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ABSTRACT OF DISSERTATION 

 

A STUDY OF LIGNIN DEPOLYMERIZATION BY SELECTIVE CLEAVAGE OF THE 

Cα-Cβ LINKAGES IN LIGNIN MODEL COMPOUNDS VIA BAEYER-VILLIGER 

OXIDATION 

 

Lignin is amorphous aromatic polymer derived from plants and is a potential source of 

fuels and bulk chemicals. Herein, we present a survey of reagents for selective stepwise 

oxidation of lignin model compounds. Specifically, we have targeted the oxidative 

cleavage of Cα-Cβ bonds as a means to depolymerize lignin and obtain useful aromatic 

compounds. In this work, we prepared several lignin model compounds that possess 

structures, characteristic reactivity, and linkages closely related to the parent lignin 

polymer. We observed that selective oxidation of benzylic hydroxyl groups using 

TEMPO/O2, followed by Baeyer-Villiger oxidation of the resulting ketones using H2O2, 

successfully cleaves the Cα-Cβ linkage in the model compounds. This process was also 

applied to depolymerization of Organosolv lignin. The deconstructed lignin was analyzed 

by a number of techniques, including ATR-IR, GPC, and 31P NMR of suitably derivatized 

samples. 

 

KEYWORDS: Lignin model compounds, Organosolv lignin, oxidative depolymerization, 

Cα-Cβ cleavage, β-O-4 linkages 

 

 

 

 

 



 

 

 

 

AN INVESTIGATION OF THE CHANNELING REACTION IN NITROGEN-DOPED 

MULTIWALLED CARBON NANOTUBES (N-MWCNTS) 

 

The reduction of nitrogen-doped multiwalled carbon nanotubes (N-MWCNTs) with 

Li/NH3 results in deep longitudinal cuts in the nanotubes structure. As the N-MWCNTs 

are anisotropic, we were able to investigate whether the unzipping process proceeds with 

equal efficiency from the tip end or from the root (catalyst) end of the N-MWCNT 

structure. To accomplish this we prepared polymer filled aligned arrays of N-MWCNTs, 

then exposed one or the other end. Through this approach we were able to shield the 

sidewalls and either end of the nanotubes from the Li/NH3 solution We have found that 

when the top end of the N-MWCNTs array was exposed to the reaction mixture, very few 

nanotubes suffered significant ‘unzipping’. However, when the root (substrate) side of the 

array is exposed to the reaction mixture, we observe the features characteristic of 

nanotubes with longitudinal cuts.  Our finding provides some insight into the mechanism 

of the unzipping process, and provides evidence that the unzipping process has a 

directional preference-unzipping from the root end towards the tip end. And may provide 

a method for selective functionalization of the interior of tubes and create a new form of 

nanotube- based porous membrane. 

 

 

Keywords: N-MWCNTs, unzipping, nitrogen-doped multiwalled carbon nanotubes, 

fracturing process, infiltration 
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CHAPTER 1. GENERAL INTRODUCTION 

 

1.1 Introduction 

 

Fossil fuels are an easily available conventional source of liquid fuel in a contemporary 

world. The reserves of fossil fuels are being depleting rapidly due to an increase in 

consumption rate and rise in population. Therefore, an alternate fuel source is extremely 

necessary. The main advantage of liquid petroleum is that it can be easily stored, and it has 

low flash points. Because of this, it is conveniently used as a fuel in vehicles. In the USA, 

nearly 70% of crude oil consumption is devoured in vehicles.1  

 

Renewable resources like biomass are important carbon feedstocks to generate fuel and 

chemicals. Biomass seems to have a significant potential for conversion into liquid fuels, 

which could finally replace fossil fuel.  Renewable resources like biomass could provide 

an alternate source of liquid fuels, if methods can be developed for converting these 

materials into a form that is suitable for use. The US Department of Energy is aiming to 

replace 30% transportation fuel by biomass by 2030.2 Correspondingly, many 

petrochemical companies like Shell, Dupont, BP, DOW and Conoco-Phillips are doing 

major research to produce biofuels and biochemicals from biomass.3 

 

Biomass is organic matter derived from living organisms. Often, material derived from 

plants is referred to as biomass, and it is a renewable-energy source. In the photosynthesis 

process, energy from the sun is converted into chemical energy, to produce carbohydrate 

molecules. Through this process, atmosphere carbon is fixed into biomass. In olden days, 

biomass was burned and used as a conventional source of heat for cooking purposes. In 

this process, chemical energy stored in biomass is converted into heat. However, this 

traditional technique has low thermal efficiencies and enormous amounts of pollutant are 

introduced into the atmosphere. In order to use biomass effectively, it is important to 
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process them into liquid or gaseous fuel. Techniques to convert biomass into fuel and useful 

chemicals have been under intense study for many decades.   

 

Biofuel is broadly classified in three categories: first-generation, second-generation and 

third-generation biofuels. First-generation biofuels have been derived from food crops like 

corn, sugarcane, jatropha, vegetable, coconut, and soybeans.4 Two most common examples 

of first-generation biofuels are bio-derived alcohols and biodiesel.5 Bio-derived alcohols 

are produced from sugar and starch via microorganism and enzymatic fermentation. 

Biodiesel is produced by trans-esterification of oil or fats. Second generation biofuels are 

derived from non-edible lignocellulosic biomass like agricultural waste and crop residue.4,6 

The DOE and USDA reports that the USA has an ability to generate 1.3 billion dry tons of 

agricultural and forest lignocellulosic waste per year.7 The extraction of biofuel from 

lignocellulose biomass seems to be extremely challenging however, and second generation 

biofuel is considered to be the “next generation” of fuel, as edible food is consumed to 

generate first-generation biofuels. Second-generation biofuels are produced from 

significantly less-expensive waste materials.3 In many developed countries, large 

investments have been made in the advancement of technology for economical production 

of biofuel.2 Ethanol is commercialized in some countries, and its use as a component of 

motor fuels is increasing. Third generation biofuels are produced from algae and micro-

organisms.8 Production of third-generation fuels is still an underdeveloped research field.          

 

More specifically, biomass consists of three major constituent cellulose, hemicellulose and 

lignin.9,10 Cellulose is a linear polysaccharide with basic D-glucose units linked via β 

(1→4) linkages. Cellulose is a major constituent of wood, and it is mainly used in paper 

industries. Nowadays, the usage of cellulose in the production of ethanol is also 

commercialized in many countries. Subsequently, the use of ethanol as an additive to 

gasoline is increased appreciably. Hemicellulose is amorphous polysaccharides made from 

xylose, mannose, galactose, rhamnose, arabinose and glucose. It is known that 

hemicellulose can be easily hydrolyzed by dilute acid or base. On other hand, lignin is 

made of aromatic polymer with complex irregular structure. The liquefaction of lignin is 

still an undersized research area, because lignin resistant to most of the enzymes and 
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chemicals. The lignin is a recalcitrant, high molecular weight polymer, and at this time, 

efficient and inexpensive technique for its controlled depolymerization is not advanced. 

 

Figure 1. 1 Schematic representation of lignocellulosic material.11 Reprinted with 

permission from reference.10 Copyright (2010) American Chemical Society.  

 

Lignin serves as a binder between cellulose and hemicellulose, and it provides mechanical 

strength and structural support. Lignin, being the second most abundant organic compound 

on earth after cellulose, is considered a potential source of fuels and bulk chemicals. The 

three major class of lignin are hardwood (angiosperm), softwood (gymnosperm) and 

grass/annual plant (graminaceous) lignin. The softwood has high lignin content, and annual 

plant has least lignin content.10 Common industrial uses of lignin include board binder, 

concrete, disperse pesticides, board binder, and food additive. Currently, in the pulp and 

paper industry, unwanted lignin is separated from the biomass and burned as a low-grade 

fuel. 

 

 

 

  

http://en.wikipedia.org/wiki/Pesticides
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1.2 Lignin structure  

 

1.2.1 Monolignol Biosynthesis 

Lignin is a cross-linked phenolic polymer made from commonly occurring monoliginols: 

p-coumaryl alcohol (H), coniferyl alcohol (G) and sinapyl alcohol (S) (Figure 1.2). These 

monomeric precursors are distinguished based on methoxyl groups present at C3 and C5 

in the aromatic ring. The monolignols are the monomeric lignin precursors, which are 

formed via the phenylpropanoid biochemical pathway.12 

 

Figure 1. 2 Monolignol: p-coumaryl alcohol (H), coniferyl alcohol (G) and sinapyl 

alcohol (S). 

 

The chemistry of the lignin has been study for 100 years, however the investigation of 

lignin structure is still an undergoing research area. In 1874, Tiemann and Haarmann first 

stated that coniferyl alcohol was basic structure unit of lignin polymer.13 Klason and group 

prove that when coniferyl alcohol was heated with acidic sulfite solution, compounds were 

produced that had similar characteristics to that of lignin sulfonate.13 Later, in 1968, 

Freudenberg and co-worker further confirmed the structure of lignin. In their experiment 

dehydrogenation of coniferyl alcohol produced polymer structure as native lignin.14 

 

In the past, many researchers proposed that enzymatic catalytic one-electron oxidation of 

the monolignol initiates the lignin polymerization process, and currently this theory is 

accepted worldwide.15 In the lignification process, monomer radicals interconnect via 

radical coupling reactions. The phenoxyl radical formed has fairly stable resonance 

structure as shown in figure 1.3, the delocalized radical potentially coupled through four 
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different center leads to various structure units.16 The oxidation potentials and radical 

reactivity govern which linkage form favorably in phenol oxidative coupling.17 

 

Figure 1. 3 Phenoxyl radical resonance structure. 

 

 

Figure 1. 4 β-O-4 linkage: endwise radical coupling reactions.18,19 

 

The monomeric radical can cross-couple with an oligomer to form three types of linkages: 

dimerization to form β-O-4, β -5 and cross dimerization to form β- β linkages.19 

Additionally, 5-5 and 5-O-4 linkages are form by oligomer-oligomer coupling reaction. 

The β-O-4 and β -5 linkages produce a linear lignin macromolecule, via endwise 

polymerization. The 5-5 and 5-O-4 linkages are responsible for cross-links or branch 

polymerization, also known as random polymerization. Figure 1.4 is an example of β-O-4 

linkage endwise polymerization. The first step is one electron oxidation of the monolignol, 

the second step is radical coupling of phenoxyl radical with coniferyl alcohol radical at β 
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position to form a quinone methide intermediate. In last step, the quinone methide 

intermediate reacts with a water molecule to form the β-O-4 linkage. This unit further 

undergo endwise coupling reaction.19,20 

 

1.2.2 Linkages 

Lignin is a phenylpropanoid polymer with a complex and irregular structure.20 

Lignification is a random polymerization process, and the polymer formed is cross linked, 

optically inactive, and the linkages do not have specific regularity.20 Commonly occurring 

linkages between monomer units have been determined by breaking the lignin polymer 

into small subunits using techniques such as pyrolysis21, oxidation, thioacidolysis,22 and 

biodegradation.23 The chemical structures of some structural moieties have been 

determined by wet chemical methods,24 and by techniques such as gas chromatography-

mass spectrometry (GC-MS)21, nuclear magnetic spectroscopy (NMR)24, Raman 

microprobe25 and computational studies.26 These studies have shown that the most 

common linkages found in lignin are β-O-4, 5-5, β-5, 4-O-5, β-1, and β-β, of which the β-

O-4 linkage is prominent.10,27 The 5-5, β-5, 4-O-5, β-1, and β-β are rigid towards most 

chemical and biological degradation processes.17,18 The linkages formed via CO bonds 

are results of reaction at phenolic hydroxyl group. Relatively, the reaction at C3 or C5 of 

benzene ring to forms CC bonds linkages is less common. As S units are preoccupied by 

methoxy groups the percentage of CO bonds outnumber. 
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Figure 1. 5 Most common linkages found in lignin. 

 

Based on analysis and theoretical yields of the oxidized product, the approximate 

percentage of linkages found in softwood and hardwood is represented in table 1.1.28 The 

β-O-4 linkage is more than 50 % of the linkages in softwood and the ratio of β–O–4 /β–5 

linkage is roughly 4:1. 

 

Table 1. 1 Approximate percentage of  different linkages found in softwood and 

hardwood.28 

Linkage Type Approximate percentage 

Softwood Hardwood 

β-O-4 45-50 60 

5-5 19-22 9 

β-5 9-12 6 

4-O-5 4-7 6.5 

β-1 7-9 1 

β-β 2-4 3 

 

In the lignification process, cross-coupling reactions between the monolignol and the 

polymer end unit results in extension of the polymer. The polymer units PS, PG are shown 
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below undergoes cross coupling reactions with monolignols S and G to form the various 

linkages. The table 1.2 shows that β–O–4 linkages outnumber β–5 linkages. The polymer 

units’ PS will not form β–5 linkages because C3 and C5 position is preoccupied by methoxy 

groups. 

           

       PG    PS   

 

Table 1. 2 Lignification differs substantially from dimerization of polymer unit and 

monolignols. 

Monolignol 

alcohol 

Polymer units β–O–4 β–5 

G PG   

G PS   

G PG   

G PS   

 

In the study of artificial lignin synthesis, Syrjanen and Brunow found that when coniferyl 

alcohol is reacted with 4-(1-Hydroxyethyl)-2-methoxyphenol through dialysis tubing, the 

ratio of β–O–4 /β–5 product formed was 10:1, whereas in case of guaiacyl dimer only the 

β–O–4 trimer was found. Additionally, their experiment concludes that the monolignol 

addition rate changes the ratio of β–O–4 /β–5 linkages. The result suggest that the 

percentage of linkages in lignin is controlled by the availability of monolignol radicals.18  

 

The molecular structure of lignin varies widely between plant species as well as between 

different plant tissues.29,30  It is important to note that lignin can be made from more than 

three monomers, and because of mutations in plants, complex pattern of linkages is found 

in different plant tissues.31  
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1.2.3 Model structure of lignin 

Lignin, being a high molecular weight cross-linked polymer, is insoluble in most of the 

organic solvents. In structure determination studies, solubility of lignin is increased by 

fragmenting the polymer into smaller monomeric units or by attaching polar functional 

groups to the parent backbone of the lignin. Significantly, chemically altered lignin 

samples have been used for structure determination studies. Therefore, the structure of 

lignin proposed by many researchers is not an exact structure. Moreover, lignin that is 

artificially synthesized by dehydrogenation polymerization of commonly occurring 

monolignols is assumed to have the same structure as native lignin. In 1968, Freudenberg 

and Neish proposed a structure for spruce lignin based on the similar dehydrogenation 

polymerization and this structure of lignin is shown in figure 1.6. 

 

Figure 1. 6 Model structure of spruce lignin.27 Image adapted with permission from 

reference.27 Copyright 2003 Wiley Periodicals, Inc., A Wiley Company 

 

The lignification in growing plant take place systematically such that composition of 

monomers differ in subcellular parts.29,30 Softwood lignin mostly content guaiacyl sub-

unit, hardwood lignin composed of both guaiacyl (G) and syringly (S) subunit. The 

grass/annual plant (graminaceous) lignin mainly composed of the p-coumaryl alcohol (H) 

subunit. The Argyropoulos group demonstrated that syringly (S) content in softwood is 

negligible whereas in hardwood S: G ratio in approximately 1 to 5. The ration of S, G and 
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H of enzymatic mild acidolysis lignin (EMAL) isolated from different wood species was 

determined using DFRC (derivatization followed by reductive cleavage)/31P NMR 

(μmol/g) is shown in table 1.3.32 

 

Table 1. 3 S: G: H ratio in select biomass.32  

EMAL 

source 

Lignin sinapyl alcohol 

(S) 

coniferyl 

alcohol (G) 

p-coumaryl 

alcohol (H) 

Douglas fir Softwood 

 

0 0.94 0.06 

White fir 0 0.96 0.04 

Redwood 0 0.95 0.05 

Normal pine 0 0.98 0.02 

Comp pine 0 0.91 0.09 

E. Globulus Hardwood 0.83 0.15 0.02 

 

The ratio of monolignol sub-unit determines the type and number of cross linkages in 

lignin. Guaiacyl units can form three crosslink (β–β, β–O–4 and β–5), while syringly units 

can form only two kinds of crosslinks (β–β and β–O–4). Lignin samples from different 

plant tissue or from plants grown in dissimilar environment can have very different S/G 

ratios. The S/G ratio of lignin from stem tissues is from 1.6 to 2.5, and from root tissues 

that ratio is 1.1 to 2.30 The S units are mainly coupled via weak ether bonds and this results 

in an unbranched structure. Funaoka et al. suggested that during the Kraft pulping process, 

the presence of syringyl units facilitates lignin delignification.33 The S/G ratio can be 

increased by genetic engineering in order to simplify the pulping process.34 Results 

reported by Pilate and group show that growth of these genetically modified plants is 

normal.35 Further, Wang et al. demonstrated that genetic manipulation of switch grass 

yields phenotypically normal plants.36   
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1.3 Lignin isolation and types37 

 

Figure 1. 7 Schematic representation of the lignocellulose material after pretreatment 

process. Image reprinted from reference,38 adapted from Hsu, T. A.39 Copyright 2012, 

Royal Society of Chemistry.  

 

 

Lignin is chemically bonded to hemicellulose and non-lignin material. So as to isolate 

lignin from biomass, either lignin is dissolve selective or cellulose/hemicellulose is 

dissolve preferentially. Some of widely used methods to isolate lignin are given below.   

(i) Kraft lignin process: In this method, wood chips are treated with sodium hydroxide and 

sodium sulfide for several hours at 170°C. Because of this ether linkages are fragmented 

and molecular weight lignin is lowered. The ionized phenol sodium salts increase the 

solubility of lignin in strongly basic solution. Kraft pulping is a widely used process in pulp 

and paper industries.   

(ii) Lignosulfonate Process: In this process, biomass is treated with sulfur dioxide and 

hydrogen sulfite, such that sulfonic acid groups get attached to the lignin polymer to form 

lignosulfonates. The introduction of polar group increases the hydrophilicity of the 

polymer which in turn increases the solubility of polymer in aqueous solution. The 

molecular weight of lignin obtained by this method is higher that of Kraft lignin process. 

The lignosulfonate process is also used in paper industries to separate lignin from 

lignocellulose material. 

(iii) Organosolv Process: In this process, lignocellulose biomass is treated with a mild acid 

in an aqueous organic solvent like methanol, ethanol, butanol, ethylene glycol and 
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tetrahydrofurfuryl alcohol. This method has several advantages over Kraft and 

lignosulfonate process. Firstly, the characterization of lignin is easier because lignin 

obtained by this process is soluble in some of the common polar organic solvent. Secondly, 

the original lignin structure remains largely unchanged in the extraction process and lignin 

is free from non-woody lignocellulose impurities. Lastly, the Organosolv process does not 

pollute water or generate a fishy odor as other pulping processes. Recently, this method is 

regularly used in bio-refinery as well as in pulp/paper industries.  

(iv) Laboratory process: Various laboratory processes isolate the lignin with least altering 

the original structure. In this method, cellulose/ hemicellulose biomass is selectively 

dissolved using formic acid hydrolysis, H2SO4 hydrolysis, cellulose enzyme and milled 

wood processes.   

 

It is hard to predict which method is better, as each method has advantages and 

disadvantages. Argyropoulos and group isolated lignin from a hardwood and from different 

species of softwood via three different methods. They found that lignin isolated from 

different species with the same method have different molecular weights, yields, as well as 

lignin structures.32 A particular isolation processes may give a better yield for some species 

of plant, however it may not work properly for other species.32 Each pretreatment process 

is known to bring out specific changes in structure of the native lignin, such that change in 

structural pattern of lignin isolated from particular method has resemblance. In order to 

study the depolymerization of lignin it is important to separate lignin without altering its 

structure. According to many researchers, abiotic and biotic stresses can help to increase 

lignin content as well as to change its chemical composition.40-42 Biotic stresses are caused 

by other organism like virus, fungi or bacteria, and abiotic stresses occur due to factors 

such as temperature, UV-B radiation, or a nutrient deficiencies. Campbell and group study 

the effect of light on the biosynthesis of lignin, and found that light stimuli clearly lead to 

an increase in the S:G ratio.43 Similarly, drought stress also increases the S:G ratio in 

Eucalyptus.44 Thus, by increasing lignin content or by modifying the structure of lignin, 

the researcher can simplify the depolymerization process and raise the potential for lignin 

as a bioenergy feedstock material. 
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1.4 Fuel and Bulk chemicals from lignin 

 

Crude oil, also known as petroleum, is extensively used in the internal-combustion engines. 

Crude oil basically consists of hydrocarbons derived from ancient biomass. It is a mixture 

of hydrocarbons that have different molecular weights and boiling points. In the fractional 

distillation process, hydrocarbons are separated into fractions with a narrow distribution of 

carbon atoms. Lower boiling fractions consist of gases which contain C1 to C4 carbon 

molecules. “Straight-run” gasoline is a blend of C5 to C10 hydrocarbons, and diesel fuel 

is typically made of compound with 12 to 20 carbon atoms. The valorization of lignin into 

monomeric aromatic molecules for use as a source of bulk chemicals and biofuel requires 

catalytic process that will fragment specific linkages efficiently. Fragmentation can be 

achieved by three common processes: catalytic oxidation reactions, catalytic reduction 

reactions and cracking.  

 (i) Catalytic oxidation reactions: Catalytic oxidation reactions: According to studies 

reported in the literature, the oxidative fragmentation paths has been useful in the 

determination of the structure of native lignin.45-47 Effective oxidative depolymerization 

reactions include nitrobenzene oxidation, potassium permanganate/sodium periodate 

oxidation, and microbiological degradation.48 These processes convert lignin into aromatic 

compounds with different functional groups, including aldehydes, acids, alcohols, allylic 

alcohols, and ethers. Lin and group demonstrated that aerobic oxidation of lignin by 

perovskite type oxide catalyst results in aromatic aldehydes.49 Another group reported 

electrochemical depolymerization of Kraft lignin on Pt, Au, Ni, Cu and PbO2 anodes.50 The 

most studied homogeneous oxidation catalysts are porphyrin catalysts, Schiff-base 

catalysts, polyoxometalate based catalysts, and simple metal salt based catalysts.51-53 

Oxidative degraded small molecules tend to have higher oxygen content and because of 

this reason, their usability as bulk chemicals have been considered , although hydrocarbons 

can generated to produce biofuel.10 

 (ii) Catalytic reduction reactions: In 1938, Harris and group reported that hydrogenation 

of hardwood lignin generates nine or higher carbon atom compounds.54 The catalytic 

hydrogenation of lignin and lignin model compounds aims to produce bio-oils and phenols. 

Hydrotreatment of lignin is emphasized as a way to upgrade the quality of the bio-oil. 
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Hydrotreatment lowers the oxygen content, and this helps to improve the thermal stability 

and reduces the volatility of the oil. Various reported heterogeneous and homogeneous 

catalysts used for hydrogenation of lignin, shows promising results.55,56 The copper-dopes 

porous metal oxide heterogeneous catalyst effectively hydrogenate lignin into monomeric 

fuel additives.57 Electrocatalytic hydrogenation of phenolic β–O–4 lignin model 

compounds with help of Ni and Pd cathodes has produced phenols.58 Some homogeneous 

hydrogenation catalysts work in two phase reactions, using phase transfer catalyst (PTC). 

The examples of PTC catalysts are chloro(1,5-hexadiene)-rhodium for hydrogenation of 

arenes,59 RhCl3/ trioctylamine for reduction of disubstituted aromatics ring.60 Ragauskas et 

al. reports a completely soluble catalyst for hydrogenative depolymerization of organosolv 

lignin with Ru(PPh3)3Cl2 catalyst along with either Raney-Ni or Pt/C or using NaBH4/I2.
61 

The reduction process has certain drawbacks, including high H2 pressures and high 

temperatures, difficulty in recycling of the catalyst, and catalyst deactivation. These 

features make exploitation on an industrial scale is truly difficult.  

(iii) Cracking: In this process, the polymer is broken down into small hydrocarbons by 

pyrolysis under inert atmosphere. Beste and Buchanan investigated the thermal 

transformation in lignin model molecules by flash vacuum pyrolysis via computational 

study.62-65 According to their finding, fragmentation proceeds by free radical reactions, 

molecular rearrangements and concerted eliminations.  Some strategies to increase the 

efficiency of the cracking process are fast pyrolysis, incorporating a catalyst, adding formic 

acid, or by modifying reactor designs.10  

 

Various cracking catalysts reported in the literature have been successful in generating 

aliphatic as well as aromatic hydrocarbons. Catalytic hydrdeoxygenation of lignin using 

Fe/SiO2 produces aromatic hydrocarbons,66 Pd supported on SBA-15 catalysts to generate 

phenols,67 calcium formate fast pyrolysis to generate alkylated phenols,68 and 

deoxygenation of biomass via bimetallic Ni/ V catalyst.69 The cracking process depends 

upon factors including the pyrolysis temperature, the catalyst, the heating rate and the 

feedstock. This makes the cracking process complicated and unpredictable.70 In spite of all 

advantages in pyrolysis method, it is less selective than chemical treatment and 

biochemical depolymerization.        
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1.5 Lignin Model Compounds 

 

The depolymerization of lignin polymer into its monomers is an interesting approach to 

generate bulk chemicals and biofuel. However, lignin being a very complex polymer, the 

study of its depolymerization has its challenges. The lignin obtained through all the above 

mentioned methods is not entirely pure, and it is insoluble in almost all organic solvents; 

because of this very few analytical methods are available to characterize the change in its 

functionality. On the other hand, the study of lignin model compounds is significantly 

simpler than oxidation of lignin itself and enables careful characterization of the products 

so that the issues of selectivity can be addressed. The small compounds generated by 

fragmentation of lignin model compounds could be separated by chromatographic 

techniques, and further identification is possible using conventional analytical methods like 

GC-MS and NMR. In our study, we synthesized six different lignin model compounds, 

providing examples of β-phenyl ethyl or β-O-4 linkages (Figure 1.8). These model 

compounds had similar linkages and functional groups as that of native lignin. We believe 

that if we are able to selectively cleave some common linkages in model compounds, the 

same process will be able to depolymerize native lignin. Compounds 1, 2, 3 and 5 do not 

have free phenolic -OH groups, while 4 and 6 are phenolic model compounds. 

 

Figure 1. 8 β-O-4 linkage lignin model compounds used in this work. Substituents R1, 

R2, R3, R3, R4, R5 and R6 are denoted in Table 1.4. 
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Table 1. 4 Structure of lignin model compounds. 

LMCs Structure Substituent 

1 
 

R1 = R2 = R3 = R3 = R4 = R5 = R6 = H 

2 

 

R1 = R2 = R4 = R6 = H, R3 = OH, R5 = n-Pr 

3 

 

R1 = R2 = R6  = OCH3, R3 = H, R4 = CH3, R5 = n-Pr 

4 

 

R1 = R6 = OCH3, R2 = R3 = OH, R4 = CH3, R5 = n-Pr, 

5 

 

R1 = R2 = R6 = OCH3, R3 = OH, R4 = CH2OH, R5 = n-Pr 

6 

 

R1 = R6 = OCH3, R2 = R3 = OH, R4 = CH2OH, R5 = n-Pr 

 

The model molecules with methoxyl and phenolic hydroxyl group substituent on the 

aromatic ring serve as model compound for native lignin. Likewise, Cγ hydroxyl group 

resemble to propanoid substituent group. Given that different substituent groups are 

attached to the basic β-phenyl ethyl linkage, each of these molecules has distinct reactivity 

towards oxidants. A method for breaking apart some of the common linkages would be an 

extremely important step toward converting lignin from a solid polymer into small 

molecules that can be processed into fuels or utilized as platform chemicals.  Of particular 

interest is an oxidation route, because there are a number of sites on the lignin polymer that 

should be possible to target with oxidizing agents, specifically benzylic C-H and C-OH 

bonds.  Although an oxidative approach to lignin depolymerization comes at the cost of 

some of lignin's fuel potential, we believe that cutting a small percentage of the linkages 

can produce new materials that are much more amenable to processing. 
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1.6 Our depolymerization approach 

Many researchers have studied the catalytic oxidation of lignin model compounds. In this 

study molecular O2 and H2O2 is commonly used as oxidant. Molecular O2 and H2O2 are 

highly desirable because they are inexpensive and no toxic byproducts are generated from 

the oxidizing agent itself. 

 

Very recently, Toste’s group reported the catalytic cleavage of C-O bonds using vanadium-

oxo complexes.71 Hanson, Baker and co-worker studied C-O and C-C bond cleavage using 

vanadium and copper catalysts.72,73 Claudia and et al. reported the use of a lignin 

peroxidase biomimetic catalyst in oxidative degradation of lignin model compounds.74 Of 

particular note is recent work by Stahl and co-workers, who were the first to report the use 

of TEMPO, and TEMPO derivatives, as catalysts for the oxidation of alcohol moieties in 

lignin model compounds and in the native lignin polymer.75 Bozell and group reported Co-

Schiff base-catalyzed oxidative cleavage of monomeric and dimeric lignin models.76 The 

oxygenated aromatic compound obtain after catalytic oxidation of lignin could be used as 

bulk chemical or further process to non-oxygenated hydrocarbons petrochemical. 

 

Step 1: Oxidation at benzylic hydroxyl group 

 

Step 2:  Baeyer-Villiger oxidation to produce esters, followed by hydrolysis of esters to 

produce fragments 

 
Figure 1. 9 Schematic representation of two step selective cleavage of the Cα-Cβ 

linkages.  

 

It is known that β–O–4 linkage is more that 50% of the linkages in softwood as well as in 

hardwood. In this study, we are particularly targeting on β–O–4 linkages. We believe that 
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if we study catalytically breaking common linkages, we will be able to disassemble the 

lignin polymer. The depolymerization of lignin model compounds (LMCs) with identical 

linkage and reactivity as native lignin looks promising as a way to study depolymerization 

of lignin. We believe that oxidation has to be selective, which will result in useful 

molecules. 

 

Herein, we present a method for selective stepwise oxidation of lignin under mild and 

practical condition using inexpensive oxidants such as H2O2 and molecular O2. 

Specifically, we have targeted the oxidative cleavage of Cα-Cβ bonds as a means to 

depolymerize lignin and obtain useful aromatic compounds. In this work, we prepared 

several LMCs that have the structures, characteristic reactivity and linkages closely related 

to the parent lignin polymer. We observed that selective oxidation of benzylic hydroxyl 

groups using molecular O2, followed by Baeyer-Villiger oxidation of the resulting ketones 

using H2O2, successfully cleaves the Cα-Cβ linkage in the model compounds. LMC was 

used to study oxidative cleavage reaction. Every molecule has distinct reactivity toward 

oxidant, as different substituent groups are attached to the basic β-phenyl ethyl linkage. 
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CHAPTER 2. SELECTIVE STEPWISE OXIDATION OF LIGNIN MODEL 

COMPOUNDS (LMCs) 

2.1 Hydroxylation of benzylic methylene groups in lignin model compounds by 

an iron porphyrin catalyst  

 

In photosynthesis, carbon dioxide is converted to organic molecules by the carbon fixation 

process. Plants synthesize their structural constituents from carbon dioxide in the presence 

of light and chlorophyll. The microorganisms are not able to degrade wood, because of 

lignin protective layer around cellulose and hemicellulose.77 Lignicolous fungi is a wood-

decay fungus which grows on dead wood. Wood-decaying fungus plays an important role 

within the ecosystem by degrading biomass back to carbon dioxide. These fungi are 

broadly classified in three major class: brown rot, soft rot and white rot. Every fungus has 

a characteristic degradation pattern. The brown rot and soft rot fungi favorably break down 

cellulose and hemicellulose in wood. White rot fungus preferentially degrades the lignin 

component in wood, causing left-over rotten wood to appear white and spongy.78 

 

Kirk et al. have performed pioneering work on the biodegradation of lignin.79 According 

to their studies, in the presence of H2O2 an extracellular enzyme from white rot fungus, 

Phanerochaete chrysosporium, is accountable for natural biodegradation of lignin.23 In 

1984, oxidases from ligninolytic cultures of Phanerochaete chrysosporium were isolated 

and identified as iron porphyrins and Mn+2-dependent peroxidase.51,80 The structure of the 

ligninase was further confirmed by crystallography.81-83 Biodegradation of lignin and 

lignin model compounds was extensively studied by a variety systems using white rot 

enzyme.84  Lignin peroxidase has been known to catalyze oxidation of several functional 

groups in lignin model compounds. The most common oxidation reactions executed by 

lignin peroxidase are hydroxylation of benzylic methylene groups,85,86 benzyl hydroxyl 

group oxidation,87 Cα-Cβ cleavage78 and  β-1, β-O-4, β-5 bond cleavages.84,87  However, 

the use of lignin peroxidase is not economically convenient because depolymerized lignin 

eventually converts into carbon dioxide by further oxidation. In order to understand the 

mechanism of depolymerization reaction, individual enzyme need to be purified, which is 
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very costly process. It is believed that a synthetic metalloporphyrin catalyst is the ideal way 

to study selective oxidation process.85 

 

Nowadays, metalloporphyrins are sold in many specialty chemical companies. The 

chemistry of synthetic porphyrins has been reviewed by many researchers in the areas of 

material science, catalysis and biological field.88,89 Furthermore, introduction of 

substituents on the porphyrin ring or altering center metal ion provide an interesting way 

to modify the functionality of metalloporphyrins.89 Synthetic metalloporphyrins with 

similar macrocyclic ligands and transition metals as in enzymes are highly studied as 

biomimetic catalyst for oxidation reactions.85 In past, iron/magnesium porphyrin catalytic 

oxidation study of lignin model compound has been done using various oxidant like m-

CPBA, H2O2, t-BuOOH and NaOCl.  The biomimetic catalyst oxidation study of lignin 

model compound provides an insight for the depolymerization of native lignin polymer.  

 

Figure 2. 1 Mechanism proposed for oxidation of LMCs by heme-porphyrin and H2O2.
74  

 

Figure 2.1 shows a simplified catalytic cycle of heme-porphyrin for oxidation of lignin 

model compounds. The proposed mechanism for hemi porphyrin catalytic cycle involves 
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oxidation of iron porphyrin to active catalyst-oxy(IV) iron porphyrin complex. (Compound 

I) by H2O2. The compound I oxidized lignin and itself get reduce to compound II. This is 

followed by successive another one electron oxidation to regenerate original catalyst.  

 

The one-electron oxidized β-O-4 lignin model compounds form radical cation complex, 

and this complex then form benzylic radical intermediate through Cα-H deportation. The 

intermediate preferentially undergoes oxidation via two common pathways as shown in 

figure 2.2. In path a, aerobic conditions involves formation of hydroperoxy radical is 

followed by decomposition to produce ketone. In path b, first step is one electron oxidation 

to produce benzyl cation, which is followed by attacked of water to form benzyl alcohol. 

Although the detailed mechanism of the reaction requires further investigation. 

   

 

Figure 2. 2 Proposed mechanism for hydroxylation of benzylic methylene groups and 

oxidation of benzylic hydroxyl group.87,90-92 

 

In order to carry out precise study of bond cleavage using iron porphrin catalyst, dimer 

model molecule allows thorough studies of oxidative cleavage reactions. The selective 

catalytic hydroxylation of benzylic methylene groups by lignin-degrading enzymes and by 

an iron tetraphenylporphyrin (TPP) chloride/tert-butylhydroperoxide (t-BuOOH) system 

has been reported in the literature.83,93 We believe that hydroxylation at the Cα position of 

1 is a key step in an effective oxidation process. In our study, we investigated the use of 

the previously reported iron porphyrin/tert-butylhydroperoxide (t-BuOOH)/pH 3 

phosphate buffer system for catalytic hydroxylation of benzylic methylene groups (Figure 

2.3, and Table 2.1).  
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Figure 2. 3 Oxidation of the LMCs 2 by TPPFeCl and t-BuOOH. 

 

Table 2. 1 Oxidation of 2 with and without TPPFeCl using different equivalent of t-

BuOOH.   

t-BuOOH (eq.) TPPFeCl (eq.) % smr Yielda (%) 

a b c d e 

1 No catalyst 97 2.5 0.5 - - - 

1 0.01 60 18 9 11 - - 

5 0.01 11 26 12 18 8 16 

The oxidation of benzylic C-H and C-OH groups in LMC  2 was carried out by treating 2 

(50 mg, 0.2 mmol) with TPPFeCl, 70% aq soln of t-BuOOH, CH3CN (0.5 mL) and 0.1N 

pH 3 phosphate buffer (1.5 mL)  stirred at 25 °C for 14 h.94 aYields are for isolated pure 

products. 

 

These reactions resulted in 3 major types of products, resulting from oxidation of benzylic 

hydroxyls or benzylic C-H bonds. The results in Table 3.1 indicate that catalyst plays 

important role in oxidation reaction, as when reaction was carried out without catalyst 97% 

of starting material was recovered. The oxidation of molecule 2 using 5 eq of t-BuOOH at 

fixed concentration of catalyst and reagent results in β-O-4 and O-phenyl bond cleavage. 
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Table 2. 2 Oxidation of 2 with TPPFeCl/t-BuOOH in presence PTC. 

Phase transfer catalyst (PTC) % Relative 

smr 

Relative Yieldb (%) 

a b c 

- 63 29 4.5 3.6 

Sodium dodecyl sulfate 61 30 4 3 

Tetra butyl ammonium bromide 54 33 6 4 

Tri methyl (tetra decyl) ammonium bromide 56 34 3 1 

The oxidation of benzylic C-H and C-OH groups in LMC  2 was carried out by treating 2 

(50 mg, 0.2 mmol) with TPPFeCl, PTC (1 mmol%), 70% aq soln of t-BuOOH, CH3CN 

(0.5 mL) and 0.1N pH 3 phosphate buffer (1.5 mL)  stirred at 25 °C for 14 h.94 bRelative 

SMR and Yields are referred from GC-MS % area of the peaks, without calibration.  

 

In order to explore the effect of a phase-transfer catalyst (PTC) on these heterogeneous 

reaction mixtures, three different PTCs were introduced into the reaction mixture. The 

results in Table 3.2 shows that PTC does not increases that rate of the reaction, as % 

conversation does not change much. 

 

Table 2. 3 Oxidation of 2 with TPPFeCl/t-BuOOH in different proportion of buffer and 

MeCN. 

MeCN (mL) Phosphate Buffer 

(mL) 

% Relative 

smr 

Relative Yieldb (%) 

a B c 

0.5 1.5 63 29 4.5 3.6 

1 1 72 28 - - 

1.5 0.5 86 14 - - 

The oxidation of benzylic C-H and C-OH groups in LMC  2 was carried out by treating 2 

(50 mg, 0.2 mmol) with TPPFeCl (0.002 mmol), 70% aq soln of t-BuOOH (0.2 mmol), 

CH3CN and 0.1N pH 3 phosphate buffer stirred at 25 °C for 14 h.94 bRelative yields are 

referred from GC-MS % area of the peaks, without calibration.  

 

The reactivity of 2 in different proportions of MeCN: pH 3 phosphate buffer was studied 

(0.5: 1.5 v/v, 1.0:1.0 v/v MeCN:pH 3 phosphate buffer), the conversion being highest in 

0.5:1.5 MeCN:pH 3 phosphate buffer. 
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Figure 2. 4 Oxidation of the LMCs by TPPFeCl and t--BuOOH. 

 

Table 2. 4 Oxidation of 1 - 6 with TPPFeCl/t-BuOOH.  

LMCs % smr Yielda (%) 

A B C 

1 92 5 - - 

2 60 18 9 11 

3 54 26 2 5 

4 0 - - - 

5 44 39 14 1 

6 0 - - - 

The detail procedure is given in Chapter 3 (section 3.3.1). aYields are for isolated pure 

products. 

 

We observed that the conversion was significantly reduced when the MeCN/phosphate 

buffer liquid phase was replaced by CH2Cl2.  Similarly, when the TPPFeCl oxidation 

reaction was carried out with m-CPBA in CH2Cl2, an unselective fragmented product was 

obtained. In situations where there is an unprotected phenolic hydroxyl, polymerization 

(presumably phenolic oxidative coupling) results in insoluble, chromatographically 

immobile material. The current data clearly demonstrated that TPPFeCl/t-BuOOH 

oxidation system works selectively for oxidation of hydroxyl groups and hydroxylation of 

benzylic methylene groups in lignin model compounds. However, with increase in the 

concentration of t-BuOOH, and when the reaction is carried in CH2Cl2, the oxidation 

reaction is not particularly selective.  
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2.2 Oxidation of benzylic hydroxyl groups into ketone 

 

Dehydrogenation (oxidation) of alcohol is the important transformation of the functional 

group in organic chemistry. Some of the famous conventional oxidation of alcohol 

reactions are Jones oxidation, Dess-martin oxidation, Swern oxidation, Corey-Kim 

oxidation, Oppenauer oxidation, etc. In all these reactions, a stoichiometric amount of 

oxidant used generates huge amount toxic waste. Recently, many researchers have 

published the selective greener oxidation process using molecular oxygen. We opted for a 

catalytic approach to the oxidation of benzylic hydroxyl groups in lignin model 

compounds, using molecular oxygen as the oxidant. Oxidation processes that employ 

dioxygen are highly desirable because O2 is inexpensive, and no toxic byproducts are 

generated from the oxidizing agent itself. Although dioxygen being powerful oxidant, it is 

kinetically unyielding.  

 

The multiplicity of electronic state is determined from spin quantum number S (+1/2 or -

1/2), number of unpaired electrons.  

Multiplicity of state = 2S + 1 

In case of singlet diradicals, pair of electrons has spin state +1/2 and -1/2. Therefore, the 

multiplicity of the state will be (2*0 + 1) singlet. Likewise, in free radical R˙, one unpair 

electron (2*1/2 + 1) results into doublet state. On this term oxygen ground state has two 

unpaired electron (2*1 + 1), which results in triplet ground state.    

  

Molecular oxygen exists in a triplet diradical ground state, whereas most of organic 

compounds present as a single ground state. Due to this reason, organic compounds do not 

react with molecular oxygen under normal reaction condition. However, oxygen reacts 

with doublet state radicals to form new radical. 
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Figure 2. 5 Electronic configuration of 2pπ orbitals in molecular oxygen and 

corresponding potential energy.  

 

Figure 2.5 represents potential energy of triplet oxygen 3Σ-
g ground state, the singlet oxygen 

1Δg excited state, and the singlet oxygen ¹Σ+
g excited state.95 Triplet state oxygen is 22.5 

Kcal more stable then singlet oxygen. Singlet oxygen is commonly prepared by 

photosensitizer pigment, and its life span is over one hour at room temperature because 

transition nature from the singlet to triplet transition is spin forbidden.95 The excitation of 

ground state oxygen to singlet state is strictly spin forbidden under normal conditions. In 

order to put on use oxygen as an oxidant in organic reaction, it is important to overcome 

the kinetic barriers by activating the molecular oxygen. The transition metal complexes is 

well-known imperative activating agent. In biological system transition metal complexes 

bind to molecular oxygen reversibly. The transition metal formed stable reversible and 

irreversible adduct with oxygen due to spin orbital coupling. The transition metal-oxygen 

adduct can potentially oxidized organic compounds, owing an economical green oxidation 

process.96 Aerobic oxidation of benzylic and allylic alcohol using transition metal is well 

studied. Most widely used transition metal complexes as oxidation mediators are PdCl2, 

Pd(OAc)2, Pd/C, RuO2, MnO2, etc.97-102 In the literature, a number of oxidation processes 

promise selective oxidation of benzylic alcohol to ketones, but many have certain 

drawbacks, such as requiring high-pressure conditions or the use of expensive transition 



 

27 

 

metal catalysts.103,104 Therefore, the challenge was to screen for an effective catalyst system 

that is economical, selective, and which operates under mild reaction conditions.  

 

2.2.1 Oxidation by 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone(DDQ)  

Quinone commonly found in biological systems plays an important role as an oxygen 

activator in metabolic processes, enzymes, redox proteins and photosynthesis. Quinone is  

well known for redox reaction because of high reduction potential and electron transfer 

rates.105 It plays the important role in biological oxidation reaction. The oxidation study 

proves that introducing electron withdrawing substituent increased one-electron reduction 

potentials and hydrogen atom transfer ability of the quinones and thus promotes the 

oxidation.106,107 Among all synthetic quinone, 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone 

(DDQ) is most effective.108  DDQ being powerful oxidant used as hydrogen acceptor in 

oxidation of benzylic, allylic alcohol and ether.109,110 The electrochemical redox 

equilibrium study between DDQ/DDQ-H2 suggest that electron and proton transfer 

reaction is depends upon pH of the reaction medium. In acidic medium, reduction occurs 

via two electron two proton transfer route.111     

DDQ + 2e + 2H+                         DDQ-H2  

Various oxidation reaction using DDQ is reported, in most of the reaction DDQ is used in 

stoichiometric amount, as DDQ is get reduce to DDQ-H2.
110,112-117 In order to regenerate 

DDQ, many researcher used co-catalyst such as FeCl3,
118 Mn(OAc)3,

104 and also by 

electrochemically.119 The transition metal co-catalyst generates undesirable toxic waste, 

which in not acceptable from environment point of view. Since then, various organic 

catalyst such as N-hydroxyphthalimide and t-butyl nitrite have been reported, however 

high oxygen pressure is required to regenerate the catalysts.103 Recently, use of sodium 

nitrite (NaNO2) seems to show promising results, as reaction work under normal 

atmosphere pressure and temperature.   

 

Synthesis of nitric oxide from sodium nitrite is reported in 1925. According to author, 

sodium nitrite(NaNO2) reacts with acidic to produce unstable nitrous acid (HNO2), further 

HNO2 quickly decomposed to nitric oxide and nitric acid.120 The nitric oxide is formerly 
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autooxidized to nitrogen dioxide (NO2˙) in O2 atmosphere. The autooxidation of nitric 

oxide is known, also it is experimental proved that reaction proceed via ONOO˙ 

intermediate.121  

(1) 3NaNO2 + 3H+ → 3HNO2 → HNO3 + 2NO˙ + H2O 

(2) 2NO˙ + O2 → 2NO2˙  

NO2˙ being radical reacts with another radical species. Reaction between nitrogen dioxide 

and phenol is well studied in past. As reported, NO2˙ abstract hydride from phenol to 

generate nitrous acid and phenoxyl radical. And in the successive step nitrous acid 

disproportionate into H2O and nitrogen oxide (NO˙).122 The cycle between NO˙/NO2˙ 

sustain as long as atmospheric O2 is available. Because of this catalytic amount of NaNO2 

is sufficient to regenerate DDQ from DDO-H2. 

 

In 2012, Wang et al. published a method based on the use of DDQ/NaNO2 for the selective 

oxidation of benzylic hydroxyl groups under mild conditions (Figure 2.7 and Table 2.5).123  

 

Figure 2. 6 Mechanism for aerobic oxidation of alcohol by DDQ/NaNO2. 

 

In cycle 1, DDQ oxidizes the alcohol to a ketone and gets reduced to hydroquinone - a 

redox reaction comprised of two protons and two electrons. The oxidation is initiated by 

one electron oxidation of alcohol to form radical cation. In cycle 2, NaNO2 is decomposed 

to NO˙, and then O2 oxidized to NO2˙. The NO2˙ plays important role in regenerating the 

catalyst and both the catalytic cycle last as long as sufficient O2 is available.       

  

To optimize the oxidation of LMC 3 with DDQ/NaNO2 oxidation system, we varying the 
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reaction parameters and determined the conversion and yield of oxidized product. The 

detail amount of catalyst, co-catalyst   and reaction parameters is given in table 2.5. Typical 

experimental procedure for selective oxidation of LMC 3 consisting of 50 mg of LMC 3 

(0.14 mmol), DDQ and NaNO2 in the presence of 1.8 ml CH2Cl2, 0.2 ml acetic acid, under 

an O2 atmosphere (1 atm) for 19 hrs.124   The organic phase was washed with water, 

combined organic layers were dried over MgSO4 and concentrated in a vacuum. The 

products were isolated easily from the other byproducts using a preparative TLC plate. 

 

Figure 2. 7 Oxidation of benzylic hydroxyl groups in LMC 3 by DDQ and NaNO2. 

 

Table 2. 5 Catalytic aerobic oxidation of 3 with DDQ/NaNO2.   

Entry DDQ eq NaNO2 eq Temp % smr Yieldsa (%) 

  A B 

1 0.01 0.1 RT 76 23  

2 0.1 1 RT 32 43 - 

3 1 10 RT 0 69 - 

4 0.1 1 55°C 72 22 - 

5 0.1 1 RT(sonication) 54 33 - 

The detail procedure is given in Chapter 3 (Section 3.3.2). aYields are for isolated pure 

products. 

 

In this study, we found that upon increasing the amount of catalysts, we obtained 

acceptable yields after 19 h; however, mass balances were poor, suggesting the formation 

of low molecular weight, water-soluble compounds or chromatographically immobile 

material. In an attempt to increase the rate, the reaction was carried at 55 ºC, however, 

conversion declines. We also found that when reaction was carried out in a sonicating bath, 

the level of conversion does not increase. When 10 equivalent of NaNO2 was used instead 
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of 1 equivalent the conversion was negligible. In another reaction, N-hydroxyphthalimide 

(NHPI) mediator (co-catalyst) was added into the reaction mixture, however NHPI did not 

increase the rate of the reaction. In an attempted to increases the conversion of compound 

3, different solvent were tried including benzene and dimethylolpropionic acid (DMPA), 

but the conversion was negligible. Likewise, AcOH and CH2Cl2 in different proportion 

were tried, but unfortunately the conversion didn’t improved.  

         

 

Figure 2. 8 Oxidation of benzylic hydroxyl groups in LMCs by DDQ and NaNO2. 

 

Table 2. 6 Catalytic aerobic oxidation of 1 - 6 with DDQ/NaNO2.   

Entry LMCs DDQ eq NaNO2 eq % smr % Yieldsa 

A D 

6 1 0.01 0.1 0 0 - 

7 2 0.01 0.1 0 0 - 

8 3 0.01 0.1 76 23 - 

9 3c  0.1  1  35 63  -  

10 4 0.01 0.1 48 28  

11 4 0.1 1 0 60 - 

12 5 0.01 0.1 59 33 - 

13 6 0.01 0.1 40 29 5 

The detail procedure is given in Chapter 3 (Section 3.3.2). aYields are for isolated pure 

products, creaction mixture was stirred at room temperature for 44 h. 

 

As shown in Table 2.6, 1 and 2 remain unchanged under these reaction conditions. In 

general, when DDQ is added to the substrate dissolved in CH2Cl2, the solution turns blue 

due to formation of charge transfer complexes between the substrate and DDQ.125,126 In our 

study, we found that when DDQ was added to solutions of 1 or 2, the color did not change. 

These results suggest that electron transfer occurs when electron donating groups (like 

methoxy groups) are attached to benzene rings, but not in situations where the aromatic 
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ring is not electron rich.  We found that with compounds 3 - 6 this oxidation process works 

well but the rate of the reaction was very slow, with conversions being typically 40 to 60 

% after 19 h. When reaction time was increased from 19 h to 44 h conversion was even 

better. The study also demonstrated that in the absence of O2 or in the absence of NaNO2 

oxidation reaction does not occur.126 

 

2.2.2 Oxidation by (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl ( TEMPO) 

Another interesting transition metal free aerobic oxidation process known is by using stable 

nitroxyl free radical. Nitroxyls radical (amine-N-oxide radicals) has stable resonance 

structure as shown below. Sterically bulk four methyl group in molecular structure of 

(2,2,6,6-tetramethylpiperidin-1-oxy) TEMPO, increases the stability by inhibiting 

dimerization via O-O, N-O or N-N bonds. 

 

TEMPO is a commercially available stable nitroxyl radical which has commonly 

application in free radical polymerization, electronic paramagnetic resonance spectroscopy 

(EPR), polymerization inhibitor and oxidation of alcohols into the corresponding 

aldehydes or ketones.127-130 TEMPO is reasonably inexpensive and has industrial 

applications. In order to eradicate the catalyst from the reaction mixture the polymer 

support TEMPO catalyst as well as organosilane supported heterogeneous catalyst is sold 

by some specialty chemical companies.131  

 

In oxidation process, TEMPO is first converted to active oxidant, N-oxoammonium cation. 

N-oxoammonium salt is formed by one electron oxidation of TEMPO via various oxidant 

including N-chlorosuccinimide,132 bromine or chlorine,133 m-CPBA,127 Fe(III) mediated 

K3Fe(CN)6,
134 electrochemical oxidation135 and sodium hypochlorite.136    
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According to the literature, the TEMPO can selectivity oxidized primary or secondary 

alcohols under certain reaction conditions. Some researchers have found that primary 

alcohols were selectively oxidized over secondary, while other found the opposite.134,137,138 

Also, allylic and benzyl alcohols oxidation rate is higher and selective compare to usual 

alcohols.  

 

N-oxoammonium salts are electrophile at nitrogen and/or at oxygen atom position. The 

mechanism of the oxidation reaction is highly dependent upon the pH of the reaction 

medium. In basic medium, the reaction proceeds via a bimolecular cyclic transition state 

and selectivity of the reaction is governed by steric factors. As shown in figure 2.9, the 

oxygen anion abstracts the Cα-hydrogen of the alcohols to give a ketone derivative and N-

hydroxyamine. And in acidic medium, reaction does not occur via cyclic transition state 

therefore oxidation rate of secondary alcohol is greater.139  

 

Hence, in acidic medium secondary alcohol is oxidized favorably whereas in basic medium 

primary alcohol is preferentially oxidized to ketone.   

 

Figure 2. 9 Plausible mechanism for oxidation of alcohol under basic medium. 

 

Figure 2. 10 Plausible mechanism for oxidation of alcohol under acidic medium. 

 

TEMPOH undergoes one electron oxidation in an O2 atmosphere to regenerate the catalyst 

(TEMPO).140 
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In this oxidation process TEMPO is used in catalytic amounts. As mentioned above, 

TEMPO is first converted to the active catalyst, an N-oxoammonium salts. At the end of 

the catalytic cycle, the reduced form of TEMPO is again oxidized by molecular oxygen, 

such that toxic waste is not generated.  

                   

Figure 2. 11 Mechanism for aerobic oxidation of alcohol by TEMPO/NaNO2. 

 

In cycle 1, nitrosyl chloride is produced by three-step process. In first step, sodium nitrite 

reacts with acid to form nitric oxide, and in next step nitric oxide combine with oxygen to 

form nitrogen dioxide. And in last step nitrosyl chloride is formed from nitrogen dioxide 

and chloride. In cycle 2, TEMPO undergoes one-electron oxidation to form active oxidant 

N-oxoammonium cation, which oxidizes the alcohol and itself gets reduced to N-

hydroxylamine. Oxygen then oxidizes the hydroxylamine to regenerated TEMPO. 

 

We initially focused on the oxidation of benzylic hydroxyl groups using two different 

TEMPO-based systems that were developed by Hu and coworkers.141,142 In reactions using 

TEMPO/Br2/NaNO2, bromination of the highly electron-rich aromatic ring occurred.  The 

same result occurred using a TEMPO/1,3-dibromo-5,5-dimethylhydantoin/NaNO2 system. 

We that investigated the TEMPO/CAN oxidation system developed by Kim and Jung,143 

but we found that the conversion was quite low. The reaction was carried out by treating 

50 mg of substrate 2-3 with TEMPO (0.2eq) and CAN (0.1 eq) in the presence of 0.4 ml 

MeCN, 0.2 ml acetic acid, O2 balloon at 90°C for 15 hrs.     
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Figure 2. 12 Oxidation of the benzylic hydroxyl group in LMCs by TEMPO/CAN. 

 

Table 2. 7 Catalytic aerobic oxidation of 2 - 3 with TEMPO/CAN. 

LMCs % Relative smr Relative Yieldb (%) 

A B 

2 20 20 - 

3 17 16 - 

bRelative yields are referred from GC-MS % area of the peaks, without calibration. 

 

Another interesting aerobic oxidation system using TEMPO, NaNO2, HCl and NaCl under 

mild conditions was published in 2008 by Liang et al. (Figure 2.12 and Table 2.7).144 

This oxidation reaction using TEMPO was carried by treating 50 mg substrate 1 - 6 with 

TEMPO (0.15eq), NaNO2 (0.25eq), 36% aq HCl (0.5eq) and NaCl (0.5eq) in the presence 

of O2.
15 

 

Figure 2. 13 Oxidation of the benzylic hydroxyl group in LMCs by TEMPO/NaNO2. 
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Table 2. 8 Catalytic aerobic oxidation of 1 - 6 with TEMPO/NaNO2.   

LMCs % smr A  (% yielda) 

1 100 - 

2 0 100 

3 0 81 

4 0 - 

5 0 80 

6 0 - 

The detail procedure is given in Chapter 3 (sub-section 3.3). aYields are for isolated pure 

products. 

 

Although encouraging results were obtained for compounds 2, 3 and 5 under these 

conditions, 4 and 6, compounds that contain free phenolic hydroxyl groups, were converted 

into insoluble material (presumably polymeric material). In an effort to prevent 

polymerization, we examined the selective protection of the phenolic hydroxyl group using 

benzyl bromide. Furthermore, compound 5 has hydroxyl group at Cα and Cγ carbon, but 

under this reaction conditions on Cα hydroxyl group oxidized to ketone. This results 

suggest that secondary alcohol preferentially oxidized over primary alcohol. The results 

were consistence with the relative oxidation rates of different hydroxyl mentioned in 

literature.  

 

2.3 Protection of phenolic hydroxyl group 

 

Figure 2. 14 Protection of phenolic hydroxyl groups of LMC 4, 6 by benzyl bromide and 

K2CO3. Note: benzyl protected lignin model compounds are denoted as 4 - P and 6 - P. 

 

The optimization of the reaction conditions between benzyl bromide and substrate is as 

followed. 50 mg of substrate 4 or 6 (1 eq), benzyl bromide (2 eq) and K2CO3 (1 eq) was 

heated at reflux at 65°C for 5 hrs in the presence of 1.0 ml acetone. The mixture was 

concentrated in vacuum. The residue was diluted with water (10 mL) and extracted with 
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EtOAc (3 × 10 mL). The organic layer was washed with water, and then evaporated to 

dryness. The residue was subjected to column chromatography on silica gel (EtOAc: 

Hexane 1:9) to yield 100% product (4' - P, 6' - P) and selectivity. These reactions resulted 

in nearly quantitative yields and complete selectivity for reaction at phenolic hydroxyl 

group. 

 

2.4 Baeyer Villiger Oxidation of ketone 

 

Baeyer Villiger oxidation (BVO) is one of the most important reactions in organic 

chemistry. Since the discovery of the reaction in 1899, it has become a widely used method 

to convert a ketone into its corresponding ester. The reaction involves insertion of an 

oxygen atom between a carbonyl carbon and one of the alkyl/ aryl groups. Thus, the 

reaction is also known as the Baeyer-Villiger rearrangement. The relative migratory ability 

of substituent attached to the carbonyl carbon depends on the substituent ability to form 

more stable carbocation. The migration order of substituents is tert. alkyl > cyclohexyl > 

sec. alkyl > phenyl > prim. alkyl > CH3.
145,146 Also, a phenyl group with an electron-

donating substituent has better migration aptitude compared to non-substituted phenyl 

group or a phenyl group with an electron accepting substitute.147 The ester that is formed 

in a BVO reaction is hydrolysed to the corresponding carboxylic acid and alcohol/ phenol 

in situ or as a separate step. Most commonly used oxidants are m-chloroperbenzoic acid 

(m-CPBA), trifluoroperacetic acid (TFPAA), peroxybenzoic acid and hydrogen 

peroxide(H2O2).
148 The peroxy acids are very effective oxidants compared to H2O2. 

However peroxy acids generate an equivalent amount of carboxylic acid waste. H2O2 

eternally has an advantage over peroxy acids because H2O2 is an extremely clean oxidant 

and aqueous H2O2 is available at fairly cheap price. Further, water present in the reaction 

medium hydrolyses the ester to carboxylic acid and alcohol/phenol. In spite of this 

advantage, H2O2 is the weakest oxidant.148 In general, to increase the oxidant efficiency, 

reaction has to be catalyst by Bronsted or Lewis acid catalyst. The carboxylic acid and 

H2O2 is another interesting way to generates peracid in-situ.149 We performed BVO using 

formic acid/ aq H2O2 and using acetic acid/ aq H2O2 mixture, these results suggest that 
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formic acid/H2O2 oxidation mixture results in much better conversion. In these process, 

formic peracid reacts with the ketone to produce the corresponding ester, H2O2 functioning 

as an oxidant, whereas the formic acid acts as the catalyst.149    

 

It would be more valuable to find ways to enhance the conversion efficiency. With the aim 

of optimizing the reaction conditions, we performed several sets of experiments. To 

simplify these experiments, we first studied the oxidation of 4-methyl acetophenone as a 

simple model ketone. 

    

Figure 2. 15 Baeyer-Villiger oxidation of (4-methylphenyl) acetate by H2O2 and 

HCOOH. 

 

To study the conversion of BVO reaction as a function of time, reactions were carried by 

treating 100 mg 4-methyl acetophenone with 30% H2O2 (10 eq), HCOOH (10 eq) at 20 °C 

from 1 to 24 hrs. 

 

Figure 2. 16 Plot of % of (4-methylphenyl) acetate formed after BVO as a function of time. 

(bRelative % yields are referred from GC-MS % area of the peaks, without calibration). 

 

As shown in figure 2.16, the conversion steady increases with time. This suggest that H2O2 

does not completely decompose under these reaction conditions even after 24 hrs.  
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Figure 2. 17 Illustrate % of 4-methylacetophenone, % (4-methylphenyl) acetate and % 4-

methlyphenol after BVO of 4-methylacetonephenone at four different temperature. 

(bRelative % yields are referred from GC-MS % area of the peaks, without calibration). 

  

The influence of reaction temperature on the conversion of the reaction is shown in figure 

2.17. The results suggest that conversion significantly increase as the temperature is 

increased to 45 °C from 20 °C. However, the conversion slight drop as reaction was 

performed at 80 °C. These results illustrate that reaction temperature between 45 °C to 60 

°C seems to be ideal for BVO reaction to achieve the best conversion. We also carried out 

this reaction using different amounts of H2O2/HCOOH.  

 

Figure 2. 18 Illustrate % of (4-methylphenyl)acetate after BVO using different 

equivalent of H2O2/HCOOH 

 

The results in figure 2.18, suggest that 6 to 8 equivalents each of formic acid and H2O2 

give maximum conversion. By taking consideration of several reactions factors, our 

optimized reaction parameters are 50 mg substrate (2' - 6') with 30% H2O2 (8 eq), HCOOH 
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(8 eq) and 1, 2–dichloroethane (4 eq) at 50 °C for 24 h. Based on model studies and 

calculations Mora-Diez, et al. reports the effect of the solvent on BVO reaction 

mechanism.150 According to their study, the reaction proceeds via a concerted non-ionic 

pathway, which is the lowest energy pathway in a nonpolar solvent like 1, 2-

dichloroethane.151  

 

Figure 2. 19 Baeyer-Villiger oxidation of lignin model compounds by H2O2 and 

HCOOH 

 

Table 2. 9 Baeyer-Villiger oxidation of 2', 3', 4'- P, 5', 6'- P with H2O2/HCOOH 

LMCs % smr E (% yielda) F (% yielda) 

2 ̕     

90 10 - 

3 ̕     

0 - 81 

4 ̕-P  

0 - 80 

5 ̕    

0 - 40 

6 ̕-P  

0 - 80 

aYields are for isolated pure products. Note:  4' - P, 6' - P: benzyl protected lignin model 

compounds     
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Following the Baeyer-Villiger oxidation of 3,̕ 4 ̕- P, 5,̕ and 6 ̕- P (Figure 2.19 and Table 

2.9) no trace of starting material was recovered; the only product isolated was the 

corresponding carboxylic acid. In these reactions, the migratory aptitude of the aromatic 

group is not as high as the migratory aptitude of the alkoxy group, and the only products 

obtained were substituted benzoic acids.  The phenolic fragments were not isolated. 

 

2.5 Conclusions 

 

We have synthesized six different lignin model compounds, which have identical 

functional groups and linkages that of native lignin. Each model compounds has distinct 

reactivity towards oxidation conditions. In this study, we demonstrate that iron porphyrin 

oxidation system not only oxidized benzylic hydroxyl group into ketone but also 

hydroxylate of benzylic methylene groups. Phenolic model compounds appear to undergo 

coupling reactions, affording polymeric products. Solvent and oxidant play important role 

in selectivity of the reaction, as when the TPPFeCl oxidation reaction was carried out with 

m-CPBA in CH2Cl2, an unselective fragmented product was obtained. Further, higher 

concentration of t-BuOOH in the reaction also results into fragmentation and decrease 

selectivity of the oxidation of the reaction. We have demonstrated that the DDQ/NaNO2 

aerobic oxidation systems are suitable for the oxidation electron rich model compounds, 

the LMCs 1-2 doesn’t reacts. Likewise, phenolic LMCs doesn’t results into complete 

polymerization reaction. The TEMPO/NaNO2 oxidation process, works effective for non-

phenolic LMCs. The TEMPO oxidation results in roughly 80% of the corresponding 

ketone. However, phenolic LMCs gives chromatographically immobile compounds. We 

found that DDQ and TEMPO oxidation process is ineffective under non-aerobic 

conditions. To avoid this side reaction, protection of the phenolic hydroxyl groups is an 

essential step. We illustrate 8 equivalent each of formic acid and hydrogen peroxide gives 

maximum yield. In our LMCs Baeyer-Villiger oxidation study, LMCs 3-6 oxidized ester 

further undergoes hydrolysis to corresponding carboxylic acid. Also, alkoxy group has 

higher migration aptitude compare to phenyl.  
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In summary, we have developed a process for selective cleavage of the Cα-Cβ linkage in 

lignin model compounds via Baeyer-Villiger oxidation. We are currently studying this 

oxidation process in ionic liquids. Future work will also focus on the investigation of 

catalysts for two electron oxidation of benzylic hydroxyl groups. 
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CHAPTER 3. EXPERIMENTAL PROCEDURE AND DATA 

 

3.1 Synthesis and characterization of lignin model compounds (LMCs) 

 

3.1.1 Synthesis of 1-(Phenethyloxy)benzene (1)152  

    

A mixture of KOH (0.6 g, 10.7 mmol) and phenol (2 g, 21.3 mmol) was dissolved in 

ethanol (3.4 mL) by stirring at 45 °C. 1-(2-bromoethyl)benzene (1.98 g, 10.7 mmol) was 

added, and the resulting mixture was heated at reflux for 24 h. The reaction mixture was 

then concentrated in vacuum. The residue was diluted with water (100 mL) and extracted 

with CH2Cl2 (3 × 50 mL). The organic layer was washed with aqueous 2N NaOH and 

with water and then evaporated to dryness. The residue was subjected to column 

chromatography on silica gel (hexane) to yield 1-(phenethyloxy)benzene (1.4 g, 66%). 1H 

NMR (400 MHz, CDCl3): δ 7.43 (m, 7H), δ 7.11 (m, 3H), δ 4.33 (t, J=7.24 Hz, 2H), δ 

3.27 (t, J=7.26 Hz, 2H). 13C NMR (400 MHz, CDCl3): δ 158.9, 138.4, 129.6, 129.1, 

128.6, 126.6, 120.8, 114.7, 68.6, 35.9. GC-MS m/z (relative intensity): 198 (M+, 32), 105 

(100), 91 (10), 77 (34), 65 (12), 51(13). 

 

3.1.2 Synthesis of 2-(3-propylphenoxy)-1-phenylethanol (2)153 

Step 1- Synthesis of 2-(3-propylphenoxy)-1-phenylethanone (2') 

      

2-Bromoacetophenone (2 g, 10.05 mmol) was added to a solution of 3-propylphenol (1.71 

g, 12.56 mmol) and potassium carbonate (1.73 g, 12.56 mmol) in acetone (28 mL). The 

reaction mixture was heated at reflux for 5 h and was then concentrated under vacuum. The 
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residue was diluted with water (100 mL) and extracted with CH2Cl2 (3 × 50 mL). The 

organic layer was washed with 2N NaOH and with water and then evaporated to dryness. 

The residue was subjected to column chromatography on silica gel (EtOAc:hexane 1:9) to 

yield 2-(3-propylphenoxy)-1-phenylethanone (70%) as white crystals. 1H NMR (400 MHz, 

CDCl3): δ 8.02 (d, J=7.82 Hz, 2H), δ 7.61 (t, J=7.43 Hz, 1H), δ 7.49 (t, J=7.63 Hz, 2H), δ 

7.20 (t, J=8.12 Hz, 1H), δ 6.83 (d, J=5.87 Hz, 2H), δ 6.77 (d, J=8.38 Hz, 1H), δ 5.24 (s, 

2H), δ 2.57 (t, J=7.63 Hz, 2H), δ 1.65 (m, J=14.86 ,7.43 Hz, 2H), δ 0.953 (t, J= 7.43 Hz, 

3H). GC-MS m/z (relative intensity): 254 (M+, 100), 236 (6), 207 (14), 105 (100), 91 (38), 

77 (70), 65 (12), 51(17). 

 

Step 2 - Reduction of 2-(3-propylphenoxy)-1-phenylethanone154 

  

Sodium borohydride (0.133 g, 3.5 mmol) was added to a solution of 2-(3-propylphenoxy)-

1-phenylethanone (1.778 g, 7.0 mmol) in ethanol (45 mL) and water (8 mL). The reaction 

mixture was stirred for 3 h at room temperature. The mixture was quenched with saturated 

aqueous NH4Cl (15 mL) and concentrated under vacuum. The residue was diluted with 

water (100 mL) and extracted with CH2Cl2 (2 × 50 mL). The organic layer was washed 

with water and then evaporated to dryness. The residue was subjected to column 

chromatography on silica gel (EtOAc:hexane 1:9) to yield 2-(3-propylphenoxy)-1-

phenylethanol (95%). 1H NMR (400 MHz, CDCl3): δ 7.41 (m, 5H), δ 7.2 (t, J= 8.02 Hz, 

1H), δ 6.7 (m, 3H), δ 5.14-5.12 (t, J= 2.74 Hz, 1H), δ 4.12 (dd, J= 3.13 Hz, 1H), δ 4.01 (t, 

J= 9.38 Hz, 1H), δ2.56 (t, J= 7.43 Hz, 2H), δ 1.64 (tq, J=14.86, 7.43 Hz, 2H), δ 0.94 (t, J= 

7.43, 3H). 13C NMR (400 MHz, CDCl3): δ 158.6, 144.7, 139.9, 129.4, 128.8, 128.4, 126.5, 

121.8, 115.1, 111.9, 73.5, 72.8, 38.3, 24.6, 14.0. GC-MS m/z (relative intensity): 256 (M+, 

18), 238 (10), 150 (70), 136 (52), 122 (29), 107(100), 91 (57), 79 (71), 65 (13), 51 (15).  

   

3.1.3 Synthesis of 2-(3-methoxy-5-propylphenoxy)-1-(3,4-dimethoxyphenyl) propan-1-ol 

(3)155 
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Step 1- Synthesis of 1-(3,5-dimethoxyphenyl)propan-1-one (7)155 

     

A solution of 3,5-dimethoxybenzoic acid (11 g, 60.44 mmol) in dry diethyl ether (86 mL) 

was stirred at -78 °C under N2 for 5 min. 0.5 M ethyl lithium in benzene/cyclohexane 9:1 

(333 mL was, 166.21 mmol) was added over 1 h, the reaction mixture was stirred at -78 °C 

for a further 1 h and then stirred overnight at room temperature. The reaction mixture was 

poured onto 250 g ice and 250 mL of 1 M HCl. The product was extracted with EtOAc (3 

× 100 mL). The organic layer was washed with saturated NaHCO3 and with the water and 

concentrated under vacuum. The residue was subjected to column chromatography on 

silica gel (EtOAc:hexane 1:9) to yield 1-(3,5-dimethoxyphenyl)propan-1-one (75%). 1H 

NMR (400 MHz, CDCl3): δ 7.0 (d, J=2.34 Hz, 2H), δ 6.54 (t, J=2.34 Hz, 1H), δ 3.74 (s, 

3H), δ 3.73 (s, 3H), δ 2.86 (q, J=7.43 Hz, 2H), δ 1.12 (t, J=7.23 Hz, 3H). GC-MS m/z 

(relative intensity): 194 (M+, 72), 165 (100), 137 (45), 122 (39), 107(17), 92 (5), 77(12), 

69 (6), 63 (12), 57 (3), 51 (6).   

 

Step 2 - Synthesis of 1,3-dimethoxy-5-propylbenzene (8)155 

 

To a solution of 1-(3,5-dimethoxyphenyl)propan-1-one (6.5 g, 33.51 mmol) in 52 mL of 

absolute ethanol was added 51% hydrazine hydrate solution (5.256 g, 83.76 mmol), after 

which the mixture was heated to reflux for 6 h. The reaction mixture was concentrated 

under vacuum, KOH (11.2 g) was added, and the mixture was stirred at 180 °C for 1 h. The 

residue was diluted with water (100 mL) and the product was extracted into CH2Cl2 (2 × 

50 mL). The organic layer was washed with water and concentrated under vacuum. The 

residue was subjected to column chromatography on silica gel (EtOAc:hexane 1:18) to 
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yield 1,3-dimethoxy-5-propylbenzene quantitatively. 1H NMR (400 MHz, CDCl3): δ 6.44 

(s, 1H), δ 6.43 (s, 1H), δ 6.39 (dd, J=2.34, 1.96 Hz, 1H), δ 3. 83 (s, 3H), δ 3.83 (s, 3H), δ 

2.61 (t, J=7.82 Hz, 2H), δ 1.73 (tq, J=7.43, 7.43 Hz, 2H), δ 1.04 (t, J=7.43 Hz, 3H). GC-

MS m/z (relative intensity): 180 (M+, 42), 165 (15), 152 (100), 137 (5), 121 (9), 109(5), 91 

(14), 77(12), 65 (8), 51 (5).   

 

Step 3 - Synthesis of 3-methoxy-5-propylphenol (9)156 

 

A solution of 1,3-dimethoxy-5-propylbenzene (5.5 g, 30.55mmol) in dry dichloromethane 

was stirred at -10 °C under N2. 1 M BBr3 in
 CH2Cl2 (30.55 mL, 30.55 mmol) was added 

over 15 min, the reaction mixture was stirred at -10 °C for 1 h and then stirred overnight at 

room temperature. The reaction mixture was again cooled to -10 °C, quenched with 1M 

HCl and the product was extracted with CH2Cl2 (3 × 50 mL). The organic layer was washed 

with water and concentrated under vacuum. The residue was subjected to column 

chromatography on silica gel (EtOAc:hexane 1:9) to yield 3-methoxy-5-propylphenol 

(80%). 1H NMR (400 MHz, CDCl3): δ 6.40 (dd, J=1.96, 1.56 Hz, 1H), δ 6.36 (dd, J=1.95, 

1.2 Hz, 1H), δ 6.33 (dd, J=2.35, 2.34 Hz, 1H), δ 3.77 (s, 3H), δ 2.51 (t, J=7.84, 2H), δ 1.62 

(tq, J=7.82, 7.43, 6.633 Hz, 2H ), δ 0.96 (t, J=7.23 Hz, 3H). GC-MS m/z (relative intensity): 

166 (M+, 46), 151 (18), 138 (100), 123 (4.5), 107 (9), 94(6), 77(12), 65 (5.5), 51 (4).   

 

Step 4 - Synthesis of 1-(3,4-dimethoxyphenyl)propan-1-one (10)155  

        

A solution of 3,4-dimethoxybenzoic acid (4 g, 21.97 mmol) in dry diethyl ether (86 mL) 

was stirred at -78 °C under N2 for 5 min. 0.5 M ethyl lithium in benzene/cyclohexane 9:1 

(121  mL, 60.42 mmol) was added over 1 h , the reaction mixture was stirred at -78 °C for 

a further 1 h and then stirred overnight at room temperature. The reaction mixture was 
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poured onto 100 g ice and 100 mL of 1 M HCl. The product was extracted with EtOAc (3 

× 50 mL). The organic layer was washed with saturated NaHCO3 and with water and 

concentrated under vacuum. The residue was subjected to column chromatography on 

silica gel (EtOAc:hexane 1:9) to yield 1-(3,4-dimethoxyphenyl)propan-1-one (73%). 1H 

NMR (400 MHz, CDCl3): δ 7.6 (dd, J=1.96 Hz, 1H), δ 7.55 (d, J=1.96 Hz, 1H), δ 6.89 (d, 

J=8.41 Hz, 1H), δ 3.95 (s, 3H), δ 3.94 (s, 3H), δ 2.97 (q, J=7.34 Hz, 2H), δ 1.22 (t, J=7.34 

Hz, 3H). GC-MS m/z (relative intensity): 194 (M+, 26), 165 (100), 137 (11), 122 (7), 

107(5), 92 (4.5), 79(14), 63 (3.5), 51 (6).   

 

Step 5 - Synthesis of 2-bromo-1-(3,4-dimethoxyphenyl)propan-1-one (11) 

  

To a solution of 1-(3,4-dimethoxyphenyl)propan-1-one (1.5 g, 7.73 mmol) in dry 

dichloromethane (30 mL) at 0 °C, Br2 (0.4 mL, 7.73 mmol) was added dropwise over 15 

min.  The resulting mixture was stirred at room temperature for 2 h. The organic phase was 

washed with successively 1 M NaHCO3, 1 M Na2S2O3 and twice with water. The combined 

organic layers were dried over MgSO4 and concentrated under vacuum. The residue was 

subjected to column chromatography on silica gel (EtOAc:hexane 1:3) to yield 2-bromo-

1-(3,4-dimethoxyphenyl)propan-1-one quantitatively. 1H NMR (400 MHz, CDCl3): δ 7.62 

(dd, J=2.05 Hz, 1H), δ 7.54 (d, J=2.05 Hz, 1H), δ 6.87 (d, J=8.49 Hz, 1H), δ 5.26 (q, J=6.73 

Hz, 1H), δ 3.92 (s, 3H), δ 3.90 (s, 3H), δ 1.85 (d, J=6.73 Hz, 3H). GC-MS m/z (relative 

intensity): 274 (M+, 9), 272(M+, 9), 65 (100), 137 (8), 122 (4.5), 107(4), 92 (3), 79(10), 63 

(2.5), 51 (4.5).   

 

Step 6 – Synthesis of 2-(3-methoxy-5-propylphenoxy)-1-(3,4-dimethoxyphenyl)propan-

1-one (3’)157  
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3-methoxy-5-propylphenol (1.00 g, 6.05 mmol) and potassium carbonate (0.84 g, 6.05 

mmol) were stirred in acetone (18.5 mL). 2-bromo-1-(3,4-dimethoxyphenyl)propan-1-one 

(1.5 g, 5.5 mmol) was added to the reaction mixture which was refluxed for 5 h.  The 

reaction mixture was then concentrated under vacuum. The residue was diluted with water 

(50 mL) and extracted with EtOAc (3 × 25 mL). The organic layer was washed with 2N 

NaOH and then with water. The residue was subjected to column chromatography on silica 

gel (EtOAc:hexane 1:3) to yield 2-(3-methoxy-5-propylphenoxy)-1-(3,4-

dimethoxyphenyl)propan-1-one quantitatively. 1H NMR (400 MHz, CDCl3): δ 7.77 (dd, 

J=8.4, 1.95, 1H), δ 7.59 (d, J=1.95 Hz, 1H), δ 6.86 (d, J=8.41 Hz, 1H), δ 6.29 (d, J=2.15 

Hz, 2H), δ 6.25 (dd, J=2.34, 2.15 Hz, 1H), δ 5.39 (q, J=6.84 Hz, 1H), δ 3.89 (s, 3H), δ 3.85 

(s, 3H), δ 3.66 (s, 3H), δ 2.43 (t, J=7.53 Hz, 2H), δ1.67 (d, J=6.84 Hz, 3H), 1.53 (tq, J=7.62, 

7.43 Hz, 2H), δ 0.85 (t, J=7.34 Hz, 3H). GC-MS m/z (relative intensity): 358 (M+, 27), 340 

(20), 311 (5), 193 (14), 165(100), 151(5.5), 137(5), 121(5.5), 105(2.5), 91 (6), 77(7), 65 

(2), 51 (2).   

 

Step 7 – Synthesis of 2-(3-methoxy-5-propylphenoxy)-1-(3,4-dimethoxyphenyl)propan-

1-ol (3)91  

      

Sodium borohydride (0.38 g, 10.06 mmol) was added to a solution of 2-(3-methoxy-5-

propylphenoxy)-1-(3,4-dimethoxyphenyl)propan-1-one (1.8 g, 5.03 mmol) in THF (13.6 

mL) and water (4.5 mL). The reaction mixture was stirred for 4 h at room temperature. The 

mixture was quenched with saturated aqueous NH4Cl (10 mL) and was concentrated under 

vacuum. The residue was diluted with water (50 mL) and extracted with EtOAc (2 × 50 

mL). The organic layer was washed with water and then evaporated to dryness. The residue 

was subjected to column chromatography on silica gel (EtOAc:hexane 1:3) to yield 2-(3-

methoxy-5-propylphenoxy)-1-(3,4-dimethoxyphenyl)propan-1-ol quantitatively. 1H NMR 

(400 MHz, CDCl3, mixture of diastereomers): δ 6.95 (m, 2H), δ 6.84 (d, J=8.21 Hz, 1H), δ 

6.35 (m, 3H), δ 4.94 (d, 3.52 Hz, 0.25H), δ 4.62 (d, 7.43 Hz, 0.75H), δ 4.5 (qd, J=6.26, 



 

48 

 

3.91 Hz, 0.25H), 4.34 (qd, J=12. 12, 6.26 Hz, 0.75 H), δ 3.85 (d, 3H), δ 3.84 (d, 3H), δ 3.74 

(d, 3H), δ 3.13 (s, 1H), 2.51 (m, 2H), δ 1.625( m, 2H), δ 1.2 (d, 6.25 Hz, 0.75H), δ 1.11 (d, 

5.87 Hz, 2.25H), δ 0.94 (m, 3H). 13C NMR (400 MHz, CDCl3, mixture of diastereomers): 

δ 160.82, 160.8, 158.8, 158.6, 149.1, 149.03, 149.0, 148.5, 145.4, 145.3, 133.0, 132.6, 

120.0, 118.7, 111.0, 110.2, 109.7, 108.80, 108.77, 107.2, 107.1, 100.0, 99.9, 78.9, 78.0, 

77.9, 75.0, 56.0, 55.3, 38.4, 24.5, 24.4, 16.0, 14.0, 13.3. GC-MS m/z (relative intensity): 

Major diastereomer: 360 (M+, 3), 342 (100), 327 (20), 313(10), 299(20), 284(10), 268(6), 

253(6), 239(5), 225(5), 207(13), 194 (68), 178(36), 167(94), 150(36), 139(40), 121(13), 

115(17), 107(17), 91 (28), 77(23), 65 (11), 51 (9). Minor diastereomer: 360 (M+, 1), 342 

(63), 327 (14), 313(8), 299(16), 284(8), 268(6), 253(6), 239(5), 225(5), 207(23), 194 (77), 

178(32), 167(100), 150(27), 139(40), 121(13), 115(14), 107(17), 91 (32), 77(23), 65 (11), 

51 (9). 

  

3.1.4 Synthesis of 4-(2-(3-methoxy-5-propylphenoxy)-1-hydroxypropyl)-2-

methoxyphenol (4) 

Step 1 – Synthesis of 2-methoxy-4-prop-1-enyl)phenyl acetate (12) 

   

Acyl chloride (2.69 mL, 33.53 mmol) was added to a solution 2-methoxy-4-(prop-1-

enyl)phenol (5 g, 30.49 mmol) and pyridine (2.70 mL, 33.53 mmol) in dichloromethane 

(100 mL). The mixture was stirred at room temperature for 30 minutes. The reaction 

mixture was then carefully poured into water. The product was extracted with Et2O (2 × 

50 mL). The organic layer was washed with 0.05N HCl and with water and was 

concentrated under vacuum. The residue was sufficiently pure to be used in the following 

step. 1H NMR (400 MHz, CDCl3, mixture of E-Z isomers): δ 6.93 (m, 3H), δ 6.35 (m, 1H), 

δ 6.16 (m, 0.6), δ 5.77 (m, 0.4 H), δ 3.81 (d, 3H), δ 2.29 (d, 3H), δ 1.88 (m, 3H). GC-MS 

m/z (relative intensity, major isomer): 206 (M+, 9.5), 164 (100), 149 (22), 131 (13), 121(8), 

103(12), 91(18), 77(12), 65(6), 55 (5), 51(5). 

 



 

49 

 

Step 2 – Synthesis of 4-(2-iodopropanoyl)-2-methoxyphenyl acetate (13)158 

    

Iodine (6.43 g, 25.34 mmol), silver chromate (6.16 g, 18.58 mmol), 4 Å molecular sieves 

(5.25 g) and pyridine (0.67 g, 8.45 mmol) were stirred in dichloromethane (50 mL) at 0 °C 

for 10 min. 2-methoxy-4-prop-1-enyl)phenyl acetate (3.48 g,  16.89 mmol) was dissolved 

in dichloromethane (10 mL) and was slowly added to above reaction mixture. The reaction 

mixture was stirred at 0 °C for 20 min and then at room temperature for 1 h. The reaction 

mixture was then filtered. The filtrate was washed successively with 5% sodium 

thiosulfate, saturated NaCl, and twice with water. The filtrate was dried over MgSO4 and 

concentrated under vacuum. The residue was subjected to column chromatography on 

silica gel (hexane:CH2Cl2 1:2) to yield 4-(2-iodopropanoyl)-2-methoxyphenyl acetate in 

55% yield. 1H NMR (400 MHz, CDCl3): δ 7.66 (d, J=1.95 Hz, 1H), δ 7.6 (dd, J=8.21, 1.96 

Hz, 1H), δ 7.12 (d, 8.21 Hz, 1H), δ 5.46 (q, J= 6.65 Hz, 1H), δ 3.9 (s, 3H), δ 2.34 (s, 3H), 

δ 2.1 (d, J=6.65 Hz, 3H). GC-MS m/z (relative intensity): 348 (M+, 2), 306 (55), 180 (4), 

151 (100), 119(7.5), 108(3), 91(9), 79(5), 65(2), 51(5). 

 

Step 3 – Synthesis of 2-(3-methoxy-5-propylphenoxy)-1-(4-hydroxy-3-

methoxyphenyl)propan-1-one (4’)159  

   

60 % NaH (dispersion in mineral oil) (0.12 g, 3 mmol), freshly prepared 4-(2-

iodopropanoyl)-2-methoxyphenyl acetate (1.04 g, 3 mmol) and 3-methoxy-5-propylphenol 

(0.52 g, 3.15 mmol) were placed in 3 individual one-neck round bottom flasks.  The flasks 

were degassed with N2 for 15 minutes. 1 ml THF and 4 ml DMF were added to the 

individual flasks. The solution of NaH in THF/DMF was cooled to 0 °C, after which the 

solution of 3-methoxy-5-propylphenol was added. The mixture was stirred at room 

temperature for 1 h, then cool to 0 °C again. The 4-(2-iodopropanoyl)-2-methoxyphenyl 
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acetate solution was added and the resulting mixture was stirred at room temperature for 3 

h. The reaction was poured onto 100 ml ice water. The resulting aqueous layer was purified 

and extracted with EtOAc (50 mL). The EtOAc extract was washed with water, dried 

(MgSO4), and concentrated under vacuum. The residue was subjected to column 

chromatography on silica gel (EtOAc:hexane 1:3) to yield 2-(3-methoxy-5-

propylphenoxy)-1-(4-hydroxy-3-methoxyphenyl)propan-1-one (48%). 1H NMR (400 

MHz, CDCl3): δ 7.71 (dd, , J=8.6, 1.95, 1H), 7.59 (d, J=1.56 Hz, 1H), δ 6.92 (d, J=8.21 Hz, 

1H), δ 6.29 (t, J=1.95 Hz, 2H), δ 6.24 (t, J=1.95 Hz, 1H), δ 5.38 (q, J=6.65 Hz, 1H), δ 3.9 

(s, 3H), δ 3.69 (s, 3H), δ 2.43 (t, J=7.53 Hz, 2H), δ1.67 (d, J=6.84 Hz, 3H), 1.53 (tq, J=7.62, 

7.43 Hz, 2H), δ 0.85 (t, J=7.34 Hz, 3H). GC-MS m/z (relative intensity): 344 (M+, 32), 326 

(3), 207 (4), 193(37), 151 (100), 138(4), 123(8), 108(3), 91(8), 77(4), 65(2.5), 51(1). 

 

Step 4 – Synthesis of 4-(2-(3-methoxy-5-propylphenoxy)-1-hydroxypropyl)-2-

methoxyphenol (4)91     

 

2-(3-methoxy-5-propylphenoxy)-1-(4-hydroxy-3-methoxyphenyl)propan-1-one (0.69g, 

2.0 mmol) was stirred in THF (9.3 mL) and water (4.7 mL) at room temperature. Sodium 

borohydride (0.3g, 8 mmol) was added over 3 h and the solution was further stirred for 1 h 

at room temperature. The mixture was quenched with saturated aqueous NH4Cl (5 mL) and 

concentrated under vacuum. The residue was diluted with water (100 mL) and extracted 

with EtOAc (3 × 50 mL). The residue was subjected to column chromatography on silica 

gel (EtOAc:hexane 1:3) to yield 4-(2-(3-methoxy-5-propylphenoxy)-1-hydroxypropyl)-2-

methoxyphenol (80%). 1H NMR (400 MHz, CDCl3, mixture of diastereomers): δ 6.98 (dd, 

1H), 6.88 (m, 2H), δ 6.36 (m, 3H), δ 5.64 (d, 1H), δ 4.96 (t, 0.25H), δ 4.61 (dd, 0.75H), δ 

4.5 (m, 0.25H), δ 4.36 (m, 0.75H), δ 3.91 (d, 3H), δ 3.77 (d, 3H), δ 3.06 (s, 1H), δ 2.53 (m, 

2H), δ 1.62 ( m, 2H), δ 1.19 (d, 0.75H), δ 1.12 (d, 2.25H), δ 0.95 (m, 3H). 13C NMR (400 

MHz, CDCl3, mixture of diastereomers): δ 160.91, 160.89, 158.8, 158.6, 146.8, 145.8, 

145.5, 145.5, 145.2, 132.3, 131.9, 120.8, 119.5, 114.4, 114.3, 109.6, 109.1, 108.91, 108.86, 
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107.4, 107.3, 100.07, 100.0, 79.1, 78.2, 78.1, 75.2, 56.2, 55.5, 38.5, 24.54, 24.52, 16.06, 

14.05, 13.3. GC-MS m/z (relative intensity): major diastereomer: 346 (M+, 3.5), 328 (100), 

313 (15), 229(12), 285(15), 270(8), 253(6), 204(10), 194(60), 180(22), 166(32), 153(100), 

138(36), 131(8), 121(16), 115(10), 109(10), 103(10), 91(22), 77(18), 65(12), 51(6). Minor 

diastereomer: 346 (M+, 0), 328 (100), 313 (15), 229(10), 285(16), 270(9), 253(5), 207(10), 

194(41), 180(29), 166(32), 153(78), 138(43), 131(8), 121(16), 115(10), 107(10), 91(19), 

77(17), 65(14), 51(8). 

 

3.1.5 Synthesis ethyl 2-(3-methoxy-5-propylphenoxy)-3-(3,4-dimethoxyphenyl)propane-

1,3-diol (5)  

Step 1 – Synthesis of ethyl 3-(3,4-dimethoxyphenyl)-3-oxopropanoate (14)160 

 

A solution of 3,4-dimethoxyacetophenone (5 g, 27.78 mmol) and 60% NaH (dispersion in 

mineral oil) (3.33 g, 83.5 mmol) in dry THF under N2 was stirred for 10 minutes at ambient 

temperature. Diethylcarbonate (6.73 mL, 55.56 mmol) was added dropwise over 10 min, 

and the mixture was then refluxed at 80 °C for 5 h. The reaction was poured onto 50 g ice 

and 50 mL of 1 M HCl. The resulting aqueous layer was extracted with diethyl ether (3 x 

100 mL). The combined diethyl ether layers were washed with saturated NaHCO3, dried 

(MgSO4), and concentrated under vacuum. The residue was subjected to column 

chromatography on silica gel (EtOAc:hexane 3:7) to yield ethyl 3-(3,4-dimethoxyphenyl)-

3-oxopropanoate (70%). 1H NMR (400 MHz, CDCl3): δ 7.53 (dd, J=2.05 Hz, 1H), δ 7.5 

(d, J=2.05 Hz, 1H), δ 6.88 (d, J=8.49 Hz, 1H), δ 4.19 (q, 7.17 Hz, 2H), δ 3.94 (s, 2H), δ 

3.92 (s, 3H), δ 3.90 (s, 3H), δ 1.24 (t, J=7.18 Hz, 3H). 
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Step 2 – Synthesis of ethyl 2-bromo-3-(3,4-dimethoxyphenyl)-3-oxopropanoate (15)161 

   

A solution of 3-(3,4-dimethoxyphenyl)-3-oxopropanoate (1.5 g, 5.95 mmol) in dry Et2O 

(10 mL) was treated with N-bromosuccinimide (1.06 g, 5.95 mmol) and ammonium acetate 

(0.046 g, 0.595 mmol).  The mixture was stirred at room temperature for 30 min, after 

which it was filtered. The filtrate was washed with water, dried (MgSO4) and concentrated 

under vacuum. The residue was subjected to column chromatography on silica gel 

(EtOAc:hexane 3:7) to yield of 95% ethyl 2-bromo-3-(3,4-dimethoxyphenyl)-3-

oxopropanoate. 1H NMR (400 MHz, CDCl3): δ 7.6 (dd, J=2.05 Hz,  1H), δ 7.52 (d, J=2.05 

Hz, 1H), δ 6.89 (d, J=8.49 Hz, 1H), δ 5.636 (s, 1H), δ 4.25 (q, 7.02 Hz, 2H), δ 3.94 (s, 3H), 

δ 3.91 (s, 3H), δ 1.23 (t, 7.32 Hz, 3H). GC-MS m/z (relative intensity): 332 (M+, 7.5), 

330(7.5), 252 (2), 165 (100), 151(6.5), 137 (6), 122(3.5), 107(4), 92(4), 79(8), 63(3), 

51(3.5).  

 

Step 3 – Synthesis of ethyl 2-(3-methoxy-5-propylphenoxy)-3-(3,4-dimethoxyphenyl)-3-    

oxopropanoate (5’)159 

    

60 % NaH (dispersion in mineral oil) (0.24 g, 6 mmol), ethyl 2-bromo-3-(3, 4-

dimethoxyphenyl)-3-oxopropanoate (2 g, 6 mmol) and 3-methoxy-5-propylphenol (1.2 g, 

7.23 mmol) were placed in 3 individual one-neck round bottom flasks.  The flasks were 

purged with N2 for 15 min, after which 2 ml THF and 7.6 ml DMF were added to the 

individual flasks. The solution of NaH in THF/DMF was cooled to 0 °C and the solution 

of 3-methoxy-5-propylphenol was added. The mixture was stirred at room temperature for 
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1 h and then cooled to 0 °C again. The ethyl 2-bromo-3-(3, 4-dimethoxyphenyl)-3-

oxopropanoate solution was added and the resulting mixture was stirred at room 

temperature for 8 h. The reaction mixture was then poured onto 100 ml ice water. The 

resulting aqueous layer was extracted with EtOAc (50 mL). The EtOAc extract was washed 

with water, dried (MgSO4), and concentrated under vacuum. The residue was subjected to 

column chromatography on silica gel (EtOAc:hexane 3:7) to yield ethyl 2-(3-methoxy-5-

propylphenoxy)-3-(3,4-dimethoxyphenyl)-3-oxopropanoate (81%) . 1H NMR (400 MHz, 

CDCl3): δ 7.85 (dd, J=1.95 Hz, 1H), δ 7.65 (d, J=1.96 Hz, 1H),   δ 6.90 (d, J=8.6 Hz, 1H), 

δ 6.43 (m, 3H), δ 5.83, (s, 1H), δ 4.3 (q, J=7.03 Hz, 2H), ), δ 3.91 (s, 3H), δ 3.90 (s, 3H), δ 

3.73 (s, 3H), δ 2.51 (t, J=7.04 Hz, 2H), δ 1.60 (tq, J= 7.63 Hz, 2H), δ 1.25 (t, J= 7.24 Hz, 

3H), δ 0.92 (t, J= 7.24 Hz, 3H).   

 

Step 4 – Synthesis of 2-(3-methoxy-5-propylphenoxy)-1-(3,4-dimethoxyphenyl)propane-

1,3-diol (5)91 

     

Ethyl 2-(3-methoxy-5-propylphenoxy)-3-(3,4-dimethoxyphenyl)-3-oxopropanoate (1.8 g, 

4.327 mmol) was stirred in THF (37.5 mL) and H2O (12.5 mL) at room temperature. 

Sodium borohydride (1.64 g, 43.27 mmol) was added over 3 h and the solution was further 

stirred for 24 h at room temperature. The mixture was quenched with saturated aqueous 

NH4Cl (15 mL) and concentrated under vacuum. The residue was diluted with water (100 

mL) and extracted with EtOAc (3 × 50 mL). After removal of solvent under vacuum, the 

residue was subjected to column chromatography on silica gel (EtOAc:hexane 1:1) to yield 

2-(3-methoxy-5-propylphenoxy)-1-(3, 4-dimethoxyphenyl)propane-1,3-diol (68%). 1H 

NMR (400 MHz, CDCl3 with one drop of D2O, mixture of diastereomers): δ 6.94 (m, 2H), 

δ 6.81 (m, 1H), δ 6.31 (m, 3H),  δ 4.97 (m, 1H), δ 4.37-4.15 (m, 1H), δ 3.94-3.2 (m, 2H), 

δ 3.84 (t, 6H), δ 3.71 (d, 3H), δ 2.47 (m, 2H), δ 1.58 (m, 2H), δ 0.92 (m, 3H). 13C NMR 

(400 MHz, CDCl3, mixture of diastereomers): δ 160.8, 160.7, 159.2, 158.8, 149.2, 149, 

148.7, 145.6, 145.4, 133.3, 132.5, 119.4, 118.8, 111.1, 110.1, 109.6, 109.1, 109, 107.8, 
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107.8, 100.32, 100.26, 82.9, 82, 74.1, 73.7, 61.7, 61.3, 56.01, 55.99, 55.4, 55.3, 38.41, 

38.38, 24.44, 24.40, 13.97, 13.96. GC-MS m/z (relative intensity): Major diastereomer: 376 

(M+, 0.5), 358(1.5) 328 (10), 192 (100), 167(30), 151(12.5), 139(30), 121(12), 108(8), 

91(15), 77(15), 65(7), 51(5.5). Minor diastereomer: 376 (M+, 0.3), 358(1.1) 328 (7), 

210(7), 192 (100), 167(30), 151(11), 139(30), 121(10), 108(8), 91(11), 77(14), 65(7), 

51(5.5). 

 

3.1.6 Synthesis of 4-(2-(3-methoxy-5-propylphenoxy)-1,3-dihydroxypropyl)-2-

methoxyphenol (6) 

Step 1 – Synthesis of ethyl 3-(4-hydroxy-3-methoxyphenyl)-3-oxopropanoate (16)160 

   

A solution of 4-hydroxy-3-methoxyacetophenone (5 g, 30.12 mmol) and 60 % NaH 

(dispersion in mineral oil) (4.22 g, 105.5 mmol) in dry THF under N2 was stirred for 10 

minutes at ambient temperature. Diethylcarbonate (21.90 mL, 180.75 mmol) was added 

dropwise over 10 min, and the mixture was refluxed at 80 °C for 5 h. The reaction mixture 

was poured onto 50 g ice and 50 mL of 1M HCl. The resulting aqueous layer was extracted 

with diethyl ether (50 mL). The combined diethyl ether layers were washed with saturated 

NaHCO3, dried (MgSO4), and concentrated under vacuum. The residue was subjected to 

column chromatography on silica gel (EtOAc: hexane 4:6) to yield ethyl 3-(4-hydroxy-3-

methoxyphenyl)-3-oxopropanoate (70%). 1H NMR (400 MHz, CDCl3): δ 7.52 (d, J=1.95 

Hz, 1H), δ 7.48 (dd, J=8.21, 1.96 Hz, 1H), δ 6.93 (d, J=8.22, 1H), δ 6.34 (s, 1H), δ 4.19 (q, 

7.04 Hz, 2H), δ 3.928 (s, 2H), δ 3.917 (s, 3H), δ 1.24 (t, 7.23 Hz, 3H). 

 

Step 2 – Synthesis of ethyl 2-bromo-3-(4-hydroxy-3-methoxyphenyl)-3-oxopropanoate 

(17) 
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To a solution of ethyl 3-(4-hydroxy-3-methoxyphenyl)-3-oxopropanoate (5.43 g, 22.82 

mmol) in dry dichloromethane (110 mL) at 0 °C, Br2 (1.18 mL, 22.83 mmol) was added 

dropwise over 15 min.  The resulting reaction mixture was stirred at room temperature for 

2 h. The organic phase was washed successively with 1M NaHCO3, 1M Na2S2O3 and twice 

with water. The combined organic layers were dried over MgSO4 and concentrated under 

vacuum. The residue was subjected to column chromatography on silica gel 

(EtOAc:hexane 3:7) to yield ethyl 2-bromo-3-(4-hydroxy-3-methoxyphenyl)-3-

oxopropanoate (71%). 1H NMR (400 MHz, CDCl3): δ 7.56 (dd, J=8.43, J=1.95, 1H), δ 7.55 

(d, J=1.95 Hz, 1H), δ 6.95 (dd, J=7.43, 0.78 Hz, 1H), δ 6.33 ( s, 1H), δ 5.64 (s,1H), δ 4.27 

(q, 7.23 Hz, 2H), δ 3.94 (s, 3H), δ 1.248 (t, 7.03 Hz, 3H). GC-MS m/z (relative intensity): 

318 (M+, 6.4), 316(6.4), 215(1.5), 151 (100), 137 (6), 123(8.5), 108(4.5), 93(4), 77(2.5), 

65(5), 52(4.5). 

 

Step 3 – Synthesis of ethyl 2-(3-methoxy-5-propylphenol)-3-(4-hydroxy-3-

methoxyphenyl)-3-oxopropanoate (6’)159 

  

60 % NaH dispersed in mineral oil (0.3108 g, 7.77 mmol), ethyl 2-bromo-3-(4-hydroxy-3-

methoxyphenyl)-3-oxopropanoate (0.98 g, 3.11 mmol) and 3-methoxy-5-propylphenol 

(1.29 g, 7.77 mmol) were placed in 3 individual one-neck round bottom flasks.  The flasks 

were purged with N2 for 15 min after which 1.6 ml THF and 5.6 ml DMF were added to 

each flask. The solution of NaH in THF/DMF was cooled to 0 °C and the solution of 3-

methoxy-5-propylphenol was added. The mixture was stirred at room temperature for 1 h 

and then cooled to 0 °C again. The ethyl 2-bromo-3-(3, 4-dimethoxyphenyl)-3-
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oxopropanoate solution was added, and the resulting mixture was stirred at room 

temperature for 8 h. The mixture was then poured onto 100 ml ice-water. The resulting 

aqueous layer was extracted with EtOAc (50 mL). The EtOAc extract was washed with 

water, dried (MgSO4), and concentrated under vacuum. The residue was subjected to 

column chromatography on silica gel (EtOAc:hexane 3:7) to yield ethyl 2-(3-methoxy-5-

propylphenol)-3-(4-hydroxy-3-methoxyphenyl)-3-oxopropanoate(30%) . 1H NMR (400 

MHz, CDCl3): δ 7.63 (m, 2H),  δ 6.95 (m, 1H), δ 6.37 (m, 2H), δ 6.12 (m, 1H), δ 5.7, 5.178 

(s, 1H), δ 4.29 (m, 2H), δ 3.94 (d, 3H), δ 3.73 (d, 3H), δ 2.5 (t, 2H), δ 1.58 (m, 2H), δ 1.23 

(t, J= 7.24 Hz, 3H), δ 0.90 (m, 3H).   

 

Step 4 – Synthesis of 4-(2-(3-methoxy-5-propylphenoxy)-1,3-dihydroxypropyl)-2-

methoxyphenol (6)91        

     

Ethyl 2-(3-methoxy-5-propylphenol)-3-(4-hydroxy-3-methoxyphenyl)-3-oxopropanoate 

(1.25 g, 3.11 mmol) was stirred in THF (37.5 mL) and H2O (3.75 mL) at room temperature. 

Sodium borohydride (1.18 g, 31.1 mmol) was added over 3 h and the solution was further 

stirred for 24 h at room temperature. The reaction mixture was treated with a saturated 

solution of ammonium chloride, after which volatile material was removed under vacuum. 

The residue was diluted with water (100 mL) and extracted with dichloromethane (3 × 50 

mL). After evaporation of the solvent, the residue was subjected to column 

chromatography on silica gel (EtOAc:hexane 1:1) to yield of 4-(2-(3-methoxy-5-

propylphenoxy)-1,3-dihydroxypropyl)-2-methoxyphenol (36%). 1H NMR (400 MHz, 

CDCl3 with drop of D2O, mixture of diastereomers): δ 6.92 (m, 3H), δ 6.32 (m, 3H), δ 5.79 

(s, 1H), δ 4.97 (m, 1H), δ 4.35 (m, 1H), δ 3.96-3.55 (m, 2H), δ 3.85 (d, 3H), δ 3.73 (d, 3H), 

δ 2.48 (m, 2H), δ 1.59 (m, 2H), δ 0.92 (m, 3H). 13C NMR (400 MHz, CDCl3, mixture of 

diastereomers): δ 160.8, 160.7, 159.2, 158.9, 146.9, 146.8, 145.6, 145.6, 145.4, 145.3, 

132.7, 131.9, 119.5, 114.54, 114.5, 109.7, 109.2, 109.1, 109.0, 107.8, 100.34, 100.25, 82.8, 
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82.0, 74.0, 73.7, 61.6, 61.2, 56.0, 55.4, 55.3, 38.38, 38.35, 24.41, 24.37, 13.94, 13.93. GC-

MS m/z (relative intensity): Major diastereomer: 362 (M+, 0.16), 344(1.5) 314 (3.4), 192 

(100), 164(32), 153(27.5), 138(18), 121(8), 105(4.5), 93(21), 77(11), 65(15), 51(4). Minor 

diastereomer: 362 (M+, 0.2), 344(0.7) 314 (1.4), 192 (100), 164(32), 153(26), 138(18), 

121(8), 105(4.5), 93(19), 77(10), 65(13), 51(0.3). 

 

3.2 Copies of 1H and 13C NMR Spectra 
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Figure 3. 1 1H NMR and 13C NMR spectra of LMC 3 in CDCl3 

 

 

  

Figure 3. 2 1H NMR and 13C NMR spectra of LMC 4 in CDCl3 
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Figure 3. 3 1H NMR and 13C NMR spectra of LMC 5 in CDCl3 
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Figure 3. 4 1H NMR and 13C NMR spectra of LMC 6 in CDCl3 

 

Residual grease at δ 1.26 (s), δ 0.86 (m) in 1H NMR and δ 29.76 in 13C NMR spectra. 

Solvent residual peak (CDCl3) at δ 7.26 (s) in 1H NMR and δ 77.23 (t) in 13C NMR spectra. 
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3.3 Procedure for oxidation of Lignin Model Compounds  

 

3.3.1 Hydroxylation of benzylic methylene groups in LMCs by an iron porphyrin catalyst 

LMC 1 (50 mg, 0.25 mmol), TPPFeCl (1.77 mg, 0.0025 mmol), 70% aq soln of t-BuOOH 

(0.035 mL, 0.25 mmol), CH3CN (0.5 mL) and 0.1N pH 3 phosphate buffer (1.5 mL) stirred 

at 25ºC for 14 h. The product was extracted with ethyl acetate and washed with saturated 

aq NaCl soln. The combined organic layers were dried over MgSO4 and concentrated under 

vacuum. The products were isolated using a preparative TLC plate to yield of LMC 1 (92%) 

and 2-phenoxy-1-phenylethanone (5%).   

LMC 2 (50 mg, 0.2 mmol), TPPFeCl (1.38 mg, 0.002 mmol), 70% aq soln of t-BuOOH 

(0.026 mL, 0.2 mmol), CH3CN (0.5 mL) and 0.1N pH 3 phosphate buffer (1.5 mL) stirred 

at 25ºC for 14 h. The product was extracted with ethyl acetate and washed with saturated 

aq NaCl soln. The combined organic layers were dried over MgSO4 and concentrated under 

vacuum. The products were isolated using a preparative TLC plate to yield of LMC 2 

(60%), LMC 2' (18%), 1-(3-(2-hydroxy-2-phenylethoxy)phenyl)propan-1-one (9%) and 1-

(3-(phenacyloxy)phenyl)-propan-1-one (11%). 

LMC 3 (50 mg, 0.14 mmol), TPPFeCl (0.95 mg, 0.0014 mmol), 70% aq soln of t-BuOOH 

(0.018 mL, 0.13 mmol), CH3CN (0.5 mL) and 0.1N pH 3 phosphate buffer (1.5 mL) stirred 

at 25ºC for 14 h. The product was extracted with ethyl acetate and washed with saturated 

aq NaCl soln. The combined organic layers were dried over MgSO4 and concentrated under 

vacuum. The products were isolated using a preparative TLC plate to yield of LMC 3 

(54%), LMC 3' (26%), 1-(3-(1-hydroxy-1-(3,4-dimethoxyphenyl)propan-2-yloxy)-5-

methoxyphenyl)propan-1-one (2%) and 1-(3,4-dimethoxyphenyl)-2-(3-methoxy-5-

propionylphenoxy)-1-propanone (5%). 

LMC 4 (42 mg, 0.12 mmol), TPPFeCl (0.85 mg, 0.0012 mmol), 70% aq soln of t-BuOOH 

(0.017 mL, 0.12 mmol), CH3CN (0.5 mL) and 0.1N pH 3 phosphate buffer (1.5 mL) stirred 

at 25ºC for 14 h. The product was extracted with ethyl acetate and washed with saturated 
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aq NaCl soln. The combined organic layers were dried over MgSO4 and concentrated under 

vacuum. The products were chromatographically immobile. 

LMC 5 (50 mg, 0.13 mmol), TPPFeCl (0.82 mg, 0.0012 mmol), 70% aq soln of t-BuOOH 

(0.017 mL, 0.12 mmol), CH3CN (0.5 mL) and 0.1N pH 3 phosphate buffer (1.5 mL) stirred 

at 25ºC for 14 h. The product was extracted with ethyl acetate and washed with saturated 

aq NaCl soln. The combined organic layers were dried over MgSO4 and concentrated under 

vacuum. The products were isolated using a preparative TLC plate to yield of LMC 5 

(44%), LMC 5' (39%), 1-(3-(1,3-dihydroxy-1-(3,4-dimethoxyphenyl)propan-2-yloxy)-5-

methoxyphenyl)propan-1-one (14%), 1-(3,4-dimethoxyphenyl)-3-hydroxy-2-(3-methoxy-

5-propionylphenoxy)propan-1-one (1%). 

LMC 6 (50 mg, 0.14 mmol), TPPFeCl (0.95 mg, 0.0014 mmol), 70% aq soln of t-BuOOH 

(0.018 mL, 0.13 mmol), CH3CN (0.5 mL) and 0.1N pH 3 phosphate buffer (1.5 mL) stirred 

at 25ºC for 14 h. The product was extracted with ethyl acetate and washed with saturated 

aq NaCl soln. The combined organic layers were dried over MgSO4 and concentrated under 

vacuum. The products were chromatographically immobile. 

 

3.3.2 Oxidation of benzylic hydroxyl groups my DDQ/NaNO2 

1. Catalytic aerobic oxidation of 3 with DDQ (0.01 eq), NaNO2 (0.1 eq) at RT 

LMC 3 (50 mg, 0.14 mmol), DDQ (0.32 mg, 0.0014 mmol), NaNO2 (0.96 mg, 0.014 

mmol), CH2Cl2 (1.8 mL) and acetic acid (0.2 mL) stirred under an O2 atmosphere (1 atm) 

at 25 °C for 19 h. The product was extracted with ethyl acetate and washed with saturated 

aq NaCl soln. The combined organic layers were dried over MgSO4 and concentrated under 

vacuum. The products were isolated using a preparative TLC plate to yield of LMC 3 (76%) 

and LMC 3' (23%). 

2. Catalytic aerobic oxidation of 3 with DDQ (0.1 eq), NaNO2 (1 eq) at RT 

LMC 3 (50 mg, 0.14 mmol), DDQ (3.2 mg, 0.014 mmol), NaNO2 (9.6 mg, 0.14 mmol), 

CH2Cl2 (1.8 mL) and acetic acid (0.2 mL) stirred under an O2 atmosphere (1 atm) at 25 °C 



 

63 

 

for 19 h. The product was extracted with ethyl acetate and washed with saturated aq NaCl 

soln. The combined organic layers were dried over MgSO4 and concentrated under 

vacuum. The products were isolated using a preparative TLC plate to yield of LMC 3 (32%) 

and LMC 3' (43%). 

3. Catalytic aerobic oxidation of 3 with DDQ (1 eq), NaNO2 (10 eq) at RT 

LMC 3 (50 mg, 0.14 mmol), DDQ (32 mg, 0.14 mmol), NaNO2 (96 mg, 1.4 mmol), CH2Cl2 

(1.8 mL) and acetic acid (0.2 mL) stirred under an O2 atmosphere (1 atm) at 25 °C for 19 

h. The product was extracted with ethyl acetate and washed with saturated aq NaCl soln. 

The combined organic layers were dried over MgSO4 and concentrated under vacuum. The 

products were isolated using a preparative TLC plate to yield of LMC 3' (69%). 

4. Catalytic aerobic oxidation of 3 with DDQ (0.1 eq), NaNO2 (1 eq) at 55°C 

LMC 3 (50 mg, 0.14 mmol), DDQ (3.2 mg, 0.014 mmol), NaNO2 (9.6 mg, 0.14 mmol), 

CH2Cl2 (1.8 mL) and acetic acid (0.2 mL) stirred under an O2 atmosphere (1 atm) at 55 °C 

for 19 h. The product was extracted with ethyl acetate and washed with saturated aq NaCl 

soln. The combined organic layers were dried over MgSO4 and concentrated under 

vacuum. The products were isolated using a preparative TLC plate to yield of LMC 3 (72%) 

and LMC 3' (22%). 

5. Catalytic aerobic oxidation of 3 with DDQ (0.1 eq), NaNO2 (1 eq) sonication at RT 

LMC 3 (50 mg, 0.14 mmol), DDQ (0.32 mg, 0.0014 mmol), NaNO2 (0.96 mg, 0.014 

mmol), CH2Cl2 (1.8 mL) and acetic acid (0.2 mL) sonicated under an O2 atmosphere (1 

atm) at 25 °C for 19 h. The product was extracted with ethyl acetate and washed with 

saturated aq NaCl soln. The combined organic layers were dried over MgSO4 and 

concentrated under vacuum. The products were isolated using a preparative TLC plate to 

yield of LMC 3 (54%) and LMC 3' (33%). 

6. Catalytic aerobic oxidation of 1 with DDQ (0.01 eq), NaNO2 (0.1 eq) 

LMC 1 (50 mg, 0.25 mmol), DDQ (0.57 mg, 0.0025 mmol), NaNO2 (1.74 mg, 0.025 

mmol), CH2Cl2 (1.8 mL) and acetic acid (0.2 mL) stirred under an O2 atmosphere (1 atm) 

at 25 °C for 19 h. The product was extracted with ethyl acetate and washed with saturated 
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aq NaCl soln. The combined organic layers were dried over MgSO4 and concentrated under 

vacuum. The products were isolated using a preparative TLC plate to yield of LMC 1 

(100%). 

7. Catalytic aerobic oxidation of 2 with DDQ (0.01 eq), NaNO2 (0.1 eq) 

LMC 2 (50 mg, 0.2 mmol), DDQ (0.44 mg, 0.002 mmol), NaNO2 (1.35 mg, 0.02 mmol), 

CH2Cl2 (1.8 mL) and acetic acid (0.2 mL) stirred under an O2 atmosphere (1 atm) at 25 °C 

for 19 h. The product was extracted with ethyl acetate and washed with saturated aq NaCl 

soln. The combined organic layers were dried over MgSO4 and concentrated under 

vacuum. The products were isolated using a preparative TLC plate to yield of LMC 2 

(100%). 

8. Catalytic aerobic oxidation of 3 with DDQ (0.1 eq), NaNO2 (1 eq) for 44 hrs. 

LMC 3 (50 mg, 0.14 mmol), DDQ (0.32 mg, 0.0014 mmol), NaNO2 (0.96 mg, 0.014 

mmol), CH2Cl2 (1.8 mL) and acetic acid (0.2 mL) stirred under an O2 atmosphere (1 atm) 

at 25 °C for 44 h. The product was extracted with ethyl acetate and washed with saturated 

aq NaCl soln. The combined organic layers were dried over MgSO4 and concentrated under 

vacuum. The products were isolated using a preparative TLC plate to yield of LMC 3 (76%) 

and LMC 3' (23%). 

9. Catalytic aerobic oxidation of 4 with DDQ (0.01 eq), NaNO2 (0.1 eq) 

LMC 4 (41 mg, 0.12 mmol), DDQ (0.27 mg, 0.0012 mmol), NaNO2 (0.82 mg, 0.012 

mmol), CH2Cl2 (1.47 mL) and acetic acid (0.16 mL) stirred under an O2 atmosphere (1 

atm) at 25 °C for 19 h. The product was extracted with ethyl acetate and washed with 

saturated aq NaCl soln. The combined organic layers were dried over MgSO4 and 

concentrated under vacuum. The products were isolated using a preparative TLC plate to 

yield of LMC 4 (48%) and LMC 4' (28%). 

10. Catalytic aerobic oxidation of 4 with DDQ (0.1 eq), NaNO2 (1 eq) 

LMC 4 (25 mg, 0.072 mmol), DDQ (1.64 mg, 0.0072 mmol), NaNO2 (5 mg, 0.072 mmol), 

CH2Cl2 (0.9 mL) and acetic acid (0.1 mL) stirred under an O2 atmosphere (1 atm) at 25 °C 

for 19 h. The product was extracted with ethyl acetate and washed with saturated aq NaCl 



 

65 

 

soln. The combined organic layers were dried over MgSO4 and concentrated under 

vacuum. The products were isolated using a preparative TLC plate to yield of LMC 4' 

(60%). 

11. Catalytic aerobic oxidation of 5 with DDQ (0.01 eq), NaNO2 (0.1 eq) 

LMC 5 (50 mg, 0.13 mmol), DDQ (0.30 mg, 0.0013 mmol), NaNO2 (0.92 mg, 0.013 

mmol), CH2Cl2 (1.8 mL) and acetic acid (0.2 mL) stirred under an O2 atmosphere (1 atm) 

at 25 °C for 19 h. The product was extracted with ethyl acetate and washed with saturated 

aq NaCl soln. The combined organic layers were dried over MgSO4 and concentrated under 

vacuum. The products were isolated using a preparative TLC plate to yield of LMC 5 (59%) 

and LMC 5' (33%). 

12. Catalytic aerobic oxidation of 6 with DDQ (0.01 eq), NaNO2 (0.1 eq) 

LMC 6 (50 mg, 0.14 mmol), DDQ (0.31 mg, 0.0014 mmol), NaNO2 (0.95 mg, 0.014 

mmol), CH2Cl2 (1.8 mL) and acetic acid (0.2 mL) stirred under an O2 atmosphere (1 atm) 

at 25 °C for 19 h. The product was extracted with ethyl acetate and washed with saturated 

aq NaCl soln. The combined organic layers were dried over MgSO4 and concentrated under 

vacuum. The products were isolated using a preparative TLC plate to yield of LMC 6 (40%) 

and LMC 6' (29%) and 2-(3-methoxy-5-propylphenoxy)-3-(4-hydrox-3-methoxyphenyl)-

3-oxopropanal (5%).  

 

3.3.3 Oxidation of benzylic hydroxyl groups my TEMPO/NaNO2 

LMC 1 (50 mg, 0.25 mmol), TEMPO (5.91 mg, 0.038 mmol), NaNO2 (4.36 mg, 0.063 

mmol), 36% aq HCl (10.38 µL, 0.125 mmol), NaCl (7.37 mg, 0.125 mmol) and CH2Cl2 

(0.3 mL) stirred under an O2 atmosphere (1 atm) at 25 °C for 14 h. The product was 

extracted with ethyl acetate. The organic layer was washed with saturated aqueous solution 

of Na2S2O3, NaHCO3 and then with the water. The combined organic layers were dried 

over MgSO4 and concentrated under vacuum. The products were isolated using a 

preparative TLC plate to yield of LMC 1 (100%). 
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LMC 2 (50 mg, 0.2 mmol), TEMPO (4.57 mg, 0.03 mmol), NaNO2 (3.37 mg, 0.05 mmol), 

36% aq HCl (8.25 µL, 0.1 mmol), NaCl (5.7 mg, 0.1 mmol) and CH2Cl2 (0.3 mL) stirred 

under an O2 atmosphere (1 atm) at 25 °C for 14 h The product was extracted with ethyl 

acetate. The organic layer was washed with saturated aqueous solution of Na2S2O3, 

NaHCO3 and then with the water.  The combined organic layers were dried over MgSO4 

and concentrated under vacuum. The products were isolated using a preparative TLC plate 

to yield of LMC 2' (100%). 

LMC 3 (50 mg, 0.14 mmol), TEMPO (3.2 mg, 0.021 mmol), NaNO2 (2.4 mg, 0.035 mmol), 

36% aq HCl (5.8 µL, 0.07 mmol), NaCl (4.06 mg, 0.07 mmol) and CH2Cl2 (0.3 mL) stirred 

under an O2 atmosphere (1 atm) at 25 °C for 14 h. The product was extracted with ethyl 

acetate. The organic layer was washed with saturated aqueous solution of Na2S2O3, 

NaHCO3 and then with the water.  The combined organic layers were dried over MgSO4 

and concentrated under vacuum. The products were isolated using a preparative TLC plate 

to yield of LMC 3' (81%). 

LMC 4 (25 mg, 0.072 mmol), TEMPO (1.69 mg, 0.011 mmol), NaNO2 (1.25 mg, 0.018 

mmol), 36% aq HCl (3.24 µL, 0.036 mmol), NaCl (2.1 mg, 0.036 mmol) and CH2Cl2 (0.15 

mL) stirred under an O2 atmosphere (1 atm) at 25 °C for 14 h. The product was extracted 

with ethyl acetate. The organic layer was washed with saturated aqueous solution of Na2S-

2O3, NaHCO3 and then with the water.   The combined organic layers were dried over 

MgSO4 and concentrated under vacuum. The products were chromatographically 

immobile.  

LMC 5 (50 mg, 0.13 mmol), TEMPO (3.11 mg, 0.02 mmol), NaNO2 (2.29 mg, 0.033 

mmol), 36% aq HCl (5.5 µL, 0.065 mmol), NaCl (3.89 mg, 0.067 mmol) and CH2Cl2 (0.3 

mL) stirred under an O2 atmosphere (1 atm) at 25 °C for 14 h. The product was extracted 

with ethyl acetate. The organic layer was washed with saturated aqueous solution of Na2S-

2O3, NaHCO3 and then with the water. The combined organic layers were dried over 

MgSO4 and concentrated under vacuum. The products were isolated using a preparative 

TLC plate to yield of LMC 5' (80%). 

LMC 6 (30 mg, 0.083 mmol), TEMPO (1.94 mg, 0.012 mmol), NaNO2 (1.43 mg, 0.021 

mmol), 36% aq HCl (3.4 µL, 0.042 mmol), NaCl (2.42 mg, 0.041 mmol) and CH2Cl2 (0.18 
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mL) stirred under an O2 atmosphere (1 atm) at 25 °C for 14 h. The product was extracted 

with ethyl acetate. The organic layer was washed with saturated aqueous solution of Na2S-

2O3, NaHCO3 and then with the water. The combined organic layers were dried over 

MgSO4 and concentrated under vacuum. The products were chromatographically 

immobile. 

 

3.3.4 Baeyer-Villiger Oxidations 

LMC 2' (50 mg, 0.2 mmol), 30% aq H2O2 (0.16 mL, 1.55 mmol), HCOOH (0.06 mL, 1.6 

mmol) and 1, 2–dichloroethane (0.062 mL, 0.8 mmol) was refluxed at 50 °C for 24 h. The 

product was extracted with ethyl acetate, the organic layer was dried over MgSO4 and 

concentrated under vacuum. The products were isolated using a preparative TLC plate to 

yield LMC 2' (90%) and (3-propylphenoxy)methyl benzoate (10%). 

LMC 3' (50 mg, 0.14 mmol), 30% aq H2O2 (0.14 mL, 1.12 mmol), HCOOH (0.042 mL, 

1.12 mmol) and 1, 2–dichloroethane (0.044 mL, 0.56 mmol) was refluxed at 50 °C for 24 

h. The product was extracted with ethyl acetate, the organic layer was dried over MgSO4 

and concentrated under vacuum. The products were isolated using a preparative TLC plate 

to yield 3,4-dimethoxybenzoic acid (81%). 

LMC 4'-P (132.2 mg, 0.305 mmol), 30% aq H2O2 (0.244 mL, 2.44 mmol), HCOOH (0.092 

mL, 2.44 mmol) and 1, 2–dichloroethane (0.096 mL, 1.21 mmol) was refluxed at 50 °C for 

24 h. The product was extracted with ethyl acetate, the organic layer was dried over MgSO4 

and concentrated under vacuum. The products were isolated using a preparative TLC plate 

to yield 4-benzyloxy-3-methoxybenzoicacid (80%). 

LMC 5' (69 mg, 0.18 mmol), 30% aq H2O2 (0.15 mL, 1.46 mmol), HCOOH (0.056 mL, 

1.48 mmol) and 1, 2–dichloroethane (0.06 mL, 0.76 mmol) was refluxed at 50 °C for 24 h. 

The product was extracted with ethyl acetate, the organic layer was dried over MgSO4 and 

concentrated under vacuum. The products were isolated using a preparative TLC plate to 

yield 3,4-dimethoxybenzoic acid (40%). 
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LMC 6'-P (19 mg, 0.042 mmol), 30% aq H2O2 (0.0383 mL, 0.38 mmol), HCOOH (0.0155 

mL, 0.344 mmol) and 1, 2–dichloroethane (0.0132 mL, 0.167 mmol) was refluxed at 50 

°C for 24 h. The product was extracted with ethyl acetate, the organic layer was dried over 

MgSO4 and concentrated under vacuum. The products were isolated using a preparative 

TLC plate to yield 4-benzyloxy-3-methoxybenzoicacid (80%). 

 

3.4 Analytical methods and chemicals 

 

1H and 13C NMR spectra were recorded on a Varian Inova 400MHz spectrometer. Gas 

chromatography-mass spectra (GC-MS) were recorded on a Agilent technologies 6890N 

instrument with 5973N electron impact ionization (EI) mass detector. Dry THF, diethyl 

ether, DMF and dichloromethane were purchased from Sigma-Aldrich. All other bulk 

solvent were purchased from Pharmco Aaper and used without further purification. Silica 

gel thin layer chromatography (TLC) plates (w/UV254, polyester backed, 200μm) were 

purchased from Sorbent technologies. Flash column chromatography was carried out with 

silica gel (60 Å) purchased from Sorbent technology. All reagents were purchased from 

commercial suppliers and used without further purification.  
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CHAPTER 4. DEPOLYMERIZATION OF ORGANOSOLV LIGNIN 

 

4.1 Introduction 

 

In the Organosolv pulping technique, lignin is extracted by dissolving it in organic solvent. 

The solid residue remains enriches with cellulose, whereas liquor contains degraded lignin 

free from sulphur. Later organosolv lignin is obtained by removing solvent from liquor by 

distillation. This solubilized form of lignin is prepared by treatment of lignocellulosic 

biomass with an aqueous organic solvent, usually methanol, ethanol, butanol, acetone, 

ethylene glycol or ethanolamine at elevated temperatures (≥140 °C), sometimes in the 

presence of inorganic acid catalysts.162,163 In catalytic pulping processes, added reagents 

change the pH of the liquor. The base-catalyzed Organosolv process involves two stages: 

in the first-stage, lignocellulose biomass is cooked in 50% methanol/water solution, and 

then in the second stage the pulping mixture is basified by adding sodium hydroxide.164 

The alkali-sulfite-anthraquinone-methanol (ASAM) Organosolv is more is advance 

method.164,165 In ASAM process, methanol and anthraquinone are added to alkaline 

sulphite liquor pulp. The methanol that is used as the organic solvent is completely 

recovered at the end of the process. The organosolv pulp obtained from this method has 

better optical (brightness) and strength properties than other conventional processes.165 

These pulping methods are superior to other pulping processes, and currently they are 

extensively used on large scales. The alkaline ethanol pulping process has been patented 

by Marton and co-workers, and according to their findings a mixture of ethanol and sodium 

hydroxide at elevated temperatures can be used for pulping of any type of wood.166 

Similarly, the use of other alcohols such as propanol, isopropanol, butanol and ethylene 

glycols have also reported in literature.167 Methanol and ethanol are the preferred solvents, 

as they have lower boiling points and are less expensive than glycol. Some less common 

solvents that were also used include ethylacetate, ethylenediamine, methylamine, acetone 

and dioxane. The Acetosolv, Fomacell and Milox processes are acidic pulping processes, 

and they have also proven to be very effective methods. The Acetosolv pulping process is 

catalyzed by acetic acid and hydrochloric acid, the Fromocell process is catalyzed by 
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formic acid/acetic acid, and Milox pulping is performed by adding formic acid and 

hydrogen peroxide.168,169 

 

In order to transfer our synthetic approach from a model molecule study to native lignin, 

an Organosolv lignin was employed in our depolymerization studies. This lignin is soluble 

in many commonly used polar solvents, making it a convenient substrate for lignin 

reactivity studies. The study of lignin depolymerization using organosolv lignin has many 

advantages over the use of another lignins. Organosolv lignin is soluble in several organic 

solvents, and homogeneous reactions process have advantages over heterogeneous 

processes, including an increase in activity, selectivity, and higher rapid mass transfer rates. 

In addition, analytical techniques such as NMR and GPC can be more conveniently used 

for soluble lignin polymers. Recently, many researchers have demonstrated catalytic 

depolymerization of Organosolv lignin into low molecular weight aromatic compounds. 

Lercher and co-workers have demonstrated the disassembly of Organosolv lignin by a 

base-catalyzed high temperature/high pressure reactions. Jones et al. reported 

depolymerization and hydrodeoxygenation of Organosolv lignin via formic acid and Pt/C 

treatment.170 Another group showed an improved approach to hydrodeoxygenation of 

lignin by bimetallic Pd/C and Zn catalytic system.171 Labidi et al. reported a method for 

producing phenolic compounds by microwave irradiation of lignin using a nickel-based 

catalyst.172 Ford and group have showed the depolymerization of organosolv lignin using 

a copper-doped porous metal oxides in presence of methanol.57 

  

Lignin seem to have large reactive plethora of functional groups. In all of the methods 

above, the fragmentation of lignin was not selective, which results in randomly fragmented 

products. Based on the product formed, many researchers have proposed fragmentation 

mechanisms,173,174 however, changes in functional groups in the lignin polymer during 

depolymerization have not been characterized. Unambiguously, we have investigated step-

wise specific oxidation reaction, which will react selectively. We have carefully 

characterized changes in functionality in each step of an oxidation, to ensure how each 

oxidation step proceeds and what all side products formed. 
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4.2 Protection phenolic hydroxyl group 

 

31P NMR spectroscopy is a valuable tool for the quantitative determination of hydroxyl 

groups present in lignin.175,176 This technique is based upon phosphorus labeling of the 

hydroxyl groups present in lignin, and observation of the well-resolved resonances of 31P-

derivatized aliphatic, phenolic, and carboxylic acid hydroxyl groups, which can be further 

quantified using an internal standard. Hence, this method can be used to determine how 

well each step in the oxidation sequence has worked. Faix et al. have demonstrated that the 

hydroxyl groups determine by 31P NMR correlate with other techniques such as 1H NMR, 

31C NMR and FTIR spectroscopy, as well as wet chemical methods.24 As previous reported 

by Argyropoulos, 2-chlor-1,3,2-dioxaphospholane is not universally effective in 

determination of hydroxyl group in lignin.176 On other hand slight modified 

phosphitylation reagent, 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane was more 

stable because of four methyl groups. Even though this reagent doesn’t properly separate 

primary and secondary alcohol group, it is highly reliable.  The proportions of NMR 

solvent were kept constant 1.6:1 pyridine/CDCl3 throughout depolymerization analysis, as 

it is reported that change in pyridine/CDCl3 proportion may results in broadening of peaks 

because of solvent effect.177 It is important to note that 31P isotopes has 100% abundance, 

spin of ½ and magnetogyric ratio is relatively high. Because of all these reasons 31P NMR 

spectroscopy is highly sensitive, and it is a rapid analytical method. Lately, 31P NMR 

technique has been routinely used to study chemistry of biomass, biofuels and lignin.   

 

The derivatizing agent (Figure 4.1) is prepared from pinacol, PCl3 and NH3 according to 

literature procedures.24,175,176 PCl3 (11.09 mL, 0.127 mol) in dry ether (35 mL) -THF (10 

mL) was stirred at 0 °C for 5 mins. A solution NH3 (35.4 mL, 0.254 mol) and pinacol (15 

g, 0.127 mol) in dry ether (35 mL) -THF (11 mL) was added dropwise over 1 hrs, and the 

reaction mixture was stirred for 2 hrs at room temperature. The reaction was then filtered, 

to remove triethylamine hydrochloride. The residue was washed with ether, and then 

combine filtrate was concentrated under vacuum. The product was purified by vacuum-

distillation above 180 °C to obtained 30% yield.178  
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Figure 4. 1 Synthesis of 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane (TMDP). 

  

As previous reported,175,176 Organosolv lignin (50 mg, ball-milled) was placed in a 1 mL 

volumetric flask. 100 μL of 0.1N benzoic acid solution (in 1.6:1 pyridine-d6:CDCl3), 50 

μL 2-chloro-4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaphospholane (7), and 100 μL of a 0.01N 

solution of chromium (III) acetylacetonate (in 1.6:1 pyridine-d6:CDCl3) were added to the 

flask. The flask contents were diluted to 1.0 mL with 1.6:1 pyridine-d6:CDCl3.
176 31P NMR 

spectra were recorded at 25 °C on a 400 MHz (1H frequency) spectrometer, using a 

previously reported method.176  Our typical instrument setup involved a 90° 31P pulse, 7.75 

μs observation pulse, 0.919 s acquisition time and 12 s relaxation delay.  

 

 

 

Figure 4. 2 Schematic representation of phosphitylation of hydroxyl group. 

 

Quantitative phosphorous group derivatization of hydroxyl groups in lignin occurs by 

reaction between lignin and TMDP/ pyridine. Pyridine reacts with the HCl that is formed, 

to give pyridine hydrochloride. 
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Figure 4. 3 Quantitative 31P NMR spectra native Organosolv lignin and after hydroxyl 

group protection using benzyl bromide. 

 

The 31P spectra of derivatizated untreated Organosolv lignin has resonances between δ 151 

to 134 ppm. This was consistent with literature reports for phosphorus-labeled aliphatic, 

phenolic (syringyl), phenolic (guaiacyl), and carboxylic hydroxyls. Addition of a known 

amount of benzoic acid prior to derivatization enabled quantification of these groups. The 

31P spectrum of TMCP-labeled Organosolv lignin (without previous addition of benzoic 

acid) shows no resonances between 137-134 ppm. The quantitative 31P NMR spectrum in 

Fig. 8(a) shows 4 distinct peaks. The region between 149 to 145 ppm corresponds to 

aliphatic hydroxyl groups, the region between 145 to 141 ppm corresponds to syringyl 

phenolic hydroxyl groups, the region between 141 to 138 ppm corresponds to guaiacyl 

disubstituted phenolic hydroxyl groups and the sharp peak at 135.14 ppm corresponds to 

carboxylic hydroxyl groups.  

 

After comparing mmol g-1 of the hydroxyl group of Organosolv lignin (insoluble in water) 

with internal standard (benzoic acid), we found 1.2 mmol g-1 aliphatic hydroxyl group, 1.8 
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mmol g-1 syringyl phenolic hydroxyl group and 0.7 mmol g-1 guaiacyl phenolic hydroxyl 

group contained.  

 

Our aim was to protect both phenolic hydroxyl groups selectively without protecting 

aliphatic hydroxyl group. In this study we tried various protecting groups like methyl, acyl 

and benzyl using different base and reaction conditions. And then organosolv lignin after 

protection of phenolic hydroxyl group was characterized by 31P NMR spectroscopy. The 

protection group study result are as follow. 

Protection of phenolic hydroxyl group using Me2SO4 and KOH: 50 mg of ball-milled 

organosolv lignin was dissolved in 3 mL solvent-1,2-dimethoxyethane, methanol, water 

(35:35:3, v/v).  Dimethylsulphate was added to reaction mixture and then 15% KOH 

solution in the above solvent mixture was added to the reaction mixture under N2 using 

additional funnel, and the addition rate was regulated to maintain the pH of the reaction at 

11. Addition of KOH was stopped when the pH of the reaction mixture remained constant 

at pH 11. The reaction mixture was stirred further for 24 hrs at room temperature. The pH 

of the mixture was lowered to 3 by adding 0.5 M H3PO4, and after 30 minutes KOH was 

added again to adjust the pH to 6.5. The mixture was concentrated in vacuum. The product 

was washed with water and dried in vacuum oven. 

       

Figure 4. 4 Comparison of hydroxyl group content of organosolv lignin after 

Me2SO4/KOH protection of hydroxyl groups. 

  

As shown in figure 4.3, 0.013 mL of Me2SO4 didn’t lower the phenolic hydroxyl content, 

while similarly 0.25 mL of Me2SO4 significantly reduced the number of phenolic hydroxyl 

groups, although some of the aliphatic hydroxyl groups were also getting protected.   
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Protection of phenolic hydroxyl group using acetic anhydride and pyridine: A solution of 

50 mg ball-milled organosolv lignin, pyridine was stirred in dry CH2Cl2 for 1hrs at ambient 

temperature. Acetic anhydride was added, and the mixture was then stirred at ambient 

temperature for 16 h. The mixture was concentrated in vacuum. The product was washed 

with water and dried in vacuum oven. 

 

Figure 4. 5 Comparison of hydroxyl group content in organosolv lignin after 

(CH3CO)2O/pyridine protection of hydroxyl groups. 

 

Acylation doesn’t selectively protects phenolic hydroxyl group; aliphatic hydroxyl groups 

were also getting protected, i.e. in both the reaction conditions phenolic hydroxyl group 

contained is simultaneous get protected.   

Protection of phenolic hydroxyl group using Me2SO4 and Et3N: A solution of 50 mg ball-

milled organosolv lignin and Et3N in dry acetone was stirred for 5 mins at ambient 

temperature. Me2SO4 was added, and the mixture was then stirred at ambient temperature 

for 20 h. The mixture was concentrated in vacuum. The product was washed with water 

and dried in vacuum oven. 
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Figure 4. 6 Comparison of hydroxyl group content in organosolv lignin after 

Me2SO4/Et3N protection of hydroxyl groups. 

 

Protection of hydroxyl group with Me2SO4/ Et3N was not very useful, as methylation of 

alipahtic hydroxyl groups occurs to a considerable extent. 

Protection of phenolic hydroxyl group using benzyl bromide (BnBr) and K2CO3: 50 mg 

ball-milled organosolv lignin, benzyl bromide and K2CO3 was reflux at 65°C for 5hrs in 

the presence of 13.6 ml acetone. The mixture was concentrated in vacuum. The product 

was washed with water and dried in vacuum oven. 

 

Figure 4. 7 Comparison of hydroxyl group content in organosolv lignin after 

BnBr/K2CO3 protection of hydroxyl groups 

 

Figure 4.7 illustrate that benzyl bromide protection under condition 2 completely protects 

phenolic hydroxyl group. However, more than half aliphatic hydroxyl groups were also 

protected. Various attempts to selectively protect phenolic hydroxyl group were not 

completely successful. So far benzyl bromide protection were best, but further 

investigation is required.    
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4.3 Study of Organosolv lignin depolymerization using TEMPO/NaNO2  

 

Through the model studies reported above, we identified reagents suitable for the three 

steps required for cleavage of the β-O-4 linkage in lignin. The first two steps are oxidations 

(benzylic alcohol oxidation, then Baeyer-Villiger oxidation) and require the protection of 

the phenolic hydroxyl group to prevent oxidative coupling of phenols. While the success 

of the protection step and the oxidation steps was easy to monitor when working with 

small-molecule models, characterization is a significant challenge when working with 

lignin, even with a solubilized version such as Organosolv lignin. 

Benzylation of Organosolv lignin: Organosolv lignin (0.725 g) and K2CO3 (0.558 g, 4.04 

mmol) were stirred in acetone (32 mL). Benzyl bromide (0.96 mL, 8.07 mmol) was added 

to the reaction mixture which was refluxed for 14 h. The mixture was concentrated in 

vacuum. The product was refluxed in hexane for 15 min. The reaction mixture was the 

filtered, washed with water and dried in vacuum oven to yield benzylated Organosolv 

lignin 0.7 g.  

Oxidation benzyl hydroxyl group Organosolv lignin using TEMPO/NaNO2: Benzylated 

Organosolv lignin (0.45 g), TEMPO (29.25 mg, 0.188 mmol), NaNO2 (21.56 mg, 0.312 

mmol), 36% aq HCl (57.61 µL, 0.64 mmol), NaCl (36.56 mg, 0.62 mmol) and CH2Cl2 

(2.7 mL) stirred under an O2 atmosphere (1 atm) at 25 °C for 14 h. The mixture was 

concentrated in vacuum. The product was washed with water, filtered and dried in 

vacuum oven to yield 0.4 g product. 

Baeyer-Villiger oxidation of TEMPO oxidized Organosolv lignin: TEMPO oxidized 

Organosolv lignin (0.18 g), 30% aq H2O2 (0.45 mL, 4.41 mmol), HCOOH (0.184 mL, 4.9 

mmol) and 1, 2–dichloroethane (1.56 mL, 19.9 mmol) was refluxed at 50 °C for 24 h.  

The mixture was concentrated in vacuum to yield 0.15 g product. 
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4.3.1 31P NMR spectroscopy  

                 

Figure 4. 8 Quantitative 31P NMR spectra: (a) native Organosolv lignin; (b) after 

hydroxyl group protection using benzyl bromide; (c) after hydroxyl group oxidation 

using TEMPO/NaNO2; (d) after Baeyer-Villiger oxidation using H2O2/ HCOOH. 

 

The spectrum shown in figure. 4.8(b) clearly shows that the number of phenolic hydroxyl 

groups diminished after selective protection of phenolic hydroxyl groups via benzylation. 

Moreover, the spectrum in figure. 4.8(c) demonstrates that the resonance due to 

phosphorous-derivatized aliphatic hydroxyl groups diminished after TEMPO/ NaNO2 

oxidation of benzyl-protected Organosolv lignin. Finally, the spectrum in figure 4.8(d) 

indicates that Baeyer-Villiger oxidation of TEMPO/NaNO2 oxidized Organosolv lignin 

resulted in an increased number of aliphatic hydroxyl groups, as expected when the esters 

that are formed in the Baeyer-Villiger step are hydrolyzed in situ by the highly acidic 

reaction conditions.  

 

4.3.2 ATR-IR spectroscopy  

 Fourier transform infrared (FTIR) spectroscopy has been widely used for routine 

investigations of structural modifications in lignin.179-182 FT-IR can be used for rapid 

characterization of changes in functional groups of solid as well as liquid samples. Emandi 

et al. reported the quantitative analysis of the ratio of lignin to cellulose and to 

https://en.wikipedia.org/wiki/Fourier_transform
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hemicellulose in fifteen different wood species by coupling integrated FT-IR spectroscopy 

with thermogravimetric (TGA) analysis.183 FT-IR spectroscopy has been used to study the 

degradation of lignin caused by white   rot fungus in wheat straw.184 Another group studied 

the degradation of beech wood using FT-IR spectroscopy and pyrolysis gas 

chromatography.179 Consequently, we compared the spectrum of native Organosolv lignin 

with the modified lignin after each oxidation step. The peaks present in the FTIR spectrum 

of Organosolv lignin are in accordance with their expected literature values.181 IR spectra 

were recorded with a Nicolet 6700 FT-IR apparatus. The scanning was typically in the 

range 600 to 4000 cm-1 at a resolution of 4 cm-1. Sixty-four scans were taken. Baseline 

correction was done using a three point linear approach at 3700 cm-1, 1850 cm-1 and 670 

cm-1 using previously reported method.179-182   

  

The Organosolv lignin spectrum in figure 4.9 shows a broad absorption band between 3300 

and 3500 cm-1 corresponding to phenolic and aliphatic hydroxyl groups, a band at 3000-

2850 cm-1 which corresponds to sp3 C-H bonds, and bands at 1710 and 1670 cm-1 

corresponding to carbonyl groups. Other assignments are the sp2 C=C vibration at 1587, 

1512 cm-1,  C-H bending at 1458, 14224 cm-1 and peaks between 1100-1300 cm-1 which 

belong to characteristic C-O vibration bands.179-182  

 

Figure 4. 9 FTIR spectra of the Organosolv lignin 

 

Faix et al. have reported a method to determine carbonyl group content in lignin by 

correlating the intensity of the carbonyl IR peak with the aromatic absorption band.180 We 

monitored the relative changes in carbonyl content in the sequence of oxidation reactions 
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by comparing the intensity of the carbonyl peak with the absorbance at 1587 cm-1 due to 

the aromatic rings.  As shown in figure 4.10(b), the relative intensity of the aromatic peak 

at 1587 cm-1 increased after phenolic hydroxyl groups were protected via benzylation, 

while the intensity of the hydroxyl band between 3300 and 3500 cm-1 was significantly 

decreased. Figure 4.10(c) shows that little change in the relative intensity of the carbonyl 

peak took place after TEMPO oxidation, while for the last step (Figure 4.10(d)) a broad 

intense peak corresponding to carboxylic acids or esters was evident after Baeyer-Villiger 

oxidation.  

 

Figure 4. 10 FTIR spectra tracking the oxidative depolymerization of  Organosolv lignin: 

(a) native Organosolv lignin; (b) hydroxyl group protection using benzyl bromide; (c) 

benzyl hydroxyl group oxidation using TEMPO/NaNO2; (d) after Baeyer-Villiger 

oxidation using H2O2/ HCOOH 

  

4.3.3 Gel permeation chromatography (GPC)  

Analysis of the molecular weight distribution of Organosolv lignin after each oxidation 

step was achieved using gel permeation chromatography (GPC).  Gel permeation 

chromatography (GPC) is a common analytical technique for the characterization of 

polymers. It is size exclusion chromatography (SEC) where the separation of polymers is 

based upon the hydrodynamic size of polymer molecules and the pore size of the column 

packing material. As lignin is a cross-linked polymer, we were not able to correlate elution 

time with the common internal standard (a linear polymer) used for molecular weight 
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distribution. We used GPC to detect changes in the elution time of untreated organosolv 

lignin to oxidized depolymerized lignin.  

 

As reported in the literature, Organosolv lignin typically shows a bimodal molecular weight 

distribution,185 the peak at higher retention time corresponding lower molecular lignin.  

Gel permeation chromatography (GPC) was performed on an Agilent 1260 Infinity 

Quaternary LC system equipped with a Polymer Standards Services (PSS) Suprema Linear 

S column (8 X 300 mm and a Suprema GPC Analytical Guard Column (8 X 50 mm), both 

of which had a 10μm particle size) and a DAD at 280nm. The mobile phase was 1:1 mixture 

of DMSO and THF at a flow of 0.6 mL/min. DMSO and THF, whose Hildebrand solubility 

parameters are 24.5 MPa1/2 and 18.6 MPa1/2 respectively, were chosen as solvents as they 

provided a good match for lignin (20-29 MPa1/2).186 It is important to note that GPC was 

only monitored on the soluble fraction of lignin. The typical sample size was 6 mg/mL of 

DMSO/THF. All chromatograms were normalized to their largest peak intensity to 

demonstrate molecular weight shifts. Lignin model compound 2 (LMC 2) was used as a 

point of reference.  

    

Figure 4. 11 Gel permeation chromatograms of Organosolv lignin subjected to oxidative 

depolymerization 

 

Figures 4.11(a) and (b) show that after phenolic hydroxyl group protection, the molecular 

weight distribution of lignin shifted to slightly higher molecular weight. For molecular 

weight comparison lignin model compound 2 (LMC 2), which has a molecular weight of 



 

82 

 

256 Da, was displayed in Figure 4.11(e). In contrast, after TEMPO/NaNO2 oxidation of 

the protected lignin, the molecular weight was not changed. After Baeyer-Villiger 

oxidation a slight shift towards lower molecular weight was observed, although the 

molecular weight distribution of the product was not significantly different from that of the 

initial Organosolv lignin starting material.  This finding is likely due to a shift in the 

solubility of the lignin. While Organosolv lignin is highly soluble in DMSO/THF, benzylic 

oxidation resulted in a large insoluble fraction. However, after Baeyer-Villiger oxidation 

the sample was almost entirely soluble again. Thus GPC may not accurately portray the 

lignin depolymerization process and other analysis techniques are necessary to determine 

the degree of depolymerization. 

 

4.4 Study of Organosolv lignin depolymerization using Swern oxidation  

 

In order for our approach to depolymerization to be successful, we needed to ensure that 

the Baeyer-Villiger step is effective at introducing hydrolysable linkages into lignin. We 

turned to the Swern oxidation, a non-catalytic (but highly reliable) alcohol-to-ketone 

oxidation, so that the starting material for the Baeyer-Villiger step would have the 

maximum possible number of opportunities for oxidation of benzylic carbonyl groups. 

 

Swern oxidation of Organosolv lignin: Oxalyl chloride (0.3 mL, 3.5 mmol), DMSO (0.5 

mL, 7 mmol) and Organosolv lignin (soluble in water) (0.25 g) were placed in 3 individual 

one-neck round bottom flasks.  The flasks were purged with N2 for 15 min after which 11 

ml dry CH2Cl2 was added to each flask. The solution of oxalyl chloride in CH2Cl2 was 

cooled to -78 °C and the solution of DMSO was added dropwise. The mixture was stirred 

to -78 °C for 15 min and then the Organosolv lignin solution was added dropwise. The 

resulting mixture was stirred at -40 °C and after 30 min the mixture was cooled to -78 °C 

and Et3N (1.46 mL, 10.5 mmol) was added dropwise. The reaction was stirred 30 min at -

78 °C then slowly allowed to warm to rt. CH2Cl2 (150 mL) was added and organic phase 

was washed with dilute HCl, water and concentrated under vacuum to yield 0.23 g 

product.187  
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Baeyer Villiger oxidation of Swern oxidized Organosolv lignin: Swern oxidized 

Organosolv lignin (0.1g), 30% aq H2O2 (0.22 mL, 2.22 mmol), HCOOH (0.084 mL, 2.22 

mmol) and 1, 2–dichloroethane (0.348 mL, 4.35 mmol) was refluxed at 50 °C for 24 h.  

The reaction mixture was concentrated in vacuum to yield 0.092 g product.  

 

4.4.1 31P NMR spectroscopy  

This material also provided a useful reference material for comparison with the material 

produced by TEMPO oxidation of Organosolv lignin. After Swern oxidation of the 

Organosolv lignin, resonances due to 31P-labeled aliphatic hydroxyl groups disappear from 

the quantitative 31P NMR spectrum (Figure 4.12).  The spectrum obtained after Baeyer-

Villiger oxidation of the Swern-oxidized Organosolv lignin (Figure 4.12(c)) shows that 

new hydroxyl groups are formed, suggesting that after Baeyer-Villiger oxidation, 

hydrolysis of the new formed ester occurs and produces carboxylic acids and aliphatic 

hydroxyl groups. 

 

                 

Figure 4. 12 Quantitative 31P NMR spectra of the (a) native Organosolv lignin; (b) product 

obtained from Swern oxidation of native Organosolv lignin; (c) product obtained from 

Baeyer-Villiger oxidation using H2O2/HCOOH of Swern-oxidized Organosolv lignin. 
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4.4.2. ATR-IR spectroscopy  

 

Figure 4. 13 FTIR spectra of Organosolv lignin subjected to oxidative depolymerization: 

(a) native Organosolv lignin; (b) Swern oxidation of native Organosolv lignin; (c) Baeyer-

Villiger oxidation using H2O2/HCOOH of Swern-oxidized Organosolv lignin. 

 

As shown in figure 4.13(b), the intensity of the carbonyl band at ca. 1710 cm-1 increased 

after Swern oxidation, while after Baeyer-Villiger oxidation (Figure 4.13(c)) a broad 

intense band corresponding to carboxylic acids or esters developed. The IR spectra 

demonstrate that after each step of the reaction, noticeable changes were observed that 

correspond to the expected outcome of selective oxidatively depolymerized lignin.  
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4.4.3 Gel permeation chromatography (GPC) 

      

Figure 4. 14 Gel permeation chromatograms of Organosolv lignin subjected to oxidative 

depolymerization. Note: Chromatogram (a) corresponds to the Organosolv lignin CH2Cl2-

soluble portion. 

 

After Swern oxidation, the molecular weight distribution of the Organosolv lignin 

remained unchanged, as shown in figure 4.14(a). However, noticeable changes were 

observed after Baeyer-Villiger oxidation of the Swern-oxidized Organosolv lignin. Figure 

4.14(c) shows the shift in the main lignin peak towards lower molecular weight. 

 

4.4.4 13C NMR spectroscopy  

13C NMR spectroscopy is a valuable analytical method for determining linkages and 

functional groups present in lignin.188,189 13C NMR spectra of Organosolv lignin itself and 

of its oxidized products are given in the Supporting Information. After Swern oxidation, 

we observed the appearance of a ketone carbonyl peak near 209 ppm, and after Baeyer-

Villiger oxidation a carboxylic acid peaks at around 175-160 ppm. 

 

120 mg of lignin sample and 1.8 mg of chromium (III) acetylacetonate were dissolved in 

0.6 mL DMSO-d6. An inverse gated decoupling pulse sequence was used for the 

measurements, employing a relaxation time delay of 1.7 s and an observation pulse of 5.17 

μs (30°). 
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Figure 4. 15 13C NMR spectra of (a) native Organosolv lignin; (b) soluble product obtained 

from Swern oxidation of native Organosolv lignin; (c) Baeyer-Villiger oxidation using 

H2O2/ HCOOH of Swern-oxidized Organosolv lignin. 

 

The 13C NMR spectrum of the starting material showed satisfactory agreement with 

previously reported 13C NMR data for Organosolv lignin.57,188 A peak at 179 ppm 

corresponds to the carbonyl carbon of carboxylic acid/ester moieties, and signals from103 

ppm to 153 ppm are assigned to the aromatic carbon region. Signals at 152-147 ppm belong 

to etherified/non-etherified C-3/C-5 carbons of syringyl (S) units and etherified C-3/C-4 

carbon of guaiacyl (G) units. Resonances at 147-146 ppm belong to non-etherified C-4 

carbon of G units, signals at 139-134 ppm are assigned to etherified C-1/C-4 carbon S units 

and C-1 carbon of  G units, and signals at 128- 104 ppm belong to C-6/C-2 carbons. Signals 

at 75-55 ppm are assigned to C-γ, C-β, C-α and OCH3 groups.    
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4.4.5 Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry 

(MALDI-TOF MS) 

Convenient, bench-top techniques such as GS-MS and pyrolysis GC-MS will not be 

appropriate to determine the molecular weight of lignin fragments.  In those methods, a 

sample is vaporized by heating a solution or by heating a solid sample. Lignol dimers, 

trimers, or higher molecular units will likely not be vaporized and they may undergo 

degradation. MALDI-TOF MS is a soft ionization technique that has potential application 

in the study of larger molecules. In this method, the molecular ions generated by soft 

ionization generally undergo less fragmentation. In this regards, the literature is rich with 

examples where MALDI-TOF MS has been used in structural investigation of lignin 

polymers. Angelis and co-worker demonstrated an accurate determination molecular 

weight of synthetic lignin.190 Awal et al. showed that MALDI-TOF data can give valuable 

information about the molecular weight distribution of lignin.191 Metzger also 

demonstrated that this method is highly sensitive in wide range of molecules.192 

 

MALDI-MS was performed on a Bruker Daltonics MALDI-TOF MS ultraflextreme, 

operating in position ion mode. Samples were dissolved in acetone and 2, 5-

dihydroxybenoic acid was used as s matrix. MALDI-TOF MS was used to analyze the 

array of molecules formed upon depolymerization.27,190   
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Figure 4. 16 MALDI-TOF MS spectrum of organosolv lignin and Swern-oxidized 

Organosolv lignin after Baeyer-Villiger oxidation 

 

We observed significant ion current from ions in the range 372 to 824 Da (as shown in 

figure 4.16), in the range of masses expected for dimers, trimers and tetramers of lignols. 

In contrast, MALDI-TOF MS analysis of Organosolv lignin showed nothing more than 

background current, as did control samples of Organosolv lignin that had been subjected 

to Baeyer-Villiger oxidation, but not to the prior benzylic oxidation step. 
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CHAPTER 5. CONCLUSIONS 

 

5.1 Conclusions 

 

The overall approach for depolymerization of lignin was two-step process. However, in an 

attempt to perform aerobic oxidation of benzylic hydroxyl group in LMCs we had critical 

difficulties. In order to overcome this issue, we attempted to protect all phenolic hydroxyl 

group present in native lignin. The protection group study demonstrated that sterically 

hindered phenolic hydroxyl groups in lignin are difficult to protect selectively, and some 

degree of protection of aliphatic hydroxyls was unavoidable. However, the use of benzyl 

bromide gave satisfactory results, but completely selective protection of phenolic hydroxyl 

groups alone was not achieved. 31P NMR and FTIR-ATR spectroscopy analyses suggested 

that in the protection step, the phenolic hydroxyl groups, along with some aliphatic 

hydroxyl groups, also were functionalized and some phenolic hydroxyl groups were not 

protected. Based on model compound studies, TEMPO oxidation process work exceptional 

good. The 31P NMR and FTIR-ATR analysis of TEMPO oxidized Organosolv lignin 

illustrate oxidation of alcohol to desire products. Furthermore, after BVO, noticeable 

changes were observed at carbonyl region of FTIR-ATR. Finally, GPC results illustrated 

that after the BVO step, the molecular weight of the lignin polymer was not significantly 

reduced. These result suggest that overall three step depolymerized Organosolv lignin 

molecular weight does not reduces to larger extend. In addition, a non-catalytic oxidation 

pathway using Swern oxidation appears suitable for the oxidation of benzylic alcohol 

groups in lignin into ketones. 31P NMR, 13C NMR and FTIR-ATR spectroscopy analyses 

suggest that upon Swern oxidation of Organosolv lignin, aliphatic hydroxyl groups were 

successfully oxidized to ketones. Furthermore, GPC and MALDI-TOF MS results indicate 

that after Baeyer-Villiger oxidation the lignin polymer fragmented into lower molecular 

weight compounds. This selective two-step oxidation process successfully achieves the 

reduction of the molecular weight of Organosolv lignin.  
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In summary, we have developed a process for selective cleavage of the Cα-Cβ linkage in 

the depolymerization of Organosolv lignin, via Baeyer-Villiger oxidation. The further 

research targets on study of depolymerization of switch grass lignin. 
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LIST OF ABBREVIATIONS 

 

ASAM  Alkali-sulfite-anthraquinone-methanol  

ATR-IR  Attenuated total reflectance Infrared spectroscopy  

BVO  Baeyer-Villiger oxidation  

CAN  Ceric ammonium nitrate  

DDQ  2,3-Dichloro-5,6-dicyano-1,4-benzoquinone  

DMPA  Dimethylolpropionic acid  

EI  Electron impact ionization  

EMAL  Enzymatic mild acidolysis lignin  

EPR  Electronic paramagnetic resonance spectroscopy  

FTIR  Fourier transform infrared spectroscopy  

GC-MS  Gas chromatography-mass spectroscopy  

GPC  Gel permeation chromatography  

LMCS  Lignin model compounds  

MALDI  Matrix-assisted laser desorption/ionization  

m-CPBA  m-chloroperbenzoic acid  

NHPI  N-hydroxyphthalimide  

NMR  Nuclear magnetic spectroscopy  

PTC  Phase-transfer catalyst  

TEMPO  (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl  

TFPAA  Trifluoroperacetic acid  

TGA  Thermogravimetric analysis  

TMDP  2-chloro-4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaphospholane  

TOF  Time-of-flight  

TPP  Iron tetraphenylporphyrin  

TPPFeCl  5,10,15,20-Tetraphenyl-21H,23H-porphine iron(III) chloride  
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CHAPTER 6. GENERAL INTRODUCTION 

 

6.1 Introduction 

 

Carbon materials have been under intense study for the last few decades because of their 

unique electronic and mechanical properties.1-3 Diamond, graphite, fullerenes, and carbon 

nanotubes are the most widely studied allotropes of carbon. Every allotrope of carbon has 

distinct chemical and physical properties. In diamond, sp3 hybridized carbon atoms are 

covalently bonded in a three-dimensional network to form an extremely hard solid. 

Graphene is the planar sheet of sp2 hybridized carbon and graphite are stacked of graphene 

sheets with an interplanar spacing of 0.335 nm. Fullerenes are hollow spherical, ellipsoidal 

or tubular atomic structure entirely made from sp2 hybridized carbon. The extended tubular 

fullerene structure to form a long tube is distinctly known as carbon nanotubes. The carbon 

nanotube structure is between that of fullerenes and graphite. Altogether, the structure of 

carbon nanomaterials, from zero-dimensional (0D) to three-dimensional (3D) structure, is 

an exciting, but challenging research topic for the future application developers.     

 

6.2 Carbon nanotubes (CNTs)  

 

Carbon nanotubes are elongated cylindrical tubes formed from one or more graphene 

sheets. Carbon nanotubes, first described in 1991 by Iijima, were called helical 

microtubules of graphite carbon.4 The tubes designated were made from 2 to 50 graphene 

sheets, and they were later known as multiwalled carbon nanotubes (MWCNTs). One-atom 

thick graphene cylinders are most commonly known as single walled carbon nanotubes 

(SWCNTs). The SWCNTs and MWCNTs diameter typically range from between 0.8-2 nm 

and 5 to 100 nm respectively, and have lengths of several micrometers.5 In recent times, 

an enormous amount of progress has been made on synthesis of CNTs. Every year hundred 

tons of MWCNTs are produced.6  
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There are three types of CNTs: armchair (n, n), zigzag (n, 0) and chiral (n, m),7 depending 

on how the cylinder is rolled relative to the arrangement of hexagons in the graphene.  The 

degree of the helical arrangement of the carbon hexagons in graphene sheet is defined by 

rolling indices (n, m). Every type of tube is distinguished from other based on degree of 

the helical arrangement of the carbon hexagons. The wrapping vector R, is represented by 

a pair of integers (n, m). n is nth hexagon from origin (0, 0).8  

 

Figure 6. 1 Armchair (5, 5) carbon nanotubes hexagon lattice of graphene monoatomic 

layer sheet. 

 

In armchair carbon nanotubes, the wrapping angle  is 0° and n=m. The armchair nanotubes 

shown in figure 6.1 have rolling index (5, 5). The bold dashed lines are perpendicular to 

vector R and is the axis of the armchair tubes.8 All armchair CNTs are metallic in nature.  
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Figure 6. 2 Zigzag (8, 0) carbon nanotubes hexagon lattice of graphene monatomic layer 

sheet.  

 

In zigzag carbon nanotubes, the wrapping angle  is 30° and m=0. The zigzag nanotubes 

shown in figure 6.2 have rolling index (8, 0).  The bold dashed lines are perpendicular to 

R and is the axis of the armchair tubes.8  

 

Figure 6. 3 Chiral (7, 2) carbon nanotubes hexagon lattice of graphene monoatomic layer 

sheet. 
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In chiral carbon nanotubes n≠m, and a chiral angle which is greater than 0º and less than 

30º. The chiral nanotubes shown in figure 6.3 have rolling index (7, 2). The bold dashed 

lines are perpendicular to R and is the axis of the armchair tubes.8  

 

Carbon nanotubes are either metallic or semiconducting in nature. The electronic properties 

of SWCNTs primarily depend upon rolling index (n, m) and tube diameter.9 Such that when 

n-m value is divisible of three, tubes are metallic in nature. In past, tubes synthesized had 

mixed chirality, which lead to amphibious electronic properties. However, recently many 

researchers have demonstrated synthesis of chirality-controlled SWCNTs.10,11  

 

The structure of MWCNTs is described by two models: the Russian doll model and the 

scroll models as shown in figure 6.4.12 In the Russian doll model, many single walled 

carbon nanotube are arranged as nested concentric cylinders. In the scroll model, a one-

atom thick graphene sheet is rolled around itself multiple times.  

 

    

Figure 6. 4 Schematic representation of Russian doll and Scroll models for MWCNTs. 

 

In MWCNTs, the interstitial distance between graphene sheets is 3.59 - 3.62 A°, which is 

slightly more than observed in graphite. The interstitial spacing between graphene sheets 

increases with a decrease in tube diameter.13 Based on high electron microscopic imaging 

and an electron diffraction morphology study, MWCNTs appear to exist as shown in the 

Russian doll model.14 However, this model is still disputed and the exact structure of 

MWCNTs remains unclear.15  It is possible that some MWCNTs have a Russian doll 

structure and other have a scroll structure, depending upon the specific synthesis method. 
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Beyond the MWCNT structures discussed above, there are two additional important types 

of MWCNT structures - herringbone and bamboo tubes (figure 6.5). Herringbone and 

bamboo tubes have a different graphene plane angle with respect to the axis of the tube.16 

These tubes are often prepared with nitrogen-containing feedstocks, and such materials are 

known as N-MWCNTs. 

 

 

 

Figure 6. 5 Schematic representation of herringbone MWCNTs and nesting cup (bamboo) 

MWCNTs. 

 

6.3 Annual number of publications, patents and production capacity of CNTs 

 

        

Figure 6. 6 Annual number of publication, patents and production capacity on CNTs. 

Image reprinted from Reference.6 Copyright 2013, Science AAAs  

 

As previous reported by De Volder, the annual number of publication and commercial 

production of CNTs increase steadily in past couple of decades.6 The data in figure 6.6 

clear shows that during last two decades, considerable attention has been paid to carbon 

nanotubes research. Likewise, the CNTs production capacity increased 10 times since 

2006. In the past, most of the publications were focused on characterization of CNTs and 
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towards understanding it properties, it is clearly seen from the graph that issue patent of 

graphene and CNTs is not astonishingly increased.  But recently research has more driven 

towards its applications.    

 

6.4 Synthesis of N-MWCNTs  

 

Since the discovery of carbon nanotubes, various synthesis methods have been reported in 

literature. The commonly used methods to synthesis carbon nanotubes are arc-discharge17, 

laser vaporization,18 and chemical vapor deposition19. The carbon nanotubes prepared by 

chemical vapor deposition (CVD) has significant advantages over the other conventional 

methods. CVD method is the cheap and thus used for commercial synthesis of nanotubes.20 

Carbon nanotubes (CNTs) obtained by the CVD method are uniformly aligned on the 

substrate and have narrow distributions of length and diameter. Two common CVD 

methods are two-stage method or continuous method.  In the two-stage CVD method, the 

catalyst is first deposited on a substrate, then the CNTs growth occurs in a discrete second 

step.  In the continuous CVD process, organometallic precursors are continuously injected 

into a pre-heated quartz tube reactor. The formation of catalyst nanoparticles and growth 

of CNTs occur at the same time throughout the reaction process.20-23 Diameter of tubes 

entirely depends upon the diameter of metal nanoparticles deposited in the first step of 

synthesis. But, length of tubes can be control by adjusting reaction time. 

 

Incorporation of another elements in the feedstock presents a way to tune the properties of 

carbon nanotubes in a well-defined manner. Doping CNTs with electron donors or electron 

acceptors is an interesting approach to tune their properties.24
 The doping an electron 

donors nitrogen and electron accepter boron typically leads to semi-conductive CNTs.25 

The atomic radius of nitrogen is close to carbon, and it is certainly possible to incorporate 

nitrogen in a graphite network.26 The use of nitrogen-containing feedstocks during the 

synthesis process produces CNTs that are doped with nitrogen. In the literature, several 

groups have reported the synthesis of nitrogen doped multiwalled carbon nanotubes (N-

MWCNTs). Sung et al. demonstrated a method using electron cyclotron resonance (ECR) 
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plasma by alumina template.27 CVD is an effective method for synthesis of N-MWCNTs 

arrays, the nitrogen precursors commonly used is ammonia or volatile nitrogen containing 

organic compounds (pyridine, acetonitrile, melamine, phthalocyanine). Sen et al. 

synthesized well-aligned N-MWCNTs by the pyrolysis of pyridine over pre-deposited Co 

powder and Fe nanoparticles.21,28 Walton and group produces nanofibers via melamine 

over laser etched thin films Fe/Ni nanoparticle catalyst deposited on a substrate and one-

step process through mixture of melamine powder/ferrocene at 950–1050 °C.29 Wang and 

group developed a microwave plasma-assisted CVD continuous growth method using 

N2/CH4.
30 In 2011, two different groups reported synthesis of N-MWCNTs using CVD 

methods. Lv and group demonstrate using iron phthalocyanine/pyridine22 and D. Higgins 

et al. reports using three distinct feedstocks: ethylenediamine, 1, 3-diaminopropane and 1, 

4-diaminobutane, all in the presence of ferrocene.31 Coville, N. J. describes a simple 

method of using sealed quartz tubes and ferrocenylmethyimidazole precursor.26  

 

Our interest lies mainly in synthesis of N-MWCNTs arrays on a quartz substrate. In this 

study, we synthesized arrays of nitrogen-doped multiwall carbon nanotubes (N-MWCNTs) 

by floating catalyst chemical vapor deposition (CVD) on quartz substrates (figure 6.7). The 

arrays of N-MWCNTs were synthesized on the quartz plates by the floating catalytic 

chemical vapor deposition (CVD) method, at the Center for Applied Research (CAER). 

The pyridine-ferrocene mixtures were pyrolyzed at 800°C in a four-inch diameter tube 

reactor with N2 as carrier gas.23  

 

Figure 6. 7 Schematic of floating catalytic CVD reactor system to produce N-

MWCNTs.23,32 Image reprinted with permission from Reference.32 Copyright (2002) 

American Chemical Society. 
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A CVD reactor consists of a quartz tube equipped with an exhaust port and an inlet to 

introduced hydrocarbon and catalyst feedstock. The center portion of the tube is called the 

reaction zone (furnace). A silica plate is placed in the reaction zone acting as an additional 

substrate for nanotube growth. The continuous CVD process growth of N-MWCNTs then 

takes place by a root growth mechanism.23  

    

 

Figure 6. 8 (a) Photographic image of N-MWCNTs array, (b) SEM image of array of N-

MWCNTs grown on quartz substrate. 

 

The well-aligned arrays of nanotubes produced by this method were typically 55 to 

66 μm in thickness, as shown in figure 6.8(b). Figure 6.8(a) is a photographic image of 

N-WMCNTs grown on 1 × 1 cm2 quartz slides. The initial studies were carried out on 

nanotubes grown on 1 × 1 cm2 quartz slides. However, for surface area analysis, 50-

100 mg of sample is required, so for convenience this study was done using 2.5 × 2.5 

cm2 quartz slides of N-MWCNTs arrays. The one CVD batch typically generates sixteen 

2.5 × 2.5 cm2 quartz slides of N-MWCNTs arrays. 

 

6.5 Growth mechanism 

 

According to the most widely accepted CNTs growth mechanism, the synthesis of CNTs 

occurs in three steps.33 In first step, the catalyst nanoparticles grow on the substrate, then 

in the second step hydrocarbon vapors decompose to form metal carbides as they come in 

contact with catalyst nanoparticles.34 In the last step, carbon rapidly diffuses through the 



 

108 

 

metal and precipitates out as a crystalline graphitic structure in the form of tubes.33 

Kunadian et al. clarify the actual process of the growth mechanism; according to their 

findings CNTs growth does not occur in the vapor phase, but rather from catalyst 

nanoparticles that are first deposited on the substrate.35 It is observed by many researchers 

that catalyst nanoparticles are mostly present at the tip or at the bottom of the tubes. The 

tubes growth process occurs via either a root growth or a tip growth process, depending 

upon substrate and catalyst used in synthesis of CNTs. In the root growth process, catalyst 

nanoparticles attach to the substrate with a firm interaction. Carbon diffuses through the 

catalyst and elongation of tubes occurs over the catalyst particle. According to Fan and his 

group, elongation of CNTs occurs by the extrusion of carbon from the bottom of tube, 

presumably between the particle and the grown tubes as shown in figure 6.9.36,37 In 

contrast, in the tip growth process, nanoparticles have weak interaction with substrate, and 

the carbon diffuses through the catalyst and pushes the nanoparticles off the substrate.  

                   

Figure 6. 9 Schematic representation of root growth and tip growth process in carbon 

nanotubes.38 Image reprinted with permission from Reference.39 Copyright 1999 Elsevier.  

 

The morphological structure and properties of tubes produced depend on various factors 

like reactor size, reaction parameter, carbon feedstock, nature of catalyst nanoparticles and 

carrier gas. 
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6.6 Structure of N-MWCNTs 

 

Figure 6. 10 TEM image of hollow, cylindrical tube (MWCNTs) and bamboo tube (N-

MWCNTs). 

 

The cylindrical MWCNTs shown in figure 6.10 was made from a hydrocarbon feedstock 

(xylene) containing ferrocene as a source of the Fe catalyst. The graphene planes in 

classical MWCNTs are parallel to the axis of the tubes. Unlike classical, cylindrical 

MWCNTs, the graphene planes of N-MWCNTs are not parallel to the longitudinal axis of 

the nanotube, and there are periodic compartments within the core (figure 6.10).18 TEM 

images reveal that the outer surface of the N-MWCNTs is composed of a stack of graphene 

plane edges (as expected for ‘nesting cups’). The origin of this morphology lies in the 

pyridine-ferrocene feedstock used in the CVD synthesis.23,40  

 

Figure 6. 11 Cone shaped catalyst at the root end of the N-MWCNTs. 

 

Many researchers have reported that cone-shaped nanoparticles that are produced in first 

step of synthesis play a crucial role in the growth mechanism and morphology of the tubes. 
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The cone-shaped catalyst particles would be expected to produce nested cups of 

carbon.13,40,41 

 

Furthermore, Lee el al. have proposed that nitrogen also plays an important role in 

changing the morphology of the tubes. The X-ray photoelectron spectroscopic (XPS) data 

indicates that nitrogen is present as a substituent of carbon in the nanotube’s walls and not 

in the spaces between graphene layers.42 The XPS results indicate the presence of three of 

the most important types of nitrogen present in N-MWCNTs: quaternary, pyridinic (sp2 

hybridized nitrogen) and pyrrolic nitrogen.  

        

The concentration of pyrrolic nitrogen is greater than pyridinic nitrogen.42 Pyridinic 

nitrogen is present at the edge of the graphene sheet as well as within the graphene sheet. 

Pyridinic nitrogen is sp2 hybridized with a non-bonding pair of electrons in an sp2 orbital 

oriented perpendicular to conjugated π system.43 Pyridinic nitrogen generates holes within 

graphene sheets, which increases the flexibility of the sheet and decreases the strain in 

smaller diameter cylinders of graphene sheets.43-45 It has been reported by Andrews and 

co-workers based on electron energy loss spectroscopy (EELS) elemental analysis that 

nitrogen concentration is higher within the inner shell of tubes and the outer shell contains 

a reduced amount of nitrogen.23 Bitter et al. N-MWCNTs synthesize study reveal that 

concentration of nitrogen decrease with increase in reaction temperature.46 The 

compartment size decreases as nitrogen concentration in feedstock increases. Furthermore, 

nitrogen changes the overall physical and chemical properties of the material, pyridinic 

nitrogens promotes the basicity and metallic behavior.46,47  

 

6.7 Properties and Applications 

 

CNTs have extraordinary electronic, physical, and optical properties because of this, they 

have beneficial value in electronic, material science, optics and technology. Apart from 
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this, their weight is extremely light, and they have astonishing mechanical properties. The 

recent advances in the production CNTs composite increase the potential for their use in 

application including bicycle frames, baseball bats, tennis racquets, and others.6,48 CNTs 

coating on ship hulls act as anti-fouling.49 CNTs are also used extensively in lithium ion 

batteries, microelectronic, biosensor and medical devices.  

 

CNTs obtained from some synthesis processes are randomly oriented. Many researchers 

have put effort into orienting the CNTs vertically because vertical well-aligned CNTs 

appear to have numerous applications which may not be possible without alignment. 

Vertically-aligned CNT arrays have been extensively studied for various electron field 

emitter arrays,50 thin-film transistors51 and electronic applications.52  Moreover, 

micropatterned array CNTs possess advantages for various multifunctional 

applications,53,54 optoelectronic ultrasensitive label-free DNA analysis.55 Polymer 

infiltrated, aligned arrays of CNTs have been also used to create a nanoporous membrane 

structures. Membranes have been proven promising for water purification,56 gas 

separation, water desalination,57 and sensing applications.58  

 

6.8 Channeling of carbon nanotubes 

 

Recently, many researchers have demonstrated techniques for unzipping of cylindrical 

CNTs to produce graphite nanosheets; the resulting graphene nanomaterial shows promise 

for applications in nanoelectronic devices.59,60 Ci and Ajayan illustrated a method to cut 

the graphene sheet in a controlled manner.61 In their method nickel nanoparticles deposited 

on graphite, cut the graphite sheet on high-temperature hydrogenation. According to their 

findings, unzipping of graphene sheets occurs along straight lines and the resulting nano-

graphene sheets produced commonly have zigzag or armchair edges. Datta and co-workers 

have demonstrated the similar cutting process by thermally active metallic nanoparticles.41 

On other hand, the Tour group reported a method to produced oxidized nanoribbons by 

exfoliation of MWCNTs by KMnO4/H2SO4 and thermal treatment.62 In their KMnO4 

oxidation process, a manganate ester formed in first step further undergoes oxidization 
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reaction to produce a diketone, which eventually initiates linear longitudinal unzipping of 

the tubes. Dai and co-workers show a unique approach to making graphene nanoribbons 

(GNRs) by plasma etching, and similar work has done by Mohajerzadeh on unzipping of 

CNTs using oxygen and hydrogen plasma.63,64 Terrones et al. have reported unzipping of 

nanotubes by thermal expansion of N2 gas trapped within the hollow core of the tube.65 

Recently Hu and Chen group showed a clean unzipping method via steam etching 

process.66 The unzipping and exfoliation of SWCNTs was achieved via direct current pulse 

and microwave-intercalation by Kim.67 The sputter-etching method to convert part of 

SWCNTs into GNRs has demonstrated by Wee.68 In 2008, our group reported the 

unzipping (“channeling”) of nitrogen-doped multiwall carbon nanotubes (N-MWCNTs) by 

reductive alkylation using Li/NH3 and further, in 2010 we reported linear and spiral forms 

of unzipping graphitized N-MWCNTs.69,70 We have found that upon Birch reduction, deep 

fractures appear in the sidewall of N-MWCNTs, cutting deep enough to reach the inner 

core of the tube,69 and running the entire length of the tubes.  The mechanism for this 

unzipping by a reductive process is unclear.  

 

6.9 Characterization of nanotubes 

 

The conventional analytical techniques (NMR and mass spectroscopy) used to 

characterized organic compound are inadequately sensitivity to characterize CNTs. The 

characterization of CNTs seems to be very challenging because CNTs absorb across a 

broad range of the electromagnetic spectrum, and they are insoluble in most solvents. 

Lately, many methods available to characterized CNTs are classified in two categories: 

characterization of individual CNTs and characterization of bulk sample. Commonly used 

techniques for the characterization of individual nanotubes include scanning electron 

microscopy (SEM), scanning transmission electron microscope (STEM), scanning 

tunneling microscopy (STM), transmission electronic microscopy (TEM), energy 

dispersive x-ray spectroscopy (EDX), atomic force microscopy (AFM), 

photoluminescence spectroscopy, and electron energy-loss spectroscopy (EELS).71,72 In all 

of the methods listed above, individual nanotubes are separated from bundles by ultra-
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sonication. These methods are recommended for the measurement of length, diameter, 

surface coating, and the results of the channeling reaction. Another class of methods, useful 

for the characterization of bulk samples, are X-ray photoelectron spectroscopy (XPS),73 

infrared and Raman spectroscopy,74 X-ray/neutron diffraction,75 thermogravimetry76 and 

BET surface area analysis.69 Bulk characterization methods are helpful to determine 

impurities, chirality, helicity, functionalization, porosity, intershell spacing, and the extent 

of the channeling reaction. These characterization techniques have brought great 

improvements in the understanding the properties and chemistry of CNTs. Every method 

has its strength as well as its limitations, because of inhomogeneity and impurities present 

in the sample. Therefore, it is a good practice to use several of these techniques in 

complementary ways. In our studies we extensively used thermogravimetric analysis 

(TGA) and BET surface area analysis for bulk sample characterization and SEM/STEM 

spectroscopy for characterization of individual tubes. 

 

6.10 Motivation 

 

In N-MWCNTs, exposed graphene edges should provide access for lithium ions to 

intercalate between layers of graphene, and we hypothesize that the forces involved in 

lithium intercalation push apart gaps or seams in the graphene layers, producing the 

appearance of a ‘channel’ in the nanotube. If the fracturing process is driven by lithium 

intercalation and if lithium is not able to reach these sites, then the fracturing process 

should not occur, even if electrons are able to access the carbon. 

 

In this study, we were interested in performing chemistry at only one the end of the 

tubes. If the unzipping reaction occurs only when one specific end of the tube is exposed, 

this will suggest the unzipping process is unidirectional. These observation will be 

extremely useful to understand the morphological structure of the tubes. Our finding 

provides some insight into the mechanism of the unzipping process, and provides evidence 

that the unzipping process has a directional preference- unzipping from the root end 

towards the tip end. In this overall process, we may be able to functionalization of 
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the interior of tubes selectively and create a new form of nanotube-based porous 

membrane. 
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CHAPTER 7. INVESTIGATION OF CHANNELING REACTION 

 

7.1 Overview 

 

CNTs produced by these different methods are normally packed in bundles because of 

weak Van der Waals bonding between them. The agglomerated bundles of CNTs are 

insoluble in most solvents and because of this, their utility in fundamental research and 

technological developments is restricted.77 Several investigators have done considerable 

research into methods for functionalization and chemical modification of CNTs to enhance 

their dispersibility in common organic solvents.78 It is important to note that 

functionalization of CNTs also helps in the exploration its utility in various applications 

like CNTs-composites, catalyst supports and sensors. The functionalization of CNTs by 

chemical modification using various derivatizing agents such as 

thionychloride/octadecylamine,79 fluorination,80 H2SO4/HNO3/HCl,81 3-dipolar 

cycloaddition,77 82 and reductive alkylation.83 The functionalization preferentially occurs 

at exposed edges and at the defect sites.84-86 

 

7.1.1 Birch reductive alkylation 

The Birch reductive alkylation is a commonly-used method for functionalization of 

aromatic compounds.87 In this method, the aromatic compound is reduced by lithium 

dissolved in liquid ammonia. The reduced aromatic compounds are then alkylated by 

treating with alkyl halide.   

 

Figure 7. 1 Schematic representation of Birch reductive alkylation. 
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The carbon nanotubes entirely made from sp2 hybridized conjugated carbon atoms are 

referred to as aromatic compound. Under Birch reductive conditions, carbon nanotubes are 

reduced to form polyanions as their lithium salts. Birch reductive functionalization of 

SWCNTs and MWCNTs have been reported by many researcher. 84-86  

Figure 7.2 illustrate SEM image of reductive alkylation of unzipped channeled N-

MWCNTs.69,70 The deep channel runs all the way from the outer wall to the inner core of 

the tube. The SEM and TEM images suggest that all the tubes in the sample have undergone 

the channeling reactions. The bulk-sample characterization methods like TGA and BET 

surface area analysis also confirmed that channeling reaction is not limited to a few 

nanotubes. SWCNTs and MWCNTs do not undergo channeling reaction under these 

conditions, whilst this key finding of unzipping in N-MWCNTs was highly exceptional. 

      

Figure 7. 2 SEM image of longitudinal cutting in N-MWCNTs after Birch reductive 

methylation.88  

 

7.1.2 Graphite Intercalation Compound (GICs)  

The insertion of an atom or molecule into interstitial graphene planes is a well-studied 

phenomenon. When treated with electron donor species like lithium, graphite gets reduced 

to form a charge transfer complex. Furthermore, graphite stabilizes the positively charged 

lithium by accommodating it between graphene sheets. The complex substance thus 

formed is called a graphite intercalation compound (GIC). The GICs is more specifically 

describe by stage number, this number is conveys how many graphite layers are separated 

from adjacent intercalated layers.  
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GICs have the general formula XCy, where X is intercalant and y is number of carbon 

atoms. Various electron donor species like Na, K, Rb, Cs, Ba, Eu and Sm intercalate in 

graphite.89 Similarly, a number of electron acceptor species like F, Cl, and Br also 

intercalate in graphite.89,90 The amount of intercalation depends upon the ionization 

potential and the ionic radius of the intercalating element. Intercalation of alkali metals has 

been extensively studied by many researchers.91,92 In solvent phase reaction, the solvent 

molecule (NH3) also intercalates along with the intercalating metal ion.91 After 

intercalation, the bond distance between carbons within a graphene sheet remains the same, 

but the graphene sheets spread apart.93 It is also known that intercalation of electron donor 

atoms (K, Rb) into graphene layers increases its electrical conductivity.20 

 

Multiwalled carbon nanotubes are commonly referred to as multi-rolled graphene sheets. 

The exposed graphene sheet edge could possibly be present only at the bottom end or at 

the top end of the tubes. However, the exposed edges are also presumably present at the 

site of structural defects. Henn et al. reports electrochemical intercalation of lithium into 

multiwalled carbon nanotubes, according to their finding, intercalation of lithium into the 

MWCNTs occurs through the defects.94  Beguin and co-workers report intercalation of 

lithium into the less graphitized carbon nanotubes by high-pressure liquid-phase process.95 

The graphite intercalation compound undergoes thermal expansion on heating, and after 

cooling the graphite retains its original structure. The intercalation and de-intercalation in 

graphite is a reversible process, and the morphological structure remains unchanged.93  

However, in carbon nanotubes expansion may result in rupture of the nanotube structure.  

Recently, Vega-Cantu reports exfoliation of MWCNTs, in their process Li/NH3 

intercalated MWCNTs is treated with acid.96  The author proposed that the exothermic 

reaction between acid and lithiated-MWCNTs results in exfoliation.96  
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Figure 7. 3 TEM image of N-MWCNTs (Bamboo or nesting cups tubes). 

 

TEM images (figure 7.3) illustrate that the outer surface of the N-MWCNTs is composed 

of a stack of graphene plane edges (as expected for ‘nesting cups’). The MWCNTs has 

very few exposed graphene edges, as compared to N-MWCNTs. The exposed graphene 

edges should provide access for lithium ions to intercalate between layers of graphene, and 

we hypothesize that the forces involved in lithium intercalation push apart gaps or seams 

in the graphene layers, producing the appearance of ‘channel’ in the nanotube. Figure 7.4 

illustrate possible mechanism for channeling process.    

 

Figure 7. 4 Schematic representation intercalation of lithium in interstitial spaces between 

graphene layers. 

 

7.2 Experiment designed to investigation of the channeling reaction 

 

7.2.1 Materials 

Methyl methacrylate (MMA, contains ≤30 ppm MEHQ as inhibitor, 99%), 2, 2′-azobis(2-

methylpropionitrile) (AIBN, 98%) and 1-decanethiol (96%) were purchased from Sigma 

Aldrich and used without purification. All other bulk solvent were purchased from 

Pharmco Aaper and used without further purification. Polyethylene adhesive-back film 
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(UHMW, 0.042 inch thick) was purchased from McMaster-Carr and adhesive tape (3M 

Co) was purchased from an office supplies company. 

 

7.2.2 Overview 

It is difficult to rationalize the observed ‘unzipping’ process if the underlying carbon 

morphology is truly that of nested cups, so it seems likely that these fractures are the result 

of a physical (mechanical) process rather than the result of a purely chemical process. If 

the fracturing process is driven by lithium intercalation and if lithium is not able to reach 

these sites, then the fracturing process should not occur even if electrons are able to access 

the carbon.  

   

The anisotropy of N-MWCNTs offers the opportunity to test this hypothesis.  As shown in 

figure 7.5, coating N-MWCNTs in polymer with only the tips exposed would permit 

electrons to reach the carbon but prevent lithium ions from reaching the core or the 

interstitial spaces between layers.  Alternatively, if N-MWCNTs are coated such that only 

the root (catalyst) end is exposed, then electrons can reach the carbon and lithium ions can 

reach both the interlayer spaces and the core of the nanotube. 

 

Figure 7. 5 Schematic illustration of the use of polymer-filled N-MWCNT arrays. (a) tip 

ends exposed, (b) root ends exposed.88 

 

The anisotropy of N-MWCNTs offers the opportunity to test this hypothesis.  As shown in 

figure 7.5, coating N-MWCNTs in polymer with only the tips exposed would permit 

electrons to reach the carbon but prevent lithium ions from reaching the core or the 

interstitial spaces between layers.  Alternatively, if N-MWCNTs are coated such that only 
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the root (catalyst) end is exposed, then electrons can reach the carbon and lithium ions can 

reach both the interlayer spaces and the core of the nanotube.  

 

7.2.3 Process to remove amorphous carbon from topmost surface of as produced N-

MWCNTs array       

Figure 7.6, SEM images of the as-produced arrays show amorphous carbon particles were 

present on the topmost surface of the tubes, and the tips of the nanotubes were not visible 

under this crust.  Removing this amorphous carbon was essential so that we can perform 

chemistry on the top ends of the nanotubes alone. 

                

Figure 7. 6 SEM images (a) cross section of array as-produced N-MWCNTs array, (b) 

topmost surface of as produced N-MWCNTs array.88 

 

Recently, Qu, et al. published a simple technique to remove CNTs from an array 

selectively.97 We used this technique to clean the top surface of N-MWCNTs.  The array 

of tubes (on the quartz substrate) was fixed to a glass slide with the help of double-sided 

tape. Amorphous carbon was removed from the top surface of the array by repeatedly 

applying and removing adhesive tape as shown in figure 7.7. 
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Figure 7. 7 Schematic representation of cleaning amorphous carbon particles from the 

topmost surface of the tubes. 

 

When the tape was removed, poorly adhered carbon particles (and a few carbon nanotubes) 

were removed. After repeating the process seven times, the carbon debris from the surface 

was almost completely eliminated. SEM images of the top ends were taken after this 

process, and these images (Figure 7.8) indicate that the number of carbon particles was 

significantly reduced after every step. We found that repeating this step for 7 times remove 

almost all of the debris from the surface. This technique is very selective, as the adhesive 

surface of the tape removes weakly adhered material and the N-MWCNTs remained intact. 

In this process, few nanotubes removed are not concerned. 
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Figure 7. 8 SEM image of top surface of N-MWCNTs array after each cleaning step to 

amorphous carbon with scotch tape. 

 

7.2.4 Process to infiltrate poly(methyl methacrylate) (PMMA) into interstitial spaces 

between N-MWCNTs array  

The key to being able to conduct chemistry on either end of the nanotubes, but not in the 

middle, was the ability to prepare polymer-filled arrays, then to expose one end of the 

nanotubes without exposing the sidewalls. In the infiltration process, the polymer filled the 

interspatial space between the CNTs and wrapped around the tubes to form a protective 

coating. Different CNTs-coating methods have been reported in literature. Some of the 

well-known methods are spin-based methods, vacuum-based methods, dip-coating 

methods and in-situ polymerization methods. Linda Schadler and her coworkers reported 

the process for infiltration by in-situ polymerization.98 Mijangos reports polymer 
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infiltration of nanofibers and nanotubes by three different methods: wetting-based 

methods, vacuum-based methods, and spin-based methods.99 

 

Dip-coating method: We initially attempted to coat N-MWCNTs array by PMMA using 

dip-coating method. In the dip-coating process,100 the array of N-MWCNTs was dipped in 

solution of PMMA and toluene for 8 hrs at 80 °C. The PMMA coated N-MWCNTs array 

was allowed to dry at room temperature for 4 hrs and then dried in vacuum oven for 8 hrs 

at 55 °C. We performed coating using different concentration of PMMA from 10 to 40%. 

 

           

           

Figure 7. 9 Cross-sectional SEM image of (a) as produced N-MWCNTs, (b) PMMA 

infiltrated N-MWCNTs by dip-coating.  

 

We found that when dilute PMMA solution was used interspatial space between the CNTs 

was not completely filled. Furthermore, on using concentrated PMMA solution uneven 

PMMA-layer was formed on the top surface, as shown in figure 7.9(b).  

Spin-coating method: Hinds group carried out infiltration of MWCNTs with polystyrene 

using the spin-coating method.58 In the spin-coating method, the polymer solution is 

applied on the center of the substrate, and the substrate is revolved at high speed. As the 

substrate rotated the polymer solution drew away from the center because of centrifugal 

force, which result into forming a uniform coating. Figure 7.10 shows SEM image of N-
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MWCNTs after spin coating. In spin-coating method, we had similar difficulties as we 

have in a dip-coating process. 

              

Figure 7. 10 Schematic representation of spin coating process and infiltration of PMMA 

in N-MWCNTs by spin-coating.  

 

In-situ Polymerization process: To accomplish this, N-MWCNTs arrays were infiltrated 

with PMMA by an in-situ polymerization technique.98 In order to prepare PMMA 

infiltrated N-MWCNTs arrays without a large excess of polymer covering the top of the 

array, we fabricated an ultra-high-molecular-weight polyethylene (UHMWPE) spacer as 

shown in a figure 7.11(a). The self-adhesive polyethylene sheet was affixed to a glass slide, 

and then an N-MWCNTs array on the 1 x 1 inch substrate was placed at the center of the 

spacer. Another glass slide was placed on top of the spacer, and the entire assembly was 

clamped together with small metal binder clips. The assembly was placed in specially 

designed wide mouth vessel equipped with a provision for a vacuum adapter and a ground 

glass joint.  The apparatus was then evacuated to remove air between the slides, including 

the air trapped in the spaces between of the tubes. The space between the glass slides was 

filled with the mixture of methyl methacrylate (MMA) monomer, azobisisobutyronitrile 

(AIBN, initiator) and 1-decanethiol (chain transfer agent).98 The top opening was sealed, 

and whole assembly was heated in an oven at 55°C for 24 hrs. After cooling, the metal 

clips were removed and the top glass slide was removed.  A hot cutter was used to remove 

the polymer from around the array. The thickness of the membrane was measured by SEM 

imaging, as illustrated in figure 7.12 
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(a)          

 

(b)                            

Figure 7. 11 (a) Schematics of representation of the infiltration process, (b) cross-section 

of entire assembly.88 

 

    

Figure 7. 12 SEM images of the edge of arrays of N-MWCNTs that have been infiltrated 

with PMMA.88 

 

7.2.5 Birch reductive methylation and removal of polymer 

Anhydrous liquid ammonia was condensed in the 250 ml three neck round bottom 

flask using Dewar condenser and dry ice-acetone under nitrogen atmosphere. Lithium 

metal (high sodium granules, 99%, Aldrich) was added and stirred for 10 min. The 

stirring was then stopped and a 1 cm square array of N-MWCNTS, clipped to stainless 
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steel wire, was immersed the dark blue liquid ammonia/lithium solution. After immersion 

for half an hour, the array was lifted from the solution and quenched with iodomethane 

(99+%, stabilized with copper). The resulting N-MWCNTs were then washed with water, 

ethanol and methylene chloride. The N-MWCNTs were then removed from the quartz 

substrate by scraping with sharp razor blade. The polymer around the tubes was removed 

by refluxing the nanotube-polymer composite in toluene, then hot vacuum filtering the 

resulting suspension through a nylon membrane filter membrane. This was repeated three 

times to remove the PMMA completely from the sample. N-MWCNTs were dried in 

vacuum oven for 24 hr at 55 °C. 

 

7.3 Exposing the top end of nanotubes array to Li/NH3 

 

The last step required for exposing the top of the nanotubes within the array was to remove 

the thin layer of polymer covering the top of the array (figure 7.13) without removing the 

polymer covering the walls of the nanotubes. 

 

Figure 7. 13 Schematic illustration of the key steps involved in infiltration of polymer into 

interstitial spaces between N-MWCNTs in the array and exposing top ends of the tubes to 

performed chemistry on the open ends alone.88 

 

The polymer layer on the top surface was reduced in thickness by gently polishing with 

2000 grit sand paper, and the last bit of polymer was removed by H2O plasma etching.  The 

rate of etching was established by measuring etching rate of PMMA sheet, so we were able 

to etch down to a point where nanotube tops protrude from the polymer-infiltrated array.  

The figure 7.14(a) is top view SEM image of infiltrate N-MWCNTs after polishing. The 

image illustrate that tubes are completely coated with PMMA after polishing,  however 

after plasma etching the polymer is removed and top ends of the tubes are again exposed. 
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The resulting tubes walls are completely coated with PMMA, only top end are exposed to 

performed the necessitate chemistry. 

 

Figure 7. 14 SEM images (a) topmost surface after polishing the infiltrated N-MWCNTs, 

(b) topmost surface of polished infiltrated N-MWCNTs after 20 min H2O plasma 

oxidation.88 

 

7.4 Exposing bottom end of N-MWCNTs 

  

 

Figure 7. 15 Schematic illustration of the key steps involved in infiltration of polymer into 

interstitial spaces between N-MWCNTs in the array and exposing bottom ends of the tubes 

to performed chemistry alone.88 

 

To prepare an array where only the bottom (root) ends of the nanotubes are exposed, we 

infiltrated N-MWCNT arrays as shown figure 7.11(a), then separated the intact, infiltrated 

array from the quartz substrate with a sharp razor blade. The substrate was carefully remove 

from the substrate as often membrane breaks into pieces. SEM images of the bottom 

(substrate) side of the array shows the root ends of the nanotubes, with the catalyst particles 

remaining from the synthesis (figure 7.16). 
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Figure 7. 16 SEM images of bottom end of the N-MWCNTs and corresponding EDX 

spectra of element present. 

 

Element analysis on this surface was carried out by energy dispersive X-ray spectroscopy 

(EDS), and these results are consistent with iron particles filling the ends of the nanotubes. 

EDS data obtained by JEOL 2010F field-emission TEM. The absolute levels of each 

element from EDS are not accurate, these results gave us a rough idea about element 

present.  

 

Figure 7. 17 Atomic percentage of element present at bottom end of the N-MWCNTs from 

EDS analysis.88  

 

Figure 7.17 shows the atomic % of element present at the end of the nanotubes. These EDS 

results confirm that iron content is 9.17%. We were able to remove these catalyst particles 

by treating the infiltrated array with 5% HF solution. The PMMA infiltrated array of N-

MWCNTs array was immersed in 5% HF solution for 8Hrs and dried in vacuum oven. 

Figure 7.17 shows an SEM image of the bottom (substrate) side of the array after HF 

treatment, and the image reveals that the catalyst particles have been removed from the 

bottom end of the tubes.   
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Figure 7. 18 SEM images of bottom end of the N-MWCNTs after HF treatment and 

corresponding EDX spectra of element present. 

 

 

Figure 7. 19 Atomic percentage of element present at bottom end of the N-MWCNTs after 

HF treatment from EDS analysis.88 

 

EDS results after the HF treatment show only a small amount (0.5 %) of iron remaining 

after HF treatment. After tubes are treated with HF solution, only the bottom end is exposed 

for intercalation of lithium between layers of graphene. On other hand when catalyst 

particle is intake to the bottom end, the electron will able to access the carbon but lithium 

will not intercalate. Each of these arrays (tip end exposed and root end exposed) was 

subjected to Birch reductive methylation in liquid ammonia, followed by quenching with 

methyl iodide.69   
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CHAPTER 8. CHARACTERISATION OF CHANNELING REACTION 

 

8.1 Results and discussions 

 

The individual tubes were characterized by SEM and STEM spectroscopy. The bulk 

samples were analyzed by thermogravimetric analysis and surface area analysis. The N-

MWCNTs produced from different batches can have different diameters and radii. 

Likewise, the decomposition temperature and the surface areas of the samples from 

different batches are not necessarily identical. The initial set of experiments were 

characterized by SEM and TGA analysis, as only a few milligrams of sample are required 

for analysis. The analysis of the channeling reaction were characterized by SEM and TGA 

analysis many time. However, bulk characterization methods, particularly by BET surface 

area analysis, were used to provide independent confirmation. BET surface area analysis 

was repeated twice, using N-MWCNTs produced from two different batches. For surface 

area analysis, 50-100 mg of sample is required for better precision. The surface area 

comparison of N-MWCNTs produced from single batch has been used to carry-out all four 

sets of experiments. 

 

8.2 Thermal analysis 

 

The oxidation of diamond, fullerenes, as well as carbon nanotubes, has been well studied 

by thermogravimetric analysis (TGA) in past decade.101 In this method, a sample is heated 

at a constant rate under an argon, nitrogen, air, or O2 atmosphere, and the change in mass 

is monitored as the function of temperature. Carbon nanotubes decomposed at lower 

temperature in an O2 atmosphere than in an inert gas atmosphere, and the decomposition 

process in the O2 atmosphere is largely simple combustion. In this oxidation process, 

carbon nanotubes are combusted to CO2. The TGA analysis of carbon nanotubes reveal 

important information about impurities presents, the oxidative stability of the material, and 

the residual mass due to impurities. The impurities present may result from amorphous 
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carbon or from foreign materials used in chemical processing of the CNTs. The combustion 

temperature represents the thermal stability of the CNTs, and the residue mass largely 

represents the catalyst nanoparticles used while synthesizing the tubes. The width of the 

oxidation peak reflects the inhomogeneity of the sample - a single sharp mass loss suggests 

homogeneity in the sample. TGA analysis is used to study changes in the physical or 

chemical properties of the modified CNTs, and has proven to be very useful. Annealed 

CNTs decomposed at higher temperature in air, because annealing results in fewer defect 

sites and higher crystallinity of the tubes is improved. Functionalized CNTs usually have 

two or more stages of degradation, including a low-temparature degradation stage that 

results from decomposition of functional groups. It has also been reported that the catalyst 

particle present in the CNTs does not significantly affect the combustion temperature of 

the CNTs.76,102 Some researcher have also studies effect of tubes diameter on the 

combustion temperature.102 Nanotubes obtained from different batches do not exactly 

coincide with each other. Therefore we endeavored to ensure that all comparisons are 

between nanotubes from the same batch, but the results obtained agree with results from 

all other batches.   

  

TGA was performed using a TA TGA Q5000 thermogravimetric analyzer, 4-7 mg of 

samples were analyzed in platinum pans with a standard heating rate of 10°C/min from 

ambient temperature to 800°C. The oxidative stability of different N-MWCNTs samples 

were studied by thermogravimetric analysis (TGA) under air atmosphere. 
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Figure 8. 1 Thermogravimetric curves for (a) as produced N-MWCNTs — black line, (b) 

Birch reductive methylated N-MWCNTs (B-Me N-MWCNTs) — green line. 

 

The TGA of as-produced and B-Me N-MWCNTs (figure 8.1) shows that as-produced N-

MWCNTs decomposed at 625 °C and channeled N-MWCNTs decomposed at lower 

temperature (575 °C). These results suggested that after channeling reaction, tube become 

thermally less stable. 
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Figure 8. 2 Thermogravimetric curves for (a) as produced N-MWCNTs — black line, (b) 

Birch reductive methylated N-MWCNTs (B-Me N-MWCNTs) — green line, (c) Birch 

reductive methylated N-MWCNTs exposed bottom end alone (BB-Me N-MWCNTs) — 

red, (d) Birch reductive methylated N-MWCNTs exposed bottom end alone (TB-Me N-

MWCNTs) — blue88  

 

Figure 8.2(a) shows that oxidation of as-produced N-MWCNTs occurs between 550 to 

650°C, while figure 8.2(b) shows that nanotubes that have been subjected to Birch 

reductive methylation (without polymer coating) have a combustion temperature from 500-

600°C. Under the conditions of Birch reduction, channels are formed in these unprotected 

nanotubes and not surprisingly, the nanotubes become thermally less stable in air. The 

residual weight of channeled tubes is ~3% less than it is in as-produced tubes, and this is 

likely to be the result of partially removal of catalyst particle in reduction step. Evidence 

that complete coverage of N-MWNTs by PMMA completely prevents the unzipping 

process was provided by analysis of an array where the nanotubes were completely covered 

by polymer. This array was subjected to the Birch reductive methylation, and after the 

nanotubes were liberated from the polymer, TGA analysis reveals that they behave in 

essentially identical manner to as-produced, intact nanotubes. This provides evidence that 

the PMMA coating protects the nanotubes from the reaction mixture. In addition, this result 

demonstrates that the formation of the PMMA-infiltrated array does not modify the 

nanotubes and change their nature. Further, birch reductive methylation of infiltrated N-
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MWCNTs membrane after peeling off from the quartz demonstrate no channeling reaction. 

From this result it is presumably seen that catalyst particle inhibits lithium intercalation 

into interstitial spaces between nanotube graphite layers. In order to remove the catalyst 

particle, infiltrated tubes were treated with 5% HF solution. Figure 8.2(c) shows the TGA 

of root-exposed N-MWCNTs and the combustion temperature is very similar to that of 

unzipped tubes. This result suggests that nanotubes where only the root end is exposed 

unzip to the same extent as completely uncoated N- MWNTs. In bottom end exposed 

experiment (BB-Me N-MWCNTs) catalyst from the bottom of the tube was removed by 

HF treatment. Because of this catalyst from entire tube reduce to 5%. However, the TGA 

of tip-exposed N-MWCNTs has combustion temperature between 525-625°C, which is 

intermediate between the fully unzipped material (Birch reduced uncoated N-MWCNTs) 

and completely unmodified, as-produced N-MWNTs. 

 

8.3 BET surface area  

 

Carbon nanotubes have been extensively used as a support for heterogeneous catalysis, 

anodes in Li-ion batteries and for gas storage. For all these applications the study of 

specific surface area as well as distribution of pores is often measured using Brunauer-

Emmett-Teller (BET) isotherm. In our work, BET surface area has proven to be a 

useful tool for investigating the extent of the channeling reaction. As produced N-

MWCNTs happened to have few defects and mesoporosity, therefore, total surface area 

of the tubes is relatively less. However, when these nanotubes undergo the Birch 

Reduction-triggered channeling reaction, the inner surface is exposed and this results in 

an increase in total surface area of the tubes. Like TGA, nitrogen physisorption is 

another quantitative measurement technique. 

 

In our study, the surface area of N-MWCNTs was determined via nitrogen physisorption 

using an ASAP 2020 V3.00H analyser. The BET model was used to calculate surface 

areas and pore size distributions. Degassing was done by heating the sample under 

vacuum for 24 hrs at 250 °C. The degassing is done to remove physically adsorbed gas, 
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moisture or any adsorbed contaminants that might be present on the surface. After 

degassing, the sample is again weighed accurately, and further surface area analysis 

was carried out at 77 °K, by immersing sample probe into liquid nitrogen. In BET 

analysis, the quantity of nitrogen multilayer adsorption on the surface of the solid sample 

is calculated as a function of the relative pressure from adsorption isotherm using the BET 

equation. 

 

In past, the nitrogen physisorption and desorption method has been widely used to study 

the surface area of carbon nanotubes.103 However because of the tendency for carbon 

nanotubes to form bundles, the measured surface area of nanotubes is imprecise.104,105 

Cukierman and co-workers have studied the effect of N-MWCNTs alignment on N2 

adsorbed isotherm. The study reveals that well-aligned MWCNTs has higher surface area 

then sonicated dispersed tubes. The tubes randomly orient over each other on ultra-

sonication, due to which interstitial space between tubes as well as surface area 

decreases.105,106 In order to minimize experimental error we treated all samples identically. 

Figure 8.3 show N2 adsorption-desorption isotherms plot of volume of N2 adsorbed per unit 

mass of adsorbent against relative pressure (P/P°), where P is the equilibrium pressure and 

P°, the saturation pressure of the adsorbate at standard temperature and pressure. 
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 Figure 8. 3 N2 adsorption–desorption isotherms of the (a) as-produced, (b) B-Me N-

MWCNTs, (c) root-exposed N-MWCNTs and (d) tip-exposed N-MWCNTs. 

 

An N2 adsorption isotherm of as produced N-MWCNTs (Figure 8.3(a)) corresponds to the 

type II isotherms, as shown quantity of adsorption rises gradually with increase in relative 

pressure from 0.05 to 0.994, and at low relative pressure quantity of adsorption is negligible 

because of insignificant amount of microporous.  The adsorption from 0.05 onwards 

resulting from mesoporous and macroporous pore. In N2 adsorption-desorption isotherm 

of B-Me N-MWCNTS, desorption curve deviate from adsorption curve from P/P°=1 to 

P/P°=0.44, and again merge with adsorption curve. The N2 adsorption isotherm of 

channeled N-MWCNTs show hysteresis loop between 0.4 to 0.5 P/P° corresponds to the 

type IV isotherms. Similarly, the isotherm of root-exposed N-MWCNTs is identical to 

completely channeled tubes, the isotherm results shows agreement with TGA results. 

Although, isotherm of tip-exposed N-MWCNTs does not have hysteresis loop, the 

adsorption-desorption curve is not identical to as-produced N-MWCNTs 
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Table 8. 1 Comparison of surface area and porosity of different N-MWCNTs.  

Sample BET  Surface Area 

m2/g 

% Mesoporosity % Macroporosity 

As produce N-MWCNTsa 37.9 40.2 59.1 

B-Me N-MWCNTsa 64.5 74.7 25.3 

BB-Me N-MWCNTsa 64.9 60.4 39.3 

TB-Me N-MWCNTsb 56.1 44.4 55.6 

Note: a — average of 2 runs, b — average of 4 runs  
#Surface area of tip-exposed N-MWCNTs is an average of 4 runs (1st and 2nd runs used 

small samples and as such were subject to greater experimental error).  Actual 

measurements: 68.1, 65.0, 47.1, and 44.2 m2/g, % Mesoporosity: 47.3, 51.5, 38.0, and 

40.7.88  

 

IUPAC segregates porous materials into three categories. The classification is based upon 

the size of the pores: the pore diameter of mesoporous material is greater than 50 nm, 

macroporous material between 2 nm to 50 nm and microporous less than 2 nm. Pore size 

distribution is another bulk-sample characterization that provides information on the extent 

of unzipping is surface area analysis. The surface area of as-produced N-MWCNTs was 

found to be 37.9 m2/g (BET model), whereas Birch reduced (unzipped) N-MWCNTs 

surface area was found to be 64.5 m2/g. Similarly, the fraction of mesopores of unzipped 

N-MWCNTs increases from 40.2% to 74.7%. The surface area and mesoporosity data on 

N-MWCNTs from infiltrated arrays suggest that root end exposed N-MWCNTs  suffer  

complete  unzipping  in  essentially  the  same  manner  that  uncoated  N-MWCNTs, but 

tip exposed N-MWCNTs undergo only a partial unzipping reaction, consistent with the 

TGA results, above. 
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8.4 SEM image 

 

Figure 8. 4 SEM image of longitudinal cutting in N-MWCNTs after Birch reductive 

methylation of (a) as-produced tubes, (b) after Birch reductive methylation with tip end 

exposed only.  

 

Microscopy was performed using a scanning electron microscope (SEM) Hitachi S-4800 

operated at 5-15 kV. SEM results (figure 8.4) further confirmed that when bottom end of 

tubes is exposed to Li/NH3 followed by alkylation, the complete unzipping reaction 

occurs and nearly all tubes display longitudinal cut that are essentially identical to the cuts 

formed in dispersed, as-produced N-MWCNTs that were not coated in polymer. 

 

In other words, channeling occurs with equal efficiency when only the bottom end is 

exposed as when the entire nanotube is exposed (figure 8.5). On other hand, when only 

the top end of the tubes are exposed to Li/NH3 followed by alkylation, only few tubes 

undergo the channeling reaction, and those are only channeled for part of the length. These 

SEM results are in agreement with surface area and TGA results. Taken together, these 

results indicate that the unzipping of N- MWCNTs under the conditions of Birch 

reductive methylation (Li in anhydrous NH3) occurs preferentially from the root end 

where there is easy access to the interstitial spaces and the core of the nanotube. This 

conclusion strongly supports the notion that the unzipping process is driven by intercalation. 
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Figure 8. 5 Model for unzipping process when only the bottom ends are exposed.88 

 

The partial unzipping of tip exposed N-MWCNTs is likely due to imperfections in the top 

surface of the array. Removal of the amorphous carbon, polishing off excess PMMA, 

and plasma oxidation of the remaining surface coating of polymer could result in the 

formation of occasional gaps and breaks in the polymer, permitting the Li/NH3 reaction 

mixture to come into contact with the sidewalls of some of the N-MWCNTs. As a result, 

some of the nanotubes from those samples are unzipped as far down into the array as the 

reaction mixture could reach, resulting in a sample where some of the nanotubes are 

unzipped and some are not. 
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CHAPTER 9. CONCLUSIONS 

 

9.1 Conclusions 

 

In summary, we demonstrate that arrays of N-MWCNTs grown on quartz and disengage 

free N-MWCNTs substrate behave identical to under Birch reductive condition, such that 

they both undergoes channeling reaction under Birch reductive conditions. We have 

established a method for the preparation of PMMA-infiltrated arrays of aligned N-

MWCNTs membrane, such that the thickness of the membrane obtained is exactly 66 μm. 

Our in-situ method, use to prepare PMMA membrane prove to be versatile that spin-

coating and dip-coating method, as interstitial space between N-MWCNTs array is 

properly filled with PMMA. And PMMA coated tubes does not undergoes channeling 

reaction under Birch reductive condition. We demonstrate an excellent method to remove 

amorphous carbon from the topmost surface of as produced N-MWCNTs array. Further, 

we show that the PMMA from tip end or the root end can be remove selectively, without 

un-coating walls of the tubes. The TGA, BET surface area analysis and SEM imaging 

proves that when only the tip ends of the nanotubes are exposed to a Li/NH3 reaction 

mixture, there is little evidence of the unzipping reaction that we have reported in N-

MWCNTs.  However, when the root ends of the nanotubes are exposed to the reaction 

mixture, the N-MWCNTs unzip in a manner that is indistinguishable from as-produced, 

uncoated N-MWCNTs.  These results indicate that the unzipping process is likely driven 

by intercalation and proceeds from the root end toward the tip end.   
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LIST OF ABBREVIATIONS 

 

AFM Atomic force microscopy 

AIBN 2,2′-azobis(2-methylpropionitrile) 

BET Brunauer-Emmett-Teller 

CNTs Carbon nanotubes 

CVD Chemical vapor deposition 

ECR Electron cyclotron resonance 

EDS X-ray spectroscopy 

EDX Energy dispersive x-ray spectroscopy 

EELS Electron energy-loss spectroscopy 

GICs Graphite intercalation compounds 

GNRs Graphene nanoribbons 

MMA Methyl methacrylate 

MWCNTs Multiwalled carbon nanotubes 

N-MWCNTs Nitrogen-doped multiwalled carbon 

nanotubes PMMA Poly(methyl methacrylate) 

SEM Scanning electron microscopy 

STEM Scanning transmission electron microscope 

SWCNTs Singel walled carbon nanotubes 

TEM Transmission electronic microscopy 

TGA Thermogravimetric analysis 

UHMWPE Ultra-high-molecular-weight polyethylene 

XPS X-ray photoelectron spectroscopic 
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