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ABSTRACT OF DISSERTATION

Genetic Association Testing of Copy Number Variation

Copy-number variation (CNV) has been implicated in many complex diseases. It is of
great interest to detect and locate such regions through genetic association testings.
However, the association testings are complicated by the fact that CNVs usually span
multiple markers and thus such markers are correlated to each other. To overcome
the di�culty, it is desirable to pool information across the markers. In this thesis, we
propose a kernel-based method for aggregation of marker-level tests, in which �rst we
obtain a bunch of p-values through association tests for every marker and then the
association test involving CNV is based on the statistic of p-values combinations. In
addition, we explore several aspects of its implementation.

Since p-values among markers are correlated, it is complicated to obtain the null dis-
tribution of test statistics for kernel-base aggregation of marker-level tests. To solve
the problem, we develop two proper methods that are both demonstrated to preserve
the family-wise error rate of the test procedure �-a permutation-based approach and
a correlation-base approach. Many implementation aspects of kernel-based method
are compared through the empirical power studies in a number of simulations con-
structed from real data involving a pharmacogenomic study of gemcitabine. In ad-
dition, more performance comparisons are shown between permutation-based and
correlation-based approach. We also apply those two approaches to the real data.

The main contribution of the dissertation is the development of marker-level asso-
ciation testing, a comparable and powerful approach to detect phenotype-associated
CNVs. Furthermore, the approach is extended to high dimension setting with high
e�ciency.

KEYWORDS: Copy number variation, marker-level testing, kernel-base aggregation,
permutation, family-wise error rate
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Chapter 1 Introduction

1.1 Genetic background of Copy number variation

An allele is one of a number of alternative forms of the same gene or same genetic lo-

cus that is located at a speci�c position on a speci�c chromosome. Genetic variation

is the variation in alleles of genes and it occurs both within and among popula-

tions. It is brought about by mutation, a change in the chemical structure of a gene.

Due to the improved understanding of variation in human DNA and development of

high-resolution assays that capable of detecting small segmental genetic alteration,

di�erent kinds of genetic variation have been detected. These variations present

in an unexpected amount of forms, including single-nucleotide polymorphism, small

insertion-deletion polymorphisms, variable numbers of repetitive sequences, and ge-

nomic structural variation. Initial genetic variation studies mostly concentrated on

single-nucleotide polymorphisms (SNP). A SNP is a DNA sequence variation that

occurs when a single nucleotide (A,T,C or G) in a DNA sequence di�ers between

individuals. It is a single base change in the DNA. SNPs are thought to be the most

common form of genetic variation. In 2001 it was discovered that there are at least es-

timated 10 million SNPs commonly occurring within the human population [1]. The

international HapMap Project has identi�ed over 3.1 million SNPs across the human

genome that commonly exist in the individuals of African, Asian and European ances-

try. SNPs have been considered to be the main source of normal phenotypic variation

for decades. However, a study by Maher [2] demonstrates that most common single

nucleotide polymorphisms associated with complex diseases have small e�ect size and

explained only 2−15% of heritable variation. Increasingly researchers have attempted

to discover other type of variation that might account for the remaining fraction of

the heritable variation.
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Prior to the day of DNA sequencing, very few gene number changes could be

detected by a microscope. During the past several years, hundreds of new forms

of variation in repetitive regions of DNA have been identi�ed. Two groups of re-

searchers published landmark �ndings of detection of copy number variation among

the genomes of healthy individuals [3, 4]. Subsequent studies using more developed

methods expanded the results and provided more evidence for the existence of such

variation over large portions of the human genome. The number of copies of a seg-

ment of DNA in the genome is referred to as the DNA copy number for that segment.

Normally, most individuals have two copies of a given genomic segment of DNA.

A di�erent number of copies results when an individual goes through one or more

deletions or duplications of a segment. Therefore, by choosing a genome reference

sequence, which is considered to have a "normal" number of copies, any individuals

with an abnormal number of copies at the same genomic region are de�ned to possess

a CNV at that region.

Copy number variants are now known to be a prevalent form of genetic variation

and account for a substantial proportion of genetic variability in human populations.

CNVs are categorized in many ways. Some authors subclassify CNVs in terms of the

size and frequency. Traditionally, CNV is de�ned as one type of structural variant

in a segment of DNA that is 1 kb or larger [5]. By the improvement of detection

technology, shorter segments are able to be detected and now also considered. Some

publications de�ned it with minor allele frequency (MAF). In a recent study [6],

> 90% of CNVs involved copy-number polymorphism that occurs in more than 1%

of the given population and > 80% common CNPs with MAF > 5%. The remain-

ing 10% consists of rare CNVs. This indicates that a large portion of copy number

variation come from common polymorphisms. By comparing the human genome ref-
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erence sequence with another genome sequence using the fosmid paired-end sequence

approach, Tuzun identi�ed 297 sites of potential structure variation between the two

sequences, including 139 insertions, 102 deletion, and 56 inversions. [7]. The number

of identi�ed CNVs is now increasing dramatically as the detection technologies have

improved. To date, approximately 180,000 CNV have been reported in the Database

of Genomic Variants (DGV), which records information about identi�ed copy number

events. We make no distinction in forms of size or frequency in this dissertation and

use the term CNV for all kinds of copy number variation.

More and more studies demonstrate the potentially greater role of CNVs than

single base-pair sequence variation. It was estimated that 12% of the genome could

be a�ected by CNV in comparison to 1 − 2% covered by single nucleotide polymor-

phisms (SNPs) [8]. Ridon et al. constructed a �rst-generation CNV map of the

human genome after studying 270 individuals. They identi�ed a total of 1,447 copy

number variable regions covering 12% of genome in these population. Another re-

search team pointed out that there are approximately 12 CNVs per entire genome

on average [3, 4]. But these results were based on the small number of genomes and

limited resolution of previous detection methods. Sharp et al. revealed that 61% of

the variants identi�ed had not been discovered before [9]. It seems that the number

of CNVs is underestimated. By 2006, it appears that 1237 CNVs covering an esti-

mated 143 Mb genomic sequence had been identi�ed, which is a substantial source of

genomic variation except SNP [10]. Analysis of the complete DNA sequence from a

single individual reported that CNVs account for about 22% of all genetic variation

in the individual and 74% of the total DNA sequence variation [11]. It is reasonable

to conclude that CNV accounts for an appreciable amount of phenotypic variation.
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An increasing number of studies are investigating the impact of copy number vari-

ation on various phenotypes. The duplication of the Bar gene in Drosophila was one

of the earliest studies on association of CNV with a phenotype. The variation was

shown to cause the Bar eye phenotype, which will narrow the eye �eld of a�ected

�ies [12]. Another popular example is the duplication of part or all of chromosome

21 has been discovered to be linked to Down syndrome. More evidence reveals that

changes in copy number play an important role in evolution. A study by Stefansson et

al. [13] identi�ed a common inversion with frequency of 20% in Europeans that indi-

cates positive selection. They analyzed tens of thousands of samples and investigated

that the inversion carrier females have more children than noncarriers. Numerous

examples of relevance between CNVs and complex diseases were observed by Redon

et al. [14]. CNVs are also found to be associated with Prader-Willi and Angelman

syndromes. Sebat et al. discovered association between deletion variation and risk

of autism [15]. Walsh et al. reported the contribution to schizophrenia disease and

Zhang et al. presented the risk to bipolar disorder [16,17].

Copy number variants do not necessarily have a negative e�ect on health. A num-

ber of studies provided the evidence that some speci�c large duplication or deletion do

not apparently result in disease [18�21]. In 2004, two groups independently detected

the widespread presence of CNVs among the genomes of healthy individuals. [3, 4].

By constructing a targeted bacterial arti�cial chromosome (BAC) microarray, 119

regions of CNVs were identi�ed, with 73 unreported previously, on a panel of 47 nor-

mal individuals representing four di�erent population. The study also demonstrated

that segmental duplications occur at hotspots of chromosome rearrangement, acting

as causes of normal variants as well as genetic disease [9].
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1.2 CNV calling

It has became one of the compelling genetics challenges during the last few years

to understand the contribution of copy number variation to the phenotypes such as

disease state. As many CNVs are rare, it is di�cult to conduct statistically signi�-

cant association between a single rare CNV and the disease status. Instead, several

studies examine the association between phenotype and total CNVs in the whole chro-

mosome. Through case-control testing, these studies identi�ed associations between

copy number changes and various diseases, including autism, schizophrenia and bipo-

lar disorder [15�17]. Previous studies of copy-number variation in human populations

have largely been restricted to hundreds of individuals and therefore were unable to

distinguish variants that are truly rare. More and more recent studies have begun to

expand to substantially larger sample size.

Genome-wide association studies (GWAS) in large samples of cases and controls

are commonplace and therefore an e�cient approach is to carry out association stud-

ies involving CNVs using the same data. GWAS is an examination of genetic variation

across human genome. It tests markers across the complete sets of genomes of many

people to identify genetic association with clinical phenotypes. Researchers use two

groups of participants to conduct the study: people with the disease (case) and simi-

lar people without the disease (control). The entire genome, which contains millions

of genetic variants, is investigated through the case-control testing. If a certain vari-

ant is found to be signi�cantly more frequent in people with disease, this type of

variation is said to be "associated" with the disease. The associated variant might

not directly cause the disease and is considered to be "tagging along" with the actual

casual variant. In a typical GWAS, genetic variants are read by SNP arrays, a more

popular and common type of DNA microarray data used to detect polymorphisms
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within a population. Hence, GWAS typically presents the associations between single-

nucleotide polymorphisms (SNPs) and the observed traits. GWAS was �rst applied in

2005 on patients with age-related macular degeneration(AMD) and two SNPs were

detected to in�uence the risk of disease by case-control testing. Such studies are

substantially useful and have already successfully identi�ed hundreds of genetic vari-

ations contributing to common, complex diseases. GWA studies often require a large

number of samples in order to obtain a reliable signal of risk-SNPs. It was reported

by Ehret et al. [22] that the largest sample size was in the range of 200,000 individuals.

There have been several techniques proposed for measuring copy-number vari-

ation. Traditionally, large chromosome rearrangements have been detected with

G-banded karyotypic analyses or �uorescence in situ hybridization (FISH) using

�uorescent probes that bind to part of the chromosomes. With the development

of microarray technology, array-based comparative genomic hybridization (aCGH)

was one of the widely used techniques. This technology was �rst introduced as

"matrix-CGH" [23]. This technique involves labeling a reference genome and a test-

ing genome with di�erent �uorescence markers, hybridizing to the microarray with

genomic clones, and then analyzing the intensity of the hybridization signal for each

clone. Then the array-CGH technique has been through a lot of improvements such as

BAC Array Comparative Genomic Hybridization, Representational Oligonucleotide

Microarray Analysis (ROMA) and Agilent CGH [24] to detect CNVs in human pop-

ulations.

The CNV studies were restricted to a list of selected candidate genes due to the

cost and complexity of CNV assessment. High-throughput single nucleotide poly-

morphism (SNP)-array technologies provide possibility to investigate copy number
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variants (CNVs) in genome-wide scans and speci�c calling algorithms have been de-

veloped to determine CNV location and copy number. High-density single nucleotide

polymorphism (SNP) genotyping arrays have recently become more popular for CNV

detection and analysis, because the arrays are available for both SNP-based and CNV-

based association studies. Furthermore, they provide considerably higher precision

and resolution than traditional techniques. Since vast amounts of these data have

been already generated during the pursuit of conducting genome-wide association

studies (GWAS) among SNPs, it has tremendous advantages and merits in terms of

convenience and low expense for studies. Hence it is expected to continue to be the

main approach for several years to come. However, there are limitations to using

SNP genotyping arrays for CNV detection. One obvious limitation is that SNPs are

not uniformly distributed across the genome and are sparse in regions with segmental

duplication or deletions [25]. The new-generation SNP arrays, such as the In�nium

Illumina Human 1Million probe chip and the A�ymetrix 6.0 platform, have now in-

corporated additional nonpolymorphic (NP) markers to provide more comprehensive

coverage of the human genome and thus overcome this limitation. They are proven

to be a method for detecting CNVs and now are commonly used to obtain the copy-

number measurement recently. In my thesis, I focus here on detection of coy-number

variation using raw data from genome-wide single nucleotide polymorphism (SNP)

arrays.

In high-density SNP genotyping platforms, a signal intensity measure is sum-

marized for each allele of any SNP. Thus, each marker from SNP arrays consists

of two intensity measurements, corresponding to the A and B allele [26, 27]. First,

quantile-normalization is required for each probe intensity. After normalization of

both intensities, a polar coordinate transformation is applied, generating two param-

eters R and θ. R refers to the sum of normalized intensities for both alleles and θ
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is called as an allelic intensity ratio representing the relative allelic intensity ratio of

two alleles. The observed normalized intensity R from a subject is then compared to

the expected value of R given neutral copy number, which is computed from linear

interpolation of canonical genotype clusters (AA, AB and BB) obtained from a large

set of reference samples. Such comparison thus generates a R ratio. Finally, a log

transformation is applied to the R ratios. The result, which is called the log R ratio

(LRR), is reported along the whole genome for every single marker on the array.

LRR serves as a continuous measurement of copy number. A position or a region

with no CNV presenting should have LRR equal to zero. Higher LRR intensities are

signals of copy number gain at those positions in the test samples and similarly lower

LRRs indicate the copy number loss. Analysis of signal intensities across the genome

can then be used to identify regions with CNVs [26]. Because of the LRR noise, the

drop or increase in LRR might not be obvious. Therefore, it is necessary to apply

statistical methods to distinguish the signal from noise.

There are broadly two main estimation goals for CNV detection �- inferring the

copy numbers and accurately locating the CNV boundaries. There have been numer-

ous publications proposing methods to segment a genome into various regions of con-

stant copy number, which is called "CNV calling". Some methods involve a penalized

likelihood to estimate the breakpoint(CGHseg), using an expectation-maximization-

based technique (ChARM) and building hierarchical clustering-style trees along each

chromosome (CLAC) [28,29]. Other papers introduce Bayesian method, the use of a

genetic local search algorithm (GA), a wavelet approach(Wavelet), and an extension

of the SW-ARRAY algorithm to identify potential breakpoints. Additional proposals

include Quantile Smoothing (Quantreg), adaptive weights smoothing (GLAD) and

analysis of copy errors (ACE). Hidden Markov model (HMM), circular binary seg-

mentation (CBS), and fused lasso are the most commonly applied techniques. We
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present here the description of circular binary segmentation.

First proposed by Olshen et al. [30], circular binary segmentation (CBS) is a

non-parametric modi�ed change-point method. As CNVs often extend over multiple

markers, it is more resonable to focus on a whole chromosome combining information

from neighboring markers than analysis on single one marker at a time. By con-

necting the two ends of each chromosome, the method o�ers a nice way to split the

chromosome into contiguous regions of constant copy number and model into discrete

copy number gains and losses at the same time. Bypassing parametric modeling of

the data, it uses a permutation reference distribution to assess the signi�cance of

the proposed splits. The selection process, which recursively splits each contiguous

segment, is performed until there is no more signi�cant splits among chromosome.

Lai et al. reported that CBS performs consistently well compared to other 10 ap-

proaches [29].

The main idea behind circular binary segmentation(CBS) is summarized as fol-

lows. It uses log R ratios (LRR) as input data and analyzes on each chromosome of

a single individual,

1. Joining the �rst and the last marker of the chromosome, the sequence of LRR

intensities become circular.

2. For every potential way of splitting the circle into complimentary arcs, compute

the two-sample t-statistics to compare the means between two arcs

3. Segment the circle somewhere that the maximum of test statistics exceeds the

critical value
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4. Repeat 2-3 steps recursively for testing the change-points until no additional

signi�cant segment can be found

The details of the procedure are presented in these two papers [30,31]. The R package

DNAcopy is used to conduct the analysis. It is a package of the Bioconductor project

and is available at http://www.bioconductor.org/packages/release/bioc/html/DNAcopy.html.

It provides the estimates of the mean LRR at every marker among the given genome

for output. Those estimates are constant over each arc and therefore give an estima-

tion of the CNV structure. DNAcopy is considered to be one of the best operational

algorithm in terms of its sensitivity and FDR criterion for breakpoint detection [28].

Unfortunately, DNAcopy is also one of the slowest algorithms [29].

A number of articles [28, 29, 32�34] have compared numerous methods or algo-

rithms that are adapted for CNV calling. There are no best or optimal algorithm so

far. Each algorithm uses di�erent strategy for CNV calling and thus there are ob-

vious variabilities among calling algorithms. The emerging algorithms have di�erent

assumptions for CNV detection. In other word, di�erent CNV calling algorithm pro-

vides substantially di�erent quantity and quality of CNV calls even for identical raw

data. Therefore, the choice of analysis tools is very important for CNV association

studies. Some authors have advised using multiple algorithms on the same data to

minimize the false discoveries and thus merging call sets from those algorithms could

improve sensitivity [33]. Careful normalization of the intensity is required because

hybridization signals are very sensitive to experimental noise that might result in even

opposite inference. Furthermore, the accurate CNV detection depends on the choice

of the array data. Pinto et al. pointed out that some methods are developed speci�-

cally for a certain array data and thus perform always better than other algorithms

only in such array data [33]. Additionally, many algorithms developed generally per-
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form well for identifying large CNVs. Attempting to localize small CNVs even with

only one single probe, it results in many false positives. In conclusion, e�orts are

ongoing to improve methods for CNV calling at the genome-wide level and test for

association in large samples of cases and controls.

1.3 Marker-level testing

Two general strategies have been proposed for conducting genetic association studies

of copy-number variation. The �rst approach, which we refer to as variant-level test-

ing, is to do "CNV calling" at the level of each individual �rst and then carry out

association tests of whether individuals with a CNV di�er from individuals without

a CNV with respect to some phenotype. It is the more popular strategy for testing

CNV associations. However, the result of this test mainly depends on the detection of

CNV regions in the �rst step. Moreover, it is still challenging to separate each genome

into regions of constant copy number as discussed in last section. Furthermore, there

are additional complications for the variant-level approach. One of the big issues is

partially overlapping CNVs. Since CNVs are detected person by person, CNVs do not

necessarily share the same boundaries. When the sample size gets large, the num-

ber of overlapping patterns may be considerable. Whether those represent the same

CNV or di�erent CNVs can be a complicated decision. Also, because CNVs do not

overlap perfectly among individuals, the association tests are correlated, leading to

problems when doing multiple testing. Moreover, it e�ects the association test when

using di�erent threshold to declare a CNV present. If the threshold is too high, true

CNVs might be undetected; if the threshold is too low, neutral regions would be de-

�ned as CNVs and thus create misclassi�cation and lower power of association testing.
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The alternative approach called "Marker-level testing", is also a two-stage pro-

cedure, which reverses the order of variant-level testing. Since variant-level testing

presents a number of di�culties, marker-level testing becomes an attractive alterna-

tive. In the �rst stage of marker-level testing, we carry out association testing at

the level of the single marker between raw intensity measurements and phenotype of

the null hypotheses "H0i: the ith marker is not associated with the ith phenotype".

Here intensity is a continuous measurement of copy number at every genetic marker.

Furthermore, we could get the association test results using a linear regression model

if the phenotype is also a continuous variable. Note that we do not involve speci�c

CNV calling in this step and thus we do not have to deal with di�culties from "CNV

calling". The key point here is that, because the data is noisy, it is virtually impos-

sible to identify CNV associations from a single marker. Since copy number variants

span over multiple markers in a su�ciently high-density array, the presence of a sin-

gle CNV that a�ects the phenotype will elevate the test statistics for several nearby

markers. This is the motivation for the second stage of marker-level testing. To carry

out inferences regarding CNVs by pooling test results across neighboring markers to

determine CNV regions associated with the phenotype is the main job of stage II. By

conducting a multi-locus association test along the chromosome, combining neighbor-

ing p-values, we can detect a region for copy number-phenotype association with low

p-values in close proximity to each other marker. It requires a systematic method for

pooling information across the neighboring hypothesis tests to identify the regions

in which low p-values are aggregated. In the dissertation, I develop a kernel based

approach on p-values to identify CNVs associated with a phenotype by aggregating

p-values and show it has a well-controlled false positive rate and high power.

The negative log transformation of the p-values are shown in Figure 1.1 for every

marker along a part of chromosome. The p-values are the results from the �rst step
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Figure 1.1: Illustration of marker-level testing. The − log10(p) values on each posi-
tion along the partial chromosome based on the marker-level tests.

of marker-level testing, which test associations between copy number intensity and

phenotype at every marker. From the plot, we spot the cluster of small p-values be-

tween 102.5 and 102.7 Mb. This region with so many low p-values in close proximity

to one another suggests an association between the phenotype and the copy num-

ber variation. In addition, marker-level testing, the main idea of which is illustrated

in the �gure, avoids the complications of overlapping problems in variant-level testing.

Both of the above statistical technologies consist of two stages. This might result

in power loss in the second stage since those approaches risk losing information in the

the �rst stage. The type of information lost by each approach is di�erent and hence

it is strongly implicated for the power comparing between those two approaches. A

recent paper by Breheny et al., in which CBS was used for segmentation in both

approaches, demonstrates that variant-level testing has greater power to detect as-

sociation involving large, rare CNVs while marker-level testing has more power to

detect small, common CNVs [35].
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1.4 Outline of the dissertation

The remainder of this thesis is organized as follows. In Chapter 2, a kernel-based

aggregation of marker-level association test is developed in detail. Since p-values

between markers are correlated with each other, the exact distribution becomes com-

plicated. In the following 2 chapters, two di�erent computational approaches are

proposed to overcome the di�culty. I introduce a permutation procedure in chapter

3 and correlation method in chapter 4. In these two chapters, I also illustrate the

preservation of type one error and apply both approaches to both simulated and real

data. Finally, I summarize the results and discuss future directions in Chapter 5.

Copyright© Yinglei Li, 2014.
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Chapter 2 Kernel-based Aggregation Method for Marker-level

Association Test

2.1 Introduction

Recent advances in genome, such as the completion of human genome sequence and

rapid improvements in SNP genotyping technology, have accelerated the process of

locating candidate genes. The development of statistical and computational strate-

gies on hundreds of loci have investigated relationships between genome variation

and phenotypic variation. In spite of such advances, no comprehensive, well-powered

approach has been published to identify genes and loci that contribute to common dis-

ease. It has been receiving considerable attention to detect and locate CNV markers

over the past several years. Association test is broadly considered and highly accurate

to identify disease susceptibility genes related to complex disorder [36]. The choice of

association test is one of the main and important factors for a successful association

study. Before the emergence of large-scale association studies, many study of human

genetics has su�ered from the problem of inadequate statistical power, which results

in low rates of successful replication among reported signi�cant associations. It is

always worthwhile to choose a good statistical method to maximize the statistical

power and preserve well-controlled false positive rate.

Genome-wide association studies (GWASs) were made feasible in the late 2000s.

Because of the enormous size of the data sets, GWASs have tended to use simple

statistical procedures for one gene at a time throughout the genome. This single-

locus testing detects one gene at a time and is more suitable to study a susceptibility

gene with strong main e�ect on complex disorders. Evaluating one gene at a time
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focuses on its marginal e�ect on disease. Of course, there is no problem if focusing on

only one particular hypothesis. The marginal or individual p-values does not incor-

porate any information about the dependence structure between these p-values. As

many genes are being tested simultaneously, keeping the signi�cance threshold at the

conventional value of 0.05 would lead to a large number of false positive signi�cant

results. Such classic nominal signi�cance-threshold framework is inappropriate for

such studies. For example, if α = 0.05 is the nominal signi�cance rate for one marker

and n = 100 independent markers are tested at the same time, then false-positive

results will be obtained at a frequency of 1 − (1 − α)n = 0.99. It means that there

is a chance of greater than 99% that one or more markers are shown to be signif-

icantly related to disease. This is obviously an unacceptable rate. Such problem

involving multiple testing and its e�ect on the genomewide type I error is the subject

of a ongoing debate [37]. There have been proponents for an alternative approach

to multiple testing adjustments. The traditional and the most widely used method

is standard Bonferroni correction. The Bonferroni correction sets the critical signi�-

cance threshold at α divided by the number of tests. For example, with 20 tests and

α = 0.05, you'd only reject a null hypothesis if the p-value is less than 0.0025. The

Bonferroni correction tends to be a bit too conservative. We calculate the probability

of observing at least one signi�cant result to be 0.0488 when assuming that all tests

are independent of each other. In practical applications, that is often not the case.

Depending on the correlation structure of the tests, the Bonferroni correction could

be extremely conservative, leading to a high rate of false negatives.

Identifying regions of genome or candidate genes that are correlated to contribute to

disease is di�culty because complex traits presumably arise from multiple interacting

genes with rather small e�ect. As there are many susceptibility loci, each single gene

will have only a small e�ect and cannot easily be detected by single-locus method.

Therefore, it would be appropriate to consider and analyze sets of marker loci jointly
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for genomewide association analysis rather than marker-by-marker approach that

completely ignores the possible interactions between susceptibility genes. In recent

years, multi-locus method is widely used for association study to localize the disease-

related genes [38] since a high density of markers and high-resolution microsatellite

maps are available. Investigating association between marker genotypes and disease

phenotypes for multiple markers will capture more information regarding the total

combined e�ects of all disease genes and therefore increase the statistical power for

disease gene detection compared to single-locus inference that analysing one locus at

a time. Researchers have developed di�erent kinds of multi-locus association analy-

sis. For instance, there are multi-factor dimensonality reduction (MDR) by Ritchie

et al. [39], statistic combination tests by Hoh et al. [38] and p-value combinations by

Zaykin et al. [40�42].

Our research focuses on the p-value combination methods. p-value combination

began with Fisher's product p-value method or the sum of log scale of p-values

(PPM) [43]. Later, other p-value combination methods such as the sum p-value

method(SPM) [44] and the minimum p-value method (MPM) [45] were developed.

Then p-value truncation was introduced by Wilkinson [46] and extended into trun-

cated product p-value method [40] and recently the rank truncated product p-value

method [41, 47]. There is no uniformly most powerful method of combining p-

values [40]. In this thesis, I am aimed to develop a new and modi�ed p-value combi-

nation method for powerful multi-locus association scans and apply it to large-scale

simulation studies and real data analysis.
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2.2 Kernel-based aggregation of marker-level association tests

I introduce a two-stage procedure for an association study to locate disease suscepti-

bility CNVs related to complex traits. Let n denote the sample size and J denote the

total number of markers. Consider a study region that contains J markers at di�erent

positions. Here I use i to index subjects and j to index markers with positions `j used

to denote the location of marker j along the chromosome. Suppose our analysis data

consist of a set of marker genotypes together with phenotypic trait values measured

on each individual (X i, yi), i = 1, 2, ...n, where X i = (Xi1, ..., XiJ)T are the copy

number intensity of every marker for subject i and yi is the phenotype for subject i.

Here Xij represents the intensity measurement for subject i at marker j. In the �rst

stage, we conduct J association tests for every single locus under the null hypothe-

sises H0j: the jth marker is not associated to the phenotype, j = 1, ..., J . I refer to

the location at which a test statistic is computed as an analysis point. Then a series

of p-values are calculated from the association test between intensity and phenotype

for every marker. The association from the single-locus tests is the marginal e�ect of

each locus in the genome ignoring inter-marker association. The key to detect CNV

is the detection of signi�cant association between phenotypic trait values and the

markers or intervals in a genetic map, which leads to the second stage.

In the second stage, a multi-locus association test combining multiple neighboring

p-values is performed. Compared to single-locus tests, multi-locus tests may increase

testing power by including the combined e�ect of disease-associated loci and inter-

marker relationship. Consider a window with multiple markers. De�ne the the central

marker as anchor locus, which is denoted as `0. The anchor marker is used to capture

disease genes. Let h denote bandwidth and construct a window by simultaneously

considering h before and after the anchor. I apply a kernel-weighted moving average
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for each window across our study region. Sliding windows formed scanning the entire

study region. Scanning all loci from the starting marker to the end marker, the whole

study region will be divided into overlapping windows as we shift the anchor locus.

Within each window, consider the local average for anchor `0, the center of a window.

T (`0) =

∑
j tjKh(`j, `0)∑
j Kh(`j, `0)

, (2.1)

where tj = f(pj) is a function of the p-value for marker j. The smoothing parameter

h, which de�nes the bandwidth of the kernel, controls the size of the neighborhood

around the center location `0. Every marker within the window may contribute to

the identi�cation of disease genes, and the extent of each marker contribution is con-

sidered by assigning proper weights to markers within a window. The kernel function

K controls the weight given to every pj in the neighborhood based on how far away

marker j is along the chromosome from the target location `0. The higher weights are

assigned to the markers closer to the anchor and lower e�ects for remote marker loci.

The smoothing parameter h meanwhile e�ects the bias-variance tradeo�. A larger

bandwidth will decrease variance by pooling p-values among a boarder region but in-

troduce more bias because considering more extra test results beyond the boundary

of a CNV.

One could apply (2.1) at any arbitrary location `0. We restrict our consideration

to a �nite set of aggregations {Tj} from reasonable locations at which a marker is

present and the bandwidth does not exceed the borders of chromosome. Furthermore,

the transformation of p-values is chosen such that low p-values produce large values

of tj, leading to signi�cance testing based on the statistic T = maxj{Tj}.

In this section, we describe in detail the choice of kernel Kh and transformation

f(pj), as well as the issue of the direction of association for signed tests.
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2.2.1 Choice of kernel

In nonparametric analysis, the goal is to smooth the data in some way and estimate

a curve. Kernel-based approaches are an important class of smoothing methods. The

main idea behind the method is to assign location weight based on each observation

and then aggregate them to yield an overall local average. Additional details of this

method and its application to CNV association studies will be discussed here.

There are usually two primary choices with regard to the kernel: kernel function

and bandwidth selection. First, let's consider the shape of the kernel. Consider two

frequently used kernel density functions, �at (�boxcar�) kernel and the Epanechnikov

kernel, are considered in our study:

Flat(boxcar) : Kh(`j, `0) =


1 if |`j − `0| ≤ h

0 otherwise
(2.2)

Epanechnikov : Kh(`j, `0) =


3
4

{
1−

(
`j−`0

h

)2
}

if |`j − `0| ≤ h

0 otherwise

(2.3)

The Epanechnikov kernel would seem to be more attractive, as it gives higher

weight to markers close to the anchor location, and negligible weight to remote mark-

ers where bias is a larger concern.

Besides varying the shape of kernel, the quality of the kernel estimate depends

more on the de�nition of its bandwidth. Since the aggregation function (2.1) con-

siders the weighted average of a few markers within the bandwidth of the center

marker, it would be interesting to consider two de�nitions of bandwidth, which we
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refer to as constant width and constant marker (these concepts are named �metric�

and �adaptive� bandwidths, respectively, in kernel smoothing literature). In the con-

stant width approach, the width h of the kernel is constant in functions (2.2)-(2.3).

Meanwhile the number of markers for every kernel window varies the target location

`0 changes, thereby su�ering from �uctuating variance. In contrast, the constant

marker approach provides constant number of markers for each kernel window. But

meanwhile it produces various range of the kernel, thereby su�ering from bias. Specif-

ically, hk(`0) = |`0− `[k]|, where `[k] is the location of the kth closest marker to target

location `0. Simulation results regarding the bene�ts and drawbacks of these various

kernels are shown in the next chapter.

As a matter of reference, the �at, constant marker kernel is similar to the simple

moving average, although not exactly the same. The boxcar kernel for constant

marker method assigns the same weight of 1 to the e�ective markers which are within

the h nearest neighbors to `0 and assigns 0 otherwise. For example, consider the

following illustration.

● ● ● ● ● ●

1 2 3 4 5 6

Suppose h = 3. We keep varying the target location, `0 to get the aggregation for

each marker. Unlike the moving average, constant marker kernel looks for the nearest

neighborhood to the target location. For example, at `3, the three nearest neighbors

are {p1, p2, p3}, while at `4, the three nearest neighbors are {p4, p5, p6}. Thus, combi-

nations such as {p3, p4, p5} are not considered by the kernel approach. One obvious

bene�t of this method is to exclude the aggregation over inappropriately disperse

regions of the chromosome.
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2.2.2 Transformation of p-values

As suggested in (2.1), directly pooling p-values is not necessarily optimal. We consider

various transformations of p-values in a way that low p-values lead to high values

of tj = f(pj) and hence the statistic T = maxj{Tj} of association testing. Such

transformations might better discriminate true association from noise. Three main

transformations, uniform, Gaussian, and logarithmic, are considered as follows:

p : tj = 1− pj (2.4)

Z : tj = Φ−1(1− pj) (2.5)

log : tj = − log pj, (2.6)

where the text to the left of the equation is the label with which we will refer to these

transformations in later �gures and tables.

As mentioned in Section 2.1, all these three transformations have a long history

in the �eld of combining p-values methods. Ronald Fisher �rst proposed the Fisher

combination test, which is based on the the average of log p values or equivalently, the

log of the product of the p-values [48]. An alternative procedure developed by Samuel

Stou�er [49] depends on the sums of normal-transformed p-values Zi = Φ−1(1− pi).

Finally, (2.4) was studied and derived by Edgington [44]. Several other researchers

have followed upon and developed these methods [50�53]. Throughout this thesis, the

majority of work will focus on these thee scales� uniform, Gaussian, and logarithmic.

Each of these methods has its respective advantages and has proven practical and

valuable in di�erent �elds. There is no uniformly most powerful method of combining

p-values [40]. Comparisons of the uniform, Gaussian, and logarithmic transformations

by simulation are shown in the later chapter.
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In the p-value combination literatures, tests were assumed to be independent for

the convenience of theoretical development. However, this assumption is too strin-

gent for many practical application. If p-values within a window are statistically

dependent, a problem common to all of these methods is the di�culty of determining

or approximating the distribution of test statistic under an appropriate null hypothe-

sis. More recently, di�erent computational algorithms have been proposed to generate

null distribution with dependent p-values, such as permutation, bootstrap, and Monte

Carlo [54].

Moreover, since marker-level testing does association tests for every marker among

the chromosome �rst and then locates the CNV, the borders of the CNVs are un-

known, as is the appropriate set of p-values to combine. Consequently, we must

calculate many di�erent combinations {Tj}, which yield partially overlapping sets

and contain p-values of the same markers in di�erent combinations. Clearly, the

resulting test statistics {Tj} will not be independent. This is a concern that must

be addressed for further studies. The implications of such concerns are addressed in

chapter 3 and 4.

2.2.3 Direction of association

In (2.1), the association test between intensity and phenotype at each marker, is un-

restricted and could arise from any kind of association test. Some association tests

such as z tests and t tests have a direction associated with them, while others such as

χ2 tests and F tests do not. If the direction is available along with the test, it is ad-

vantageous and valuable to incorporate this direction into the analysis of multi-locus

association tests as we will see in Section 3.4.
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Let sj denote the direction of association at marker j. For example, in a case con-

trol study, if intensities are higher for cases than controls at marker j, then sj = 1.

Otherwise, at markers where CNV intensities are higher for controls than cases,

sj = −1. The signs are arbitrary; their purpose is to re�ect the fact that switch-

ing directions of association are inconsistent with the biological mechanism being

studied � an underlying, latent CNV that a�ects both phenotype and intensity mea-

sures � and thus likely to be noise. Considering this direction should diminish noise

and thus improve CNV detection. I introduce here extensions of the transformations

presented in Section 2.2.2 that include the direction of association.

When sj is available, I adjust the three transformations from 2.2.2 as follows:

p : tj = sj(1− pj) (2.7)

Z : tj = Φ−1

(
1 + sj(1− pj)

2

)
(2.8)

log : tj = −sj log pj. (2.9)

All of these transformations have the same e�ect as mentioned in Section 2.2.2: when

pj ≈ 0 and sj = 1, tj � 0; when pj ≈ 0 and sj = −1, tj � 0; and when pj ≈ 1,

tj ≈ 0 regardless of the value of sj. In other words, all the test results combine to

give an aggregate value T (`0) that is large in absolute value only if the test results

have low p-values and are consistently in the same direction.

2.2.4 Summary

The kernel-based aggregation method described above provides a nice way to test for

CNVs associated with the phenotype. First, we obtain a list of p-values for every

marker through multiple hypothesis tests. Then we combine and transform p-values

to yield a �nite set of aggregations {Tj}. The �nal signi�cance testing is based on the
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statistic T = maxj{Tj}. Here as described above, di�erent choices of kernel, transfor-

mations of p-values and the direction of association test will e�ect the statistic and

thus e�ect the test power. The power comparisons through di�erent choice will be

presented in the later chapter through simulation.

To determine the signi�cance of maxj{Tj}, we must estimate its null distribution.

Since the p-values are not independent among markers, the estimate of the exact null

distribution gets complicated. In chapter 3 and 4, we propose two approaches � one

based on a permutation approach and the other based on estimating the correlation

structure directly � to give an estimate of the null distribution. Moreover, we apply

these approaches to the simulated and real data.

Copyright© Yinglei Li, 2014.
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Chapter 3 Family Wise Error Rate Control for Permutation Method

3.1 Introduction

In genomics, especially genetic association studies, it is common for tens of thousands

of genes or genetic markers to be measured. For our marker-level association testing,

the �rst step involves a large number of markers being testing simultaneously. As

discussed in Section 2.1, multiple hypothesis testing is a common problem in such

genomewide association studies. If one does not take the multiplicity of tests into

account, then the probability that some of the true null hypotheses are rejected by

chance alone may be unexpectedly large. In our studies, it is of great interest to

determine the phenotype-associated CNV region that spans several markers in the

second step. And we consider the test statistic containing a list of p-values in a

window for signi�cant result. Thus such problem involving multiple testing arises

and should be considered and paid more attention since the decision is based on the

dependent structure of corresponding marginal p-values.

Failure to consider the e�ects of multiple comparisons would result in an abun-

dance of false positive results. To deal with the multiple testing problem, we must

extend the idea of type I error to acknowledge multiple testing. The traditional or

classical criterion for error control is the familywise error rate(FWER), which is de-

�ned as the probability of rejecting one or more true null hypothesis. A procedure is

said to control FWER in the strong sense if FWER control at level α (FWER ≤ α

) regardless of which subset of hypotheses is true. Similarly, if the FWER control at

level α only when all null hypothesis are true, it is de�ned to control FWER in the

weak sense. We are then 1 − α con�dent that there are no false discoveries among
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the rejected hypothesis. Another alternative criterion for error control is the false

discovery rate(FDR), which is the expected proportion of falsely rejected hypotheses.

It was �rst introduced by Benjamini and Hochberg when proposing a step-down pro-

cedure to control FDR for independent structures [55]. It was later shown that this

procedure also controls FDR for certain dependence structures [56]. FDR is equal to

FWER when all null hypotheses are true. When the vast majority of the null hy-

potheses are true, as the case in association studies, it is common to focus on FWER

for the sake of simplicity. However, it would more appealing to use FDR in situations

where there are a large number of false null hypotheses involved [57].

With a high density of markers, our test statistics as described are highly corre-

lated for multiple testing. The assumption of independence among tests is strongly

violated. Many di�erent computational approaches have been developed to overcome

this di�culty. One alternative approach is permutation testing approach [45, 58].

Permutation tests shu�e the phenotype values among subjects a number of times

and keep the order of genotype set to create permuted data sets that have ran-

dom genotype-phenotype associations. Monte Carlo procedure was proposed by

Zaykin [40] and a direct simulation approach was advised by Seaman and Müller-

Myhsok [59]. Permutation resampling procedure was considered in this chapter since

it is traditional and popular. The empirical joint distribution of the test statistics

using such permuted data serves as the reference null distribution to determine the

CNV-phenotype association.

In this chapter, I will describe the permutation method, which is applied to our

kernel-based aggregation of marker-level test. Then I will illustrate that this approach

controls FWER through simulation and proof. Applying such method through sim-
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ulation, I compare many aspects of the kernel-based aggregation association test

statistic.

3.2 Signi�cance testing and FWER control

3.2.1 Exchangeability

In any analysis that involves aggregating marker-level test results, we must be able

to detect and quantify the signi�cance of regions like those depicted in Figure 1.1.

This is not trivial, however. As we described in Section 2.2.2, The fact that p-values

among markers within a window are statistically dependent greatly increases the dif-

�culty of estimating the exact null distribution. Thus this dependence introduces a

lack of exchangeability between test results, which complicates matters and causes

various naïve approaches to fail. In this section, I compare three approaches that I

tried during my research and illustrate the consequences of non-exchangeability in

testing the signi�cance of a region with a preponderance of low p-values.

One approach, suggested in [35], is to use circular binary segmentation (CBS; im-

plemented in the R package DNAcopy). This method aggregates neighboring p-values

by calculating the two sample t-test statistic comparing the mean intensity of a given

region with that of the surrounding region. The signi�cance of this test statistic is

quanti�ed by comparing it to the distribution of maximum test statistics obtained by

permuting the {pj} values [30, 31]. However, the main assumption of this approach

is that the test results {pj} are exchangeable which is the justi�cation for permuting

them.
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Alternatively, we may use the kernel-based method described in Section 2.2.1 to

aggregate the neighboring test results, thereby obtaining Tmax = maxj{Tj}. One

possible approach to generate the null distribution of Tmax is to rely on Monte Carlo

integration based on the fact that, under the null hypothesis of no association, all

p-values follow a uniform distribution. Thus, for any choice of transformation and

kernel in (2.1), we may generate an arbitrary number of {Tj} under the null and

then yield independent draws {T (b)
max}Bb=1 from the null distribution function F0 of

Tmax. Then the estimate F̂0 is obtained using the empirical CDF of those draws

{T (b)
max}Bb=1. Through this approach, we apply a test for the signi�cant presence of a

CNV-phenotype association through the calculation of p = 1− F̂0(Tmax). The crucial

assumption here is that, under the null, the p-values among markers are independent

and so are {Tj}.

An alternative to generate the null distribution and quantify the signi�cance of

Tmax is the permutation approach that is proposed and described fully in Section 3.2.2.

By permuting the phenotype prior to aggregation of the marker-level tests, it creates

the independence between intensity and phenotype among markers for each permut-

ing. Thus, using the empirical CDF of an arbitrary number draws {T (b)
max}Bb=1, we

would obtain the estimate F̂0(Tmax).

Consider a genomic region in which individuals may have a CNV. The purpose of

the analysis is to detect and locate such a CNV if it is associated with a particular

phenotype. Thus, the null hypothesis for our association test may hold in one of two

ways: (1, �No CNV�) no individuals with CNVs in that region are present in the sam-

ple, or (2, �No association�) individuals with CNVs are present in the sample, but the

CNV does not a�ect the disease and thus dose not change the probability of develop-
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ing the phenotype. The preservations of type I error of the three methods discussed

above under each type of null hypothesis is shown in Table 3.1. It demonstrates that

while all three methods have the proper type I error rate in the `No CNV� setting,

only the permutation approach preserves the correct type I error in the case where a

CNV is present, but not associated with the disease (�No association�). It's easy to see

that p-values are independent for all methods under null hypothesis 1 (�No CNV�).

When a CNV is present but not related to the disease for null hypothesis 2 (�No

association�), it is still true that the marginal distribution of each pj is Uniform(0,1)

for each marker. This phenomenon is also illustrated graphically in Figure 3.1.

Table 3.1: Preservation of Type I error for three methods with nominal α = .05
in two possible settings for which the null hypothesis holds. The simulated genomic
region contained 200 markers, 30 of which were spanned by a CNV. The CNV was
present in either 0% or 50% of the samples, depending on the null hypothesis setting.
A detailed description of the simulation data is given in Section 3.4.

Circular Kernel Kernel
binary Monte Permutation
segmentationCarlo

No CNV 0.05 0.06 0.06
No Association 0.20 0.54 0.06

Table 3.1 and Figure 3.1 demonstrate that CBS and kernel Monte Carlo are not

guaranteed to preserve the type I error in all settings. Exchangeability is very crucial

to be considered when estimating the null distribution. I also make the following

additional observations from comparison results: (1) The CBS approach is somewhat

more robust to the exchangeability issue than the Monte Carlo approach; i.e., its

type I error rate is not as badly violated. (2) The data simulated here for the �no

association� setting are a little bit exaggerated: the CNV was present in 50% of the

population and the signal to noise ratio was about twice as high as that typically
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No CNV
Monte Carlo

p

0.0 0.2 0.4 0.6 0.8 1.0

No Association
Monte Carlo

p

0.0 0.2 0.4 0.6 0.8 1.0

No CNV
Permutation

p

0.0 0.2 0.4 0.6 0.8 1.0

No Association
Permutation

p

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.1: Ability of Monte Carlo and Permutation approaches to maintain family-
wise error rate under the two null scenarios. The implementation of CBS provided
by DNAcopy does not return p-values (only whether they fall above or below a cuto�),
and thus could not be included in this plot.

observed in real data. In more realistic settings, the violation of type I error rate

will be not nearly as severe. (3) Circular binary segmentation was developed for the

purpose of detecting CNVs, not aggregating marker-level tests, and thus its failure to

preserve the family-wise error rate in this setting is in no way a criticism of CBS in

general.

3.2.2 Permutation approach

The concept of permutation tests was �rst proposed by Fisher(1935). Good(1994)

provided an introduction to the theory of permutation testing. A summary of the

theory of permutation tests can be found in Lehmann (1986). Permutation tests are a
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class of widely-applicable non-parametric tests. They use random shu�es of the data

to estimate the correct distribution of a test statistic under a null hypothesis. They

provide valid tests with the advertised Type I error, although they are more com-

putationally intensive than standard statistical tests. Permutation tests are widely

used in genetics and genomics. They are especially useful when we have insu�cient

information about the distribution of the data, are uncomfortable making assump-

tions about the distribution, or if the distribution of the test statistic is not easily

computed. They are used in candidate-gene and genome-wide association studies, as

well as in family-based association tests.

In our case of CNV-association testing, a permutation test gives a simple way to

compute the sampling distribution for the test statistic, under the null hypothesis

that a set of genetic variants has absolutely no e�ect on the outcome. Permutation

involves randomly repeated "shu�ing" of the phenotype trait values and thus creates

many samples under the null hypothesis to estimate the sampling distribution of the

test statistics. I formally de�ne the kernel permutation method introduced in Sec-

tion 3.2.1 and show that it preserves family-wise error rate for the problem of CNV

association testing. In this section below, I will fully describe this approach and prove

that it preserves type I error and controls FWER theoretically.

For a given set of test results {pj} and tj = f(pj), consider the statistic

Tmax = max
j
{Tj}, (3.1)

where Tj is the kernel-based aggregation of tj in a window. If signs of the tests are

available , with results {pj, sj}, we use Tmax = maxj{|Tj|}.
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To estimate the null distribution of Tmax, we use a permutation approach, gen-

erating up to n! unique draws {T (b)
max}Bb=1 from the permutation distribution of Tmax.

The procedure is as follows. At any given iteration, draw a random vector of pheno-

types y(b) by permuting the original vector of phenotypes. That is, reassigning each

phenotypic trait to a new individual while retaining the individual's genetic intensi-

ties. Under the null of no association between intensities and phenotypes, randomly

shu�ing the phenotypic values across individuals will not alter the distribution of the

test statistic. Next, carry out marker-level tests of association between the original

CNV intensities and the permuted vector of phenotypes, obtaining a vector of permu-

tation test results {p(b)
j }. Finally, apply the kernel aggregation procedure described in

Section 2.2.1 to obtain {T (b)
j } and T

(b)
max. The entire procedure is repeated B times. In

this way, we reach the independence between intensities and phenotypes for each iter-

ation such that all permutated results {T (b)
max}Bb=1 are equally likely and exchangeable.

Computing appropriate test statistics from each shu�ing, we are essentially sampling

from a null distribution corresponding to no association between intensities and trait

values. We may then use the empirical CDF of these draws from the permutation

distribution of Tmax to obtain the estimate F̂0. Thus, we obtain a global test for the

signi�cant presence of a CNV-phenotype association based on p = 1− F̂0(Tmax). By

preserving the correlation structure of the original CNV intensities, this approach

does not rely on any assumptions of exchangeability or independence across neigh-

boring markers, and is thereby able to preserve the type I error rate of the testing

procedure, unlike the other approaches described in Section 3.2.1. I now formally

present this result, the proof of which appears as below.

Theorem 1. Let H0 denote the hypothesis that the phenotype, yi, and the vector of

CNV intensities, xi, are independent. Then, using the permutation approach described
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above for any of the kernel aggregation approaches in Section 2.2.1, for any α ∈ (0, 1),

Pr(Type I error) ≤ α. (3.2)

Proof of Theorem 1. Let P denote the set of all possible permutations of {yi}, F0

the CDF of Tmax over P , and F−1
0 its generalized inverse. Also, let φ(X,y) = 1 if

Tmax(X,y) > F−1
0 (1− α) and 0 otherwise.

Now, note that under the null hypothesis that xi and yi are independent,

P (X,y) =
∏
i

P (xi, yi)

=
∏
i

P (xi)P (yi)

= P (X,y∗)

for all y∗ ∈ P . Thus, E0φ(X,y∗) is a constant for all y∗ and

E0 {φ(X,y)} =
1

n!

∑
y∗∈P

E0φ(X,y∗)

= E0
1

n!

∑
y∗∈P

φ(X,y∗)

≤ α,

where the term inside the expectation in the second line is less than or equal to α for

all X and y by the construction of the test.

The permutation test is guaranteed to have the correct desired false positive rate

(Type I error) regardless of the distributional characteristics of the data at hand. It is

worth pointing out that the above theorem is proven for the case in which all permu-

tations of {yi} are considered. In practice, as it is usually impractical to consider all

permutations, one can generate only a random samples of these permutations from

the set of all permutations of the data. However, by the law of large numbers, the

above conclusion still holds approximately, and may be made as precise as necessary
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by increasing the value of B, the number of permutations evaluated. For the numer-

ical results in Section 3.4, we use B = 1, 000.

The global test above aims to quantify and represent compelling evidence for a

CNV-phenotype association among the whole chromosome. However, it is of limited

practical bene�t in the sense that it does not indicate the location of the associated

CNV. Thus, we could consider the following equivalent marker-level test: declare sig-

ni�cant evidence for the presence of a CNV-phenotype association at any marker for

which Tj > F−1
0 (1 − α). Below, we state the corollary to Theorem 1 for the kernel

permutation method, viewed as a multiple testing procedure for each marker.

Corollary 1. Let H0j denote the hypothesis that the phenotype, yi, and the CNV

intensity at marker j, Xij, are independent. Then, under the global null hypothesis

that yi is jointly independent of {Xij}, for any α ∈ (0, 1),

Pr(At least one Type I error) ≤ α (3.3)

using the permutation approach described above and Tj > F−1
0 (1 − α) as the test

function for H0j. In other words, the testing procedure described above controls the

FWER in the weak sense at level α.

It is worth noting that the procedure above controls the FWER only in the weak

sense � in other words, that it limits the probability of a false declaration of a CNV

only under the global null hypothesis that there are no CNVs associated with the

outcome. Typically in multiple testing scenarios, this is undesirable and strong con-

trol is necessary. However, in the case of CNV-phenotype association, strong control

is impractical, as it would imply that a method not only identi�es CNV-phenotype

associations, but can perfectly detect the genomic boundary of any associated CNV.
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This is an unrealistic requirement; in practice, there is no way to prevent the possibil-

ity that a detected CNV-phenotype association may spill over beyond the boundary

of the CNV.

3.3 Gemcitabine study

In this section we describe a pharmacogenomic study of gemcitabine, a commonly

used chemotherapeutic agent in many kinds of cancer. I begin by describing the

design of the study [35], then analyze data from the study using the proposed kernel-

based aggregation method by permutation. This data will also be used to create

spike-in simulated data sets for power comparison of simulation studies in Section 3.4.

The gemcitabine study was carried out on the Human Variation Panel, a model

system consisting of cell lines derived from Caucasian, African-American and Han

Chinese-American subjects (Coriell Institute, Camden, NJ). Gemcitabine cytotoxic-

ity assays were performed at eight drug dosages (1000, 100, 10, 1, 0.1, 0.01, 0.001,

and 0.0001 uM) [60]. Estimation of the phenotype IC50 (the e�ective dose that kills

50% of the cells) was then completed using a four parameter logistic model [61].

Marker intensity data for the cell lines was collected using the Illumina HumanHap

550K and HumanHap510S at the Genotyping Shared Resources at the Mayo Clinic

in Rochester, MN, which consists of a total of 1,055,048 markers [62, 63]. Raw data

were normalized according to the procedure outlined in [64].

172 cell lines (60 Caucasian, 53 African-American, 59 Han Chinese-American)

had both gemcitabine cytotoxicity measurements and genome-wide marker intensity

data. To illustrate the application of the kernel permutation approach, we selected
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one chromosome (chromosome 3) from the genome-wide data. To control for the pos-

sibility of population strati�cation, which can lead to spurious associations, we used

the method developed by [65], which uses a principal components analysis (PCA)

to adjust for strati�cation. At each marker, a linear regression model was �t with

PCA-adjusted IC50 as the outcome and intensity at that marker as the explanatory

variable; these models produce the marker-level tests.

We analyzed these data using the kernel-based approach described in Section 2.2

with a bandwidth of 50 markers and the log transformation. The results are shown

in Figure 3.2. Note the presence of a peak at 102.6 Mb; this genomic region was also

illustrated in Figure 1.1. The red line indicates the FWER-controlled, chromosome-

wide signi�cance threshold at the α = 0.1 level. As the �gure indicates, there is in-

su�cient evidence in this study to establish a CNV association involving response to

gemcitabine (p = 0.16) after controlling the chromosome-wide FWER. Other choices

of bandwidth and transformation produce qualitatively similar, although somewhat

less signi�cant, results.

Copy number variation in the region of chromosome 3 at 102.6 Mb, which is in

close proximity to the gene ZPLD1, has been found by [66] to be associated with

childhood obesity. An earlier analysis of this data by [35] indicated suggestive ev-

idence that this region harbors a CNV association with gemcitabine response but

lacked a formal way to control the error rate at the chromosome-wide level. This

example illustrates the need for the more rigorous approach we develop here. The

lack of signi�cance in this example is perhaps not surprising, in that 172 subjects is

a relatively small sample size for a CNV association study.
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Figure 3.2: Analysis of the gemcitabine data (Chromosome 3) using the proposed
kernel aggregation method. The kernel aggregations Tj are plotted against chro-
mosomal position. The red line indicates the cuto� for chromosome-wide FWER
signi�cance at the α = .1 level.

3.4 Simulation

3.4.1 Spike-in data design

As illustrated, the permutation approach is a valid way to assess the signi�cance of

the proposed kernel-based CNV-phenotype association test. In order to study the

power of the proposed approach to detect CNV-phenotype associations, we simulate

CNVs and their corresponding intensity measurements, LRR. The validity and accu-

racy of our conclusions rely on how realistic the simulated data is, so we need to put

careful thought into simulating this data in as realistic a manner as possible. Here in

the thesis, I use the spike-in design that is described in [35].

The basic design of our simulations is to use real data from the gemcitabine study

described in [35], �spike� a signal into it, then observe the frequency with which we

can recover that signal. We �t a circular binary segmentation model [30, 31] to esti-

mate underlying mean intensity for every marker along the chromosome. Then We

calculate the residuals by subtracting the actual intensity measurement from the es-
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timated mean. These residuals form a matrix representing measurement errors from

real data and we use these residuals to simulate our LRR noise. We pick chromosome

3 of the gemcitabine pharmacogenomic study for simulation and this residual matrix,

denoted R, has 172 rows (one for each cell line) and 70,542 columns (one for each

marker).

Our simulations involve short genomic regions containing 200 markers in which a

single CNV is either present or absent. The length of the CNV varies from 10 to 50

markers. We randomly select residuals from the above residual matrix to simulate

LRR noise over our study genomic regions. Then add in a signal. Letting i denote

subjects and j denote markers, the following variables are generated: zi, an indicator

for the presence or absence of a CNV in individual i; xij, the intensity measurement

at marker j for individual i; and yi, the phenotype for subject i. We focus here on

a random sampling design in which the outcome is continuous. In the random sam-

pling design, the CNV indicator, zi, is generated from a Bernoulli distribution, where

γ = Pr(zi = 1) is the frequency of the CNV in the population. Meanwhile, yi|zi is

generated from a normal distribution whose mean depends on zi.

For each simulated data set of every subject, 200 markers were randomly selected

from the columns of R. The measurement error for simulated subject i was then

drawn from the observed measurement errors at those markers for a randomly chosen

row of R. The random selection of markers would remove the possibility of bias from

correlation among the intensities of neighboring markers. Thus, within a simulated

data set, all subjects are studied with respect to the same genetic markers, but the

markers vary from data set to data set. Simulating the data in this way results in

all the features of outliers, heavy-tailed distributions, skewness, unequal variability
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among markers, and unequal variability among subjects that are present in real data.

The intensity measurements {xij} ,as mentioned, derive from these randomly ob-

served residuals in the real data. To the noise, we add a signal(mean structure) that

depends on the presence of the simulated CNV, zi. The added signal is equal to zero

unless the simulated CNV region; otherwise the added signal is equal to the standard

deviation of the measurement error times the signal to noise ratio. Thus, adding the

signal value to independent measurement errors, we generate our simulated intensi-

ties. Choosing an appropriate signal to noise ratio is less obvious. For the amount of

noise, the standard deviation of the residual values is 0.9. Signal, however, depends

on a number of unknown and poorly understood factors. We would simulate CNVs

with a signal of mean shift 0.72 and thus employed a signal to noise ratio of 0.8 for

simulation, which corresponded roughly to a medium-sized detectable signal based

on our inspection of the gemcitabine data. In such a construction, phenotype and

intensity measurement are conditionally independent given the latent copy-number

status zi. An illustration of the spike-in process is given in Figure 3.3.
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Figure 3.3: Illustration of spike-in simulation design. Left: The noise, randomly
drawn from among the estimated measurement errors for a single cell line. Middle:
The spiked-in signal. Right: The resulting simulated data.
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Using this procedure, the simulated data appears similar to the real data. For the

Illumina Human1M-Duo BeadChip, which has a median spacing of 1.5 kb between

markers, 200 markers corresponds to simulating a 300 kb genomic region. We varied

the length of the CNV from 10 to 50 markers, corresponding to a size range of 15 to 75

kb. For the simulations presented in the remainder of this section, we used a sample

size of n = 1, 000 and an e�ect size (mean divided by standard deviation) of 0.4 for the

continuous outcome. All association tests are conducted with type I error rate of 0.05.

Using such simulation data, we compare the power while varying CNV sizes, trans-

formations of p-values or kernels. For each setting, 1000 independent data sets are

generated and analyzed. Power is de�ned as the fraction of data sets in which CNV-

phenotype association is declared. The association test at each marker would derive

from a linear regression model between intensity and phenotype. One would prefer a

method that not only detects CNV associations but also identi�es their boundaries.

Here I focus only on detection of phenotype-associated CNV in my thesis.

3.4.2 Comparison of transformation

For the various transformations proposed in Sections 2.2.2 and 2.2.3 for di�erent as-

sociation tests, we evaluate the relative impacts of transformation and association

direction on power. First, we here set CNV frequency to be 10%. In order to isolate

the e�ect of transformation, we set bandwidth of the kernel to be the "optimal band-

width", which is chosen to match the number of markers for the underlying CNV

and thus results in the maximum power to detect a CNV-phenotype association. In

practice this approach is not feasible since the size of the underlying CNV is unknown.
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Figure 3.4: E�ect of transformation choice and direction of association on power.
Population CNV frequency was set to 10%; optimal bandwidths used.

The results in Figure 3.4 demonstrate the impact of transformation choice on

power. The �gure illustrates a basic trend that held consistently over many CNV

frequencies and bandwidth choices. Various choices of transformation produce con-

sistent results for both association test settings by comparing the left and right halves

of the �gure. Furthermore, if the direction is available along with the test, all trans-

formations by incorporating the direction of association perform much better than

ignoring the direction of association with regard to power. Besides, although various

transformations do not alter power dramatically, the normalizing transformation (Z)

is the most powerful for signed test results, while the log transformation obtains the

highest power for unsigned tests. In the results that follow, unless otherwise speci�ed,

I employ the normalizing transformation for signed test results and the log transfor-

mation for unsigned tests.

3.4.3 Comparison of kernel choice

As illustrated in Section 2.2.1, there are two important factors with regards to kernel.

Thus here in this section, we examine two aspects of kernel choice: bandwidth imple-
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mentation (constant-width vs. constant-marker) and kernel shape (�at vs. Epanech-

nikov). When all markers are equally spaced, the constant-width and constant-marker

kernels are equivalent. To evaluate the impact of bandwidth on power when markers

are unequally spaced, we selected at random a 200-marker sequence from chromosome

3 of the Illumina HumanHap 550K genotyping chip and spiked in CNVs of various

sizes. We speci�ed �ve bandwidth corresponding to window size varying from 10 to

50 markers. The optimal bandwidth (either in terms of the number of markers or

base pairs spanned by the underlying CNV) was chosen for each method.
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Figure 3.5: E�ect of kernel choice on power. Left: Constant-width kernel vs.
constant-marker kernel. Right: Flat vs. Epanechnikov kernel. In both plots, popula-
tion CNV frequency was 10%, test results were unsigned, and the log transformation
was used.

The left side of Figure 3.5 presents the results of this simulation comparing ker-

nels with two di�erent bandwidth implementations. The constant-marker approach

is substantially more powerful through all bandwidth settings. When the number of

markers within each window is not held constant, the aggregation measure Tj is more

highly variable for some values of j than others. This causes the null distribution of

Tmax to have thicker tails, which in turn increases the p-value for the observed Tmax,
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thus lowering power. This phenomenon manifests itself most dramatically for small

bandwidths. Consequently, throughout the rest of this chapter, we employ constant-

marker kernels for all analyses.

The right side of Figure 3.5 presents the results of comparing the kernel shape

between the �at kernel described in (2.2) and the Epanechnikov kernel described in

(2.3). We make several observations: (1) The shape of the kernel has only a lim-

ited e�ect on power; the performance of two di�erent kernel functions with regard to

power seems similar. (2) The kernel approach is relatively robust to choice of band-

width; even 5-fold di�erences between the test bandwidth and optimal bandwidth do

not dramatically reduce power. (3) Nevertheless, the optimal bandwidth does indeed

perform best when the number of markers included in the kernel matches the true

number of markers spanned by the CNV. A larger window may include too many

non-informative markers and lead to a reduction in testing power; a smaller window

may ignore informative markers and thus decrease the power. Thus, choosing dif-

ferent bandwidth would change the power. (4) The Epanechnikov kernel is slightly

more robust to choice of bandwidth than the �at kernel is. This makes sense, as the

Epanechnikov kernel gives less weight to the periphery of the kernel.

3.4.4 Comparison of kernel-based aggregation and variant-level testing

Lastly, we compare the kernel-based aggregation approach with variant-level test-

ing. To implement variant-level testing, each sample was assigned a group (�variant

present� or �variant absent�) on the basis of whether a CNV was detected by CBS.

A two-sample t-test was then carried out to test for association of the CNV with the

phenotype. This variant-level approach was compared with kernel-based aggregation
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of marker-level testing for a variety of bandwidths. The results are presented in Fig-

ure 3.6.
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Figure 3.6: Power comparison of variant-level testing (using CBS for CNV calling)
with marker-level testing (using kernel-based aggregation).

For rare CNVs (5% population frequency), the power of the variant-level approach

and the aggregated marker-level approach are comparable. However, for more com-

mon CNVs, the marker-level approach o�ers a substantial increase in power. For the

most part, this increase in power persists even when the bandwidth is misspeci�ed.

Only when the bandwidth was too small (selecting a 10-marker bandwidth for a 50-

marker CNV) did the variant-level approach surpass marker-level aggregation.

Generally speaking, these results are consistent with the �ndings reported in [35],

who found that variant-level tests have optimal power relative to marker-level tests

when CNVs are large and rare; conversely, marker-level tests have optimal power rela-

tive to variant-level tests when CNVs are small and common. This is understandable

given the limited accuracy of calling algorithms for small CNVs.
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Comparing the results in Figure 3.6 with the results of Breheny et al. [35], who

aggregated marker-level tests by applying CBS to the p-values as described in Sec-

tion 3.2.1, we �nd that the kernel approach is a substantially more powerful method

for aggregating marker-level tests than a change-point approach. Speci�cally, Breheny

et al. found that the change-point approach had very low power at 5% frequency �

much lower than the variant-level approach. On the other hand, in the same setting

we �nd that the kernel approach is comparable to, and even slightly more power-

ful than, the variant-level approach. Furthermore, as discussed in Section 3.2.1, a

change-point analysis of marker-level tests also relies on exchangeability, which does

not always hold. Thus, the methods developed here in the thesis are both more

powerful and achieve better control over the FWER than the change-point analysis

described in [35].

A potential drawback of the kernel approach is the need to specify a bandwidth.

This makes the robustness of the method to bandwidth misspeci�cation, as illustrated

in Figure 3.6, particularly important because in practice it is di�cult to correctly

specify the bandwidth a priori. Indeed, it is possible that multiple CNVs associated

with the outcome are present on the same chromosome and have di�erent lengths.

A method that is not robust to bandwidth would be incapable of detecting CNVs.

Generally speaking, a bandwidth of roughly 30 markers seems to provide good power

over the range of CNV sizes that we investigate here.

Copyright© Yinglei Li, 2014.
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Chapter 4 Correlation Method and Its Family Wise Error Rate Control

4.1 Introduction

I introduced kernel-based aggregation method to determine the CNV-phenotype asso-

ciation. As p-values are correlated with each other among markers, it is complicated

to estimate the exact null distribution when applying the method. There is no speci�c

computational approaches developed to estimate the null distribution when apply-

ing the kernel-based method. I applied a permutation procedure to our kernel-based

framework in Chapter 3. I demonstrated that this method provides evidence of asso-

ciation between phenotype and genotype while preserving accurate FWER. However,

the permutation approach has its own limitations as mentioned earlier. One impor-

tant drawback for analysis is the computational burden of the method. For simple

tests such as the linear regression tests we used in the gemcitabine study, the burden

is quite manageable. On our machine (using an Intel Xeon 3.6 GHz processor), it

takes under a second to perform the 70,542 marker-level tests on chromosome 3 and

under 0.1 seconds to perform the kernel aggregation. Carrying out 1,000 permutation

tests took 1,000 times longer: 15 minutes to carry out all the permutation tests and

21 seconds to perform all the kernel aggregation. Extrapolating a genome-wide anal-

ysis would take 3.5 hours. These calculations, however, are for simple marker-level

tests and a fairly small sample size (n = 172). Larger studies will increase the com-

putation burden linearly (i.e., doubling the subjects should double the computing

time), but more complicated marker-level tests based on nonlinear, mixed-e�ects, or

mixture models would require substantially more time. But it is worth pointing out

that kernel aggregation itself does not consume time but the estimation of the null

distribution. As seen in Figure 3.2, the black dots may be calculated rapidly; the red

line is what requires the permutation testing. It is worth further research to discover
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ways to speed up the approach.

Since p-values are statistically dependent, the exact null distribution relies on the

correlation structure of p-values. In this chapter, a correlation-based approach with a

model-based formulation that avoids the need for permutation testing was considered

to apply to our kernel-based method in order to speed up the analysis. I present

and demonstrate the procedure in details to approximate the joint distribution of the

test statistics. I show through simulations that this approach not only provides an

accurate error control, but also is much faster than the permutation approach.

4.2 Basic idea about correlation method

4.2.1 Correlation approach

Applying kernel-based aggregation of marker-level association test, we consider a two-

stage procedure. From association testings for every marker, we obtain a set of test

results {pj}. Then, when considering quantifying whether or not the data represent

compelling evidence for a CNV-phenotype association we use the statistic

Tmax = max
j
{Tj}, (4.1)

where Tj is the kernel-based aggregation of p-values in a window. If the tests are

directional, with results {pj, sj}, we use Tmax = maxj{|Tj|}.

To obtain the null distribution of Tmax, we present an alternative to the permuta-

tion approach, which is a correlation-based procedure. We now formally present this

procedure to �t our kernel-based aggregation framework as follows and show that it

preserves the family-wise error rate for the problem of CNV association testing.
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Step 1: Estimate a correlation matrix Σ that de�nes the relationship among z-

statistics under null. First of all, we assume that the correlation completely describes

the dependence between the series of z-statistics. If Σ is positive de�nite, then the

Cholesky decomposition, Σ = CCT , can be obtained. In many situations, the corre-

lation of the series of original p-values is complicated to estimate from real data. I

will later give details of calculating Σ̂ for the CNV-phenotype association study under

assumption of simple linear model.

Step 2: Generate vectors of dependent z-values mimicking the original z-values from

the real data. Geometrically, a symmetric and positive de�nite matrix C will trans-

form uncorrelated variables to dependent z-values. According to [40], generate a ran-

dom vector U from independent uniform (0,1) distribution and let Z = Φ−1(1 − U)

where Φ(.) was the cumulative distribution function of a standard normal random

variable. Given a random vector of i.i.d uncorrelated standard normal variables Z,

the Cholesky transformation maps the variables Z into variables CZ with covariance

matrix V ar(CZ) = CV ar(Z)CT = CICT = Σ. Thus, CZ re�ects the distribution of

test statistic under null that there is no association between genotype and phenotype.

Step 3: Construction of empirical null distribution of the test statistic. Based on the

multivariate normal distribution CZ described in Step 2, we could create series of test

statistics from such distribution. If the direction of association is available, we could

calculate p-values for both signed and unsigned cases. In this way, we may generate an

arbitrary number of vectors of dependent p-values among markers. It is computation-

ally less demanding since it does not involve repeated analysis of simulated datasets.

For each vector of dependent p-values for the bth Monte Carlo sample, we calculate

the proposed test statistic applying kernel-based method to yield {T (b)
max, b = 1, ..., B}

for any choice of transformation and kernel in (2.1). Finally, we use the empirical
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CDF of those draws to obtain the estimate F̂0 =
∑

1≤b≤B I[T
(b)
max ≤ x]/B.

Step 4: The calculation of the empirical overall p-value. By the estimation of null

distribution function in Step 3, we obtain a test for the presence of a CNV-phenotype

association based on p = 1− F̂0(Tmax).

4.2.2 Replacing correlation among z statistics with correlation of inten-

sities

It is worthy to point out that this approach depends on the estimation of correlation

matrix of z-statistic under null. But it is always complicated to estimate. Suppose

our analysis data consist of a set of marker genotypes together with phenotypic trait

values measured on each individual (X i, yi), i = 1, 2, ...n, where X i = (Xi1, ..., XiJ)T

is a vector of the copy number intensities for every marker for subject i and yi is the

phenotype for subject i. Assume simple linear regression y = β0 + β1jxj + ε between

phenotype y as the outcome and intensity xj at jth marker as the explanatory vari-

able for every marker, where ε has a normal distribution with mean 0 and standard

deviation σ. By standardization, we de�ne xij − x̄j = x′ijsdxij
and yi − ȳ = y′isdyi ,

where we denote standardized x′ij and y
′
i.

Under the simple linear regression model, we have the z-statistics under H0:

Zj =
β̂1j − 0

s.e.

=

∑
(xij−x̄j)(yi−ȳ)∑

(xij−x̄j)2

σ̂
√

1/
∑

(xij − x̄j)2

=

∑
sdxij

x′ijsdyiy
′
i

σ̂(n− 1)sd2
xij

√
(n− 1)sd2

xij

=

∑
x′ijy

′
i√

(n− 1)
,
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where
∑

(xij − x̄j)2 = (n− 1)sd2
xij

and also σ̂ = sdyi .

Now, correlation between z statistics of any two markers is simpli�ed and we get

cor(zj, zk) = cor(

∑
x′ijy

′
i√

(n− 1)
,

∑
x′iky

′
i√

(n− 1)
)

= cor(
∑

x′ijy
′
i,
∑

x′iky
′
i)

= cor(
∑

x′ij,
∑

x′ik),

since under the null hypothesis that xij and yi are independent.

Therefore,

cor(zj, zk) = cor(
∑

x′ij,
∑

x′ik)

= cor(xj,xk)

We summarize and present the following theorem.

Theorem 2. Assume a simple linear regression model was �t at each marker between

phenotype and genotype. Let H0j denote the hypothesis that the phenotype, yi, and

the CNV intensity at marker j, Xij, are independent. Then, under the global null

hypothesis H0 that yi is jointly independent of {Xij}, correlation structure among

z statistics under H0 exactly equals the correlation matrix of the intensities among

markers under assumption of simple linear model.

By Theorem 2, the correlation structure among z-values under H0 is the same

as the correlation matrix of the intensities under assumption of simple linear model

between intensities and phenotypes for every marker. It is worth to note that the
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estimate of correlation structure might depend on the knowledge of model assump-

tion between intensities and phenotype. Then we need the fact that correlation is

approximately invariant under monotone transformations [40]:

Cor(g(Xi), g(Xj)) ≈
[g′(µ)]2Cov(Xi, Xj)√

[g′(µ)]4V ar(Xi)V ar(Xj)
= Cor(Xi, Xj) (4.2)

For some modelings like logistic regression, the z-value is a monotone function of

z-value of linear regression. Applying (4.2), their correlation should be more or less

equivalent. Thus, we could extend to some other model assumption between phe-

notype and genotype by (4.2). If the z-values for some model assumption is highly

monotone in comparison with linear regression, we could get approximately the same

correlation estimate as the estimate under linear modeling.

4.2.3 Estimate of correlation matrix of intensities among markers

Theorem 2 provides a good way to estimate the correlation structure of z-statistic.

Given the structure of intensities among markers, we could use the sample correlation

of intensities to estimate the correlation matrix of z-statistic under null hypothesis

of no CNV-phenotype association. But estimation of correlation matrix and applica-

tion of such approach would be easy to achieve and would be well-applied when the

number of features is small. When the number of markers is large, it would cause

problems. First of all, the high dimensions J × J matrix calculation will bring sta-

tistically e�ciency and computational problem. It always increases the computation

burden and might run out of memory for high dimensions. Besides, the algorithm in

section 4.2.1 requires Cholesky decomposition, which gets slower for high dimension

matrix. Hence, estimation of large-scale covariance matrix from real genomic data

become an ubiquitous problem. There are a lot of methods proposed in the literatures

for estimation under such case, including the spectral decomposition, Bayesian meth-
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ods, modeling the matrix-logarithm, nonparametric smoothing, and banding/thresh-

olding techniques [67�73].

It would be important to extend our research to high dimension, which is the typ-

ical situation in real data. Therefore, I develop di�erent approaches to estimate the

restricted correlation matrix for computation convenience in di�erent circumstances

for high dimensions of features. I will talk about it in the following sections.

4.3 Extending correlation approach to �small n, large J� setting

For genomics and transcriptome analysis, estimation of large-scale covariance or cor-

relation matrices is a common problem. From a microarray experiment or CNV data,

J markers are being analyzed with J perhaps in the order of 1,000 to 10,000 and thus

a correlation of size J × J has to be calculated. For analysis involving real data,

we do not know where CNVs are located before analysis. We normally collect more

and more intensity data that might include the possible CNV to detect the CNV-

phenotype association and detect the CNV location. Hence, it is pretty common

to involve thousands or millions of markers from part of or the whole chromosome.

Meanwhile, it often encounters with a limited number of samples n. A common key

problem for all such data is that how we should obtain an accurate and reliable esti-

mate of the population covariance matrix when a data set includes a large number of

variables but only contains comparatively few samples (n << J). Under such �small

n, large J� setting, singular value decomposition (SVD) and principal component

analysis (PCA)are valuable tools and common techniques for analysis of such multi-

variate data.
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Principal component analysis (PCA) (Jolli�e 1986) is a popular data-processing

and dimension-reduction technique for taking high-dimensional data, and using the

dependencies between the variables to represent it in a more tractable, lower-dimensional

form, without losing too much information. It is a widely used mathematical tool for

high dimension data analysis. PCA provides a guideline for how to reduce a complex

data set to one of lower dimensionality to reveal any hidden, simpli�ed structures

that may underlie it. It extracts the most important information in such a way as

to highlight their similarities and di�erences from the data table and compress the

size of the data set by keeping only this important information. Then it can simplify

the description of the data set and analyze the structure of the observations and

the variables. The other main advantage of PCA is that once you have found these

patterns in the data, and you compress the data, ie. by reducing the number of di-

mensions, without much loss of information. Overall, PCA is one of the simplest and

most robust ways capable of reducing dimensions and revealing relationships among

data items. It has been applied in numerous �elds such as engineering, biology, and

social science. Some interesting examples include handwritten zip code classi�cation

(Hastie,Tibshirani, and Friedman 2001) and human face recognition (Hancock, Bur-

ton, and Bruce 1996). Recently PCA has been used in gene expression data analysis

(Alter, Brown, and Botstein 2000). Hastie et al. (2000) proposed the so-called gene

shaving techniques using PCA to cluster highly variable and coherent genes in mi-

croarray datasets. Strictly speaking, singular value decomposition is a matrix algebra

trick which is used in the most common algorithm for PCA. PCA can be computed

via the singular value decomposition(SVD) of the data matrix.

According to Theorem 2, correlation structure among z-statistics Σ under H0

exactly equals the correlation matrix of the intensities among markers. Let X be

n × J original intensity matrix, where n is the sample size and J is the number of
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total markers. Applying SVD method on it, the singular value decomposition of X

is the factorization of X into the product of three matrices,

X = UDV T , (4.3)

where U is n × n orthogonal matrix with UTU = I, V is J × J orthogonal matrix

with V TV = I. We could partition U = (u1, ..., un) and V = (v1, ..., vJ), where uj

denote the jth left singular vector and vj denote the jth right singular vector. D is

n× J diagonal matrix with diagonal entries (D11 = σ1) ≥ (D22 = σ2) ≥ ... ≥ (Drr =

σr) ≥ 0. Here σ1, σ2, ..., σr are called the singular values. The singular values are

sorted from high to low, with the highest singular value in the upper left index of the

matrix. If rank(X) = r, then it equals to the number of non-zero singular values on

the diagonal. Also, the column space of X is spanned by the �rst r columns of U and

the last n− r columns of U span the null space of XT . Meanwhile, the row space of

X is spanned by the �rst r columns of V and the null space of X is spanned by the

last J − r columns of V .

XTX = (UDV T )TUDV T = V DUTUDV T = V D2V T , (4.4)

XXT = UDV T (UDV T )T = UDV TV DUT = UD2UT , (4.5)

where XT is the conjugate transpose of X. The right hand sides of these relations de-

scribe the eigenvalue decompositions of the left hand sides. Consequently, the squares

of the non-zero singular values of X are equal to the nonzero eigenvalues of either

XXT or XTX. Thus XXT which is n × n and XTX which is J × J will share n

eigenvalues when n < J and the remaining J − n eigenvalues of XTX will be zero.

The columns of V , which are called right singular vectors, are the eigenvectors of

XTX and the columns of U ,called left singular vectors, are eigenvectors of XXT .
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Either the singular vectors of the singular values (or both) are called principle compo-

nents. The matrix D does not have to be square. Note that for a square, symmetric

matrix X, singular value decomposition is equivalent to diagonalization, or solution

of the eigenvalue problem. SVD decomposes a matrix into a set of rotation and scale

matrices, which is used in computing the pseudoinverse, matrix approximation, and

determining the rank, range and null space of a matrix.

Let Dr =


σ1

. . .

σr

, and hence (4.3) will become

X =

(
Ur Un−r

)Dr 0

0 0


 V T

r

V T
J−r

 = UrDrV
T
r , (4.6)

using Ur =

(
u1 · · · ur

)
and Vr =

(
v1 · · · vr

)
. This thin SVD is equivalent to

the ordinary SVD. Applying (4.6), any n×J real matrix equivalent to the product of

a column-orthogonal n× r matrix, a diagonal r× r matrix where the elements sorted

in descending order, and a column-orthonormal J×r matrix. It is a useful result since

we could reduce the dimension of the ordinary large matrix into product of simpli�ed

matrix. In �small n, large J� setting, the number of the non-zero singular values of

such a large matrix X, which equals the rank of X, would be smaller or equals to

min(n, J) = n. If we know the rank of the intensity matrix to be r, we could get the

thin SVD of X. Thus, applying such procedure, we could deal with smaller matrix

with the optimal low rank instead of the large matrix.

For calculating the covariance matrix of intensities, there is a direct relation be-

tween PCA and SVD in the case where principal components are calculated from the

covariance matrix. For PCA to work properly, the �rst step in PCA is to move the
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origin to mean of the data. In our case, we could achieve the �rst step by �nding

means of every marker by averaging the columns of X. We then subtract the mean

intensity from each intensity of the data set (ie each row of X) to create the mean cen-

tered data vector. This produces a data set whose mean is zero for every marker. It

is very easy to compute the covariance matrix from the mean centered data matrix.

Furthermore, we apply the method to the correlation rather than the covariances.

For correlation matrix, the o�-diagonal elements are on the same scale. Also, the

correlations derived from covariance estimator are independent of scale and location

transformations of the underlying data matrix. Due to such distinct advantages, it is

better to work on correlation matrix, which we denote Σ. To achieve the correlation

matrix, we need to standardize the original data matrix. For every element of the

data matrix xij, we apply the standardization.

x′ij =
xij − X̄j

sXj

, (4.7)

where X̄j and sXj
are mean and sample standard deviation of jth column intensities

for jth marker. For the standardized data matrix which we denote as X, we could

get the sample correlation matrix.

Σ =
1

n− 1
(XT

X) (4.8)

Applying equation (4.6), here the sample correlation matrix would be

Σ =
1

n− 1
(XT

X) =
1

n− 1
(V D2V T ) =

1

n− 1
(VrD

2
rV

T
r ) (4.9)

The diagonalization of XT
X yields V , which also yields the principal components of

correlation matrix. So, the right singular vectors vk are the same as the principal com-

ponents of correlation matrix. Using the decomposition above, we can identify the

eigenvectors and eigenvalues for XT
X as the columns of V and the squared diagonal

elements of D, respectively. Clearly, the eigenvalues and eigenvectors of correlation
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matrix is the same as the eigenvalues and eigenvectors of XT
X. Meanwhile, the lat-

ter shows that the eigenvalues of XT
X must be non-negative. Therefore, the sample

correlation matrix here is positive semi-de�nite.

It is a common setting to have much more markers than samples, n� J . The J×J

correlation matrix itself is therefore very unpleasant to work with because it is very

large under �small n, large J� setting. However, by Theorem 2, it su�ces to decom-

pose a smaller matrix. In such setting, it is known that XXT which is n×n and XT
X

which is J × J will share n eigenvalues and the remaining J − n eigenvalues of XT
X

are all zeros. Therefore, for the eigenvalues which are zeros, we can essentially discard

those eigenvalues and the corresponding eigenvectors, hence reducing the dimension-

ality of the new basis. Instead of dealing with J × J matrix for Σ, we could focus on

the smaller matrix with dimensions n×n for correlation matrix without losing infor-

mation since the other J − n dimensions don't contain any additional information.

It will be an amazing improvement in speed of computing the estimated correlation

matrix. For example, for a 174×70, 000 intensity matrix, we don't need to work with

70, 000× 70, 000 correlation matrix, which we might not be able to store in our com-

puters. Instead, by the decomposition, the 174× 174 matrix, which is a lot faster to

obtain, is enough to estimate the correlation matrix. It's really a great result that the

estimation of correlation matrix has nothing to do with the large J dimensions but

instead only depends on sample size for the matrix dimension. Thus, the smaller n

is, the much faster to estimate the correlation matrix of intensities. For standardized

intensities X, the correlation matrix is equivalent to the variance-covariance matrix.

It is worthy to notice that the rank of the variance-covariance matrix is n while the

correlation matrix only has a rank of n − 1 since it is restricted to have 1's along

the diagonal. Therefore, following the above equation (4.9), we obtain the estimated

correlation matrix 1
n−1

(V D2V T ) and it is equivalent to 1
n−1

VrD
2
rV

T
r in a much smaller
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dimensions, where r = n−1. we only need to know the �rst n−1 left singular vectors.

Meanwhile, the decomposition has nothing to do with the right singular vectors uk.

Thus, we could reduce the dimensions a lot and only select n−1 vectors for calculation

of the correlation matrix. Obviously, the correlation matrix is obtained in a much

faster speed. As here the correlation matrix is positive semi-de�nite, we can denote

Σ = CCT . By decomposition,C = 1
sqrt(n−1)

(V DV T ). Thus, given a random vector of

i.i.d uncorrelated standard normal variables Z, variables CZ follows a multivariate

normal distribution with covariance matrix V ar(CZ) = CV ar(Z)CT = CICT = Σ.

This method works especially well for �small n, large J� setting. The small n

makes dimension reduction for calculating correlation matrix and hence speed it up

a lot compared to directly estimating the large correlation matrix. The comparisons

of performance will be shown in the later sections.

4.4 Extending correlation approach to �large n, large J� setting

There is a computation burden problem to estimate the high-dimensions correlation

matrix and use such large correlation matrix to generate the multivariate normal

random variables under null hypothesis. The time consumption increases as the di-

mension increases. I have proposed SVD decomposition method for the case of �small

n, large J�, which leads to the dimension reduction. Thus, we only need to deal with

low-dimensional matrix with dimension depending on the small n to estimate the

correlation matrix. However, this method is insu�cient when n gets large. Instead,

we hope to impose a low-dimensional structure on the estimator and aim to get a

sparse correlation matrix to decrease the computation burden. Such sparse correla-

tion matrix gets rid of part of correlation information by setting them to be zero.
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Hence it would not be positive-de�nite any more. We have to additionally shrink-

age this sparse matrix to be positive-de�nite for further generation of multivariate

normal vectors for �large n, large J� setting. Actually, it is pretty di�culty to get a

sparse and positive-de�nite estimated correlation matrix to accurately estimate the

population correlation matrix among genes. I tried a couple of ways and luckily �nd

out an appropriate method to estimate the true correlation matrix under �large n,

large J� setting.

Biologically, the correlation between any two markers is a decreasing function of

distance. In other word, two nearby markers would be more highly correlated than

two markers far apart. If two markers are far enough apart, we may ignore their

correlation by considering it to be zero. Setting those small correlations to be zeros,

we could restrict the correlation matrix to be a banded correlation matrix instead of

calculating every correlation entry. Such a sparse correlation matrix would improve

the e�ciency for computation under high dimensions of markers. On one hand, there

is a storage format for sparse matrix that stores only the nonzero entries in column

order and hence avoid the storage of the zero entries. Thus it requires much less

memory to store the matrix. Moreover, the computation focuses on the numerical

values of the nonzero entries so as to reduce memory usage and avoid unnecessary nu-

merical operations. In this way, calculations based on sparse matrixes would provide

a signi�cantly higher calculation e�ciency. What's important, it is worthy to notice

that such banded sparse correlation matrix contains most of important correlation

entries without losing much information.

Here Figure 4.1 is a �lled contour plot of sample correlation matrix under null

for 200 markers with the middle CNV size=30 for 10000 subjects and signal-to-noise
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Figure 4.1: This is the sample correlation matrix. Red values are high correlation;
the only legitimate correlations are located in the CNV. The rest is just noise.

ratio=2.

In this plot, the red square with high correlations focus on the middle CNV mark-

ers while noise smaller correlations are surrounding for the rest markers far apart.

Hence, it would be applicable and reasonable to ignore those noise and set those

correlations to be zeros. Instead, we could just give an estimate of middle banded

correlations for the neighboring markers as the estimate of a huge correlation matrix.

Including the whole red part, we would not lose much information and get the es-

timate more accurate and close to the true correlation. De�ne d to be the number
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of diagonals we calculate the pairwise correlation for the sparse matrix. d choosing

would e�ect the estimate of banded matrix. If using the true CNV size as d, the

estimated sparse correlation matrix would be the following plot Figure 4.2 and it

contains the whole central correlation of the sample correlation.

Figure 4.2: This is sparse matrix with d = 30 on both sides. It has the same central
banded correlation with the rest correlations equal to zero.

But if choosing a di�erent d, the estimate would be very di�erent. As seen in

Figure 4.3, the estimate loses a lot of important correlations when choosing half of

the true CNV size.

From the above demonstration, we must keep the central main correlation part to
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Figure 4.3: It is also a sparse estimate of correlation matrix with d = 15 on each
side. The important part of the correlation was chopped o�.

estimate the true correlation matrix accurately. To keep the central high correlation

part of the sample correlation matrix, it would be best to choose d at least equal to

the CNV size for the sparse matrix. Otherwise, the estimation would lose a lot of

important correlation information and hence gets far away from the whole sample

correlation.

However, this sparse estimate would cause singular problems. Such sparse banded

correlation matrix might not be positive de�nite any more. A naive strategy to ob-

tain a positive de�nite estimator of covariance proposed by Rebonato (1999) runs
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as follows: take the sample covariance and decompose the covariance matrix into its

eigenvectors and eigenvalues, set the negative eigenvalues to 0 or (0 + ε), and then

rebuild the covariance matrix. Higham (2001) uses an optimization procedure to �nd

the nearest correlation matrix that is positive semi-de�nite. Grubisic and Pietersz

(2003) have a geometric method they claim outperforms the Higham technique. In-

cidentally, some more recent twists on Rebonato's paper are Kercheval (2009) and

Rapisardo (2006) who build o� of Rebonato with a geometric approach. They also

proposed several algorithms for computation to �nd its nearest correlation matrix.

However, such nearest positive de�nite covariance matrix could not be sparse and

thus it is computationally by far demanding for the very large dimensions commonly

encountered in genomics problems. Therefore, we aim to keep the estimate of corre-

lation matrix symmetric positive de�nite and sparse so that it will be a covariance

matrix of further multivariate normal distribution and meanwhile reduce the compu-

tation burden.

Special care should be taken in the construction of algorithms that create a large

symmetric sparse positive de�nite correlation matrix with the goal of reducing com-

putation time and memory usage. I present shrinkage strategy here to create such

sparse positive de�nite large-scale correlation matrix.

4.4.1 Introduction to shrinkage approach

A fundamental principle of statistical decision theory is that there exists an interior

optimum in the trade-o� between bias and estimation error. We could shrinkage the

unbiased estimator full of estimation error towards a �xed target represented by the

biased estimator. Stein(1956) showed that shrinking sample means towards a con-
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stant would, under certain circumstances, improve accuracy. In the case of estimated

unbiased sample covariance matrix, those estimated coe�cients that are extremely

high tend to contain a lot of positive error and therefore need to be pulled downwards

to compensate for that. Similarly, we compensate for the negative error that tends

to be embedded inside extremely low estimated coe�cients by pulling them upwards.

We call this the shrinkage of the extremes towards the center to increase the accuracy.

Consider the well-known bias-variance decomposition of the mean square error

(MSE) for the sample covariance, i.e. MSE(S) = Bias(S)2 + V ar(S). We could

obtain an improved covariance estimator is variance reduction. Here we propose

�shrinking� or more general �biased estimation� as a means of variance reduction of

sample covariance matrix. If properly implemented, this shrinkage would clearly �x

the problem of the sample covariance matrix described above to be positive de�nite

and well-conditioned. A recent analytic result was proposed by Ledoit and Wolf

(2003) to construct an improved covariance estimator that is not only suitable for

small sample size n and large numbers of variables J but meanwhile is also com-

pletely inexpensive to compute [74]. They suggested the linear shrinkage approach to

combine both single-index covariance matrix estimator and sample covariance matrix

estimator in a weighted average. And they select the optimal shrinkage intensity

through explicitly minimizing a risk function for example the mean squared error

(MSE). It was based on the full sample covariance matrix. As illustrated earlier in

our cases, the sparse covariance matrix keeping the main high correlation part is rea-

sonable and accurate to get close to the full sample covariance matrix. Working on

such sparse covariance matrix, the key problem is that if we can �gure out some simi-

lar shrinkage procedure to get it positive de�nite and keep it sparse in the meanwhile.
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Shrinkage here is applied to the correlations rather than the covariances. This has

two distinct advantages. First, the o�-diagonal elements determining the shrinkage

intensity are all on the same scale. Second, the correlations derived from the result-

ing covariance estimator are independent of scale and location transformations of the

underlying data matrix. Working on the sparse matrix, we shrink the o�-diagonal

entries of the sparse correlation matrix to zero gradually to reach the aim of posi-

tive de�nite matrix. We try the simple shrinkage on each entries of the sparse matrix.

In the following sections, I brie�y review the general principles behind shrinkage

estimation of the sparse and positive de�nite correlation matrix and discuss an an-

alytic approach to determine the optimal shrinkage level and the number of sparse

diagonals.

4.4.2 Shrinkage estimation of sparse positive de�nite correlation matrix

As discussed above, we would get a symmetric sparse sample correlation matrix when

choosing an appropriate bandwidth. However, such sparse sample correlation matrix

could not be positive de�nite and thus it would have a lot of trouble when creating

the multivariate normal random vectors under the null. In this section I suggest us-

ing such sparse matrix obtained from the whole sample correlation matrix through a

transformation called shrinkage.

De�ne d to be the number of diagonals we calculate the pairwise correlation. First

of all, it is noteworthy that here the d has nothing to do with the bandwidth that we

need for kernel aggregation method. d is used to obtain a sparse correlation matrix to

estimate the actual correlation while bandwidth is to calculate a �nite set of aggrega-
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tions {Tj} leading to signi�cance testing based on the statistic T = maxj{Tj}. From

Figure 4.3, it is obvious that the choosing of d would e�ect the estimation of correla-

tion matrix. An appropriate d would have the sparse correlation matrix close to the

sample correlation and otherwise would get the estimation far away from the sample

correlation matrix. Thus, the sparse matrix with di�erent d will produce di�erent

estimation through shrinkage. I will talk more about the e�ect of d on estimation of

correlation matrix.

In order to obtain positive de�nite correlation matrix and keep it sparse as well,

we have to shrink the elements on the sparse matrix. As we know, the correlation

between any two markers is a decreasing function of distance. Two nearby markers

would be highly correlated while two markers far apart are less correlated. Thus, it

is reasonable to consider shrinking the correlations by distance. We could shrinkage

the correlations a little bit for highly correlated marker and meanwhile shrink the

correlations more and more as the markers get farther and farther. In some sense,

the sparse matrix would be much closer to be positive de�nite when the correlations

are decreasing gradually by distance.

Thus, I consider the exponential decline by distance. Let λ be the shrinkage

intensity and j be the number of markers away between two markers. For two markers

with j markers away, I shrinkage the correlation by (1 − λ)j. For any correlation

element, the new correlation element cor(i, i+ j)′ through shrinkage

cor(i, i+ j)′ = cor(i, i+ j) ∗ (1− λ)j, (4.10)

In other word, working on the sparse matrix with calculated pairwise sample corre-

lations for d diagonals, every element with sample correlation cor(i, i + j) between

marker i and marker i+ j would transfer into cor(i, i+ j) ∗ (1− λ)j. It makes some
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sense because the correlations of markers far apart would shrinkage a lot more than

the nearby markers. After such shrinkage step, we generate a sparse matrix with the

gradually decreasing correlations by distance. It will become positive de�nite when

we choose an appropriate shrinkage intensity λ.

4.4.3 Selection of the number of sparse diagonals and appropriate shrink-

age intensity

By the shrinkage procedure, we are allowed to construct an improved correlation es-

timator in a sparse and positive de�nite matrix that is not only suitable for large

sample size n and large numbers of variables J but at the same time is also com-

pletely inexpensive to compute. The larger the λ, the more shrinkage the sparse

correlation matrix gets. Thus, it will become positive de�nite more easily but mean-

while it changes the original correlations a lot and gets far away from the original

sparse sample correlation. A key question in this procedure is how to select an optimal

value for the shrinkage intensity. We wish to get a positive-de�nite correlation matrix

but shrinkage the correlations at minimum level. One common but computationally

intensive approach to estimate the minimizing λ is by using cross-validation. An-

other widely applied route to inferring λ views the shrinkage problem in an empirical

Bayes context. In our case here, the optimal shrinkage level could be determined an-

alytically. We can simply choosing minimum λ that guarantees the positive-de�nite

structure of the sparse correlation matrix without the need of specifying any underly-

ing distributions, and without requiring computationally expensive procedures such

as MCMC, the bootstrap, or cross-validation. In other word, the optimal shrinkage

level λ is determined by how sparse of the correlation matrix.
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Setting di�erent number of sparse diagonals d, shrinkage intensity is obtained

by choosing minimum λ that guarantees the positive-de�nite structure of the sparse

correlation matrix. The relationship between d and λ is presented in Figure 4.4. It

appears that shrinkage intensity λ becomes smaller as the number of sparse diagonals

increases. It makes sense in some sense because the sparse correlation matrix gathers

more information when d is larger and then it is closer to the sample correlation which

is positive semi-de�nite and hence it does not require much shrinkage.
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Figure 4.4: E�ect of the number of sparse diagonals on optimal shrinkage intensity.
True CNV size is set be 50 and total number of markers is 500.

As shown above, the number of diagonals d that we sparse the correlations also has

a lot of e�ects on the estimation of correlation matrix. Denote bw as the bandwidth

used for kernel aggregation method while d is the number of diagonals that create a

sparse correlation matrix. We always don't know either where the CNV is or the true

bandwidth of CNV. Basically we can choose any bandwidth for our kernel method.

It is shown that the larger bandwidth we choose for kernel aggregation method would

increase the power of detecting association between phenotype and intensities. After

choosing a bandwidth, the number of diagnose d would include di�erent correlation
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information. Smaller d would get more sparse matrix while losing a lot more corre-

lation information. Furthermore, d choosing also e�ects type one error. The banded

sparse correlation matrix is more close to the whole sample correlation and includes

more information when d gets larger. By Theorem 2, when the estimated correlation

matrix gets much closer to the actual correlation matrix, the correlation approach

would preserve appropriate type one error. Therefore, we aim to select optimal d to

keep the correlation matrix sparse and also contain as much correlation information

and meanwhile preserve type one error as possible.

Figure 4.5 illustrates the relationship between d and type one error for di�erent

bandwidth. For true CNV size of 50, we pick a set of bandwidths of 10,20,30,50,70,90

and 110, which include too small and too large bandwidth. Picking di�erent number

of sparse diagonals for each bandwidth, the optimal shrinkage intensity λs are chosen

to be minimum to guarantee the positive de�nite structure of sparse correlation ma-

trix. From the plot, the e�ect of number of sparse diagonals on type one error are all

in the same trend for di�erent bandwidths. Type one error goes down as increasing

d until the type one error gets stable. Hence, d needs to be larger than some choice

to preserve type one error. From simulation results, it seems to be safe to choose

d ≥ 3bw.

4.5 Simulation Results

I conducted simulation experiments in this section to evaluate the performance gain

that the correlation method provides and the cost in terms of its ability to detect

CNV-phenotype association. I �rst present the preservation of type one error of

correlation approach in di�erent settings. Also, I compare the correlation method
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Figure 4.5: E�ect of the number of sparse diagonals on preservation of type one error
when choosing di�erent bandwidth for kernel aggregation method on normal signed
transformation. True CNV size is set be 50. The horizontal red line is for α = 0.05

in di�erent settings to permutation method in the distribution of the the estimated

null distribution of the supremum statistic T = maxj{Tj} under no CNV-phenotype

association. Then, comparison of the computing times applying di�erent approach

to conduct the kernel-based aggregation of marker-level association test will give us a

measure of the performance gain. For all these simulations, I follow the spike-in data

design fully described in Section 3.4. This procedure provides the simulation data

similar to the real data. For the simulations presented here, I use a sample size of

n = 1, 000 and an total markers J = 200 for �large n, small J� setting; use a sample

size of n = 50 and J = 500 assuming �small n, large J�; and n = 300 and J = 500 in

the case of �large n, large J�. Set signal-to-noise ratio of 2 for simulations.

4.5.1 Preservation of type one error

First of all, we are interested in the preservation of type one error of correlation

approach in each setting described above. Preservation of type one error is one

71



important aspect to determine the performance of the method. In di�erent settings,

we all consider a genomic region in which individuals may have a CNV. The purpose of

the analysis is to detect and locate such CNVs associated with a particular phenotype.

The null hypothesis for our association test may hold in one of two ways: (1, �No

CNV�) no individuals with CNVs are present in the sample, or (2, �No association�)

individuals with CNVs are present in the sample, but the CNV does not a�ect the

disease and thus dose not change the probability of developing the phenotype. The

e�ect of transformations of p-values and association direction would be similar. In

this section, I focus on the analysis for di�erent transformations of p-values in signed

case. Simulation results are shown in tables and �gures.

4.5.1.1 �large n, small J� setting

For �large n, small J� setting, I set n = 1000 and J = 200, which is exactly the same

setting as permutation approach. The results for the FWER analysis are summarized

in Table 4.1 for di�erent transformations of p-values in signed direction of associations.

Table 4.1 perfectly demonstrates that correlation method under such setting is

guaranteed to preserves the correct type I error under both null hypothesis for di�er-

ent transformations in signed directions of association under linear model assumption

between phenotype and genotype. This phenomenon is also illustrated graphically in

Figure 4.6. Obviously, the correlation method to estimate the whole sample correla-

tion is nice to apply since it preserves accurate type one error and p-values under the

null appear to be uniformly distributed.

4.5.1.2 �small n, large J� setting

For �small n, large J� setting, I set n = 50 and J = 500 for simulation. As details

described before, the rank of the estimated sample correlation does not depend on the
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Table 4.1: Preservation of Type I error for correlation method in �large n, small J�
setting for di�erent transformations in signed direction of association with nominal
α = .05 in two possible settings for which the null hypothesis holds. The simulated
genomic region contained 200 markers, 30 of which were spanned by a CNV with
signal-to-noise ratio of 2. The CNV was present in either 0% or 50% of the 1000
samples, depending on the null hypothesis setting. A detailed description of the
simulation data is given in Section 3.4.

Signed Signed Signed
None Normal Log

No CNV 0.041 0.042 0.046
No Association 0.043 0.046 0.046

No CNV
None−signed

p

0.0 0.2 0.4 0.6 0.8 1.0

No CNV
Normal−signed

p

0.0 0.2 0.4 0.6 0.8 1.0

No CNV
Log−signed

p

0.0 0.2 0.4 0.6 0.8 1.0

No Association
None−signed

p

0.0 0.2 0.4 0.6 0.8 1.0

No Association
Normal−signed

p

0.0 0.2 0.4 0.6 0.8 1.0

No Association
Log−signed

p

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.6: Ability of correlation approach under di�erent transformations in signed
directions of association for �Large n, small J� setting to maintain family-wise error
rate under the two null scenarios.

number of markers but on the sample size n. Applying singular value decomposition,

we simplify the correlation matrix and speed up the calculation. The results for the

FWER analysis are concluded in Table 4.2 for signed direction of associations with
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di�erent transformations of p-values. And the distributions of p-values under two

kinds of H0 are shown as well in Figure 4.7.

Table 4.2: Preservation of Type I error for correlation method in �small n, large
J� setting for di�erent transformations and directions of association with nominal
α = .05 in two possible settings for which the null hypothesis holds. The simulated
genomic region contained 500 markers, 30 of which were spanned by a CNV with
signal-to-noise ratio of 2. The CNV was present in either 0% or 50% of the 50
samples, depending on the null hypothesis setting. A detailed description of the
simulation data is given in Section 3.4.

Signed Signed Signed
None Normal Log

No CNV 0.049 0.049 0.048
No Association 0.046 0.047 0.048

From the table and �gure, it is pretty good results in terms of the preservation of

type I error and p-values under two null are close to uniform distribution. Therefore,

although it is quite di�culty to estimate the whole sample correlation matrix using

tradition way under �small n, large J� setting, SVD approach provides a perfect al-

ternative to estimate the correlation matrix and conduct the kernel-base aggregation

of marker-level association test.

4.5.1.3 �large n, large J� setting

Similarly, under �large n, large J� setting, I take n = 300 and the total number of

markers J = 500. Applying shrinkage approach, it is necessary to select an optimal

number of sparse diagonals and an appropriate shrinkage intensity. As illustrated

in Section 4.4.3, the larger the number of sparse diagonal, the more information the

sparse correlation matrix includes and thus the more accurate estimate of correlation
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Figure 4.7: Ability of SVD approach under �small n, large J� setting for di�erent
transformations of p-values in signed association to maintain family-wise error rate
under the two null scenarios.

matrix, which requires less shrinkage. It is suggested to pick d ≥ 3bw from simula-

tions. Figure 4.5 shows that type one error tend to be stable when the number of

sparse diagonals is larger than one speci�c number. Therefore, as we do not know the

true CNV size, it will be better to pick a large d to preserve type I error and contain

the important correlation part while choosing a smaller d to keep it sparse. For the

simulation, I choose a bandwidth of 30 markers for kernel-based method and pick the

number of sparse diagonal d = 150 and minimum shrinkage intensity λ = 0.012 to

guarantee the sparse and positive-de�nite correlation matrix. The results of FWER

analysis are present in Table 4.3 and Figure 4.8.

Under �large n, large J�, a lot of approaches can not be applied and thus corre-
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Table 4.3: Preservation of Type I error for applying shrinkage approach on correlation
method for di�erent transformations in signed association with nominal α = .05 in
two possible settings for which the null hypothesis holds. The simulated genomic
region contained 500 markers, 30 of which were spanned by a CNV with signal-to-
noise ratio of 2. The CNV was present in either 0% or 50% of the 300 samples,
depending on the null hypothesis setting.

Signed Signed Signed
None Normal Log

No CNV 0.052 0.047 0.038
No Association 0.062 0.059 0.053
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Figure 4.8: Ability of shrinkage approach under di�erent transformations in signed
association to maintain family-wise error rate under the two null scenarios.

lation matrix is complicated to estimate. In terms of preservation of type one error,

the shrinkage method seems to be a nice choice to estimate the correlation matrix
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under this setting when picking a proper d and shrinkage intensity λ.

4.5.2 Evaluating the estimated null distribution

It was clearly demonstrated that correlation approach in di�erent settings success-

fully preserves type one error and thus they could be good to apply for estimation

of correlation matrix and conduct kernel-base aggregation of association tests. Then

we are interested in the estimation of the method under di�erent settings. To see

the estimate of the method, it would be appropriate to compare the estimated null

distributions. I use the same settings as picked in last section for simulation. For each

setting, I compare the null distributions for each setting when applying permutation

method, the whole sample correlation estimate, SVD and shrinkage approach to the

kernel-based aggregation of marker-level association test.

From Figure 4.9, Figure 4.10, Figure 4.11, the null distributions stay very close

under di�erent settings. Thus, the estimate and analysis results of kernel-based as-

sociation test would be similar for all those methods and we are capable to use those

approaches for each setting if not considering the performance. Besides, it is worth

to note that the shape of the null distributions are still similar to each other even if

we don't use the true CNV bandwidth.

4.5.3 Performance of correlation procedure

In the previous sections we showed that the estimated null distribution of correlation

method works well as the permutation method and they all successfully preserve type

one error. Thus, those correlation methods are good to use for any situation. Now, we
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Figure 4.9: Comparison of null distribution through permutation and three cor-
relation methods under �large n, small J� setting. The simulated genomic region
contained 200 markers, 30 of which were spanned by a CNV with signal-to-noise ra-
tio of 2. Population CNV frequency was presented in 50% of 1000 samples. Signed,
normal transformation with bandwidth bw = 20 was used for kernel-based method.

are more interested in evaluating the operating characteristics of correlation methods.

Unlike permutation method, the proposed correlation procedure involves the simu-

lation of multivariate normal variables rather than the genotype or phenotype data

and does not require repeated analysis of simulated data sets. The estimate of corre-

lation matrix involving the observed data is calculated only once, and the evaluation

of the null distribution given the estimated correlation matrix is trivial. Thus, the

proposed correlation approach provides a much more e�cient procedure to generate

the null distribution than permutation approach. In this section we wish to assess

the reduction in computing time achieved by this procedure at no cost in terms of

false positive. We compare the performance of the correlation method to permutation
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Figure 4.10: Comparison of null distribution through permutation and three cor-
relation methods under �small n, large J� setting. The simulated genomic region
contained 500 markers, 30 of which were spanned by a CNV with signal-to-noise ra-
tio of 2. Population CNV frequency was presented in 50% of 50 samples. Signed,
normal transformation with bandwidth bw = 20 was used for kernel-based method.

approach in kernel-based aggregation of marker-level association test. We would like

to show the comparisons in terms of computation burdens and e�ciency in low and

high dimensions.

4.5.3.1 �large J� setting

As illustrated, correlation-based approach has extended to the high dimensions in

e�cient way. For �large J� setting, SVD approach is perfect for small sample size

and shrinkage is nice for large sample size. We set the total number of markers to

be 2000 for our simulation. When changing the sample size, the computation time
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Figure 4.11: Comparison of null distribution through permutation and three cor-
relation methods under �large n, large J� setting. The simulated genomic region
contained 500 markers, 30 of which were spanned by a CNV with signal-to-noise ra-
tio of 2. Population CNV frequency was presented in 50% of 300 samples. Signed,
normal transformation with bandwidth bw = 20 was used for kernel-based method.

comparisons are presented in Figure 4.12. First of all, the black line stays a lot higher

than the other three lines. Obviously, correlation approach performs much better than

the permutation approach in terms of the computation burden. Furthermore, when

the sample size gets larger, the gap between the black line ant the other three lines

becomes wider. It makes sense since the sample size e�ects a lot on the computation

time of permutation approach. Permutation approach would consume a lot more time

as the sample size gets larger. More clear comparisons of three correlation methods

under the same setting are shown in Figure 4.13. First, correlation method when

estimating the whole correlation matrix runs longer time than SVD and shrinkage

approach. It makes sense since the tradition correlation method estimates the whole
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correlation matrix while SVD and shrinkage just provide estimate of part of the

correlation matrix. In terms of the computation time, SVD approach is much better

than shrinkage approach when the simple size is much smaller and meanwhile the

shrinkage approach is getting better when the sample size gets larger.
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Figure 4.12: Comparison of computation time versus sample size between correlation
methods and permutation approach. We set total number of markers to be 2000 and
the total number of samples changes from 10 to 1910 by 100. CNV size are 30 markers.

4.5.3.2 �small J� setting

In �small J� setting, we set the total number of markers to be 200. While changing the

sample size from 10 to 1910 by 100, the consuming time versus sample size is present

in Figure 4.14. We see that the black line is always higher than the blue and the gap

becomes larger and larger as the sample size gets larger. Thus, correlation approach

is also much better than permutation approach even under low dimension. Besides,

the consuming time for correlation method is more stable by sample size because the

estimate of correlation matrix depends on the number of markers not the sample size.

It is remarkable that he correlation method runs no more than one second here for
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Figure 4.13: Comparison of computation time versus sample size among three kinds
of correlation approaches. We set total number of markers to be 2000 and the total
number of samples changes from 10 to 1910 by 100. CNV size are 30 markers.

situation of 200 total number of markers. Note that here the correlation method is

giving the estimate of the whole correlation matrix.

This section demonstrates the performance of those methods and we would get

the conclusion that correlation approach is a better choice than the permutation ap-

proach in terms of the running time in both low and high dimensions. Moreover,

the SVD and shrinkage method are well applied for high dimension and consume less

time than the tradition correlation method that gives the estimate of whole correla-

tion matrix.

82



0 500 1000 1500

0
10

20
30

40
50

60

sample size

C
on

su
m

e 
tim

e
Permutation
Correlation

Figure 4.14: Comparison of computation time versus sample size between permu-
tation approach and correlation method for low dimension. We set total number of
markers to be 200 and the total number of samples changes from 10 to 1910 by 100.
CNV size are 30 markers.

4.6 Gemcitabine study

In this section we apply the correlation approach to the real data and then compare

it to permutation approach. We begin by describing the design of a pharmacoge-

nomic study of gemcitabine, a commonly used treatment for pancreatic cancer. It is

the same data that is analyzed for application of permutation approach. Then we

analyze data applying the proposed correlation method on kernel-based aggregation

association test.

The gemcitabine study was carried out on the Human Variation Panel, a model

system consisting of cell lines derived from Caucasian, African-American and Han

Chinese-American subjects (Coriell Institute, Camden, NJ). Gemcitabine cytotoxic-

ity assays were performed at eight drug dosages (1000, 100, 10, 1, 0.1, 0.01, 0.001,

and 0.0001 uM) [60]. Estimation of the phenotype IC50 (the e�ective dose that kills
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50% of the cells) was then completed using a four parameter logistic model [61].

Marker intensity data for the cell lines was collected using the Illumina HumanHap

550K and HumanHap510S at the Genotyping Shared Resources at the Mayo Clinic in

Rochester, MN, which consists of a total of 1,055,048 markers [62,63]. Raw data were

normalized according to the procedure outlined in [64]. 172 cell lines (60 Caucasian,

53 African-American, 59 Han Chinese-American) had both gemcitabine cytotoxicity

measurements and genome-wide marker intensity data. To illustrate the application

of the kernel-based aggregation approach, we selected one chromosome (chromosome

3) from the genome-wide data. To control for the possibility of population strati�ca-

tion, which can lead to spurious associations, we used the method developed by [65],

which uses a principal components analysis (PCA) to adjust for strati�cation. At

each marker, a linear regression model was �t with PCA-adjusted IC50 as the out-

come and intensity at that marker as the explanatory variable; these models produce

the marker-level tests.

We analyzed these data using the kernel-based approach described in Section 2.2

with a bandwidth of 50 markers and the log transformation. Instead of permutation

method on kernel, we demonstrate the correlation approach. As known, correlation

method depends on the estimation of correlation matrix and there are a couple of

choice for the di�erent settings. For the real data involving with 70,542 markers for

172 cell lines, it is de�nitely a huge correlation matrix. It would be out of memory

to calculate the complete sample correlation matrix. But the small sample size in-

dicates that SVD will be a nice choice to estimate the correlation matrix. Also, we

could try the shrinkage method with appropriate shrinkage intensity and the number

of sparse diagonals. We pick d = 300 with minimum λ = 0.03 here. The results

are shown in Figure 4.15. Note the presence of a peak at 102.6 Mb. The horizontal

lines indicate the FWER-controlled, chromosome-wide signi�cance threshold at the
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α = 0.1 level. These two cuto�s are close. It makes sense since the null distributions

are close to each other shown in Section 4.5.2. As the �gure indicates, there are both

insu�cient evidence in this study to establish a CNV association involving response

to gemcitabine (p = 0.158 for SVD and p = 0.204 for shrinkage) after controlling

the chromosome-wide FWER. Other choices of bandwidth and transformation would

produce qualitatively similar, although somewhat less signi�cant, results. Compared

to the result of permutation in Figure 3.2 on the same real data with the same set-

ting, these cuto�s are close to the cuto� of permutation approach, which is around

2.5. Note that the cuto� of shrinkage method is a little bit higher than the SVD and

permutation approaches because shrinkage method losses correlation information to

some extent. Therefore, correlation method and permutation approach provide sim-

ilar results in terms of the performance. In terms of consuming time, SVD approach

and shrinkage method run much faster than permutation, which requires resampling

and runs a few hours. For this study, SVD just needs a couple of minutes to run the

result and shrinkage require approximately 15 mins for kernel-based study plus extra

time to get sparse correlation matrix and �nd out the optimal shrinkage intensity for

positive-de�nite correlation. Therefore, SVD approach would the best choice for such

data with much less sample size than the number of markers.

Copyright© Yinglei Li, 2014.
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Figure 4.15: Analysis of the gemcitabine data (Chromosome 3) using the proposed
correlation method. The kernel aggregations Tj are plotted against chromosomal
position. The red line indicates the cuto� of SVD approach and the blue line shows
the cuto� of shrinkage approach for chromosome-wide FWER signi�cance at the
α = .1 level.
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Chapter 5 Summary and Discussion

This dissertation is devoted to the analysis of CNV-phenotype association testing.

Specially, we have reviewed the traditional and popular variant-level testing, which

do "CNV calling" �rst for each individual and then carry out association test of

whether individual with a CNV di�er from individual without a CNV with respect

to some phenotype. We focus on the marker-level testing, where we do the asso-

ciation test for every single marker �rst then determine CNV-phenotype associated

regions by pooling test results across neighboring markers. Here in the dissertation

we develop a kernel-based aggregation method for marker-level association test. Con-

ducting such an association test, I propose a permutation approach and correlation

method to estimate the null distribution of the test statistic.

In summary, permutation tests provide a robust and powerful method of testing

statistical hypotheses that is intuitive and easy in practice. More importantly, it

provides an accurate FWER control and does not rely on any model assumptions.

However, the permutation approach has its own limitations. First, this approach is

valid and widely used only under very mild conditions� complete exchangeability

under null hypothesis as described above. Thus it may not be applicable when there

are covariates or nuisance parameters [57]. Especially, the permutation distribution

may not be appropriate when the analysis involves covariates that are correlated

with both genotype and phenotype. Moreover, it becomes computationally demand-

ing since the analysis needs to be repeated for each permuted dataset while creating

the null distribution of test statistic. The kernel aggregation itself is very fast, but

the need to carry out ≈ 1, 000 permutation tests for each marker may be highly com-

putationally intensive, depending on the complexity of the marker-level test. Thus,
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the computing problem is critical for permutation approach.

The proposed correlation method is demonstrated to o�er large improvements in

speed. First it does not involve repeated analyses of simulated datasets and is thus

provides a substantial gain in speed with only a negligible loss in accuracy. Second,

it does not require complete exchangeability and is thus widely applicable. Thus,

correlation method appears to be a better choice than permutation in terms of the

computation time. Moreover, extending this method to high dimension, we develop

SVD and shrinkage method, which are presented to also preserve type one error and

require much less running time.

The simulation studies of Section 3.4 address a limited-scale version of a larger

question: how do marker-level test aggregation and variant-level testing compare for

chromosome-wide and genome-wide analysis? This is an important question and de-

serves further study. In general, multiplicity is a thorny issue for CNV analyses, as

the true location of CNVs are unknown and can overlap in a number of complicated

ways. The issue of how many tests to carry out and adjust for is a challenging ques-

tion for variant-level testing and a considerable practical di�culty in analysis. In

contrast, aggregation of marker-level results avoids this issue altogether. We have

shown that the proposed approach is both powerful at detecting CNV associations

and rigorously controls the FWER at a genome-wide level � two rather appealing

properties. However, future work applying the proposed method to larger, more com-

plex settings is necessary.

In this dissertation, I have focused on continuous phenotype, with association test-

ing performed using linear regression. The kernel-based aggregation method itself,
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however, requires only p-values and can be extended to a more complicated marker-

level tests assuming nonlinear, mixed-e�ects, or mixture models between intensity

and phenotype. Furthermore, our simulations involve a very simple genetic scenario:

a small segment of DNA in which a single CNV is either present or absent. It is im-

portant and valuable to understand the properties of marker-level approach in these

simple cases. However, future research involving more complicated scenarios is also

needed.

Copyright© Yinglei Li, 2014.
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Appendices
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A.Proof of Theorem 1

Proof of Theorem 1. Let P denote the set of all possible permutations of {yi}, F0

the CDF of Tmax over P , and F−1
0 its generalized inverse. Also, let φ(X,y) = 1 if

Tmax(X,y) > F−1
0 (1− α) and 0 otherwise.

Now, note that under the null hypothesis that xi and yi are independent,

P (X,y) =
∏
i

P (xi, yi)

=
∏
i

P (xi)P (yi)

= P (X,y∗)

for all y∗ ∈ P . Thus, E0φ(X,y∗) is a constant for all y∗ and

E0 {φ(X,y)} =
1

n!

∑
y∗∈P

E0φ(X,y∗)

= E0
1

n!

∑
y∗∈P

φ(X,y∗)

≤ α,

where the term inside the expectation in the second line is less than or equal to α for

all X and y by the construction of the test.
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B. Proof of Theorem 2

Proof of Theorem 2. Assume simple linear regression y = β0 + β1jxj + ε between

intensities xj and y for subjects is, where ε has a normal distribution with mean

0 and standard deviation σ. By standardization, we de�ne xij − x̄j = x′ijsdxij
and

yi − ȳ = y′isdyi , where we denote standardized x′ij and y′i. Under the simple linear

regression model, we have the z-statistics under H0:

Zj =
β̂1j − 0

s.e.

=

∑
(xij−x̄j)(yi−ȳ)∑

(xij−x̄j)2

σ̂
√

1/
∑

(xij − x̄j)2

=

∑
sdxij

x′ijsdyiy
′
i

σ̂(n− 1)sd2
xij

√
(n− 1)sd2

xij

=

∑
x′ijy

′
i√

(n− 1)
,

where
∑

(xij − x̄j)2 = (n− 1)sd2
xij

and also σ̂ = sdyi .

Now, correlation between two p-values is equivalent to the correlation between the two

corresponding z statistics. Therefore, correlation between z statistics of two markers

is simpli�ed by (4.2),

cor(zj, zk) = cor(

∑
x′ijy

′
i√

(n− 1)
,

∑
x′iky

′
i√

(n− 1)
)

= cor(
∑

x′ijy
′
i,
∑

x′iky
′
i)

= cor(
∑

x′ij,
∑

x′ik),

since under the null hypothesis that xij and yi are independent.

By (4.2) again,

cor(zj, zk) = cor(
∑

x′ij,
∑

x′ik)

= cor(xj,xk)

Thus,correlation structure among p-values under H0 exactly equals the correlation

matrix of the intensities among markers.
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C. R code for Permutation Method

####kernel-based association test

## Input: X (matrix of intensity values)

## y (vector of phenotypes)

## FUN (If P and S are not supplied, must supply FUN

## a function which carries out the marker-level testing;

## must return vector of p-values or a list with components

## 'p' and 's' if signed aggregation is to be carried out)

## bw (bandwidth)

## pos (position of markers on chromosome)

## trans (transformation)

## test (if TRUE, calculates F0)

## N (Number of permutations)

## ... (arguments passed to FUN)

## Output: T (test statistic)

## p (p-value of t)

## Tmax

kbag <- function(obj, ...) UseMethod("kbag")

kbag.permTest <- function(obj, ...)

{

if (attr(obj, "signed")) kbag.numeric(p=obj$p, s=obj$s, P=obj$P, S=obj$S, ...)

else kbag.numeric(p=obj$p, P=obj$P, ...)

}

kbag.function <- function(FUN, X, y, test=TRUE, N=1000, showProgressBar=TRUE, ...)

{

## Evaluate FUN
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FUN.args <- as.list(formals(FUN))

dots <- list(...)

matched <- names(dots)[names(dots) %in% names(FUN.args)]

if (length(matched)) FUN.args[matched] <- dots[matched]

FUN.args[[1]] <- X

FUN.args[[2]] <- y

fun.val <- do.call(FUN, FUN.args)

signed <- FALSE

s <- S <- P <- NULL

if (is.numeric(fun.val)) {

p <- fun.val

} else if (is.list(fun.val)) {

p <- fun.val$p

if ("s" %in% names(fun.val)) {

s <- fun.val$s

signed <- TRUE

}

} else stop("FUN returns unrecognized format")

## Calculate P, S

if (test) {

P <- matrix(NA, nrow=N, ncol=ncol(X))

if (signed) S <- P

for (i in 1:N) {

FUN.args[[2]] <- sample(y)

res <- do.call(FUN, FUN.args)

if (!signed) P[i,] <- res else {
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P[i,] <- res$p

S[i,] <- res$s

}

if (showProgressBar) displayProgressBar(i,N)

}

}

if (signed) kbag.numeric(p, s, P=P, S=S, test=test, ...) else kbag.numeric(p, P=P, test=test, ...)

}

kbag.numeric <- function(p, s, bw, X, N=1000, P, S, pos=1:length(p), trans=c("log","normal","none"), test=TRUE, ...)

{

## Aggregate

signed <- if (missing(s)) FALSE else TRUE

if (signed & missing(trans)) trans <- "normal"

trans <- match.arg(trans)

if (missing(bw)) stop("You must supply a bandwidth")

if (signed) {

if (trans=="none") x <- s*(1-p)

if (trans=="normal") x <- qnorm((1+s*(1-p))/2)

if (trans=="log") x <- -s*log(p)

} else {

if (trans=="none") x <- 1-p

if (trans=="normal") x <- qnorm(1-p)

if (trans=="log") x <- -log(p)

}
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out <- .C("KBAGN", double(length(p)-2*(bw-1)), integer(length(p)-2*(bw-1)), integer(1), as.double(x),as.double(pos),as.integer(length(p)),as.integer(bw))

T <- out[[1]]

names(T) <- pos[out[[2]]]

Tmax <- if (signed) max(abs(T)) else max(T)

## Calculate F0, test

#########This part will be different when applying different approaches to get F0#################

if (test) {

if (missing(P)) {

if (missing(X)) stop("If test=TRUE, must supply either X (matrix of intensities) or P (matrix of draws from null); see documentation")

Sigma <- cor(X)

require(mvtnorm)

Z <- rmvnorm(N, sigma=Sigma, method="svd")

if (signed) {

P <- 2*pnorm(-abs(Z))

S <- sign(Z)

} else P <- 1-pchisq(Z^2,1)

}

F0 <- if (signed) getF0(P, S, bw=bw, pos=pos, trans=trans) else getF0(P, bw=bw, pos=pos, trans=trans)

p.value <- 1-F0(Tmax)

} else {

p.value <- NULL

F0 <- NULL

}

96



## Return

structure(list(Tmax=Tmax, p=p.value, F0=F0, T=T, signed=signed, bw=bw, trans=trans), class="kbag")

}

## Obtains null distribution for Tmax using permutation testing

getF0 <- function(P, S, bw, pos, trans)

{

N <- nrow(P)

x <- numeric(N)

if (missing(S)) for (i in 1:N) x[i] <- kbag(P[i,], bw=bw, pos=pos, trans=trans, test=FALSE)$Tmax

else for (i in 1:N) x[i] <- kbag(P[i,], S[i,], bw=bw, pos=pos, trans=trans, test=FALSE)$Tmax

ecdf(x)

}

###Simulation data

## n = number of subjects

## g = frequency of CNV

## m = number of SNPs / CNV

## snr = signal-to-noise ratio

## J = # of markers

## pen = penetrance

## standardized = standardize X and y?

genData <- function(n, g, m, snr=0.8, delta=1, J=200, pen, noise.type=c("spike","model"), standardized=FALSE)

{

noise.type <- match.arg(noise.type)
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if (m%%2!=0) stop("m must be even")

## Generate y, z

if (missing(pen))

{

z <- rbinom(n,1,g)

y <- genY(n=n,delta=delta,z=z)

}

else

{

if (n%%2!=0) stop("n must be even in a case-control study")

y <- c(rep(0,n/2),rep(1,n/2))

p <- numeric(n)

p[y==1] <- g*pen[2]/(g*pen[2]+(1-g)*pen[1])

p[y==0] <- g*(1-pen[2])/(g*(1-pen[2])+(1-g)*(1-pen[1]))

z <- rbinom(n,1,p)

}

## Generate X

X <- Z <- matrix(0,nrow=n,ncol=J)

j <- c(-(J/2):-1,1:(J/2))

Z[z==1,abs(j) <= m/2] <- snr

if (noise.type=="spike") {

if (is.null(attr(R,"sd"))) {

sd.r <- sd(as.numeric(R))

} else sd.r <- attr(R,"sd")
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a <- sample(1:(ncol(R)-J),1)

markers <- sample(1:ncol(R),J)

noise <- as.numeric(R[sample(1:nrow(R),n,replace=TRUE),markers]/sd.r)

} else {

E <- matrix(rbinom(J*n,size=1,prob=.3),ncol=J)

R1 <- matrix(rdex(J*n,0,1),ncol=J)

R2 <- matrix(rnorm(J*n,0,1))

noise <- E*R1+(1-E)*R2

}

X <- Z + noise

val <- list(y=y,X=X,Z=Z,z=z)

if (noise.type=="spike") {

start <- sample(1:length(pos), 1)

val$pos <- pos[start:(start+J-1)]

}

if (standardized) {

val$X <- standardizeX(val$X)

val$y <- standardizeY(val$y)

}

val

}

genY <- function(n,delta,z,pen)

{

return(rnorm(n,mean=delta*z))

##yy <- rbinom(n,size=1,prob=pen[z+1])
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##return(list(y=y,yy=yy))

}

####standardize data

standardizeX <- function(X)

{

n <- nrow(X)

center <- colMeans(X)

X.c <- sweep(X,2,center)

scale <- sqrt(apply(X.c,2,crossprod)/(n-1))

sweep(X.c,2,scale,"/")

}

standardizeY <- function(y){(y-mean(y))/sd(y)}

#####linear regression between intensity and phenotype

mlt <- function(XX, yy, type=c("continuous", "discrete"), signed=TRUE, return.line=FALSE, standardized=FALSE)

{

type <- match.arg(type)

if (type=="continuous") {

n <- length(yy)

if (standardized) {

b <- crossprod(XX,yy)/n

R <- yy - sweep(XX,2,b,"*")

t. <- b/(sqrt(apply(R,2,crossprod)/(n-2)/n))

} else {

meany <- mean(yy)
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y <- yy - meany

meanx <- apply(XX,2,mean)

X <- t(t(XX) - meanx)

Xy <- crossprod(X,y)

XX <- apply(X,2,crossprod)

b <- as.numeric(Xy/XX)

if (return.line) a <- meany-b*meanx

R <- y - t(t(X)*b)

t. <- b/(sqrt(apply(R,2,crossprod)/(n-2)/XX))

}

}

if (type=="discrete") {

n <- length(yy)

fit <- lm(XX~yy)

MSE <- apply(fit$residuals,2,crossprod)/(n-2)

SXX <- crossprod(yy-mean(yy))

SE <- sqrt(MSE/SXX)

b <- fit$coef[2,]

if (return.line) a <- fit$coef[1,]

t. <- b/SE

}

p <- 2*pt(-abs(t.),n-2)

if (!return.line & !signed) val <- p else val <- list(p=p)

if (return.line) val <- append(val,list(b=b, a=a))

if (signed) val <- append(val,list(s=sign(t.)))

val

}
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####plot kbag result####

plot.kbag <- function(x,F0,alpha=.05,pch=19,cex=.1,ylim,...)

{

if (!missing(F0)) x$F0 <- F0

T <- x$T

Position <- as.numeric(names(x$T))

if (is.null(x$F0)) {

if (missing(ylim)) ylim <- range(T)

plot(Position,T,pch=pch,cex=cex,ylim=ylim,...)

} else {

cutoff <- quantile(x$F0,1-alpha)

if (x$signed) {

ylim <- range(c(T,-cutoff,cutoff))

plot(Position,T,pch=pch,cex=cex,ylim=ylim,...)

abline(h=cutoff,col="red",lwd=2)

abline(h=-cutoff,col="red",lwd=2)

} else {

ylim <- range(c(T,cutoff))

plot(Position,T,pch=pch,cex=cex,ylim=ylim,...)

abline(h=cutoff,col="red",lwd=2)

}

}

}

## Standardized

Data <- genData(n=300, g=0.5, m=50,delta=0, standardized=TRUE)
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mlt(Data$X, Data$y)$p[1:10] ## Same as below

mlt(Data$X, Data$y, standardized=TRUE)$p[1:10] ## Same as above

fit <- kbag(mlt, Data$X, Data$y, bw=30, standardized=TRUE)

plot(fit)

###Demo

###permutation-based###

Data <- genData(n=300, g=0.5, m=50,delta=0)

fit <- kbag(mlt, Data$X, Data$y, bw=30, test=FALSE)

fit <- kbag(mlt, Data$X, Data$y, bw=30)

plot(fit)

## P

Data <- genData(n=300, g=0.5, m=50, delta=0, standardized=TRUE)

P <- S <- matrix(NA, nrow=1000, ncol=200)

for (i in 1:1000) {

res <- mlt(Data$X, sample(Data$y), standardized=TRUE)

P[i,] <- res$p

S[i,] <- res$s

displayProgressBar(i, 1000)

}

res <- mlt(Data$X, Data$y, standardized=TRUE)

fit <- kbag(res$p, res$s, P=P, S=S, bw=30)

plot(fit)

fit <- kbag(res$p, res$s, P=P, S=S, bw=50, trans="none")

plot(fit)
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D. R code for Correlation Method

#####Basic correlation method to get the whole sample correlation matrix#####

## Single example -- "manual"

Data <- genData(n=300, g=0.5, m=50, delta=0, snr=20)

res <- mlt(Data$X, Data$y)

Sigma <- cor(Data$X)

Z <- rmvnorm(1000, sigma=Sigma, method="svd")

P <- 2*pnorm(-abs(Z))

S <- sign(Z)

fit <- kbag(res$p, res$s, P=P, S=S, bw=30)

plot(fit)

## Single example -- "automatic"

Data <- genData(n=300, g=0.5, m=50, delta=0, snr=20)

res <- mlt(Data$X, Data$y)

fit <- kbag(res$p, res$s, bw=30, X=Data$X)

plot(fit)

## Simulation

N <- 500

p <- numeric(N)

for (i in 1:N) {

Data <- genData(n=300, g=0.5, m=50, delta=0, snr=20)

res <- mlt(Data$X, Data$y)

fit <- kbag(res$p, res$s, bw=30, X=Data$X)

p[i] <- fit$p
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displayProgressBar(i, N)

}

hist(p, col="gray", breaks=c(0,1,.01), border="white")

#####shrinkage approach

diags <- function(XX, d) {

X <- standardizeX(XX)

n <- nrow(X)

p <- ncol(X)

B <- matrix(0, p, d)

for (i in 1:p) {

for (j in 1:d) {

if (i+j > p) break

B[i,j] <- crossprod(X[,i], X[,(i+j)])/n

}

}

B

}

smoothB1 <- function(B,alpha) {

n <- nrow(B)

p <- ncol(B)

BB <- matrix(0, n, p)

for (i in 1:n) {

for (j in 1:p) {
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BB[i,j] <- B[i,j]*(1-alpha)^j

}

}

BB

}

multiz3h <- function(n=1000,XX, d,alpha) {

t<-ncol(XX)

require(Matrix)

require(psych)

B <- diags(XX, d)

BB<-smoothB1(B,alpha=alpha)

S <- bandSparse(nrow(BB), k=0:ncol(BB), diag=cbind(rep(1, nrow(BB)),BB), symmetric=TRUE)

cholS <- chol(S)

z<- array(rnorm(t*n),c(n,t)) %*% cholS ##see str(mvsamples)

z<-as.matrix(z)

return(z) ####give n*t matrix

}

###find the best shrinkage intensity

aa<-seq(0.1,0.15,0.01)

l<-length(aa)

N=500

s<-array(data<-0,dim=c(l,N),dimnames=list(aa,1:N))

for (i in 1: l)

{
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for (j in 1:N)

{

Data <- genData(n=50,g=0.5,m=100,delta=0,snr=2,J=500)

B <- diags(Data$X, 10)

BB<-smoothB1(B,alpha=aa[i]) ###alpha=0.03 seems okay

S <- bandSparse(nrow(BB), k=0:ncol(BB), diag=cbind(rep(1, nrow(BB)),BB), symmetric=TRUE)

ss<-as.matrix(S)

s[i,j]<-sum(eigen(ss)$values < 0)

}

displayProgressBar(i, l)

}

S<-apply(s,1,sum)

#####Getting F0 and only change one part of kbag function

Z<-multiz3h(n=N,X,d,alpha)

###Or:

Data <- genData(n=300,g=0,m=30,delta=0,snr=2,J=500)

res <- mlt(Data$X, Data$y)

fit <- kbag2(res$p, bw=30,d=150,alpha=0.012, X=Data$X, trans="none")

#####Applying SVD on kbag function

## Single example -- "manual"

Data <- genData(n=50, g=0.5, m=30, delta=0, snr=2,standardized=TRUE, J=500)

nn <- N<-1000
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X<-Data$X

n=dim(X)[1]

X <- standardizeX(X)

ZZ <- matrix(rnorm((n-1)*nn), nn, n-1)

SVD <- svd(X, nu=0, nv=n-1)

A <- sweep(SVD$v, 2, SVD$d[1:(n-1)], "*")/sqrt(n)

Z <- tcrossprod(ZZ, A)

P <- 2*pnorm(-abs(Z))

S <- sign(Z)

fit <- kbag(res$p, res$s, P=P, S=S, bw=30)

##Or

fit <- kbag(res$p, res$s, bw=30, X=Data$X)

plot(fit)

Copyright© Yinglei Li, 2014.
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