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ABSTRACT OF THESIS 

 

FABRICATION OF SWNTs FOR WATER DESALINATION AND MULTILAYER 

STRUCTURE FOR DNA SEQUENCING 

 

0.7nm single wall carbon nanotubes have been synthesized within VPI-5 zeolite channels 

with sucrose as carbon precursor. VPI-5 molecular sieves are synthesized hydrothermally 

under conventional heating. X-ray powder diffraction, micro raman, scanning electron 

microscope (SEM), transmission electron microscope (TEM), Thermogravimetric 

analysis have been used to investigate the structure of zeolite and thermal decoposition 

process of carbon precursors.  0.4nm single wall carbon nanotubes have also been 

fabricated within AlPO4-5 nanopores. A key challenge is to produce high yield single 

wall carbon nanotubes with uniform diameter. In order to improve the carbon nanotube 

yield, different organic precursors are employed. Although the problem is still the 

repetition and low yield of CNTs, it is still an improvement for 0.7nm SWNTs synthesis 

with the new template prolysis method.  

 

The novel multilayer conductor/insulator/conductor structures have been fabricated. This 

structure might find potential application in DNA sequential reactions because each layer 

might be individually addressed with voltage. When bias is applied to the conductive 

layer, it can be chemically functionalized, which leads to membrane pore with multiple 

reaction sequences when the molecule traverses the membrane reactor. In this 

thesis, Carbon/polymer/carbon system and copper/polymer system will be introduced. O2 

RIE was used to expose the edge of carbon/polymer/carbon structure. However, the 

conductivity of carbon layer is not high enough for electroplating. Copper pores etched 

by FeCl3 solution shows good conductivity, and can be electroplated with metal 

nanoparticles.  

 

KEYWORDS: Single wall carbon nanotube, Zeolite, water desalination, Multilayer,                    

DNA sequencing.  
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Chapter 1    Introduction 

 

The high cost of DNA sequencing and the shortage of fresh water are two very diverse 

world problems that can be solved with breakthroughs in membrane technology. The 

human genome project is very important because it could help the treatment of human 

disease by designing drugs that are tailored to the individual and predicting risk factors. 

US National Human Genome Research Institute (NHGRI) are trying to reduce the cost of 

genome sequencing to ~$1,000 by 2014 [1]. Nowadays, the price for DNA sequencing is 

$48,000 [2], which is much lower than $300 million of Human Genome Project 

completed nine years ago. The ideal DNA decoder would have a specific voltage pulsed 

corresponding to each sequence as a DNA strand passed through a pore with nm-scale 

electrodes. 

 

Fresh Water is very important to human, agriculture and industry. Water is an abundant 

natural resource, which covers more than 70% of the earth’s surface. However, only 

about 3% is fresh water, with the majority of that in polar regions and inaccessible 

lakes.[3] Therefore, it is necessary to find a way to improve the effectiveness and 

efficiency of water purification. Reverse osmosis is the primary method to desalinate 

water however has very large capital and energy costs.  Large capital costs are due to the 

large surface area required for water to ‘diffuse’ through the 50nm thick membrane skin 

layer and the energy consumed for sustaining large area cross-flow to reduce 

concentration polarization.  Ideal would be to have a membrane with pores that are small 

enough to exclude ions but allow the fast flow, approaching that of aquaporin protein 

channels, of water. 
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The controlled passage of ions through nanopore membrane has attracted great interest in 

biochemistry, biophysics, and chemistry fields.  It has gained popularity because these 

membranes with uniform pore diameter and good mechanical property may find potential 

applications in water desalination, molecules separation, DNA translocation and other 

fields. 

 

1.1    Multilayer nanopore structure for DNA translocation 

In recent years, scientists are using nanopore structure for individual molecule sensing, 

which can make DNA sequencing at high speed and low cost. It is possible for such 

molecule sensing if the diameter of the nanopore is similar as the molecule. When the 

nanopore is put into a solution and potential is applied, a detectable ionic current change 

can be observed due to ions passing through the nanopore.  

 

Various methods have been employed for single molecule sensing. Natural protein pores, 

organic polymer pores or inorganic materials such as silicon nitride, silicon dioxide, 

graphene, and nanotube pores are fabricated. 

 

1.1.1 Bio-nanopore 

Biological nanopore sensor has a single transmembrane protein imbedded in a lipid 

bilayer (Fig.1.1). The most widely used protein is a-hemolysin (αHL). The mushroom 

shaped pore of αHL consists of a 14 stranded β-barrel with its narrowest part of 1.4nm in 
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diameter[4], [5]. When a molecule enters the nanopore, it causes temporary current 

blockades, and when the molecule exits, the current is restored. [5] 

 

1.1.2 Nanopores in silicons 

Because the lipid membrane is very fragile, solid-state nanopores have been fabricated to 

solve this problem. Two methods have been used to fabricate nanometer scale channels 

within inorganic materials. One is ion beam sculpting and the other is wet etching. Each 

of these methods is briefly introduced here. 

 

1.1.2.1  Ion beam sculpting 

Golovchenko’s group [6-9] use two-step ion-beam sculpting process to fabricate solid-

state nanopores as shown in Figure 1.2. The first step is to make a 50-100 nm bowl-

shaped cavity at the backside of the Si3N4 membrane using focused ion beam (FIB). In 

the next step, the pore was opened with feedback controlled Ar
+
 ion beam sculpting. 

Atomic layer deposition (ALD) of Al2O3 can also be used to decrease nanopore diameter 

[10]. Dekker’s group[11, 12] reported using electron beam of transmission electron 

microscopy (TEM) to shrink the pore size. The advantage of this method is that in situ 

process can be observed from the microscope. Therefore, the process can be stopped as 

soon as the desired pore dimension is reached. 

 

1.1.2.2   Etching 

The feedback electrochemical etching is used to obtain nanopores (Fig.1.3) [13]. When 

the pore is etched through by KOH solution, the electronic current increases sharply. It 

http://en.wikipedia.org/wiki/Nanopore
http://en.wikipedia.org/wiki/Focused_ion_beam
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allows the etching process to be stopped promptly and prevent over-etching. The 

diameter of the pores could be further reduced by thermal oxidation. (Fig.1.3d) This 

method avoids of using ion beam, which reduces the cost of drilling a hole and make it 

more accessible. 

 

1.1.3  Polymer nanopores by the track-etching method  

Polymer nanopores can be obtained by track-etching technique, which has been widely 

used in polymer materials such as polycarbonate and polyimide. The polymer film is 

firstly bombarded with heavy ions beam, which create tracks on the polymer. Then it is 

chemically etched along the tracks by immersion into an etchant. Siwy’s group [14-18] 

fabricates conically shaped nanopores in polymer films by track-etching method. To 

obtain the conical stucture, they use the asymmetrical etching process with etchant placed 

on one side of the membrane and stop solution on the other side (Fig.1.4).  They also 

indicate that a conical nanopore shows nonlinear current-voltage curves as nanofluidic 

diode. Martin and co-workers [19-21] found that the shape of conical pores produced by 

the track-etching technique was related to the etch time, temperature and percentage of 

ethanol in the etching solution.  

 

1.1.4 CNT membrane  

The pore length of the track-etched membrane is not uniform due to different track tilt 

angle, and its pore surface is rough. [22] Carbon nanotube has uniform pore diameter and 

atomically smooth inner wall. Crooks et al. [22, 23] fabricate a nanopore membrane with 

a single multiwall carbon nanotube (i.d ~100nm) in it. The carbon nanotube is firstly 
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mounted on a TEM grid then embedded in epoxy matrix, microtome cut, and 

subsequently mounted onto a Si3N4 wafer. Liu et al. [24] fabricated a device with one 

single-walled carbon nanotube spanning cross two reservoirs, which generates a large 

ionic current increase by DNA translocating through the nanotube.  

 

1.1.5  Graphene Nanopore 

Graphene is an atomically thin sheet with sp
2
 bonded carbon atoms that are packed in two 

dimensional (2D) honeycomb crystal lattice. [25] Because of its atomic thinness, stability 

and electronic conductivity, graphene has attracted great attention in DNA 

translocation.[26-30]. The atomic thick property makes graphene to be an ideally high 

resolution device. Golovchenko’s group fabricated a detector by drilling a single 

nanopore in graphene membrane. [26] Recently, multilayered graphene- Al2O3 

structure[30] has been fabricated by sequentially depositing layers of graphene and Al2O3, 

and the nanopores are obtained by electron beam sculpting process. However, they didn’t 

address each layer with voltage and functionalize the graphene layer with charged groups 

for better selectivity. 

 

1.1.6  Pore functionalization   

Pore functionalization can modify pore properties and improve ion selectivity by grafting 

different chemical groups. Different surfaces modified with various chemicals are 

presented here.  
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SiN nanopore can be chemically modified by negatively charged silanol groups.[31]  It 

shows that the negatively charged dye is excluded from the pores by electrostatic forces, 

and only the positive one can pass through. 

 

Martin’s group[32] deposits Au nanowires in polymer nanopores using electroless plating 

method. Firstly, Sn
2+

 adheres to the membrane which is coated with poly 

(viny1pyrrolidone) (PVP) on its surface. Secondly, the polymer is deposited with Ag. 

Finally, Ag is replaced with Au. The gold surface can be further modified with a variety 

of molecules by Au- thiol chemistry. 

 

Siwy et al. [17, 18] reported the formation of nanofluidic diode by modifying nanopores 

with carboxyl groups and amino groups. Carboxyl groups can be transformed into amino 

groups by 1-ethyl-3-[3(dimethylamino) propyl] carbodiimide hydrochloride (EDC) 

coupling agent, and reverse process can be done by succinic anhydride.  

 

Electrochemical reduction of aryl diazonium salts has been applied to modify carbon 

nanotube surfaces [33-36]. As shown in Figure 1.5, the molecule covalently bonds to the 

carbon surface. This technique has been employed to other carbon materials, such as 

pyrolitic graphite and glassy carbon electrodes [37].  This chemistry has not yet been 

applied to DNA translocation. 
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1.1.7  Molecule translocation through the nanopore 

Gradient in electrochemical potential µ and convection lead to mass transfer in solution.  

[38].  

   
  

  

 μ

  
      (1) 

The difference of µ over a distance changes because of a concentration gradient c or the 

change of potential gradient φ from the electric field. The flux can be calculated by  

diffusion, electrophoretic and convection. Then we get the Nernst- Plank equations [38], 

[39] 

    
  

  
 

 

  
        

 

  
   φ       (2)  

      
  

  
 

   

  

 φ

  
] + cv   (3)  

Where c is the concentration of the ion,   the electric potential at any point x in the 

membrane, F the Faraday constant, R the gas constant, T the absolute temperature, D the 

diffusion coefficient, z the charge of the ion, v the average velocity of the solvent and cv 

the transport of permeant because of the convective solvent flow. 

 

In capillary electrophoresis, convection is considered as absent, the velocity of the flow is 

given by [40] 

  
     

 
     (4) 

where f is the hydrodynamic drag,  

From the Stokes formula 

         (5) 

Then electrophoretic velocity [19] 
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    (6) 

where r is the radius of the ion, e is the electronic charge and   is the viscosity of the 

solution. 

Electrophoretic mobility µ is defined as 

μ  
 

 
 

    

    
     (7) 

 

1.1.8   molecule sensing 

When a molecule travels through a single nanopore, it gives rise to a detectable ionic 

current change (Fig.1.6). Branton’s group [10] found that the current blockage is equal to 

the current carried by solution which is replaced by the translocating molecule, 

           
     

     
 

where   is the solution conductivity, Vbias the applied voltage, Lpore the effective pore 

length, and A the hydrodynamic cross section of the translocating molecule. 

 

The dwell time of DNA in silicon oxide nanopores is related with the molecule length 

[12],[16]          , α=1.26, where L is the DNA length.  

 

1.1.9 Molecular separation 

Various nanofabricated membranes have potential applications in molecular separations. 

For example, Martin’s group[41] used gold nanotubules in polymeric membranes for 

small molecules separation because of size difference. This membrane shows high 

selectivity of methyl viologen (MV
2+

) and Ru(II) tris(2,2’-bi-pyridine) [Ru (bipy)3
2+

]. 
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Ultrathin (15nm thickness) porous nanocrystalline silicon (pnc-Si) membrane was 

reported for molecular separation(Fig.1.7) [42]. This membrane has excellent mechanical 

strength, and it can support 1 atm of differential pressure without plastic deformation. 

Silicon nitride membranes[43] with pore diameter less than 10nm also exhibit good 

mechanical, chemical and thermal properties. After functionalized by specific antibody, 

silica nanotubes [44] growth within AAO membrane is used to separate two enantiomers 

of a chiral drug.  

 

1.1.10 Novel Design of nanopore for DNA sequencing  

In this thesis, two system of conductor/insulator/conductor multilayer system and 

conductor/lipid bilayer system were chosen to produce the nanopore structure. 

 

1.1.10.1 Conductive/Insulator/Conductive multilayer system 

As shown in Figure 1.8, this multilayer nanopore device contains one nanometer-scale 

hole. Each layer is several nanometers thick and can be individually addressed with 

voltage. The conductive layer can be independently functionalized to control a DNA 

strand passing through the nanopore. The influence of electric field due to different 

voltage might trap DNA in the nanopore.[45-47] Copper nanoparticles are electroplated 

at the edge of the conductive layer to prove the conducting property. The tethered 

functional chemistry could affect the pore selectivity, which leads to membrane pore 

having multiple reaction sequences as the molecule translocating through the memebrane. 
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1.1.10.2  Conductive/Lipid bilayer system 

Self-assembled bilayer lipid membranes (BLMs) in vitro were first reported in 1962. [48]  

The artificial lipid bilayers have been prepared at the edge of Teflon membrane similar as 

soap bubble.[49] It has also been reported that pore-spanning lipid membranes are 

formed over plasmonic nanopore arrays in a 200nm thick gold film for biosensing.[50] 

Here, we design to use electrochemistry to graft the edge of the conductive layer with 

long chain alkane primary amine molecule (i.e. CH3(CH2)10NH2) in order to make it 

hydrophobic. (Fig.1.9) This structure with single nanopore in the lipid bilayer might be a 

good platform for DNA translocation and biosensing. The advantage of imbedding 

protein in lipid bilyaer is its small pore size, and if different proteins are chosen, it can 

show different molecular specificity. 

 

1.2  Water desalination 

The requirement for excellent desalination membranes is not easily met. It requires high 

flux and salt rejections. In addtion of that, the membranes should be also resistant to 

fouling, cheap and mechanical stable. 

 

Various methods have been employed for desalination, including distillation [51], reverse 

osmosis[52] and nanofiltration [53]. Among all these techniques, reverse osmosis is 

widely used because of energy saving. Ultrapure water can be produced by RO 

membranes from salt water such as seawater or brackish water. In order to force water 

flow from high to low concentration, the pressure required for this process should be 
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larger than the osmotic pressure. These RO membranes include cellulose acetate (CA) 

[54], poly amide [55], and so on. 

 

 Zeolite membranes have been studied for desalination application because of its 

chemical and thermal stability. MFI-type zeolite (pore size ~0.56nm) membranes have 

been used for water desalination.[56, 57] It is reported that NaA zeolite nanoparticles/ 

polyamide composite prepared by interfacial polymerization showed better permeability 

than pure polyamide films. [58] 

 

Carbon nanotube (CNT) membranes may offer an exciting opportunity for water 

desalination due to its nearly ideal slip-boundary interface, which can greatly enhanced 

fluid flow. It is reported that fluid moves through hydrophobic SWNTs 4-5 orders of 

magnitude faster than in conventional materials.[59] In this way, it may dramatically save 

the energy needed for water desalination. Hummer and co workers[60] reported 

molecular dynamics simulations results of one-dimensional water in carbon nanotube 

leading to rapid transport of water.  1 to 2nm carbon nanotube membrane with negatively 

charged at its entrance shows high ion rejection which is greater than 90% exclusion for 1 

mM K3Fe(CN)6. [61] A US patent reported carbon nanotubes embedded in a polymeric 

matrix demonstrated a higher salt rejection and water flux compared with the membrane 

without carbon nanotubes. [62]  

 

However, a major challenge is the uniformity of carbon nanotube diameter. Nowadays, 

CNTs are usually synthesized by laser ablation [63], arc-discharge between electrodes 
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[64], and chemical vapor deposition (CVD). [65] In the CVD method, carbon nanotubes 

nucleate and grow on the Ni, Co, or Fe based catalyst. The diameter of CNT is 

determined by catalyst particles size. [66] Therefore, in order to control the carbon 

nanotube diameter, it is very important to control the catalyst size. However, the size 

control process is a challenge. 

 

Zeolites have uniform pores, which can be a good size control substrate to confine the 

carbon nanotube growth inside their channels. Recently, Z.Tang’s group reported the in-

situ growth of SWNTs in the AlPO4-5 (structure code AFI) zeolite pore by pyrolysis of 

the organic precursor tripropylamine (TPA). [67] The AlPO4-5 consists of alternating 

tetrahedral (AlO4)
-
 and (PO4)

+
 with one dimensional hexagonal structure, and the inner 

diameter is about 0.73nm. These 4 angstrom carbon nanotubes exhibit supconductivity 

property. [68, 69] Various conditions have been investigated for producing higher 

loading density and better carbon nanotube quality. Synthesis with F
-
 and F

-
 free [70], 

with different carbon precursor molecules (triethylamine (TEA),  TPA, 

tetrapropylammonium hydroxide (TPAOH), and tetrabutylammonium hydroxide 

(TBAOH)) [71] , different metal cations [72-74], e.g. Mn
2+

, Mg
2+

, Co
2+

, Si
4+

, etc. have 

been reported. 0.3nm (2,2) armchair SWNTs synthesized by pyrolyzing organic template 

molecules dipropylamine (DPA) in AlPO4-11 nanochannels has also been reported.[75] 

However, the 0.3nm and 0.4nm SWNTs are too small for water desalination process, 

because a sodium ion has a radius of 0.3nm with a hydrated ion size of 0.7nm. [76] 
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The microporous aluminum phosphate VPI-5(Virginia Polytechnic Institute number 

5)[77] has uniform 1.2nm pore diameter. As shown in Figure 1.10, VPI-5 has much 

larger pore diameter than AlPO4-5 and AlPO4-11.[78] In order to obtain larger diameter 

SWNTs, VPI-5 is employed as a hard template in our experiment. 

 

1.2.1 Novel Design of 0.7nm SWNTs growth  

Carbon nanotube membranes are attractive for water desalination for three reasons. First, 

the atomically flat graphitic planes allow fast fluid flow. Second, with the 0.7nm SWNTs, 

it is possible to separate water molecules and salt molecules by size difference. Third, the 

entrance of the nanotubes can be covalently functionalized with charged groups. Here, we 

try to fabricate membranes, which have uniform diameter (~0.7nm) SWCNT. To get the 

well defined diameter SWCNT, the carbon nanotube has been fabricated by pyrolysis of 

the carbon precursor inside the VPI-5 channel. The carbon nanotube will be embedded 

within a highly stable epoxy matrix. A membrane with 5µm thick SWCNTs is obtained 

from microtome dicing technique, which could greatly enhance reproducibility and 

reduce sample preparation time. 

 

1.3 Challenges 

Some critical problems have already been solved, such as the back etch, open nanopore 

structure, Cu electroplating, the vertical pore structure fabrication. However, challenges 

still remain.  
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A key challenge is how to fabricate uniform sized single wall carbon nanotube. The 

experiment results indicate that it might be achieved by using VPI-5 zeolite as the 

template to encapsulate carbon inside its channel. A continuing concern is that the carbon 

nanotube yield is too low, and its poor repeatability. 

 

The second challenge is how to load the fragile lipid bilayer onto the nanopore structure. 

One possible solution is making the pore smaller because it is reported that lipid bilayer 

is very fragile across a large area. [49] 

 

The third challenge is how to slow down DNA translocation speed, control its 

translocation and make it readable. It might be solved by binding the DNA strand to the 

functional group to slow down the DNA passing rate.  

 

Although challenges remain, the progress toward the goal of inexpensive nanopore 

sequencing and uniform carbon nanotube is encouraging. 

 

1.4 Conclusions 

Nanopore sequencing and water desalination are attractive fields and they are growing 

areas in nanotechnology. Our goal is to fabricate conductor/insulator/conductor 

multilayer structure for the DNA sequence and synthesis of uniform diameter carbon 

nanotubes for water desalination. In Chapter 2, we present a method to fabricate 0.7nm 

SWCNT by pyrolysis of carbon precursor inside the VPI-5 zeolite channels. TEM images 

confirmed the exsistance of 0.7nm SWNTs obtained by carbonization of VPI-5/ sucrose 
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composite at 1000◦C at inert atmosphere. Different organic precursors are used to find 

the suitable condition for carbon nanotube growth. The challenge is the poor repeatability 

of the synthesis and low yield of carbon nanotubes. 

 

In Chapter 3, we are trying to fabricate the multilayer pore structure. We will introduce 

two systems, one is carbon/polymer/carbon system and the other is metal/lipid bilayer 

system. In the first system, we have fabricated reproducible and controllable nanopore 

structure. 200nm vertical carbon/polymer multilayer pore structure has been prepared by 

RIE etching and pore edges are confirmed by SEM. Thin AAO membrane with 50nm 

pore diameter has been synthesized by one step anodization. However, the carbon layer is 

not so conductive, which is not good enough for voltage applying on it and 

electrochemistry functionalization. In the second system, metal/lipid bilayer system is 

established. Micrometer copper pores have been successfully etched by FeCl3 solution 

and coated with metal particles by electroplating method. Ni layer serves as good 

protective layer during the RIE etching SiO2 process, about 1.4µm thick SiO2 pores are 

opened by C4F8/O2 etching. 
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Figure 1.1  Detection of Metal ions by pore of αHL[4]. Reprinted with permission from 

ref.4. Copyright (2001) Nature Publishing Group. 
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Figure 1.2 Strategy to make nanopores using ion-beam sculpting.  [6] Reprinted with 

permission from ref.6. Copyright (2001) Nature Publishing Group. 
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Figure 1.3 Fabrication of silicon nanopores with feedback electrochemical etching. (a) 

Schematic image of the experimental setup. (b) Schematic image of KOH etches through 

the tip of the inverted pyramid. TEM images showing the morphology of (c) an as-etched 

pore and (d) pore after oxidation. [13] Reprinted with permission from ref.13. Copyright 

(2007) WILEY-VCH Verlag GmbH&Co. KGaA 
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Figure 1.4  SEM images of the etched side of (A) a polyethylene terephthalate (PET) and 

(B) a polyimide foil. (C) Schematic image of the experimental setup. [14] Reprinted with 

permission from ref.14. Copyright (2003) Elsevier. 
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Figure 1.5  Electrochemical reduction of an aryl diazonium salt. [33] This figure is 

reproduced form ref.33. Reprinted with permission from ref.33. Copyright (2001) 

American Chemical Society. 
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Figure 1.6 Translocation events. (a) DNA molecules translocating through a nanopore in 

strictly single-file (left) and folded one (right).  (b) seven translocation events.[10] 

Reprinted with permission from ref.10. Copyright (2004) American Chemical Society. 

 

 

 

 

 

 

 

 



22 
 

 

 

Figure 1.7  Molecular separation though pnc-Si membrane. [42] Reprinted with 

permission from ref.42. Copyright (2007) Nature Publishing Group. 
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Figure 1.8 Proposed membrane device structure with independently functionalized 

multilayer nanoporefor DNA sequencing. 
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Figure 1.9   Schematic of protein embedded in lipid bilayer nanopore at a single layer. 
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Figure 1.10  Framework [100] projections of AlPO4-11, AlPO4-5 and VPI-5. [78] 

Reprinted with permission from ref.78. Copyright (1989) American Chemical Society. 
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Chapter 2   Synthesis of single walled carbon nanotubes (SWCNTs) in  

zeolite template 

 

2.1 Introduction 

Since the first report of carbon nanotubes (CNTs) by Iijima in 1991 [81], many research 

work have been carried out because of their unique physical, chemical properties and 

potential applications.[59],[82] However, the lack of purity and uniformity in diameter 

has become a significant hindrance for its application. 

 

Recently, highly ordered porous materials, such as anodic aluminum oxide (AAO), 

mesoporous silica and zeolite, have attracted great attention because of their crystalline 

structure and precisely controlled pore size, which can be used in hard template 

carbonization technique. Kyotani et al.[83] use AAO to fabricate carbon nanotubes in its 

one-dimensional channel. Various materials such as sucrose [84], phenolic resin[85], and 

meso-phase pitch [86] have been used as carbon precursor with mesoporous sieve 

template to produce ordered mesoporous carbon. The mesoporous carbon replica is 

obtained after the removal of template. It has also been reported that multi-walled carbon 

nanotubes were synthesized by a pyrolytic technique with MCM-41 (Mobil composite 

material-41) as template and sucrose as carbon precursor. [87] Other zeolite, like 13X [88] 

and Y-type high-silica zeolite [89], have been reported as the support for carbon 

nanotubes growth by CVD method. However, there are a noticeable amount of MWNTs 

mixed with SWNTs.   
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Z. Tang group reported that 0.4nm single walled carbon nanotubes have been synthesized 

from carbonization of template molecules of tripropylamine (TPA) in one-dimensional 

AlPO4-5 zeolite template.[67] The framework of AlPO4-5 has 12-ring hexagonal P6cc 

structure with inner diameter of 0.73nm. By considering the Van der Waals radius of 

carbon, the nanotubes diameter allowed in the channel is extremely small (0.39nm), 

which leads to the instability after removal from template. [90] Micro-Raman system is 

used to characterize the carbon nanotube structure, and G band located around 1600 cm
−1

 

has been measured [91], [92]. Co
2+

, Si
4+

 and other cations are introduced in order to 

enhance the adsorption on the channel walls, and they also play a catalytic role in 

carbonization of organic precursor [93],[72]. 

 

Extra large pore molecular sieve VPI-5(Virginia Polytechnic Institute number 5)[77] has 

uniform 1.2nm pore diameter, which might be a good template for larger diameter single 

wall carbon nanotubes synthesis. Large molecule as triisopropylbenzene (kinetic 

diameter=8.5Å) [77] and Iron-phthalocyanines (FePc) [94] have been reported loaded 

into VPI-5. One European patent reported formation of carbon nanostructures with 

phthalocyanine molecule in VPI-5 zeolite crystals. [95] However, they didn’t provide the 

TEM image of the carbon nanostructure to show if it is carbon nanotube.  

 

In this work, we first report the synthesis of 0.7nm single wall carbon nanotubes through 

VPI-5 templates by carbonization of sucrose in the presence of Co catalyst. Other organic 

precursors have also been used, but no carbon naotubes are found from their TEM images. 

Although the substantial challenge now is the repetition of carbon nanotube synthesis and 
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the low yield, the results from TEM images of uniform diameter (~0.7-0.8nm) single wall 

carbon nanotubes is an improvement, and future work is promising. 

 

2.2 Experimental  

2.2.1 Chemicals & Equipments 

Table 2.1 Chemicals used and manufacturers 

Chemical                    Manufacturer 

Aluminum tri- isopropoxide [(iPrO)3 Al] 

Pseudoboehmite 

Aldrich (98%+) 

SASOL (Catapal
®

 B)  

H3PO4 (85%) EMD 

Tri- tripropylamine (TPA) Aldrich (≥ 98%) 

di-n-propylamine (DPA) Alfa Aesar (99%) 

D-fructose Amresco 
®

 

sucrose Domino
®

 

1-aminopyrene Aldrich 

1-pyrenebutyric acid 

Co(CH3COO)2▪ 4H2O 

Aldrich (97%) 

Alfa Aesar 

 

Samples were pyrolyzed at a quartz boat in Lindberg/blue tube furnace (Figure 2.1). It 

has a microcomputer based programmable temperature controller. Therefore, temperature 

and time could be accurately controlled. Gas flows were controlled by the MKS 

Instruments 1179A flow controllers. 
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2.2.2 Materials Characterization 

2.2.2.1 Scanning electron microscopy (SEM) 

SEM was carried out on S-4300 HITACHI scanning electron microscopy. Samples were 

coated with gold before analysis. 

 

2.2.2.2 XRD 

Powder X-ray diffraction (XRD) patterns were recorded on a Siemens D500 system 

operating with Cu Kα radiation (λ = 1.5406 Å). A 2θ scan from 5° to 50° at a rate of 1.5° 

per minute was employed. 

 

2.2.2.3 The transmission electron microscope (TEM) 

High resolution transmission electron microscope (HRTEM) images were obtained using 

a JEOL 2010F microscope operating at 200 keV. Before TEM observations, the samples 

were prepared by dispersing the products in ethanol or water with an ultrasonic bath for 

10-20 min and then one drop of the resulting suspension was placed on a copper grid. 

Samples were dried at vacuum oven overnight before measurement.  

 

2.2.2.4 Micro Raman 

Raman spectra were measured for SWCNTs at room temperature using a Dispersive 

Raman Spectrometer (Thermo Scientific) and 780nm laser excitation. Another one is 

Renishaw’s invia micro raman and PL spectroscopy system, which is equipped with a 

633 nm red laser. 
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2.2.2.5 TGA 

Thermogravimetric analysis (TGA) was conducted on a NETZSCH STA449C 

simultaneous thermal instrument. The sample (about 15 mg) was heated at a heating rate 

of 20 °C min
-1

 from room temperature to 1000 °C under flowing nitrogen (20 ml min
-1

), 

and then burn the carbon at 1000°C under air (60 ml min
-1

) for 20minutes. The other two 

TGA equipments were universal instruments 2950 TGA HR V5.4A and STA6000 from 

PerkinElmer.  

 

2.2.3  Experimental details 

2.2.3.1  Autoclave clean 

Before starting the hydrothermal crystallization step, Teflon-lined autoclave (Parrinst 

Instrument company) is cleaned with 30% NaOH at 423K for 10-12h. Then it is washed 

with distilled water and dried at room temperature.  

 

2.2.3.2  Synthesis of AlPO4-5 in HF 

The gel mixture consisted of the following composition   1.0Al2O3: 1.0P2O5: 1.2TPA: 

0.8HF: 400H2O. A typical synthetic procedure involved the following steps: aluminum 

tri- isopropoxide was first hydrolyzed in water for 2h followed by addition of phosphoric 

acid with stirring for 30 minutes. Then TPA was dropwisely added into the mixture. After 

continuous stirring for 2h, HF acid was added into the gel to adjust PH value. The formed 

gel was sealed in a Teflon-lined stainless autoclave and heated at 453k under autogenous 

pressure for 24h. The obtained hexagonal shaped AlPO4-5 crystals were filtered, washed 

with distilled water, and dried at 333k temperature. 
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2.2.3.3  Synthesis of AlPO4-5 in H2SO4 

A reaction mixture was prepared by combining (iPrO)3 Al, phosphoric acid, TPA, H2SO4 

and distilled water in the ratio 1.0Al2O3: 1.0P2O5: 1.4TPA: 0.5 H2SO4: 400H2O. We use 

similar procedure as the synthesis of AlPO4-5 in HF. 

 

2.2.3.4  Synthesis of CoAPO-5 

We use similar procedure to synthesis CoAPO-5. It was synthesized by adding Co cations 

into the gel during the AlPO4-5 crystals synthesis process. The composition of the gel is 

xCo: 1.0Al2O3: 1.0P2O5: 1.2TPA: 0.8HF: 800H2O, where x is the molar ratio of Co to 

phosphorus. The aluminum tri- isopropoxide was first hydrolyzed in water, and then 

Co(CH3COO)2▪ 4H2O , H3PO4, TPA, HF were added into the solution under stirring. The 

gel was sealed in an autoclave and heated at 453k for 24h. The products were filtered, 

washed with distilled water, and dried at 333k temperature. 

 

2.2.3.5  Synthesis of AlPO4-5 without HF 

The gel mixture consisted of the following composition   1.0Al2O3: 1.0P2O5: 1.0TPA: 

100H2O. A typical synthetic procedure involved the following steps: (iPrO)3 Al was first 

slurred into water for 1h followed by addition phosphoric acid with stirring for another 30 

minutes. Then TPA was dropwisely added into the mixture. After continuous stirring for 

2h, the gel was sealed in a Teflon-lined stainless autoclave and heated at 363k under 

autogenous pressure for 24h, and then heated at 453k for 24h. The solid products were 

filtered, washed with distilled water, and dried at 333k temperature. 
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2.2.3.6  Synthesis of 0.4nm SWNTs 

The crystals were uniformly put inside a quartz boat, which is placed in the central part of 

the tube furnace. Before heating, the chamber is vacuumed and purged with Ar flow for 5 

cycles in order to remove the remained air. The samples were then treated in a range of 

temperatures between 20°C and 1000°C, with a temperature increase rate of 20◦C /min in 

a steady flow of Argon gas (60 sccm).  After maintaining the required temperature of 

synthesis (1000°C) for one hour, the tube cools down to room temperature in Argon. 

Then the zeolite framework was dissolved in 30% hydrochloride acid overnight to get the 

freestanding 0.4nm SWNTs.  

 

2.2.3.7  Synthesis of AlPO4-5 in 200nm AAO pores 

A reaction mixture was prepared by (iPrO)3 Al, phosphoric acid, TPA, and distilled water 

in the ratio 1.0Al2O3: 1.0P2O5: 1.0TPA: 100H2O. A synthetic procedure involved the 

following steps: (iPrO)3 Al was suspended in H2O with vigorous magnetic stirring, 

followed by addition of phosphoric acid with stirring. Then TPA was dropwisely added 

into the mixture. After continuous stirring, the gel was sealed in a Teflon-lined stainless 

autoclave and heated at 363k under autogenous pressure for 24h. The autoclave 

containing the gel was quenched under water, opened, and a commercial porous anodic 

alumina membrane (0.2µm membrane discs by Whatman) was put at the surface of the 

liquid to let it filled with zeolite gel. The sample was then re-sealed in the autoclave and 

heated at 453k for another 24h.  
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2.2.3.8   Synthesis of VPI-5 

The gel mixture consisted of the following composition 1.0Al2O3: 1.0P2O5: 1.0DPA: 

40H2O. Pseudoboehmite and phosphoric acid are employed as sources for Al and P, 

respectively. Typical synthetic procedure involved the following steps:  1.436g 

pseudoboehmite was suspended into 4.52g water (2/3 of total water) for 1h.[96] 2.42g 

phosphoric acid along with the rest 2.26g H2O was added dropwisely to the slurry, and 

continue stir for 1h. The resulting gel was aged at room temperature for 3h. Then 1.05g 

di-n-propylamine(DPA) was dropwisely added into the mixture. After continuous stirring 

for 1h, the stirring was stopped, and the gel was aged at room temperature for 20h.  The 

gel was then sealed in a Teflon-lined stainless autoclave and put into a preheated 

conventional electric oven at 398k (in the range of ±5◦C) under autogenous pressure for 

24h. The solid products were filtered, washed with distilled water and dried in vacuum 

oven overnight at room temperature. 

 

2.2.3.9  Synthesis of 0.7nm SWNTs with sucrose 

0.091gVPI-5 zeolite was immersed in a catalyst solution of 0.018g Co(CH3COO)2▪ 4H2O 

and 2g ethanol for overnight. Precipitation of Co complex was seen in the EtOH solution.  

After filtration and washed with ethanol, the crystals were dried in a vacuum oven at 

room temperature. Carbon precursor solution of sugar and water (mixing of 0.05g sugar, 

0.2g H2O and 0.4g ethanol) was added dropwise to the crystals to fill the void pores. 

After overnight immersion, the product is filtered and washed with ethanol and dried at 

vacuum oven overnight. Before heating, the chamber is vacuumed and purged with Ar 

flow for 5 cycles in order to remove the remained air. Graphite felt and graphite piece are 



34 
 

used to completely remove the O2. The sample is then treated in a range of temperatures 

between 300k and 1273k, with a temperature increase rate of 20◦C /min in Ar gas. After 

maintaining the required temperature of synthesis (1000°C) for one hour, the tube cools 

down to room temperature in Argon. Then the zeolite framework was dissolved by using 

30% hydrochloride acid to get the freestanding 0.7nm SWNTs. 

 

2.2.3.10  Synthesis of 0.7nm SWNTs with other organics 

PEG sample: PEG didn’t dissolve well in ethanol, but well dissolved in water. Carbon 

precursor solution of 0.1g PEG and water/ethanol mixture (1g H2O and 1g ethanol) was 

added dropwise to 0.1g VPI-5 zeolite. After overnight immersion, the product is filtered 

and washed with ethanol and dried at vacuum oven overnight. 

 

Triton X-100 sample: Carbon precursor solution of 0.1g Triton and 2g ethanol mixture 

was added dropwise to 0.1g VPI-5 zeolite. After overnight immersion, the product is 

filtered and washed with ethanol and dried at vacuum oven overnight. 

 

Ni phthalocyanines sample: Carbon precursor solution of 0.1g Ni phthalocyanines and 2g 

ethanol mixture was added dropwise to 0.1g VPI-5 zeolite. After overnight immersion, 

the product is filtered and washed with ethanol and dried at vacuum oven overnight. 

 

Ionic liquid (1-Buty1-2,3- dimethylimidazolium chloride) sample:  
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sample #1: 0.118g VPI-5 was mixed together with 0.33g ionic liquid and heated at 90°C 

in the vacuum oven overnight. The product is filtered and washed with ethanol and dried 

at vacuum oven overnight. 

Sample #2: 0.1g VPI-5 was mixed together with 0.255g ionic liquid and 0.005g Fe(NO3)3, 

followed by heating at 60°C in the vacuum oven overnight. The product is filtered and 

washed with ethanol and dried at vacuum oven overnight. 

 

Fructose sample:  

sample #1: 0.62g VPI-5 zeolite was was immersed in 4g H2O with 0.116g 

Co(CH3COO)2▪ 4H2O and 1g fructose. The product is filtered and washed with water and 

dried at vacuum oven for 4h at 60°C. 

Sample #2: 0.126g VPI-5 zeolite was was immersed in 1.1g H2O with 0.1g 

Co(CH3COO)2▪ 4H2O and 1g fructose. The product is filtered and washed with water and 

dried at vacuum oven overnight. 

sample #3: 12g ethanol solution with 0.1g Co(CH3COO)2▪ 4H2O and 1g fructose is 

heated at 80°C for 30min and then cool down. After heating, most fructose are dissolved. 

The clear solution is transferred to another beaker and 0.117g VPI-5 zeolite was 

immersed in the solution. After overnight immersion, the product is filtered and washed 

with ethanol and dried at vacuum oven overnight. 

 

1-aminopyrene sample: 0.091g VPI-5 zeolite was mixed with 0.1g Co(CH3COO)2▪ 4H2O 

and 0.22g 1-aminopyrene. Because the melting point for 1-aminopyrene is 115◦C-118◦C, 

the sample is then put into tubefurnace and heated to 120°C with a temperature increase 
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rate of 3◦C /min in Ar gas. After maintaining the temperature at 120°C for one hour, the 

tube cools down to room temperature in Argon. Acetone is used to rinse the sample 

during filtration step. After filtration, the crystals were dried in a vacuum oven at room 

temperature.  

 

1-pyrenebutyric acid sample: 0.069gVPI-5 zeolite was immersed in a 12g ethanol 

solution with 0.1g Co(CH3COO)2▪ 4H2O in the solution. The product is filtered and 

washed with ethanol and dried at vacuum. Because the melting point for 1-pyrenebutyric 

acid is 184◦C, the sample is then put into tubefurnace and heated to 200°C with a 

temperature increase rate of 10◦C /min in vacuum. After maintaining the temperature at 

200°C for one hour in Argon, the tube cools down to room temperature in Argon. 

Acetone is used to rinse the sample during filtration step. After filtration, the crystals 

were dried in a vacuum oven at room temperature.  

 

2.3 Results and discussion 

2.3.1 AlPO4-5 

2.3.1.1 XRD 

Various methods have been reported for the synthesis of AlPO4-5[97],[80],[98] 

employing different organic templates, aluminium precursors and different reaction 

conditions. The crystallinity of the as-synthesized AFI crystals with starting gel 

composition of 1.0Al2O3: 1.0P2O5: 1.0TPA: 100H2O was checked by powder X-ray 

diffraction as shown in Figure 2.2. The XRD patterns of the AlPO4-5 crystal correspond 
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well with the reported pattern of pure AFI structure[99], which means that high quality 

AlPO4-5 crystals were synthesized.  

 

2.3.1.2  Micro Raman data 

The raman spectra of the 0.4nm SWNTs exhibit three features. The first mode is the 

radial-breathing modes (RBMs) (100-600cm
-1

), which is due to tubular vibrations along 

the radial direction. The second mode is the D band (1200-1500cm
-1

) due to disordered 

carbon structures. The third mode is the G band (1500-1620cm
-1

), which is a 

characteristic feature of the graphitic layers and due to tangential vibration of carbon 

atoms.[72, 74] Figure 2.3 shows two peaks at 510 and 550cm
-1

, which are attributed to 

the chiral (4, 2) nanotubes and zigzag (5, 0) nanotubes, respectively. [71],[74] 

The RBM is very sensitive to the nanotube diameter, according to the equation 

ω(dt)=α/dt  [90] 

where dt is the nanotube diameter, α is the proportional constant. From Fig.2.3, α can be 

estimated to be 223.9nm cm
-1

, then 

dt= 223.9/550=0.407nm 

Figure 2.3 also shows strong G band near 1600cm
-1

, which indicates graphitic structure 

are formed. 

 

2.3.1.3  TEM 

To view the SWCNTs in TEM, AFI template was dissolved in 30% hydrochloric acid. 

From the TEM image (Fig. 2.4), by measuring the separation between the two parallel 

dark lines of SWCNT image, the diameter of CNT is around 0.42nm, which is in good 
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agreement with the micro raman data. It is reported that the SWNTs extracted from AFI 

template were not stable under electron beam radiation. It is because that strong bending 

of carbon bonds, size confinement, and the imperfection result in high energy regions in 

the ultra small CNTs.  [67], [90] 

2.3.1.4  TGA 

To investigate the pyrolysis process of the carbon precursors in the channels, TGA 

technique is used. The AlPO4-5 crystal containing TPA is transparent in microscope. 

After pyrolysis at 1000◦C in N2, the crystal color turned to homogeneous black. Fig. 2.5 

shows the measured TG curves. The TG curve contains three main parts: The weight loss 

of AlPO4-5 crystals in the temperature region from 50◦C to 140◦C is due to the moisture 

desorption, the loss in the region from 200◦C to 650◦C is due to the decomposition of 

TPA, and weight loss of about 2% appearing at 1000 °C is because of carbon completely 

burnt out in air.  

2.3.1.5  SEM images 

2.3.1.5.1  Synthesis of AlPO4-5 in H2SO4 

Different dimensions of AlPO4-5 crystal have been reported by addition with H2SO4 to 

adjust the PH value at 3.5.[97] Fig. 2.6 shows the SEM images of as synthesized AlPO4-5 

by with gel composition of 1.0Al2O3: 1.0P2O5: 1.4TPA: 0.5 H2SO4: 400H2O. Some 

crystals obtain perfect hexagonal shape, but most of the resulting products are in 

amorphous phase.  
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2.3.1.5.2  Synthesis of AlPO4-5 in H3PO4 

We also tried to use H3PO4 to adjust PH value between 3 and 4. Fig. 2.7 shows the SEM 

images of as synthesized AlPO4-5 by with gel composition of 1.0Al2O3: 1.4P2O5: 1.4TPA: 

450H2O. However, it seems that only very small crystal structure is formed. The as 

grown AlPO4-5 crystals have a length of 1-2µm, which is less than the 5µm thick carbon 

nanotube membrane.  

 

2.3.1.5.3  Synthesis of AlPO4-5 in HF 

The function of F
-
 is to make the starting gel favorable to get large-sized single crystal 

and improve the quality of the AFI crystals. [74] High quality AlPO4-5 sample were 

synthesized with gel composition of 1.0Al2O3: 1.0P2O5: 1.2TPA: 0.8HF: 400H2O as 

shown in Figure 2.8. The as synthesized AlPO4-5 crystals have a typical dimension of 

100 µm× 20µm×20µm, with regular hexagonal cylinders in shape and good morphology. 

 

2.3.1.5.4  Synthesis of AlPO4-5 without HF 

It is reported that the addition of F
-
 can affect the form of TPA, which may lead to 

different carbonization processes. The filling density of SWCNTs can be enhanced by 

pyrolysis of TPA precursor without F
-
 ions. [70] Therefore, we synthesized AlPO4-5 

crystals without the existent of F
-
 ions by a two steps heating process. Figure 2.9 shows 

images of AlPO4-5 crystals with gel composition of 1.0Al2O3: 1.0P2O5: 1.0TPA: 100H2O.  

The AFI crystals have dimensions 5μm in cross-section diameter and 100 µm in length. 

As it can be seen, the F
- 
distinctly influences the size of the crystals. 
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2.3.1.5.5  CoAPO-5 

When Al
3+

 is replaced by Co
2+

, the framework is negatively charged. It leads to the 

formation of BrØnsted acid sites, which can enhance the adsorption and catalyze the 

pyrolysis of carbon precursor.[93] We synthesized CoAPO-5 crystals with two different 

gel compositions of 0.2Co:1.0Al2O3: 1.0P2O5: 1.2TPA: 0.8HF: 450H2O and 

0.07Co:1.0Al2O3: 1.0P2O5: 1.2TPA: 0.8HF: 800H2O, respectively. Both of the as grown 

CoAPO-5 crystals have an interesting pencil-like structure with a length of about 70µm, 

as shown by the SEM image in Fig. 2.10.  This similar pencil-like structure of AlPO4-5 

has also been reported.[100] From Figure 2.10, less Co
2+

 ions and more water sample 

showed better crystal structure, indicating that an increase of Co
2+

 ions might decrease 

the crystal morphology. 

 

2.3.1.5.6  Synthesis of AlPO4-5 in AAO membrane 

Anodic alumina membrane has been reported as a host to grow aligned arrays of AlPO4-5 

within its nanochannels.[101] In our work, commercial whatman AAO membrane was 

used as the template. Figure 2.11 is the schematic illustration of AlPO4-5 growth inside 

the channels of AAO membrane. These membranes had an average pore size of about 

200 nm. The pores of these membranes may be large to allow the AlPO4-5 to penetrate 

during crystallization. Figure 2.12 shows the AAO membrane was not added to the 

autoclave until after 90◦C treatment. After 90◦C hydrothermal step, PH value of the 

solution was about 7, which did not damage the AAO membrane in the solution. 

Although there are some AFI zeolites inside the AAO pores, the crystals do not cover all 

the pores of AAO membrane, which can’t be used as desalination membrane. Figure 2.13 
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shows the sample of AAO membrane added to the autoclave at the beginning and heated 

at 453k for 24h. It shows hair like structure at the top surface of AAO membrane, which 

is due to the etching of H3PO4 acid. 

 

2.3.1.5.7  Zeolite/epoxy membrane 

Carbon nanotube membranes had been reported forming by microtoming a nanotube-

epoxy composite mixture to a thickness of 5 µm [102]. Similar microtomed cut method is 

used in this paper trying to obtain zeolite/epoxy membrane. However, zeolite is easy to 

break during cutting, which creates lot of defects in the membrane.  

 

Another possible method is spin coating thin layer of epoxy/zeolite on a glass slide. After 

dried at room temperature, the membrane can be peeled off from the glass slide and 

exposed to O2 plasma to partially remove the residual epoxy on the tips of zeolite. Figure 

2.14 shows the SEM images of membrane before and after etching. The epoxy can be 

easily removed by O2 RIE method, and the etching rate is about 500nm/min. However, 

ionic current of the etched membrane is very large, indicating leak of the membrane. 

 

2.3.2 VPI-5 

2.3.2.1  XRD  

The crystallinity was investigated by an X-ray powder diffractometer. Fig.2.15 presents 

the XRD pattern of VPI-5 with gel composition of 1.0Al2O3: 1.0P2O5: 1.0DPA: 40H2O.  

The XRD patterns of the VPI-5 crystal correspond well with the reported pattern of pure 

VPI-5 structure [77], [103], which means that high quality crystals were synthesized. 
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2.3.2.2  SEM of VPI-5 

It is reported that the optimal crystallization time is 24h. Shorter crystallization time 

generates a lot of unreacted gel and longer time may increase the amount of impurity 

phases. [104] Our 24h crystalized VPI-5 samples have a dimension of 80µm× 2µm×2µm 

as shown in Fig. 2.16, with regular hexagonal cylinders in shape and good morphology. 

In Fig.2.16 (c), needles structure is radiated from a central core, which is due to different 

nucleation rate from the central part and the outer surfaces. [104]  

 

2.3.2.3  TEM 

In VPI-5, the pores are one-dimensional channels, which have uniform inner diameter of 

about 12Å.[105] The effective pore size distribution from argon adsorption has a main 

peak at 10.5Å. [106] By considering the distance between the carbon atoms of carbon 

nanotubes and the oxygen atoms on the channel wall (0.34nm)[67], the diameter of 

SWCNTs allowed in the pores is about 7 to 8Å (10.5±1Å - 3.4Å). Figure 2.17 shows high 

resolution transmission electron microscopy images of freestanding SWCNTs removed 

from VPI framework. The diameter of these carbon nanotubes are about 0.7nm. 

 

2.3.2.4  Micro raman 

From our micro raman measurement, it is very hard to prove the existence of carbon 

nanotubes and confirm the diameter of carbon nanotube. Figure 2.18 shows G band near 

1600cm
-1

, which indicates graphitic structure are formed. However, in the RBM region, it 

shows very broad peak which is difficult to calculate the diameter of CNTs. Compared 

with the sample before pyrolysis, the broad peak may comes from the zeolite template. 

After removal of the template, there is no broad peak show in the RBM region.  
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2.3.2.5  TGA 

The difference from VPI-5 and AlPO4-5 is although DPA acts as the structure directing 

agent for the crystallization, the as-synthesized VPI-5 does not contain organic species 

inside the 18-ring channels, while water molecules fills in these channels. [106] The pore 

volume of 18-ring channels in VPI-5 is about 0.25cm
3
/g, and the water content absorbed 

in VPI-5 is around 0.31g/g.[106] It is also reported that there are seven different water 

molecules present in the structure of VPI-5. [107] TGA curves of VPI-5 at heating rate of 

20◦C/min in N2 and air are shown in Figure 2.19. Both curves illustrated significant 

weight of 23% in the range of 30◦C-120◦C, which is caused by the removal of water. 

Because there is almost no difference between VPI-5 heated in N2 and air oxidation, it 

indicates that there is no organic precursor (from templating agent) inside the channels of 

as synthesized VPI-5. If we are able to load the pores completely with an organic 

precursor with a density of 1.2g/cm
3
 (assumed for many organics) we would expect a 23% 

loss of sample in the TGA with O2 present. If the pore was lined with graphitic carbon (a 

SWCNT) we would expect a loss of 10% after introduction of O2 into the TGA. 

 

In the paper various carbonaceous precursors are used in order to grow uniform diameter 

carbon nanotube through template approaches. To study the adsorption effect of VPI-5 

and pyrolysis behavior of the carbon precursor, we monitored the gravimetric change of 

VPI-5 during heating by the TGA. VPI-5 is reported can be partially transformed to 

AlPO4-8 in the presence of moisture when heating above 100◦C [108], but thermally 

stable in the absence of moisture [109]. Therefore, before starting TGA measurements, 
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the samples are put into vacuum oven at room temperature overnight for maximum 

removal of the absorbed water.  

 

Figure 2.20 shows the measured TGA curve of sucrose as the carbon precursor. The TG 

curve contains four main parts: The first weight loss step of VPI-5 crystals in the 

temperature range from 30◦C to 50◦C is due to the moisture desorption. The second loss 

of 8% in the range from 50◦C to 650◦C corresponds to the decomposition of sucrose. The 

third mass loss of 0.5% in region from 650◦C to 1000◦C may due to the continuous 

graphitization process. The final weight loss of about 1.5% appearing at 1000◦C is 

because of carbon completely burnt out in air. The zeolite samples are initially a pale blue 

from Co catalyst and uncolored organic precursor. After pyrolysis in N2 or Ar they 

become black/dark grey indicating either a-C or CNT formation.  After oxidation with O2 

at 1000◦C the samples are pale blue from catalyst color and removal of carbon.  

 

2.3.2.6  TGA of other organic precursor 

Because of the repetition problem of sucrose sample, we tried other organic precursors in 

order to improve the carbon nanotube yield. Long Chain polyethylene glycol (PEG) is 

used because if it can transport into pore structure, the carbon yield might be high. 

However, after pyrolysis, it did not show any weight loss of carbon at 1000◦C in air, 

which may due to the long chain structure not easy going into the nanochannel of VPI-5.  

Triton-100 is employed because it is a nonionic surfactant which might be easily bonded 

with the channel wall. After pyrolysis, there is also no weigh loss of carbon, which may 

because that the Triton molecule is too big for entering. Ionic liquid is a salt in liquid 
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state. We tried to use the ionic liquid to avoid evaporation of organic molecule during 

heating, which may increase the filling density of carbon and enhance the nanotube yield. 

For of 1-Buty1-2,3- dimethylimidazolium chloride, the melting point is 96-99◦C. The 

VPI-5 powders are mixed with 1-Buty1-2,3- dimethylimidazolium chloride and heated at 

vacuum oven till 100◦C for 30min. After cooling down, the sample is washed with DI 

water, and dried overnight. However, after pyrolysis, we still didn’t obtain carbon. It may 

because that it is very hard for this molecule to enter into the pores. We use Ni 

phthalocyanines as precursor because Iron-phthalocyanines (FePc) [94] have been 

reported loaded into VPI-5. However, from the TGA data, we didn’t obtain carbon yield. 

Fructose has smaller diameter than sugar, therefore, we expected it entering into the pores 

more easily. Although there showed about 6% carbon yield, we didn’t see carbon 

nanotube from TEM images. It may because that most amorphous carbon is formed on 

the surface of zeolite rather than in the pores. For 1-aminopyrene and 1-pyrenebutyric 

acid, we used similar melting method, and their melting point are 115-117◦C and 184-

186◦C, respectively. VPI-5 is mixed with the precursor and loaded into the tube furnace 

in vacuum to remove the gas absorbed in the pore channels. When it reached melting 

temperature, we switch the valve to Ar for pushing the precursors into the nanopores and 

keep for 1h. Finally, the sample is cooled down in Ar. From TGA measurement, there are 

3% and 10% carbon yield for 1-aminopyrene and 1-pyrenebutyric acid, respectively. 

However, we didn’t find carbon nanotubes from TEM images, but only some carbon 

onions. Maybe most carbon is formed on the outside surfaces of zeolite template. 
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Table 2.2 organic precursors 

Organic precursor Weight loss in N2 structure Carbon yield method 

PEG 22% 

 

0 immersion 

Triton 19% 

 

0 immersion 

Ionic liquid-sample 

#1 

26% 

 

0 melting 

Ionic liquid-sample 

#2 

22%  0 melting 

Ni phthalocyanines 23% 

 

0 immersion 

sugar 10% 

 

1.5% immersion 

fructose-sample#1 15% 

 

0.5% immersion 

fructose-sample#2 20%  1% immersion 

fructose-sample#3 30%  6% immersion 

1-aminopyrene 14% 

 

3% melting 

1-pyrenebutyric acid 25% 

 

10% melting 



47 
 

2.4 Conclusion 

In summary, we have fabricated AlPO4-5 zeolite with different PH value. Two step 

heating process is employed to obtain AlPO4-5 in H3PO4 without HF acid. 0.4nm SWNTs 

are synthesized in AlPO4-5 channel by pyrolysis TPA in AFI nanochannels. Raman 

measurement showed similar peaks as Z. Tang’s group, which confirms the existing of 

carbon nanotubes. 

 

VPI-5 is synthesized in order to fabrication larger diameter single wall carbon nanotubes 

for water desalination application. Different organic precursors are used in order to find 

the optimum condition for 0.7nm SWNTs growth in the nanopores of VPI-5.  TGA, TEM 

and micro raman are employed to investigate the pyrolysis process and measure the final 

products. Only after the pyrolysis of sucrose/VPI-5 composite, 0.7nm SWNTs are found 

from its TEM image. However, we only once succeed with low yield and were unable to 

make membranes. The raman image shows the G peaks but only a very broad RBM peak, 

which makes it difficult to confirm the diameter of carbon nanotubes outside of the TEM 

observation area of the sample.  
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Tube furnace 

 

 

 

 

Figure 2.1  Schematic illustration of the SWCNTs pyrolysis in zeolite template 
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Figure 2.2   XRD pattern of the as-synthesized AlPO4-5 

 

 

 

 

 

 

 

 

 

5 10 15 20 25 30 35 40 45 50

0

2000

4000

6000

8000

10000

12000

14000

2 theta (degree)

 AlPO4-5

100 

110 

200 

210 

002 

102 

220 

311 
400 410 

213 



50 
 

500 750 1000 1250 1500 1750

In
te

n
si

ty
 (

a
.u

.)

Raman shift (cm-1)

RBM

 

Figure 2.3   Raman spectra (after baseline correction) of the 0.4nm SWNTs formed 

inside the channels of AlPO4-5 crystals excited using the Renishaw’s invia micro raman 

633nm laser line measured at room temperature. 
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Figure 2.4 High resolution transmission electron microscope (TEM) image showing 

SWCNTs. The TEM image was taken after the AFI framework was removed by using 

HCl acid.  
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Figure 2.5 The TG curve measured at temperature ranging from 30◦C to 1000◦C of 

AlPO4-5 crystal with TPA organic template inside the channels in N2 gas. After pyrolysis 

in N2, the sample is burnt at 1000°C under air for 20minutes. 
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Figure 2.6 SEM image of AlPO4-5 sample with gel composition of 1.0Al2O3: 1.0P2O5: 

1.4TPA: 0.5 H2SO4: 400H2O  
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Figure 2.7 SEM image of AlPO4-5 sample with gel composition of 1.0Al2O3: 1.4P2O5: 

1.4TPA: 450H2O  
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Figure 2.8 SEM image of AlPO4-5 sample with gel composition of 1.0Al2O3: 1.0P2O5: 

1.2TPA: 0.8HF: 400H2O  
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Figure 2.9 SEM images of AlPO4-5 crystals with gel composition of 1.0Al2O3: 1.0P2O5: 

1.0TPA: 100H2O at different magnification 
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Figure 2.10  (a) and (b) SEM images of AlPO4-5 crystals with gel composition of 

0.2Co:1.0Al2O3: 1.0P2O5: 1.2TPA: 0.8HF: 450H2O; (c) and (d) SEM images of AlPO4-5 

crystals with gel composition of 0.07Co:1.0Al2O3: 1.0P2O5: 1.2TPA: 0.8HF: 800H2O 
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Figure 2.11   Schematic illustration of AlPO4-5 growth inside the channels of AAO 

membrane 
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Figure 2.12    SEM images of AlPO4-5 growth in AAO membrane. AAO membrane was 

not added to the autoclave until after 90◦C treatment. (A) top surface of the sample (B) A 

broken edge of AlPO4-5 growth inside AAO membrane, showing crystal growth.  

 

(A) 
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Figure 2.13   SEM images of AlPO4-5 growth in AAO membrane. The AAO membrane 

added to the autoclave at the beginning and heated at 453k for 24h. It shows hair like 

structure of AAO membrane. (A) top surface of the sample (B) A broken edge of AAO 

membrane. 
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Figure 2.14    AlPO4-5 spin coated with epoxy, (A) before etching (B) after O2 RIE 

etching (C) lower magnification of RIE etched sample 
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Figure 2.15   XRD of VPI-5 
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Figure 2.16    SEM images of (A)  VPI-5 crystals (B) same sample with different 

magnification (c) same sample showing the needles radiating from a center point  
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Figure 2.17   TEM image of VPI-5/sugar/Co sample after removal of zeolite with HCl 

solution 
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Figure 2.18   Micro Raman spectra measured by Thermo Scientific 780nm laser 

excitation at room temperature (A) SWNTs inside the channels of VPI-5 crystals (B) 

VPI-5/sucrose before pyrolysis (C) after removal of zeolite template.  
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Figure 2.19  TGA of as synthesized VPI-5 crystal with water inside the channels (A)  

pyrolysis in N2 gas. (B) TGA of as synthesized VPI-5 crystal burn at 1000◦C in air. 
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Figure 2.20   The TG curve of VPI-5 crystal with sugar inside the channels pyrolysis in 

N2 gas, and then burn at 1000◦C in air.  
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Figure 2.21   The TG curve of VPI-5 crystal with PEG (A) pyrolysis in N2 gas, (B) the 

pyrolyzed sample burnt at 1000◦C in air.  

 

 

 

 

 

(A) 

(B) 



70 
 

  

 

Figure 2.22   The TG curve of VPI-5 crystal with Ni phthalocyanines (A) pyrolysis in N2 

gas, (B) the pyrolyzed sample burnt at 1000◦C in air.  
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Figure 2.23   The TG curve of VPI-5 crystal with triton (A) pyrolysis in N2 gas, (B) the 

pyrolyzed sample burnt at 1000◦C in air.  
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Figure 2.24   The TG curve of VPI-5 crystal with ionic liquid sample #1 (A) pyrolysis in 

N2 gas, (B) the pyrolyzed sample burnt at 1000◦C in air.  
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Figure 2.25   The TG curve of VPI-5 crystal with ionic liquid sample #2 (A) pyrolysis in 

N2 gas, (B) the pyrolyzed sample burnt at 1000◦C in air.  
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(c)  

 
Figure 2.26   The TG curve of VPI-5 crystal with fructose inside the channels pyrolysis 

in N2 gas, and then burn at 1000◦C in air. (a) fructose-sample #1 (b) fructose-sample #2 (c) 

fructose-sample #3 
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Figure 2.27   The TG curve of VPI-5 crystal with (A) 1-aminopyrene inside the channels 

pyrolysis in N2 gas, and then burn at 1000◦C in air. (B) with 1-pyrenebutyric acid inside 

the channels pyrolysis in N2 gas, and then burn at 1000◦C in air. 
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Chapter 3   Fabrication of conductor/insulator/conductor multilayer structures  

for DNA sequential reactions 

 

3.1 Introduction 

 

Nanopore analytics is an attractive area which can be used for biomolecule sensing, such 

as peptides, proteins and DNA strands. It is because that the amount of current is very 

sensitive to the size and shape of nanopore. If nanoparticles pass through the nanopore, it 

can create a change of the current and corresponding transmembrane voltage through the 

nanopore. In this way, signal data is obtained, and each current pulse is due to a single 

molecular translocation.  

 

Many techniques have been developed to fabricate this nanopore sensing device, such as 

natural protein pores[4, 5], nanopores in silicons [6-13] , organic polymer [14-21], 

graphene[26-30], and individual carbon nanotube pores[22-24]. Most of these nanopores 

just have only a single layer, but not multilayer structure.  

 

For better control of DNA translocation, and make it more readable, we tried to fabricate 

multilayer structure. There are three advantages, firstly, in this structure each layer is 

several nanometers thick and can be individually addressed with voltage. Secondly, the 

conductive layer can be chemically functionalized to control a DNA strand passing 

through the nanopore. Finally, voltage between the conductive layers can change the 
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electric field inside the nanopore. This interaction between the electric field and the DNA 

molecule might trap DNA in the nanopore. [45-47] 

 

A critical point for DNA sequencing is that both the diameter of the pore must be 

controlled for straight DNA passage and the interaction length (in flow direction) at the 

constriction point must be within the length of nucleic acid sequence length (~1nm).  The 

latter point has largely been ignored or not controlled. Graphene nanopore might be an 

ideal electrode because of its atomic thick property. Recently, Bashir et al. drilled 

nanohole in graphene/Al2O3 multilayer structure by focus ion beam (FIB). [30] In this 

thesis, we propose to control this interaction length by using a thin lipid bilayer film in 

multilayer structure to avoid of using the high cost of FIB.  

 

Two system of conductor/insulator/conductor system and conductor/lipid bilayer system 

were chosen to produce the nanopore structure. In conductor/insulator/conductor 

multilayer structure, one is carbon conductor and S1813 insulator, the other is copper 

conductor and S1813 insulator. Carbon materials have been employed due to a number of 

advantageous properties, such as low-cost, disposable, easy to etch with reactive ion 

etching (RIE). [110, 111] However, the conductivity of carbon materials is not good for 

further pore functionalization. Copper is employed due to its excellent electrical 

conductivity, which widely used in electronic industry. The second system has lipid 

bilayer formed in the pores of silicon oxide membrane. This structure has monolayer 

thick ‘interrogation’ chemistry at pore exits necessary to resolve DNA units.  
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3.2 Experimental  

3.2.1 Chemicals   

Table 3.1 Chemicals used and manufacturers 

Chemical                    Manufacturer 

Carbon graphite target  

Cu target 

Kurt J. Lesker (99.999%)   

Kurt J. Lesker (99.999%) 

Ni target Kurt J. Lesker (99.999%) 

S1813 (positive photoresist) Rohm and Haas Electronic materials LLC 

PMMA (positive photoresist) Microchem 

(100) SiO2 wafer  University Wafer 

Oxalic acid Aldrich (99%) 

 

3.2.2 Experimental details 

3.2.2.1 Carbon/photoresist/carbon structure 

3.2.2.1.1 SiO2 as mask 

 

As shown in Figure 3.2, silicon oxide wafer is used. In step 1, a Si wafer with 100 nm 

SiO2 layer was ultrasonically cleaned with acetone, isopropanol (IPA), deionized (DI) 

water, and nitrogen drying. S1813 was diluted in the Thinner P solvent with the volume 

ratio of 1:10.  Then appropriate diluted Shipley 1813 positive photo resist solution is spun 

coated on a silicon wafer. The sample is baked at 115 °C for 1min. 
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In step 2, thin flat carbon film is prepared by sputtering method. The sputtered films have 

been deposited from a 50mm diameter graphite target in an atmosphere of high purity 

argon. Argon of 99.99% purity at constant pressure of 3.6 mtorr was used as a sputtering 

gas in the experiment. Carbon was RF magnetron-sputtered at a power of 100W and the 

film with a thickness of 15nm was deposited in the constant rate of 0.2 Å/s. The quartz 

crystal used to monitor the rate of deposition was also used to determine the final 

thicknesses of the deposited carbon films. Step one and two are repeated for obtaining a 

multilayer structure. 

 

In step 3, 100nm thick SiO2 is deposited by RF sputtering at a power of 100W, followed 

by spin coating with 2% PMMA at 5000rpm. E beam lithography is used for creating 

nanopore structures in PMMA which can subsequently be transferred to the substrate 

materials.  

 

Finally, in order to pattern a SiO2 layer, a RIE process in C4F8/O2 was used to transfer the 

image from the PMMA layer to SiO2 layer. It uses chemically reactive plasma to remove 

material. The etching rate of SiO2 is about 100nm/min. Then porous SiO2 membrane is 

used as a template during the O2 reactive ion etching (RIE) process. Oxygen is used to 

etch through the polymer/carbon multilayer.  

 

3.2.2.1.2 Anodic Aluminum Oxidation (AAO) as mask 

AAO preparation  

http://en.wikipedia.org/wiki/Chemical_reaction
http://en.wikipedia.org/wiki/Plasma_%28physics%29
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Anodic oxidation was carried out on 1µm thick aluminum films in 0.3M oxalic acid 

solution at room temperature using Pt as a counter electrode (Fig.3.3). The anodization 

was conducted under a constant voltage mode (40 V) for approximately 4 min. Then the 

aluminum samples were etched in 0.3M phosphoric acid in order to enlarge the pore 

depth.  

 

3.2.2.2 Copper/photoresist/copper structure 

Our fabrication process is shown schematically in Figure 3.4. On the back side of the 

wafer, the SiO2 was patterned using standard photolithography techniques to form an etch 

mask. We use a 2μm-thick layer of SiO2 on both sides of a (100) silicon wafer as the 

substrate. Appropriate S1813 photoresist solution is spun coated on a silicon wafer. After 

baking at 115 °C for 1min, the sample is exposed at UV light for 6sec, and then put into 

MF319 developer for 30sec. Nickel was RF magnetron-sputtered at a power of 75W and 

the film with a thickness of 50nm was deposited in the constant rate of 1.2 Å/s. Then a 

lift-off step was employed to define the bottom electrode pattern via Shipley 1165 resist 

remover for 2h. The back oxide SiO2 layer was then removed by RIE dry etching in 

C4F8/O2 to transfer the image from the Ni layer to SiO2 layer. 

 

The backside of the wafer was exposed to a highly selective silicon etchant, KOH, which 

removes Si preferentially in the (100) plane. The back etching method is widely used in 

pattern silicon nanopores structure. [112], [113] The back etched pores serve as the 

mechanical support for the thin multilayer structure. The SiO2 serves as the protective 

layer during the Si etching process, because the etching rates for SiO2 and Si in 20% 
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KOH at 70°C are 50μm/h and 100nm/h, respectively. The window area was etched down 

to around 200μm. 

 

On the top side, 20nm Ni layer is obtained by sputtering. Appropriate S1813 photo resist 

solution is spun coated above the Ni layer.  Then standard photolithography technique is 

used in order to obtain the nanopore structure. The nickel layer is then patterned in an 

aqueous solution of FeCl3 and HCl mixture by wet etching method. Wet etching use 

liquid chemicals or etchants to remove materials, which is generally isotropic. Finally, 

the oxide layer pore is opened by RIE etching. 

 

We electroplated Cu nano-particles at the edge of conductive layer using the procedure 

outlined in Figure 3.5.  20nm Cu thin layer is sputtered on the SiO2 wafer, and then e 

beam lithography is employed to fabricate nanopore structure in PMMA layer. Then we 

use FeCl3 (6×10
-5

M) and HCl (1×10
-3

M) to etch Cu and get 2 µm Cu nanopores. The 

etching time is about 15sec. The reaction is set up on three electrode system in a U tube 

as shown in Figure 3.6. Ag/AgCl is the reference electrode, Pt is the counter electrode, 

the wafer is the working electrode, and the electrolyte is 1mM CuSO4 solution.  

 

3.3 Results and discussion 

3.3.1 Carbon/photoresist/carbon system 

RF magnetron sputtering has been used to obtain thin carbon layer. The result shows that 

the carbon film prepared by sputtering method has the properties of thickness 

reproducible and controllable with subnanometer precision. The interface roughness is 
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about 0.5nm. The rougness of carbon on the photoresist layer increased slightly because 

the roughness of PR (~1.5nm) is a little higher than the SiO2 wafer (~0.3nm).  

 

In order to obtain vertical pore structure, RIE dry etching method is employed. RIE 

process in C4F8/O2 mixture is used to transfer the image from the PMMA layer to the 

SiO2. The SiO2 serves as the protective layer, since carbon and photoresist can be easily 

removed by oxygen, while the SiO2 still remains. The etch rates have been determined as 

100nm/min with pressure at 30mtorr. The carbon film can be finely patterned by O2 RIE. 

The etching rate of carbon and photoresist in O2 are 30nm/min and 340nm/min, 

respectively. The detailed condition of RIE etching is shown in Table 3.2. 

 

The property of RIE controlled oxygen etched holes is investigated by SEM as shown in 

Figure 3.7. The SEM images show that both the 2μm and 200nm pores have very 

uniform, orientationally aligned, nanometer sized pores with vertical sides. It is important 

to note that we use RIE to produce gaseous byproducts that leave the pore structure.  If 

physical sputtering/ion-milling were used, the back sputtering would short out or cover 

the multilayer structure. However, the carbon layer is not conductive enough for the Cu 

electroplating step, which may due to the formation of sp
3
 clusters. Several other methods 

have also been used for the fabrication of thin carbon film including flash evaporation, e 

beam evaporation and thermal evaporation, but the carbon layer is still not so conductive. 
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Table 3.2   RIE etching rate and pressure 

materials Etching rate RIE gas flow and pressure 

PMMA 260nm/min C4F8 gas flow = 45sccm;  

O2 gas flow=5 sccm; 

Pressure=30mtorr 

SiO2  100nm/min  

S1813  340nm/min  O2 gas flow = 30 sccm; 

Pressure = 35 mtorr carbon  30nm/min  

 

Anodic aluminum oxide, which has high pore density and high level of ordering, might 

also be an excellent mask material for the fabrication one-dimensional pores. In 1995, 

Masuda and Fukuda reported the two-step anodization process, in which they obtained 

self- ordered alumina structures [114]. Here, anodic porous alumina is fabricated by one 

step method because of the thin Al layer. Different etching time and phosphoric acid 

concentration are used to find the best etching condition. 

 

The growth of porous aluminum oxide is as following step. Firstly, hydrogen ions are 

reduced to hydrogen gas at cathode and aluminum is oxidized into aluminum oxide. Then 

a barrier oxide layer forms. The anodic reaction is given in (1) and (2) [115] 

             
         (1) 

                         (2) 

The cathodic reaction is given as (3) 

                          (3) 

Secondly, part of the aluminum oxide is dissolved into the electrolyte and some small 

paths start to grow. The electric field is focused at the bottom of paths and enhances its 
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dissolution. Then the pores continue growing and become enlarged. Finally, a steady 

state pore structure is formed. [115], [116] 

 

Compared the results of figure 3.8(a) with figure 3.9(c), the Al is etched with same time 

(60min) but with different phosphoric acid concentration. The pores are much larger of 

0.3M phosphoric acid etching than 0.1M one. It also shows from both figures that longer 

etching time will make the pores larger. The optimum condition of AAO membrane 

fabrication in our system is etching the aluminum sample in 0.3M phosphoric acid for 

40min. In this condition, uniform 50nm pore structure is obtained. (Fig.3.9b)  

 

In figure 3.10, with thin carbon layer as substrate, 500nm thick free- standing AAO 

membrane is obtained, which may because the carbon is oxidized to CO2 gas when the 

aluminum is anodized.  

 

We tried to prepare AAO membrane on polymer because AAO might be a good 

protective layer in the multilayer structure. We tried both S1813 (fig.3.11(a)) and PMMA 

(fig.3.11(b)) as the substrate layer, however, it does not show very uniform pore structure. 

It maybe because the polymer layer is not conductive, which influences the electrical 

field during AAO formation process.  
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3.3.2 Copper/photoresist/copper system 

Aqueous FeCl3 solution is widely used as an etchant in producing printed circuit of 

copper. HCl is added to dissolve the CuCl precipitate. The reaction equation is shown as 

below,[117] 

                                   

                          
        

Since FeCl3/HCl solution only dissolve copper but not PMMA, we can use PMMA as the 

wet etching mask.  

Figure 3.12 shows SEM images of patterns of copper pores that were fabricated by 

photolithography, followed by etching of samples in the solution of FeCl3 (6×10
-5

M) and 

HCl (1×10
-3

M) mixture. In order to find the optimum etching time, sample is etched from 

5sec to 15sec. After 15sec, most Cu materials are completely etched. Only some copper 

nanoparticles are left at the center of the pore, which can be removed during RIE opening 

SiO2 pores.  

 

Then copper nanoparticles are deposited at the edge of etched copper layer to prove the 

edge conductivity. The Cu electroplating in our system is a process where Cu
2+

 in 

solution are reduced on to the surface of conductive layer. Different copper electroplating 

time is used in order to find the best condition. Figure 3.14 shows after 60sec 

electroplating, there is a uniform ring formed at the edge of copper pore, and 120sec 

maybe is too long for this deposition.   
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In order to completely open the pores, Ni layer serves as the etching mask during RIE 

C4F8/O2 etch. Because there is a thin layer of NiO formed on Ni surface after sputtering, 

the sample is immersed in HCl solution for 2min to remove the oxide layer. Then the 

nickel nanopores can be obtained by FeCl3 etching with S1813 as mask. The etching rate 

of nickel is much slower than copper. It takes about 2min to completely remove nickel 

with the same concentration of FeCl3 in copper etching. Figure 3.14 shows the RIE 

etching process of SiO2. In Figure 3.14(c), SiO2 pore has been completely opened, and 

from its cross section, the thickness is only about 1.4µm.  

 

 

3.4 Conclusion 

In carbon/insulator/carbon system, reproducible and controllable thin-film carbon 

electrode has been fabricated with sputtering deposition. 200nm vertical multilayer pore 

structure has been prepared with RIE etching and thin AAO membrane with 50nm pore 

diameter has been synthesized by one step anodization. However, sputtered carbon layer 

is not conductive enough. Therefore, copper/insulator/copper system is established to 

improve the conductivity. 2µm copper nanopores have been successfully etched by 

FeCl3/HCl solution. Nanopore pattern on SiO2 wafer with Ni as protective layer has been 

opened by RIE method. 
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Figure 3.1    Schematic of the SiO2/carbon/PR multilayer structure. 
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Figure 3.2    Schematic drawing of the fabrication process of the SiO2/carbon/PR 

multilayer structure. 
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Figure 3.3 Schematic of AAO anodization 
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Figure 3.4 A schematic of the fabrication procedure for single layer back etching 
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Figure 3.5 A schematic of the fabrication procedure for copper nanopore wet etch and 

electroplating 
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Figure 3.6   Schematic of the Cu electroplating. 
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Figure 3.7   SEM image of the multilayer pore. (A) 2μm pore (B) 200nm pore 
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Figure 3.8  SEM image of the AAO membrane with 0.1M H3PO4 at different etching 

time. (A) 60min (B)75min (C)90min (D) cross section of c  
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Figure 3.9   SEM image of the AAO membrane with 0.3M H3PO4 at different etching 

time. (A) 30min (B)40min (C)60min (D) cross section of c  
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Figure 3.10   SEM image of the freestanding AAO membrane (A) top surface (B) cross 

section  
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Figure 3.11 SEM image of the freestanding AAO membrane (A) on S1813 layer (B) on 

PMMA layer 

a 

b 
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Figure 3.12   SEM images of the PMMA/Cu structure (A) after e beam lithography (B) 

after FeCl3 etch 5sec (C) after FeCl3 etch 12sec (D) after FeCl3 etch 15sec  
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Figure 3.13 SEM image of PMMA/Cu FeCl3 etch 12sec sample after (A) -0.1V 60sec Cu 

electroplating (B) -0.1V 120sec Cu (higher lower magnification) (C) -0.1V 120sec Cu 

(lower magnification) 

 

a 

b 

c 
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Figure 3.14 SEM images of single layer back etching (a) after 10min RIE etching (b) 

after RIE 20min (c) top view of the pore (d) cross section of the pore 
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Chapter 4   Conclusions and future work 

4.1   Conclusions 

4.1.1   Carbon nanotube membrane for water desalination 

High quality AlPO4-5 crystals without F
-
 had been fabricated in order to produce high 

quality 0.4nm SWNTs in their channels. Thermogravimetric analysis is used to explore 

the thermal decomposition of TPA within AFI crystals. It has been found that the carbon 

yield is about 2% after pyrolysis at 1000◦C. Micro raman data also shows peaks at 510 

and 550cm
-1

 in RBMs zone, which are attributed to chiral (4, 2) and zigzag (5, 0) 

nanotubes, respectively.  

 

Larger single wall carbon nanotubes with 0.7nm in diameter were synthesized from 

sucrose by a pyrolytic technique using VPI-5 zeolite as template. The diameter of 

SWNTs is confirmed by a high resolution transmission electron microscopy. In order to 

study the adsorption effect of VPI-5 crystals and have higher filling density, we have 

traced various organic precursor decomposition processes during heating by TG. 

However, the challenge is the poor repeatability of SWNTs synthesis. Although we 

succeed once to produce CNTs with sucrose as a precursor we haven’t been able to repeat 

the result after 6 tries at the same condition and 10 attempts with variations of precursor 

and catalyst.  The two areas to focus on are the incorporation of metal catalyst that can be 

reduced to the metalic state within the template and effective incorporation of non 

volatile organic precursors.   
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4.1.2   Multilayer project 

Nanopore sequencing is an attractive field since it is a possible solution to reduce the 

price of genome test. Our goal is to fabricate conductor/insulator/conductor multilayer 

structure for the DNA sequence, because the similar structure as metal-oxide-

semiconductor (MOS) capacitor forming in a nanoscale artificial membrane may trap 

DNA into the pores and reduce the speed of DNA translocating. [45] At the same time, 

the conductive layer can be independently functionalized in order to control a DNA 

strand as it travels through the nanopore.  

 

Till now, reproducible and controllable thin-film carbon electrode has been fabricated 

with sputter deposition. 200nm vertical multilayer pore structure with 

carbon/S1813/carbon structure has been prepared by RIE etching with SiO2 as etching 

mask. Hexagonally well-ordered AAO template with uniform 50nm pores has been 

fabricated by one step anodization. However, carbon layer is not conductive enough for 

further copper electroplating. 20nm thick copper electrode has been fabricated with 

sputter method. 2µm pores have been obtained by using FeCl3 as an etchant and photo 

resist as protective layer. Copper nanoparticles are deposited at the edge of conductive 

layer by electroplating method.  

 

4.2   Future work 
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4.2.1 Water desalination project 

In the future, SWCNT made by precise zeolite templates may bring new opportunity for 

water desalination because of its uniform diameter and atomically smooth inner wall 

structure. Different organic precursors and pyrolysis conditions will be employed to 

fabricate uniform 0.7nm SWNTs. The obtained carbon nanotubes can be embedded in 

epoxy matrix, microtome cut to form 5µm thick carbon nanotube membranes. With these 

carbon nanotubes, it is possible to separate water molecules and salt ions with associate 

hydration sphereby size exclusion. The entrance of carbon nanotubes can also be 

diazonium grafted with charged groups to demonstrate molecular selectivity.  

 

4.2.2 multilayer project 

 

This structure with single nanopore in the lipid bilayer might be a good platform for 

DNA translocation and biosensing. The edge of the conductive layer can be 

functionalized with long chain alkane primary amine molecule (i.e. CH3(CH2)10NH2) 

which will demonstrate hydrophobic property. Free standing planar lipid layers can be 

formed automatically in the pores. Biological protein α-haemolysin can form nanopores 

that spontaneously insert themselves into the lipid bilayer membrane. The passage of 

molecule through nanopore can be monitored by ionic current. Different proteins can be 

incorporated in the lipid layer, and it will show different selectivity. 
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