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Sphingosine-1-phosphate (S1P) is a crucial chemotactic factor in peripheral blood (PB) involved in the mobilization process and
egress of hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM). Since S1P is present at high levels in erythrocytes,
onemight assume that, by increasing the plasma S1P level, the hemolysis of red blood cells would inducemobilization of HSPCs. To
test this assumption, we induced hemolysis in mice by employing phenylhydrazine (PHZ).We observed that doubling the S1P level
in PB from damaged erythrocytes induced only amarginally increased level of mobilization. However, if mice were exposed to PHZ
together with the CXCR4 blocking agent, AMD3100, a robust synergistic increase in the number of mobilized HSPCs occurred.
We conclude that hemolysis, even if it significantly elevates the S1P level in PB, also requires attenuation of the CXCR4-SDF-1 axis-
mediated retention in BM niches for HSPCmobilization to occur. Our data also further confirm that S1P is a major chemottractant
present in plasma and chemoattracts HSPCs into PB under steady-state conditions. However, to egress from BM, HSPCs first have
to be released from BM niches by blocking the SDF-1-CXCR4 retention signal.

1. Introduction

Hemolytic syndromes, such as sickle cell anemia (SSA)
and paroxysmal nocturnal hemoglobinuria (PNH), are char-
acterized by an increase in the number of hematopoi-
etic stem/progenitor cells (HSPCs) circulating in periph-
eral blood (PB) [1–3]. However, the molecular mechanisms
responsible for the process of HSPC mobilization and their
egress from bone marrow (BM) into PB still are not com-
pletely understood.

In our previous work, we have demonstrated that sphin-
gosine-1-phosphate (S1P) released in PB from lysed erythro-
cytes and activated platelets is a strong chemottractant for
bone marrow- (BM-) residing HSPCs [4]. Based on this

observation, we hypothesized that S1P released from lysed
erythrocytes is amajor factor responsible for egress of HSPCs
fromBM into PB in hemolytic syndromes.We also postulated
that in PB, even under steady-state conditions, S1P creates
a potent, permanent, chemotactic gradient for HSPCs, [4]
which are actively retained in BM due to retention signaling
involving mainly the interactions between CXCR4 receptor
and stromal derived factor-1 (SDF-1) and between very late
antigen-4 (VLA-4, also known as 𝛼

4
𝛽
1
integrin) receptor

and vascular adhesion molecule-1 (VCAM-1, also known as
CD106) [5, 6].

To test the importance of changes in the S1P level in PB
in the egress of HSPCs from BM, normal mice were injected
with phenylhydrazine (PHZ), a compound known to induce
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hemolysis [7], and we evaluated the number of circulating
Sca-1+Kit+Lin− (SKL) HSPCs and clonogenic CFU-GM pro-
genitors in PB. In parallel, we measured the PB level of S1P
by mass spectrophotometry and the level of stromal derived
factor-1 (SDF-1) by ELISA. In addition, we measured the
level of free hemoglobin (Hb) as well as activation of the
complement cascade (CC) by employing ELISA to detect
the C5b-C9 (membrane attack complex, MAC). In addition
to PHZ administration alone, in some of the experiments,
we combined PHZ treatment with injection of the CXCR4
antagonist AMD3100.

We report here that hemolysis, even if it significantly
elevates the S1P level in PB, requires attenuation of the
CXCR4–SDF-1 axis-mediated retention of HSPCs in BM
niches in order to affect mobilization of HSPCs.

2. Material and Methods

2.1. Animals. C57BL/6 mice were purchased from the
National Cancer Institute (Frederick, MD USA; http://www
.cancer.gov/). All mice were allowed to adapt for at least 2
weeks and used for experiments at age of 6 to 8 weeks.
Animal studies were approved by the Animal Care and Use
Committee of the University of Louisville (Louisville, KY,
USA).

2.2. Treatment of Mice with PHZ and/or AMD3100. C57Bl/6
mice were injected intraperitoneally once with 40mg/kg of
PHZ [7] and, in some experiments, injected subcutaneously
with 2.5mg/kg of AMD3100.

2.3. Peripheral Blood Parameter Counts. Mice were bled from
the retroorbital plexus to obtain leukocyte counts using Uno-
pette Microcollection (Becton Dickinson, Rutherford, NJ,
USA), and samples were run within 2 hours of collection on
a Hemavet 950 analyzer as described [4].

2.4. FACS Analysis of SKL Cells. Six hours after PHZ injec-
tion, alone or together with AMD3100, and 1 hour after
AMD3100 injection alone, PB was obtained from the vena
cava (with a 25-gauge needle and 1mL syringe contain-
ing 250U heparin). The following monoclonal antibodies
(mAbs) were employed to stain Sca-1+/c-Kit+/Lin− (SKL
cells): biotin-conjugated rat anti-mouse Ly-6A/E (Sca-1,
clone E13-161.7), streptavidin-phycoerythrin- (PE-) Cy5-con-
jugated anti-mouse c-Kit (clone 2B8), and lineage markers
anti-mouse CD45R/B220-PE (clone RA3-6B2), anti-mouse
TCRab-PE (clone H57-597), anti-mouse TCR𝛾𝜁–PE (clone
GL3), anti-mouse CD11b-PE (clone M1/70), anti-mouse
Ter119-PE (clone TER-119), and anti-mouse Gr-1-PE (clone
RB6-8C5) as described [4, 8]. All mAbs were added at
saturating concentrations, and the cells were then incubated
for 30 minutes on ice, washed twice, resuspended in RPMI
1640 + 2% FBS, and analyzed with an LSR II flow cytometer
(BD, USA).

2.5. Enumeration of the Number of Colony-Forming Unit-
Granulocyte/Macrophage (CFU-GM) Mobilized into PB.

Cells (1 × 106) from PB were resuspended in 10% culture
medium with 90% human methylcellulose base media
supplementedwith 25 ng/mL recombinantmurine (rm)GM-
CSF and 10 ng/mL recombinant murine (rm) IL-3. After 1
week of culture, the numbers of CFU-GM colonies were
scored using an inverted microscope (Olympus, USA) [4, 8].

2.6. Plasma Concentration of S1P. Analysis of S1P in periph-
eral blood plasma was carried out using a Shimadzu UFLC
coupled with an AB Sciex 4000-Qtrap hybrid linear ion trap
triple quadrupole mass spectrometer in multiple reaction
monitoring (MRM) mode. Detailed LC/MS/MS conditions
for analysis of S1P were previously described [4].

2.7. Plasma Concentration of SDF-1. Plasma SDF-1 levels were
evaluated by employing a sandwich enzyme-linked immun-
osorbent assay (ELISA) using a commercially available ELISA
system (R&DSystems,Minneapolis,MN,USA) as described
[4, 8].

2.8. Plasma Concentration of C5b-C9 (MAC Complex). The
concentration of C5b-C9 was measured by employing the
commercially available, highly sensitive ELISA kit K-ASSAY
(Kamiya Biomedical Company, USA), according to the man-
ufacturer’s protocol [9].

2.9. Statistical Analysis. Arithmetic means and standard de-
viations were calculated using Instat 1.14 (Graphpad, San
Diego, CA,USA) software. Statistical significancewas defined
as 𝑃 < 0.01. Data were analyzed using Student’s 𝑡-test for
unpaired samples.

3. Results

3.1. S1P Plasma Level Increases following PHZ Administration.
As reported previously, S1P is a potent chemoattractant for
BM-residing HSPCs [4]. By employing sensitive mass spec-
trophotometry measurements, we observed that its level
increases twofold, from ∼1𝜇M to 2𝜇M, by 6 hours after PHZ
administration (Figure 1).

3.2. HSPCs Are Mobilized at Negligible Levels in Response to
PHZ-InducedHemolysis. Weobserved that, despite a twofold
increase in S1P level in PB after PHZ-induced hemolysis
(Figure 1), the increase in S1P was not sufficient to mobilize
significant numbers of HSPCs (Figure 2). Kinetic studies
revealed that the number of circulating SKL cells and CFU-
GM progenitors increased only ∼2 times (Figure 2(a)) and
∼2.5 times (Figure 2(b)), respectively, after PHZ-induced
hemolysis, with a peak observed 6 hours after PHZ admin-
istration.

3.3. Synergistic Effect of PHZ + AMD3100 Mobilization of
HSPCs. Under steady-state conditions, the concentration of
S1P in PB is already very high and, as we reported in the
past [4, 10–12], is sufficient to chemoattract BM-residing
HSPCs. During mobilization, however, the level of S1P may
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Figure 1: PHZ induces an increase in the total level of S1P in PB. S1P
wasmeasured by employingmass spectrophotometry in PB samples
harvested at the peak of themobilization process frommice exposed
to phenylhydrazine (PHZ) and from nonmobilized control animals.
The data are combined from two independent experiments with 5
animals each. ∗𝑃 < 0.001.

further increase due to release of S1P from erythrocytes
and platelets following activation of the terminal part of the
complement cascade. Even so, as shown in Figures 1 and 3,
the increase in S1P level in PB induced only negligible egress
of HSPCs from BM into PB compared with administration
of AMD3100 (Figure 3). However, if AMD3100 was added
following PHZ treatment, robust synergistic mobilization of
HSPCs occurred (Figure 3).

Furthermore, we observed that, as previously described,
the mobilization process is associated with activation of the
CC, as confirmed by C5a ELISA, and an increase in the level
of free hemoglobin (Hb) in PB, indicating generation of lytic
C5b-C9 (MAC, Table 1). At the same time, we did not see
significant changes in the overall level of plasma SDF-1, which
was in the range of 0.5–1.5 ng/mL (data not shown), and
therefore at a concentration that does not affect migration of
HSPCs [4, 8].

4. Discussion

It is well known that hematopoietic stem/progenitor cells
(HSPCs) circulate in peripheral blood (PB) and lymph
during development, moving betweenmajor anatomical sites
where hematopoiesis is initiated and/or temporarily active
[13, 14]. Later in adult life, a small percentage of HSPCs is
continuously released from BM niches into the PB, which
may be envisioned as a highway by which HSPCs relocate
between distant BM stem cell niches in order to keep the total
pool of BM stem cells in balance. It has been demonstrated in
mice that, under steady-state conditions, circulating HSPCs
undergo a circadian rhythm in their circulation in PB, with
the peak occurring early in themorning and the nadir at night
[15].

The number of circulating HSPCs increases in response
to (i) systemic or local inflammation, (ii) strenuous exercise,
(iii) stress, and (iv) tissue/organ injury [13, 14].The number of

Table 1: Activation of the complement cascade (CC) and increase
in free hemoglobin (Hb) level in PB plasma after PHZ, AMD3100,
and AMD3100 + PHZ administration.

Control∗ PHZ AMD3100 PHZ +
AMD3100

Activation of CC
(increase in C5a
level in PB plasma)

1.0 1.5 ± 0.2 1.4 ± 0.3 2.1 ± 0.2

Increase in free Hb
level in PB plasma 1.0 1.4 ± 1.0 1.1 ± 0.4 1.3 ± 1.0

∗Values in control mice were assumed to be 1.0.

HSPCs in PBmay increase up to 100-fold after administration
of pharmacological agents that induce their forced egress
into PB, a process known as “stem cell mobilization.” The
most important mobilizing agents currently employed in the
clinic are (i) cytokines (e.g., granulocyte colony stimulating
factor; G-CSF), (ii) cytostatics (e.g., cyclophosphamide),
(iii) CXCR4- or VLA-4-blocking molecules (AMD3100 or
BIO4860, resp.), and (iv) certain chemokines (e.g., the
growth-related oncogene protein-beta [Gro-𝛽]) [13–19].

Pharmacological mobilization has been exploited in
hematological transplantology as a means of obtaining
HSPCs for hematopoietic reconstitution. HSPCs circulating
in PB are currently a preferred source of stem cells for
transplantation, because they are easily accessible and—what
is important from a clinical point of view—in certain clinical
situations, they are engrafted faster after transplantation than
HSPCs harvested from the BM under steady-state conditions
[13–19].

Several mechanisms have been proposed to orchestrate
mobilization, but still more work is needed to better under-
stand this process. Evidence is accumulating that the nature
of mobilization varies with the mechanism that triggers or
initiates it: systemic inflammation, tissue/organ injury, or
pharmacological intervention. Moreover, every mobilizing
drug may trigger mobilization by employing overlapping, yet
different, mechanisms [13–19].

Overall, the mobilization process has been proposed
to be directed by (i) a decrease in SDF-1–CXCR4 and
VLA-4-VCAM-1 retention interactions in BM (e.g., due to
release of proteolytic enzymes or molecular blockade after
administration of small molecular antagonists) [13–19], (ii)
release of neurotransmitters from the synapses of the nerves
that innervate the BMmicroenvironment (e.g., involving the
dopamine and 𝛽2-adrenergic receptors) [15], (iii) reversal
of the transendothelial chemotactic gradient between the
BM microenvironment and plasma [4], (iv) activation of the
coagulation cascade (e.g., release of thrombin and uPAR)
[9, 20], and finally, as recently proposed, (v) activation of the
CC [13]. In particular, active products of the distal part of the
CC, C5a and C5b-C9, are required for mobilization [21].

For many years it was assumed that the plasma level of
SDF-1 was responsible for egress of HSPCs from BM into
PB; however, as reported by several investigators, the SDF-
1 level does not increase significantly during mobilization
and thus does not explain the egress of HSPCs [4]. Recent
research identifies sphingosine-1-phosphate (S1P) as a major
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Figure 2: Kinetic of effect of PHZ-induced hemolysis on the mobilization of SKL cells and CFU-GM clonogenic progenitors. C57Bl/6 mice
(10 mice per group) were sacrificed 1, 6, and 24 h after injection of PHZ (40mg/kg i.p.). Control animals were injected with saline (0.9%).
(a) shows the number of Sca-1+Kit+Lin− (SKL) HSPCs circulating in PB (∗𝑃 < 0.01) and (b) shows the number of clonogenic CFU-GM
progenitors circulating in PB (∗𝑃 < 0.01).
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Figure 3: PHZ-induced mobilization of HSPCs is significantly
potentiated after administration of AMD3100. The numbers of cir-
culating CFU-GM able to grow colonies in methylcellulose cultures
isolated from control, PHZ-, AMD3100-, and PHZ + AMD3100-
injected C57Bl/6 mice are shown. The data are combined from two
different experiments with 10 animals each. ∗𝑃 < 0.001.

chemoattractant for HSPCs already present in steady-state
blood plasma [4, 10–12].

S1P is highly expressed in erythrocytes and can be
released from these cells during hemolysis. In fact, hemolytic
syndromes, such as SSA and PNH, are characterized by an
elevated number of HSPCs circulating in PB [1–3]. However,
the molecular mechanisms responsible for this effect are still
not completely understood. Therefore, we focused on the
potential role of S1P in this process.

In this paper, we demonstrate in an FHZ-induced hemol-
ysis model that an increase in S1P plasma level alone is
not sufficient to induce significant mobilization. This is not
surprising, since, as we reported in the past, the plasma

concentration of S1P under steady-state conditions is already
high enough to chemoattract BM-residingHSPCs. To explain
this observation, we postulated that retention of HSPCs is
an active process that counteracts the effects of the S1P
“chemotactic field” that is continuously present in PB plasma
[4].

Our results described herein, in which we employed
FHZ alone and FHZ + AMD3100 treatment, show that, in
addition to increasing the S1P level in plasma, it is necessary
to attenuate the retention mechanism of HSPCs in BM stem
cell niches to ensure significant mobilization. Furthermore,
increases in C5a level and free plasma Hb level as a result of
generation of lytic C5b-C9 (MAC) provide further evidence
for activation of the terminal part of the CC during the
mobilization process [21, 22].

This result tends to support our observation of the
mobilization of HSPCs during hemolytic episodes in patients
suffering from PNH [3]. In these patients, mobilization
occurs not only because S1P is released from the hemolysed
erythrocytes, but also because PNHHSPC clones have defec-
tive retention in BM niches. Our data also support a recent
previous report in which mice exposed both to S1P receptor
agonist and AMD3100 showed increased mobilization of
HSPCs compared with mice exposed to AMD3100 alone [11].

Based on our data, we conclude that hemolysis, even if it
significantly elevates the S1P level in PB, requires attenuation
of the CXCR4–SDF-1 axis-mediated retention of HSPCs in
BM niches in order to affect mobilization of HSPCs. A full
understanding of the mechanisms of stem cell mobilization
in hemolytic syndromes will help to develop more efficient
strategies for treating these disorders.
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