

(neonicotinoid; Figure 5.1 B).   

Alpine WSG. Susceptibility of all strains to Alpine WSG was unique compared to 

all other products investigated (Figure 5.1 C).  An LT50 could not be calculated for any 

population due to insufficient mortality after 336 h of exposure (Table 5.3).  Populations 

did not vary in susceptibility to Alpine WSG after 24 h of exposure (Table 5.4).  

Mortality at 336 h was never greater than 41.7 %. 

Temprid SC.  Susceptibility to Temprid SC closely resembled that of Tempo SC, 

Suspend SC and Tandem SC (Figure 5.1 D).  An accurate LT50 could only be calculated 

for LEX8 (Table 5.3).  The Tukey-like test for comparison of multiple proportions 

grouped populations into three categories of susceptibility that did not vary between 24 h 

and 96 h of exposure (CO1 = LA1 > LEX8 > CIN10 = FF1 = LEX6; Tables 5.4 and 5.5).  

Interestingly, Temprid SC was only one of three commercial insecticides that did not 

cause 100% mortality of LA1 after 336 h of continuous exposure.   

Tandem SC. As for all products containing a pyrethroid (with the exception of 

Transport GHP), LT50s could not be calculated for the majority of populations due the 

rate of efficacy being either faster than 24 h or slower than 14 d (Table 5.3). Tandem SC 

was initially fast acting against LEX8 (4 h = 43.3%) but only moderately effective 
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(Figure 5.1 E).  In contrast, Tandem SC was slow-acting but ultimately effective against 

CO1.  Statistical analyses initially divided populations into two groups after 24 h of 

exposure (Table 5.4); however, after 96 h of exposure, three groups emerged that 

followed the pattern observed for Suspend SC, Temprid SC and Tempo SC (CO1 = LA1 

> LEX8 > CIN10 = FF1 = LEX6; Table 5.5). 

 Transport GHP.  Transport GHP was one of only three insecticides that was 

ultimately effective for all populations (Figure 5.1 F).  The LT50s of populations for 

Transport GHP ranged from <4 h to 99.2 h (Table 5.3).  Analysis of mortality after 24 h 

show two groups of susceptibility (Table 5.4), but after 96 h, populations could be 

divided into three groups of susceptibility with LEX6 and LEX8 being intermediate 

between the two extreme groups (Table 5.5).   

 Transport Mikron.  Transport Mikron was the least effective product out of all 

insecticides containing a pyrethroid investigated (Figure 5.1 G), and exposure to residual 

deposits was ultimately effective for only one population (CO1).  The LT50s for this 

insecticide ranged from <4 h to >336 h and could only be accurately calculated for CO1 

and LEX8 (Table 5.3).  Even though Transport Mikron was initially fast-acting against 

LA1, it was only moderately effective (Figure 5.1 G).  The Tukey-like test for 

comparison of multiple proportions divided populations into two distinct groups.  

Initially, CO1 was intermediate between the extremes (Table 5.4), but after 96 h of 

exposure, CO1 fell solely into the most susceptible group (Table 5.5). Because Transport 

Mikron and Transport GHP share the same active ingredients at the same label rate, the 

consistently elevated mortality stimulated by GHP suggests that bioavailability is 

enhanced in this product, possibly due to differences in formulation (Gordon et al. 
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2014b).  At 96 h (Table 5.5), mortalities were 20.7 to 67.9% higher with GHP among the 

populations tested.  

 Phantom SC. Phantom SC was slow-acting and ultimately effective; however, one 

population still had 4.8% survival after 336 h of continuous exposure (Figure 5.1 H).  The 

LT50 values ranged from 48.3- 172.5 h (Table 5.3).   The LEX8 strain of bed bugs 

achieved 100.0 % mortality after 8 days of exposure; whereas the pyrethroid-susceptible 

strain of bugs (CO1) had the lowest mortality of all populations after the same duration of 

exposure (8 days = 45.5 %).   There were differences among populations at 24 and 96 h 

that disappeared after 336 h. (Tables 5.4 and 5.5).   

 CimeXa.  CimeXa was fast-acting and ultimately effective for all populations 

investigated (Figure 5.1 I).  The LT50 values for all populations fell within the range of 4-

24 h (Table 5.3).  All populations fell into one category based on susceptibility (Tables 

5.4) and did not change over time (Table 5.5). 

 Correlation analysis.  A correlation analysis clarifies the similarity and contrasts 

of mortalities among insecticides, and may provide guidance for the selection of 

alternative insecticides when resistance to one is suspected (Table 5.6).  High correlation 

values indicate that the insecticide pair stimulated similar levels of mortality within 

populations.  For example, the high correlation coefficient found between Suspend SC 

and Tempo SC (r = 0.99) occurred, because both products are effective against the same 

populations (CO1, LA1), moderately effective against LEX8 and less effective against a 

different set of populations (CIN10, FF1, LEX6). If Suspend SC was ineffective against a 

certain population, it would be most reasonable to switch to an insecticide that is weakly 

or negatively correlated with Suspend SC (e.g., Phantom SC or CimeXa; CimeXa is not 
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shown in Table 5.6, because the insecticide has no correlation with any insecticide due to 

its uniform effectiveness against populations).  Before a pest management technician 

would choose an insecticide for an account, one would need to rely on information from 

the correlation matrix and information from the 96 h (Table 5.5) mortality table to make a 

choice for an alternate insecticide, because low correlations can result from an insecticide 

being uniformly ineffective.   

The high correlations between pyrethroid (Suspend SC and Tempo SC) and 

neonicotinoid/pyrethroid combinations (Temprid, Tandem, Transport) suggest that the 

addition of the neonicotinoid does not lead to independence of action from the 

pyrethroid-only products.  This supposition is further strengthened by the fact that Alpine 

WSG, the only single action, neonicotinoid based commercial insecticide available for 

bed bug control, was consistently ineffective.   

General discussion.  Over the last 15 years, there has been a global resurgence in 

populations of C. lectularius (Doggett et al. 2008, Potter et al. 2010, Kilpinen et al. 2011, 

Mumcuoglu and Shalom 2010, Omudu and Kuse 2010, Bencheton et al. 2011 and 

Tawatsin et al. 2011) and these new populations are challenging pest management firms 

by being difficult to control.  In two recent surveys conducted by the National Pest 

Management Association asking, “What is the most difficult insect to control?” pest 

managers overwhelming responded “bed bugs” each time (Potter et al. 2011 and 2013).  

Factors contributing to the difficulty with control are numerous and include insecticide 

resistance, difficulties in locating pest harborage sites due to excess clutter and the bug’s 

cryptic nature, and the unique attributes of bed bug dispersal and establishment (passive 

dispersal resulting in few establishing members). 
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 Most bed bug infestations in the field are genetically unique due to the extreme 

genetic bottle neck populations must go through before establishing (Booth et al. 2012).  

One study found that the majority of infestations are started with just one or two founding 

females mated by males closely related to her (Booth et al. 2012).  Due to the relatively 

few establishing members and limited genetics, each successful population of bed bugs 

has extreme founder effects.  Similar studies have shown that the gene flow between 

populations is also limited as characterized by high genetic diversity between populations 

(Booth et al. 2012, Saenz et al. 2012, and Fountain et al. 2014).  As a result, any 

population of bed bugs encountered by a pest control operator (PCO) may require a 

unique control strategy tailored specifically to the individual infestation (i.e., the use of 

specific insecticides, alone or in conjunction with non-insecticidal management practices 

such as mattress encasements, steaming, heat, etc.).  

 Results from this study confirm that a single population of bed bugs can react 

differently to commercial insecticidal products containing similar active ingredients.  

Some of the observed differences in susceptibility could be attributed to formulation.  

Each commercial product will contain a unique blend of inert ingredients, synergists and 

active ingredients that may result in varied bioavailability to the bug.  Recently, one study 

found that even though Transport Mikron and GHP contain the same ratio and 

concentration of active ingredients, the difference in formulation may affect the 

effectiveness (Gordon et al. 2014b).  In addition to formulation, the physiology of the bed 

bug (i.e., up-regulation of enzymes, altered target sites and changes in the cuticle) may 

alter the effectiveness of an insecticide (Romero et al. 2007, Steelman et al. 2008, Yoon 

et al 2008, Mamidala et al. 2011 and Zhu et al. 2010).  Considering that populations of C. 
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lectularius have differing susceptibilities to insecticides, pest managers would benefit 

from knowing which products perform best against each population encountered.    

An approach to prescreen bed bugs using various insecticides from an infested 

dwelling would enable a PCO to prescribe the most appropriate treatment for the specific 

population.  Prior to treatment, pest control personnel typically inspect the premises 

looking for signs and locations of bed bugs.  If the practitioner had a resistance 

monitoring ‘kit’ at this time, he could collect a sample of bed bugs from the infested 

dwelling and place them on insecticide pretreated surfaces prior to performing treatment.  

Bed bug treatments often need to be scheduled following the initial inspection, allowing 

the PMP enough time to assay bugs and make decisions based on predicted mortalities 

with candidate insecticides (Table 5.3).  Utilizing this approach would help practitioners 

choose the most effective and efficient insecticides and eliminate the infestation as 

quickly as possible using lesser amounts of material.    

 Monitoring insecticide resistance is the first step in an effective insecticide 

resistance management plan for controlling populations of bed bugs.  The use of such a 

device would be unique for urban pest management; however, this idea is not unique for 

other pest systems.  The World Health Organization maintains a website, supplies 

pretreated bottles and gives recommendations about how to evaluate insecticide 

resistance in mosquitoes in order to make educated recommendations for abatement 

(Brogdon and McAllister 1998, Perea et al. 2009).  Utilizing a susceptibility monitoring 

system refined for use with bed bugs would facilitate selection of products and practices 

and aid in effective and responsible control of this pest. 

Copyright © Jennifer R. Gordon 2014 
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Table 5.1. Origins of bed bug populations 

that were evaluated for their 

susceptibility to commercial insecticide 

products 

Strain Origina Yearb 

CIN10 Cincinnati, OH 2012 

CO1c Collinsville, MS 2013 

FF1 Frankfort, KY 2012 

LA1 Los Angeles, CA 2007 

LEX6 Lexington, KY 2012 

LEX8 Lexington, KY 2012 

a City from which the collection originated. 

b The year the strain began culture in the lab. 

c This population was collected from a 

chicken coop.  All others populations were from 

human dwellings. 
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Table 5.2. Commercial insecticides used in this study 

Producta Classb Active ingredient(s) % A.I.c 

Suspend SC Pyrethroid deltamethrin 0.06 

Tempo SC Pyrethroid β-cyfluthrin 0.05 

Alpine WSG Neonicotinoid dinotefuran 0.3 

Temprid SC Pyrethroid/Neonicotinoid β-cyfluthrin/imidacloprid 0.025/0.05 

Tandem SC Pyrethroid/Neonicotinoid λ-cyhalothrin/thiamethoxam 0.03/0.10 

Transport GHP Pyrethroid/Neonicotinoid bifenthrin/acetamiprid 0.06/0.05 

Transport 

Mikron 

Pyrethroid/Neonicotinoid bifenthrin/acetamiprid 0.06/0.05 

Phantom Pyrrole chlorfenapyr 0.5 

CimeXa Desiccant dust silica gel 100 

a Trade name of insecticide registered for bed bug control.   

b The insecticidal class(es) of active ingredients in commercial product 

c The per cent of active ingredient of label rate material. 
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Table 5.3. Lethal time to kill 50 % of each population of bed bugs for nine commercial insecticides 
 

a LT50 values were calculated using Biostat 2009 (AnalystSoft, Inc. 2009) and could not be calculated for populations 

with mortality greater than 90% after 4 h (denoted as <4) or less than 10% mortality after 336 h (denoted as >336). 

Strain Suspend Tempo Alpine Temprid Tandem Transport 

GHP 

Transport 

Mikron 

Phantom CimeXa 

CIN10 > 336a > 336 > 336 > 336 > 336 49.2 

(0.0-123.2) 

> 336 57.4 

(34.0-88.3) 

4-24 

CO1 6.4  

(5.4-7.6) 

< 4 

 

> 336 < 4 

 

14.0  

(11.7-16.4) 

< 4 

 

50.3 

(35.9-66.7) 

172.5 

(106.9-273.4) 

4-24 

FF1 > 336 > 336 > 336 > 336 > 336 99.2  

(67.4-136.1) 

> 336 156.5 

(47.5-515.8) 

4-24 

LA1 < 4 

 

< 4 

 

> 336 < 4 

 

< 4 

 

< 4 

 

< 4 

 

120.3 

(110.6-130.7) 

4-24 

LEX6 > 336 > 336 > 336 > 336 > 336 61.2  

(33.5-84.1) 

> 336 168.9 

(157.5-180.7) 

4-24 

LEX8 23.2  

(15.9-31.5) 

36.4  

(23.0-53.8) 

> 336 42.0  

(23.0-70.5) 

11.3  

(5.8-17.9) 

15.0  

(7.6-23.9) 

151.3 

(72.5-642.4) 

48.3 

(44.3-52.5) 

4-24 
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Table 5.4. Mortality after 24 hours of exposure to residual deposits of nine commercial insecticides commonly 

used for bed bug control 

 

 

 

 

 

 

 

a Control mortality never exceeded 5.0 %, thus, Abbott’s (1925) formula was never used.  A Tukey-type 

multiple comparison of proportions test was used to investigate if populations varied significantly in susceptibility 

to an insecticide.  Different letters within a column denotes a significant difference (p ≤ 0.05).  

b Mortality was not taken for some populations at 24 h. 

 

 

Strain Suspenda Tempo Alpine Temprid Tandem Transport 

GHP 

Transport 

Mikron 

Phantom CimeXa 

CIN10 3.3c 0.0c 0.0a 0.0c 0.0b n/a 3.3b 20.0a 96.7a 

CO1 96.7a 100.0a 3.3a 100.0a 70.0a 100.0a 23.3ab 0.0b n/a 

FF1 0.0c 0.0c 0.0a 0.0c n/ab n/a n/a 3.3ab 96.6a 

LA1 86.7a 96.7a 0.0a 83.3a n/a n/a n/a 0.0b 100.0a 

LEX6 3.3c 0.0c 0.0a 0.0c 0.0b n/a n/a 0.0b 100.0a 

LEX8 50.0b 46.7b 0.0a 41.7b 60.0a 53.3b 36.7a 13.3ab 96.7a 
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Table 5.5. Mortality after 96 hours of exposure to residual deposits of nine commercial insecticides commonly 

used for bed bug control 

a Control mortality never exceeded 18.5%, thus, Abbott’s (1925) formula was never used.  A Tukey-type multiple 

comparison of proportions test was used to investigate if populations varied significantly in susceptibility to an insecticide.  

Different letters within a column denotes a significant difference (p ≤ 0.05). 

b CIN10 and LEX6 had a sample size of 30, whereas all other populations had a sample size of 60 when evaluating 

Alpine.  A Tukey-type multiple comparison test factors in sample size to calculate significance; thus, differences in 

susceptibility between populations may be affected by the limited samples sizes relative to other populations. 

Strain Suspenda Tempo Alpineb Temprid Tandem Transport 

GHP 

Transport 

Mikron 

Phantom CimeXa 

CIN10 10.0c 3.3c 0.0ab 0.0c 0.0c 53.3c 6.7b 56.7b 100.0a 

CO1 100.0a 100.0a 11.7a 100.0a 100.0a 100.0a 80.0a 16.7c n/a 

FF1 0.0c 0.0c 1.7ab 13.3c 0.0c 40.0c 0.0b 10.0c 100.0a 

LA1 90.0ab 100.0a 0.0b 93.3a 100.0a 100.0a 80.0a 33.3bc 100.0a 

LEX6 3.3c 0.0c 0.0ab 3.3c 0.0c 70.0bc 0.0b 6.7c 100.0a 

LEX8 73.3b 63.3b 13.3a 55.0b 76.6b 93.3ab 46.7a 96.7a 100.0a 
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Table 5.6. Correlation coefficients of mortality at 96 hours for eight commercial insecticidal products 

Insecticide Suspend Tempo Alpine Temprid Tandem Transport 

GHP 

Transport 

Mikron 

Phantom 

Suspend 1.0000a        

Tempo 0.9913 1.0000       

Alpine 0.6244 0.5319 1.0000      

Temprid 0.9718 0.9898 0.5231 1.0000     

Tandem 0.9953 0.9939 0.5949 0.9784 1.0000    

Transport GHP 0.9292 0.9143 0.5544 0.8722 0.9270 1.0000   

Transport Mikron 0.9863 0.9982 0.5004 0.9877 0.9861 0.9034 1.0000  

Phantom 0.2724 0.1791 0.4781 0.0680 0.2550 0.2618 0.1594 1.0000 

         
a Correlation coefficients of mortality at 96 h from six populations of bed bugs (CIN10, CO1, FF1, LA1, 

LEX6 and LEX8) calculated using Minitab (Zar 1999).  CimeXa has no correlation with any insecticide due to its 

uniform effectiveness against all populations. 
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Figure 5.1

 

 

Mortality over time of six populations of bed bugs to nine commercial products approved 

for bed bug control: graph A represents Suspend SC, graph B represents Tempo SC, 

graph C represents Alpine WSG, graph D represents Temprid SC, graph E represents 

Tandem SC, graph F represents Transport GHP, graph G represents Transport Mikron, 

graph H represents Phantom SC and graph I represents CimeXa.
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Chapter 6. Conclusion and future directions 

Insecticide resistance is a worldwide phenomenon and has been documented in 

hundreds of insect species to most, if not all, classes of insecticides (Forgash 1984, 

Georghiou 1986). The discovery and development of new classes of insecticides is 

limited, especially for use in the urban environment (Potter and Haynes 2014).  Given 

this information, individuals tasked with controlling pest populations must manage 

resistance to avoid losing entire classes of insecticides.  Insecticide resistance 

management (IRM) strategies ultimately allow professionals to eliminate resistant pest 

populations and preserve current classes of insecticides.  An IRM program is just one 

component of a successful integrated pest management program.  Monitoring insecticide 

resistance could allow one to choose the most effective product that continues to control 

the insect population while relieving selection pressure for resistance (Croft 1990, 

Bennett 2003, Onstad 2008).  Insecticide resistance is one factor that has been implicated 

in the recent global resurgence in populations of bed bugs, Cimex lectularius (Romero et 

al. 2007, Steelman et al. 2008, Yoon et al. 2008, Zhu et al. 2010, Mamidala et al. 2011).  

In the past, populations of bed bugs were effectively and efficiently controlled with DDT 

and other broad-spectrum, residual insecticides (Potter 2011).  However, resistance to 

pyrethroid insecticides has created challenges for pest management professionals (PMP; 

Potter et al. 2010, 2011 and 2013).  The purpose of this dissertation was to document the 

evolution of resistance to pyrethroid and neonicotinoid combination products and to a 

neonicotinoid in the laboratory, to document potential fitness costs to resistance to the 

combination products, and to compare the efficacy of nine insecticides on six 

populations. 
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Dual action combination products that contain both a pyrethroid and 

neonicotinoid are currently some of the most effective and widely used insecticides by 

PMPs due to their long residual activity (Potter et al. 2012).  These commercial products 

stack two different modes of action with the goal of better controlling populations than 

either class of insecticides could alone; however, given that resistance to one of these 

classes (pyrethroids) has already been extensively documented (Romero et al. 2007, 

Steelman et al. 2008, Yoon et al. 2008, Mamidala et al. 2011) evolution of resistance to 

the combination products is of great concern.  The first issue investigated in this 

dissertation was how susceptibility to two combination products varied among 

populations and how rapidly resistance and cross resistance developed after one 

generation of exposure.  Surveying the susceptibility of 10 populations of bed bugs to 

continuous exposures of Temprid SC® uncovered that variation in susceptibility among 

populations was maintained throughout the duration of exposure.  However, continuous 

exposure to Transport GHP® resulted in 100% mortality of all populations after 14 days 

(Gordon et al. 2014a).    One explanation for the high variation among populations is the 

extreme bottle neck nearly every population must go through before establishing.  The 

progenitors for most populations are closely realted (e.g.: single mated females; Booth et 

al. 2012) resulting in extreme founder effects of the subsequent population characterized 

by limited allelic variation of genes.  In addition, other studies have confirmed that the 

gene flow between populations is also limited (Booth et al. 2012, Saenz et al. 2012, and 

Fountain et al. 2014).  As a result, a PMP can encounter distinct populations that require 

a unique method to achieve control.   

Further exploration into the underlying causes of the resistance and cross 
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resistance to and among combination products found that the observed decrease in 

susceptibility to Temprid SC was mediated by increased resistance to the pyrethroid 

component but not the neonicotinoid (Gordon et al. 2014a).  This result led to another 

research question: can bed bugs develop resistance to the neonicotinoid component in the 

combination products?  Pyrethroid resistant populations of bed bugs have been well 

documented (Romero et al. 2007, Steelman et al. 2008, Yoon et al. 2008, Zhu et al. 2010, 

Mamidala et al. 2011), and resistance to the dual action pyrethroid/ neonicotinoid 

products has been established in the laboratory (Gordon et al. 2014).  My second study 

revealed that bed bugs can become resistant to at least one neonicotinoid, imidacloprid, 

and that cytochrome P450 mediated detoxification could be one of the underlying causes 

of the observed resistance.  Given that enzymatic mechanisms of detoxification have 

been implicated in cases of cross resistance between insecticidal classes (Devonshire and 

Moores 1982, Liu and Yue 2000, Li et al. 2007), cross resistance of the neonicotinoid 

selected strain to a pyrethroid was not surprising.  Interestingly, cytochrome P450s are 

also responsible for activating some proinsecticides (insecticides administered in a non-

active form that require activation endogenously by the insect; Raghavendra et al. 2011), 

including the pyrrole contained within Phantom SC®; however, no negative cross 

resistance between the neonicotinoid selected strain and Phantom SC was observed here.  

This result contrasts with similar experiments that found in Musca domestica and 

Heliothis virescens increased expression of pyrethroid detoxifying P450s also activated 

chlorfenapyr making it more toxic (Pimprale et al. 1997, Sheppard and Joyce 1998).  

Results from my study suggest that the specific P450s responsible for insecticide 

detoxification in the bed bug are likely not the same ones involved in chlorfenapyr 
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activation.   

To further investigate the role of P450 mediated enhanced metabolism of 

imidacloprid, gene expression in selected bugs (exposed to neonicotinoids) compared to 

unselected bugs is being investigated.  Messenger RNA has been extracted from groups 

of bugs from the two treatments (selected and unselected) and complimentary DNA 

libraries have been constructed and sent to a sequencing lab.  The expected genome 

sequences will then be compared and differences in expression of P450 genes examined.  

If differences are found in expression, the role of specific P450s will be investigated by 

using RNA interference (RNAi) to knockdown gene expression in bugs, and then 

challenging those insects with insecticides.  Any observed decrease in resistance upon 

interfering with expression of a specific P450 would strongly implicate specific enzymes 

in the observed insecticide resistance.   

One characteristic of resistance in a population required for an IRM strategy to 

work is the existence of fitness costs in resistant individuals relative to susceptible 

individuals in environments away from the selective agent (Croft 1990).  If no costs exist 

to maintaining the resistance, the frequency of susceptible individuals will not be 

expected to increase in the absence of the selective pressure.  The third study in this 

dissertation set out to quantify tradeoffs between life history parameters and insecticide 

resistance.  We found that in the absence of Temprid SC, resistant populations were less 

fecund, had smaller reproductive rates, had a decrease in the proportion of females and 

had females that senesced sooner relative to susceptible populations with the same 

origins.  The mechanism of the tradeoff could be due to linkage disequilibrium, 

antagonistic pleiotropy or resource allocation of a finite amount of energy among 
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different life history parameters (Stearns 1989, Roff 2002).  The next line of research 

would investigate the hypothesis that increased energy invested in P450 production leads 

to less resources available to invest into reproduction and ultimately a decrease in 

fecundity in insecticide resistant populations of C. lectularius.  Comparing the 

transcriptome sequences of selected versus unselected bugs that otherwise have the same 

evolutionary history could identify differential expression of genes involved in enzyme 

production.  RNA interference would then be used to knockdown expression of these 

genes, then bugs would be challenged with insecticides in an attempt to confirm the role 

of these enzymes in insecticide resistance.  Once the prerequisite experiments identified 

candidate enzymes involved in insecticide metabolism, F1 offspring of individuals either 

selected with pyrethroids or unselected will be injected with either control dsRNA (malE) 

or dsRNA coding for genes implicated in insecticide metabolism.  Life history tables 

would then be constructed for three different combinations of treatments: unselected and 

injected with malE, pyrethroid selected and injected with malE, and pyrethroid selected 

and injected with dsRNA coding for detoxifying enzymes.  An increase in egg production 

from the pyrethroid selected strain undergoing RNAi relative to the pyrethroid strain 

treated with control dsRNA could implicate that an increase in detoxifying enzymes 

results in a tradeoff between fecundity and insecticide resistance in the bed bug. 

In addition to fitness costs, another key factor to an effective IRM strategy is the 

existence of susceptible alleles within the resistant population.  In agricultural systems, 

migration of susceptible individuals into an area treated with insecticides is a core 

requirement (Onstad 2008).  Fields will often have portions of acreage not treated with 

insecticides to create refuges that maintain susceptible alleles in close proximity to the 
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population under selective pressure.  Untreated refugia cannot be maintained inside of a 

residence (the economic threshold for bed bugs being zero), thus migration of new 

individuals containing susceptible alleles in unlikely (Booth et al. 2012, Saenz et al. 

2012, Fountain et al. 2014). In order to manipulate population susceptibility in situations 

where previous control tactics have failed and selected for resistance, individuals 

heterozygous for insecticide resistance could be one source of susceptible alleles.  If no 

susceptible alleles remain in the population after treatment, alleviating selection pressure 

will not result in a reversion toward susceptibility.  However, random mating between 

heterozygous individuals will produce homozygous susceptible individuals, and in the 

absence of the insecticide, frequency of these individuals should increase and result in a 

population that once again is susceptible. Thus, understanding the dominance of 

resistance in these populations would be a critical next step to developing an effective 

IRM for bed bug control. Traditional IRM relies on using doses of insecticides that would 

kill rare homozygous resistant individuals and leave no heterozygous individuals (Onstad 

2008).  However, if resistance is dominant and heterozygous individuals have the same 

phenotype as homozygous resistant individuals, relieving selection pressure by the same 

insecticide may allow for a reversion of susceptibility and eventual control.  

One final component necessary to develop an effective chemical IRM is the 

availability of effective products that utilize different modes of action (Onstad 2008).  

The final research chapter of this dissertation investigated the efficacy of nine 

commercial products (registered by the Environmental Protection Agency) against six 

populations of bed bugs with varied evolutionary histories.  Results from that study 

confirmed that populations more recently collected from the field were more resistant 
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against products in which at least one of the active ingredients was a pyrethroid.  

However, Phantom SC®, Transport GHP® and CimeXa® were effective at controlling all 

populations used in the study.  This result is promising, because only Transport GHP 

contains a pyrethroid and neonicotinoid.  Phantom SC and CimeXa both contain active 

ingredients with novel modes of action (pyrrole and desiccant dusts, respectively).  Given 

this information, these three insecticides should be considered first when developing a 

chemical control plan against an infestation of bed bugs.  However, in order to anticipate 

future control failures, the evolution of resistance to these novel modes of action (electron 

transport chain disrupter and desiccant dust) needs to be investigated using different 

strains of bed bugs.  Exposing different strains of bugs to residues of an insecticide that 

are lethal to a high proportion of individuals should increase the frequency of genes 

conferring resistance.  Once a population has reached an established level of resistance, 

molecular studies can begin elucidating the underlying mechanisms of resistance.   

Anticipating the rate of evolution and potential molecular mechanisms of any observed 

resistance will allow for the development of more sophisticated IRM strategies. 

Given that a PMP may encounter a population of bed bugs with one of many 

different resistance profiles, a monitoring kit needs to be created that can establish the 

efficacy of products before treatments begins. Determining the initial pyrethroid 

susceptibility of a population allows the PMP to make educated management decisions 

(Figure 6.1).  In cases of pyrethroid susceptibility, a single action pyrethroid or 

pyrethroid/neonicotinoid product may be effective; however, the use of synergists, 

products containing novel modes of action or multiple active ingredients stacked in 

combination with synergists may be necessary to help control populations of bed bugs 
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when traditional chemical control methods have previously failed.  A test kit would also 

give the PMPs insight into the changing dynamics of susceptibility in a population and 

anticipate product failure before it occurs.  Being able to prescriptively choose 

insecticides will not only help control these populations, but it will save pest control 

companies money by being able to choose the cheapest, effective insecticide and save 

residents money by requiring fewer treatments to eliminate this pest. 

The second step in an effective IRM strategy is the manipulation of resistance in 

populations of bed bugs by either rotating, stacking insecticidal products, using synergists 

or any combination of the three (Croft 1990, Bennett 2003, Onstad 2008).  When the test 

kit identifies an issue with resistance, rotation to an alternative mode of action is one 

option that could relieve selection pressure for insecticide resistance and ultimately 

control the population.  When fitness costs to maintaining resistance exist, alleviating the 

selection pressure allows a reversion toward susceptibility to occur, assuming susceptible 

alleles still exist within the population.  The reversion means that once resistance to the 

second mode of action has been selected in an infestation of bed bugs, hopefully, the first 

mode of action will be effective again.  An alternative IRM strategy involves utilizing 

multiple modes of action at once with the logic that a population can only become 

resistant to one mode of action at a time.  However, rotating between classes of 

insecticides will only work if the new insecticide does not select for the same mechanism 

of resistance as the first.  Additionally, if resistance to one of the modes of action is 

already common within the population, that insecticide should be avoided when choosing 

active ingredients to stack to prevent selecting for populations that can survive exposure 

to multiple insecticidal classes at one time.  A third method of IRM requires at least a 
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basic knowledge into the molecular mechanism of resistance and utilizes synergists to 

prolong the efficacy of insecticides once enzyme mediated resistance has been selected.  

Metabolism can be overcome by the use of chemicals that inhibit enzymes from 

neutralizing the insecticides before interacting lethally at the target site.  Many enzyme 

inhibitors exist (PBO, DEF, etc.) and are already used in commercial products (e.g: 

Bedlam® and Drione®), and some lines of research have utilized low doses of ineffective 

insecticides to synergize the efficacy of other insecticides (Gordon et al. 2012).  

Understanding the complexities and unique aspects of insecticide resistance as it relates 

to populations of bed bugs will allow the development and implementation of an IRM 

strategy targeting populations of bed bugs that will enable the PMP and individuals living 

with bed bugs to maintain control.   

Copyright © Jennifer R. Gordon 2014 
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Figure 6.1 

 

Flow chart of a potential bed bug insecticide resistance management (IRM) strategy.  

Initial treatment chosen based amount of money available for treatment (average price of 

treatment based on one bedroom apartment; Stedfast and Miller 2014).  If the chemical 

route is chosen, an initial assessment of susceptibility will allow a PMP to choose the 

most appropriate insecticide.  If the initial insecticide fails to control the population, the 

best IRM strategy should be chosen (considering molecular mechanisms of resistance 

whenever possible).  If all chemical control options fail, use of non-chemical methods 

(heat, steam, encasements, fumigating, etc.) are recommended.  
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