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ABSTRACT OF THESIS 

 

 

 

MEASUREMENT AND MODELING OF HUMIDITY SENSORS 

 

Humidity measurement has been increasingly important in many industries and 

process control applications. This thesis research focus mainly on humidity sensor 

calibration and characterization. The humidity sensor instrumentation is briefly 

described. The testing infrastructure was designed for sensor data acquisition, in 

order to compensate the humidity sensor’s temperature coefficient, temperature 

chambers using Peltier elements are used to achieve easy-controllable stable 

temperatures. The sensor characterization falls into a multivariate interpolation 

problem. Neuron networks is tried for non-linear data fitting, but in the circumstance 

of limited training data, an innovative algorithm was developed to utilize shape 

preserving polynomials in multiple planes in this kind of multivariate interpolation 

problems. 

 

KEYWORDS: humidity, sensor, calibration, neuron networks, multivariate 

interpolation. 
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Chapter 1 Introduction 

1.1 Background 

We can find humidity everywhere on earth, even in extremely dry areas, but there are 

cases when traces of water vapor could cause problems in some applications, and it’s 

measurement has become increasingly important in industrial, laboratory and process 

control applications by allowing improvements in quality of products, reducing the 

cost, and increasing human comfort [1]. 

In the tobacco industry, properly control the humidity level can greatly improve 

tobacco product quality. In warehouse humidity control can protect corrosive or 

humidity sensitive products, such as coils of steel, food, and dried milk. One example 

for cost saving application is paper dryer, if we monitor the humidity in the dryer, we 

are able to shut down the dryer as soon as the humidity has reached a specified level. 

This could save a large amount of money in energy compared to the traditional way of 

running the dryer for a sufficient length of time to assure that the product is dry 

enough. There are also may examples of dew point relating to human comfort, such as 

humidity-controlled operating rooms, incubators, air-conditioning, and many other 

areas, table 1.1 from Wikipedia shows the relation between dew point and human 

comfort. 

The humidity measurement is more difficult than that of most other properties such as 

pressure, temperature and flow. One of the reasons is that it covers an extremely broad 

measurement range, which could start from as low as 1 part-per-billion or less 
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(-112°C frost point) to saturated steam at 100°C, this covers the dynamic range of 

about 109. Another reason is that the measurement has to be made under widely 

varying atmosphere. That is, under a large span of temperatures and in the presence of 

all kinds of contaminants, of particulate and/or chemical nature. 

Table 1.1 Dew Point Relation to Human Comfort 

Dew point Human perception 
Relative humidity at 

32 °C (90 °F) 

Over 26 °C Over 80 °F 
Severely high. Even deadly 

for asthma related illnesses 
65% and higher 

24–26 °C 75–80 °F 
Extremely uncomfortable, fairly 

oppressive 
62% 

21–24 °C 70–74 °F Very humid, quite uncomfortable 52–60% 

18–21 °C 65–69 °F 
Somewhat uncomfortable for most 

people at upper edge 
44–52% 

16–18 °C 60–64 °F 
OK for most, but all perceive the 

humidity at upper edge 
37–46% 

13–16 °C 55–59 °F Comfortable 38–41% 

10–12 °C 50–54 °F Very comfortable 31–37% 

Under 10 °C Under 50 °F A bit dry for some 30% 

This research is based on an alpha alumina humidity sensor, which is the world’s first 
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drift-free humidity sensor, because the sensor is the most important part of an 

humidity measurement device, so a lot of work were done to test its robustness and 

then a more competitive product can come to reality. 

1.2 Problem Statement 

Sensors are bridge of the physical world and engineering world, with them we can 

measure almost all the physical parameters in nature. However most sensors can not 

be used directly, people need to use them to convert a physical quantity to an analog 

signal or digital data which could be read or further processed by an observer, that’s 

where electrical circuits and microcontrollers come in. Microcontrollers are the 

extensively used in all kinds of intelligent instruments, it is the most important part in 

an embedded system which is capable of dealing with digital signals. An A/D (analog 

to digital) convertor is often used because microcontrollers can’t process analog signal 

directly. 

As I mentioned earlier, this thesis research is based on an alpha-alumina humidity 

sensor. Previous experiments using Agilent 4284A precision LCR meter to measure 

the sensors capacitance and resistance were conducted which shows excellent 

response to moisture changes. The LCR meter is big in volume, it serves as good 

experiment reference, but we need to have an electrical system that’s dedicated for 

humidity measurement and the ultimate goal is by calibrating this sensor we can use it  

to obtain humidity data directly. 

Although there are some chips on the market that are designed particularly for small 
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capacitance measurement, their definition doesn’t meet our requirements for this 

sensor. And some supply high voltage on their pins, which may damage our sensor, it 

has a voltage limit that’s lower than 5 volts. Thanks to my team member’s previous 

work, an embedded system prototype was developed which shows very good 

capability of measuring capacitance, however there are still many problems remained 

in the circuit, one of them is it fails to give us a stable reading even when measuring 

an ideal capacitor. This tells us the fluctuation isn’t solely come from sensor, but also 

from the circuit itself. So part of my research involves examining both hardware and 

software issues to eliminate the reading fluctuation so we can get a stable and reliable 

reading of the capacitance. 

I need to design a sampling system which have a temperature chamber that can test 

the sensor under different temperatures, this alpha-alumina humidity sensor doesn’t 

have a significant temperature drift compared to other humidity sensors, however it 

still need temperature compensation to obtain the best outcome. 

After eliminating all problems of the hardware and software, I was able to use the 

improved embedded system to obtain readings of the sensor, under different 

temperatures in the sampling system, the readings are in non-linear relation with the 

capacitance of the sensor. An calibration transmitter bought from CS Instruments were 

used for reference, so we can know the dew point for each reading, this calibration 

sensor is also very important, because this is the instrument that relate our circuit 

reading with the dew point, a more advanced calibration instrument like chilled mirror 
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hygrometer is highly needed in the future. 

Finally, after collecting all the experiment data, I need to develop a model which 

shows relation of temperature, circuit reading and dew point. Different interpolation 

methods and techniques will be compared for get all dew points under different 

temperatures and readings. 

1.3 Thesis Overview 

Chapter 1 has talked the importance for humidity measurement and the background 

for this thesis research. Chapter two will talk about the basic definitions for humidity 

and different humidity indication units and their conversion. Chapter 3 compares 

some most common types of humidity sensors and introduces the advantages of the 

alpha alumina humidity sensor. Chapter 4 introduces the dew point transmitter 

prototype that has been developed precede this research. Chapter 5 describes the 

calibration sampling system that has been used in this research. Chapter 6 talks about 

the drawback of the transmitter prototype and modifications being made to make it 

ready for final experiment. Chapter 7 gives the experiment set up and the results. 

Chapter 8 as the most important part of this thesis research discussed many methods 

for sensor temperature compensation, including interpolation and neural networks. 

Chapter 9 gives conclusion of this research and some future work that can be done to 

utilize and make further progress of this research result. 
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Chapter 2 Basic Concepts and Definitions 

2.1 Temperature and Pressure 

Water vapor measurements are closely related to temperature and pressure, water 

vapor is a form of gas, so it also follows the laws of gas. The most commonly used 

scale for temperature are Fahrenheit and Celsius, labeled °F and °C. In United States 

people use Fahrenheit while in other parts of the world people are familiar with 

Celsius. Both scales are linear and can be converted from each other by the following 

expressions: 

°𝐹 = 32 + 9/5°𝐶 

°𝐶 =   ((°𝐹 − 32))/(9/5) 

Since water vapor exit in gas mixture, it behaves in accordance with gas laws and 

exerts a partial pressure in the gas mixture just like any other constituents. The ideal 

gas law is known as 

𝑃𝑉 = 𝑛𝑅𝑇 

Where P is absolute pressure, V is volume, n is number of moles of gas, T is absolute 

temperature and R is universal gas constant. Then we have Dalton’s law, this law is 

perhaps the most important gas law applicable to humidity measurement. Dalton 

supposed that if we have a mix of gases a, b, and c to be combined into a known 

volume at known temperature, then there individual contribution to the pressure could 

be written as, according to ideal gas law [2]: 

𝑃𝑎 =  
𝑛𝑎𝑅𝑇

𝑉
, 𝑃𝑏 =  

𝑛𝑏𝑅𝑇

𝑉
, 𝑃𝑐 =  

𝑛𝑐𝑅𝑇

𝑉
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These are he called “partial pressure” of each gas constituents. He proposed that the 

total pressure should be the sum of all partial pressure constituents, hence: 

𝑃𝑡𝑜𝑡𝑎𝑙 =  𝑃𝑎 + 𝑃𝑏 + 𝑃𝑐 

The Dalton’s law is stated as: The total pressure of a mixture of gases is equal to the 

sum of the pressure of the constituent gases, if each were individually to occupy that 

same volume, at that same temperature. 

2.2 Relative Humidity 

Most people are familiar with relative humidity, because they hear it on weather 

forecast all the time. For the relative humidity, it is the ratio of the amount of moisture 

in the air at a specific temperature to the maximum amount that the air could hold at 

that temperature, expressed as a percentage. So relative humidity is temperature 

dependent. More accurate definition of relative humidity is that it is the ratio of the 

actual partial vapor pressure to the saturation vapor pressure of the gas, multiplied 

with 100% at the prevailing ambient temperature. For an actual vapor pressure 𝑒, and 

saturation vapor pressure 𝑒𝑠 [3], 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 =
𝑒

𝑒𝑠
× 100% 

The saturation vapor pressure with respect to water is a function of temperature and 

can be represented as: 

𝑒𝑠 = (1.0007 + 3.46 × 10−6𝑃)6.1121𝑒17.502𝑇/(240.97+𝑇) 

The following figure shows water vapor pressure versus temperature: 
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Figure 2.1 Saturation Vapor Pressure vs Temperature 

2.3 Absolute Humidity and PPM 

Absolute humidity is defined as water vapor density and is expressed as water mass 

per unit volume of dry air, it can be expressed as [4, 5]: 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦 =
216.7𝑒

𝑇𝑎 + 273.16
(𝑔/𝑚3) 

Where 𝑒 is the vapor pressure and 𝑇𝑎 is ambient temperature. Another absolute 

measurement of humidity is can be expressed as parts per million, there are two 

representations, one is parts per million by volume (𝑃𝑃𝑀𝑣): 

𝑃𝑃𝑀𝑣 =  106𝑒/(𝑃 − 𝑒) 

Another is parts per million by weight (𝑃𝑃𝑀𝑤), it is calculated by multiplying the 

above by the ratio of the molecular weight of water to that of air (if it is the carrier 

gas), it is given as follows: 

𝑃𝑃𝑀𝑤 = 𝑃𝑃𝑀𝑣 ×
𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑊𝑎𝑡𝑒𝑟 𝑉𝑎𝑝𝑜𝑟

𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝐶𝑎𝑟𝑟𝑖𝑒𝑟 𝐺𝑎𝑠
 

For example, molecular weight of water is 18, and molecular weight of air is 29, then 

for air, the 𝑃𝑃𝑀𝑤 = 𝑃𝑃𝑀𝑣 × 18/29 = 0.62068966𝑃𝑃𝑀𝑣 . Here is a table of 
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molecular weight for some other gases [3]: 

Table 2.1 Molecular Weight for Some Common Gas 

Gas Molecular Wt. Gas Molecular Wt. 

Air 29 Hydrogen 2 

Water 18 Ethylene 28 

Acetylene 26 Helium 4 

Ammonia 17 Methane 17 

Argon 40 Nitrogen 28 

CO2 44 Oxygen 32 

CO 28 Sulfur Dioxide 64 

2.4 Dew Point 

Another important way of indicating humidity is by dew point. It is the temperature to 

which a volume of gas must be cooled such that it becomes saturated with respect to 

liquid water. This is the temperature of the above equation at a particular vapor 

pressure when 𝑒 = 𝑒𝑠 at total pressure 𝑃 [6]. The definition of frost point is very 

similar; it is the temperature to which a volume of gas must be cooled, such that it 

becomes saturated with respect to ice. From their definition, we know the units for 

dew and frost point are the same with temperature, but relative humidity have no unit, 

it is just a percentage. 

Actually relative humidity only tells you how full the air is of moisture, it doesn’t tell 

you how much moisture is in the air, nor does it tell you if there is large amount of 
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moisture. While people find dew point to be confusing, it is a very important variable 

and it is the indicator as to how much moisture is in the air. High dew points (greater 

than 15°C) means that it is “sticky”, low dew points (less than -5°C) means it is really 

dry. A relative humidity of 100% is an indication of dew/frost and fog, it often occurs 

during periods of rain. So at a very low dew point, even if the relative humidity is 

nearly 100%, people still feels very dry, those concepts are quite confusing. It is also 

important to note that the current dew point will never be higher than the current 

temperature and if the temperature is at the dew point and the temperature falls, the 

dew point must follow. 

2.5 Dew Point Pressure Relation 

As mentioned earlier, dew and frost point measures the partial pressure of water vapor 

in a gas mixture, this means there is a one-to-one relationship between vapor pressure 

and dew/frost point. We know from Dalton’s law that the total pressure of a gas 

mixture is the sum of partial pressures of all the gas constituents, so if the total 

pressure is raised, each partial pressure is raised in the same amount, so is water vapor 

pressure. This can be written as [2][7]: 

𝐾𝑃𝑡 = 𝐾(𝑃𝑎 + 𝑃𝑏 + 𝑃𝑐 + ⋯ + 𝑃𝑤) 

Where 𝐾 is a constant, 𝑃𝑡 is total pressure, 𝑃𝑎, 𝑃𝑏, 𝑃𝑐…, are other gas constituents, 

𝑃𝑤 is water vapor partial pressure. Because water vapor pressure is a function of 

dew/frost point temperature, when the total pressure is increased, the dew/frost point 

increases. Likewise, when the total pressure decreases, the dew/frost point goes down, 
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the ratio of dew point partial pressure to the total pressure is a constant, so we have: 

𝑃𝑤1

𝑃𝑡1
=

𝑃𝑤2

𝑃𝑡2
 

Where the subscripts denote different pressure cases of the same gas volume. 

2.6 Humidity Conversion 

We can calculate relative humidity if given temperature and dew point, likewise, we 

can get dew point if given temperature and relative humidity by the following 

equations [8]: 

𝑓 = 100 (
112 − 0.1𝑇 + 𝑇𝐷

112 + 0.9𝑇
)

8

 

𝑇𝐷 = (
𝑓

100
)

1
8⁄

(112 + 0.9𝑇) + 0.1𝑇 − 112 

Where 𝑓, 𝑇𝐷, 𝑇, stands for relative humidity, dew point, temperature respectively. 

We can also know temperature given dew point and relative humidity, but this is 

rarely the case. We often use relative humidity for higher humidity range, PPMv are 

usually used for trace moisture measurement, and dew point for all range humidity 

indication. Both PPMv and dew point can tell us the absolute amount of water vapor in 

a gas mixture. The following figure shows correlation among humidity units: 

 

Figure 2.2 Correlation Among Humidity Units 



 

12 

 

The following is a conversion table among dew point, parts per million by 

volume and absolute humidity for convenience use. 

Table 2.2 Dew Point, PPMv and Absolute Humidity Conversion 

DP(°C) PPMv 

Absolute  

Humidity(g/m*3) 
DP(°C) PPMv 

Absolute  

Humidity(g/m*3) 

0 6033 4.517 -50 38.89 0.02912 

-2 5111 3.827 -52 30.32 0.02270 

-4 4318 3.233 -54 23.51 0.01761 

-6 3640 2.725 -56 18.16 0.01360 

-8 3060 2.292 -58 13.96 0.01045 

-10 2566 1.921 -60 10.68 0.007998 

-12 2145 1606 -62 8.128 0.006087 

-14 1789 1.339 -64 6.154 0.004608 

-16 1487 1.113 -66 4.635 0.003471 

-18 1233 0.9233 -68 3.471 0.002599 

-20 1019 0.7629 -70 2.584 0.001935 

-22 840 0.6291 -72 1.914 0.001433 

-24 690.2 0.5169 -74 1.409 0.001055 

-26 565.3 0.4233 -76 1.031 0.0007717 

-28 461.3 0.3454 -78 0.7492 0.0005610 

-30 375.3 0.2810 -80 0.5410 0.0004051 

-32 304.1 0.2278 -82 0.3881 0.0002906 

-34 245.8 0.1841 -84 0.2764 0.0002070 

-36 197.8 0.1481 -86 0.1955 0.0001464 

-38 158.7 0.1189 -88 0.1372 0.0001028 

-40 126.8 0.09491 -90 0.09564 0.00007161 

-42 100.9 0.07555 -92 0.06611 0.00004950 

-44 80.03 0.05993 -94 0.0452 0.00003394 

-46 63.19 0.04732 -96 0.03087 0.00002308 

-48 49.67 0.03720 -98 0.02077 0.00001555 

   -100 0.01387 0.00001039 
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Chapter 3 Humidity Sensors 

According to the measurement unit, humidity sensors can be divided into two types: 

Relative humidity (RH) sensors and absolute humidity (trace moisture) sensors. Most 

humidity sensors are Relative humidity sensors which can then be divided into three 

categories: polymer, ceramic, and semiconductor humidity sensors. Two types of 

absolute humidity sensors or hygrometers are often being used: chilled-mirror 

hygrometer and aluminum oxide humidity sensor [9]. 

Relative humidity sensors offers relatively low definition and sensitivity, that’s why 

they are used for relative humidity measurement, which is suitable for higher 

humidity indication, at trace humidity levels, relative humidity is rather meaningless 

since the total amount of moisture is too low to be described evenly from 1% to 100%. 

Absolute humidity, on the other hand, with high sensitivity and accuracy provided, 

can be used for both relative and absolute humidity measurements. This chapter will 

talk RH sensors briefly first and then introduces absolute humidity sensors and 

hygrometer, the alpha-alumina humidity sensor being used in this thesis research is 

emphasized. The major problem in Aluminum Oxide sensors, long-term instability 

has been solved. The alpha alumina sensors may have promising future in industry. 

3.1 Relative Humidity Sensors 

3.1.1 Polymer-Based Humidity Sensors 

Organic polymers are macromolecules in which a unit structure repeats. Most of the 

polymers are carbon-hydride compounds or their derivatives. The carbon atoms link 
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each other one by one, either by sigma bond (single bond) or sigma bond plus pi bond 

(double bonds or triple bonds), forming a long chain, which is called the backbone of 

the polymer. Functional groups are rooted on the backbone, which could be either 

single atoms or molecular groups. The functional groups, along with the basic 

structure of the backbone, determine the chemical and physical properties of the 

polymers [10]. Artificial polymers are synthesized from monomers that are small 

molecules. Copolymers are polymers synthesized from two or more different kinds of 

monomers. Polymeric humidity sensors have been widely studied in research and 

applied in industry for more than 30 years. Most of the sensors are based on porous 

polymer films thinner than millimeters and their sensing principle is quite similar to 

that of ceramic sensors. The film is filled with micro-pores for water vapor 

condensation and some of the measurable physical properties change due to the water 

absorption [9]. 

Traditionally, according to sensing mechanisms, polymeric humidity sensors are 

divided into two fundamental categories: resistive-type and capacitive-type [11]. The 

resistive type reacts to different humidity levels by changing its conductivity while the 

capacitive-type changes its dielectric constant. Because polymer is highly sensitive to 

high temperature, almost all of the polymer-based humidity sensors are operated at 

room temperature. For resistive-type humidity sensors, one must modify the 

hydrophilic polymer to be insoluble in water while still maintaining the hydrophilicity 

to adsorb sufficient water molecules to form an ionic conduction path. Cross-linking 
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or graft-polymerization is a promising solution to this problem. The chemical 

procedure should be as simple as possible. On the other hand, in the case of a 

capacitive-type humidity sensor, the material used to fabricate sensor is hydrophobic 

polymers. It was found that the polymer should have as few micro-voids as possible 

so that the adsorbed water molecules are isolated in order not to form clusters that 

would cause hysteresis. In some cases cross-linking of the polymer chains was found 

to depress the clustering of water. In addition, the cross-linked polymers are durable 

in the presence of organic vapors. Humidity sensors based on conjugated polymers 

that are conductive polymers but not polymeric electrolytes attract considerable 

attention in research laboratories and industries [12, 13]. 

Resistive polymer-based sensors have a slower response though they are fast enough 

for most applications. The capacitive type has a broader operating temperature range 

than resistive types. Capacitive type can give good results down to 2% RH but 

sometimes less ideal than resistive type at RH level above 95%. Most capacitive types 

are more expensive but tend to be slightly more expensive than resistive types. The 

use of a resistive type or capacitive type is decided by application. 

3.1.2 Ceramic Sensing Materials 

Humidity sensors based on water-phase protonic ceramic materials are used widely in 

industry and research laboratories. The adsorbed water condensed on the surface of 

the materials and protons will be conducted in the formed aquatic layers. For ionic 

sensing materials, if the humidity increases, the conductivity decreases and the 
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dielectric constant increases [14, 15]. In bulk water, proton is the dominant carrier 

responsible for the electrical conductivity. The conduction is due to the Grotthuss 

mechanism, through which protons tunnel from one water molecule to the next via 

hydrogen bonding that universally exists in liquid-phase water.  

There are four basic types of oxide-based sensing materials, including Al2O3, TiO2, 

SiO2, and spinel compounds. Al2O3 is one of the most popular ceramic sensing 

material due to its relatively independence of temperature at all range of humidity 

from 25 °C to 80 °C [16]. There are several phases for Al2O3 but only two of them are 

used in humidity sensing: γ-Al2O3 (amorphous) and α- Al2O3 (corundum). The former 

is more sensitive than the latter due to its high porosity. But α-Al2O3 is more 

thermodynamically stable phase [9]. Al2O3 is also an important material for absolute 

humidity measuring, this will be talked later in this chapter. TiO2 has three phases: 

brookite, anatase, and rutile. The first phase is rarely used in humidity sensing. If 

headed strongly (~1000°C), anatase will automatically transforms to the rutile 

structure [17]. Actually Rutile is the most common phase of TiO2, anatase is very rare 

in nature. SiO2 is not quite suitable for humidity sensing compared to other ceramic 

materials because it is a dense material. Humidity sensors based on porous silicon 

oxide were fabricated using bulk-sintering processes, especially traditional sol-gel 

method, in which SiO2 is precipitated by hydrolysis of certain alkoxide of silane 

[18-20]. Similar to other porous ceramic materials, the humidity sensitivity of SiO2 

can be enhanced by adding electrolyte dopants, e.g. LiCl [21]. The spinel compounds 
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belong to a large group of oxides with a general composite of AB2O4. 

3.1.3 Semiconducting Sensing Materials 

Some ceramic oxides or composite oxides such as SnO2, ZnO, and In2O3, etc. are 

wide-bandgap semiconductors. H2O is adsorbed on the oxide surface in molecular and 

hydroxyl forms. Water molecules are observed to increase the conductivity of n-type 

ceramics and to decrease the conductivity of p-type ceramics [22, 23]. This effect has 

been attributed to the donation of electrons from the chemically adsorbed water 

molecules to the ceramic surface [22]. Another mechanism was proposed [24, 25]. It 

was suggested that water molecules replace the previously adsorbed and ionized 

oxygen and therefore release the electrons from the ionized oxygen [24, 25]. Probably 

the “donor effect” could be resulted from both. 

Because the conductivity is caused by the surface concentration of electrons, this 

sensing style is usually called “electronic type.” However, the water layer formed by 

the physical adsorption may be somewhat protonconductive. Therefore, at room 

temperatures the conductivity of ceramic semiconducting materials is actually due to 

addition of both electrons and protons (ionic), unless at high temperatures (>100 C) 

moisture cannot effectively condense on the surface. In Figure 3.1a, the conductivity 

increment is produced by surface electron accumulation resulting from the 

preferential alignment of the water dipoles [22]. Hydrogen atoms contact the surface 

(mostly at the oxygen sites) and attract electrons outward. In Figure 3.1b, a depletion 

region forms originally due to adsorbed oxygen and the released electrons may 
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neutralize the depletion. Since adsorbed water molecules increase the conductivity of 

n-type ceramic semiconductors, nearly all the published works deal with n-type 

ceramics. 

 

Figure 3.1 Two Possible Mechanisms For The “donor effect” 

3.2 Absolute Humidity Sensors (Hygrometers) 

3.2.1 Chilled Mirror Hygrometer 

The chilled mirror hygrometer sometimes referred to as optical condensation 

hygrometer is the most accurate, reliable and fundamental device available to measure 

dew point. Dew point is detected by cooling a reflective condensation surface (a 

mirror) until water begin to condense, the temperature measured at this very moment 

is the dew point temperature, and the condensation phenomenon is detected by 

electro-optic detection system. 

The surface temperature of a small gold mirror is controlled by a Peltier element 

(head pump), A high intensity light-emitting diode (LED) or sometimes laser light 

illuminates the mirror. The quality of reflected light from the mirror surface is 
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detected by a photo-transistor or optical detector. Another pair of LED and 

photo-transistor is used to compensate for the temperature deviation caused by the 

optical components. Photo-transistors are arranged in an electrical bridge circuit with 

adjustable balance which controls the current to the thermoelectric mirror cooler and, 

therefore, the mirror temperature. The Operation of the basic chilled mirror 

hygrometer is shown in the following figure.  

 

Figure 3.2 Schematic of Chilled Mirror Sensor 

When the mirror surface temperature is above the dew point, no dew is formed on the 

mirror surface, so the reflectance is high and maximum light is received by the 

photo-detector. When the thermoelectric cooler lowers the mirror surface temperature 

below the dew or frost point, condensation would happen on the surface, which cause 

the light scattering, thereby reduce the amount of light received by the optical-receiver. 

The system is designed such that the bridge is balanced only when a pre-determined 

layer of dew or frost is maintained on the mirror surface. Under these equilibrium 

conditions, the surface temperature is precisely at the dew point of the gas passing 
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over the mirror. A precision NIST-traceable platinum or equivalent thermometer is 

embedded within the mirror surface to measure its temperature. When the mirror 

surface is clean, a perfect layer of condensation would occur right at the dew point 

such that we can get accurate and repeatable results. The temperature fluctuations 

around the dew point usually were not over 0.03 K [9]. 

Because of chilled mirror hygrometer’s fundamental way of measuring dew point and 

it’s the most accurate and reliable method available, it is widely used as a calibration 

standard. Despite all of these benefits, optical dew point hygrometers have several 

drawbacks, it is much more expensive than any other types of humidity measuring 

devices and requires maintenance by skilled personnel in monitoring and installation 

(such as providing proper sample flow). For this thesis research, I used another dew 

point transmitter to calibrate, FA410 (CS Instrument –Shenzhen, China), which is a 

polymer humidity sensor. This sensor is not sensitive at low humidity levels so 

actually it’s not suitable as a standard to calibrate other sensors. But for the time being, 

I use it for research purposes and the accuracy provided is within tolerance. 

Ultimately, more fundamental and accurate calibration standard should be used, like 

using chilled mirror hygrometer instead. 

3.2.2 Alpha-Alumina Humidity Sensor 

In the previous sections, I’ve talked about relative humidity sensors, many of them 

suffered from serious drawbacks, e.g. long term instability, large humidity hysteresis 

and slow response, few of them are found to be effective for practical application. 
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Only aluminum oxide thin film sensor can be used for absolute humidity [26-29], 

which is especially useful in the trace moisture measurement range. By anodization of 

aluminum in H2SO4 solution, the porous alumina film with very high 

humidity-sensitivity is formed. Aluminum oxide sensors offer many advantages: wide 

dynamic range of humidity measurement, relatively stable with low hysteresis and 

temperature coefficients, low or modest maintenance requirements, available in small 

sizes, and it is capable of measuring very low dew point levels without the need for 

cooling like chilled mirror hygrometer needs. 

Unfortunately, alumina humidity sensors have a serious flaw, that is, long-term 

calibration drift [30]. Many researchers try to solve this problem by aging the alumina 

films in boiling water or macerating the film in some ion solutions [30], however the 

drift can not be completely eliminated. The humidity-sensing film in the alumina 

sensors that suffered from this type of drawback is made of γ-Al2O3 (amorphous). 

γ-Al2O3 changes to γ-Al2O3H2O (Boehmite) irreversibly under high humidity 

atmosphere [9]. Which causes the surface area and porosity of the film to decrease. 

This further gradually decreases the adsorption ability of the film and causes the 

long-term calibration drift. 

Previous research has been made by my advisor Dr. Zhi Chen to use α-Al2O3 thin 

films [9]. It was found that humidity sensors made of α-Al2O3 films have the potential 

to solve this problem. Usually, we can get α-Al2O3 by heating γ-Al2O3 at a 

temperature over 1200°C, in his research, α-Al2O3 was obtained by anodization of 
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aluminum plates in the melt of NaHSO4-KHSO4 (1:1 wt.) at 200°C. I will not go over 

the details of fabrication, however I’ll show the performance characteristics of the 

sensors. The schematic structure of the sensor is shown in figure 3.3. The α-Al2O3 

films were reanodized to form a thin barrier film (amorphous Al2O3) at the pore base. 

A thin water-permeable gold film was deposited by vacuum evaporation on one of the 

surfaces of the sample, which was used as one electrode, the other electrode was the 

aluminum substrate. 

 

Figure 3.3 Schematic Structure of Alpha-Alumina Humidity Sensor 

The following figure show the porous α-Al2O3 film prepared by anodic spark 

deposition, the film exhibits a continuous open pore structures as mentioned earlier. 

Unlike γ-Al2O3, α-Al2O3 is highly stable, so the inner surface of the pores and pore 

size never changes over time, make it ideal for humidity measurement [9]. The 

possible instability may come from the amorphous alumina barrier layer.  
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Figure 3.4 Scanning Electron Micrographs of an  

Anodic Spark Deposited α-Al2O3 Porous Film 

 

Figure 3.5 Long Term Stability Testing Result of RH Measurement 
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Figure 3.6 Long Term Stability Testing Result of Absolute Humidity Measurement 

The previous two pictures show the long-term stability of the sensor made from 

α-Al2O3 thin film both in relative humidity measurement and absolute humidity 

measurement. In the relative humidity experiment, after long time exposure in 

97%RH environment and reset it in low humidity environment, the sensor can still 

give the previous readout [9]. This fact indicate that there was no hydroxide formed 

on it (chemisorption), the water vapor was only physically adsorbed on the porous 

surface of the modified α-Al2O3 thin film. 

The response of this type of sensor is also very quick, the following figure shows that 

for a 63% RH change, the response time is about 5 seconds. This may be attributed to 

the lack of chemisorption on the surface of the film. 
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Figure 3.7 Time Response Characteristics of RH variations 

The temperature dependency of alumina sensors are modest compared to other 

materials, however this α-Al2O3 humidity sensor do show temperature dependency. It 

is shown in the following figure, we notice that the temperature coefficient of the 

sensor varies with temperatures, it has a higher temperature coefficient at higher 

temperatures, one of the purposes of this thesis research is to find a way to 

compensate this temperature coefficient thus the sensor can give right readouts under 

different temperature environment. 

Figures 3.3-3.8 are from Dr. Zhi Chen’s previous research results at University of 

Electronic Science & Technology of China [9]. Recently, at University of Kentucky 

and Advanced Semiconductor Processing Technology, LLC, Dr. Zhi Chen further 

investigated the alpha-alumina moisture sensors and found that they still exhibited 

some calibration drift, which is due to the amorphous alumina barrier layer. He 
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further improved the alpha-alumina moisture sensors by eliminating the amorphous 

alumina barrier layer. The new sensors exhibited superior performance with fast 

response of ~3s, little hysteresis, and true long-term stability (US and Chinese patents 

pending). I will use the new sensors for calibration studies. 

 

Figure 3.8 Temperature Dependence of the Sensor 
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Chapter 4 Dedicated Embedded System 

In this chapter, the original dedicated embedded system for this sensor is introduced. 

It was developed with a msp430 microcontroller manufactured by Texas Instrument 

Inc. which incorporates a 16-bit RISC architecture CPU and many digital and analog 

peripheral modules to facilitate mixed signal processing applications, and it provides 

several low power operation modes enables it a good choice for battery powered 

portable devices. The calibrated digitally controlled oscillator (DCO) allows wake-up 

from low-power modes to active mode in less than 1 µs. The modules of the circuits 

and peripherals utilized in the microcontroller will be discussed in detail. 

4.1 Msp430 Architecture and Peripherals 

Figure 4.1 shows the architecture of the MSP430F249, on the left is the CPU and its 

supporting hardware, including basic clock generator, emulation and JTAG interface 

 

Figure 4.1 Block Diagram of the MSP430F249 taken from datasheet 
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which is used to communicate with a computer for program downloading or 

debugging. Other main blocks are linked by two buses, one is the memory address bus 

(MAB), and the other is memory data bus (MDB). For MSP430F29 the 

microcontroller this project is using, it has 60KB+256B flash memory and a 2KB ram, 

that’s enough storage space for project code. The ADC12 peripheral, Timer_A3 

peripheral, and Comparator_A+ peripheral make it capable of dealing with outside 

analog signals, the single slope A/D conversion used here is one example of using 

Timer_A3 and Comparator_A+ together. The microcontroller also incorporates many 

other useful peripherals like watchdog timer, hardware multiplier, SPI, I2C, UART, 

etc. 

4.1.1 Basic Clock Module 

All microcontrollers have a basic clock module to drive the CPU and peripherals, it is 

an essential part for every synchronous digital system. Two clocks with different 

specifications are often needed: one fast clock to drive CPU, which can be started and 

stopped rapidly to conserve energy, usually it need to be very accurate; another slow 

clock that runs continuously to monitor real time, which must consumes little energy 

and be particularly accurate. The MSP430 meet the conflicting demands for high 

performance, low power, and a precise frequency by using three internal clocks, 

which can be derived from up to four sources are available for the clock as shown in 

figure 4.2 (source: msp430x2xx datasheet). 

LFXT1: Low/high frequency crystal oscillator, it can be used with a low frequency 
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watch crystal (32 KHz), also can run with a high frequency crystal (up to 16 MHz). 

XT2: High-frequency crystal oscillator, it is similar to LFXT1 but restricted to high 

frequencies. 

VLO: Internal very low-power, low-frequency oscillator, it provides an alternative to 

LFXT1 when the accuracy of a crystal is not needed. 

DCO: Digitally controlled oscillator, it is a controllable RC oscillator that starts in less 

than 1 µs. 

 

Figure 4.2 Basic Clock Module Block Diagram for MSP430F249 
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Below are three internal clocks 

MCLK: Master clock, it is used by CPU and a few peripherals. 

SMCLK: Subsystem master clock, it is distributed to peripherals. 

ACLK: Auxiliary clock, it is also distributed to peripherals. 

Figure 4.3 shows a simplified block diagram of the clock module of MSP430F249 

[31], three internal clocks all can be divided by 1, 2, 4 or 8. Their selecting sources 

are shown on this figure, Heavy lines indicate the default configuration. 

 

Figure 4.3 Simplified Block Diagram of the Clock Module 

The basic clock module is controlled by four registers, DCOCTL and BCSCTL1-3. In 

addition there are bits in special function registers IFG1 and IE2 for reporting faults 

with the oscillators. 

4.1.2 Timer_A3 

Timer_A is the most versatile, general-purpose timer in all MSP430 microcontrollers, 

it is a 16-bit timer/counter with three capture/compare registers. It has many useful 

features and plays an important role in single slope A/D conversion which will be 
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introduced later this chapter. There are two main parts in this peripheral. 

One is the timber block, based on a16-bit register TAR. It can choose from different 

clock sources: TACLK, ACLK, SMCLK, and INCLK whose frequency can then be 

divided down. The timer block has no output but a flag TAIFG used to trigger an 

interrupt. It has four modes of operation, selected by MCx bits, the 16-bit 

timer/counter register TAR increments or decrements with each rising edge of the 

clock signal depending on mode of operation: When under stop mode, the timer is 

halted; under continuous mode, the counter runs its full range from 0x0000 to 0xFFFF 

and then run back to 0; under up mode, the counter runs from 0 up to the value stored 

in TACCR0; under up/down mode, the counter counts from 0 to TACCR0 then down 

to 0 and repeats. Figure 4.4 shows the basic timer block of Timer_A from 

MSP430x2xx datasheet. 

 

Figure 4.4 Basic Timer Block of Timer_A3 

The other part is capture/compare channels, for MSP430F249 three channels are 

available. All channels within Timer_A share the same timber block, that is, there is 

only one TAR. This ensures that all actions performed by the different channels are 

synchronized. But the downside is they all work at the same frequency. Capture and 

compare channel 0 is special in two ways. First its register TACCR0 is used for the 
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modulus value in Up and Up/down modes. Second it has its own interrupt vector with 

a higher priority than the other interrupts from Timer_A, which all share a common 

vector TAIV. So channel 0 is often used with the most urgent tasks if it is free. Other 

channels work in the same way, they can perform the following tasks [31]:  

1. Capture an input, which means recording the “time” (value in TAR) when the input 

changes at TACCRn, the input can be external or another internal peripheral or 

software. We’ll see later that the Comparator_A+ gives this input in the single slope 

A/D conversion.  

2. Compare the current TAR value with the value stored in TACCRn and give an 

output when they match. 

3. Request an interrupt by setting its flag TACCRn CCIFG. 

Figure 4.5 shows the block diagram of capture/compare channel 2: 

 

Figure 4.5 Block Diagram of Capture/Compare Channel 2 
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Each channel is controlled by a register TACCTLn, shown in the following figure. 

 

Figure 4.6 Timer_A Capture/Compare Control Register TACCTLn 

The CAP bit is cleared by default so that the channel is in compare mode, because the 

capture mode is being used in the research, we need to set it to 1. The capture mode 

bits CMx can choose an event to be a rising edge, falling edge, or either edge. The 

CCISx bits in TACCTLn select the input to be captured, CCInA and CCInB come 

from outside the timer module. Often CCInA is connected to external sources while 

CCInB is connected internally to another module. They have many possible 

connections, for MSP430F249 CCI1B come from CAOUT, the output of the 

comparator. This internal connection between peripherals allows precise time 

recording of a measurement without the delay that would rise if software were needed 

to trigger a capture when CAOUT changed. This is one example of the SoC idea of 

the MSP430 which makes peripherals to work together effectively. It saves power 

while avoiding delay. 

Same as other peripherals, interrupts are an important part of Timer_A. interrupts can 

be generated by timber block itself (flag TAIFG) or by each capture/compare channel 

(each TACCRn CCIFG). TACCR0 has its own interrupt vector TIMERA0_VECTOR, 

it priority is higher than the other vector TIMERA1_VECTOR, which is shared by the 

remaining capture/compare channels and the timer block. The CCIFG0 flag in 
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TACCR0 is cleared automatically when its interrupt is serviced but this does not 

happen for the other interrupts because the interrupt service routine (ISR) need to 

determine the source of the interrupt. The MSP430 provides an interrupt vector 

register TAIV to identify the source of the interrupt rapidly. When one or more of the 

shared interrupts flags is set, TAIV is loaded with the value corresponding to the 

source with the highest priority. The following table shows the possible values in 

TAIV for Timer_A3 [31]: 

Table 4.1 Interrupt Vector Register TAIV for Timer_A3 

TAIV contents Source Flag Priority 

0x0000 No interrupt pending   

0x0002 Capture/compare channel 1 CCIFG1 Highest 

0x0004 Capture/compare channel 2 CCIFG2  

0x0006 —  ↑ 

0x0008 —   

0x000A Timer overflow TAIFG Lowest 

Any access to TAIV would resets TAIV and the corresponding flag. If another 

interrupt is pending, TAIV is reloaded with the value for the source with the highest 

priority and another interrupt is requested as soon as the current one is serviced. 

4.1.3 Comparator_A+ 

An analog comparator compares the voltage on its two input terminals, V+ and V−. 

Its output is high if V+ > V− and low if V+ < V−. Because the output has only two 
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states, this makes it act like a 1-bit ADC. The Comparator_A+ module is switched on 

and off with the CAON bit. It is off by default to save power. Although a comparator 

is fairly simple, the block diagram in the datasheet looks a little complicated: 

 

Figure 4.7 Comparator_A+ Block Diagram 

The non-inverting terminal V+ can be connected to external signals CA0-CA2 or left 

unconnected, this is selected using bits P2CA4 and P2CA0. It can also receive an 

input from internal reference. 

Similarly, the inverting terminal V− can be connected to external signals CA1-CA7 

(not include CA0) or left unconnected. This is selected by bits P2CA3-P2CA1. It can 

also be connected to an internal reference. 
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The internal reference voltage VCAREF can be chosen from 1/4 VCC, 1/2 VCC or a 

nominally fixed voltage from a transistor, Vdiode. This is selected with CAREFx bits. It 

can be applied to both of the comparator terminals, selected by CARSEL bit. 

The output of comparator can be optionally filtered through an RC circuit to reduce 

oscillations in the signal. This is selected with CAF bit. It is off by default but should 

usually be enabled unless the delay it introduces is unacceptable or any oscillation is 

handled in software. The filter extends the response time from approximately 0.2µs to 

2µs. in this application, it is set off because it is time critical. 

The output is brought to an external pin CAOUT. It is also connected internally to 

capture input CCI1B of Timer_A, which allow them to work together nicely without 

delay. 

CAIE and GIE need to be set in order to request an interrupt. The flag CAIFG is 

raised on either a rising or falling edge of the comparator output selected with CAIES 

bit. 

Because for a real comparator it is not perfect and has a small offset voltage, this 

means the output does not switch exactly at V+ = V− but occur when they differ by a 

small voltage between±30mV. Setting the CAEX bit exchanges the two inputs to the 

comparator and inverts its output to compensate 

4.2 Single Slope A/D Conversion 

As mentioned above, the single slope A/D conversion technique is implemented with 

Comparator_A+ and Timer_A3. There is a very good example shown on msp430x2xx 
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family user guide of using single slope analog-to-digital conversion to precisely 

measure resistive elements [32]. By comparing the measured resistor’s capacitor 

discharge time to that of a reference resistor shown in the following figure, we can 

further calculate the Rmeans based on Rref. 

 

Figure 4.8 Resistance Measurement Schematic 

Two I/O pins are connected to Rref and Rmeas respectively, set I/O pin to output high 

(Vcc) would charge the capacitor, reset to low would discharge the capacitor. The + 

terminal of the comparator is connected to the positive side of the capacitor and – 

terminal of the comparator connected to a reference voltage, for example, 0.25 x Vcc. 

CAOUT is connected to Timer_A CCI1B, capturing capacitor discharge time. The 

following figure shows the timing of this process [32]. 
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Figure 4.9 Timing of Resistance Measurement Systems 

The equation below shows the voltage change of a discharging RC circuit: 

𝑉𝐶(𝑡) = 𝑉𝐶𝐶exp (−𝑡/𝑅𝐶) 

If we make 𝑉𝐶(𝑡) to a reference voltage we can get discharge time to that voltage: 

𝑡 = −𝑅 × 𝐶 × ln (𝑉𝑟𝑒𝑓/𝑉𝐶𝐶  ) 

After two discharging process of two resistors respectively we get two discharging 

times of two resistors respectively: 

𝑡𝑚𝑒𝑎𝑠 = −𝑅𝑚𝑒𝑎𝑠 × 𝐶 × ln (𝑉𝑟𝑒𝑓/𝑉𝐶𝐶 ) 

𝑡𝑟𝑒𝑓 = −𝑅𝑟𝑒𝑓 × 𝐶 × ln (𝑉𝑟𝑒𝑓/𝑉𝐶𝐶 ) 

Remember the Timer_A is actually just a counter, let N be the number which Timer_A 

counts the discharging process, and apparently we have: 

𝑁𝑚𝑒𝑎𝑠

𝑁𝑟𝑒𝑓
=

𝑡𝑚𝑒𝑎𝑠

𝑡𝑟𝑒𝑓
 

Based on the ratiometric conversion principle 

𝑁𝑚𝑒𝑎𝑠

𝑁𝑟𝑒𝑓
=

−𝑅𝑚𝑒𝑎𝑠 × 𝐶 × ln (𝑉𝑟𝑒𝑓/𝑉𝐶𝐶  )

−𝑅𝑟𝑒𝑓 × 𝐶 × ln (𝑉𝑟𝑒𝑓/𝑉𝐶𝐶 )
 

We can finally get 𝑅𝑚𝑒𝑎𝑠 
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𝑅𝑚𝑒𝑎𝑠 = 𝑅𝑟𝑒𝑓 ×
𝑁𝑚𝑒𝑎𝑠

𝑁𝑟𝑒𝑓
 

For measurement of capacitances, the exact same circuits and techniques are used 

except that the resistor here is a fixed one, and we also need a reference capacitor. For 

our application of measuring humidity sensor for dew point we don’t need to get this 

actually capacitance, we can just relate the clock cycle’s value with dew point. That is, 

𝑁𝑚𝑒𝑎𝑠  is all we need. When surrounding humidity changes, the capacitance of 

humidity sensor changes, result in the change of value returned from TACCRx 

indicating different dew point levels. Further modeling is needed in order to relate the 

“circuit value” with dew points, this will be described in following chapters. 

4.3 Temperature module 

Because we want to test the humidity sensor’s behavior under different temperatures, 

the temperature measurement module is obviously indispensable. It has to be small in 

size so that is can be placed next to a humidity sensor inside the filter. A variety of 

temperature sensors were considered, however few are suitable for this humidity 

transmitter. DS18B20 for example is a widely used temperature sensing component 

but its size is too big to fit into the air filter together with our humidity sensor. 

Another option like precision thermistor (NTC or PTC) has a small size that can be fit 

into air filter but the non-linear property with temperature makes it difficult to 

calibrate. So it is not ideal either. 

A different but simple temperature sensing technique based on diodes is used here. 

The following figure shows the calculated diode characteristics using SPICE model 
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for temperatures T = 100°C, T = 27°C AND T = -50°C [33]. 

 

Figure 4.10 Temperature Dependence of the Diode Characteristics 

We can see that the temperature basically shifts the ID-VD characteristic along the VD 

axis by approximately -2mV/°C. Because the coefficient is negative, to produce the 

same current an 1°C increase in temperature the forward voltage would drop about 

2mV. This linear relation between forward voltage and temperature can be utilized to 

measure temperature, the remaining problem is how to detect forward voltage changes 

precisely. Many ADC converters can capture the analog voltage change and output 

digital data that can be processed by microcontroller. However the full range of 

voltage variation is small even temperature differs dramatically. So an op-amp is used 

to amplify the voltage change to make it easier to be identified. The following figure 

shows the implemented temperature module schematic.  
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Figure 4.11 Schematic Diagram of Temperature Module 

1N4148 is a fast speed diode featuring small size, fast switching speed and fast 

reverse recovery. The voltage across the diode is connected with the non-inverting of 

the op-amp. +5V voltage supply the R1 and diode. The closed-loop gain is (1 + R2/R3) 

= 6. So the temperature coefficient is amplified to 12mV/°C on the output terminal of 

op-amp. The op-amp OPA2241 from Texas Instruments features wide supply range, 

high open loop gain, low offset voltage and low power consumption. The output of 

OPA2241 is still analog signal. An ADC ADS7818 is used here. 

ADS7818 is a 12-bit high speed successive approximation (SAR) analog-to-digital 

converter. The range of the analog input is set by the voltage on VREF pin. With 

internal 2.5V reference, the input range is 0 to 5V. The digital result of conversion is 

provided in a serial manner, synchronous to the CLK input. The result is provided 

most significant bit first. 
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Figure 4.12 Typical SPI Timing Interface 

Figure 4.11 shows a typical timing diagram for a serial peripheral interface (SPI). 

CONV, CLK, DATA pins of ADS7818 are connected to I/O pins of MSP430F249. 

The transition of high to low on CONV pin indicates the beginning of the transition. 

After second clock cycle, the 12-bit are read into microcontroller. The biggest number 

a 12-bit can represent is 4095, so from 0 to 4095 the full voltage range is divided in to 

4096 pieces. We have the following equation: 

𝑉𝑚𝑒𝑎𝑠 = 𝑂𝑐 × (𝐹𝑆/4096) 

Where 𝑂𝑐 is the output number of ADS7818, FS is full scale voltage range, FS = 2 * 

VREF = 5V. From this equation we can calculate the amplified voltage. 

Then the temperature can then be calculated as follow: 

𝑇 =
| (

𝑉𝑚𝑒𝑎𝑠
𝑛 ) − 𝑉𝑟𝑒𝑓|

2𝑚𝑉
 

Where n is the gain of OPA2241, in this case 6. 𝑉𝑟𝑒𝑓 is the voltage across the diode 

at a known temperature, for example we can test this value when diode is put into 

mixture of ice and water that is sure to be 0°C. 
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Chapter 5 Sampling System Design 

Calibration is perhaps the most significant procedure in the production process of a 

good aluminum oxide humidity sensor. In order to calibrate our alpha alumina 

humidity sensor we need to design a sampling system, so that we can test it and 

compensate the temperature coefficient. Some big humidity sensor manufacturers 

have built very elaborate calibration systems that can calibrate multiple sensors 

simultaneously. The data of the sensors are stored in computer, and the calibration 

process is repeated several times within 3 to 6 months. Not until the calibration data 

showed reasonably stable, such sensor cannot be installed. Figure below shows a 

typical commercial aluminum oxide calibration facility [1]. 

 

Figure 5.1 A Calibration Laboratory of Aluminum Oxide Sensor 
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Although such calibration system is very capable and efficient in calibrating 

aluminum oxide sensors, they are too complicated and high in expense. In present 

laboratory conditions, we have to implement an economic calibration system that is 

dedicated for our alpha-alumina humidity sensor. The sample tested gas is provided 

by ultra-high purity nitrogen gas, such gas is guaranteed to be blow 3 PPM of 

humidity level. So the tested nitrogen gas has a dew point of below -69°C, dry enough 

for our experiment purposes.  

5.1 Peltier Effect 

In order to test the sensor under different temperatures, one of the requirement arises 

is that we need a facility that can adjust its temperature. The first idea was to change a 

mini refrigerator to let it have the ability of warming up, or change an oven to let it 

have the cooling ability. But this is difficult to do than it may sound. It would be great 

if I can find a device that can vary temperature from 0°C and 50°C. It caught my 

attention that the Peltier device used in a mirror-based hygrometer can nicely adjust 

and control the temperature. The thermoelectric effect behind the Peltier device may 

offer an alternative approach in temperature control applications. 

When a semiconductor is used as a thermoelectric material, its majority charge 

carriers (electrons or holes) determine the electrical behavior, the side to which its 

majority charge carriers flowing to would be hot. If n-type and p-type semiconductors 

are biased in the same direction, their charge carriers flow in opposite direction. As a 

result, n-type and p-type Peltier elements create opposite temperature gradients when 
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biased in the same direction as shown in following figure: 

 

Figure 5.2 N-type and P-type Peltier Elements 

For a single Peltier element, the heat produced or removed is generally not sufficient 

for realistic situations. Commercial Peltier devices are composed of many n-type and 

p-type semiconductor Peltier elements to increase the heat generating (or removing) 

power. The individual elements are connected in series using metallic junctions like 

copper that both have good electrical and thermal conductivity. As shown in following 

figure the heat flow is in the same direction: 

 

Figure 5.3 A Series of Alternating N- and P-type Semiconductor Elements 

A complete Peltier device composition is shown in figure 5.4. It consists of two 

insulating ceramic plates sandwiching a series of p-n pairs joined by copper. This 
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design provides a large surface area improving heat pumping for cooling and heating 

applications. 

 

Figure 5.4 Design of a Commercial Peltier Device 

Although low in efficiency, Peltier element based temperature controllers offer many 

advantages, they are accurate and easy to adjust and can stay stable for a certain 

desired temperature which is ideal for our application. I tried to build a temperature 

chamber by myself, but this is a big project already and thermal insulation is not 

guaranteed. There are commercial refrigerator/heaters on the market, some of them 

can adjust temperature from -10° to 60°Celsius. That’s enough for the experiment 

temperature range. So we bought a temperature chamber with the precision of 

temperature control to 1°, it only cost about 50 dollars and the insulation is guaranteed. 

If one wants to build a temperature chamber, the dedicated Peltier elements can cost 

200 dollars already. 

5.2 Sampling System 

Now that we have temperature chamber ready, we can build the whole calibration 

system. It is shown in the following figure, a valve control the overall flow rate of 
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ultra-purity nitrogen gas. The sampling tube then split into two parts, one of them 

flow through a water container, by adjusting the flow meter on each flow branch we 

 

Figure 5.5 Illustration of Calibration Sampling System 

can control the humidity level of the air flowing through sample IV sensor. In order to 

insert the sampling tube inside the temperature chamber, two holes were drilled on top 

of the chamber. The diameters of these holes are about the same of that of the tube, 

this ensures heat insulation. We have two humidity sensor placed inside the 

temperature chamber, one is sample IV and the other is sample V, both of them are 

installed inside dedicated testing chambers made from steel. They are connected by 

sampling tube, which allows sampling air to go through.  

A precision LCR meter monitor sample IV’s resistance and capacitance. The 

temperature sensor mentioned above is positioned next to sample V in the testing 

chamber. Both the temperature sensor and the humidity sensor sample V are 

connected with our dew point transmitter prototype described above. The sampling 

tube then guide the airflow into calibration sensor chamber, a digital multi-meter 
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reads the instant current reading. We can calculate dew point based on current reading. 

The sampling tubes are made from hard plastic Teflon, stainless steel is a good 

alternative in the future. 

There is something worth saying about the temperature chamber. Although it has a 

segment display that tells you the temperature, but actually the value shows is the 

instant surface temperature of Peltier element as well as that of the wall in the 

chamber. The temperature sensor in testing chamber gives the real temperature of 

humidity sensor, we can observe it on the LCD module. By observation, the program 

in control panel of the Peltier element is set that it begin to work when the actual 

temperature deviates the set temperature 2°C. So when setting the temperature, we 

should set it 2°C opposite direction the room temperature. For example, the room 

temperature is 23°C, if we want test the humidity sensor at 10°C, 8°C is actually set. 

When surface of Peltier element reaches 8°C, it stopped then because room 

temperature is high than 8°C, it will slowly warm up until 10°C it will work again and 

pretty soon the surface come back to 8°C. This process goes back and forth, after 

running for a long time, and takes thermal insulation imperfection into consideration, 

we will get the desired temperature at humidity sensor. 
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Chapter 6 Experiment Results 

Test experiments are being conducted using the calibration sampling system 

mentioned above. Two humidity sensors were under test in the lab, they were 

produced at the same time using the same technique. So they basically are the same 

although some minor difference may remain. Sample IV acted as the reference sensor, 

the probes from a precision LCR meter (model type Agilent 4284A) is connected to 

the four input terminals of this sample, so we can monitor the capacitance and 

resistance change under different humidity and temperature levels. They are both 

fundamental physical properties that typically measured to reflect humidity sensor’s 

behavior. Sample V works with the dedicated transmitter prototype, the separated 

board will connect to sensor chamber directly without wires, and they are put in the 

temperature chamber together. After the experiments the “circuit reading” can be 

related to dew point values. And further modeling will go from there. 

The calibration reading were given by a commercial dew point sensor FA410-H2 

manufactured by CS Instruments, we’ll see later in experiment results that this sensor 

has some flaws, especially at low dew point range. Although this may make no 

difference in modeling methods it sure would affect the accuracy of modeling results. 

And it is an empirical (secondary measurement) device, meaning it measure a change 

in some material as a relation to humidity, it does not measure any fundamental 

property of water vapor. To meet commercial level standards, a precise chilled mirror 

hygrometer is needed in the calibration process. 

It is not feasible to make measurement of sensor readings of all possible dew points 
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under 51 different temperatures. It is time consuming and low in efficiency. The 

strategy behind calibrating this humidity sensor is to record the circuit readings under 

different humidity of a few temperatures and then develop a model so we can 

interpolate circuit reading of other temperatures. According to former experience, for 

a given temperature, the dew points and testing time are given below: 

Table 6.1 Dew Point Test Points 

N2(lit/min) H2O(lit/min) FA410(mA) DP(°C) Time 

0 ~800 ~19.5 ~18 30(min) 

~750 ~600 18.23 8.9 30(min) 

~1100 ~300 16.80 0 30(min) 

~1100 ~200 15.68 -7 1(hr) 

~1100 ~40 13.28 -22 1(hr) 

 ~1100 ~10 11.07 -34 1(hr) 

~1100 ~5 9.0 -50 1(hr) 

~1100 ~0 More dry More dry 1(hr) 

In high humidity range the testing time is half an hour, for lower dew points the 

testing time become one hour which allows more time for the sensor to give a more 

reliable value. The testing temperatures are from 0°C to 50°C with 10°C intervals. So 

a total of 6 temperatures were tested. In order to take hysteresis into consideration, the 

nitrogen gas will run at the last setting overnight and in reverse order test other dew 

points. For those tested temperatures below room temperature, the highest dew points 
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tested are controlled to be about 2 degrees below that temperature. This is to prevent 

the actual dew or ice (at 0°C) to be formed on the surface of humidity sensor. Because 

if that happens, the property of humidity sensor may be changed and give erratic 

readings.  

For illustration purpose, test results at temperature 30 Celsius will be presented and 

discussed, the results of other temperatures are about the same. The following two 

figures show the sensor capacitance and circuit reading changing with time at 30°C 

respectively.  
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Figure 6.1 Sensor Capacitance vs. Time at 30°C 
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Figure 6.2 Sensor Circuit Reading vs. Time at 30°C 

They have the same shape because the circuit reading is actually a digital 

representation of sensor capacitance. Noticed that at lower dew points there are more 

recording times, that’s because more time are allowed for stability at lower dew point. 

During each day of the measurement, the data were taken down every 15 minutes. 

Those two figures give us an overview of how the experiment of a particular 

temperature is conducted. 

The following figure shows dew point vs circuit reading, it include all the tested 

points in two days experiment of a given temperature. This figure is the most 
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important and useful one, it shows relation between dew point and circuit reading, 

adjacent dew points are connected by straight lines, gives us a feeling of how circuit 

reading changes with dew point. But the data falls in between sure is not accurate 

enough, more advanced curve fitting technique will be discussed in next chapter.  

2000

4000

6000

8000

1 10
4

1.2 10
4

-80 -60 -40 -20 0 20

30C Circuit Reading - Dew Point

Circuit Reading 

C
ir

c
u

it
 R

e
a

d
in

g
 

DP (C)

 

Figure 6.3 Circuit Reading vs. Dew Point at 30°C 

Note that the two day’s readings of a given dew point do not completely overlap, the 

first day’s reading is a little higher than that of the second day. This is due to the 

intrinsic hysteresis property of the humidity sensing material. Before the experiment, 

the humidity sensor had been exposed in the open atmosphere with high humidity 
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level for a long time, not only adsorption occurred, but there was chemisorption. The 

humidity sensor needs more time during desorption to get rid of water molecules 

formed by chemisorption, that’s why we get lower readings the next day. Hysteresis is 

unavoidable in all empirical sensors, it is a good thing that this humidity sensor shows 

little hysteresis phenomenon, which make it more capable of giving reliable readings. 

To compensate hysteresis, we can simply use the average value of two day’s readings. 

If we zoom in the figure in the lower humidity range, we noticed that the dew point 

transmitter FA410 (CS Instrument) gave flawed readings at around -60°C. When the 

actual humidity level is 
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Figure 6.4 Flaw of CS Instrument’s Humidity Sensor 
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decreasing, which is shown by lowered readings, the FA410 kept output the same dew 

point. This can be the sensor’s incapability of sensing ultra-low humidity level, or 

more probably the flaw within the sensor circuit or program. Either one makes it a not 

very good humidity transmitter. For real humidity calibration, this FA410 humidity 

sensor is barely usable. But for the time being, we can at least utilize it to do research 

of further modeling methods. When doing the data modeling, the flawed data will be 

eliminated.  

The figure below shows all the dew point/Reading relations all together. 
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Figure 6.5 Comparison of Different Dew Point/Reading Relations 
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The figure above shows all tested dew point and reading relations. We can see that for 

very lower dew points (dew point < -50°C), the circuit readings under different 

temperatures are about the same, and there isn’t much difference. But at higher dew 

point range, if the temperature is higher, the circuit reading would be lower. We can 

almost feel the changing trend, careful modeling methods are discussed next chapter 

to get all those data points in between these lines. 
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Chapter 7 Temperature Compensation Modelling 

With the valuable experiment data obtained, the next and the most important step is 

data modeling. The problem is how to get all the other dew point – temperature – 

circuit reading points as accurate as possible. In mathematical field of numerical 

analysis, interpolation is a method of constructing new data points within the range of 

a discrete set of known data points. 

After getting median readings of a same dew point and eliminating the false readings 

we get those datasets that can then be used for data modeling. The following table 

shows all the datasets: 

Table 7.1 Modeling Points 

0°C 10°C 22°C 

DP Reading DP Reading DP Reading 

-1.88 11500.5 7.6875 19828.25 18.34 20982 

-7.00 7034.5 0 8090.5 16.5 17000 

-22.00 4187.5 -7 5704.1 8.9375 8116.75 

-35.81 3278.9 -22 3840 0 5916 

-48.75 2744.8 -35.812 3052.9 -7 4927.6 

-56.63 2570 -48.75 2688.9 -22 3409.5 

-76.63 2403 -76.688 2426 -35.812 2811.1 

    -48.75 2616.6 

    -76.688 2430 

30°C 40°C 50°C 

DP Reading DP Reading DP Reading 

17.25 10385 16.75 7646.75 16.75 6752.75 

8.94 6980 8.94 6223 8.94 5584.75 

0.00 5560.5 0.00 5072.25 0.00 4504 

-7.00 4646.1 -7.00 4193.9 -7.00 3794.4 

-22.00 3242.1 -22.00 3063.9 -22.00 2951 

-35.81 2773.6 -35.81 2725.4 -35.81 2716.5 

-48.75 2625.1 -48.75 2627.4 -48.75 2633.4 

-76.63 2452 -76.69 2481 -76.69 2503 
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It’s not difficult to find out that this turns out to be a multivariate interpolation 

problem, when you need more than one variable to determine and get the output or 

interpolated value. For this problem specifically, a temperature and a dew point will 

correspond to a single circuit reading. If we picture it using a 3D model, the datasets 

are actually points in it whose three axes represent dew point, ambient temperature, 

and circuit reading. 

 

Figure 7.1 3D Scatter Plot of Datasets 

7.1 Two Dimensional Analysis 

7.1.1 Linear Interpolation 

Remember in last chapter, for the curve of dew point and reading relationship of a 

specific temperature, the data points are connected by straight lines. This used the 
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method of linear interpolation. It is one of the simplest interpolation methods, for two 

data points on a plane (𝑥𝑎 , 𝑦𝑎) and (𝑥𝑏, 𝑦𝑏), at point (𝑥, 𝑦) the interpolant is given by: 

y = 𝑦𝑎 + (𝑦𝑏−𝑦𝑎)
𝑥 − 𝑥𝑎

𝑥𝑏−𝑥𝑎
 

Linear interpolation is quick and easy, but it is not very precise, the error is smaller 

when the distance between data points gets smaller. 

7.1.2 Polynomial Interpolation 

Given n points in a plane, (𝑥𝑘, 𝑦𝑘), k = 1, … , n. with distinct 𝑥𝑘, there is a unique 

polynomial in x of degree less than n whose graph passes through the points. This 

polynomial is called the interpolating polynomial. The interpolant is a polynomial so 

thus infinitely differentiable. Although it is smoother than linear interpolation, it also 

has some disadvantages. It is computationally expensive compared to linear 

interpolation and furthermore it may exhibit oscillatory artifacts especially at end 

points, this is known as Runge’s phenomenon in numerical analysis. This makes 

polynomial interpolation not quite usable in engineering problems. 

7.1.3 Piecewise Cubic Interpolation 

Many more effective and accurate interpolation techniques are based on piecewise 

cubic polynomials. MATLAB has two different functions for piecewise cubic 

interpolation, spline and pchip. Spline is the most famous member in the piecewise 

cubic polynomial family. All piecewise cubic polynomials are continuous and have a 

continuous first derivative, a spline however is exceptionally smooth, its second 

derivative is also continuous [35]. The function pchip actually stands for shape 
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preserving piecewise cubic Herimite interpolating polynomial. This function is not as 

smooth as spline, there may be jumps in the second derivative. It is designed so that it 

never locally overshoots the data, this makes it very useful for many real world 

problems [36]. Pchip is local, the behavior of pchip on a particular subinterval is 

determined by only four points, the two dada points on either side of that interval. It is 

unaware of the data farther away. Spline is global, the behavior of spline on a 

particular subinterval is determined by all of the data. Below is a figure of different 

interpolation methods responding to a unit impulse. 

 

Figure 7.2 Comparison of Different interpolation Methods to an Impulse 

Noticed in the figure that the support of pchip is confined to the two intervals 

surrounding the impulse, while the support of spline extends over the entire domain. 
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The polynomial interpolation is simply too oscillatory. The following eight subplots 

spline and pchip on a slightly larger data set.  

 

Figure 8.3 Spline Vs Pchip 

The first two plots show the function s′(x) and p′(x), the difference between these 

two interpolants is barely noticeable. The next two plots show the first derivatives, 

they are both continuous but s′(x) is smoother than p′(x). The third pair of subplots 

show the second derivatives, s′′(x) is continuous but p′′(x) jumps at sample points. 

The final pair are the third derivatives. Because both functions are piecewise cubic 

polynomials, their third derivatives s′′′(x) and p′′′(x), are piecewise constants. 

Here are some difference between spline and pchip [37]: 

 Spline produce a smoother result 

 Spline produce a more accurate result if the data consist value of a smooth 
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function 

 Pchip has no overshoots and less oscillation if the data are not smooth 

 Pchip is less expensive in calculation 

Below is a figure of different interpolation methods used to interpolate circuit 

readings at 30°C: 

 

Figure 7.4 Comparison of Different Interpolants Using Dataset at 30°C 

Again the polynomial interpolation is too oscillatory at end points. The difference of 

spline and pchip between the data points is barely noticeable, however the 

extrapolation of spline at high dew point range seems more accurate than pchip. For 

low range dew point extrapolation, we can use linear interpolation. 
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7.2 Three Dimensional Analysis 

Matlab offer the function interp2 for 3 dimensional interpolation and extrapolation, 

the syntax is Vq = interp2(X, Y, V, Xq, Yq, method). It has four methods, ‘linear’, 

‘nearest’, ‘cubic’, and ‘spline’. X, Y are sample grid points specified as matrices or 

vectors, if X and Y are matrices, then they contain the coordinates of a full grid, a full 

grid is a pair of matrices whose elements represent a gird of points over a rectangular 

region. If X and Y are vectors, then they must be strictly monotonic and increasing. 

For this dew point modeling problem, because different temperatures may have 

different number of readings, so the function interp2 cannot be used here. The Matlab 

function “griddata” is actually for this kind of scattered data interpolation, but the 

results are not acceptable. We can create an interpolation script using existing Matlab 

functions for this problem specifically. The algorithm is introduced in following 

sections, and it extends the use of pchip to 3 dimensional interpolations. 

7.2.1 Artificial Neural Networks Method 

A more advanced method for data fitting and pattern recognition is using ANN or 

artificial neural networks. A neural network consists of neurons, grouped in layers. 

The most commonly used ANNs are feed-forward networks. The following figure 

shows the structure of a neural network: 
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Figure 7.5 General Structure of a Neural Network 

Matlab has a very easy to use neural networks tool box that support several usages. 

For example, curve fitting and pattern recognition. To work with neural networks 

curve fitting app in Matlab, the sequence of the training process is as follows: 

1. Feed the neural networks with inputs and outputs, in this case the inputs are dew 

points and corresponding temperatures, the outputs are circuit readings. The dew 

points and temperature are combined to form a 47 × 2 matrix, the neural 

networks tool box has no limitation for matrix or vector monotonicity. 

2. Chose the percentage of validation data and testing data, the default setting is 

training data takes 70%, validation data and testing data take 15% respectively. 

Validation data are used to measure network generalization, and stop training 

when generalization stops improving. Testing data have no effect on training and 

used to measure the network performance during and after training. 

3. Chose the number of hidden neurons. The standard network that used for function 
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fitting is a two-layer feed forward network, with a sigmoid transfer function in the 

hidden layer and a linear transfer function in the output layer. The default number 

of hidden neurons is set to 10. This number can be increased later if the network 

training performance is poor. The following graph show the implemented neural 

network: 

 

Figure 7.6 Implemented Neural Network Diagram 

4. Select a training algorithm, the default is Levenberg-Marquardt algorithm and is 

recommended for most problems. For some small and noisy problems Bayesian 

Regularization can take longer but obtain a better solution. For larger problems, 

Scaled Conjugate Gradient is recommended as it uses gradient calculations which 

are more memory efficient than the Jacobian calculations the other two algorithms 

use. 

After training using a specific algorithm, the training result is shown. The MSE stands 

for mean squared error is the average squared difference between outputs and targets. 

Lower values are better. Zero means no error. The Regression R values measure the 

correlation between outputs and targets. An R value of 1 means a close relationship, 0 

is random relationship. All three algorithms are used to train this problem, or some 

reason however, no satisfactory results were given, the errors are exaggeratingly big. 
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No matter how many times you retrain the network, the scale of error still cannot be 

reduced. The results for three different algorithms are shown below: 

 

Figure 7.7 Sample Results Using Levenberg-Marquardt Algorithm 

 

Figure 7.8 Sample Results Using Bayesian Regularization Algorithm 

 

Figure 7.9 Sample Results Using Bayesian Regularization Algorithm 

The number of neurons in the network was increased, the retraining takes much 

longer but the results are still not good. I’ve also tried to increase the percentage of 

training data, but this also didn’t work. The only way possibly to reduce error is to 

provide the network with a bigger data set, especially when the inputs are more than 

one. The training data were just too few for existing neural networks algorithms to 

produce an accurate result. However, Acquiring more input datasets are time 

inefficient. Those neural networks algorithms are general purpose algorithms, so they 

are less that powerful when not enough training data are provided. Humans have 

billions of real neurons and are not confined to little number of algorithms, in the 
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model presented in figure 8.1 we can almost feel the tendency of the surface. It is 

possible to design a dedicated algorithm to produce very accurate results.  

7.2.2 3-D Delaunay Triangulation  

Another possible method for 3 dimensional data fitting is by creating triangular 

surfaces of the data points. The following is a wired surface graph generated by origin 

pro, and it uses Delaunay triangulation. Delaunay triangulation can be used to create a 

continuous surface from a set of data points by creating a triangular mesh or surface 

of triangular planes connecting the data points. Delaunay triangulation is considered 

to be a desirable approach for creating natural-looking surfaces because minimum 

interior angles of all triangles are maximized and triangles are as equiangular as 

possible, so long, thin triangles are avoided. 

 

Figure 7.10 Delaunay Triangulation Wired Surface of Data Points  
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Because we know each point on each of these triangles, it’s not hard to get all other 

points on that triangle surface. The circuit readings are more “sensitive” to dew point 

at lower humidity range, a little change in circuit reading will change the dew point. If 

you get a section view of the graph by this method, you’ll actually see a zigzag shape 

of line. If x is one particular dew point and Reading(x) is the corresponding circuit 

reading, for a good interpolation of our humidity sensor application, the interpolated 

curve of dew point and circuit reading relation under a certain temperature should 

conform to the following rules: 

1. The curve passes through all sample data 

2. Reading(x+1) > Reading(x) 

3. Reading(x+1) – Reading(x) > Reading(x) – Reading(x-1) 

For the above algorithm, it does not abbey rule 2 and 3, so it is not good and not 

suitable for our application. Although we can’t use this method directly, it inspired me 

to design my own interpolation algorithm. The interpolation through Delaunay 

triangulation is like using linear interpolation in multiple planes. In earlier section 

we’ve seen how well the pchip function in Matlab did in 2 dimensional interpolations. 

Basically the following implemented algorithm is using pchip function in multiple 

planes. 

7.2.3 An Algorithm for Sensor Temperature Compensation 

The algorithm is implemented using Matlab. First use pchip function on the circuit 

reading and dew point relation of all 6 tested temperatures. For convenience of 
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modeling, I used -81°C as the lowest dew point, later experiments shows that this is 

more close to the actual dew point which is -82°C. This is the reason why empirical 

sensors should not be used for calibration, it’s not accurate. Those interpolation 

curves are generated directly from sample points so we assume they are the most 

accurate ones, we can further construct the surface using all the points on these curves. 

Because the circuit readings were measured at the same dew points of all tested 

temperatures, if we fixed the dew point value, we can get relation of circuit reading 

and temperature of one particular dew point. We can round the tested dew points to 

the following integers -80°C, -49°C, -36°C, -22°C, -7°C, 0°C, 7°C, 9°C, 17°C. For 

those dew points above 0°C, the number of sample data is smaller. For illustration 

purpose, the interpolation at dew point 0°C using pchip is shown below: 

 

Figure 7.11 Relation of Temperature and Circuit Reading at 0°C Dew Point 

0 10 20 30 40 50 60
4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

temperature

c
ir
c
u
it
 r

e
a
d
in

g



 

70 

 

We can then do this with other dew points. Then the interpolation of dew point and 

reading relation from temperature 17°C to 49°C are made also using pchip. For those 

between sample temperatures, previously interpolated values are used for further 

interpolation. The reason why started from temperature 17°C here is that the readings 

at dew point 17°C can now be used here, and for above 20°C temperatures, the 

highest dew point keeps constant to be 20°C, the extrapolation range is small to keep 

the accuracy. The interpolations below temperature 17°C need a bit more work. From 

here the highest dew point under a temperature is the same as the temperature. We can 

first get that highest dew point circuit reading by extrapolate 1°C temperature below 

all those previously interpolated readings. For example, if I want to get interpolation 

of dew point and reading relation at temperature 16°C, I want to know the circuit 

reading at highest dew point, which is also 16°C. The circuit reading at dew point 

16°C is already interpolated through all those previously interpolated temperatures 

above 16°C, so we can just extrapolate 1°C temperature below to get the circuit 

reading of dew point 16°C at temperature 16°C. The interpolation at temperature 

16°C can be made. The process goes on and on until the interpolation under 

temperature 1°C. It’s like weave the surface back and forth from two planes using 

pchip. Below is the final result, the figure contains 4941 points: 
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Figure 7.12 Results after Implementing the Algorithm (1) 

If switch the parameter of the axes, the following graph is more familiar: 

 

Figure 7.13 Results after Implementing the Algorithm (2) 
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We can see the result of using this dedicated algorithm is much better and smoother 

than the previous ones. Noticed the big space between those high humidity readings, 

this means that the tolerance for error is much bigger than those of very low humidity. 

7.2.4 Embedded Code Implementation 

Now that we get all the reading of different dew points under different temperatures, 

we can now implement code working with other modules to get dew points. The 

reading data is stored as matrix or 2-D array in the flash memory of memory MSP430. 

The indexes of the first dimension indicate temperatures, and indexes of the second 

dimension indicate the dew points. The algorithm is fairly easy, a function was 

written to take two arguments, one is temperature, the other is circuit reading, the 

reading was compared with the readings of an array corresponding with the 

temperature, and the function returns the dew point value.  
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Chapter 8 Conclusion and Future Work 

8.1 Conclusion 

The dew point meter described in this thesis is based on an alpha-alumina-based 

humidity sensor, which is a drift-free humidity sensor. Experiments of the sensor 

showed great performance of long time stability and reliability. A prototype of a 

humidity meter was developed using slope A/D conversion technique. The embedded 

system based on MSF430 microcontroller was improved for better performance. The 

sensor showed very good capability of measuring very low humidity. 

The Peltier effect temperature chamber offered an affordable way of controlling the 

temperature between range of -5°C to 60°C, the capacitance of the humidity sensor 

was tested under different temperatures and different humidity levels. After collecting 

the data points, several interpolation methods were studied. Neural networks is also a 

good tool for non-linear data fitting, but the data points in this research are not enough 

for a satisfactory training result. An innovative interpolation algorithm was developed, 

it extends the usage of pchip in Matlab to 3-dimensional interpolation, when two 

variables determine an interpolant. The end result forms a very smooth “surface”. 

Experiments have shown that the interpolated dew points are very close to the dew 

points in real measurement, with deviation no more than ±2°C. The industrial 

standard for empirical humidity sensor deviation is ±3°C. So this algorithm is a very 

useful tool for humidity sensor temperature compensation. With proper adjustments it 

can also be used in other property compensation of all kinds of sensors.  
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8.2 Future Work 

As introduced in chapter 2, the humidity measurement is also in close relationship 

with air pressure. Because this research focuses on sensor temperature compensation 

and the testing hardware doesn’t allow us to test it under different pressures.  

Although we can get the humidity level under a certain temperature to under different 

pressures using known conversion formulas. There is a question mark of whether the 

pressure level has an effect to sensor behavior. 

The experiment conditions have great space of improvement, a flat mirror hygrometer 

is really essential in calibrating this sensor. Also the tubing should be replaced with 

those made of stainless steel, which suffered much less hydroscopic than hard plastic 

materials. This makes low humidity measurement more accurate, and the hysteresis 

phenomenon can be reduced. More advanced testing equipment can also be used in 

the future that provide greater temperature range and generate a more precise 

controlled and wider level of ambient humidity. The hardware and software need 

maintenance and can also be updated for better performance and functionality. The 

algorithms and techniques in modeling the humidity sensor for temperature 

compensation can also be utilized for compensation of other properties as well. An 

automated calibration system can be developed based on those previous researches. It 

should have the ability to calibrate quite a few humidity sensors simultaneously, 

record the data and control the air flow rate, humidity level, everything works 

automatically and need very little human operation. 
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