
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Theses and Dissertations--Chemical and 
Materials Engineering Chemical and Materials Engineering 

2014 

A MULTIDISCIPLINARY TECHNO-ECONOMIC DECISION SUPPORT A MULTIDISCIPLINARY TECHNO-ECONOMIC DECISION SUPPORT 

TOOL FOR VALIDATING LONG-TERM ECONOMIC VIABILITY OF TOOL FOR VALIDATING LONG-TERM ECONOMIC VIABILITY OF 

BIOREFINING PROCESSES BIOREFINING PROCESSES 

Sumesh Sukumara 
University of Kentucky, pansumesh@gmail.com 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Sukumara, Sumesh, "A MULTIDISCIPLINARY TECHNO-ECONOMIC DECISION SUPPORT TOOL FOR 
VALIDATING LONG-TERM ECONOMIC VIABILITY OF BIOREFINING PROCESSES" (2014). Theses and 
Dissertations--Chemical and Materials Engineering. 42. 
https://uknowledge.uky.edu/cme_etds/42 

This Doctoral Dissertation is brought to you for free and open access by the Chemical and Materials Engineering at 
UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Chemical and Materials Engineering by 
an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu. 

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/cme_etds
https://uknowledge.uky.edu/cme_etds
https://uknowledge.uky.edu/cme
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu


STUDENT AGREEMENT: STUDENT AGREEMENT: 

I represent that my thesis or dissertation and abstract are my original work. Proper attribution 

has been given to all outside sources. I understand that I am solely responsible for obtaining 

any needed copyright permissions. I have obtained needed written permission statement(s) 

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing 

electronic distribution (if such use is not permitted by the fair use doctrine) which will be 

submitted to UKnowledge as Additional File. 

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and 

royalty-free license to archive and make accessible my work in whole or in part in all forms of 

media, now or hereafter known. I agree that the document mentioned above may be made 

available immediately for worldwide access unless an embargo applies. 

I retain all other ownership rights to the copyright of my work. I also retain the right to use in 

future works (such as articles or books) all or part of my work. I understand that I am free to 

register the copyright to my work. 

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE 

The document mentioned above has been reviewed and accepted by the student’s advisor, on 

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of 

the program; we verify that this is the final, approved version of the student’s thesis including all 

changes required by the advisory committee. The undersigned agree to abide by the statements 

above. 

Sumesh Sukumara, Student 

Dr. Jeffrey R. Seay, Major Professor 

Dr. Thomas Dziubla, Director of Graduate Studies 



A MULTIDISCIPLINARY TECHNO-ECONOMIC DECISION SUPPORT 

TOOL FOR VALIDATING LONG-TERM ECONOMIC VIABILITY OF  

BIOREFINING PROCESSES 

 DISSERTATION 

            

           

 A dissertation submitted in partial fulfillment of the 

 requirements for the degree of Doctor of Philosophy in the  

College of Engineering  

at the University of Kentucky 
By  

Sumesh Sukumara 

Lexington, Kentucky 

Director: Dr. Jeffrey R. Seay, Associate Professor of Chemical & Materials 

Engineering 

Co-Director: Dr. Stephan E. Rankin, Professor of Chemical & Materials Engineering 

University of Kentucky, Paducah, Kentucky 

2014 

Copyright © Sumesh Sukumara 2014  



ABSTRACT OF DISSERTATION 

A MULTIDISCIPLINARY TECHNO-ECONOMIC DECISION SUPPORT TOOL 

FOR VALIDATING LONG-TERM ECONOMIC VIABILITY OF  

BIOREFINING PROCESSES 

 Increasing demand for energy and transportation fuel has motivated researchers 

all around the world to explore alternatives for a long-term sustainable source of energy. 

Biomass is one such renewable resource that can be converted into various marketable 

products by the process of biorefining. Currently, research is taking strides in 

developing conversion techniques for producing biofuels from multiple bio-based 

feedstocks. However, the greatest concern with emerging processes is the long-term 

viability as a sustainable source of energy. Hence, a framework is required that can 

incorporate novel and existing processes to validate their economic, environmental and 

social potential in satisfying present energy demands, without compromising the ability 

of future generations to meet their own energy needs. 

 This research focuses on developing a framework that can incorporate 

fundamental research to determine its long-term viability, simultaneously providing 

critical techno-economic and decision support information to various stakeholders. This 

contribution links various simulation and optimization models to create a decision 

support tool, to estimate the viability of biorefining options in any given region. 

Multiple disciplines from the Process Systems Engineering and Supply Chain 

Management are integrated to develop the comprehensive framework. Process 

simulation models for thermochemical and biochemical processes are developed and 

optimized using Aspen Engineering Suite. Finally, for validation, the framework is 

analyzed by combining the outcomes of the process simulation with the supply chain 

models. The developed techno-economic model takes into account detailed variable 

costs and capital investments for various conversion processes. Subsequently, case 

studies are performed to demonstrate the applicability of the decision support tool for 

the Jackson Purchase region of Western Kentucky. The multidisciplinary framework is 

a unique contribution in the field of Process Systems Engineering as it demonstrates 

simulation of process optimization models and illustrates its iterative linking with the 

supply chain optimization models to estimate the economics of biorefinery from multi-

stakeholder perspective. This informative tool not only assists in comparing modes of 

operation but also forecasts the effect of future scenarios, such as, utilization of 

marginal land for planting dedicated energy crops and incorporation of emerging 

enzymatic processes. The resulting framework is novel and informative in assisting 

investors, policy makers and other stakeholders for evaluating the impacts of 

biorefining. The results obtained supports the generalizability of this tool to be applied 

in any given region and guide stakeholders in making financial and strategic decisions. 

 

 



KEYWORDS: Biorefining Supply Chains, Biofuels, Lignocellulosic Biomass,  

   Sustainability, Strategic Decision Support Tool 
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1. Introduction and Motivation 

1.1 Overview 

 Easy access to power and fuel has made our lives dependent on energy, as most 

of the day to day activities requires it in one form or another.  In recent years, there has 

been a significant increase in the consumption of energy and transportation fuel. 

Presently, in the USA, a major portion (79.8%) of the energy demand is met by 

domestic and imported fossil fuels [1]. It is forecasted that by 2040, the total energy 

consumption of the world will increase by 56% compared with 2010 [2]. Figure 1.1 

shows the current and projected increase in energy consumption by major sectors, such 

as, residential, commercial and transportation. Unfortunately, with limited reserves and 

concentration of these in specific geographic locations, the reliance on fossil fuels is 

susceptible to fluctuating availability (due to natural and political reasons) and price 

volatility. Hence, there has been an increasing urge to find a long-term solution to meet 

the stretching energy demand in a sustainable manner. There are many ways of 

producing renewable energy, amongst which biomass has intrigued many researchers 

due to its widespread availability and the potential to produce a wide range of products.  

 “A biorefinery is a facility that integrates conversion processes and equipment 

to produce fuels, power and chemicals from biomass” [3]. Biomass can be processed 

into various products through multiple conversion techniques which have the potential 

to replace existing fossil based production routes. In order to convert this vision into 

reality, it is essential to estimate the economic, environmental and social impacts of the 

potential biorefinery and plan long-term tactical decisions accordingly [4]. Based on 

thousands of years of experience in growing various edible and non-edible biomass 

sources, mankind has acquired expertise in its production. However, when compared 

with fossil fuels, the use of biomass for producing energy and chemicals possesses 
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various inherent disadvantages, such as, low energy density, seasonal variability, region 

specific availability, adapting with the varying market demand and low conversion 

yields [5, 6]. Nevertheless, biomass is one of the most promising renewable energy 

sources and has several advantages over fossil resources, such as, reduced 

environmental impact (based on greenhouse gas (GHG) emissions and utilization of 

present land for existing conversion technologies) [7, 8], reduced dependency on 

imported fuels and promotion of local agriculture resulting in the growth of local 

business and economy [9, 10]. Additionally, among the available options for renewable 

resources, integrated biorefining techniques stand prominent to substitute existing fossil 

based processes to produce transportation fuel and chemicals [11].  

 

Figure 1.1 Current and future energy consumption by various sectors [2] 

 Among various bio-based resources, second generation lignocellulosic biomass 

is considered to be a practical and viable source of energy as it offers no food 

competition, GHG emissions reduction [12] (sensitive towards the type of biomass and 

the subsequent assumptions made for the LCA studies [7, 13]) and diverse choice of 
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feedstock. The types of second generation biomass that can be used for the production 

of energy and transportation fuel is comprised of woody plants, agricultural wastes, 

herbaceous plants, aquatic plants, dedicated energy crops and animal wastes [10, 14]. 

Additionally, in certain geographical locations co-firing with coal can be an 

economically viable option. However, low energy density and recalcitrance offers 

several logistical and technical challenges in producing biofuel derived from second 

generation biomass [10, 15, 16]. Hence, the biomass transportation and biofuel 

production network must be planned, taking into account all the uncertainties to 

accurately evaluate future viability and corresponding impacts of biorefining processes. 

 Supply chain logistics of biomass from collection points to the potential 

biorefinery site and thereafter to the delivery location of the end products plays an 

important role in determining the economics of a biorefinery. Key parameters of 

operational planning, such as, biomass harvesting, collection, storage, transportation, 

preprocessing, biofuel or/and energy production and final product distribution must be 

considered while selecting a process, feedstock and facility location [17, 18]. 

Additionally, every possible supply chain configuration must be evaluated to determine 

an optimum scheme for any given region of interest. 

  Similarly, decisions regarding selection of an appropriate processing technique 

must be taken. The conversion technologies for biorefining can be broadly classified as 

thermochemical, biochemical and hybrid processes. The goal of these processing 

techniques is to overcome biomass recalcitrance to produce intermediates and final 

products that can be marketed directly or be used as feedstocks for subsequent 

processing. The choice of conversion route has a significant impact on the economics, 

environmental emissions and social aspects, thereby, influencing the long-term 

viability of the respective conversion route. Figure 1.2 shows a pictorial representation 
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of the complexity of a supply chain for biorefining to produce transportation fuel. This 

figure intends to show a minor segment of the intricate scenario. In reality, a supply 

chain for biofuel production will rely upon several decisions that must be made based 

on multiple variability and uncertainty in parameters.  

 Currently, governments around the world are taking initiative in providing 

monetary support to encourage research and development activities in order to 

commercialize the production of biofuels. Renewable Fuel Standards (RFS) were 

developed by United States Environmental Protection Agency (EPA) in collaboration 

with refiners, biofuel producers and various stakeholders which originally aimed to 

produce 7.5 billion gallons of renewable fuel by 2012. The RFS program was extended 

under the Energy Independence and Security Act (EISA) of 2007 which targeted an 

increase in the production of renewable transportation fuel from 9 billion gallons in 

2008 to 36 billion gallons by 2022 [19]. Also, in 2012 more than 1 billion US dollars 

were invested by the US Department of Energy in order to develop integrated 

biorefinery projects; major emphasis being on cellulosic and hydrocarbon fuel projects 

[20]. The European Union (EU) had set mandates and targets to encourage the 

production of renewable energy. A 20-20-20 target was set by EU in 2007 which aimed 

at increasing the share of renewable energy by 20%, enhancing the energy efficiency 

by 20% and reducing the GHG emissions by 20%. Also, the European Commission 

(EC) had invested 1.2 billion euros in multiple innovative projects for producing 

advanced biofuels via thermochemical and biochemical processes [20]. In order to 

justify the heightened projections and validate various biorefining processes a 

framework is required that can estimate the long term economic, environmental and 

societal impacts of existing and emerging processes. 
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Figure 1.2 Complex supply chain of a biorefinery from feed source to end users 

Note: Maps are plotted using NREL’s biofuels atlas (NREL 2012). *The sites are 

determined by EPA as a part of an initiative to identify contaminated locations that 

can serve as sites for potential renewable energy projects. Several other criteria’s must 

be satisfied before selecting a site for biorefining. 
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 While all the previously mentioned initiatives will be a great encouragement for 

investors, policy makers, suppliers, growers and other beneficiaries, we still lack a 

realistic model that can quantify these region specific impacts of a potential biorefinery. 

Hence, we need a framework that can be used by various stakeholders to assist in the 

decision making process in their respective domains. The developed framework should 

be informative and also be useful for testing potential hypothetical scenarios to mitigate 

undesirable outcomes. This dissertation research will develop a techno-economic 

framework that can be used as a decision support tool by stakeholders to test the 

viability of existing and emerging biorefining processes. By virtue of this contribution 

multidisciplinary decision support tool is developed that guides stakeholders to meet 

the targets set by EISA in developing biofuels from lignocellulosic bio-based feedstock. 

In addition, the developed multidisciplinary framework can be used by various 

stakeholders such as investors, policy makers, environmentalists and growers to 

determine concerning impacts of biorefineries based on lignocellulosic and waste 

biomass. 

1.2 Research Contributions 

 In the last decade, there have been several efforts to develop decision support 

frameworks in order to determine the long-term economic, environmental and social 

impacts of a biorefinery, such as, net profit, emissions and jobs created, respectively. 

The goal of this research is to develop a techno-economic framework that combines 

process simulation and supply chain optimization in order to determine the optimal 

biorefinery configuration while capturing realistic aspects of the conversion processes. 

The following points describe the technical contributions and the novel applications 

that have been achieved as an outcome of this research. Each of the following points 

will be elaborated with sufficient examples in the subsequent chapters: 
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 The novel techno-economic framework developed provides a unique linking of 

process simulation [21] and supply chain optimization models [22], that can be used 

to determine the optimum configuration of various biorefining processes. A 

comprehensive description of the model development and corresponding results are 

documented in Chapter 4, 6 and 7, respectively. 

 The developed model results in a novel approach by linking multiple stand-alone 

simulation and optimization models in an iterative manner to determine optimum 

operating capacity for various conversion techniques. The described approach is 

anticipated to be extremely effective as it would, in contrast to contemporary work, 

provide greater control over process parameters. 

 The framework can be used by stakeholders to test various suppositional schemes 

for the application of producing renewable energy. Chapter 8 would show the 

application of the framework to a hypothetical case study as a proof of concept. 

Another application is presented in Chapter 8 that illustrates how this model can be 

used by experimentalists to further validate the practical applicability of their 

research outcomes. 

 The flexible nature of the framework allows users to test various combinations of 

feed and conversion technologies with minor changes in the modeling formulation. 

Chapter 6 and 7 presents applications of the framework to thermochemical and 

biochemical processes that further fortifies the claim. 

 The developed framework does not intend to justify any particular conversion 

process nor does it aim to advocate the potential for a biorefining in any particular 

region. Instead, the model intends to answer critical questions, such as: 

 Can biorefining in any given region be profitable? 

 What feeds or process configurations will be economically viable? 
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 What would be the configuration of an economically optimum supply chain? 

 What are the most sensitive parameters in determining the cash flow? 

 What decisions should be taken while planning a biorefinery to mitigate future loss? 

 The merit of this framework lies in its generalizability to incorporate various 

biorefining processes and validating its application to diverse geographical locations. 

The formulated decision support model is not a Life Cycle Assessment (LCA) tool but 

it can provide critical logistic and operational details to various LCA frameworks. The 

boundaries of this contribution lies in capturing the economic impacts of various stages 

of biorefining, starting from the collection and transportation of biomass followed by 

the production of biofuels and finally the distribution of end products. 
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2. Background and Gaps in Current State of Knowledge 

 The word “sustainability” has many definitions depending on the context of use. 

One of the broadly accepted definitions being:  

“A sustainable development is the development that meets the need of the present 

without compromising the ability of future generations to meet their own needs.” [23, 

24]. 

 In order to validate sustainability of integrated biorefining techniques, it is 

necessary to estimate future economic, environmental and societal outcomes while 

planning for its operations [25, 26]. Likewise, if a process has to be sustainable over 

time, the production scheme and related impacts must be foreseen during the initial 

stages. Also, it is critical to capture the contradictory objectives, possible production 

choices and corresponding supply, conversion and market uncertainties [27]. The 

research to be presented in this dissertation aims to explore the synergies between 

chemical engineering and sustainability to develop a unique framework that can 

optimize processes based on economic objectives. The following sections will 

summarize detailed contributions made to estimates of various aspects of sustainability.  

2.1 Biorefining 

 Until the last few decades, biorefining did not receive significant attention, even 

though it has been practiced for hundreds of years. Previously, there have been unique 

examples of operating biorefineries [28], but due to the realistic advantages possessed 

by fossil based fuels, it did not receive sufficient attention to be envisioned in a large 

scale. Presently, the need for renewable resources has led to the exploration of 

biorefining possibilities. Biomass is a unique feedstock that has the potential to partially 

transform the existing fossil dominated energy sector [29]. Adding to this, the capability 
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of converting a wide range of products using a broad choice of feedstock makes 

biomass an ideal resource to research for its viability.  

2.1.1 Feedstock for Biorefining 

 Selection of processes for producing biofuels is mainly based on the type and 

composition of the biomass available. The feedstock for biorefining can be broadly 

classified into the following four categories:  

 First generation biomass: First generation biomass mainly consists of oil and 

starches from food crops [29, 30]. Currently, most commercial biorefineries use 

first generation biomass as a feedstock. However, there are a few critical 

disadvantages associated with this practice, such as, limited availability and food 

competition which makes it an undesirable feedstock for large scale production of 

biofuels in the future.  

 Second generation biomass: These bio-based feedstocks mainly consists of 

lignocellulosic plants and waste biomass. Lignocellulosic biomass mainly consists 

of lignin, cellulose and hemicellulose, which must be broken down into smaller 

compounds by various conversion techniques to produce biofuels. Lignin is a 

polymer of aromatic alcohols, whereas, cellulose and hemicellulose are polymers 

of carbohydrates. The composition of these polymers vary from one biomass source 

to another; changing the process configurations and feasible product slates [10, 31]. 

Second generation feedstock is considered to be advantageous compared to first 

generation as it can be used to produce a wide range of products and doesn’t 

compete with the food supply [29, 30]. As mentioned previously, second generation 

biomass encompasses an extensive range of feedstocks that further substantiates its 

potential usage as a renewable resource. The major disadvantage with these are the 



11 

 

low energy density and robust structure which creates transportation and conversion 

problems.  

 Third generation biomass: Third generation biomass mainly consists of algae as 

feedstock. The micro algae can be used to produce oils and hence has a major 

disadvantage of high water consumption [30, 32]. 

 Fourth generation biomass: Fourth generation biomass like the third utilizes algae 

as a feedstock. However, the former is based on metabolic engineering to produce 

biofuels [32]. While fourth generation biomass offers advantages, such as, less 

processing steps, most of the projects are in research stage and has a disadvantage, 

such as, higher capital cost compared to third generation biomass [33].  

 Comparing all the previously mentioned biorefining processes, based on the 

current technological advances, it is evident that second generation biomass is the most 

promising and appropriate feedstock to be applied for the long-term production of 

biofuels and energy. Adding to the advantages, second generation biomass can also be 

co-fired with coal, making it partly adaptable to an existing coal based infrastructure.  

2.1.2 Conversion Processes 

 The ability to convert biomass to multiple marketable products makes it the 

heart of the field to product supply chain. For years, biomass has been used as a source 

of energy for heating purposes and energy for the human body in the form of food. 

Later on, fossil fuels (derived from biomass) were discovered, which were higher in 

energy content and used to meet the escalating energy needs of the society. The progress 

in technology led to the use of these fossil and other bio-based resources to be converted 

into fuel and chemicals which has been used to meet the energy needs of our day to day 

lives. One of the major challenges with biorefining is to produce fuels and chemicals 

that can compete with existing products derived from fossil-based resources on an 
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economic basis, making it a very competitive area of research. The biomass to biofuel 

conversion processes can be principally classified into three categories: 

 Thermochemical process: These processes use heat as one of the major inputs to 

convert the large molecules present in biomass into smaller usable forms of 

hydrocarbons and chemicals. The two commonly used thermochemical processes 

are gasification and pyrolysis [14]. Gasification is the process in which biomass is 

broken down into H2, CO, CO2, CH4, tar and ash in the limited presence of steam 

and oxygen [34]. The synthesis gas produced can be further processed to produce 

power, liquid biofuels and commercial chemicals [35]. Whereas, in pyrolysis the 

biomass is heated in the absence of oxygen to produce bio-oil, char and gases [36]. 

The major advantage of thermochemical process is the possibility of the utilization 

of a wide range of feedstock and high reaction rates.  

 Biochemical process: These processes use micro-organisms to break down lignin, 

hemicellulose and cellulose to products. Fermentation and anaerobic digestion are 

the two major biochemical conversion process [14]. Unlike thermochemical, 

biochemical processes are relatively more feed specific and have lower reaction 

rates. 

 Hybrid process: This conversion technique makes use of both thermochemical and 

biochemical process in succession to produce various products. A study performed 

by Brown (2007) described two hybrid processes: fast pyrolysis followed by 

hydrolysis and gasification followed by fermentation [37]. 

 Figure 2.1 illustrates a summary of biorefining pathways based on various bio-

based feedstocks. In addition to the previously mentioned conversion techniques, 

mechanical and chemical operations are also used in succession with these processes to 

further assist in the breaking down of biomass.  
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Figure 2.1 Biorefining pathways for various potential bio-based feedstock 

2.2 Challenges in Biorefining 

 For ages humanity has been presented with challenges and in most cases has 

overcome those to pave a way to address it according to necessity. Conceptually, 

biorefining is an attractive conversion technique, provided, researchers find a way to 

produce biofuels in a sustainable manner. In comparison to fossil fuels, the difference 

in the nature of biomass feedstock introduces multiple intrinsic challenges, such as, 

estimating variable transportation cost [38], further justifying the need for an integrated 

supply chain optimization and conversion framework . 

2.2.1 Logistics 

 The low energy density of biomass makes optimization of the transportation 

network a necessity [17, 39, 40]. Determining the optimum configuration of a 

biorefinery enables accurate estimation of the associated costs over time [41], further 
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rationalizing the need for supply chain optimization. The cost and quality of biomass 

derived at the processing facility is mainly dependent on the following [42, 43]: 

 Feedstock production 

 Harvest 

 Storage 

 Preprocessing (if applicable) 

 Transportation 

 Previously, there have been several contributions that have captured the impacts 

of biorefining from a supply chain perspective (discussed in detail in section 2.3). 

Adding to the above work, significant research has been carried out for planning and 

locating potential biorefinery sites [21, 22, 44, 45]. Uncertainties due to market demand, 

feed supply and weather makes the planning of the biorefinery configuration a 

challenge. Yet, the majority of the contributions have not accounted for these factors. 

However, there have been a few research studies [46-49] which have accounted for 

some of these uncertainties. This dissertation will demonstrate a unique linking of the 

process and supply chain optimization models, capturing the impact of many prevailing 

uncertainties.   

2.2.2 Conversion  

 As discussed in section 2.1.2, both thermochemical and biochemical conversion 

processes must be supplied with raw materials, adequate energy, chemicals and 

catalysts/enzymes to break the robust molecular structure of the biomass and its 

derivatives. Biomass recalcitrance is a major factor that makes the conversion of 

lignocellulosic biomass more challenging compared with first generation ones. 
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Amongst many, the following are the major challenges that must be overcome in order 

to improve the biochemical conversion processes [15, 16]: 

 Slow kinetics of the conversion of cellulose to fermentable sugar and low sugar 

yield from plant polysaccharides. 

 Breaking down lignin to expose cellulose. 

 Removal of inhibitors that naturally exist or are formed during the process. 

 These challenges can be addressed by improving pretreatment techniques 

and/or discovering enzymes that can show improved efficiency in breaking down 

lignocellulosic biomass. Also, as biorefineries have high utility consumption, 

integrating and minimizing the usage of raw materials and utilities is another critical 

challenge. Floudas et al. (2012) and Yue et al. (2014) have compiled a collection of 

contributions in addressing the key challenges for various biorefining processes [40, 

50].  

 In summary, there are multiple venues where research can be performed in order 

to improve various processes of biorefining. One of the major challenges is to provide 

a scale where these existing and emerging conversion processes can be compared. It is 

necessary to have a framework in place that can evaluate the sustainability of 

biorefinery in any given region of interest. The following section will show detailed 

contributions published so far in the field of Process Systems Engineering (PSE) to 

develop models in order to estimate the impacts of various biorefining processes. 

2.3 Current State of Knowledge 

 The broad influence of PSE envelops the entire phases of the life cycle of 

product development. While challenges exists [51], in the past, PSE concepts have been 

effectively used in various fields, such as, petroleum refining, pharmaceuticals, 
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chemicals, biochemical production. Several research works have been published in this 

field that contributes to estimate the impact of biorefining processes, such as, economic 

viability, emissions and jobs created. The idea behind development of decision support 

tools is to guide stakeholders in planning long-term sustainable operations for 

biorefining processes. The overall impact of the supply chain depends on the 

cumulative effect of each stage. Several research works have been performed to capture 

multiple stages involved in the entire biomass to biofuel supply chain, such as, feed 

production, storage, transportation, conversion and product distribution. Like any other 

supply chain, in order to make decisions regarding investments and strategies, 

biorefinery must also account for various challenges pertaining to process design, 

control, operations, modelling and logistics [52]. Currently, the focus is not just to 

account for the economic viability but also related environmental and societal impacts 

must be estimated [25, 53]. The following sections will elaborate on the research 

contributions of various groups in this field of engineering. 

2.3.1 Techno-Economic Models 

 Techno-economic analysis is an approach that is used by business entities to 

steer their investments. It is an economic evaluation tool that takes into account 

technical aspects, such as, multiple conversion processes, corresponding conversion 

yields, feed and thermodynamic properties, as well as constraints, such as, varying feed 

availability, fluctuating product demand, reaction kinetics and thermodynamics. Being 

a fledgling area of research, various techno-economic modelling for biorefining has 

been proposed in the last decade. The major contributions being from the National 

Renewable Energy Laborites (NREL) [54] which accounts for detailed preprocessing, 

saccharification, fermentation and product purification steps. The approach presented 

by NREL is an in-depth evaluation of operating and capital costs involved in the 
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conversion of lignocellulosic ethanol from corn stover. The original work was further 

modified in their latest report [55] with a few operational changes. The research was 

further carried on to perform a techno-economic comparison [56] of various 

preprocessing techniques. The effect of multiple sensitive parameters, such as, enzyme 

and corn stover (feedstock) costs were analyzed. Another contribution examined the 

conversion of corn stover to bio-oils followed by upgrading to naphtha and diesel range 

hydrocarbons [57]. Two scenarios for on-site production and purchasing of merchant 

hydrogen were compared in the work. For the same capacity of biomass, a techno-

economic analysis was presented that studied two bio-oil upgrading pathways [58]. 

Hydro-treating was analyzed for hydrogen, marketed by merchant and produced from 

natural gas. The study determined that the product yield and feedstock cost will have a 

major impact on the internal rate of return. While these contributions accounted for 

detailed conversion parameters, the models were not appraised for their corresponding 

upstream and downstream transportation logistics.   

 Gnansounou and Dauriat (2010) presented an analysis on the production of 

ethanol, showing significant contribution of the feedstock on the overall economics and 

emphasized the pragmatic use of available resources. The research further found that 

practices, such as, target costing and value engineering [59] must be applied in order to 

identify the optimum operating configuration. Feedstock costs were determined to be 

the parameter that had the most impact on the economics of the lignocellulosic 

biorefinery. Similarly, a previously published review article [60] concluded that the 

feedstock cost is the most important parameter that determines the economics of a 

process. Contemporary research [61] demonstrated a techno-economic model for the 

production of liquid fuel and electricity from agricultural residue, by applying the 

process of gasification. The analysis aimed to compare the impacts of low and high 
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temperature gasification on the operating and capital costs. Capital and feedstock costs 

were observed to be critical parameters in determining the overall economics. Another 

contribution presented a techno-economic contrasting thermochemical and biochemical 

conversion techniques for the production of biofuels[62]. Six biomass to biofuel 

technology schemes were analyzed based on conversion platforms, such as, pyrolysis, 

gasification and fermentation. In other published research, a study was presented to 

compare the performance of thermochemical and biochemical conversion processes 

[63]. The work aimed to enhance the performance of existing sugarcane mills by 

supplementary production of ethanol from waste bagasse and cane trash. Previously 

summarized contributions examined detailed conversion configurations and the 

corresponding parameters. However, these models demonstrated limited details in 

estimating the optimal supply chain logistics, the impact of which would be reflected 

on the feed cost (determined as a sensitive parameter). 

 In summary, most of the currently available techno-economic models developed 

have taken into consideration multiple variables in the process as well as performed 

analysis on several biomass feedstock. While various factors determine the economic 

performance of an operating biorefinery, almost every model studied so far has 

observed that the feedstock cost is the most critical parameter effecting the profitability. 

Subsequently, many research groups are focusing towards developing supply chain 

models to determine the optimum operating configuration of a biorefinery. This 

consists of planning feedstock resources, transportation network, biorefinery location, 

conversion processes (including preprocessing) and distribution network. Hence, the 

techno-economic model for biorefining processes must include detailed product and 

feedstock transportation logistics. Stakeholders must be careful of the fact that due to 

the low energy density of biomass, any wrong decision in the long-term planning of 
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transportation logistics may lead to acute negative impact on the economics. The 

following section will summarize the contributions in planning the supply chain for the 

production of biofuels, bioenergy and bio-based chemicals from various biomass 

resources. 

2.3.2 Supply Chain Planning Models 

 Previously, several contributions have been presented that focused on 

determining the optimum supply chain configuration for planning and operating a 

potential biorefining facility. Tittmann et al. (2010) presented a broad techno-economic 

framework that captured critical details of the supply chain, beginning from feed 

transportation to product delivery, in the process determining the size and locations for 

biorefineries [64]. A recent contribution [65] demonstrated the development of a Mixed 

Integer Linear Programming (MILP) optimization model that simultaneously considers 

supply chain configuration, integration strategy and production planning. The results 

obtained showed that pre-conversion to a petroleum upgrading pathway is more 

economical. This framework intended to merge the biofuel supply chain with the 

existing petroleum ones while capturing the realistic demand and supply uncertainties. 

Tong et al. (2014) developed a multi-period MILP optimization model to design and 

plan advanced biofuel supply chain [66]. This contribution also aimed to capture the 

effects of integrating biofuel supply chain with existing petroleum infrastructure. The 

uncertainties in demand were accounted and incorporated into the framework using 

fuzzy probabilistic programming.  

 In other research [67], a Mixed Integer Non-Linear Programming (MINLP) 

model was developed that determined the optimum configuration of operation and 

storage of biomass among potential options. Sharma et al. (2011) proposed a decision 

support tool that was based on a MILP model to maximize the stakeholder value [68]. 
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This model comprised of various financial, operational and configuration constraints as 

well as accounted for waste reduction expenses. An extension of the previous work was 

presented [69] that stretched the details of the techno-economic model developed. In a 

recent contribution [70], an iterative framework was formulated that combined 

optimization (Linear Programming (LP)) and process simulation (Aspen Plus® and 

MATLAB®) models guiding stakeholders by providing strategic decision support.  

 A scenario based optimization approach [71] was demonstrated that intended to 

redesign the operational supply chain for forest biorefineries. Profitability of the 

process and its robustness for various biorefining options were compared. The study 

emphasized the importance of the supply chain assessment with fluctuating capacity of 

the facility. Ekşioğlu et al. (2009) introduced a mathematical model [72] that provided 

a variety of logistical results for future biorefineries; demonstrating its applicability in 

the Mississippi region. Recent work [73] has proposed a MILP framework that can be 

used to design bio-based resources to energy networks. This claim was supported by a 

case study to produce biogas from waste biomass.  

 The frameworks reviewed previously focused on providing decision support 

while accounting for the parameters pertaining to the supply chain and planning. 

However, the models examined so far presented a few conversion options and therefore, 

had a limited scope for the inclusion of details related to the conversion process. This 

dissertation has proposed a generalizable framework that can be merged with multiple 

conversion options to evaluate the corresponding economic feasibility. The next section 

will summarize the essence of works performed so far in selecting the most economic 

conversion technique. 
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2.3.3 Technology and Product Selection Superstructure 

 There are numerous existing and emerging conversion options to produce 

biofuels from various feedstocks. Selecting an appropriate technique among the array 

of potential ones is a key challenge. In the past, there have been many research 

contributions that were dedicated to determine the optimum configuration of 

preprocessing and final conversion processes. Sammons et al. (2007) proposed a 

methodology to find the optimum route and slate of products for biorefineries [74]. The 

developed mathematical optimization based framework included techno-economic 

parameters. Another contribution, Kim et al. (2013) developed a “technology 

superstructure” [75] that consisted of various feed, product, byproduct and conversion 

details. This LP model was used to find the best set of products for an economically 

viable biorefinery. Another work [76] proposed an approach to determine the optimum 

configuration based on feedstock available and desired products. A “forward-

backward” approach was developed and the overall optimization problem was broken 

down into multiple sub-problems based on Bellman’s principle.  

 Zondervan et al. (2011) proposed an Mixed Integer Problem (MIP) optimization 

model that aimed to determine the optimal production scheme for biofuels and 

chemicals [77]. Baliban et al. (2013) demonstrated an optimization framework for 

biomass and gas-to-liquid conversion process [78, 79]. The model incorporated heat, 

electricity and water integration, based on which case studies on multiple scenarios 

were performed. The results led to the conclusion that the studied biorefining processes 

have the capability of offering competition to crude oil based conversion processes. 

Previously, Baliban et al. (2011) [80] proposed a MINLP optimization process 

superstructure based on which case studies on coal, biomass and gas-to-liquid processes 

were performed. 
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  The models developed to optimize the process superstructure is a major 

contribution to this area of research. However, in recent years, the focus of the research 

has shifted from estimating the economic impact to determining the most sustainable 

biorefining option in the long-term. 

2.3.4 Multi-Objective Optimization and Optimization under Uncertainty 

 This section will focus on the work documented so far, incorporating economic, 

environmental and societal impacts, to determine the optimal configuration of 

biorefineries. Subsequently, research contributions on the process and supply chain 

optimization while accounting for uncertainties will also be presented in this section.  

 A multi-objective MILP superstructure optimization model was proposed that 

included economic and environmental criteria [81]. You et al. (2012) developed a 

multi-objective MILP framework that was optimized based on economic (analyzed 

cost), environmental (LCA) and social (jobs) objectives [82]. Aspen Plus® simulation 

models were used to provide details regarding conversion and emissions of the 

processes. Another unique work [83] demonstrated the development of a multi-

objective optimization model that accounted for all the major aspects of sustainability. 

The framework showed how economic, environmental and societal factors can be 

reckoned to plan supply chains for a biorefinery producing multiple products. To show 

the working of the developed framework, a case study was performed on the country 

of Mexico. In another contribution [84], a framework was presented for optimal 

designing of a sustainable tri-generation system by simultaneously accounting for all 

the three aspects of sustainability. Giarola et al. (2013) proposed a MILP supply chain 

optimization framework that considered economic and environmental impact while 

simultaneously accounting for market risks [85]. The results concluded that investors 

attitude towards risk is a key driver for strategic decisions.  
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 A stochastic optimization framework [86] was developed that captured the 

effects of conversion and market uncertainties. Also, potential for the reduction of 

processing costs were determined for the studied scenarios. Sharma et al. (2013) 

presented a supply chain optimization model that accounted for uncertainties due to 

weather variations [87].  

2.4 Summary 

 Based on the contributions reviewed from the literature, significant gaps in the 

current state of knowledge were determined. While efforts have been made to link 

various simulation and optimization models [70, 88], we still lack a framework that can 

be used by stakeholders to access details regarding biorefining processes and their 

corresponding supply chains. The combined effect of the transportation logistics and 

process configuration reflects the future viability of sustainable biorefining. To date, 

there has not been a detailed framework that links process simulation, supply chain 

optimization and supply chain simulation models. This document will focus on the 

development of an adaptable process optimization framework. The model will be linked 

with supply chain optimization [22] and discrete event simulation [89], resulting in an 

informative techno-economic and supply chain decision support framework [21, 90]. 

Chapter 3 will expand on the uniqueness and the novelty of the research while affirming 

the boundaries of the specific contribution. 
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3. Research Novelty 

3.1 Summary  

 Numerous contributions have evolved which are of great importance in 

determining the distinct impacts for the long-term operations of sustainable 

biorefineries. Each of the individual contributions described in the Chapter 2 is 

necessary and has served as a great source of motivation. However, there has been 

limited work in determining the combined impact of biorefining to estimate economic 

parameters, while including details from the major stages of the supply chain. As 

examined previously, discrete contributions have been made in biorefining to determine 

transportation logistics, process simulation and optimum configuration under 

uncertainty. The research presented in this dissertation integrates the diverse aspects of 

the biomass to bio-energy supply chains, such as, transportation network, process 

optimization, and the corresponding uncertainties under a multidisciplinary framework.  

Achieving this is a major contribution in the field of PSE. The innovative research 

presented in this document focuses on the development of process optimization 

schemes that can communicate with transportation optimization models in an iterative 

manner to determine the best configuration, based on economic viability. The resulting 

contribution is part of a unique decision support tool in the area of biorefining that is 

currently being explored by many contemporary researchers. The following section will 

outline the boundaries of the research followed by the novel contributions that are 

achieved by the state of the art model.  

3.2 Scope of the Research 

 The model developed addresses several voids in the existing state of knowledge. 

It is important to describe the bounds of this contribution in order to define the scope 
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of the problem that can be managed by the framework. The developed model is 

confined to the following assumptions: 

 Limits of the supply chain for the purpose of modeling begins with the collection 

points for raw materials. The collection point is the road location nearest to the field 

where the biomass is assumed to be gathered after the harvest for transportation by 

road. These points were determined using Geographic Information System (GIS) 

tools and data from the literature [22]. The collection point is considered as the 

source of biomass in the framework. The goal of the transportation optimization 

model is to identify out an optimum pathway to deliver bio-based feedstocks from 

the source location to the potential biorefinery location (which will be decided by 

the model as an output) and distribute the products to the storage depot. These 

depots are assumed to be locations, determined logically, based on the existing road 

network, in each of the selected counties. The most accessible point in the county 

based on the road network is assumed to be the depot location. The downstream 

limits of the supply chain framework is the delivery of final products to the selected 

depot locations.  

 Conversion processes used in the techno-economic framework, includes both 

thermochemical and biochemical pathways. The process simulation and 

optimization models are created based on mass and energy balances. While most of 

the unit operations and processes are rigorously designed, there are a few exceptions 

which require customized designing and hence have been left out of the calculation. 

Also, since the processes are designed using dedicated simulation software (Aspen 

Plus®, Aspen Energy Analyzer® and Aspen Economic Analyzer®), several 

inherent constraints have been enforced based on the values obtained from the 

literature, such as, process parameters, rate of consumption of raw materials, 
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splitter/mixer fraction, number of stages etc. Also, for critical chemical reactions, 

the corresponding kinetic data have been supplied and additional ports are provided 

in the framework to input the user specified kinetics. While the kinetic data can be 

incorporated in many ways, currently, the data obtained from the literature, based 

on the experimental data, is used. Chapter 8 will expand on the multiple methods to 

incorporate these data. 

 The cost of feedstocks, raw materials, utilities, chemicals and transportation fuel is 

obtained from the literature. In reality, these costs are fluctuating and depends upon 

several business and political factors. Also, the equipment and capital cost for a 

biorefinery is estimated using in-built data in the Aspen Economic Analyzer®.  

 For simplicity, the framework developed assumes a centralized biorefinery facility 

location. However, other potential configurations cannot be ruled out. Presently, the 

model accounts for the storage and pre-treatment at the facility location.  

 The process optimization model acts as a black box for the entire framework. The 

changes in process configuration must be embodied to the model, prior to initiation 

of the iterative procedure.  

 Within the previously stated boundaries, the techno-economic decision support 

framework is run iteratively. The model couples process optimization, supply chain 

optimization and discrete event simulation in such a manner that the iterations result in 

an optimal capacity of biorefinery. The developed framework is capable of generating 

and optimizing process data based on potential feedstock in any given region. 

Moreover, the developed model has several novel features that will be discussed in the 

next section. 
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3.3 Novel Contributions 

 The uniqueness of a model is determined by its novelty in the formulation, 

unparalleled integration, diverse applications and the level of detail it can handle. The 

model developed in this research embodies all the previously mentioned aspects. While 

the broader objective of the research is to design a decision support tool, this document 

will primarily focus on the development of process optimization model which is a 

critical segment of the overall framework. This is the venue where several existing and 

emerging conversion details are incorporated. Subsequently, the model is linked to the 

supply chain optimization and discrete event simulation to create a multi-disciplinary 

framework for economic optimization of an integrated biorefinery. Following are the 

distinct novelties of this research contribution: 

 Model formulation: The framework is formulated in a unique manner that 

accommodates both simulation and optimization models. The simulation models 

captures the practical aspects pertaining to the biorefining conversion processes. On 

the other hand, optimization models are used to ascertain the best configuration 

based on the imposed constraints. The multidisciplinary tool developed is the result 

of a unique tailoring of the simulation and optimization models.  

 Multi-disciplinary approach: Another distinct feature of this model is that it unites 

various aspects of supply chain management, process engineering and discrete 

event simulation. This integration is one-of-a-kind that has been achieved in order 

to guide the stakeholders. 

 Linking of the process simulation: Previously, there have been many contributions 

that have addressed the importance of creating a detailed process simulation model. 

This contribution takes a stride by linking the detailed process simulation model to 

an optimization framework which is further linked onto the multi-disciplinary 
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decision support tool. An iterative methodology is suggested, along with the 

linking, to determine the optimal biorefinery configuration for any given region of 

interest. 

 Versatile applications: The framework rests on the fundamental concept of 

developing multiple detailed process simulation models, which can be run 

separately, to test various scenarios. Eventually, the output obtained can be 

compared to determine the most economically viable option. The case studies to be 

described in the upcoming sections would be used to further fortify these claims.  

 Generalizability: One of the major assets of the model is the competence to be 

applied to various regions to evaluate the viability of biorefining. Another key 

contribution of the work is the capacity of the framework, to include probable bio-

resources available in the region, guiding the growers by checking the potential 

outcomes pertaining to the economics of the biorefinery.  

 High resolution: The level of detail that the developed model can incorporate is 

extensive and hence the resolution of the results obtained is relatively higher 

compared to the previous contributions [71, 72, 75]. From a process point of view, 

the model can adapt to details, such as, kinetics, process constraints and 

thermodynamic data, which otherwise is a challenge to include. Whereas, from a 

supply chain perspective, the details based on real road network and potential 

biorefinery location can be incorporated. Subsequent chapters will demonstrate the 

inclusion of discrete event simulation modeling [89] to the framework, further 

enhancing the economic estimation by accounting for uncertainty.  

 Supplementing to all the previously mentioned details, the developed 

framework can also calculate the process emissions that can be utilized by the existing 

LCA or environmental impact assessment tools [91, 92]. The model does not address 
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the specifics regarding social impacts, such as, jobs created but the obtained results can 

be interfaced to the existing societal impact indicators [93]. Nevertheless, the 

framework integrates several aspects of the conversion process and transportation 

involved in the supply chain for the production of biofuels.  

 The developed model can be used by investors to foresee the economic viability 

of potential projects, thereby making cognizant decisions pertaining to investment. 

Also, policymakers can utilize this model to make judgment towards future incentives 

with the motive to support a marginal processes (in terms of economic feasibility) to 

inspire stakeholders. Additionally, environmentalists can use the developed decision 

support tool to compare the emissions generated by various biorefining processes and 

hence impose appropriate taxes based on the effluents (GHG emissions, ash etc.). 

Furthermore, this framework can be used by growers to make insightful judgment on 

planning future cultivation. The stakeholders involved in various stages of the supply 

chain of biorefining can use this versatile tool to make decisions. While this research is 

inspired by previous contributions in developing process simulation [54, 55] and supply 

chain optimization models (MILP, MINLP, LP etc.) [74, 75, 78], this dissertation will 

unite these critical aspects. The resulting model will not only act as a decision support 

tool but will also serve as an motivation, to link various simulation and optimization 

tools, to produce diverse results for stakeholders. The next chapter will sequentially 

demonstrate the way in which various individual models are unified resulting in a 

multidisciplinary decision support tool. 

 

 

Copyright © Sumesh Sukumara 2014  
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4. Development of the Techno-Economic Framework 

One of the major traits of a techno-economic model is its applicability as a guide 

for stakeholders to evaluate probable economic outcomes. This chapter will expand on 

the development of an informative framework that will unify fundamental concepts 

from multiple disciplines of sciences and engineering. Contents of this chapter have 

been drawn from Clean Technologies and Environmental Policy, Volume 16, Issue 6, 

S. Sukumara, W. Faulkner, J. Amundson, F. Badurdeen and J. Seay, “A 

multidisciplinary decision support tool for evaluating multiple biorefinery conversion 

technologies and supply chain performance”, 2013, pages 1027-1044, with kind 

permission of Springer Science and Business Media.  

4.1 Motivation 

 In order to evaluate the sustainability of biorefining processes, a framework is 

required that can quantify impacts, such as, economic feasibility, environmental 

emissions and social impacts [25, 94]. Ideally, a decision support framework must not 

only impart details but also be capable of being interfaced with the existing assessment 

tools of sustainability. Developing such an adaptable computational model requires 

insightful merging of multiple disciplines of science and engineering towards a 

common goal. As described in Chapter 2, there have been several research which have 

partially contributed towards the development of a framework. The versatile framework 

to be discussed in this dissertation creates a decision support tool that can be used by 

stakeholders, such as, policymakers, investors, growers, environmentalists, distributors, 

experimentalists, etc. In a broader context, this is a complex problem to be solved, 

hence an effort in solving is a much needed contribution. However, solving such an 

intricate problem requires decomposing the problem into simpler modules. Discrete 

solving of the individual divisions is a rational, systematic and credible approach. 
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Furthermore, the approach requires a unique iterative linking of the comprehensive 

models which can share the needed parameters.  

The model that has been developed in this research is a combination of three 

exhaustive models, namely process optimization, supply chain optimization and 

discrete event simulation. This dissertation focuses on the development of process 

optimization model, while using the other two previously documented models [22, 89] 

to perform case studies.  

4.2 Process Optimization Model 

 Conversion process is a critical facet of the overall supply chain for converting 

biomass to marketable products [95, 96]. In most cases, the selection of a conversion 

technology is contingent on the demand for products [97]. However, for biorefining, 

due to high recalcitrance and low energy density, the energy utilized, raw materials 

procured and time consumed in the production process emerge as critical factors. In 

order to account for these aspects, process simulation models must be created. 

Developing such models not only helps capture practical details of the conversion 

technique, but also improves the replication of the original conversion scenarios. To 

initiate the development of the process optimization model, the first step is to identify 

the most promising conversion technique to be developed based on the availability of 

feedstock and product demand in the given region of interest.  

4.2.1 Feedstock Availability and Product Demand Assessment 

 Selection of the feedstock is a critical decision that can impact the long-term 

operation of a potential biorefinery [98]. Presently, in the USA, most of the biofuels 

produced use first generation biomass as a feedstock [99]. In the future, exploring the 

prospects of replacing first generation biomass with lignocellulosic (second generation) 

feedstocks will be desirable, as the later offers several advantages over the former 
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(discussed in section 2.1.1). Currently, several bio-based feedstock, such as, forest 

residue, urban wood residue, agricultural waste and animal waste have been recognized 

as potential feedstocks for biorefining [100-102]. While plenty of data are available for 

the previously mentioned bio-based feedstocks, it is essential to locate it on a real-time 

map. Subsequently, this process may require accessing spatial data obtained from GIS 

and literature. The statistics obtained must be converted into an array which can be used 

as an input to the framework by decomposing the data into state and county wise 

availability. To increase the level of detail, spatial data must be plotted with respect to 

the current road network, further enhancing the credibility of the results obtained from 

the model. The case studies described in Chapter 6, 7 and 8 will show applications of 

the described approach to existing and hypothetical scenarios. 

 The potential availability of biomass may be excessive in some regions; hence, 

it is logical to limit the model such that the production does not exceed the demand. 

Therefore, constraining the products requires calculating the demand for all the 

potential commodities that can be produced, using all the major bio-based feedstock 

available in the locale [103]. Since, the model developed currently focuses on the 

utilization of lignocellulosic biomass via thermochemical and biochemical conversion 

processes, the regional demand for products, such as, liquid hydrocarbons, electricity 

and alcohols is calculated. A previous contribution [22] has determined the demand 

based on consumption of various products, such as, gasoline, diesel, natural gas, heavy 

residual oils and ethanol in the region of interest. The same is used by the proposed 

framework to perform advanced case studies in the locale. This research utilizes the 

fact that the demand of any product entity is subjected to high fluctuation and is 

dependent on multiple parameters [104]. Currently, the model does not account for the 

stochastic nature of feedstock available and the product demand. Nevertheless, the 
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contribution will show the applicability of the model for any given upstream and 

downstream inputs. 

4.2.2 Process Simulation Development 

 From the pathways shown in Figure 2.1, one or more of the conversion schemes 

are selected based on the availability and demand in the region. Currently, the pathways 

show limited number of biorefining conversion processes. In the future, more pathways 

will be added as technologies advance. Hence, it is essential to develop multiple process 

simulation models that can serve as an accessible library to the overall framework. The 

vision of this research is to populate the framework with all the major processing 

techniques. This would consume a lot of time and require regular maintenance, as 

improved technologies emerge. The present research will demonstrate the working of 

the model by performing studies with thermochemical and biochemical processes 

which will be developed and finally be tested for its applicability.  

4.2.2.1 Biomass Gasification (Thermochemical Process) 

 The feasibility of the gasification process has been widely explored and there 

are many instances where these are used in industries to produce synthesis gas [105]. 

However, the application of gasification using cellulosic biomass is still one of the 

active areas of research. While there are a few examples of biomass in co-fired gasifiers 

[105, 106], its viability in a wide range of regions is still not established [106]. Also, 

due to the fact that gasification can use wide range of feedstocks, such as, coal, forest 

residue, crop residue, dedicated energy crops and municipal waste [107], it will be 

informative to determine the optimum blend of these feedstocks in the long run [103]. 

To address such key issues, simulation models are required that can incorporate 

multiple feedstocks to produce a wide range of marketable products. In this research, 
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gasification of biomass followed by Water Gas Shift (WGS) and Fischer Tropsch 

Synthesis (FTS) reaction is simulated to produce power and liquid hydrocarbons. 

 Aspen Plus® is a versatile tool that is used widely in the process industry 

worldwide [108]. Steady state simulations developed in Aspen Plus® has great 

potential for interfacing through this Aspen Engineering Suite which is a common 

platform for exploring useful options, such a heat integration, capital cost estimation, 

dynamic simulation etc. Such qualities makes Aspen Plus® an appropriate tool to 

develop process simulations for biorefining. Adding to the positive attributes, the 

addition of a dedicated Microsoft Excel® interface makes it easier to link the model 

with multiple optimization and simulation tools. While there are concerns with the 

limited applicability of this tool to simulate biochemical reactions, various alterative 

channels have been explored to circumvent this issue [54, 55].  

 One of the major challenges in creating simulations for biorefining processes is 

to incorporate the raw material data in an acceptable format for the software. In this 

work, the feedstock is distinguished based on proximate and ultimate analysis data. 

Data for various biomass sources are taken from literature [57, 109, 110]. In order to 

improve economic performance [106, 111], provisions are made to include coal [112] 

to the simulation along with biomass, such as, forest residue, agricultural residue, 

dedicated energy crops and animal waste. The proximate and ultimate analysis data of 

the biomass used in the simulation are tabulated in Table 4.1 and 4.2, respectively.  

 Significant savings may be achieved by a two stage facility, where biomass from 

the field is transported to a pre-treatment center, where the biomass is densified, 

followed by transportation of the pre-treated feed to the biorefinery site. For the initial 

assessment, the biorefinery is assumed to be located centrally and pre-treatment 

operations are assumed to be performed at the biorefinery location. 
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Table 4.1 Feed proximate analysis data obtained from various sources 

 Fixed Carbon Volatile Matter Ash Moisture Source of data 

Forest 

Residue 
6.96 42.10 2.03 48.91 [110] 

Chicken Litter 1.70 38.90 16.40 43.00 [109] 

Corn Stover 17.70 52.80 4.50 25.00 [57] 

Switchgrass 12.93 69.14 8.09 9.84 [110] 

 

Table 4.2 Feed ultimate analysis data 

 Carbon Hydrogen Oxygen Nitrogen Sulfur Chlorine Ash 

Forest Residue 25.70 2.35 20.40 0.53 0.06 0.00 2.03 

Chicken Litter 

(Dry Basis) 
28.17 3.64 34.43 3.78 0.55 0.63 28.80 

Corn Stover 

(Dry Basis) 
47.28 5.06 40.63 0.80 0.22 0.00 6.01 

Switchgrass 42.09 5.25 33.87 0.69 0.17 0.00 8.09 

 

 The main purpose of the model is to demonstrate an effective methodology by 

which the process and transportation models can interact to generate critical details. 

Consecutively,   distinct processes, pre-treatments and distribution schemes can be 

studied using this framework. The process simulation model contains detailed 

information regarding conventional chemical species. Unlike the conventional 

chemicals, biomass has a varying composition depending on the geographic region of 

its origin and type [14, 113, 114]. Therefore, the feedstock is classified as a “non-

conventional” species in the simulation. Once specified, this feed can be changed into 

conventional elemental category by translating the proximate and ultimate analysis 

data. For this, FORTRAN code is compiled that calculates the elemental composition 
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automatically in each iteration. Figure 4.1 illustrates the compiled FORTRAN code 

used for this purpose.  

 

Figure 4.1 The FORTRAN code in the calculator window (Aspen Plus®) to convert 

the “non-conventional” feed to “conventional” composition 

 This is an alternative approach to automatically calculate the elemental 

composition. Both RYield (yield reactor) and RStoic (stoichiometric reactor) [108] are 

built-in reactor models available in Aspen Plus® that can be used for this application. 

For the case studies to be performed, the stoichiometric reactor is used as it can 

accommodate additional heat input/output details. The previously described code is 

compiled to calculate and assign the stoichiometric coefficients required for the RStoic 

model. The output from the reactor is the stream containing the calculated elemental 

components and the ash present in the biomass. Currently, the ash is not analyzed for 

inherent elements and compounds. In the future, the ash analysis will be critical as it 
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may result in the formation of impurities, such as, CaO, SiO2, Al2O3, Fe2O3, Na2O, etc. 

[115], in the gasifier. 

 The gasifier is simulated using the Gibbs reactor (RGibbs), the output of which 

is constrained by specifying potential products [116-119]. Calculator functions are also 

assigned to the input to calculate the steam and air flow rate requirements for the 

reactor. While the exothermic reactions takes place, the temperature in the reactor must 

be controlled by varying the air and steam flow rates. Furthermore, the temperature at 

which the reactor operates governs the material and design parameters. This aspect of 

gasification has not been explored yet, however, the reactor is restricted to a 

temperature ranging from 800˚C – 1500˚C [117, 120]. Previously, there have been 

valuable contributions [121-123] which have emphasized on developing the process 

simulation model using coal and biomass as feedstocks. Presently, this section of the 

simulation is designed to estimate the possible products and is not concerned with the 

equipment design aspects. Based on the runs performed, products formed in the gasifier 

consist of CO, H2, CO2, CH4, H2S and ash, which is consistent with the literature [116, 

124]. Also, it is assumed that ash will be removed and collected based on the density 

difference. However, in reality the removal of ash is accounted as a challenge in some 

cases [124]. Furthermore, depending on the composition of the ash collected, effluent 

treatment process may be required. Table 4.3 shows the major reactions involved in the 

gasification process. 

Once the solids present in the outlet of the reactor are separated, the hot 

synthesis gas must be cooled to 26˚C in order to prepare for the H2S separation columns. 

Hence, the heat from the stream must be trapped, so that it can then be utilized as a 

source of energy. This recovered energy stream can be used to heat various process 

steams, thereby saving external utilities required by the process. Figure 4.2 portrays a 
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snapshot of the process flow diagram (PFD) in Aspen Plus®. The presence of H2S 

possess serious catalyst poisoning challenges to the subsequent downstream processes 

and hence must be removed [125]. 

Table 4.3 Reactions occurring in the gasifier. Adapted from the previous contribution, 

Sutton et al. (2001) [119] 

Reactions Nature of reaction 

C + 0.5 O2 ˉˉˉˉˉˉˉˉˉˉˉ˃ CO Exothermic 

CO + 0.5 O2 ˉˉˉˉˉˉˉˉˉˉˉ˃ CO2 Exothermic 

H2 + 0.5 O2 ˂ˉˉˉˉˉˉˉˉˉˉˉ˃ H2O Exothermic 

C + H2O ˂ˉˉˉˉˉˉˉˉˉˉˉ˃ CO + H2 Endothermic 

C + CO2 ˂ˉˉˉˉˉˉˉˉˉˉˉ˃ 2CO Endothermic 

C + 2H2 ˂ˉˉˉˉˉˉˉˉˉˉˉ˃ CH4 Exothermic 

CO + 3H2 ˂ˉˉˉˉˉˉˉˉˉˉˉ˃ CH4 + H2O Exothermic 

CO + H2O ˂ˉˉˉˉˉˉˉˉˉˉˉ˃ CO2 + H2 Exothermic 

CO2 + 4H2 ˂ˉˉˉˉˉˉˉˉˉˉˉ˃ CH4 + 2H2O Exothermic 

 

Figure 4.2 Process flow diagram (Aspen Plus®) for the biomass gasification unit 
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In order to remove the sulfur compounds present in the process stream, various 

configurations have been recommended in the literature [126-128]. While, all the 

schemes have their own pros and cons, a choice must be made based on the 

requirements of the process. A previous simulation based comparison in ProMax® 

(simulation software) [126] showed that the Rectisol® process (methanol as solvent) 

has many advantages over other acid gas (CO2 and H2S) removal techniques, such as, 

SelexolTM, Purisol® and Fluor SolventTM. While, other chemical solvents, such as, 

ethanolamines, are widely used in industry, this simulation will use methanol for 

removing CO2 and H2S from the synthesis gas. Also, for an integrated biorefinery, 

methanol is a potential product [129] which further justifies its use for this case. The 

solvent is cooled to -36˚C and the cooled synthesis gas is introduced to the absorption 

column. Absorption takes place in two columns in series, followed by the recovery of 

methanol which is recycled. This stage of the overall process is highly energy intensive 

and requires both cooling and refrigeration utilities. The resulting H2S free synthesis 

gas is sent to the WGS reactor to enhance the H2:CO ratio. Figure 4.3 illustrates 

schematic of the acid gas cleaning section.  

The ratio of the synthesis gas produced during the gasification process is 

approximately 1:1. In order to increase the applicability of the synthesis gas to yield 

downstream products, such as, methanol, hydrocarbons, hydrogen and power, this ratio 

must be improved at least to 2:1. To enhance the H2:CO ratio of the clean synthesis gas, 

WGS reaction should be applied. This is an exothermic reaction which takes place in 

the presence of catalyst. The reaction is carried in the presence of Cu/Zn/Al2O3 catalyst 

at 245˚C [130]. The equation and empirical rate expression used in the simulation is 

shown in Equation 4.1 and 4.2, respectively. 
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Figure 4.3 Process flow diagram (Aspen Plus®) of H2S cleaning section using 

methanol as a solvent 

Water Gas Shift reaction [130] 

CO + H2O   CO2 + H2       (4.1) 

Rate expression [130] 

𝑟𝑊𝐺𝑆 = 𝑘0 ∗ 𝑒𝑥𝑝 (−
𝐸

𝑅𝑇
) (𝑃𝐶𝑂

𝑛𝑃𝐻2𝑂
𝑚

.
−  𝛽)      (4.2) 

𝛽 =  
𝑃𝐶𝑂2𝑃𝐻2

𝑃𝐶𝑂𝑃𝐻2𝑂𝐾𝑒𝑞
  

Where, m, n, lnk0 and E values are given for various catalyst configuration.  

For this case:  

m = 1,  

n = 1,  

lnk0 = 12.6  

E = 47.4 KJ/mol 
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Note: These expressions are used from literature. These can be adapted to any selected 

process chemistry. 

 In order to calculate the changing steam requirements, a user-specified function 

is utilized that automatically calculates the flow rate based on varying incoming 

synthesis gas. The hydrogen rich synthesis gas produced is then cooled to condense the 

entrained water. Subsequently, the synthesis gas stream is split into two streams. The 

first one is sent for generating power, which is one of the marketable products from the 

biorefinery. The second stream is sent to the FTS reactor for the production of 

hydrocarbons. Figure 4.4 shows the PFD for the WGS reactor. It should be noted that 

the split fraction of the synthesis gas for generating electricity and liquid transportation 

is a major decision variable which can be changed based on real demand data in any 

given region of interest. To start the iterative process the split fraction of liquid 

transportation fuel is assumed to be 0.85. Hence, 0.15 is the split fraction of synthesis 

gas for the production of electricity.  

 

Figure 4.4 Process flow diagram (Aspen Plus®) of Water Gas Shift reactor segment 
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 Currently, due to the high demand for liquid transportation fuel, a major portion 

of the synthesis gas is channeled to the FTS reactor. FTS is an exothermic reaction that 

converts the synthesis gas into multiple hydrocarbons, as shown in Equation 4.3. 

CO + (1 + (m/2n)) H2      1/n CnHm + H2O    (4.3) 

Where  

n = Average carbon chain length 

m = Average number of hydrogen atoms 

 In this reaction, the length of the hydrocarbon chain is determined by the alpha 

value, which is specific to the catalysts used and its sensitivity depends on the operating 

parameters [131, 132]. Two of the commonly used catalysts for FTS are iron and cobalt. 

For this simulation, due to the ability to produce a wide range of hydrocarbons (based 

on varying process conditions) [133], the catalyst is assumed to be iron and the 

corresponding reaction kinetics are determined based on literature data [134], as shown 

in Equation 4.4.  

𝑟𝐹𝑇𝑆 = 𝑘0 ∗ 𝑒𝑥𝑝 (−
𝐸

𝑅𝑇
) (

𝑃𝐶𝑂𝑃𝐻2

𝑃𝐶𝑂+𝑎𝑃𝐻2𝑂+𝑐𝑃𝐶𝑂2
)     (4.4) 

Where, 

k0 = 0.080 mol/g-cat.h.MPa 

a = 4.80 

c = 0.33 

E = 86 KJ/mol 

 To provide a broad range of marketable products, the simulation is constrained 

to C1-C30 alkanes. While the equations capture the variability, there are many realistic 
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challenges specific to the type of FTS reactor used, such as, selective product range, 

catalyst attrition and catalyst separation [135]. The developed model uses a tubular 

reactor to simulate the FTS process. A snapshot of the FTS flow sheet is illustrated in 

Figure 4.5. Once the hydrocarbons are produced, the final step is product separation. 

 

Figure 4.5 Process flow diagram of the Fischer Tropsch Synthesis unit 

 Selection of the product separation technique is reliant on the final choice of 

marketable products. Some processes, such as, production of gasoline or other 

commercial hydrocarbons require further processing. The research presented in the 

dissertation aims to maintain a broad product range in order to stay adaptable to the 

corresponding enhancing scenario. Presently, the products are separated based on the 

difference in volatilities by a series of distillation columns. The aim is to separate the 

products based on cuts of marketable commodities, such as, C1-C4, C5-C8, C9-C20 and 

C21-C30 [21]. These products are assigned a price based on the closest commercial 

hydrocarbons, such as, natural gas, gasoline, diesel and residual oil, respectively [136]. 

Practically, these values can be replaced by any relevant ones for potential products. 

Figure 4.6 demonstrates various units developed to separate the hydrocarbon cuts. 

 Once all the individual processes are developed, these are assembled to build 

the complete simulation model. Figure 4.7 illustrates the process flow diagram of the 
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entire biomass gasification facility. The developed process simulation model is capable 

of incorporating multiple bio-based feedstocks to produce varying quantities of power 

and a wide range of hydrocarbons. This attribute enables various runs to be performed 

on the simulation based on changing user requirements. Section 4.2.2.3 will 

demonstrate the manner in which these models can be optimized to further link to the 

decision support tool. 

 

Figure 4.6 Process flow diagram (Aspen Plus®) for the hydrocarbon separation unit 
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Figure 4.7 The screenshot of the entire process to produce biofuels and power from 

biomass via gasification 

4.2.2.2 Fermentation of Agricultural Residue (Biochemical Process) 

 One of the principal biomass feedstocks available in the USA is agricultural 

residues that is left after harvesting food crops. Among the available agricultural 

wastes, corn stover has been studied extensively for its applicability as a feed source 

for biorefineries. In 2011, approximately three-fourth of the country’s total agricultural 

residue consisted of corn stover [137]. The previous section focused on a feed flexible 

process for the production of liquid hydrocarbons from locally available biomass. This 

section, will focus on the development of a feed specific biochemical conversion 

process, using corn stover as a feedstock. Additionally, studies [138] have suggested 

that biochemical conversion to ethanol and electricity is advantageous when compared 

to the thermochemical alternatives based on the net energy created. Hence, biochemical 

conversion of corn stover to ethanol is the next process that will be studied. Also, by 
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utilizing details from a previous contribution by NREL [54], a process model will be 

simulated. 

 As discussed in the previous sections, incorporating non-conventional feed into 

the simulation model is a challenge. To address this issue, unlike thermochemical 

process simulation, the feed is specified based on the polymeric compounds present. 

Biomass mainly consists of lignin, hemicellulose and cellulose, with other organic and 

inorganic compounds found in trace amounts [139]. The simulation developed adopts 

the composition obtained from a previous contribution [54] to initiate the model. In the 

future, these compounds can be changed based on the analyzed composition of the 

feedstock. Table 4.4 shows the detailed feed composition used in the simulation.  

Table 4.4 Composition of corn stover [54] 

Component % Dry Basis 

Glucan 37.4 

Xylan 21.1 

Lignin 18.0 

Ash 5.2 

Acetate 2.9 

Protein 3.1 

Extractives 4.7 

Arabinan 2.9 

Galactan 2.0 

Mannan 1.6 

Unknown 

Soluble Solids 

1.1 

 Once the compounds are entered, associated pure and binary component 

properties must be supplied to the simulation, as the model does not contain properties 
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for the non-conventional compounds. Another approach to define the feedstock is by 

specifying the molecular structure [140], however, while dealing with large polymers 

present in the biomass, specifying the compounds as solids will be a better approach. 

Specifying the biomass as solid will depict the actual composition of biomass with the 

least chance for misinterpretations. 

 After specifying the feedstock, the process flow sheet is built for physical pre-

treatment. Here, the biomass is washed with water to remove the inorganics carried 

from the soil. Since this process consumes a large amount of water, the treated waste 

water can be potentially recycled to the process, in order to minimize the consumption 

of fresh water. The washed biomass is then fed to the size reduction equipment and the 

particle size is reduced to a maximum of 1 mm. Previously, it has been determined that 

the moisture content of biomass does not affect the process energy consumption 

significantly [141], but if required, a drying operation can be installed prior to the size 

reduction step. Also, for any customized pre-treatment, equipment power consumption 

can be calculated using the built-in “flowsheeting” functions. Figure 4.8 shows the 

process flow diagram for the physical pre-treatment. Finally, the screened biomass is 

sent to the chemical pre-treatment section. 
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Figure 4.8 Process flow diagram of the mechanical/physical pre-treatment section 

 Biomass recalcitrance is a major aspect that limits the accessibility of enzymes 

to break down cellulose into fermentable sugars. The chemical pre-treatment section 

aims to partly solubilize lignin and convert a major fraction of hemicellulose and a 

small fraction of cellulose to sugars. The flow scheme of the process is designed based 

on NREL’s publications [54, 55], however, for simplicity these have been altered to 

eliminate the complexities while abiding with all the major conversion processes 

Biomass is treated with dilute sulfuric acid at high temperature, which is further 

processed to remove by-products, such as, acetic acid, furfural and primary 

hydroxymethyl furfural. Finally, the solids are washed and over-limed to increase the 

pH of the treated biomass. This is followed by neutralization and separation of gypsum 

formed during the process. Figure 4.9 depicts a detailed schematic of the process flow 

diagram for this section.  Various reactions and process parameters involved in the pre-

treatment section are listed in Appendix A.1. It must be kept in mind that this is not a 

generic pre-treatment scheme. While several factors exist [142, 143], typically, the pre-

treatment processes are designed based on increasing the cellulose or hemicellulose 

surface area available for the fermentation enzymes to act [143, 144]. The motive of 
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the simulation model is to incorporate various pre-treatment schemes depending on the 

need of stakeholders. 

 

Figure 4.9 Schematic of the chemical pre-treatment section (Aspen Plus®) of corn 

stover 

 Following the pre-treatment is the main conversion process for the production 

of biofuels. The saccharification and fermentation section is simulated, which aims to 

increase the amount of glucose and ferment it to the final product (ethanol in this case). 

Similar to the pre-treatment section, this part of the overall process simulation is 

adapted from previous research by NREL [54]. The pre-treated biomass is sent to the 

saccharification reactor where it is operated at higher temperatures (65˚C) and given 

sufficient residence time (36 hours). Following the saccharification, the sugar rich 

stream’s temperature is reduced (41˚C) to carry out the fermentation. Z.mobilis is the 

bacteria which is used by NREL for fermentation. Appendix A.2 explains various 

reactions and corresponding parameters involved in the process. A detailed schematic 

of the saccharification and fermentation process is shown in Figure 4.10. The product 
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stream from this unit is pumped to the purification section, where ethanol will be 

separated. 

 

Figure 4.10 Process flow diagram (Aspen Plus®) of the saccharification and 

fermentation process 

 One of the major challenges of the overall process is the recovery of ethanol 

from the fermentation broth. While many processes exists [145-148], this simulation is 

designed for ethanol recovery using distillation, followed by the final separation using 

a molecular sieve. The two distillations columns are simulated and designed to remove 

all the impurities and bring the ethanol concentration close to the azeotropic 

composition. Further, desired separation is achieved by sending the ethanol-water 

stream to a molecular sieve. The molecular sieve has not been designed for the 

simulation and it is assumed that the operation will achieve a desired separation of 

99.5% and the resulting ethanol is sold as the primary product. Finally, the product 

ethanol is sent to the storage facility. The bottoms from the distillation column is 

channeled to the treatment plant along with waste water streams from the fermentation 

and pre-treatment sections. Figure 4.11 presents the process flow diagram of ethanol 

recovery unit used in the simulation. 
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Figure 4.11 Schematic (Aspen Plus®) of the ethanol recovery operation 

 Fresh water is one of the major raw materials required for a biorefinery based 

on biological conversion techniques. In order to reduce the consumption of fresh water, 

a waste water treatment plant is simulated. The treatment plant gathers waste water 

streams from the processes and is sent to a filtration unit where organic solids particles 

present are removed. This is followed by heating the waste water to 35˚C, before it is 

directed to the anaerobic reactors. Here, all the soluble compounds are assumed to be 

converted into CO2 and CH4. The two greenhouse gases produced are trapped by 

flashing the treated waste water stream. Once the gases are removed, the waste water is 

sent to an aerobic treatment tank. In this process, all the leftover organic compounds 

are reacted with oxygen in an aerator to produce CO2 and H2O. Finally, the treated 

water is recirculated and used in processes, such as, washing the biomass, physical and 

chemical pre-treatment operations. The conversions in the anaerobic and aerobic 

reactors are based on literature values [54]. Figure 4.12 shows the schematics of the 
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process flow diagram for the waste water treatment plant. It must be noted that in a 

potential biorefinery (based on biochemical reaction), a major portion of lignin, initially 

present, is left unreacted at the end of the process. There are ways to decompose the 

residual solids, such as, land fill applications and incineration. In this process, the solids 

that are filtered prior to the water treatment operations are combusted in a furnace to 

produce steam and process heat.  

 

Figure 4.12 A process flow diagram (Aspen Plus®) to treat the waste water 

 The final operation of the simulation aims to create useful process heat and 

electricity. The main objective of this operation is to create useful utilities by 

combustion of waste residues. The solids recovered from the waste streams are gathered 

and dried with air to remove the major portion of the moisture entrained. The dry 

organic waste is funneled to a furnace, where it is burned in the presence of excess air. 

The resulting heat is used to produce steam which is passed through a turbine to 

generate electricity. The flue gases from the combustor is channeled to a cyclone 

separator to remove ash particulates. The unit operations described is a possible way to 
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improve the utilization of resulting wastes. The schematic of the process for the waste 

utilization section is illustrated in Figure 4.13. 

 

Figure 4.13 Process flow diagram (Aspen Plus®) of the waste solid utilization section 

 Finally, all the previously described unit operations are combined to result in a 

complete flowsheet for biorefining, based on biochemical processing. The process 

described by the simulation aims to capture the major operations and conversion 

processes. In reality, a biorefinery may have several more unit operations involved, 

such as, enzyme production, evaporators and storage. Currently, it is assumed that the 

enzyme is purchased externally and the final product is sold immediately to the 

distributors. Further, it must be acknowledged that the enzymatic saccharification and 

fermentation processes are very sensitive to impurities. Hence, any minor variation in 

feed composition can result in a change of the final product composition. To capture 

such uncertainties, a dynamic simulation model must be developed which is out of 

scope for this work. The contribution here intends to create a process simulation model 

that can be connected to the supply chain optimization model, to collectively estimate 
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the economics of any biorefinery process. Figure 4.14 demonstrates the final process 

flow diagram developed for this purpose. All the major unit operations are moved inside 

the hierarchy blocks, enabling improved freedom to change properties and provides a 

hierarchical structure to the simulation. 

 

Figure 4.14 Process flow diagram (Aspen Plus®) of the entire process to convert corn 

stover to ethanol 

 The developed simulation is then tested under various feed rates and is equipped 

to perform the required runs. The following sections will demonstrate how these 

developed process models can be used to predict the optimum operational configuration 

for any given constrained objective. 

4.2.2.3 Process Optimization 

 The process simulations developed so far are steady state models and can only 

be used to perform one run, based on the provided input. However, in order to use the 

simulation as a guiding tool, various other built-in functions, such as, “Flowsheeting 

options” and “model analysis tool” can be utilized. For a given process, there could be 

several objectives based on the stakeholders interest. For instance, from an investment 

point of view, the objective function is to maximize profit, whereas from an 
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environmental perception, the goal is to reduce emissions. Hence, the developed model 

must be adaptable to such varying applications. In order to initiate the optimization 

process, each of the streams (input, output and intermediate) must be assigned a price 

based on literature data [55]. Table 4.5 and 4.6 show the costs assumed for various 

streams present in the thermochemical and biochemical processes, respectively. 

Whereas, Tables 4.7 and 4.8 demonstrate the utility and the feedstock cost, respectively. 

Table 4.5 Costs assigned to products for the biomass gasification process [136] 

Stream Price Unit 

Natural gas 4.0 $/Mcuft 

Gasoline 3.5 $/gal 

Diesel 4.0 $/gal 

Residual oil 2.5 $/gal 

Table 4.6 Price of streams for the biological conversion process [54] 

Stream Price Unit 

Ethanol 2.5 $/gal 

H2SO4 94.00 $/ton 

Diammonium Phosphate 400.00 $/tonne 

Water 0.001 $/gal 

Enzyme 0.060 $/gal 

Ca(OH)2 50.00 $/ton 

Corn steep liquor 0.36 $/gal 

Table 4.7 Utility costs used for the developed simulations [123, 136] 

Utility Price Unit 

Cooling water 8.89*10-10 $/cal 

Electricity 0.07 $/kWhr 

High Pressure Steam 1.04*10-8 $/cal 

Medium Pressure Steam 0.92*10-8 $/cal 

Low Pressure Steam 0.79*10-8 $/cal 

Table 4.8 Assumed (to initialize the runs) costs for the developed simulations 

 

 

  

 

Stream Price Unit 

Forest residue 40 $/tonne 

Corn stover 60 $/tonne 

Chicken litter 50 $/tonne 

Switchgrass 60 $/tonne 
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 Another major input to the model is the utility costs. The operations involved in 

both the processes (thermochemical and biochemical) are assigned with utilities, such 

as, steam, cooling water, refrigerant and electricity. Also, ports are available in Aspen 

Plus® to incorporate other cooling and heating entities, such as, low temperature, hot 

oil and very high temperature utility. Once these are specified, the unit operations are 

assigned with the appropriate utilities. Based on the objective function, these specified 

streams can be called by the built-in “optimization” function present in the Aspen Plus® 

“model analysis tool”. Finally, variable ranges and constraints are set based on which 

the simulation runs and optimizes. This application of the simulation consumes more 

time and it may in some cases, require several iterations before it converges. Equation 

4.5 and 4.6 shows the type of objective functions that have been used to run the 

simulations for optimization. 

Maximize Profit 

Profit=Product Sales Income (PSI)–Biorefinery Operating Cost (BOC)   (4.5) 

OR 

Minimize Operating Cost 

BOC=Variable Feed Cost (VFC) +Chemicals Cost (CC) +Utility Cost (UC)          

            (4.6) 

 

Where 

𝑃𝑆𝐼 = ∑𝐶ℎ

𝑎

ℎ=1

𝑃ℎ,                 𝑉𝐹𝐶 = ∑ 𝐵𝑤

𝑏

𝑤=1

𝐹𝑤 ,                𝐶𝐶 =∑𝑄𝑣

𝑑

𝑣=1

𝐺𝑣 

𝑈𝐶 = 𝐶𝐻∑𝑄𝐻𝑥

𝑒

𝑥=1

+ 𝐶𝑅∑𝑄𝑅𝑦

𝑓

𝑦=1

+ 𝐶𝐶∑𝑄𝐶𝑧

𝑔

𝑧=1
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Subject to: 

A = CL*Op,   D = FR*Oq,  R = CS*Or 

0.9 ≤ Op ≤ 1,  0.9 ≤ Oq ≤ 1, 0.9 ≤ Or ≤ 1 

Table 4.9 Notations and subscript indices 

Ch, Bw, Qv Product ($/gal), feed ($/kg) and chemical ($/kg) unit cost, 

respectively 

Ph, Fw, Gv Product (gal/s), feed (kg/s) and chemical (kg/s) flow rate, 

respectively 

CH, CR, CC Cost of hot, refrigeration and cold utility, respectively ($/J) 

QHx, QRy, QCz Hot, refrigerant and cold utility consumed (W) 

CL, FR, CS Generated chicken litter, forest residue and corn stover 

(kg/sec) 

A, D, R Rate of input of CL, FR and CS, respectively (kg/sec) 

Op, Oq, Or Non-negative multiplication factor of CL, FR and CS, 

respectively 

a, b, d Number of product, feedstock and chemicals, respectively 

e, f, g Number of hot, refrigeration and cold utility streams, 

respectively 

 

 The simulations are optimized either to maximize profit or minimize the utility 

consumption. An optimum feed ratio and the corresponding product slate can be 

determined as a major output from the simulation. Critical operating parameters, such 

as, optimum raw materials and utility costs along with the details regarding effluents 

and gas emissions are obtained. The emission details may not be conclusive as several 

other factors involved during the life cycle must be considered. Nevertheless, it is 

possible that other potential process configurations and utility schemes may exist. In 

order to determine the optimum utility network, heat integration will be performed that 

will be elaborated in the following section. 
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4.2.3 Heat Integration 

 The processing of biomass to biofuel requires continuous availability of utilities 

that contributes to the variable operating costs [149]. Studies are performed which focus 

on the simultaneous process and heat integration approach [80, 150]. While these 

notions are an effective way of optimizing, intensive computational power and heavy 

reliability on the detailed process data, makes the models cumbersome. The approach 

shown here is simple yet unique as it uses the Aspen heat integration tool (Aspen 

Energy Analyzer®) to optimize the utility consumption. This method of heat 

integration is distinct and can be used to incorporate all the process details pertaining 

to the simulations developed in Aspen Plus®. This approach has been used in the 

petroleum and chemical industries for years and can have its applicability in biorefining 

as well. 

 The optimized flow sheet described in section 4.2.2.3 is run and the necessary 

process data are exported to the Aspen Energy Analyzer®. The data is then interfaced 

by the software to develop a heat exchanger network diagram. The model is run to 

produce recommendations on improved heat exchanger network designs, based on 

minimizing exchanger area or the total annualized cost. Among the many suggested, a 

feasible configuration is selected and changes are made to the original process 

simulation (in Aspen Plus®). The process requires a few iterations before the best 

configuration is determined to minimize the utility. Figure 4.15 shows a heat exchanger 

network for corn stover fermentation process.  

Heat integration is performed under certain constraints, such as: 

 Maximum parallel branching allowed for a process stream is set to be two. 

 The ΔTmin is assumed to be 10˚C 

 Minimum Log Mean Temperature Difference (LMTD) correction factor is 0.8 
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Figure 4.15 Heat exchanger network suggestion obtained from Aspen Energy 

Analyzer® 

Adding to its merits, the approach shown here has several other advantages including 

omission of any infeasible process stream, checking the possibility for inclusion of 

alternative utilities, analyze network costs and the potential savings, etc. Hence, this 

method demands human judgment prior to the selection of the final configuration. The 

optimized and integrated process is then appraised for its environmental impacts. 

4.2.4 Environmental Impact Assessment 

 The details obtained from the process simulation is extensive in terms of 

composition. Various effluent streams are determined, but in order to compare these on 

a common basis, a method is necessary that can assign values based on the impact of 

energy consumed by the facility. The framework uses the Waste Reduction (WAR) 

algorithm [91], developed by US EPA. The WAR algorithm compares processes based 

on the effluents and the source of energy used to generate utilities for the process. As 
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an added advantage, the software has an interface to import streams present in the 

Aspen Plus® process simulation.  

 Both the thermochemical and biochemical processes can be linked to the WAR 

algorithm and it can be compared for its environmental impacts. The simulations 

developed do not account for several inorganic compounds present in the feedstock. 

For instance, the biomass feedstock contains compounds and elements that are 

cumulatively accounted as ash in the proximate and ultimate analysis data. The ash left 

after the gasification process still contains these elements or the corresponding oxides 

in it. However, a detailed analysis on these compounds has not been performed, yet. 

Therefore, the results obtained so far do not consider these impurities and their potential 

impacts. 

 Another use of this tool is to check various utility or process schemes for the 

best environmental performance. Hence, the results obtained can be used to analyze 

process configurations, based on which, changes can be fed back to the process 

optimization model. While other versatile environmental assessment tools exist [92], 

the use of WAR algorithm is to demonstrate the ability of the framework to be linked 

with such models. If recalled, the main goal of the framework is to determine the 

optimum operating configuration based on the economic value. Once the optimization, 

heat integration and emission assessment stages are completed, the resulting process 

simulation represents a model of an optimally operating plant. At this point, the process 

simulation model is fixed and ready to estimate the capital investment required to build 

a biorefinery. 

4.2.5 Capital Cost 

 So far the investment costs accounted for are mainly variable operating costs. 

Detailed analysis must be done which includes the investment required to build the 
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facility, purchase process equipment, maintain and operate the biorefinery. For this 

framework, Aspen Economic Analyzer® is the software that is used to estimate the 

capital cost of a biorefinery. Similar to Aspen Energy Analyzer®, Aspen Economic 

Analyzer® has a simple interface with the Aspen Plus® steady state simulation. This 

virtue enables swift export of process equipment and operations data to the Aspen 

Economic Analyzer®.  

 For this framework, the process equipment is sized and evaluated for its capital 

cost based on the materials of construction, process parameters, auxiliary parts, piping 

etc. Most of the equipment used currently are present in the software database, however, 

a few (gasifier, molecular sieve, etc) are not currently available. This equipment is 

assumed to have the same cost as vessels that closely resemble the original ones. For 

accuracy, this exercise must be carried out by sharing design specifications with the 

concerned vendors. Previous contributions [54, 151] used vendor data to provide 

realistic economic estimates. Chapter 6 and 7 will elaborate on the results obtained by 

this model and describe how it can be used to perform investment analysis.  

 Previously, individual simulation tools have been used, however, this novel 

contribution aims to link these in an iterative manner. The following section will 

demonstrate the method by which the runs are being performed. The virtue of this 

contribution lies in bringing various simulation and optimization models together to 

build a process optimization framework that can run in an iterative manner. This is the 

first step in building the multidisciplinary framework for economic optimization. 

Figure 4.16 illustrates a data flow scheme that describes the running of the process 

optimization model.  
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Figure 4.16 Methodology in which the data flows between various models to optimize 

the biorefining process 

 The data flow scheme starts with the selection of the conversion process that 

needs to be simulated. The process simulation model is developed for the chosen 

process and thereafter the operations of the process is optimized based on the desired 

objective. Subsequently, the process is checked for the best heat exchanger 

configuration by exporting the process streams to Aspen Economic Analyzer®. If a 

better configuration for the same process is determined, suggested changes are 

incorporated in the process flow diagram. Consequently, the process is assessed for its 

environmental impacts by using the WAR algorithm. Finally, the process data is 

exported to Aspen Economic Analyzer® to calculate the capital investment, operating 

and maintenance cost for the biorefinery. The model developed gives several specifics 

that can be used by the supply chain optimization model and discrete even simulation 

model. Hence, the development of the described process optimization model opens a 

venue for a novel contribution in determining the optimum supply chain configuration.  

4.3 Linking of the Models 

The process optimization model developed provides key details which are of 

great value, marking the beginning of the multidisciplinary iterative process. However, 

in order to capture the complete scenario, the transportation logistics of biomass cannot 
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be ignored. Subsequently, the developed process optimization model should share the 

optimum feed ratio, product slate, operating costs and capital investment values with 

the supply chain optimization model. The supply chain model to be described in the 

following section has been published previously [22]. 

4.3.1 Supply Chain Optimization 

In order to create a framework, a methodology is proposed for preliminary 

analysis, which will be implemented in a case study as a proof of concept in the 

following sections. To begin analyzing the overall supply chain for producing biofuels 

from biomass, the first step is to assess the amount and type of feedstock available in 

the region of interest along with its respective locations on the map.  A simple pictorial 

representation of this supply chain is illustrated in Figure 4.17.  

The MILP optimization model used in this work is a published contribution 

from previous research [22] using IBM ILOG® Optimization Programming Language 

(OPL). As described in the section 4.2.1, details regarding the feedstock present in 

various sites are an input to the optimization model. Once the feedstock source locations 

are established, a decision must be made regarding the optimal path from source to the 

biorefinery. All the potential biorefinery locations must be considered based on the road 

network, followed by the selection of an appropriate conversion technique depending 

on the feedstock to product pathway. Finally, the respective logistics for the 

transportation of feedstocks and products need to be optimized. The published code in 

the original work is modified to incorporate the annualized capital cost. Appendix A.3 

shows the objective function and constraints used in the model, followed by the 

modified code for the gasification and fermentation processes. It must be recognized 

that for any given capacity, the developed model determines an optimum biorefinery 

supply chain along with the amount of product and feed to be transported. However the 
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model does not account for uncertainties involved in feedstock availability and product 

demand. Nevertheless, the supply chain optimization model provides a snapshot of the 

supply chain configuration for a centralized integrated biorefinery.  

 

Figure 4.17 A simple supply chain scheme to demonstrate the scope of transportation 

details that will be covered in this contribution [21] 

4.3.2 Discrete Event Simulation 

 While the MILP model, discussed previously, yields an optimal supply chain, 

its optimality is subject to the assumed conditions used to generate it. Moreover, with 

uncertainty in the availability of feedstocks, such as, forest residue, corn stover and 

animal wastes, over time can have tremendous influence on the upstream and 

downstream supply chain performance. Similarly, profitability of the supply chain is 

directly linked to the demand variability for its products in the potential marketplace. 

Discrete event simulation models represent reality as a sequence of events that changes 

the state of a system at an instant and have been used widely to simulate operation-level 

performance of supply chains [152]. Using this tool, one can simulate biorefinery 

Potential 

Biorefinery Sites

Feedstock Source Demand Location
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supply chain activities accounting for biomass generation, transportation, conversion to 

final product, product distribution and sale. The model developed by Amundson (2013) 

[89] provides a means to examine the economic performance of a biofuel supply chain 

over time including consideration for supply and demand variability. Distributions are 

determined in this work based on publically available feedstock generation data for a 

selected region. Similarly, product demand distributions based on historic consumption 

data are generated. Using the optimal supply chains generated from various scenarios 

determined via the MILP framework and process parameters from process optimization 

model, the simulation (discrete event simulation) can be used to forecast the net present 

value of an investment in biorefining over a specified period of time. Performing this 

iteratively resulted in the determination of an optimal biorefinery capacity and the 

dynamic nature of overall supply chain performance can then be examined for the 

impact of uncertainty over time. 

4.4 Techno-Economic Framework 

 So far, the work described through this research is focused on developing 

standalone simulation and optimization models [21, 22, 89, 90]. While these 

contributions are unique on their own, the research can be further enhanced, provided, 

a method for linking these detailed models is determined. The iterative linking of the 

models will open a new horizon with endless possibilities for adding details to the 

existing framework. Nevertheless, to attain the previously described linking, individual 

models must be tailored so that continual runs are assured with the least computational 

burden.  

 The major details required to initiate the model are, determining the availability 

of feedstocks, demand of products and their corresponding locations on the map 
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(depending on how the distance array is calculated [22]). Based on the availability and 

demand, potential biorefinery conversion processes are selected. Subsequently, process 

simulation models (thermochemical and biochemical) are developed and optimized as 

described in section 4.2. The results from the developed model is then interfaced to 

Microsoft Excel® via a dedicated Visual Basic® (VB) application interface. This 

operation marks the end of the process optimization segment. It must be reemphasized 

that the model performs as a black box and the process variables are not accessible for 

change during the iteration.  

 The MILP optimization model requires data, such as, feed at the biorefinery 

location, operating costs, capital investment and products produced at the facility. 

These details are shared via Microsoft Excel® which has an interface with IBM’s ILOG 

OPL® (used to run the MILP). Based on the objective function, the MILP optimization 

model determines a high resolution supply chain configuration. The combined results 

obtained by the deterministic models are verified for their operating profitability. Any 

non-profitable scenario is discarded and the capacity of the biorefinery will be varied 

until a positive operating profit is achieved. In order to avoid vacillation, the iteration 

is started with the maximum capacity (determined based on the available biomass) and 

reduced progressively to reset the iteration. Finally, the cumulative costs and supply 

chain details are transferred to the discrete event simulation model.  

 The discrete event simulation is based on distributions available from historic 

data and hence captures the effect of upstream and downstream uncertainty over time. 

The simulation is run for a defined timeframe into the future to determine the economic 

variability. Finally, the results obtained are checked for their operating profitability and 

the capacity of the plant is reset for any non-profitable scenario. Each of the screened 
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scenario (based on profitability) is recorded for further analysis. Chapter 6 and 7 will 

describe the application of this methodology for the biorefinery processes. Figure 4.18 

illustrates a data flow scheme for the developed multidisciplinary framework.  

 

Figure 4.18 The final techno-economic framework developed, showing layers of flow 

of information to validate biorefining 

 For clarity, it is reaffirmed that the broad objective of the research is to evaluate 

sustainability of the biorefining processes. However, the current focus of this 
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dissertation is to establish economic viability. In the future, environmental and societal 

impact assessment tools must be added to the framework to validate the applicability 

of any biorefining process. 

4.5 Conclusions 

 In order to estimate the economic impacts of biorefining processes, it is 

necessary to consider multiple aspects of the supply chain. As described previously, 

this contribution paves a way to perform economic assessment by incorporating 

conversion process and transportation optimization model into a framework. This 

unique contribution is generalizable and can be used by stakeholders to estimate 

potential economic outcomes in their respective area of interest.  

 In summary, the framework developed can be used as a decision support tool 

by investors, policy makers, environmentalists and growers, to evaluate the viability of 

any bio-based resource to produce biofuels. In order to justify the assertion, case studies 

are performed on the developed processes in previously described manner. These 

studies will act as a proof of concept, further justifying the need for a multidisciplinary 

decision support tool. 
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5. Designing Proof of Concept Studies – Demonstrating the Working of the 

Developed Multidisciplinary Decision Support Framework 

 The development of an informative decision support tool for biorefining is a 

unique contribution in the field of PSE. The framework developed has linked various 

computational tools to create a versatile multidisciplinary model. The resulting model 

is a novel contribution that aims to provide insight towards the long-term economic 

viability of biorefining from a multi-stakeholder perspective. In order to fortify the 

assertion, case studies must be performed that demonstrate the applicability and 

generalizability of the model.  

5.1 Determining a Region to Perform the Case Studies 

 The primary step to perform case studies to evaluate the feasibility of 

biorefining is to select a suitable geographic location. While most regions have varying 

quantities of bio-resources in one form or another, in order to show the broad 

applicability of the framework, it is necessary to select a region that can supply diverse 

feedstocks. Also, the selected region should encompass most of the possible biorefining 

pathways, i.e. the region should have the potential to supply large quantities of 

feedstocks to produce multiple products using various conversion techniques. 

  In order to demonstrate the applicability of the proposed model, case studies 

are performed in the Jackson Purchase region of Western Kentucky, USA, which has 

ample access to coal, waste forest matter and agricultural residues, like, corn stover and 

wheat straw [153]. This region is also home to hundreds of poultry farms that may serve 

as a provider of chicken litter, which has applications for a biorefinery as an additional 

potential feedstock [74]. The mix of locally available biomass feedstock make it an 

attractive choice for a case study.  This region has an estimated population of 200,000 

with a demand for transportation fuel and energy. Based on the biomass available and 
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the pathways shown in Figure 2.1, various products, such as, natural gas, gasoline, 

diesel, heavy oils, ethanol and power are determined to be viable products in the region.  

Also, the region has access to water due to the presence of rivers adjacent to the area 

and has a developed road network for transportation of feed as well as the biorefinery 

products. A map of the Jackson Purchase region is shown in Figure 5.1 with locations 

of the feedstocks, potential biorefinery and product depot. 

 

Figure 5.1 Feedstock, potential biorefinery and product depot locations (Google 

Maps®) in the Jackson Purchase region [21, 22, 154] 

Note: The feed locations are shown by yellow, green and blue for corn stover, forest 

residue and chicken litter, respectively. Whereas, the red and black points on the map 

shows the potential biorefinery and product depot locations, respectively, which are 

inputs to the MILP model.  

 The methodology developed through this research starts by gathering 

information regarding the feedstock available using GIS in the region of interest. 
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Process simulations are run for an individual feedstock to establish an estimate for the 

maximum quantity that can be consumed. Individual feedstock simulations (Aspen 

Plus® process simulation runs) are recorded for calculating the maximum amount of 

biofuels that can be produced based on the local availability of biomass. This is used to 

set a maximum capacity for the plant to start the iterative process. Previous work [90] 

shows the detailed feedstock portfolio, developed depending on the biorefinery plant 

size and gate energy needs. These are assigned based on availability and energy content 

of the feedstock. Gate energy needs refers to the total potential of a feedstock to create 

energy, assuming a plant efficiency of 35%. Thus, from the total energy needs and 

energy density of each feedstock, the amount of feedstock to be shipped is calculated. 

The calculated detailed feedstock requirements are presented in Table 5.1. However, 

the present model focuses on capturing extensive results, such as, the effect of change 

in feedstock availability and capacity on project economics and potential biorefinery 

locations. 

Table 5.1 Calculated monthly portfolio for feedstock requirement in the Jackson 

Purchase region 

Feed August September October November December January February March April May June July 

Chicken 

Litter 

(106 kg) 

1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 

Corn 

Stover 

(106 kg) 

9.24 9.72 10.14 9.72 10.14 10.14 7.99 9.24 8.82 9.24 8.82 9.24 

Forest 

Residue 

(106 kg) 

2.34 1.56 1.56 1.56 1.56 2.34 2.34 2.34 2.34 2.34 2.34 2.34 

 

5.2 Reasoning Behind Selecting the Case Studies 

 Planning the case studies is a critical aspect that must be performed to validate 

the operations of the developed model. For biorefining, there are several theoretically 
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feasible process combinations that can be considered. However, it is desirable to design 

the case studies such that they can capture diverse applications of the contribution. 

Nevertheless, the case studies must demonstrate the manner in which the iterations must 

be performed with the process simulation and supply chain optimization models to 

share information and finally validate the optimal configuration. The research presents 

multiple proof of concept results that substantiate the working of the framework. These 

studies examine various existing, emerging and potential process configurations for a 

given region of interest (in this case, the Jackson Purchase region). The following sub-

sections will elaborate on the reasoning behind selecting the processes for case studies. 

5.2.1 A Proven Conversion Technique 

 At first, in this contribution, the established process of gasification is studied for 

its viability in the Jackson Purchase region. There have been many instances where the 

process of gasification has shown practical viability and is used with both coal and 

biomass to produce liquid fuel and power. However, we still lack sufficient 

confirmations which can prove the application of biomass gasification as a viable 

option for the long-term. Also, if proven profitable, the optimum product slate for the 

region must be determined. In this case study, the framework is developed to test the 

viability of biomass gasification, in the Jackson Purchase region, to produce liquid 

hydrocarbons and electricity using corn stover, chicken litter and forest residue as 

feedstocks. Chapter 6 states the detailed assumptions, methodology and results obtained 

for the process. This proof of concept demonstrates the ability of the framework to 

incorporate thermochemical processes. Also, the case studies explain the type of inputs 

that needs to be varied in order to generalize this model to any given region. Eventually, 

this tool can be used by investors and policy makers to justify their judgment and decide 

policies to mitigate financial adversities. 
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5.2.2 An Emerging Conversion Process 

 Currently, several biosynthesis pathways are being explored to convert bio-

based raw materials into biofuels. So far, bioethanol which is derived from first 

generation biomass, is a major biofuel [155] that is used in blending with the gasoline 

derived from fossil based resources. Currently, various alternatives for producing bio-

ethanol, bio-butanol etc. from lignocellulosic biomass are being explored [156]. While, 

bio-butanol is a promising alternative that has potential to replace a major portion of 

gasoline [157], in comparison to bio-ethanol it has been determined to be less 

economically viable [158]. Hence, for this framework, the biological process to be 

developed initially is the conversion of corn stover to ethanol. In the future, as  

metabolic engineering applications materialize with improved resistance of micro-

organisms [159], subsequent process simulations to convert dedicated energy crops to 

butanol will be studied. Such an assessment will be of great value to experimentalists, 

as they can justify their experimental research outcomes. 

5.2.3 A Hypothetical Scenario 

 A major virtue of an ideal decision support tool is to foresee the potential 

opportunities to improve the profit for any flourishing scenario. Hence, the developed 

tool can be used as a guide by growers and policy makers to encourage channeling 

money and resources towards the most promising bio-based feedstock. One major 

venue to explore is the potential utilization of available marginal land to cultivate 

dedicated energy crops which can be used to produce biofuels. Unlike the previous two 

scenarios (thermochemical and biochemical conversion processes), this is a 

hypothetical plan that can be utilized by growers to identify the potential to enhance a 

profitable scenario. A case study is performed in the Jackson Purchase region to 
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examine the utilization of marginal land and its impacts on the economics of an existing 

biorefinery. 

5.2.4 Exploring the Integration Possibilities 

 The model developed can to be used by various stakeholders from diverse 

professional backgrounds. Hence, one of the major attributes is its usefulness and the 

potential to be integrated with existing tools and novel research outcomes. The model 

is formulated as a collection of multiple stand-alone simulation and optimization 

models, each of which have a dedicated Visual Basic® interface. While this trait has 

been significantly explored for the data transfer, in the future, it may serve as a venue 

for automation and integration. 

 Also, for the process optimization models there are several ways to incorporate 

the experimental outcomes that have been determined and applied to the existing 

models. While such integration possibilities have been present for years, the linking of 

these to the process models, followed by interfacing it with supply chain models and 

finally, the creation a decision support tool portrays the true vision of PSE applications. 

Chapter 8 elaborates on the opportunities for integration of the decision support tool. 

5.3 Conclusions 

 In summary, various proof of concept studies demonstrating the working of the 

framework are planned. The following chapters expand on each of the schemes for 

biorefining discussed above. Finally, all these scenarios are compared, leading to 

conclusions in determining the most economically viable process in the Jackson 

Purchase region. This exercise not only demonstrates the capability of the framework 

but will also validate the potential of any process in a given region of interest. 

Copyright © Sumesh Sukumara 2014  
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6. Economic Assessment of Thermochemical Conversion Process- A Case 

Study on Biomass Gasification 

The contents of this chapter are adapted or taken directly from Clean 

Technologies and Environmental Policy, Volume 16, Issue 6, S. Sukumara, W. 

Faulkner, J. Amundson, F. Badurdeen and J. Seay, “A multidisciplinary decision 

support tool for evaluating multiple biorefinery conversion technologies and supply 

chain performance”, 2013, pages 1027-1044, with kind permission of Springer Science 

and Business Media. 

6.1 Summary 

 Lack of a region specific flexible optimization model poses difficulties for 

stakeholders, like, policy makers, growers and investors to make informed decisions 

about the economic viability and, social and environmental impacts of biomass 

utilization.  This novel application illustrates an approach to develop a region specific 

optimization model which links various aspects of the biofuel supply chain, such as, 

feedstock source location, upstream and downstream logistics, as well as 

thermochemical processing. The research shows how various individual optimization 

models can be combined, resulting in a complete, multivariable economic optimization 

model for a regional biomass network, paving a pathway for future work to develop an 

integrated framework for sustainability. This chapter explains the development of a 

model that can form the basis of a generalizable decision support tool which can guide 

investors and policy makers in making critical assessments on a local level in any 

particular region of interest.  As a proof of concept, a portion of the described model is 

validated for its application to evaluate the viability of biomass gasification in the 

Jackson Purchase region of Western Kentucky. 
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6.2 Introduction 

 Recent research focuses on developing a sustainable source of energy and 

transportation fuel. Among the various options available, biomass intrigues many 

researchers because of its widespread availability, cost effectiveness and its 

applicability as a sustainable energy source. As described previously, the focus of 

biorefining research has shifted from first generation biofuels, derived from plant 

sugars and oils, to second generation which are produced using lignocellulosic biomass 

[160]. Numerous processes are available to convert lignocellulosic biomass to various 

marketable products; however, most of these involve extensive processing. Hence, the 

economic, environmental and social challenges need to be understood and overcome in 

order to compete with the comparatively low prices of fossil fuels [161]. Unfortunately, 

policymakers and investors still lack tools which can estimate the economic viability of 

a biorefinery that meets the needs of many stakeholders. The main focus of this chapter 

is to evaluate the economic viability for the process of biomass gasification, which is 

an essential step to validate the derived biofuels as a sustainable source of energy.  In 

order to demonstrate its applicability, a case study is performed in the Jackson Purchase 

region, which has ample access to coal, waste forest matter and agricultural residues, 

like, corn stover and wheat straw [153]. This work sets a foundation to allow future 

integration of economic, environmental and societal aspects by capturing the 

uncertainties involved in sustainable biorefining and supporting supply chains. 

6.3 Background 

 Among the many advantages of lignocellulosic biomass, it is the expanded 

choice of feedstock that makes it favorable for producing biofuels and energy [10]. 

There are many ways in which biomass can be converted into various fuels and 

chemicals. Integrated biorefining is one such idea where potential feedstocks can be 
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converted into transportation fuel, energy and other synthetic chemical products 

utilizing thermochemical and biochemical techniques. In many ways, integrated 

biorefineries are similar to existing crude oil refineries. However, in order to be applied 

to biomass, the use of feedstock and production economics needs to be optimized [162].  

 Figure 6.1 (a concise version of Figure 2.1) shows various pathways for 

integrated biorefining involving multiple feedstock to produce end products. Every 

pathway shown from feedstock to end product has a unique supply chain and associated 

economic, environmental and societal impacts. Moreover, availability and quality of 

lignocellulosic biomass changes from one region to another. This non-uniformity 

makes it challenging to determine the most profitable pathway among the existing 

options. In addition, seasonal variability in local feedstock, environmental impacts 

caused by the conversion processes and the demand for marketable products cannot be 

overlooked while modeling [90].  

 Aiming for sustainability in terms of energy and fuel, it becomes critical to meet 

the rising estimates. However, there exist many uncertainties involved in creating 

biofuels from biomass compared with conventional fossil fuels. Varying seasonal 

availability, geographical constraints, biomass supply and biofuel demand are the major 

factors amongst many, causing this uncertainty [163]. As a result, one or more of the 

processing pathways, shown in Figure 6.1, may lead to an unsustainable supply chain. 

An optimization model is presented [164], that intends to capture uncertainties and 

determine an optimum network along with critical parameters for integrated 

biorefining. In order to offset any unsustainable scenario in the supply chain, local 

policies will play a major role [165]. 

 



78 

 

 

Figure 6.1 Potential pathways for integrated biorefining [21, 102] 

 Policies set by the government will have a great impact on the sustainability of 

any particular process and will affect the decisions made by local growers and investors. 

Governments in the past have set several direct policies, like, tax exemptions, 

mandatory blending requirements, renewable portfolio standards and also indirect ones, 

such as, carbon taxes, farm, trade and vehicle policies [165]. Nevertheless, in order to 

support this process, policy makers need to have a tool that can promptly and precisely 

measure various proposals and corresponding impacts due to any specific or 

combination of multiple process and policies. 

 There are several factors that need to be considered in order to estimate 

sustainability of any biorefining process. With ongoing research, as the latest biomass 

conversion techniques are included into the list of potential processes for the future, the 

complete supply chain starting from biomass in the field to distributed end products 

cannot be ignored. Currently most of the biorefineries focus on ethanol production and 
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hence are concentrated in corn producing locations. As various other promising 

feedstock (mainly second generation lignocellulosic feedstock) are accommodated, 

many other locations may have the potential to serve as a better biorefinery site in long-

term. Demand is another key issue that needs to be addressed. Figure 6.2 shows the 

current demand, various feedstocks and existing biorefinery locations [166]. If all the 

maps in Figure 6.2 are combined, the future scenarios will indeed be very complicated. 

The addition of coal, dedicated energy crops and other first generation biofuel 

feedstocks will further complicate the decisions that need to be made for integrated 

biorefining in any particular region. 

  The frameworks developed previously are promising and have shown diverse 

details pertaining to the economic validation of cellulosic biofuels. Chapter 2 has 

summarized detailed contributions of contemporary research in this field of 

engineering. However, all the previously mentioned models either depend on other 

models for specifics related to process conversion or transportation details or both. The 

model presented as a result of this research aims to create a framework which includes 

all the stages involved in producing transportation fuel and energy from biomass. The 

unique approach suggested combines both simulation and optimization tools to readily 

provide data that trickles to various linked models and eventually is used to optimize 

the overall process of integrated biorefining. For the initial analysis, a simplified supply 

chain model is utilized. The model presented in this manuscript combines various 

techniques of process optimization from previous research in this field [74]. Other 

critical decisions, like, optimum biorefinery location [44] are some of the essential 

information that the developed economic model provides. 
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Figure 6.2 Map showing population density [167] (top left), vehicle density (top 

right), corn locations (middle left), existing ethanol refineries (middle right), wood 

residue (bottom left) and crop residue (bottom right) locations of USA [21, 166] 

Note: Vehicle density (top right) shown in the figure is based on diesel, electric and 

flex fuel vehicles. Wood residue (bottom left) consists of forest residue and primary 

mill residue. Crop residue (bottom right) consists of corn stover, wheat straw, rice 

straw and barley straw. 



81 

 

6.4 Multidisciplinary Methodology in Developing Region Specific Model 

In order to create a working framework, the methodology proposed in Chapter 

5 is implemented in a case study as a proof of concept in the following sections. The 

primary action required for estimating the economics of a biorefinery is to determine 

the largest feasible capacity. This is achieved by calculating the gate energy needs at 

the biorefinery (as described in section 5.1). Based on the capacity of the biorefinery, 

potential biorefinery locations and the biomass feedstock, an optimum transportation 

network is determined. The MILP optimization model is developed to identify the 

optimal biorefinery location and allocate transportation pathways for feedstock from its 

source to the biorefinery location [168]. Optimum transportation cost is one of the 

major outcomes of this MILP optimization model that needs to be combined with 

chemical conversion cost to predict the total variable operating cost for a biorefinery. 

However, there are many other uncertainties that cannot be ignored in the decision 

making process. For this reason, supply chain optimization alone is not sufficient. 

Supply chain simulation [89] capable of providing information about the long-term 

robustness of the biorefinery and its supply chain under uncertainty should be included 

within the modeling framework. Additionally, methods of supply chain risk 

management should be employed to quantify and mitigate the risks associated with this 

uncertainty.  A Bayesian based approach [169] will be used in the future to compliment 

the current research for sustainable biorefining. This approach encompasses uncertainty 

factors, like, seasonal variation in biomass availability, hike in diesel price, lack of 

preprocessing, increased labor costs, decreased labor availability etc. The extended 

study will provide valuable insight for the development of feedstock availability 

distributions for use in supply chain simulation. 
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 The next step, is to develop multiple process simulation models for various 

conversion processes possible in the region as shown in biorefining pathways in Figure 

6.1. Conversion process can be mainly categorized into two types: The processes which 

are feed specific, for example enzymatic processes and the other being the processes 

that have the ability to include more than one biomass feedstock, for example biomass 

gasification. A feed flexible process simulation model followed by optimization of 

conversion process for maximizing profit is then developed. Critical information, such 

as, operating cost, optimum feed, optimum products and emissions are some important 

outputs amongst many from this model that capture variabilities possible in the supply 

chain. Capital cost is another major result that leads to conclusions related to investment 

in any particular process. The details pertaining to the development of the process 

optimization models is presented in section 4.2.2. Once the model is checked for the 

operating profitability, the capital cost is estimated and MILP optimization model is 

run including the annualized capital cost factor. The analysis presented here focuses on 

showing, how the effect of uncertainties involved in production of biofuels may change 

crucial investment decisions, like, variable feed cost, variable operating cost, fixed 

capital cost and net cash flow. The models developed as a result of this research can 

eventually be expanded in order to assess not only capital cost but also other 

environmental and societal impacts. 

 Finally, the output is checked for profitability based on some critical decisions, 

such as, the potential biorefinery location and most profitable feed ratio. If the results 

show negative cash flow, then the biorefinery capacity is reduced and the same 

procedure is repeated until the model shows an operating profit. Figure 6.3 provides a 

detailed schematic for the data exchange from one model to another. This is a short 

version of the framework presented in the section 4.4, as this contribution focuses on 
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the development of the process optimization model. The overall framework consists of 

various optimization models; hence data exchange between them is a major challenge. 

The model developed utilizes Microsoft® Visual Basic (VB) for Applications for 

efficient data transfer. With the help of a case study, application of the novel 

multidisciplinary optimization framework is illustrated. The case study does not include 

all the details represented in the Figure 6.3 but shows some key findings that can be 

achieved. For instance, iterations are performed in the case study involving process 

simulation and supply chain optimization. Currently, this does not include discrete 

event simulation in determining the optimum configuration. Subsequent chapter will 

include the discrete event simulation model in determining impacts of variability 

occurring in the supply chain.  

 

Figure 6.3 Overall framework showing multidisciplinary methodology to estimate 

various factors for sustainable biorefining [21] 
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 The model developed is flexible and allows additional specifics to be added to 

each stage in order to achieve diverse results. This is an important feature of the 

methodology which is adapted due to the different stakeholder demands and local 

policy variations in different regions.  It should be noted that a complete life cycle 

analysis (LCA) is beyond the scope of developed framework, however, it can act as a 

tool to assign weightage and share particulars with various LCA models. 

6.5 Case Study 

 The Jackson Purchase region of Western Kentucky serves as the geographic 

location for the case studies to be performed. A detailed description of the topography, 

feedstock and corresponding sites to be involved in the case study is provided in section 

5.1. The following case study illustrates the development and implementation of the 

proposed framework; as a result there are many assumptions that go into this model. 

Major ones being: 

 Each county has one potential biorefinery location based on the existing road 

network 

 Preprocessing of biomass is performed at the biorefinery site 

 Products are transported to a nearby storage depot. Detailed end user distribution 

locations are not included in the supply chain. 

 Figure 6.4 shows the methodology in which the data exchange takes place 

between the process and supply chain model. The model presented in this case study 

neither accounts for the detailed distribution of the end products nor does it account for 

the seasonal demand variation of such products. Instead, a feedstock portfolio is created 

based on the gate energy needs as explained in section 5.1. For simplicity, it is assumed 

that all products are consumed near the biorefinery location. Presently, the case study 
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focuses on multiple feedstock gasification of biomass to create both power and 

transportation fuel. Adding to previous research work [90], the results presented here 

takes into account the project’s capital cost in the decision making process. 

Subsequently, the model is used to calculate the net cash flow based on variable 

operating costs and capital investments in various stages of the biomass conversion 

process and overall supply chain. This framework allows other possible potential 

processes, such as, biochemical conversion involving various crop residues and 

dedicated energy crops, making it an ideal place for the researchers and other decision 

makers to compare results for multiple processes. 

 

Figure 6.4 Optimization methodology used for the case study 

6.5.1 Feedstock Location Assessment 

 Corn stover and forest residue are the two major lignocellulosic biomass 

resource available in the Jackson Purchase region. Cultivation of corn is one of the 

major occupations in the region and as a result, a large volume of corn stover is left 

behind after harvesting. In addition, every year the U S Forest Service personnel in the 
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adjoining Land Between the Lakes National Recreational Area trim trees to mitigate 

the risk of forest fires. This region is home to hundreds of poultry farms, which discards 

tons of chicken litter as a waste.  

 Chicken litter has a high calorific value and can be used for co-firing in a 

biorefinery. All these feedstocks are generally waste products, thus the introduction of 

these to the biorefinery would also provide farmers with an additional source of 

revenue.  The locations of various feedstocks are determined using GIS and other tools, 

like, Google Maps®. Once the feedstock locations are determined, the nearest point on 

the road network is mapped and this point is assumed as the source of feedstock for 

calculating transportation cost. Figure 5.1 shows the local feedstocks and the potential 

biorefinery locations on the Jackson Purchase region map based on the existing road 

network. 

6.5.2 Optimization of Transportation Network 

 The low energy density of biomass makes transportation cost a key contributor 

in the overall economics of a biorefinery [38]. Seasonal variability in the available 

biomass feedstock adds to the complexity of determining the transportation network 

and potential biorefinery location. A MILP optimization model using ILOG OPL® is 

developed which takes into account biomass purchasing, handling, truck, diesel and 

operating costs for the siting of a multi-feedstock biorefinery location, as described 

previously [90]. Data, such as, potential plant locations, feedstock locations, monthly 

biomass/feedstock availability at each location and biorefinery size are inputs for the 

optimization model. The model for the Jackson Purchase region considers 19 chicken 

litter locations, 31 corn stover locations and 24 forest residue locations, as well as 8 

potential biorefinery site locations. The MILP model determines the optimal 

biorefinery location and monthly feedstock portfolio based on minimizing the total cost 
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for transportation. The model takes 17 s to run on a computer with an Intel® Core Duo 

2.00GHz processor and 4 GB RAM.  

 The monthly biomass availability at each location is divided into two categories; 

newly available feedstock and feedstock surplus. The feedstock surplus is defined as 

the amount of biomass not delivered to the biorefinery in a given month. For any 

feedstock location, the surplus will thus be stored at that location and made available in 

the next month while taking into consideration biological decay. This mode of operation 

is chosen to compensate for the seasonal variability of available biomass. Assuming the 

base case (100%, medium capacity biorefinery) [90], two other portfolios are derived 

in order to capture the behavior of profitability with changing biorefinery capacities. 

The large and small biorefinery is assigned a portfolio of 150% and 50% of the base 

case, respectively. Table 6.1 shows the various feedstock requirement portfolio in the 

Jackson Purchase region. 

 The feedstock data contained in Table 6.1 is then passed to the conversion 

process optimization model to determine the optimum processing cost. Appendix A.3 

shows the detailed equations that was used by the MILP model as discussed in section 

4.4. 

6.5.3 Process Simulation and Optimization 

 Biorefinery operating cost is another major variable cost that determines 

profitability. In order to find the overall processing cost, the transportation cost needs 

to be combined with variable biorefinery operating cost. In this case study the varying 

profitability for a multi-feedstock gasification process is emphasized. Later, the capital 

cost is estimated for various feedstock portfolios shown in Table 6.1. The framework 
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will also allow similar process simulation models to be created for comparing 

economic, environmental and societal impacts.  

Table 6.1 Calculated feedstock requirement portfolio in the Jackson Purchase region 

 

 The operating cost of a biorefinery can be divided into two categories: raw 

material and utility cost. The estimation of these variable costs can be achieved by 

running the appropriate process simulation models developed in the section 4.2.2. A 

steady state process simulation model is developed for the major feedstocks available 

in the Jackson Purchase region. The simulation model is feed flexible, as a result, it can 

use multiple biomass, conventional and other non-conventional feedstocks. In order to 

distinguish various feedstocks, proximate and ultimate analysis data [170] shown in 

Table 4.1 and 4.2, is used along with particle size distribution (PSD). For this case 

study, forest residue, chicken litter and corn stover are the major feedstocks that are 

included. It should be noted that the model also has the provision to add coal and/or 
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dedicated energy crops, like, switchgrass and miscanthus.  This is an important feature 

as it allows local growers and investors to determine possible expansion of the local 

crop portfolio to include these dedicated energy grasses for improved economics. 

 Figure 4.7 shows the process simulation model developed for the case study. 

First, a steady state process simulation is developed for the feed flexible gasification 

[35] process. Aspen Plus® V-8.2 is the software used for modeling and process 

optimization. The process consists of seven major units: sizing, gasification, cleaning, 

WGS, power generation, FTS and product separation unit, as described in section 

4.2.2.1. Sizing is a preprocessing unit where all the biomass is broken down into smaller 

sizes, sent through screens to get a uniform PSD and mixed before being sent to the 

gasification unit. In the gasification unit, for simulation purposes, all the biomass 

feedstocks are broken down into their respective elemental composition and then 

gasified in the presence of steam and air [171]. The exit stream from the gasifier consists 

of CO, H2, CO2, ash and trace impurities. A major portion of the impurities are tar and 

H2S which needs to be removed in the cleaning unit before being sent to the downstream 

process. Then, the synthesis gas which has an approximate H2:CO ratio of 1:1 is sent to 

a WGS reactor where this ratio is increased and maintained above 2:1. Finally, the exit 

stream is split in two: one is sent to the FTS reactor and the other to power generation. 

Conversions in both the FTS [134] and WGS [130] reactors are based on kinetics 

obtained from literature. Appendix B.1 shows process conditions in the major units of 

the feed flexible gasification process. Finally, the FTS products are sent to a series of 

two distillation columns to be separated into four assigned range of products. These 

products are then assigned a value for further profitability calculations. 

 The next step is to optimize the developed simulation model based on the 

regional crop portfolio, feedstock availability and multiple process constraints. The 
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objective function of the optimization is to maximize variable profitability as shown in 

Equation 6.1. Several process constraints are set in order to restrict the products out of 

each of the major units. The FTS products are restricted to a range of C1 to C30 alkanes 

and further divided into groups based on the composition of marketable hydrocarbons 

[172], such as, natural gas, LPG, gasoline, diesel and heavy oils. The output from the 

FTS is further separated and treated to create final products. Another constraint is set 

on the stream split fraction of the enriched synthesis gas from the WGS reactor, which 

is used to control the power and transportation fuel produced. Multiple calculator 

functions are present in each of the units to calculate varying consumption of process 

water, steam and chemicals. Finally, based on the optimum feed, a specific product 

slate is calculated by the Aspen Plus® process simulation. Products consisting of 

natural gas, gasoline, diesel, heavy oil and waxes are assigned a cost [136] from the 

latest available data. This costing helps to study the trend and shifts in profitability for 

the process. However, as discussed earlier, a constraint is set on the synthesis gas 

coming out of the WGS reactor to control the product. 

 Another constraint set on the input feed is based on the seasonal variability and 

uncertainties prevailing in the region. The developed process simulation model is run 

for optimization and the feed constraint is set to vary in a range of +/- 5% of the 

feedstock obtained from the MILP optimization model. This percentage of variation in 

biomass can be changed based on feedstock fluctuations in a given region. Also, the 

objective function can be readily modified for various scenarios, e.g. addition of CO2 

and other effluent penalties.  
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Objective Function for Process Simulation  

Maximize Profit = Product sales (SP) – [Cost of Feed (CF) + Cost of Chemicals (CC) 

+ Cost of Utilities (CU)]       (6.1) 

Where, 

𝑆𝑃 = ∑𝐶ℎ

𝑎

ℎ=1

𝑃ℎ 

𝐶𝐹 = ∑ 𝐵𝑤

𝑏

𝑤=1

𝐹𝑤 

𝐶𝐶 =∑𝑄𝑣

𝑑

𝑣=1

𝐺𝑣 

𝐶𝑈 = 𝐶𝐻∑𝑄𝐻𝑥

𝑒

𝑥=1

+ 𝐶𝑅∑𝑄𝑅𝑦

𝑓

𝑦=1

+ 𝐶𝐶∑𝑄𝐶𝑧

𝑔

𝑧=1

 

Subject to: 

A = CL*Op 

D = FR*Op 

R = CS*Or 

0.9 ≤ Op ≤ 1 

0.9 ≤ Oq ≤ 1 

0.9 ≤ Or ≤ 1 

Ch= Price of product ($/Gal) 

Ph= Product flow rate (Gal/s) 
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Bw= Cost of feedstock ($/kg) 

Fw= Flow rate of feedstock (kg/s) 

Qv= Cost of chemicals ($/kg) 

Gv= Flow rate of chemical (kg/s) 

CH= Hot utility cost ($/J) 

CR= Refrigerant cost ($/J) 

CC= Cold utility cost ($/J) 

QHx= Hot utility consumed (W) 

QRy= Refrigerant consumed (W) 

QCz= Cold utility consumed (W) 

A= Rate of chicken litter input (kg/s) 

D= Rate of forest residue input (kg/s) 

R= Rate of corn stover input (kg/s) 

CL=Generated chicken litter availability (kg/s) 

FR=Generated forest residue availability (kg/s) 

CS=Generated corn stover availability (kg/s) 

Op, Oq, Or= Multiplication factors for chicken litter, forest residue and corn stover 

respectively. 

Subscript Indices: 

a= Number of products 
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b= Number of feedstock 

d= Number of chemicals 

e= Number of hot utility 

f= Number of refrigerant 

g= Number of cold utility 

 Fixed capital costs are estimated for the three capacities of biorefinery. Aspen 

Process Economic Analyzer® is used to size and estimate the detailed capital, labor, 

maintenance and plant overhead costs. Appendix B.2 shows the detailed project costs 

calculated for an operating biorefinery. 

 The process optimization model developed for this case study is one pathway 

among many possible in the Jackson Purchase region. Similarly, many other process 

simulation models can be developed and optimized for other conversion possibilities in 

the region. Another benefit of the proposed methodology is that it is an ideal platform 

to compare various preprocessing techniques and its effect on the overall profitability 

and environmental impact. An additional feature of this approach is that the process 

simulation can be further developed to monitor various effluents and greenhouse gases 

produced by each process. 

6.5.4 Overall Economic Optimization 

 The various models developed must be able to transfer data in order to optimize 

the overall economics of a biorefinery. Both OPL® and Aspen Plus® (Aspen 

Technology®) have a dedicated interface with the Microsoft® VB application which 

can be developed in the future to communicate among various models automatically. 

The final goal of the combined model is to calculate the overall profitability which can 
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be compared among several feasible conversion processes in any given region. In this 

case, a proof of concept is demonstrated by analyzing one conversion technique 

amongst many available in the Jackson Purchase region. Raw materials for these 

processes are biomass and animal wastes, which currently have a very low cost but will 

potentially rise if this idea of integrated biorefinery is implemented. For the initial 

assessment, the feedstock costs have been assigned values from literature [22]. 

 In order to perform the optimization, various critical contributors of supply 

chain are included. Previous analysis [22] takes into consideration all the major factors 

influencing the projects profitability as shown in Equation 6.2. The model used to 

calculate costs, like, labor, supervisor, maintenance and plant overhead cost are based 

on fractions of operating cost. This model is modified to include dynamic and more 

realistic details from the Aspen Process Economic Analyzer® to replace these fractions. 

An annualized capital cost is calculated and added to the existing model to determine 

the most profitable biorefinery location in the region. The outputs from the process and 

transportation optimization models are combined with the annualized capital cost, raw 

material cost and product sales revenue to estimate overall profit as represented in 

Equation 6.2.  Appendix A.3 shows the detailed mathematical representation of this 

equation along with all the constraints, decision variables and parameters. 

Overall Objective Function 

Maximize Profit = Summ=1..12[Monthly Product Sales(Salesm) – (Monthly biomass 

purchasing cost(BCm) + Monthly biomass inventory cost(BC’m) + Monthly biomass 

transportation cost(BC’’m) + Monthly cost of diesel to transport the biomass(BC’’’m) 

+ Monthly operating cost(OCm) + Monthly product transportation cost(PCm) + 

Monthly product transportation diesel cost(PC’m))]    (6.2) 
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 The objective of this case study is to show, how various optimization models 

can be combined together to develop a tool that can encompass many critical results. 

The key outcome of this work is that by the addition of various processes and 

corresponding details, the novel framework can be used to answer many policy 

questions related to environmental impact, jobs created and other factors determining 

the feasibility of sustainable biorefining in a region. 

6.6 Results and Discussions 

 Data from the detailed supply chain and process optimization models are 

combined to obtain vital information regarding the overall process logistics and 

economics. The upstream supply chain optimization model is set to maximize 

profitability and hence three potential biorefinery locations are suggested for various 

capacities in the Jackson Purchase region. Figure 6.5, 6.6 and 6.7 depicts the various 

locations of the potential biorefinery for small, medium and large capacities, 

respectively. It is observed that the small and medium biorefinery locations are most 

profitable in Carlisle county, where as the large biorefinery is showing better profits in 

Hickman county. Diesel cost is determined to be the most sensitive variable within the 

model. This is due to the number of trucks needed to transport the required feedstock 

to meet the biorefinery needs. 



96 

 

 

Figure 6.5 Potential biorefinery location for small capacity estimated from the 

optimization model [154] 

 

Figure 6.6 Potential biorefinery location for medium capacity estimated from the 

optimization model [154] 
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Figure 6.7 Potential biorefinery location for large capacity estimated from the 

optimization model [154] 

 The analysis is further advanced in order to evaluate various investment 

parameters involved for the three biorefinery capacities. Figure 6.8 shows the fixed 

capital costs for various capacities, considering 100% as base case. Subsequently, 

results from Aspen Process Economic Analyzer®, Aspen Plus® and ILOG OPL® are 

gathered to perform a complete cash flow analysis. This is performed for a biorefinery 

assuming an operating life of 10 years and a salvage value of 20% of the initial 

investment. In order to capture the increasing value of various commodities that are 

consumed and produced by the biorefinery, specific percentage increases in value are 

considered for each year. Products are assumed to increase in value by 5% each year, 

whereas utility, feedstock and maintenance costs are assumed to increase by 3%, 3.5% 

and 3%, respectively. Appendix B.3 (a) and (b) shows detailed variable feed and utility 
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costs, respectively. Based on the assumptions discussed, a cash flow analysis is 

estimated as shown in Figure 6.9. For the medium biorefinery the net cash flow is 

positive and progressively increasing. However, the small and large biorefineries 

initially have a negative cash flow but increases gradually.  

 

Figure 6.8 Estimated fixed capital cost for various biorefinery capacities 

 

Figure 6.9 Annualized cash flow analysis for small, medium and large biorefinery 
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 According to the results obtained, an early conclusion would be that the medium 

biorefinery makes a higher operating profit. Two major contributors to cash flow are 

revenue generated by the products and feed cost which is mainly dependent on 

transportation logistics. The results show that the medium scale biorefinery is making 

profit but as the capacity of the plant increases the share of feedstock also increases 

significantly bringing the cash flow down, which is due to increasing diesel cost 

involved in transportation [22].  These region specific results clearly show value in their 

ability to inform local stakeholders, further demonstrating the advantage of this 

approach over large scale models. 

 In order to state that a conversion process is profitable in the long-term and to 

find out the future capital cost recovery for each capacity, a cumulative analysis is 

required including the capital cost. Figure 6.10 shows the cumulative cash flow analysis 

of small, medium and large biorefineries. As with the preliminary conclusion discussed, 

the medium biorefinery shows better cost recovery than the large and small. It can be 

also noticed that the small biorefinery is burdened with the capital investment and hence 

may take longer period to recover amongst the three. 

 

Figure 6.10 Cumulative cash flow analysis for small, medium and large biorefinery 
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 Finally, the analysis will not be complete without predicting an optimum 

operating capacity for a potential biorefinery in the region. Based on the results 

obtained, net present value (NPV) for the respective biorefineries are calculated and a 

theoretical optimum is obtained at 96.1 % of the base capacity. Figure 6.11 graphically 

shows the shape of the curve that is calculated to predict the optimum capacity. 

However, it needs to be kept in mind that the addition of more intermediate results may 

change the nature of the curve and consequently the optima. In order to validate the 

calculated optimum configuration, cumulative cash flow analysis are performed at 95% 

and 105%. Appendix B.4 confirms that the most favorable cash recovery happens 

between 95% and 100%, hence justifying the claim. 

 

Figure 6.11 Calculated NPV for varying capacities of biorefinery 

 The analysis shown here can be used to decide upon the most profitable 

operating mode based on changing availability and operating conditions. This decision 

support tool helps compare certain cases and answer questions, such as: would it be 

profitable to run the plant throughout the year or operate it for a shorter period and 

shutdown for the reminder of the time in order to avoid storage losses. Another 
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observation is that, for the current cost of fuels it is not possible to achieve any long-

term capital cost recovery under the present economic conditions. Hence, in the future, 

the biofuel prices must be higher or government supported incentives should be given 

in order to obtain long-term operating profit. Another potential use of the model could 

be the analysis of the addition of dedicated energy crops, such as, switchgrass and 

miscanthus, to the gasification process which may mitigate any non-profitable scenario. 

For this purpose, marginal land available in the region can be used by farmers for 

cultivation. 

  Summarizing all the above results, it can be observed that this novel integration 

of feedstock assessment, supply chain optimization and process systems engineering 

can be used to provide better insight on variable processing cost, profitability, required 

capital investment, and optimum biorefinery location. Also, results obtained in the case 

study guides the research for its future applications in many other dimensions to answer 

several critical questions related to sustainability. 

6.7 Learnings and Future Directions 

 Based on the literature and results obtained, existing models must be further 

developed to account for various additional details. The current work focuses on one 

pathway for producing liquid transportation fuels and power. Similar models will be 

created and optimized to populate all the possible pathways for integrated biorefining. 

The following are the major future applications that will bring more value to the 

existing model. 

6.7.1 Addition of Biochemical Process Optimization Models 

 A process for biochemical conversion of corn stover to ethanol is developed for 

this region based on previous work by NREL [54], shown in Figure 4.14. This is a feed 
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specific process involving enzymatic reactions. The process is optimized to maximize 

the profitability of biorefinery. The conversion process includes adding enzymatic 

kinetics to the existing process model for estimating realistic conversion rates. 

Similarly, the processes of converting corn stover, wheat straw and other dedicated 

energy crops, such as, switchgrass and miscanthus to butanol will be developed and 

studied in the future. Finally, the developed models can be compared with the existing 

gasification model. The following chapter will expand on the development and 

optimization of the process simulation model for enzymatic fermentation process to 

produce ethanol from corn stover. 

6.7.2 Heat Integration 

 The process simulation model developed in Aspen Engineering Suite (Aspen 

Technology®) has been optimized for maximizing profitability: but further cost savings 

can be realized by performing a thermal pinch analysis. Initial assessment of heat 

integration for the gasification process has shown a savings of 30% in the operating 

cost which further justifies the argument for a potential biorefinery [21]. Cogeneration 

is another possibility that needs to be explored and will further contribute to savings in 

terms of process energy consumption, although the economic benefits must be 

considered along with the potential negative environmental impacts of utilizing coal.  

6.7.3 Environmental Analysis 

 Ash coming out of the gasifier often has many inorganic compounds [173] 

which may require processing before disposal. There are tools available to estimate the 

environmental impact of any process, based on the feedstock and utilities used. 

Inclusion of chicken litter as a feed must not be considered without a detailed ash 

analysis. The WAR Algorithm [91] is such a tool that can be used for this purpose. A 

preliminary analysis is performed based on the developed process models, shown in 
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Appendix B.5. The analysis conducted takes into account the process simulation part 

of the overall supply chain. The results tend to conclude that the gasification has 

significantly higher potential environmental impact compared to the biochemical 

conversion process. However, there may be a capital and variable operating costs which 

must be added to the existing costs in order to make the solid wastes disposable, which 

has not been considered in the present analysis. A complete analysis over the entire 

supply chain needs to be conducted in order to further fortify this claim. In the future, 

the aim of the developed framework will be to make the process results compatible to 

inputs of various other environmental impact estimating tools, such as, TRACI 2.0 [92] 

to validate processes from an environmental point of view. 

6.7.4 Societal Impacts 

 Another major outcome that needs to be analyzed are the societal impacts. 

Aspen Process Economic Analyzer® has the ability to calculate the skilled manpower 

required to run the processing plant. There are a few dedicated models for estimating 

the jobs created by various processes. One such model is NREL’s Jobs and Economic 

Development Impact (JEDI) model [93]. An initial assessment of the jobs created by 

the biochemical process is estimated using the JEDI model, shown in Appendix B.6. 

As mentioned previously, a complete analysis over the entire supply chain must be 

conducted which may further add to the existing jobs. However, this model supports 

only limited conversion techniques. In the future, this aspect of sustainability needs to 

be explored in order to validate applicability of any conversion process. 

 The case study shows that this multidisciplinary tool can give answers, such as, 

varying profitability, optimum feed ratio, fixed capital cost, maintenance, labor, 

transportation and processing cost. However, it needs to be combined with all the 

previously mentioned future work in order to show the feasibility of biomass as a 
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sustainable source of energy and transportation fuel. Figure 4.18 shows, how the present 

results and future work can be combined to develop a novel framework that can be used 

as a tool to find economic, environmental and societal impact of any bio-based 

feedstock for integrated biorefining. 

6.8 Conclusions 

 The results shown demonstrate how a multidisciplinary approach encompassing 

feedstock assessment, supply chain optimization and process systems engineering can 

be implemented to estimate the total production cost of energy, fuel and chemicals from 

various renewable resources in a specific geographic region. The aim of this framework 

is to test various scenarios in any given region to inform local stakeholders, but not to 

advocate any particular process of biorefining. The results from the case study indicate 

that gasification may not be a viable option in the Jackson Purchase region. However, 

similar studies can be performed using this interdisciplinary framework on other 

conversion techniques, which will validate any viable option in the region. A major 

advantage of this model would be its generalizability for different regions utilizing 

locally available resources. In the future, this model will be populated with various 

conversion processes and corresponding products produced to find the most economic 

pathway for biorefining. 

 This unique comprehensive approach can be utilized as a decision support tool 

to provide a framework by which the economic feasibility of any new bio-based 

resource can be determined and compared with existing technologies. The model can 

not only be used by investors and policy makers as a tool to estimate the monetary 

investment required for biorefining but will also allow any locale to attain the goal of 

sustainability. Progressing towards achieving the objectives, the next chapter will 

emphasize on the development of a biological conversion process. Additionally, the 
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framework will be appraised for its linking with both the supply chain optimization and 

discrete event simulation models. 
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7. Economic Assessment of Biological Conversion Process – A Case Study on 

Fermentation of Corn Stover to Ethanol 

The contents of this chapter are based on the publication (submitted) in Clean 

Technologies and Environmental Policy, "The Sustainability Nexus" special issue, S. 

Sukumara, J. Amundson, F. Badurdeen and J. Seay. “A Comprehensive Techno-

Economic Analysis Tool to Validate Long-Term Viability of Emerging Biorefining 

Processes”, 2014 (under review). 

7.1 Summary 

Processing of biomass into various marketable products requires a well-planned 

strategy from an investment, agriculture, management and policy making perspective. 

The novel techno-economic analysis tool described in Chapter 4 includes multiple 

process and supply chain models into a comprehensive decision support tool. 

Incorporation of detailed upstream and downstream processes not only gives an 

opportunity to accommodate fundamental research, but also allows for the 

consideration of the effects of future uncertainties. The previous chapter focused on 

evaluating the viability of a thermochemical conversion process. The utility of the 

multidisciplinary framework is further validated by performing a case study on a 

biological process to convert locally available corn stover to ethanol. The results 

obtained show how the unique integration of process simulation, supply chain 

optimization and discrete event simulation can be used to validate the long-term 

economic viability of a biorefining process.  Analysis demonstrates that the developed 

decision support tool can be generalized to estimate long-term economic and 

environmental viability of potential biorefining processes in any given region of 

interest. 
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7.2 Introduction 

To counter the challenge of meeting the increasing energy and transportation 

needs, governments and private institutions around the world are funding research, on 

developing a stable, practical and sustainable source of energy. Developing new 

techniques requires scientific innovation as well as simultaneous projection and 

justification of the technique as a long-term viable option.  

Second generation biorefining processes based on lignocellulosic biomass have 

emerged as a promising alternative that have a distinct advantage over other processes 

with the potential for inclusion of various feedstock. However, a major bottleneck for 

the application of the lignocellulosic conversion process is low energy density of the 

raw biomass feedstock. As a result, meeting the logistics challenge for the biomass 

supply chain is crucial in determining its long-term viability. Figure 1.2 in the Chapter 

1 shows an example (in the USA) of a supply chain problem that needs to be solved in 

order to estimate various impacts of biorefining. In reality, with numerous feedstocks 

to choose from, the figure shows a simple representation of a very complicated scenario. 

The previously mentioned advantage of second generation biorefining conversion 

techniques has latent complications, arising due to low energy content and scattered 

supply locations. Other key challenges for biorefining include: capital investment in 

new technologies [174], long-term economic viability, competing with existing fossil 

fuels to yield products (e.g. gasoline, diesel and other liquid fuels), ensuring sufficient 

production of biomass to meet biorefinery feedstock demands and validating emerging 

processes based on its economic, environmental and social impacts. [175]. Therefore, 

it is critical to channel the resources to appropriate biorefining processes and equally 

important to accurately estimate the major impact of variability and inherent 

uncertainties. Hence, a framework is required that can not only guide lab scale research 
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by quantifying practical feasibility but also identify corresponding biomass-to-

bioproducts supply chain configurations.  

Presently, both the thermochemical and biochemical conversion processes 

include proven techniques that can be applied to any region, based on locally available 

feedstock and product demand. While thermochemical processes can be used for 

producing various liquid transportation fuels along with electricity, biochemical 

process can be used to produce alcohols and other byproducts. Foust et al. (2009) 

showed that both processes are competitive and the economic viability depends on the 

properties of feedstock available in a given region [151]. Previous research [21] 

demonstrated the development of a framework to determine optimum supply chain 

configurations and perform analyses on a thermochemical process of gasification 

followed by FTS. This research extends the work illustrated in Chapter 6 by 

demonstrating the applicability of this tool for another emerging conversion technique. 

The novel contribution demonstrated by this research tailors process optimization, 

supply chain optimization and discrete event simulation in a unique manner to 

determine the key economic parameters. 

7.3 Background 

In the last decade, due to growing concerns over the future reliance on fossil 

based resources, research has focused on developing models to solve the complex 

process and supply chain logistics of biorefining. The biochemical process for 

conversion of agriculture residue to alcohols is a proven technique. However, in order 

to encourage investment in this process, several biotechnological challenges must be 

overcome [56]. Also, as these technologies are applied towards the development of 

enzymatic processes, all the uncertainties must be captured. 
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So far, several efforts have been made in assessing the economic viability of 

various biochemical processes to produce biofuels. Aden et al. (2002) developed a 

detailed techno-economic model that is supported by a rigorous process simulation to 

estimate the capital and operating cash flow for corn stover to ethanol conversion 

technique [54]. Subsequently, the report was updated by Humbird et al. (2011) with a 

few operational changes in the conversion technique [55].  

Another contribution [176] developed seven process design scenarios for 

producing ethanol, hydrocarbon fuels and power utilizing switchgrass as a feedstock, 

which demonstrated comparison of various scenarios and corresponding economic 

outcomes. Dunnett et al. (2008) presented a model for optimization of bioethanol 

supply chains to determine the optimum logistics for multiple plant systems, 

considering the spatial feed supply and product demand locations [177]. Another work 

[178], developed a multi-objective MILP model which is optimized for economic and 

environmental performance for first and second generation biorefineries in Italy. The 

model was an extension of previous work [179] which accounts for both carbon and 

water footprints.  

A recent review article [40] presented a comprehensive compilation of 

contributions in the field of biorefinery supply chain optimization, planning and 

determining uncertainty. Also, a detailed summary of the unique research contributions 

presented so far is explained in Chapter 2. All of the previously mentioned contributions 

are critical and focus on capturing the variability of biorefining processes. However, 

we still lack a tool that can link the impacts of emerging innovations to the long-term 

dynamic economic performance for the future. Estimating this requires a unique 

algorithm that is comprised of mathematical optimization models that can identify the 

supply chain configurations and simulations which can capture the dynamic system 
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performance of those supply chains. Chapter 6 demonstrated a unique linking of the 

process simulation and supply chain optimization model. While the model provides 

deterministic fixed values pertaining to the optimal biorefinery configurations, the 

effect of long-term variability have not been captured yet. Adding to this, interfacing 

these models is challenging; the method requires an iterative approach that facilitates 

sharing of data among the models. Recent research contributions [21, 67, 70, 82] have 

adopted similar concepts by integrating simulation and mathematical optimization, 

improving the credibility of the results. However, there is still a significant gap in 

research that focuses on linking these models. 

The goal of this chapter is to demonstrate the functioning of the framework 

which can capture the impact of the dynamic variables that can affect the steady 

operation of a sustainable biorefinery. The framework serves as a platform for the 

development of a techno-economic decision support tool, which combines process 

simulation, supply chain optimization and discrete event simulation models. The results 

obtained are informative and aim to assist various stakeholders, such as, investors, 

growers and policy makers by providing conclusive results. 

7.4 Methods and Modeling Approaches 

An ideal techno-economic model must provide details pertaining to economic 

analysis as well as have an ability to include fundamental research outcomes. Hence, 

the goal of developing the framework should be to create a model that is accessible to 

researchers. The framework should allow them to change the technical details while 

providing extensive solutions and the ability to test potential scenarios and capture 

variability and uncertainties in the supply chain. The framework developed integrates 

three versatile tools to share data in a systematic manner that will be discussed in the 

following sections. 
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A process conversion model must be developed that can capture technicalities 

of real processes and fledgling research ideas. Various modules of the Aspen 

Engineering Suite (Aspen Tech®) are used in modeling and optimizing the conversion 

process. Steady state process simulations are developed in Aspen Plus® which focuses 

on the inclusion of all the mass and energy streams of a biorefinery. A previous 

contribution [21] illustrated the development of a thermochemical pathway for 

biorefining which shared data with the supply chain optimization model to estimate 

long-term viability of the biomass gasification process. The focus of this research is on 

the development of a biochemical process simulation which will be further appraised 

to share data with the supply chain models. 

Selecting the optimal location for the biorefinery site is a major decision that 

can have a significant impact on the overall transportation cost and process economics 

[72]. A thorough literature review indicated that MILP is the most common method 

used to design biorefinery supply chains and determine the optimum logistics network 

for various conversion techniques. Faulkner (2012) presented a MILP optimization 

model that would determine biorefinery location and corresponding supply chain for a 

thermochemical and biochemical process [22]. Chapter 6 demonstrated the successful 

application of the developed MILP and, subsequently, its linking with the process 

simulation in an iterative manner to determine the optimum biomass-to-biofuel supply 

chain configuration.  

By far, most of the contributions have limited their scope to identifying the 

optimum supply chain under deterministic conditions. It is necessary to account for the 

dynamic changes existing in the supply of feedstock and demand of end products, 

incorporating the effect of uncertainty in the system. In order to capture the impact of 

variabilities that can occur during the transportation of biomass feedstocks and end 
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products from the biorefinery, a discrete event simulation is coupled with the 

framework. Amundson (2013) formulated this supply chain simulation model which 

can be linked to the existing framework to evaluate long-term economic parameters of 

the biorefinery [89]. Figure 7.1 depicts the data inputs required and results that can be 

generated by the linked models. 

 

Figure 7.1 A representation of tools, models and respective results that are generated 

by the framework 

7.5 Proof of Concept 

The framework developed can answer various questions pertaining to the 

economic feasibility of biorefining processes, proving to be beneficial for stakeholders. 

In order to study the impact of variability on a practical scenario, a case study is framed 

to substantiate the working of the proposed integration. The region chosen for the study 

is the Jackson Purchase Region, located in West Kentucky, USA. The details for 

selecting the region have been discussed in previous publications [21, 22, 89]. In 

addition, a case study has already been performed in this region for biomass gasification 

in Chapter 6 [21]; hence, further exploring the region for a possibility of biorefining 

that facilitates the comparison of the two processes on equal grounds.  
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In order to analyze multiple scenarios with the previously described process 

conversion and supply chain models, an algorithm is developed to guide the users with 

a methodology of data exchange and determining optimum configuration. Figure 7.2 

depicts a flowchart describing the propagation of data between the stand-alone models 

to determine the best operating biorefinery configuration. The major assumptions that 

go into the model are as follows:  

 corn stover is the only feedstock that is used for the biochemical conversion process  

 ethanol and electricity are the marketable products from the biorefinery 

 the iteration starts with the maximum available feedstock (maximum capacity) and 

the biorefinery capacity is reduced as the iterations proceed until an optimum is 

determined and validated 

 2% of the available biomass is assumed to be degraded during transportation and in 

storage 

 each county has one potential biorefinery and storage location, where the end 

product is transported  

 the products are transported from the biorefinery location to the storage depot. 

Transportation to the end users is not considered at this point. 

Additionally, each model has several inherent assumptions which are discussed 

in the Chapter 4. The current scope of the research is to determine results supporting 

economic feasibility of a biorefinery. Currently, the model does not incorporate multi-

objective optimization that considers environmental and societal impacts. 
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Figure 7.2 Algorithm to perform a case study in order to determine the optimum 

capacity 

7.5.1 Steady State Process Simulation and Optimization Model  

In order to convert the biomass into liquid fuels, a biochemical conversion 

pathway is adopted for this case study. The process simulation model to produce 

ethanol from corn stover is developed in Aspen Plus® based on operating conditions 

and data from the literature [54, 55]. The goal of creating the simulation is to determine 
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the optimum feedstock requirement, capital investment and operating costs of the 

process that depends on varying conditions under which the conversion takes place. 

The following description states various parameters and constraints that are used in the 

simulation. Figure 7.3 (a condensed form of Figure 4.14) illustrates the major unit 

operations involved in the simulation. The detailed development of the process 

simulation is described in section 4.2.2.2. Nevertheless, for continuity the development 

process is summarized subsequently. 

 

Figure 7.3 Process flow diagram for producing ethanol from corn stover 

The process is initiated by defining the composition of corn stover, based on 

various compounds present in the feedstock. The first phase is the physical 

pretreatment, where the biomass is washed to remove the impurities and shredded into 

smaller sizes to improve efficiency for the chemical pretreatment, which is the next 

phase of the process. The reduced corn stover is then screened and sent to the chemical 

pretreatment section. In this stage, the biomass is treated with dilute sulfuric acid and 

steam to expose the cellulose and convert the oligomers to their respective monomers. 
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This process is followed by adding lime to the exit stream in order to maintain the pH 

before sending it to the next phase of the simulation process.  

In the saccharification and fermentation section, the cellulase enzymes are 

added to the stream and given sufficient residence time. Here, cellulose is converted 

into glucose followed by fermentation of glucose to ethanol. Chapter 4.2.2.2 

demonstrates the development of a simulation and provides description of the reactions 

involved in the process.  

The outlet stream from the fermenter consists of water, ethanol, by-products and 

traces of unreacted sugars. This stream is directed to the purification section where 

ethanol is separated using a combination of distillation and molecular sieve in 

succession, resulting in a 99.5% pure ethanol. The effluents from the purification 

section is sent to the waste water treatment plant, where it is treated in anaerobic and 

aerobic conditions. Prior to this, the left-over solids are removed using a filter and sent 

to the waste utilization section, where it is combusted to produce process heat. The heat 

is used to generate steam which is expanded in a turbine to produce electricity. 

Finally, costs are assigned to various input, output and utility streams. 

Subsequently, the process is optimized to maximize operating profit. Equation 7.1 

shows the objective function used in determining the optima. Appendix C.1 shows 

detailed constraints, variables and notations used in the equation. The capital cost of the 

developed process is determined by interfacing the data with Aspen Economic 

Analyzer®. The model developed is the first step in running the framework. All the 

economic, feed requirement and effluent results are recorded and passed to the next step 

(MILP).  
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Maximize Profit 

Profit=Product Sales Income (PSI)–Biorefinery Operating Cost (BOC)  (7.1) 

Note: The details of the equation can be found in Appendix C.1          

7.5.2 Supply Chain Optimization 

Transportation logistics and associated costs play a major role in determining 

the overall cash flow of a biorefinery [72]. Hence, variables such as, feedstock 

availability, optimum feed demand at the biorefinery location, transportation cost 

(operational and diesel cost) and product distribution cost must be included in the 

decision making framework along with biorefinery operating cost. The data from the 

process simulation is used as an input to the MILP supply chain optimization model. 

The goal of the study is to determine the optimum supply chain and corresponding 

transportation cost while meeting the optimum feed demand of the biorefinery.  

Figure 7.4 (derived from Figure 5.1) represents a schema of the feed location, 

potential plant sites and product depots on a map (Google Maps®). For this case study, 

the objective function is to maximize profit of the overall process. Equation 7.2 shows 

the objective function used to optimize the transportation logistics. A detailed 

description of the constraints is provided in Appendix A.3. 

Objective Function 

Total Profit = Summation m=1..12 (Salesm – Costm)     (7.2)  

Note: The expanded equations of the above costs is shown in Appendix A.3                                             

The MILP model determines the most profitable biorefinery location and 

corresponding supply chain, with a constraint to open one biorefinery. The results from 

the MILP and process optimization models are combined to calculate the total variable 
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cost of the biorefinery. The model is valuable as it helps to identify the complex supply 

chain configuration; nevertheless, it is equally important to capture the volatility in the 

feed supply and product demand. Hence, the results obtained are passed to the discrete 

event simulation for further analysis. 

 

Figure 7.4 Potential biorefinery sites, feedstock and product depot locations in the 

Jackson Purchase region (Google Maps®) 

7.5.3 Discrete Event Simulation Model 

The model for the supply chain activities is simulated for twenty years. Various 

costs related to feed procurement, product delivery, sales and operation are tracked for 

the time period to determine the economic viability of the corn stover-to-ethanol 

process in the Jackson Purchase region. The model requires capital investment data 

from the process simulation to determine a payback period. Financing is assumed to 

last twenty years with a compounding interest rate of 10% per year. To properly account 

for the time value of money, the simulation model tracks the Net Present Value (NPV) 

Product location

Biorefinery locations

Feed source locations
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of the biorefinery supply chain operations. Equation 7.3 and 7.4 are used to calculate 

the NPV and equivalent annual payment (EAP), respectively. 

Net Present Value 

𝑁𝑃𝑉 = ∑ 𝐹𝑉𝑡
𝑁
𝑡=0 /(1 + 𝑑)𝑡            (7.3)                                                                  

Equivalent Annual Payment 

𝐸𝐴𝑃 = ∑ 𝐶𝐶 ∗
𝑟

1−(1+𝑟)−𝑡
𝑁
𝑡=0                      (7.4)                                                         

Where, 

N = time period 

FVt = future value of the cash flow 

d = discount rate 

CC = capital cost 

r = periodic interest rate/100 

All the future cash flows are discounted assuming an annual discount rate of 

10%. Ultimately, runs are performed to record the net cash flow of the biorefinery for 

various cases, presented in the next section. 

7.6 Results, Analysis and Discussions 

Based on the described methodology in section 7.5, runs are performed to 

confirm the effective data transfer among the models. The initial step is to consider four 

cases based on the percentage utilization of the total feedstock available in the Jackson 

Purchase region. Appendix C.2 presents the details of the data used to initiate the 

iteration. The cases (1-4) are designated based on the fractional utilization (95%, 75%, 

50% and 25%, respectively) of total biomass capacity in the region. Subsequently, 
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operating and capital costs are recorded as an outcome of the process optimization 

model (Aspen Plus®). Figure 7.5 illustrates the monthly costs at the biorefinery for the 

production of ethanol from corn stover via biochemical conversion route. These results 

are combined with the results from the supply chain optimization model (ILOG OPL®) 

to determine various potential biorefinery locations for respective cases. 

 

Figure 7.5 Monthly operating cost for various scenarios and optimum configuration 

The costs and income generated from the overall supply chain is combined to 

determine the monthly cash flows. Figure 7.6 represents the contribution of expenses 

in a biorefinery, such as, operating, feed transportation, product transportation and feed 

purchase costs for the optimum scenario, which is discussed later. Combining these 

costs results in the estimation of total biorefinery operating costs. Eventually, the results 

obtained are transferred to the Arena® simulation (Discrete Event Simulation) model 

to validate the supply chain and perform further analysis. 
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Figure 7.6 Share of various costs from the total operating cost for the optimum 

scenario (Result from the MILP) 

The discrete event simulation model is run for a period of twenty years to 

calculate the variability and net cash flow of various cases described previously. For 

each capacity, the average cumulative NPV of the simulation replications is recorded. 

Figure 7.7 shows the change in NPV versus biorefinery capacity. This plot is 

subsequently used to obtain an analytical optimum capacity. 

With an optimal capacity selected, iterative application of the chemical process 

optimization and supply chain optimization models provide revised set of inputs to be 

used in the Discrete Event Simulation model. It is observed that the simulation results 

are in agreement with the predicted optimum value. A sensitivity analysis is then 

performed by varying the values for the following parameters:  

 cost of corn stover 

 ethanol price 

 electricity price 

 diesel price 

 capital cost 

 operating cost 
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Figure 7.7 Plot showing the trend of the NPV and determined optimum capacity 

As expected, the overall simulated NPV is most sensitive to the selling price of 

the main products of the process. In this case, the NPV is most sensitive to operating 

costs, which have a direct impact on the overall profitability of the system followed by 

the diesel price. Finally, the feedstock price and capital costs appear to have coinciding 

influence with changes in capital cost being slightly prominent. These sensitivities give 

important insights for stakeholder decision making and policy creation; identifying 

these variables, for instance, could help policy makers design favorable conditions for 

biorefining success in a region. 

Results of sensitivity analysis of various parameters are shown in Figure 7.8. In 

Figure 7.8 (a) the NPV values are normalized to the base case simulation result and 

costs are normalized with base case values. This figure illustrates the influence of input 

costs on the simulated NPV for the supply chain system. Similarly, in Figure 7.8 (b), 

the influence of product prices are plotted versus the average NPV from 10 simulation 

iterations to illustrate the sensitivity of the simulation model outcome to product prices. 
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Figure 7.8 A graph showing sensitivity of various tested parameters. (a) Sensitivity of 

various costs with respect to normalized NPV. (b) Sensitivity of product prices versus 

average NPV 

Further analysis is performed on the optimum scenario to demonstrate the level 

of detail that can be achieved by this framework. The relatively high resolution of 

results obtained are captured in Figure 7.9. This figure depicts the output from the 
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discrete event simulation model [89], that shows the variable costs for the 7th operating 

year. Hence, the innovative linking of the three models is further justified to capture the 

dynamic details of the process. One of the major observations is that, as the newly 

harvested biomass feedstocks are introduced (harvested in the month of August), the 

transportation diesel cost drops significantly. Whereas, there is a sharp rise in the 

operating cost of the biorefinery. This is due to the increased availability of biomass in 

the nearby locations which reduces the diesel cost incurred for transportation. Also, due 

to more availability, the biorefinery can accommodate production of biofuels in higher 

capacities, further resulting in an increase in operating costs. Similar observations can 

lead to higher insights for investors and policy makers to determine operating strategy 

and corresponding incentives to promote alternative fuel production in a given region. 

 

Figure 7.9 Fractional supply chain cost dynamics shown for the seventh year 

Figure 7.10 shows the NPV as a function of time for the duration of a single 

simulation iteration (20 simulated years). The dynamics of the figure reflect the 

uncertainty of supply availability and product demand present in the discrete event 
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simulation model as well as the time value of money. It is estimated that for the 

biological process (corn stover to ethanol) and corresponding supply chain 

configuration, a net discounted profit of $3.8 million will be obtained at the end of 20 

years (assumed plant life), with a positive NPV obtained after 3 years of supply chain 

operation. 

The results obtained can answer various questions concerning the long-term 

economic viability of the process of converting corn stover to ethanol in the Jackson 

Purchase region. As expected, the results of the case study show that the operating and 

transportation cost of a large capacity biorefinery increases, as the utility, raw material, 

feed and diesel consumption increases. Also, it is observed that the operating cost of 

the biorefinery is the highest contributor to NPV followed by feed transportation, raw 

material and product transportation costs. For case 1 through 4, the optimum biorefinery 

location is determined to be in Graves County. For the optimum case, the biorefinery 

site is in Hickman County with an annual capacity of 13.852 million gallons. Unlike 

the previous cases, the optimum biorefinery supply chain had larger product 

transportation costs and lower feed transportation cost. These results can be justified as 

transportation of energy dense ethanol is economically more favorable than low energy 

dense corn stover. Also, based on the sensitivity analysis it is observed that fluctuations 

in ethanol price may lead to significant change in the profitability of a biorefinery. 

Operating cost is the next most sensitive parameter whereas, raw material cost, capital 

cost and diesel price have similar impacts on the supply chain economics. The selling 

price of electricity is the least sensitive parameter in the case study. In summary, the 

results obtained in the case study not only provide a snapshot of the future scenario but, 

with inclusion of accurate data, can also predict the dynamics in the supply chain. 
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Figure 7.10 A plot showing dynamic increase in the NPV 

7.7 Conclusions 

The comprehensive tool developed as a result of this research is capable of 

analyzing various scenarios to provide insight into future economic implications of the 

emerging biorefining industry sector. The tool successfully demonstrates the 

integration of process simulation, supply chain optimization and discrete event 

simulation. The novel contribution is a stride taken in filling the gap between the 

existing intensive mathematical programming and process simulation models.  

For the case study in the Jackson Purchase region, the model is appraised to 

determine key economic parameters pertaining to the biochemical conversion process 

from a multi-stakeholder perspective. Through the use of process simulation modeling, 

the tool can be used to verify the feasibility of lab scale research. The nature of 

outcomes from this framework will be of great value to investors as it will further fortify 

their decisions towards the use of any potential process in a given region.  

One of the observations from the case study is that the price of ethanol is a 

sensitive parameter. This sensitivity can be potentially countered by providing 
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subsidies to the biofuel producers. Hence, this tool can be of great use to policy makers 

when deciding region specific subsidies. The case study shows that under the assumed 

circumstances, the corn stover to ethanol process can be profitable in the Jackson 

Purchase region. It must be emphasized that this research neither intends to create a 

conception or justify the use of one technique over the other, nor does it focus on its 

application to any specific region. The intention of this research is to illustrate a tool 

that can be quickly used to analyze economic feasibility of region specific biorefining.  

 Unlike fossil fuels, biofuels have an intimate link with agriculture. This tool can 

be used by growers to choose one or a mix of feedstock that can result in enhanced 

profit. The tool can also be used to quantify the improvements that can be achieved by 

switching crops or the alternative cultivation of dedicated energy crops. The following 

chapter will demonstrate the applicability of the model for hypothetical scenarios as 

well as its versatility in incorporating experimental details. 

 

 

 

 

 

 

 

 

Copyright © Sumesh Sukumara 2014



128 

 

 8. Diverse Applications of the Decision Support Tool 

 The proof of concept studies have presented the applicability of the framework 

for thermochemical and biochemical conversion processes. However, other 

characteristics that validate the applicability of the framework, such as, its 

generalizability, capability for automation, inclusion of experimental data and potential 

for interfacing must be demonstrated. This chapter of the dissertation will present the 

above mentioned attributes of the proposed novel framework.  

 The contents of this chapter are adapted or taken directly from the previously 

published work in Computer Aided Chemical Engineering, Proceedings of the 8th 

International Conference on Foundations of Computer-Aided Process Design, Volume 

34, S. Sukumara and J. Seay, 2014, “A novel model for evaluating the viability of 

strategies for biorefining processes from various stakeholder perspectives: Case study 

on marginal land utilization”, pages 627-632, with kind permission of Elsevier[180].  

8.1 Studies Demonstrating Applications and Interfacing of the Multidisciplinary 

Framework 

 A case study is demonstrated on a hypothetical scenario that tests the 

introduction of a promising feedstock into an existing supply chain. This section will 

demonstrate the manner in which the informative framework can be utilized to examine 

loss mitigation strategies by introducing a new feedstock.  However, the addition of 

process constraints and experimental details into the developed model is a challenging 

task. Nevertheless, the inclusion of these specifics, link the developed models to 

fundamental sciences, making this contribution novel. This chapter demonstrates the 

approach by which these details can be entered into the existing framework. 

Subsequently, interfacing capabilities of the framework are tested and potential venues 
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for the automation are explored. The following sections will expand on the studies 

performed to validate applications of the framework.  

8.2 Marginal Land Utilization 

 Extensive knowledge about the existing processes and feedstocks of biorefining 

has led to a comprehensive assessment of previously performed case studies. However, 

the main objective of the developed framework is to act as an informative tool for both 

current and future conversion scenarios. This section demonstrates the manner in which 

a hypothetical supply chain configuration can be analyzed by the framework. Hence, a 

new production strategy is analyzed by testing an assumptive scenario. This scheme 

will capture the ability of the model to test potential profit enhancing strategies. 

Motivated by the previous research, a proof of concept study is performed in the 

Jackson Purchase region to assess the impacts of inclusion of a dedicated energy crop 

into the existing supply chain by utilizing the available marginal land in the region. The 

appraisal of this study will prove the application of the framework to prospective 

configurations.  

8.2.1 Introduction 

 Generating ample quantities of biofuels, to satisfy the rising demand, requires 

increased cultivation of bio-based resources. Subsequently, as we plan for the 

development of sustainable biorefineries, a parallel scheme for land utilization must be 

developed. Dale et al. (2010) emphasized elaborating the studies to evaluate the 

potential marginal land available along with abandoned croplands and pasture lands 

[181]. Consequently, in the future, various schemes of land utilization will be explored 

for its probable use to grow feedstocks for biorefineries. Hence, a framework is required 

that can support the emerging research to assess the impact of land utilization for 

growing dedicated energy crops. This case study extends the state of art framework [21] 
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to demonstrate another potential scenario for biofuel production in the same region. 

Additionally, this case study shows the method by which emerging future scenarios, 

such as, utilization of marginal land to cultivate dedicated energy crops, can be tested 

for viability. For this case study, the process of biomass gasification is appraised for its 

feasibility in the Jackson Purchase region of Western Kentucky, USA. 

8.2.2 Background 

 In recent years, several techno-economic models have been presented that 

capture various details of biomass transportation and conversion processes. However, 

more effort is focused on combining these two critical aspects of biorefining, in order 

to calculate realistic estimates. The supply chain and process optimization models can 

be combined to result in an innovative multi-disciplinary framework [21] that can be 

used by investors and policy makers to evaluate economic, environmental and societal 

parameters. However, all the previously obtained results, corresponding to various 

capacities of biorefinery production, showed an undesirable capital cost recovery in 

spite of a net yearly operating profit. These results motivated further assessment and 

exploration of possibilities to improve the economic performance of a potential 

biorefinery. Among the several available options, utilization of locally available 

marginal land appears to be a promising alternative. 

 It may not be self-evident but a large area of marginal land is available in 

different parts of the world [182]. As the land usage for industrial and commercial 

practices is increasing progressively, utilization of available marginal land has become 

critical. Previous literature [182], has provided a review of the historical development 

of marginal land utilization and its future applications. It further stated that, the 

management of marginal land is crucial as it acts as a perfect venue to cultivate second 

generation lignocellulosic biomass. Gelfand et al. (2013) [183] demonstrated six 
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cultivation systems in the USA (Midwest) for the utilization of marginal land. While 

the available marginal land is in abundance, the contribution stated that practically only 

10% of the land can be utilized. However, Butterbach and Kiese (2013) [184] raised 

many concerns over the study [183]. The major ones being: 

 Utilization of the available marginal land without having adverse effects on the 

local bio-diversity.  

 Emphasized the need for a more comprehensive framework to estimate the long-

term impact on the climate.  

 Stressed performing analysis to contrast the future utilization of marginal land for 

cellulosic and food crops.  

 While both the works have explored as well as raised concerns over the potential 

utilization of marginal land, it must be realized that we still need a comprehensive tool 

that provides details to further substantiate the above claims. The work demonstrated 

in this research provides a crucial contribution by quantifying the economic impacts of 

the transformed supply chain. Also, for developing economies, with increasing 

population, the utilization of marginal land becomes a key factor to satisfy both the 

need for growing food and generating bioenergy [185, 186]. 

 Previous research [187] identified the utilization of marginal land as a key trait 

that can be explored for sustainable biorefining. However, the properties of marginal 

land varies significantly from one region to another [181]. Hence, it is necessary to 

study the feasibility of growing energy crops in desired regions. This report shows that 

the Jackson Purchase region has the potential to grow crops, such as, switchgrass, 

miscanthus, pine, sweetgum, hybrid poplar and sorghum. In another significant 

contribution [188], abandoned agricultural land in the state of Kentucky was examined 
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and estimated for potential availability. The subsequent sections demonstrate how these 

two aspects can be combined together so that it can be embodied into the existing supply 

chain. 

 The foundation presented here is a unique combination of process and supply 

chain modeling that can generate and optimize data simultaneously. In summary, the 

objective of this case study is to generate a distribution for the availability of dedicated 

energy crops and examine its economic viability as a potential biorefining feedstock, 

using the multidisciplinary decision support tool. While extensive analysis can be 

performed, this research will show the incorporation of external data to capture the 

results for a modified supply chain. This adaptable framework has been altered to 

accommodate another possible scenario as shown in the following section. It must be 

understood that the framework has the ability to accommodate varying (increasing or 

decreasing) feedstock availability as illustrated in previous chapters (Chapter 6 and 7). 

Supplementing to this, the current proof of concept demonstrates another critical 

dimension of the developed tool by estimating potential optimum utilization of 

marginal land to cultivate dedicated energy crops in the region.  

8.2.3 Methodology 

 The core methodology of this framework is inspired by previous research [21] 

as presented in Chapter 4. The presented methodology demonstrates the adaptability of 

the framework to incorporate multiple possibilities. However, the challenge is to 

introduce a new feedstock to test for its long-term viability. In order to assess the 

feedstock, a corresponding distribution is created based on realistic assumptions. The 

first step is to estimate the available marginal land in the region of interest, followed by 

coupling of the data with crop yield. Secondly, due to the lack of historical data, a range 

for potential production of dedicated energy crops is calculated. Subsequently, based 
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on the derived distribution, the Aspen Plus® process simulation model for biomass 

gasification is run, followed by the ILOG OPL® supply chain optimization model [21]. 

Finally, an optimum supply chain along with variable operating costs and total capital 

investment are determined. Figure 8.1 shows an algorithm for the suggested 

methodology. 

 

Figure 8.1 Methodology used for the case study on the marginal land utilization 

 The algorithm developed is for preliminary analysis and may subject to potential 

modifications based on the regional variability of the product or feedstock. Currently, 

with this framework, several operating configurations can be tested to determine the 

economic feasibility. More importantly, the present research is evolving to make the 

results accessible to major environmental and societal indicators. 

 In order to demonstrate the applicability of dedicated energy crops in a given 

region, a case study is designed. The proof of concept model is tested in the Jackson 
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Purchase region. The following are some of the major assumptions that go into the 

individual stages of the model. 

 Marginal land available in the region is utilized by existing farmers, hence the 

collection point of switchgrass is assumed to be same as corn stover. Further, the 

total availability of biomass is determined for each county and assumed to be 

distributed in the same proportion as corn stover. 

 Storage costs at the feedstock collection site are not accounted in the present study. 

 Demand at the product storage locations/depot are assumed to be high to 

accommodate any production rate, therefore, allowing the model to assess several 

configurations and capacities. 

 Degradation during the transportation is assumed to be the same as for corn stover 

 Based on these assumptions, the existing framework is modified to run various 

scenarios in succession and provide the desired output. 

8.2.3.1 Feedstock Assessment and Distribution 

 The Jackson Purchase region is located in one of the most favorable geographic 

regions in the USA for the production of switchgrass. In recent years, many researchers 

have performed studies on switchgrass and other perennial grasses, warranting its 

applicability for this case study. Figure 8.2 shows marginal agricultural land available 

in the region and corresponding county wise switchgrass yields. 

 Combining these two data sets, a distribution is developed to project the regional 

availability of switchgrass. A crop yield of 10.52 t/ha is used for this distribution. In 

order to capture various scenarios leading to an optimum operating biorefinery 

configuration, iterations are performed on 15 % and 10 % marginal land utilization. 

Further, in order to encompass realistic problems, such as, degradation, two other 
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distributions are generated assuming 10 % monthly storage loss for respective land 

utilization. Also, switchgrass has a broad harvest window [189], hence it is assumed 

that the harvest is performed in the months of November, December and January. 

 

Figure 8.2 Map showing potential yield (Top) of switchgrass [175]. Zoomed version 

(Bottom right) of marked area on the switchgrass yield map. Marginal agricultural 

land (Bottom left) available in the Jackson Purchase region [188] 

8.2.3.2 Overall Simulation and Optimization 

 Finally, the modified model is run, as described in section 8.2.3, for multiple 

scenarios (elaborated in the subsequent section). A feed flexible biomass gasification 

process is used to incorporate the switchgrass distribution generated along with 

previously determined optima for chicken litter, corn stover and forest residue for a 
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medium scale biorefinery [21]. The biomass gasification process is followed by 

synthesis gas cleaning and WGS reaction. Finally, the synthesis gas is split into two 

streams, for power generation and liquid hydrocarbon production by FTS [21]. This 

conversion process results in the production of energy and hydrocarbons (C1-C30) which 

are assigned a cost based on the marketable fuel cut. Throughout the iterations the 

process optimization model remains the same as used in the previous case study. It is 

possible that the incorporation of another feedstock may require additional processing 

steps. While capturing the details pertaining to the introduction of another feedstock is 

out of the scope of this research, the framework developed  The results obtained are 

passed to the ILOG OPL® model [22] which optimizes the supply chain to determine 

the most profitable biorefinery location. The objective function for both the process and 

supply chain simulation is set to maximize the operating profit. 

8.2.4 Results and Discussions 

 For the purpose of analysis, four scenarios are assumed and tested for their 

economic performance and environmental emissions. These are: 

 Scenario 1: 10 % land utilization with no degradation 

 Scenario 2: 10 % land utilization with 10 % monthly degradation 

 Scenario 3: 15 % land utilization with no degradation 

 Scenario 4: 15 % land utilization with 10 % monthly degradation 

 All four scenarios are run in succession as shown in Figure 8.1. The results from 

the process simulation and supply chain optimization models are combined to 

determine the critical cost contributors. Several optimum incoming and outgoing costs, 

such as, operating utility, feed transportation, product transportation (to storage depot), 

capital investment and product income are determined, based upon which the net cash 
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flow analysis is performed. Subsequently, the optimum supply chain network, 

emissions and jobs created by the biorefining process are determined for their 

respective configurations. Additionally, the extensive results obtained can be further 

interfaced with the existing societal and environmental impact indicators to give 

accurate estimates regarding sustainability. Figure 8.3 (a) depicts a cumulative cash 

flow analysis which is performed on an operating biorefinery for 10 years. Also, the 

monthly trend for CO2 emissions is calculated based on Aspen Plus® process 

simulation results for all the four configurations, as illustrated in Figure 8.3 (b). 
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Figure 8.3 (a) Cumulative cash flow analysis. (b) Varying monthly emissions 

 The results shown in this study are a few amongst the many obtained as an 

output from this model. The preliminary analysis shows a better payback period in 

comparison with the previous results for a medium capacity biorefinery. Hence, the 

above results should be further investigated for an optimum mode of operation 

involving switchgrass as a feedstock. Also, it is observed that the two scenarios with 

degradation did not perform well, as those are burdened with high capital cost and low 

rate of recovery. A storage facility which can minimize degradation requires capital 

investment, the addition of which may push the period for capital recovery further. The 

addition of the previous costs changes the cumulative cash flow trend of the first and 

third scenarios as these do not assume any loss due to storage. 

 Another observation is the peaks shown in the CO2 emissions plot. These are 

explained as comparatively more switchgrass is set to be consumed in the month of 

November, December and January. This consumption is primarily dependent on the 

selected month for the harvest of switchgrass. While the literature shows various 
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harvest period for the crop [190, 191], the study shows the importance of exploring the 

harvest options such that the feed supply to the biorefinery is as steady as possible. 

However, it should be recognized that alteration in the harvest strategy affects the 

composition and yield of biomass [192, 193], possibly effecting the profitability and 

capital recovery period of the biorefinery. 

 The direction of future work should be aimed towards determining the optimum 

configuration of a biorefinery based on gasification with capital investment in storage. 

A preliminary optimum based on the net present value is determined at 11.5 % land 

utilization, by running iterations between the process optimization and supply chain 

optimization models. Appendix D.1 depicts the graph that is used to determine the 

optimum land utilization. In the future, to capture the impact of the inherent variations 

in the supply chain, a dynamic analysis must be performed including the discrete event 

simulation model. 

8.2.5 Conclusions and Future Research Directions 

 The multidisciplinary decision support tool demonstrated via this research can 

be modified based on regional requirements, quantifying the viability of any bio-based 

feedstock. In the future, several other potential biomass resources can be tested for their 

viability. Nevertheless, significant future work needs to be carried out to obtain more 

realistic results. Major ones being:  

 Incorporation of multiple biorefining conversion techniques 

 Linking the model with environmental and societal impact assessment tools 

 Automation of the described framework using Visual Basic® for Applications  

 Include several grid search methods to determine analytical solutions 
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 In conclusion, with the completion of the above mentioned work, the potential 

profitability of an integrated biorefinery can be assessed using this framework, thus 

providing insight regarding various biorefining scenarios. This strategy support tool can 

be used by investors and policy makers to analyze and compare possibilities, assisting 

in the estimation of monetary investments and deciding local policies, respectively. 

With proper interfacing and improved ease of use, this tool can provide justification to 

encourage farmers to confidently proceed with the cultivation of promising dedicated 

energy crops. The following sections demonstrates the way by which automation and 

interfacing is explored for the existing multidisciplinary decision support tool. 

8.3 Interfacing the Model with User-Specified Details 

 One of the major attributes of the framework is its ability to include fundamental 

details and adaptability to varying inputs. This robustness can be attained by utilizing 

various built-in features in the process simulation tool. The objective for choosing a 

tool, like, Aspen Plus® is to exploit versatile applications to incorporate fundamental 

details. This feature enables experimentalists to test their lab scale outcomes to foresee 

the economic viability of the research. Also, the use of built-in tools facilitates the 

effective inclusion and automation of the process for a given set of user specified inputs. 

The following sections elaborates on each of the above mentioned characteristics.  

 Most of the emerging biorefining processes employ novel conversion 

techniques based on the type of feed or optimum process parameters. Therefore, such 

details must be included in the process simulation model to capture the reality of 

conversion techniques. The existing work limits the ability to incorporate these details 

by the inclusion of specific reaction kinetics. 
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 In a process simulation, there are multiple ways to include specifics, such as, 

reactions, design specifications and varying parameters. This section focuses on the 

working of techniques applied by the research so far, the prominent one being the ability 

to incorporate user-supplied functions that can compute and control process parameters, 

such as, flow rates, yields, stoichiometric coefficients, reaction parameters and reactor 

design variables. The primary function being to control the flow rates of reactants to 

the gasifier and WGS reactor. Similarly, for biochemical process, the user-generated 

functions are imposed on water, Ca(OH)2, H2SO4, enzymes, steam and air flow rates. 

While there are several additional uses of this approach, the framework currently limits 

the utilization by incorporating the previously mentioned applications. In the future, 

depending on the user requirements many more details can be added to the existing 

processes which will complement the working of the decision support tool.  

 Biorefining is a combination of various batch and continuous processes. 

Pertaining to the conversion, varying forms of kinetics may not be adaptable with the 

existing input format of the simulation. Hence, in order to incorporate these aspects, 

user specified options have been explored. Depending on the requirements, the existing 

stoichiometric reactors can be linked to internal or external FORTRAN inputs. Internal 

FORTRAN kinetic and stoichiometric inputs can be provided by calling the process 

parameters and assigning the inputs using a user-defined function within the simulation 

environment. Whereas, an external dynamic linking can be provided by coupling an 

externally compiled FORTRAN subroutine (.dlopt file) to the corresponding unit in the 

main simulation. The external dynamic linking provides improved opportunities for 

customizations but requires rigorous coding using FORTRAN. These customization 

options are of great importance to embody the experimental outcomes of the developed 

steady state process simulations. Depending on the need, these FORTRAN codes can 
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be compiled by the built-in Aspen Plus® units, such as, RYield, RStoic, RBatch or 

RCSTR. Sample code (in FORTRAN) used to replicate the process of cellulose 

hydrolysis based on kinetics from a previous literature [194] is presented in Appendix 

D.2. Such codes can be modified and linked to an existing simulation model to 

incorporate the equations based on the experimental findings.  

 Currently, the simulations use user-defined functions (mentioned previously) to 

enforce the specified constraints and process parameters. However, based on the 

necessity other existing built-in Aspen Plus® options, such as, “Design Specs” and 

“Sensitivity”, can be used to limit and analyze the performance of the biorefining 

processes.  

8.4 Potential to Link the Models Using Visual Basic® Applications 

 Presently, the process and supply chain models developed provide several 

critical details. It is important to channel all the needed results from one model to 

another. While performing iterations, such a practice reduces the run time significantly. 

To demonstrate this aspect of interfacing, runs are performed between Aspen Plus® 

and ILOG OPL® for both thermochemical and biochemical conversion processes.  

 To explore the interfacing capabilities, runs are performed iteratively using the 

Visual Basic® interface. The runs utilize a dedicated Visual Basic® for Application 

user interface between Aspen Plus® and ILOG OPL®. While Aspen Plus® can be 

controlled using the Microsoft Excel® interface, ILOG OPL® also has the ability to 

exchange results to the same. Based on these interfacing restraints, several runs on the 

developed process simulations and corresponding optimization models are performed. 

Subsequently, the Microsoft Excel® worksheet is modified such that the results from 

the simulation can be interfaced with the supply chain optimization model with minimal 
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operations. This is achieved by creating multiple Macros tabs (built-in Visual Basic® 

application) to facilitate the data transfer between the worksheets. Finally, iterations for 

both thermochemical and biochemical process are performed for varying capacities. It 

is observed that the process takes approximately 120 s to complete the data exchange 

for an iteration on a computer with 4GB RAM and Intel® Dual-Core processor. Figure 

8.4 explains the manner in which this interfacing is achieved.  

 Based on the observations, an alternative method to perform the runs is 

determined by utilizing the user-specified (sensitivity) functions. Employing this 

application of the simulation reduces the total run time significantly and enables 

analyzing several scenarios in one run. Appendix D.3 depicts the methodology of data 

transfer between the Aspen Plus® and ILOG OPL®. The objective of performing runs 

is to determine the existing challenges in automation of the framework. Once the 

optimum process flow diagram is determined, the range of input based on which the 

runs are performed is selected. Iterations are performed until the optimum configuration 

is validated. The iterations begin by specifying the inputs which can be changed by 

allowing the access to those variables without opening the Aspen Plus® user interface. 

Subsequently, the outputs, such as, optimum feed, optimum product slate, process 

utility costs, raw materials costs and capital investment is specified that needs to be 

conveyed to the supply chain models. Then, these are transferred to another worksheet 

inside the Microsoft Excel® file using the macros (Visual Basic®). 
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Figure 8.4 Proposed interfacing scheme to improve usability of the framework 

  While the supply chain simulation cannot be run directly from the Microsoft 

Excel® interface, it has the capability of importing and exporting data. This feature is 

explored as the output data from the Aspen Plus® is fed to the ILOG OPL® as an input. 

After running the optimization program, the results are transferred to another Microsoft 

Excel® worksheet. Here, the cumulative data of the process and supply chain 

optimization models are evaluated and the combined results are transferred to the 

discrete event simulation model. The runs performed in the discrete event simulation 

model marks the end of one iteration. Similar processes for varying inputs are 

performed until an optimum is validated. The validation is performed based on various 

economic parameters, such as, Net Present Value (NPV), Payback Period and operating 

profit. The runs performed in this contribution maximizes the NPV of the biorefinery. 

This research not only aims to evaluate the economic outcomes but also intends to 

improve the ease of use of the framework. This aspect of the model is critical as 

improved and simpler interfacing leads to increased usability among the stakeholders.  
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 8.5 Conclusions 

 The developed tool can incorporate various details that improves the usability, 

adaptability and generalizability of the model. The framework can be used by growers 

and policy makers to test the impacts of a new feedstock to an existing scenario. Also, 

the model provides insight to growers in managing the utilization of available land to 

grow bio-based feedstock for biorefining. Ultimately, several more case studies must 

be designed to test the viability of potential operating configurations. 

 The framework not only encompasses the broad objective of calculating the 

economic parameters of biorefining processes, but also provides improved access to the 

model, such that it can be used by experimentalists to test the viability of their research 

outcomes. The use of user-supplied functions and compiled FORTRAN commands 

demonstrate two of the many available ways to enter the technical parameters. 

However, this aspect must be explored further to enhance the accuracy of results.  

 Finally, with adequate interfacing, the framework can be used by stakeholders 

from various professional background. While all the previously mentioned 

contributions have added to the improvisation of the existing framework, in the future, 

more work needs to be done in order to enhance each of the individual aspect. The final 

chapter of this dissertation will suggest some key future directions that must be adopted 

to improve the framework. 
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9. Conclusions and Future Work 

 This chapter will summarize the proposed integration and contributions 

achieved by the research. Major achievements of the novel decision support tool are 

highlighted and avenues for future contributions are stated. Eventually, based on the 

learnings from this work, future research directions are presented to enhance the 

performance of the developed framework. 

9.1 Summary of Achievements 

 The goal of this research is to develop a framework that can evaluate the 

economic viability of various biorefining processes from multiple stakeholder 

perspectives. Working towards this objective, a decision support tool has been designed 

that can link the major aspects of the conversion technique and transportation logistics. 

Doing this requires multidisciplinary linking of process simulation models with the 

supply chain optimization and discrete event simulation models. A unique iterative 

process is proposed that links the stand-alone models developed in Aspen Plus®, ILOG 

OPL® and Arena®. While designing each of the previously described models is 

critical, the contribution has also focused on the development of conversion process 

simulation and integration aspects of these models to create a multidisciplinary decision 

support tool. This unique linking is a novel achievement in the field of PSE. To 

demonstrate the promising operations of the framework, proof of concept studies have 

been performed on the thermochemical and biochemical processes to produce power, 

transportation fuel and marketable chemicals. The iterative framework has been run 

several times until the optimal production capacity is determined and validated. One of 

the major characteristics of the developed model is its generalizability. In order to 

validate this aspect, a case study has been performed on a hypothetical scenario. This 

study not only proved the versatile applicability of the tool, by demonstrating a potential 



147 

 

scenario, that can provide promising alternatives to improve profit but also identified 

venues for the future, by presenting the economic impact of potential utilization of 

marginal land in the Jackson Purchase region. Subsequently, various options are shown 

that can be used by experimentalists and engineers to incorporate their research 

outcomes. Finally, an effort to reduce the run time and improve the usability of the 

framework is demonstrated by the utilization of a dedicated Visual Basic® applications 

interface. The following section will present the conclusions that can be drawn based 

on the accomplishments of this dissertation.  

9.2 Conclusions 

 The research presented in this dissertation has made several contributions to the 

scientific community. One of the major contributions of the collaborative work is to 

create an innovative framework that can accommodate process and supply chain 

optimization models. This multidisciplinary tailoring resulted in a unique decision 

support tool that can run iteratively to determine the optimum configuration based on 

economic parameters. The case studies presented the working of a unified framework 

for thermochemical process of gasification, followed by WGS and FTS reactions, to 

produce liquid hydrocarbons and power. While the process has potential for 

improvements, the optimum configuration did not result in a desirable payback period. 

The economic parameters presented by the tool is thorough in nature and can be utilized 

by investors to avoid any non-profitable scenario in the long-term.  

 Subsequently, using the novel decision support tool, another study is performed 

to test the viability of the biochemical conversion process to produce ethanol from corn 

stover. The process showed improved economic outcomes compared to the 

thermochemical conversion technique. However, based on the literature studies it must 

be acknowledged that the biological conversion process is subject to higher 
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uncertainties and hence, is highly sensitive to feed composition and the presence of 

impurities. The framework shows the capability to incorporate both the processes. But 

more importantly, it demonstrates the manner in which the developed tool can be used 

to compare various biorefining processes. The contribution does not intend to justify 

any single processing technique but instead the virtue of this research lies in the ability 

to capture economic impacts of the existing and emerging processes.  

 The biomass gasification processes is further appraised to determine a strategy 

that can enhance the performance of the existing scenario to mitigate economic loss. 

The results concluded that the potential utilization of marginal land to cultivate 

dedicated energy crops is a promising option. While the results are encouraging for 

growers, policy makers and investors, this study shows the capability of the framework 

to incorporate suppositional schemes for assessment.  

 Multiple avenues to incorporate experimental details are explored in the 

research which enhances the usability of the model by researchers. Ultimately, in order 

to improve the applicability of the decision support tool, usability is augmented by 

utilizing a dedicated Visual Basic® applications interface. However, this aspect needs 

to be explored further to automate the framework such that it can be used by the 

stakeholders from various professional background. 

9.3 Future Work 

 The multidisciplinary framework provides insight for stakeholders by 

estimating the potential impacts of the production of biofuels in a given region. While 

the current nature of the work is comprehensive, based on the attainments, multiple 

directions for future upgrading of the model are proposed. The following points 

illustrates the major future research venues determined so far.  
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 Pre-screening tool: The process of developing and running scenarios in the 

framework is time consuming. Hence, a screening model should be developed that 

can eliminate infeasible configurations, saving the time consumed for running the 

non-viable scenarios.  

 Multiple facility location schemes: The current scheme for biorefining is based on 

a centralized facility location. However, depending on the varying properties, such 

as, moisture content, significant savings may be obtained by a two stage biorefining 

process. In the future, the framework should be modified to incorporate centralized, 

distributed and two stage biorefining schemes.  

 Environmental impact assessment: Emissions during the conversion process can be 

estimated by the current model. However, in order to calculate the impact of 

emissions throughout the supply chain, the model must be coupled with a LCA tool 

or the optimization must be performed incorporating the objectives to minimize 

emissions.  

 Societal impact assessment: Similar to the previous strategy, the decision making 

constrained objective function should also incorporate social impacts to accurately 

measure all aspects of sustainability.  

 Addition of other conversion processes: The existing model consists of two 

processes (thermochemical and biochemical). In the future, more conversion 

processes, such as, conversion of agricultural residue and dedicated energy crops to 

bio-butanol should be included.  

 Addition of stochastic data: Currently, the model begins its iteration with a set of 

deterministic demand and feedstock data. In order to capture realistic variabilities, 

the stochastic nature of the input must be incorporated. 



150 

 

 Modified interfacing: Currently, the developed model has limited automation 

capability and often requires manual data transfer. A platform must be discovered 

that can accommodate all the tools involved in the development of the framework.  

 The inclusion of previously mentioned future work will significantly enhance 

the capability of the unique framework. This will result in the development of a 

complete decision support tool that can guide various stakeholders in determining the 

impact of sustainable biorefining.  

 In summary, an informative decision support tool is developed as a contribution 

of this novel research. The framework can be used as a guide by investors in deciding 

the optimum operating capacity and sensitivity parameters involved in the supply chain. 

Hence, the investors can make informed decisions in planning the logistics and process 

configurations of future biorefineries. The framework can be used by policy makers to 

decide subsidies and incentives which encourages investment in this sector. Also, the 

impact of future uncertainties can be evaluated that will assist in the long-term planning. 

Finally, growers and investors can use this tool to evaluate tactics to improve the 

utilization of existing land resources and potential feedstock that can be mutually 

beneficial in the long-term. While the social and environmental impacts can be partially 

determined by the model, the main focus of this contribution has been towards 

establishing economic viability, which is an essential factor in determining the 

sustainability of any biorefining process. 
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Appendix A 

A.1 Reactions and corresponding parameters in the chemical pre-treatment 

section [54] 

Reactions  Parameters Value 

Pretreatment section 

CELLULOS  + H2O -->  GLUCOLIG 

CELLULOS  + H2O   -->  CELLOB 

CELLULOS  + H2O   -->  GLUCOSE 

XYLAN  + H2O   -->  XYLOSE 

XYLAN  + H2O   -->  XYLOLIG 

XYLAN   -->  FURFURAL + 2 H2O 

ACETATE   -->  AACID 

LIGNIN   -->  LGNSOL 

MANNAN  + H2O   -->  MANOLIG 

MANNAN  + H2O   -->  MANNOSE 

MANNAN   -->  HMF + 2 H2O 

GALACTAN  + H2O   -->  GALAOLIG 

GALACTAN  + H2O   -->  GALACTOS 

GALACTAN   -->  HMF + 2 H2O 

ARABINAN  + H2O   -->  ARABOLIG 

ARABINAN  + H2O   -->  ARABINOS 

ARABINAN   -->  FURFURAL + 2 H2O 

FURFURAL  + 2 H2O   -->  TAR 

5 HMF  + 9 H2O   -->  6 TAR 

 

Temperature 

(oC)  

Pressure (atm) 

 

190 

 

1 
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Neutralization   

CA(OH)2  + H2SO4   -->  GYPSUM Temperature 

(oC)  

Pressure (atm) 

0 

 

1 

 

A.2 Reactions involve in saccharification and fermentation section [54] 

Reactions  Parameters Value 

Saccharification  

CELLULOS  + H2O   -->  GLUCOLIG 

CELLULOS  + H2O   -->  CELLOB 

CELLULOS  + H2O   -->  GLUCOSE 

CELLOB   -->  GLUCOSE 

Temperature 

(oC)  

Pressure 

(atm) 

 

65 

 

1 

Fermentation   

GLUCOSE   -->  2 ETHANOL + 2 CO2 

GLUCOSE  + 0.04696 CSL  + 0.018 DAP   -->  6 ZYMO 

+ 2.4 H2O 

GLUCOSE  + 2 H2O   -->  2 GLYCEROL + O2 

GLUCOSE  + 2 CO2   -->  2 SUCCACID + O2 

GLUCOSE   -->  3 AACID 

GLUCOSE   -->  2 LACID 

3 XYLOSE   -->  5 ETHANOL + 5 CO2 

XYLOSE  + 0.03913 CSL  + 0.015 DAP   -->  5 ZYMO + 

2 H2O 

Temperature 

(oC)  

Pressure 

(atm) 

 

41 

 

1 
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3 XYLOSE  + 5 H2O   -->  5 GLYCEROL + 2.5 O2 

XYLOSE  + H2O   -->  XYLITOL + 0.5 O2 

3 XYLOSE  + 5 CO2   -->  5 SUCCACID + 2.5 O2 

2 XYLOSE   -->  5 AACID 

3 XYLOSE   -->  5 LACID 

3 ARABINOS   -->  5 ETHANOL + 5 CO2 

ARABINOS  + 0.03913 CSL  + 0.015 DAP   -->  5 ZYMO 

+ 2 H2O 

3 ARABINOS  + 5 H2O   -->  5 GLYCEROL + 2.5 O2 

3 ARABINOS  + 5 CO2   -->  5 SUCCACID + 2.5 O2 

2 ARABINOS   -->  5 AACID 

3 ARABINOS   -->  5 LACID 

3 GALACTOS   -->  6 ETHANOL + 6 CO2 

GALACTOS  + 0.04696 CSL  + 0.018 DAP   -->  6 ZYMO 

+ 2.4 H2O 

GALACTOS  + 2 H2O   -->  2 GLYCEROL + O2 

GALACTOS  + 2 CO2   -->  2 SUCCACID + O2 

GALACTOS   -->  3 AACID 

GALACTOS   -->  2 LACID 

MANNOSE   -->  2 ETHANOL + 2 CO2 

MANNOSE  + 0.04696 CSL  + 0.018 DAP   -->  6 ZYMO + 

2.4 H2O 

MANNOSE  + 2 H2O   -->  2 GLYCEROL + O2 

MANNOSE  + 2 CO2   -->  2 SUCCACID + O2 

MANNOSE   -->  3 AACID 

MANNOSE   -->  2 LACID 
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A.3 Detailed description of equation 6.2 Sukumara et al. 2013[A modified version 

of Faulkner 2012]. 

Decision Variables: 

Maximize Profit= ∑ (Salesm-Costm

12

m=1

) 

𝑆𝑎𝑙𝑒𝑠𝑚 = ∑𝑃𝑝𝑚

𝑃

𝑝=1

𝑃𝑃𝑝                           𝐶𝑜𝑠𝑡𝑚 = 𝐵𝐶𝑚 + 𝐵𝐶′𝑚 + 𝐵𝐶′′𝑚 + 𝐵𝐶′′′𝑚 + 𝑂𝐶𝑚 + 𝑃𝐶𝑚 + 𝑃𝐶′𝑚  

𝐵𝐶𝑚 = ∑∑∑𝑋𝑓𝑖𝑗𝑚

𝐽

𝑗=1

𝐼

𝑖=1

𝐹

𝑓=1

𝐵𝑃𝑓  

𝐵𝐶′𝑚 = ∑∑∑𝑋𝑓𝑖𝑗𝑚

𝐽

𝑗=1

𝐼

𝑖=1

𝐹

𝑓=1

𝑅 

𝐵𝐶′′𝑚 = ∑∑∑ 2𝑇𝑓𝑖𝑗𝑚

𝐽

𝑗=1

𝐼

𝑖=1

𝐹

𝑓=1

𝑑𝑖𝑗 (𝐵𝑇𝐶 +
𝐵𝑇𝐶 ′

𝑠
) 

𝐵𝐶′′′𝑚 = ∑∑∑𝑘𝑇𝑓𝑖𝑗𝑚

𝐽

𝑗=1

𝐼

𝑖=1

𝐹

𝑓=1

𝑑𝑖𝑗 (2𝑇𝑀 + 𝑇𝑀′
𝑓)𝐷𝑃 

𝑂𝐶𝑚 = 𝐸𝐿𝐸𝐶𝑚 + 𝐶𝑂𝑂𝐿𝑚 +𝐻𝐸𝐴𝑇𝑚 + 𝐿𝐶𝑚 + 𝑆𝐶𝑚
+ 𝑀𝐶𝑚 + 𝑂𝑉𝐶𝑚 + 𝐴𝐶𝐶𝑚  

𝑃𝐶𝑚 = ∑∑∑ 2𝑇𝑝𝑗𝑘𝑚

𝐾

𝑘=1

𝐽

𝑗=1

𝑃

𝑝=1

𝑑𝑗𝑘 (𝑃𝑇𝐶 + 𝑠𝑃𝑇𝐶′) 

𝑃𝐶′𝑚 = ∑∑∑𝑘𝑇𝑝𝑗𝑘𝑚

𝐾

𝑘=1

𝐽

𝑗=1

𝑃

𝑝=1

𝑑𝑗𝑘 (2𝑇𝑀 + 𝑇𝑀′′𝑝)𝐷𝑃 

𝑋𝑓𝑖𝑗𝑚

𝑇𝑀′
𝑓

= 𝑇𝑓𝑖𝑗𝑚  ∀ 𝑓, 𝑖, 𝑗,𝑚 

𝑌𝑝𝑗𝑘𝑚 𝜌𝑝

2000𝑇𝑀′′
𝑓

= 𝑇𝑝𝑗𝑘𝑚 ∀𝑓, 𝑗,𝑘,𝑚 

Subject to: 

∑𝑃𝑗

𝐽

𝑗=1

= 1 

∑𝑋𝑓𝑖𝑗𝑚

𝐽

𝑗=1

≤ 𝐵′′ 𝑓𝑖𝑚  ∀𝑓, 𝑖,𝑚 

𝐵𝑓𝑖𝑚 = 𝐵′′𝑓𝑖𝑚  ∀𝑓, 𝑖, & 𝑚 = 1 

𝐵𝑓𝑖𝑚 + 𝐵′𝑓𝑖𝑚 = 𝐵′′𝑓𝑖𝑚   ∀𝑓, 𝑖, & 𝑚 = 2. .12 

𝐸𝑓  𝐵
′′
𝑓𝑖𝑚 −1 −∑𝑋𝑓𝑖𝑗𝑚 −1

𝐽

𝑗=1

 = 𝐵′𝑓𝑖𝑚  ∀𝑓, 𝑖, & 𝑚 = 2. .12 

∑∑𝑋𝑓𝑖𝑗𝑚

𝐽

𝑗=1

𝐼

𝑖=1

= 𝐵𝑁𝑓𝑚  ∀𝑓,𝑚 

∑∑𝑌𝑝𝑗𝑘𝑚

𝐾

𝑘=1

𝐽

𝑗=1

= 𝑃𝑆𝑝𝑗𝑚  ∀𝑚, 𝑝 

∑𝑌𝑝𝑗𝑘𝑚

𝐽

𝑗=1

≤ 𝑃𝐷𝑝𝑘𝑚 ∀𝑝, 𝑘,𝑚 

∑∑∑∑𝑋𝑓𝑖𝑗𝑚

𝑀

𝑚=1

𝐽

𝑗=1

𝐼

𝑖=1

𝐹

𝑓=1

≤ 𝑀𝑃𝑗  ∀𝑗 

∑∑∑∑ 𝑌𝑝𝑗𝑘𝑚

𝑀

𝑚=1

𝐾

𝑘=1

𝐽

𝑗=1

𝑃

𝑝=1

≤ 𝑀𝑃𝑗  ∀𝑗 

𝑌𝑝𝑗𝑘𝑚 ,𝑋𝑓𝑖𝑗𝑚 ≥ 0 

𝑃𝑗 = 𝑏𝑖𝑛𝑎𝑟𝑦 
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Pj: the selection of a biorefinery at location (j) 

Xfijm: the amount of feedstock (f) to be transported from biomass feedstock location 

(i) to biorefinery location (j) in month (m) 

Ypjkm: the amount of product (p) to be transported from biorefinery location (j) to 

market distribution location (k) in month (m) 

Subscript indices: 

F= Number of biomass feedstock 

P = Number of product 

I= Number of biomass location 

J = Number of plant location 

K= Number of product location 

M= Month 

Parameters: 

Ppm = products created in that month 

PPp = price of the product 

BPf = price of biomass 

BCm = monthly biomass purchasing cost 

BC’m = monthly biomass inventory cost 

BC’’m = monthly biomass transportation cost 

BC’’’m = monthly cost of diesel to transport the biomass 

OCm = monthly operating cost 

PCm = monthly product transportation cost 

PS = amount of products created 

PC’m = monthly product transportation diesel cost 

ELECm = monthly biorefinery electricity cost 

COOLm = monthly biorefinery cooling cost 

HEATm = monthly biorefinery heating cost 

LCm = monthly labor cost 

R = biomass land rent cost 

T = number of trucks 

SCm = monthly supervisor cost 

MCm = monthly maintenance cost 

MC’m = monthly maintenance cost conversion 
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OVCm = monthly overhead cost 

ACCm = monthly annualized capital cost 

DP = diesel price 

TM = truck mass 

TM’ = biomass truck capacity 

TM’’= product truck capacity 

BTC = distance dependent cost 

BTC’ = time dependent cost of transportation 

PTC = product distance dependent cost 
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Appendix B 

B.1 Process conditions for feed flexible gasification 

Major units Process Temperatu

re (ºC) 

Pressure 

(atm) 

Sizing Size reduction 30 1 

Screening 30 1 

Gasification Decomposition* 30 1 

Gasifier 800-1500 1 

Cleaning Absorption 

Column 

-36 1 

Flash 5 1 

WGS WGS Reactor 245 1 

FTS FTS Reactor 250 14.6 

Power 

Generation 

Generator - - 

Product 

Separation 

Distillation 

column 1 

197 1 

Distillation 

Column 2 

231 1.5 

 

Note: *This reactor is included for simulation purposes only. The purpose of this 

reactor is to break down incoming biomass into its elemental composition based on 

proximate and ultimate analysis data. 
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B.2 Summary of capital costs 

Table B.1 Summary of capital cost for the case study on biomass gasification 

 

B.3 (a) Variable feed costs 

 

Figure B.3.a Monthly variable feed cost (including process and transportation) at the 

biorefinery location for various raw materials.  

PROJECT CAPITAL SUMMARY Small Medium Large

Purchased Equipment $8,200,700 $12,094,301 $15,590,701

Equipment Setting $159,578 $200,625 $239,433

Piping $1,907,202 $2,097,990 $2,255,200

Civil $542,537 $649,621 $650,297

Steel $259,188 $281,002 $292,584

Instrumentation $2,465,383 $2,487,310 $2,518,098

Electrical $1,085,698 $1,220,049 $1,336,351

Insulation $636,139 $645,740 $735,883

Paint $135,880 $160,480 $155,063

Other $8,826,801 $9,660,101 $10,331,001

Subcontracts - - -

G and A Overheads $578,487 $730,791 $864,951

Contract Fee $914,975 $1,040,869 $1,149,169

Escalation - - -

Contingencies $4,628,262 $5,628,398 $6,501,370

Total Project Cost $30,340,829 $36,897,276 $42,620,101

Adjusted Total Project Cost $29,974,072 $36,451,265 $42,104,913
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B.3 (b) Varying utility costs 

 

Figure B.3.b Monthly variable utility cost for Large, Medium and Small biorefinery 

B.4 Cumulative yearly cash flow including capital investment 

 

Figure B.4 Cumulative cash flows for various trial capacities 
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B.5 Potential environmental impact comparison using the Waste Reduction 

Algorithm 

 

Figure B.5 Potential Environmental Impacts of thermochemical and biochemical 

processes 

B.6 Jobs created for the biochemical conversion process 

 

Figure B.6 Constructional and operational jobs created for three capacities of 

biorefinery based on biochemical conversion process 
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Appendix C 

C.1 Equations and notations used for showing the objective function and 

constraints 

BOC=Variable Feed Cost(VFC) +Chemicals Cost(CC) +Utility Cost(UC)  (2) 

Where, 

 

 

Subject to: 

A = CL*Op,   D = FR*Oq,  R = CS*Or 

0.9 ≤ Op ≤ 1,  0.9 ≤ Oq ≤ 1, 0.9 ≤ Or ≤ 1 

Notations and subscript indices 

Ch, Bw, Qv 
Product ($/gal), feed ($/kg) and chemical ($/kg) unit cost, 

respectively 

Ph, Fw, Gv 
Product (gal/s), feed (kg/s) and chemical (kg/s) flow rate, 

respectively 

CH, CR, CC Cost of hot, refrigeration and cold utility, respectively ($/J) 

QHx, QRy, 

QCz Hot, refrigerant and cold utility consumed (W) 

CL, FR, CS Generated chicken litter, forest residue and corn stover (kg/sec) 

A, D, R Rate of input of CL, FR and CS, respectively (kg/sec) 

Op, Oq, Or Non-negative multiplication factor of CL, FR and CS, respectively 

a, b, d Number of product, feedstock and chemicals, respectively 

e, f, g Number of hot, refrigeration and cold utility streams, respectively 

 

 

𝑃𝑆𝐼 = ∑𝐶ℎ

𝑎

ℎ=1

𝑃ℎ ,                 𝑉𝐹𝐶 = ∑𝐵𝑤

𝑏

𝑤=1

𝐹𝑤 ,                𝐶𝐶 = ∑𝑄𝑣

𝑑

𝑣=1

𝐺𝑣 

𝑈𝐶 = 𝐶𝐻∑𝑄𝐻𝑥

𝑒

𝑥=1

+ 𝐶𝑅∑𝑄𝑅𝑦

𝑓

𝑦=1

+ 𝐶𝐶∑𝑄𝐶𝑧

𝑔

𝑧=1
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C.2 Feed data discussed in section 7.6 to begin various iterations for the case 

study 

Table C.1 Feed availability assumptions for the marginal land case study to begin 

iterations in order to find the optimum configuration 

 Case 1 (Wet Tons) Case 2 (Wet Tons) Case 3 (Wet Tons) Case 4 (Wet Tons) 

January 59024 46598 31065 15532 

February 60078 47430 31620 15810 

March 53269 42055 28036 14018 

April 50606 39952 26634 13317 

May 48076 37954 25303 12651 

June 47194 37258 24839 12419 

July 39189 30939 20626 10313 

August 38385 30304 20202 10101 

September 34197 26998 17998 8999 

October 61660 48679 32452 16226 

November 65401 51632 34421 17210 

December 62131 49051 32700 16350 
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Appendix D 

D.1 Predicted optimum configuration based on the preliminary assessment  

 

Figure D.1 Preliminary optimum prediction based on process and supply chain 

optimization results 

D.2 FORTRAN code used to incorporate the user specified into the process 

simulation based on the kinetics from the literature (Kadam et al. 2004) 

Code: 

 
      SUBROUTINE LHUKIN (SOUT,   NSUBS,  IDXSUB,   ITYPE,  NINT, 
     2                 INT,    NREAL,  REAL,     IDS,    NPO, 
     3                 NBOPST, NIWORK, IWORK,    NWORK,  WORK, 
     4                 NC,     NR,     STOIC,    RATES,  FLUXM, 
     5                 FLUXS,  XCURR,  NTCAT,    RATCAT, NTSSAT, 
     6                 RATSSA, KCALL,  KFAIL,    KFLASH, NCOMP, 
     7                 IDX,    Y,      X,        X1,     X2, 
     8                 NRALL,  RATALL, NUSERV,   USERV,  NINTR, 
     9                 INTR,   NREALR, REALR,    NIWR,   IWR, 
     *                NWR,    WR) 
!------------------------------------------------------------------------------
- 
! 
      IMPLICIT NONE 
! 
!     DECLARE VARIABLES USED IN DIMENSIONING 
! 
      INTEGER NSUBS, NINT,  NPO,   NIWORK,NWORK, 

y = -609507x2 + 1E+07x + 5E+06

R² = 1
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     +        NC,    NR,    NTCAT, NTSSAT,NCOMP, 
     +        NRALL, NUSERV,NINTR, NREALR,NIWR, 
     +        NWR 
 
!------------------------------------------------------------------------ 
#include "rcst_rcstri.cmn" 
#include "rxn_rcstrr.cmn" 
 
!- RPLUG 
#include "rplg_rplugi.cmn" 
#include "rplg_rplugr.cmn" 
      EQUIVALENCE (XLEN, RPLUGR_UXLONG) 
      EQUIVALENCE (DIAM, RPLUGR_UDIAM) 
 
!- RBATCH 
#include "rbtc_rbati.cmn" 
 
!- Pressure Relief 
#include "rbtc_presrr.cmn" 
 
!------------------------------------------------------------------------ 
#include "rxn_rprops.cmn" 
      EQUIVALENCE (TEMP, RPROPS_UTEMP) 
      EQUIVALENCE (PRES, RPROPS_UPRES) 
      EQUIVALENCE (VFRAC, RPROPS_UVFRAC) 
      EQUIVALENCE (BETA, RPROPS_UBETA) 
      EQUIVALENCE (VVAP, RPROPS_UVVAP) 
      EQUIVALENCE (VLIQ, RPROPS_UVLIQ) 
      EQUIVALENCE (VLIQS, RPROPS_UVLIQS) 
#include "pputl_ppglob.cmn" 
 
!------------------------------------------------------------------------ 
#include "ppexec_user.cmn" 
      EQUIVALENCE (RMISS, USER_RUMISS) 
      EQUIVALENCE (IMISS, USER_IUMISS) 
 
!------------------------------------------------------------------------ 
#include "dms_errout.cmn" 
      EQUIVALENCE (IERROUT, ERROUT_IEROUT) 
 
      INTEGER IDXSUB(NSUBS),ITYPE(NSUBS), INT(NINT), 
     +        IDS(2),NBOPST(6,NPO),IWORK(NIWORK), 
     +        IDX(NCOMP),   INTR(NINTR),  IWR(NIWR), 
     +        NREAL, KCALL, KFAIL, KFLASH,I, 
     +        ICELL,   ICLIG,  IGLUC, IH2O, IPCELL 
      INTEGER IPCLIG, IPGLUC, IPH2O, KV,    KDIAG, 
     +        KER 
      REAL*8 SOUT(1),      WORK(NWORK), 
     +       STOIC(NC,NSUBS,NR),  RATES(NC), 
     +       FLUXM(1),     FLUXS(1),     RATCAT(NTCAT), 
     +       RATSSA(NTSSAT),      Y(NCOMP), 
     +       X(NCOMP),     X1(NCOMP),    X2(NCOMP) 
      REAL*8 RATALL(NRALL),USERV(NUSERV), 
     +       REALR(NREALR),WR(NWR),      XCURR, TEMP, 
     +       PRES,  VMXL,  DVMX,  TK 
! 
 
      INTEGER IPROG(2),     IMISS, DMS_KFORMC,DMS_IRRCHK 
      REAL*8 REAL(NREAL),  XLEN,  DIAM,  VFRAC, BETA, 
     +       VVAP,  VLIQ,  VLIQS, RMISS, CCELL, 
     +       CCLIG, CGLUC, CH2O,  RRATE1,RRATE2,RRATE3, 
     +       RNET 
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      CHARACTER*80 IERROUT(10), IERW1(10), IERW2(9), IERW3(8) 
     +             , IERW4(7), IERW5(6), IERW6(5), IERW7(4), IERW8(3) 
     +             , IERW9(2), IERW10 
 
      EQUIVALENCE (IERROUT(1), IERW1), (IERROUT(2), IERW2), 
     +            (IERROUT(3), IERW3), (IERROUT(4), IERW4), 
     +            (IERROUT(5), IERW5), (IERROUT(6), IERW6), 
     +            (IERROUT(7), IERW7), (IERROUT(8), IERW8), 
     +            (IERROUT(9), IERW9), (IERROUT(10), IERW10) 
 
 
! 
      DATA IPROG /4HUSRK, 4HIN  / 
 
!==============================================================================
= 
 
 50       FORMAT(T15,'Total Molar Flow: ',d14.7,/, 
     +           T15,'Realr(1-6):       ',d14.7,(', ',d14.7),/, 
     +           T33,                     d14.7,(', ',d14.7),/, 
     +           T15,'Rgas:             ',d14.7,/, 
     +           T15,'Tk (K):           ',d14.7,/, 
     +           T15,'Rnet:             ',d14.7,/, 
     +           T15,'Vvap:             ',d14.7,/, 
     +           T15,'Vliq:             ',d14.7,/, 
     +           T15,'Overall Component Rate (kmol/sec): ',d14.7 ) 
 60       FORMAT(T17,'Component Data ',/, 
     +           T20,'Cellulose Mole Fraction:   ',F10.4,/, 
     +           T32,'Conc (kmol/m3):  ',F10.4,/, 
     +           T20,'Cellobiose Mole Fraction:       ',F10.4,/, 
     +           T32,'Conc (kmol/m3):  ',F10.4,/, 
     +           T20,'Glucose Mole Fraction: ',F10.4,/, 
     +           T32,'Conc (kmol/m3):  ',F10.4,/, 
     +           T20,'Water Mole Fraction:         ',F10.4,/, 
     +           T32,'Conc (kmol/m3):  ',F10.4,/, 
     +           T20,'Density (m3/kgmol):          ',F10.4) 
! 
!     BEGIN EXECUTABLE CODE 
! 
      DO I = 1, NC 
        RATES(I) = 0. 
      END DO 
 
!==============================================================================
= 
 
      ICELL =DMS_KFORMC ('C2H4O2-1') 
      ICLIG =DMS_KFORMC ('C2H6O-2') 
      IGLUC =DMS_KFORMC ('C4H8O2-3') 
      IH2O  =DMS_KFORMC ('H2O') 
 
!==============================================================================
= 
 
       DO I=1, NCOMP 
           IF (IDX(I).EQ.ICELL) THEN 
                IPCELL=I 
           ELSE IF (IDX(I).EQ.ICLIG) THEN 
                IPCLIG=I 
           ELSE IF (IDX(I).EQ.IGLUC) THEN 
                IPGLUC=I 
           ELSE IF (IDX(I).EQ.IH2O) THEN 
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                IPH2O=I 
           END IF 
       END DO 
 
!==============================================================================
= 
 
       KV=1 
       CALL PPMON_VOLL ( TEMP  , PRES , X , NCOMP , IDX, NBOPST, 
     +       KDIAG, KV, VMXL, DVMX, KER ) 
 
      CCELL  =       X(IPCELL)/VMXL 
      CCLIG  =       X(IPCLIG)/VMXL 
      CGLUC  =       X(IPGLUC)/VMXL 
      CH2O   =       X(IPH2O)/VMXL 
 
!==============================================================================
= 
 
      TK=TEMP 
      RRATE1 = REALR(1)*(TK/318)*EXP((-REALR(2)/(PPGLOB_RGAS))*((1/TK)- 
     +       (1/318)))*((0.00001768687*CCELL**3)/ 
     +       (1+(66.66*CCLIG)+(10*CGLUC))) 
      RRATE2 = REALR(3)*(TK/318)*EXP((-REALR(4)/(PPGLOB_RGAS))*((1/TK)- 
     +       (1/318)))*((0.00001770354*CCELL**3)/ 
     +       (1+(0.007575*CCLIG)+(25*CGLUC))) 
      RRATE3 = REALR(5)*(TK/318)*EXP((-REALR(6)/(PPGLOB_RGAS))*((1/TK)- 
     +       (1/318)))*((0.001*CCLIG**1)/ 
     +       (24.3+CCLIG+(6.23*CGLUC))) 
 
      RNET = -RRATE3 - RRATE2 
!==============================================================================
= 
 
      RATES(ICELL) = (-RRATE1 - RRATE2)*VLIQ 
      RATES(ICLIG) = ((1.056*RRATE1) - RRATE3)*VLIQ 
      RATES(IGLUC) = ((1.111*RRATE2) + (1.053*RRATE3))*VLIQ 
      RATES(IH2O) = RNET*VLIQ 
 
 
!==============================================================================
= 
! Diagnostic Section 
 
 
      IF(DMS_IRRCHK(IPROG,5,9001,USER_LMSG,IMISS,0,0,2) .NE. 0) 
     +    THEN 
 
          WRITE(IERROUT, 50) SOUT(NC+1), REALR(1), REALR(2) 
     +          , REALR(3), REALR(4) 
     +          , PPGLOB_RGAS, TK, RNET, VVAP, VLIQS  
!     +          DABS(RATES(IGLUC)) 
 
 
          CALL DMS_ERRPRT(10) 
      END IF 
 
!------------------------------------------------------------------------ 
 
      IF(DMS_IRRCHK(IPROG,6,9002,USER_LMSG,IMISS,0,0,2) .NE. 0) 
     +    THEN 
 



 

167 

 

          WRITE(IERW1, 60) X(IPCELL), CCELL, X(IPCLIG),  
     +     CCLIG, X(IPGLUC), CGLUC, X(IPH2O), CH2O, VMXL 
 
          CALL DMS_ERRPRT(10) 
 
      END IF 
      RETURN 
      END 
!==============================================================================
= 
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D.3 Snapshots showing the methodology of accessing the simulation and the 

optimization models from the Microsoft Excel® interface. 

(a) Running and accessing data from Aspen Plus®

 

 (b) Transposing the Data in the format acceptable by ILOG OPL®
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(c) Refreshing results for new ILOG OPL® runs 

 

(d) Exporting OPL® outputs and combining with the process simulation (Aspen 

Plus®) input 

 

Figure D.3 Screenshots (a, b, c and d) showing the data transfer using the dedicated 

VB® Applications for the biochemical conversion process 
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