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ABSTRACT 

 
A METHOD FOR NON-INVASIVE, AUTOMATED BEHAVIOR CLASSIFICATION 

IN MICE, USING PIEZOELECTRIC PRESSURE SENSORS 
 

While all mammals sleep, the functions and implications of sleep are not well 
understood, and are a strong area of investigation in the research community. Mice are 
utilized in many sleep studies, with electroencephalography (EEG) signals widely used 
for data acquisition and analysis. However, since EEG electrodes must be surgically 
implanted in the mice, the method is high cost and time intensive. This work presents an 
extension of a previously researched high throughput, low cost, non-invasive method for 
mouse behavior detection and classification. A novel hierarchical classifier is presented 
that classifies behavior states including NREM and REM sleep, as well as active behavior 
states, using data acquired from a Signal Solutions (Lexington, KY) piezoelectric cage 
floor system. The NREM/REM classification system presented an 81% agreement with 
human EEG scorers, indicating a useful, high throughput alternative to the widely used 
EEG acquisition method.  
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Chapter 1 – Introduction 
 

1.1 The Study of Mouse Behavior 
 Mice share most genes and gene functions with humans and other mammals, 

making them the preferred, low-cost animal to study pharmaceuticals, diseases, 

behaviors, and activities in relation to humans. It has been estimated that 98% of the 

mouse genome is homologous to the human genome [1], so the effects of tests are likely 

to be similar to human responses in many tests. Mice are also small, relatively 

inexpensive, and easy to maintain, as well, which allows for lower cost and higher 

throughput studies than the use of larger animals allows. It is for these reasons that the 

use of mice for laboratory testing is so widespread, a fact that is unlikely to change as 

research progresses in time. 

 The most popular technologies used to study sleep and wake in mammals are 

Electroencephalograms (EEGs), Electromyograms (EMGs), and Electrooculography 

(EOG) tests. In mice, EEG combined with EMG is the norm [2], but as these methods 

involve surgical implantation of electrodes, they are high cost and thus impractical for 

large-scale studies. To maintain the high throughput, large-scale studies often needed for 

pharmaceutical, genomic, and behavioral research, non-invasive methods need to be 

examined.  

 This study was focused on a non-invasive method to classify both active and 

resting mouse behaviors. The behaviors of interest were Rapid Eye Movement (REM) 

sleep, Non Rapid Eye Movement (NREM) sleep, quiet wakefulness (REST), active 

behaviors (locomotion, grooming, rearing), and feeding behaviors (eating, drinking). This 
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work develops and evaluates a novel, hierarchical minimum distance classifier method 

for distinguishing these behaviors based on recorded mouse pressure signals. 

1.2 Introduction to the System 
 The system used to capture the movements of these mice has been well-defined 

elsewhere [3][4], but a brief summary is worth developing here. The mice are placed in a 

cage, with some bedding and ready access to water and food, and atop a polyvinylidene 

fluoride (PVDF) sensor that covers the entirety of the base of the cage. This sensor pad 

measures the variations in pressure caused by the mouse in the cage, and is sensitive 

enough to detect even the slightest perturbations due to respiratory movements. The 

signal then passes to an input differential amplifier and a low pass filter, which 

effectively provides band pass filtering. This filters the DC and low-frequency 

interference, preventing amplifier saturation. The signal output amplitude of the amplifier 

is passed to a National Instruments DAQ card (NI-DAQ X6341), which digitizes the 

signal at a sampling rate of 128 Hz and quantizes the signal at 16 bits. Data processing, 

classification, and data analysis were implanted using MATLAB R2012a (Mathworks, 

Natick, MA). 

 This thesis will develop and evaluate an automated non-invasive method for 

behavior classification in mice. The classification utilized a hierarchical approach 

involving cascaded binary classifiers to differentiate mouse behaviors, and was compared 

to a multi-state approach for comparison and validation. The features used in the 

classification were extracted using algorithms including the Power Density Spectrum [5] 

and Autocorrelation [5]. The quality and performance of the features will be discussed, 

with respect to the implemented linear discriminant analysis (LDA) classifier system. The 
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LDA classifier offers one main advantage with respect to the minimum distance metric 

used in the multi-state classifiers presented later; the LDA offers the movement of the 

decision threshold, while the minimum distance assumes both classes occur with equal 

frequency, which is not true in many of the cases below. 

 

Figure 1.1 Decision tree classification scheme. 

 

1.3 Literature Review 
Alternatives to the expensive, automatic classification of mice behaviors have 

been of interest to researchers for decades. The first team to implement a PVDF pressure 

sensor, as presented in this thesis, was Megens, et al [6], which was focused on the 

effects of various drugs on rat behavior. The sensors used included two parallel sensors, 

and it was shown that piezo pads could detect changes in activity, though no behaviors 

were discerned in particular. In addition, respiratory movements were filtered from the 

signal, which are of major interest to discerning the stages of sleep, as discussed later 

here. In contrast, Flores, et al [7] reported a 95% success rate in classifying sleep from 
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wakefulness, implementing a full PVDF sensor attached atop the floor of a cage, and 

using a neural network classifier to discern the behaviors. The success rate is impressive, 

but the study had a limited data set, making its contribution to the training of the neural 

network and the intuition behind the successful classification even less clear. The system 

presented in the present thesis would counteract this issue by implementing an LDA 

classifier, which has been shown to successfully classify behaviors in mice using PVDF 

sensing. Also, as such systems focus on discerning only the sleep behaviors from waking 

behaviors, their scope is limited with respect to the goals of the present text. 

In 2008, Donohue, et al [3] presented a noninvasive sleep-wake classifier for mice 

that utilized a PVDF sensor and an LDA classifier and achieved a classification rate of 

94%. The system used 5 features, which were chosen to exploit the periodic signal traits 

inherent in sleeping mice. To yield the highest classification rates, the behavior segments 

were stored in 8-second segments and amplitude compression and tapering were applied 

to the signal. Validation was provided by human observer scoring, where observers 

recorded whether a mouse was asleep or awake. The success rate for this work is high, 

but the study was limited by its small data set, using only 4 mice and cataloging only 28.5 

hours of data. However, the method did show the feasibility of using a piezoelectric 

pressure sensor to classify sleep and wake behaviors in mice and forms the basis for the 

analysis in this thesis. A second paper by Donohue, et al [8] examined the use of another 

classification method to differentiate sleep and wake states. A Support Vector Machine 

(SVM) was designed using the top 5 features as produced by a genetic algorithm search 

of 26 potential features. Again, human observation and visual scoring were used for 

validation, and the data set is generated from observation of 4 mice. In the end, the SVM 
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was responsible for a 95% classification agreement with human observers. This validated 

the use of LDA in classification of mouse behaviors, as the SVM produced almost 

identical results with the LDA method. Again, however, the study suffered from a small 

sample size, and covered only 14.5 hours total of data from the 4 mice. 

Other methods have been examined for non-invasive automated behavior 

detection in mice, with primary focus on the classification of sleep from wake, and restful 

activity from motor activity. Kjellstrand, et al [9], used a Doppler Radar system to 

measure activity. The system converted the mouse-initiated Doppler shifts to an analog 

signal, and when a detected shift was greater than a certain preset level, a count was 

registered. For some high energy activities, such as walking, rearing, and running, the 

system recorded higher signal levels accurately. However, this was in large part due to 

the shaking of the cage itself. High energy activities like grooming, thus, were often 

missed by the system, when the mouse was stationary, and the cage was motionless. The 

study also made no attempts with discerning the restful activities of sleep and quiet rest. 

Marsden, et al [10] also attempted to use a Doppler system to measure locomotor activity 

in rats. Their system directed the microwave radiation from above, and two frequency 

bands were used in order to differentiate low speed activity from high speed activity. The 

study concluded that Doppler radar could be useful in detection of active behaviors. 

However, there was no direct observational component in the testing to verify that the 

system was in fact recording what was expected. The authors claim that the diurnal 

nature of the 24 hour signal verified its accuracy, but offer no quantitative results. While, 

unlike in the previous study, the lower frequency band detected lower speed motions and 

thus picked up behaviors like grooming, no effort was made to discern low energy 
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activities like sleep again. Zeng, et al [11], addressed these low energy behaviors, using a 

Doppler radar unit and support vector machines (SVM) to classify wakefulness from non-

rapid eye movement (NREM) and rapid eye movement (REM) sleep. In order to verify 

their successful classification of these sub-sleep behaviors, two trained observers scored 

EEG and EMG data for the three behaviors. The team reported 83% sensitivity agreement 

classifying wakefulness, 92% sensitivity agreement for NREM sleep, and 62% sensitivity 

agreement for REM sleep. It was hoped that respiratory rates, gross body movements, 

and heart rates would be usable for classification, but the study could not reliably detect 

heart rates. Neither is it clear that the radar detected only the respiration of the rat itself, 

as EEG/EMG cables were in the cage and affixed to the rat as well. The oscillation of the 

cables could, in certain postures, be what was detected by the radar and not the rat’s 

breathing instead. The study incorporated thermal analysis as well, but it was found that 

body temperature between NREM and REM was indistinguishable, so the 23 features 

used in the SVM came from using only respiratory rates and body movements, similar to 

the system presented in this thesis. As evidenced by the lower rate of success, fewer 

features were found that adequately described REM. Finally, the computational expense 

of SVMs is much greater than that of the minimum distance classifiers described below. 

Other non-invasive methods have been tested for reliability in automated 

behavioral classification as well. Clarke, et al [12], introduced an infrared array system to 

detect locomotor activity in small animals. Essentially, the system consisted of infrared 

beams placed 3.0 cm above the cage floor, directed horizontally through the cage. As the 

animal moves, certain beams would be selectively occluded, which in turn could be 

converted to a voltage and counted to form an activity signal. The system worked well to 
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detect gross motion, but the apparatus was not designed with any consideration of 

discerning stationary activity from stationary inactivity, limiting its usefulness. This is an 

issue all infrared systems face, limiting their usefulness as a sole detector for any type of 

animal activity. 

Hilakivi, et al [13], studied the static charge sensitive bed (SCSB) system and its 

usefulness for detecting sleep and wake behavior in newborn rats. SCSBs are similar to 

the Piezo sensors presented in this thesis, in that the subject is in contact with and atop 

the sensor pad itself. The signal is obtained, however, by measuring the redistribution of 

static charge due to distorted conducting layers in the sensor caused by weight shifting by 

the subject itself. The signal was passed through a differential preamplifier, then filtered 

into two output signals, including a signal for respiratory motion and a signal for total 

movement. EMG and EEG recordings were made, in addition to observational scoring of 

the rats, to test the SCSB system’s success in classification. The paper reported moderate 

success by the SCSBs in classifying active sleep, quiet sleep, and waking, but the 

classification itself was limited in that humans were still required to score the sensor 

readings. While the method was non-invasive, it was still necessary for observers to be 

trained and to take the time to score the SCSB signals. Additionally, the agreement 

between scorers was reported lower than is typical for EEG/EMG scoring, at 77% 

agreement. Also, the scores were often in disagreement with those scored from 

observation of the rats and the EEG/EMG scores, limiting the effectiveness of the 

method. Also, no effort was made to reduce any potential crosstalk component whereby 

reverberations in the cage due to external or internal system motion could translate to the 

SCSB sensors themselves. 
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Päivärinta, et al [14], sought to expand the usage of SCSBs to active behavior 

detection and implemented a system to detect fighting behaviors between male mice. The 

systems were mounted in an isolated manner from external vibrations, to reduce noise 

from external sources. Glass was placed atop each SCSB pad to spread out evenly 

pressure, to make a more uniform signal for analysis. The paper defined various 

behaviors as fighting and used minimum intervals to better ascertain the data desired. 

Signals were separated using these latencies. The results were tested against 

observationally scored video recordings for accuracy. When fighting events were 

observed, the SCSB correlated highly with the observational scoring data. However, it 

was found that roughly half of the fighting events were missed due to the high level of 

thresholding, leading to misclassification and an error rate of 50% for fighting behaviors. 

The system was limited by its latency intervals, and choosing the balance between 

latency intervals and successful classification of behaviors may limit the overall value of 

the system. 

Another system that has been studied is biotelemetry, researched by Gegout-

Pottie, et al., [15] for the use of detecting continuous locomotor activity in rodents. In 

their system, a transmitter was placed in the abdominal cavity of a rodent that sends data 

to a receiver placed below the cage. The method reduces the need for cables attached to 

the rodent, as in typical EEG/EMG studies, thus reducing the impact on behavior that 

such cables have on subjects. The experiment relied on the understood nature of 

temperature variations with respect to activity in rodents and its ability to predict the 

mobility of the animal. As the study admits, this method assumes a high level of 

correlation between body temperature change and LOCOMOTION, but there are a 
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number of factors that could affect this, and as such, there is no linear function that 

connects the two. Tang et al [16], in a study that was focused on comparing sleep and 

locomotive activity between different strains of mice, also implemented a telemetric 

system of the nature described above. It was reported that the system had the capacity to 

record heart rate, body temperature, and brain temperature, but due to size constraints, 

only EEG signals and gross whole-body activity signals were recorded. This activity 

signal was in the form of TTL pulses that were recorded by the magnetic receiver plates 

beneath the cage apparatus. The system also featured video and infrared photobeam 

analysis to compare results obtained by telemetry. It was found that the TTL pulses 

appeared only in the waking segments, consistent with the idea that mice move very little 

when asleep. The results were promising in that EEG signals and whole-body movements 

could be recorded with accuracy and without obstructive cables, but the system does still 

require the extensive and invasive surgery this thesis hopes to eradicate. Also, as the 

gross whole-body movement detection needs the magnet to be moving spatially over the 

receiver, active behaviors like GROOM and feeding are lost 10 the system since the 

mouse remains relatively stationary for the durations of these behaviors.  

Working on the magnet method, Storch, et al [17] sought to classify sleep wake 

behavior in mice with a subcutaneously implanted magnet, placed in the neck muscles. 

There was no telemetric reporting of results, and surgery would be less intensive for such 

a method. The motion of the magnet in space was tracked by a custom magneto-sensitive 

device with magnetic field sensors placed evenly in a grid beneath the cage. When placed 

in the neck muscle, behaviors such as grooming were discernible due to the periodic 

nature of the motion of the head in that behavior with respect to the cage floor sensors. 
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However, the transition to sleep was not easily recorded by this method, as in the state of 

quiet restfulness, the head moves nearly as little as during NREM sleep. Thus, the group 

had to use a defined inactivity limit for sleep onset, which could skew results. The paper 

also presents only that the EEG scores and magnet discerned similar amounts of sleep, 

but not that the same sleep and wake epochs were discerned in each case. These factors, 

along with the need for a surgical implantation, limit the effectiveness of this method for 

classification. 

Video analysis has been an area of interest in behavior research, as seen in a few 

of the implementations above. Pack et al [18], showed that high-throughput sleep scoring 

could be achieved using video monitoring, infrared sensing, and an object recognition 

algorithm that expanded upon the ideas that sustained levels of inactivity, at a certain 

point, correlated highly with sleep. Video recordings generally had been more useful in 

classification of active behaviors, as moving mice were easy to detect with such analysis. 

Fisher et al [19] sought to challenge this notion, however, and studied the use of video 

tracking systems for determining sleep versus wake behavior. Their system utilized a 

wide angle lens and an off-the-shelf video tracking software installation. As a means of 

comparison, EEG/EMG signals were obtained using telemetric transmission. As in the 

Pack et al. study above, sleep was defined using immobility for a certain duration of time, 

but unlike that study, an additional feature involving the amount of the subject required to 

be stationary for sleep to occur. This way, sleep could be discerned from other stationary 

behaviors, such as sustained EAT or DRINK. Using a method for establishing agreement 

between EEG/EMG recordings and Video tracking results [20], 95% agreement for the 

detection of sleep and wake was recorded. The system does provide a high throughput, 
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accurate system, but as the detection of REM and NREM sleep is not described, the study 

comes up short in comparison with the goals of this thesis. 

In conclusion, multiple alternatives have been studied to automatically detect 

behaviors in mice, but as seen above, no method has been attempted that truly offers an 

inexpensive, high throughput classification scheme that studies both inactive and active 

behaviors, and discerns NREM from REM sleep at once. The goal of this thesis is to 

study a system that could satisfy those goals. 
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Chapter 2 - Methods 

2.1 Introduction 
 The mouse data acquisition system used in this work was based on the efforts of 

previous works [1][2], with a few alterations and upgrades. This chapter will discuss the 

acquisition methods used to acquire the data used in testing and training the developed 

classifier. 

2.2 Cage System 
The cage used is a modification on the Mouse Sleep-Wake Tracking System 

(Signal Solutions, Lexington, KY) and is part of a four-cage module for the testing of 

four mice at once. Cages are (6x6 inches), with bedding on the cage floor for the comfort 

of the mice, as well as readily accessible food and water.  

A PVDF sensor SP 77 (Signal Solutions, Lexington, KY) rests on the cage floor 

and is used to convert pressure changes resulting from mice movements, and connected 

to a Sensor Amplifier PZA 100 (Signal Solutions, Lexington, KY) for reading, 

amplifying, and filtering the signal. The signal is then acquired, quantized and digitized 

by an NI-DAQX-6341 (National Instruments, Austin, TX). A software package, Sirenia 

Sleep (Pinnacle Technology, Inc, Lawrence, KS) is used to then store the piezo voltage 

signal for further manipulation. Only a single channel was used in the recording and the 

data acquisition was modified from the typical single ended input to a differential ended 

input. 

2.3 EEG/EMG Acquisition 
 Electrodes were surgically implanted in anesthetized mice, with a cable connected 

for recording EEG and EMG signals. The EEG signals and EMG signal were acquired 

using the same program as the above piezo film recordings, in Sirenia Sleep (Pinnacle). 
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The signals were acquired concurrently with the piezo recordings and shared the same 

clock. EEG/EMG signals were scored for three behavior states, including WAKE, NREM 

sleep, and REM sleep, by one of two trained observers, whose inter-scoring agreement 

rate was 90-95%. These signals were used to identify NREM and REM 4-second epochs 

in concurrence with the piezo signal, in order to identify features that would separate the 

states for use in the proposed classifier. 

 2.4 Video Observation of Active Behaviors 
 Video was recorded by Sirenia Sleep, and synchronized with the Sirenia clock. 

Human observers scored the data by inputting into an Excel (Microsoft, Redmond, WA) 

spreadsheet the times and types of behaviors, sorted into one of 8 possible behaviors: 

Sleep, Quiet Rest, Rearing, Locomotion, Drinking, Eating, Grooming, and Indeterminate. 

The observational data was of particular interest to the WAKE behaviors in the classifier 

design. The Excel behavior data was imported to Matlab (Mathworks, Natick, MA) using 

a custom program, and behavior times and lengths were converted to a continuous signal 

simulating unique voltages for each behavior type. The piezo data was exported from the 

Sirenia Sleep program in the European Data Format (EDF), which was in turn imported 

to Matlab and lined up with the simulated voltage signal. A program then parsed through 

the simulated voltage signal, and extracted corresponding piezo data segments and put 

them into their own behavioral matrices. A guardband of 8 seconds was implemented in 

order to define behavior segments of sufficient length that were exactly one type of 

behavior. Piezo data segments that satisfied this requirement were kept and made up the 

behavior matrix that was studied for the extraction of features for the waking behaviors. 
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2.5 The Classifier System 

2.5.1 Classifier Program Flow 
Overall, as seen in Fig. 1, the behavior state and substate classifier presented in 

this work follows a decision tree pattern. Each “branch” in the tree is the result of a 

binary classification step, where an LDA classification was implemented. After the piezo 

data was acquired and converted to a usable format in Matlab, and placed into matrices 

based on the behavior that generated the signal, a script was run to compute the features 

relevant for classifying behaviors at each level in the hierarchical scheme presented in 

Fig. 1. Signal Segments labeled by human EEG scoring and visual observation were 

organized column-wise in behavior matrices. 

These segments were individually passed to a function which calculated each of 

the features desired, afterwards returning the features to the script in the form of a feature 

vector. Column feature vectors were accumulated in behavior feature matrices and stored 

for use in the designing and testing of the classifier. 

To generate the training and testing matrices, feature vectors were randomly 

sampled from each behavior feature matrix, and used to populate the respective behavior 

training matrices. In each classifier implemented in the decision tree system, at least 100 

unique feature vectors were used to populate the training feature matrices respectively. 

The test set populated by at least 100 feature vectors from each of the remaining behavior 

feature matrices. These were selected such that no training feature vector could be used 

as a test vector, and likewise no testing vector could be used for training the classifier. 

Mean vectors were calculated for the training and testing feature matrices, and 

used as class means. The inverse covariance matrices were calculated as well, which 

were used in the LDA classifier.  
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2.5.2 Linear Discriminant Analysis Metric 
Unless otherwise specified, all classifiers in this paper utilize LDA to classify the 

behavior pressure signals. LDA was chosen for several reasons. First, all classifiers in the 

hierarchical system are binary in nature, and second, the LDA classifier allows for the 

manipulation of the decision threshold, which is useful in controlling error type. This is 

especially useful in the cases where one state is overwhelmingly more common than 

another; a minimum distance classifier, with its threshold at zero, would be less optimal 

as there is an inherent assumption that both classes occur with equivalent frequency. 

Linear discriminant analysis was described first by Fisher [4]. Sets of features  

and  are chosen from classes  and  and computed for observations in each segment. 

Training sets,  and , are populated using segments from the feature sets. Mean 

feature vectors,  and , are computed by averaging the values for each feature across 

all segments in the training sets. The goal of this process is to obtain a set of linear 

weights of size 1xN, where N is the number of features in the feature vectors, which can 

be used to weight the features in a test vector to compute a value which, if greater than a 

certain threshold, corresponds to one class, and if less, then the other. 

These weights are obtained by computing the covariance matrix of the mean 

vectors, 	  . The covariance matrix C is given by 

 C  (2.1)

where  is the expected value of the mean feature matrix X. The result is an NxN 

matrix, sometimes referred to as the pooled covariance matrix, since it is the product of 

the feature matrices from both classes. Once this is obtained, the inverse of the 

covariance matrix is computed and multiplied by the difference in the mean feature 

vectors, to generate the linear weights w. 
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  (2.2)

  The LDA classifier operates on a few key assumptions. First, it is assumed that 

the conditional probability density functions, |  and |  are normally 

distributed, and that the covariance matrices of each class are equivalent, or, 

. This assumption of homoscedasticity allows the decision metric to simplify to 

 ∙ ⋚  (2.3)

where T is the threshold and x is the test feature vector. 

2.5.3 Mahalanobis Distance Metric 
The Mahalanobis distance (MD) is similar to the Euclidean distance (ED) metric, 

but has a few advantages that make it advantageous for the present work. The 

Mahalanobis distance [6] is given by 

 Σ  (2.4)

 

In the above relation,  is the feature vector of the signal to be classified,  is the mean 

feature vector template for a given class, and Σ  is the covariance matrix generated from 

the training feature vectors for the particular class X.  

One particularly useful characteristic of the MD is found in the use of the 

covariance matrix in determining the distance to the mean. This effectively weights 

features and reduces the effects of correlation between features in finding the minimum 

MD among a set of classes. It is easiest to visualize the effect this has on distance 

computation by imagining the case of a two dimensional feature space.  

In calculating the ED, every point on the edge of a circle centered at the class 

mean is equidistant from said mean location. Meanwhile, in calculating the MD, the 
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feature covariance weighting makes it such that every point on the edge of some ellipse, 

with its centroid positioned at the class mean, is equidistant from the class mean. 

However, if the cross correlation between every set of two features is zero and class 

covariances are equal, then the Mahalanobis distance reduces to the Euclidean distance. 

This occurs when every off-diagonal entry in the covariance matrix Σ  is zero. 

Discussion follows concerning the success rates and how these were calculated in the 

next subsection. 

2.5.4 Classifier Sensitivity Rate Calculation 
 Classification results in this work are generally reported for each class 

individually and the metric used to convey classification success is the sensitivity. The 

sensitivity rates [5] can be interpreted as the average value of the number of feature 

vectors classified appropriately in their class, divided by the total number of feature 

vectors in the test set for a particular behavior.  

 ∗ 100% (2.5)

 

In the above relation, S is the sensitivity, TP is the true positives for some behavior, and 

FN is the false negative classified segments. A bootstrapping process was used to design 

and test many classifiers. The rates reported in this work are the average sensitivity rates 

resulting from 200 Monte Carlo runs of each classifier, in which each run was subject to 

randomly sampled training and testing behavior feature vectors. This repeated testing 

lends more variability to the sensitivity rates as actual rates of classification, with some of 

the intrinsic variability accounted for. So, the sensitivity rates themselves are averages 

derived from this bootstrapping. As such, standard deviation values could be calculated to 
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find the variability in the success rates for different configurations. Generally, the 

classifiers presented never had a standard deviation greater than 3-5%. 

 In some areas, the classifier system accuracy rates are reported in addition to the 

sensitivity rates above. The accuracy rate offers a valuable insight into the contribution of 

false negatives and false positives in the error values of a given classifier. There is 

especially a dichotomy between the accuracy rates and sensitivity rates in classifiers 

where the probability of occurrence of one class is much greater than the probability of 

occurrence of the other. The accuracy, A, is given [5] by 

 
 

(2.6)

 Where  is the number of true positives for class 1,  is the number of true positives 

for class 2,  is the number of false positives of class 1 (ie, those segments classified as 

class 1 that were from class 2), and  is the number of false positives for class 2. 

2.6 Mice Strains 
 Twenty mice were used to record the 480 hours of data used in this work. 

Nineteen of the mice were from the C57BL/6 strain, and one subject was from the CFW 

strain. For each mouse, 24 hours of data was cataloged and analyzed. 

2.7 Behavior Descriptions and Signal Processing 
 The objective of the classifier presented is to discriminate automatically between 

seven different mouse behaviors; non-rapid eye movement sleep (NREM), rapid eye 

movement sleep (REM), quiet wake (REST), high active wake or locomotion 

(LOCOMOTION), grooming (GROOM), eating (EAT), drinking (DRINK), and rearing 

(REAR) behaviors. In this section each behavior will be described briefly and 

accompanied by their respective piezo readings. Also featured will be the representations 
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of the signals in the frequency domain, and after envelopes and autocorrelations are 

computed. The data processing for the signals will also be discussed below. 

2.7.1 Data Processing 
 All signals were bandpass filtered prior to analysis or classification using a 512th 

order finite impulse response (FIR) filter in Matlab, with a lower cutoff frequency of 0.5 

Hz, and a higher cutoff frequency at 11 Hz. The lower bound allows for the DC bias to be 

eliminated, while the higher cutoff was utilized to reduce higher frequency interference 

outside the range where motions of interest have most of their energy. Mice pressure 

oscillations rarely exceed 11 Hz, so any frequency component above that range could be 

considered noise and discarded. Also, since the PVDF sensor is sensitive to ambient RF 

noise at the frequency of 60 Hz, the cutoff should minimize any component in the signals 

due to this frequency.  

 Where the power spectrum density (PSD) plots are shown, the following 

parameters were used to find the transformation. PSDs for this work were calculated 

using a Hamming window twice the length of the sampling rate of 128 Hz, at 256 

samples. The window overlap was 128 samples, with zero padding of 512 samples. PSDs 

were calculated by computing the Fourier Transform of the signal and then displaying the 

magnitude, plotted in dB. 

 Autocorrelations (AC) for this work were computed using the Matlab command 

xcorr, with the parameter “coeff” specified to normalize the resulting signals, forcing the 

zero-lag amplitude to be equal to 1. This allows for relative comparisons to be made 

between behaviors. The plots seen below display only the positive lags to bypass the 
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redundant symmetry of autocorrelation transformation, with linear trends removed from 

the resultant autocorrelation. 

 In order to compute the signal envelope, the Hilbert transform was computed and 

the analytic signal was obtained by using the Hilbert transform as the imaginary part, the 

original data as the real part. From this analytic signal, the magnitude was computed to 

find the envelope of the signal. 

2.7.2 Non-Rapid-Eye Movement (NREM) Sleep 
 One of the more challenging pursuits of any non-invasive method of classification 

is the successful detection of NREM sleep. The current method as discussed above for 

reliably detecting NREM sleep is via the use of electrodes. However, by careful 

inspection of the piezo signal in NREM sleeping mice we can extract useful features that 

will discern this behavior  from that of REM sleep successfully. 

 NREM sleep in mice is characterized by rhythmic breathing [3] and thus the 

signal recorded by the piezo sensor should be periodic in nature, with little variation in 

peak heights. When the mouse is asleep, the full body is in contact with the floor sensor, 

allowing for the inhalation and exhalation of the mouse to be recorded as increases and 

decreases in signal, respectively. In NREM sleep specifically, it is these heights and the 

uniformity in the signal that can be exploited in a classifier system. 

 Figure 2 illustrates a typical NREM signal. As the mouse inhales air, its chest 

cavity expands, corresponding to an increase in piezo signal amplitude. Then, the mouse 

exhales, leading to the decreasing signal. It is clear, too, that this cycle occurs about 3 
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times per second in the signal below, indicative of the breathing rate in a sleeping mouse 

[3]. These insights can drive the feature extraction process discussed shortly.  

 

Figure 2.1 Characteristic NREM sleep signal. Bandpass filtered with cutoffs at 0.5 Hz 
and 11 Hz. 

 

2.7.3 Rapid Eye Movement (REM) Sleep 
 In contrast with NREM sleep, rapid eye movement (REM) sleep is characterized 

by a different breathing frequency in many mice strains [3], as well as more erratic piezo 

amplitudes, as the mouse moves from deep breaths to shallow ones. In extracting useful 

features from REM sleep to differentiate the behavior from NREM sleep, it is useful to 

examine the signal’s self-similarity, as well as fundamental frequency and peak height 

variations. 

 Figure 2.2 contains a characteristic piezo signal of a mouse in REM sleep. The 

signal looks more variable than the NREM segment, as one would expect due to the 

erratic nature of breathing while a mouse is in this state. Some breaths are shallower than 

others and some quicker than others. Also, it is clear to see the varying levels of breath 

intake. 
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Figure 2.2 Representative REM sleep signal. Bandpass filtered with cutoffs at 0.5 Hz and 
11 Hz. 

 

2.7.4 Quiet Rest (REST) Behavior 
 The behavior that proves the toughest to differentiate from sleep behavior is that 

of quiet rest. In this state, the mouse is lying prone, with its body in contact with the 

piezo pad in a similar manner to that of sleep. Thus, the dominating factor driving the 

signal is the breathing rate. However, slight shifts in posture translate heavily to the piezo 

reading, as indicated by the signal spike seen in Figure 2.3. There are artifacts left of the 

spike that permeate the signal, leading to much more peak variation than any sleep signal 

as well. Also, potentially due to the posture of the resting mouse, there are small bumps 

in the signal on the breath intake, rising edge to each peak, a feature in the signal less 

often seen in the sleeping mouse. 
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Figure 2.3 Characteristic signal representing the quiet wakeful rest state of the mouse. 
Bandpass filtered with cutoffs at 0.5 Hz and 11 Hz. 

 

2.7.5 Rearing (REAR) Behavior 
 The mouse spends a significant portion of its active wake state rearing (REAR), 

or on its hind legs. This can be a sustained behavior or utilized in quick bouts. As such it 

is a difficult behavior to classify. For a system that utilizes only a piezo pressure sensor, 

the behavior at times can be almost indistinguishable from GROOM or LOCOMOTION 

behaviors, and at other times, looks similar to EAT and DRINK behaviors, where the 

mouse is also on its hind legs, either to reach a water spout or to use its fore limbs to 

manipulate the food it is EAT. 

Figure 2.4 shows a characteristic REAR signal. 
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Figure 2.4 Characteristic REAR mouse behavior signal. Bandpass filtered with cutoffs at 
0.5 Hz and 11 Hz. 

 

2.7.6 Locomotion Behavior 
 Active LOCOMOTION refers to the behavioral pattern exhibited by mice when 

they are physically moving about within the cage. Generally, all four legs are in contact 

with the ground during this behavior as the mouse walks or runs around the floor of the 

cage. At times the mouse can be seen to be sniffing around and moving cautiously during 

this behavior as well. Some very short bouts of REAR can occur during behavior labeled 

as LOCOMOTION, lasting around 1 second or less in duration.  

 Figure 2.5 illustrates a characteristic LOCOMOTION signal for a mouse. These 

signals vary in amplitude and frequency unpredictably and are the least stationary of the 

behavior states measured. It is thus often difficult to differentiate LOCOMOTION from 

other active behaviors such as GROOM. Perhaps the most helpful feature is the raw 

signal amplitude, as the signal maximum is often higher in LOCOMOTION than any 

other behavior due to the mouse intensely striking the sensor while moving around.  
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Figure 2.5 Characteristic LOCOMOTION behavior signal. Bandpass filtered with cutoffs 
at 0.5 Hz and 11 Hz. 

 

2.7.7 Eating (EAT) and Drinking (DRINK) Behavior 
 A mouse engaged in both EAT and DRINK does so on hind legs, in this cage 

system. As such, it often makes sense to analyze these behaviors. However, there are 

subtle differences that can be detected using the floor sensor signal, and shall be 

described briefly below. 

 While engaged in EAT, it was observed that the mice reared in front of the food 

gate, moved their snouts and mouths into the grate to grab morsels of food, then sat down 

on their hind quarters to manipulate the food with their front paws and partake of the food 

morsels. This behavior was observed for 210 8-second epochs during one 8-hour 

observation study of one particular mouse, leading to a substantial dataset for testing.  

 This behavior prevalence was not observed, however, for DRINK behaviors. In 

that same 8-hour observation experiment span, for example, just 12 8-second epochs 

were observed where the mouse was DRINK. The DRINK signals did contain unique 

high frequency components, however, that could be exploited as a feature. It is surmised 
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that the vigorous and sustained licking required for extracting water from the spout led to 

these high frequency perturbations. Again, the subject needed to be on its hind legs in 

order to reach the water spout, leading to some signal similarity to the behaviors of EAT 

and REAR. Figure 2.6 shows a characteristic EAT signal and figure 2.7, a DRINK signal.  

 

Figure 2.6 Characteristic EAT behavior piezo signal. Bandpass filtered with cutoffs at 0.5 
Hz and 11 Hz. 

 

Figure 2.7 Characteristic DRINK behavior piezo signal. Bandpass filtered with cutoffs at 
0.5 Hz and 11 Hz. 
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2.7.8 Grooming (GROOM) Behavior 
 Mice exhibit an elaborate GROOM behavior process where quite literally they 

clean themselves from snout to tail. Grooming signals had relatively large spikes but 

were often a lower amplitude behavior. The mouse does not move spatially across the 

cage floor so the amplitude is lower than that of locomotion, or that of rearing, where the 

mouse lifts fully onto its two hind legs. Instead, it remains in one position and engages in 

various complex repetitive motions which correspond to peaks in the signal, followed by 

lower signal activity. Figure 2.8 displays a characteristic GROOM signal. 

 

Figure 2.8 Characteristic GROOM behavior piezo signal. Bandpass filtered with cutoffs 
at 0.5 Hz and 11 Hz. 
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Chapter 3 – Algorithms and Feature Selection 

3.1 Introduction 
 When designing a classifier, the selected features need to adequately describe the 

different classes from the data. It is advantageous to employ certain algorithms to 

evaluate the features. Along with computing features from the piezo signal, three 

principle algorithms were utilized, including the signal envelope, power spectral density, 

and autocorrelation . This chapter will discuss the algorithms used to define spaces from 

which features were extracted, and will also examine the value in certain algorithms for 

features that distinguish the various behavior states in the mice observed.  

 While there is an infinitude of ways to characterize signals and glean features, it 

was prudent in this work to limit the amount of features used to develop classifiers to a 

feature superset, from which smaller sets could be drawn to train the different classifiers 

in this work. The limited number allowed exhaustive testing of all combinations from the 

feature superset, yielding the best possible classifier given all combinations of features 

tested. In all, 20 features were used in the feature superset and follow in Table 3.1. These 

features will be discussed at length below. 

Table 3.1 Feature superset list 

 

 

Feature Number Feature Name Feature Number Feature Name

1 Teager Energy (Signal) 11 Kurtosis (PSD, Frequencies 0.5 to 11 Hz)

2 Entropy (Signal) 12 THD (PSD, Frequencies 0.5 to 11 hz)

3 STD(signal) 13 Max Height (PSD)

4 Peakedness (Normalized Signal) 14 Location Max Height( PSD)

5 Standard Deviation, Peak Heights (Envelope) 15 Number Peak Heights (PSD)

6 Range, Peak Heights (Envelope) 16 Deviatedness (PSD)

7 Peakedness, Peak Heights (Envelope) 17 Standard Deviation (AC)

8 20% Ranked Value, Peak Heights (Envelope) 18 Teager Energy (AC)

9 Peakedness (PSD, Frequencies 0.5 to 11 Hz) 19 Peakedness (AC)

10 Skewness (PSD, Frequencies 0.5 to 11 Hz) 20 St. Dev. (AC) / Deviatedness Peak Heights (AC)



29 
 

3.2 Power Spectral Density 
 The sensitivity of the PVDF sensors used in this study allows for the estimation of 

respiratory rates in resting mice, with the inhalation and the exhalation of breath 

corresponding to increases and decreases in the pressure signal read by the piezo sensor. 

Frequency analysis is one tool needed to examine the signals, especially with respect to 

sleep signals. It has been shown, in fact, that several strains in mice show differing 

breathing frequencies while in different stages of sleep [1]. One way to analyze signals in 

the frequency domain is to use the discrete Fourier transform (DFT) to find the power 

spectrum of a signal. 

 The DFT, represented below as X(f), of an input x[n], is given by 

 
 (3.1)

 

where f = 0,1,…,N 

 Above, the function w[n] refers to a Hamming window 2*N samples in length. 

The data segment windowed, x[n], was of length N samples, resulting in a 50% overlap 

of windows.  

Characteristic power spectra obtained in this manner are plotted in Figure 3.1, 

representing a wake state and a sleep state. Notice that the sleep segment peaks around 3 

Hz due to the subject’s breathing frequency, while the wake segment has less defined 

peaking in the frequency domain. 

 



30 
 

 

(a)                                                                  (b) 

Figure 3.1 Power spectrums of (a) SLEEP and (b) WAKE piezo signals. 

 

3.3 Autocorrelation 
The autocorrelation (AC) is a valuable method for finding information about a 

signal in the time domain. For periodic signals, high values of the AC can be seen at 

varying lags from the original position. It can also be useful in detecting non-periodic 

signals, which have very low values in the AC. The extreme case of this is random noise, 

which has a spike at the zero lag, where every value in the noise signal line up with 

themselves perfectly, and zero elsewhere, as the signal never resembles itself at any other 

lag. This is somewhat analogous to certain active behaviors like LOCOMOTION, where 

changes in pressure from the feet of the mice result in a pseudo-random signal. 

For a time series x(t), the autocorrelation is given by 

 1
 

(3.2)

where  is the autocorrelation value at lag λ, s  is the normalization coefficient, used 

to make the zero lag equal 1, and N is the number of points in the signal . The 
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autocorrelation was then normalized to allow for comparisons between signals of varying 

amplitudes to be made. Only positive lags are shown, due to the symmetry of the 

operation, and linear trends were removed prior to feature computation. Figure 3.2 

illustrates the autocorrelation of two signals, a sleep signal and a waking signal. 

 

 

(a)                                                            (b) 

Figure 3.2 Autocorrelation plots of sleeping (a) and waking (b) piezo signals for mice. 
Sleep segment lengths were 4-s long at a sampling rate of 128 Hz, while WAKE segment 
lengths were 8-s long at the same rate, leading to the greater amount of lags in WAKE 
above. 

 

3.4 Signal Envelope 
 In addition to the raw signal, power spectrum, and autocorrelation, the signal 

envelope was computed and used for feature exploitation. The analytic signal magnitude 

was calculated, based on the use of the Hilbert Transform,  and used as the signal 

envelope. To obtain the Hilbert Transform, a method described elsewhere [2] was used 

and is described as follows. The DFT was calculated as above to find  
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Figure 3.3 Plot showing 1 second of a LOCOMOTION piezo signal with its computed 
envelope overlaying the signal. The envelope is always greater than or equal to the 
original signal (solid line). 

 

X(f). Then, a function Z(f) was defined such that for all negative frequency values, Z(f) 

was nullified, and for all positive values, Z(f) was doubled. This effectively re-distributed 

all the energy in the DFT to the positive frequencies. Finally, the inverse Fourier 

Transform [3] was computed to find the envelope function e(t). The inverse Fourier 

Transform is given below. 

 
 (3.3)
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3.5 Raw Signal Features 
 Some useful features for classification can be discerned from simply evaluating 

statistics of the raw behavior piezo signal itself. The first feature in the feature superset 

described above is the Teager Energy of the raw signal. The Teager Energy operator was 

first detailed by Kaiser [4], inspired by the work of Teager and Teager [5][6], and defined 

as  

 
1 1  

(3.4)

 

in discrete time. The above operation resulted in an energy signal, and by taking the 

absolute value of the sum of samples in that signal, the Teager Energy feature was 

obtained, as follows. 

 
| | (3.5)

Since the Teager Energy itself produces a signal, the signal average was computed as the 

feature used in order to have a single value for a segment’s Teager Energy. It is worth 

noting that the input x[n] could be normalized before the energy calculation is made. 

Without normalizing, the operation is sensitive to signals with higher amplitudes, which 

would generally result in higher Teager energy values. This may adversely affect some 

kinds of classification operations for some subjects; in particular, system calibration is an 

issue. If the system is not calibrated the same amount before every test, or if different 

subjects are different weights, using amplitude dependent features could produce 

unpredictable results.  

 The Teager energy operator finds its value in its definition of energy. Some 

conventional methods find the energy in a signal by taking the signal’s Fourier 
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Transform.  By taking the absolute value squared of the different frequency bands, a 

metric for energy at those frequency levels can be obtained. However, this results in 

signals having the same amplitude, but different frequencies having the same energy, 

which is somewhat counterintuitive. A signal at a higher frequency contains higher 

energy, as energy is a function of both amplitude and frequency. Thus this method can be 

insufficient in evaluating the energy contained in a waveform. 

Using the second order differential equation for a suspended mass object, Kaiser 

found a relation that showed that energy indeed is a function of amplitude and 

frequency.  The Teager energy that he and Teager developed, however, circumvents this 

by taking into account the frequency as well. It can be shown, for instance, that the 

Teager energy of a pure sinusoid reduces to the sinusoid’s amplitude squared multiplied 

by its frequency squared, if computed over an integer multiple of the sinusoid’s period. 

For signals of arbitrary generation, as in the case of the mouse piezo signals, the more 

general form of the equation must be implemented. 

This frequency dependence is useful in classifying the mouse behavior signals 

since the behaviors produce higher energy waveforms, in both the time domain and the 

autocorrelation domain, as will be seen below.  

 The second feature discerned from the raw signal was the Shannon entropy of the 

raw signal [7]. The entropy of a signal is defined as  

 
 (3.6)

where p( ) is the probability mass function of the signal value range corresponding to , 

and with b = 2. The probability density function was calculated by using a 10-bin 
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histogram to sort the signal values. Then, the probability that a value would fall in a given 

bin was calculated by dividing the sum of the values in a given bin by the total number of 

values in all bins. Doing this for every bin yielded a satisfactory probability mass 

function. This feature was useful because periodic signals, like those associated with 

breathing in states of low activity, have low entropy, whereas less predictable, high 

activity states have higher levels of entropy.  

 Shannon’s entropy grew out of a desire to understand and quantify information 

gain, which is a log weighting of the probability that a certain value occurs. Adding all 

probability elements by their log weights is one way to quantify information contained in 

a signal. In this case, information gain is greater when less likely values occur, or 

equivalently, when the signal is less predictable. For example, the entropy of a 

normalized, 3 Hz sine signal of 4-second duration when computed in this manner is 2.41 

bits, while the entropy of a 4-second normalized white noise signal is 3.82 bits. The 

greater level of unpredictability increases the entropy of the signal. Thus, it is 

hypothesized that entropy will be a useful feature in classifying mice behaviors. 

 The third feature statistic calculated from the raw signal was simply the maximum 

value in the raw signal. It was surmised that this could be a useful feature in classifying 

lower activity, as it is the upper bound on signal amplitudes in a given analysis window 

and can be used to detect the presence of a high intensity pad strike. As mentioned in 

Chapter 1, prior studies often normalize the raw signals, so it was believed that finding 

the non-normalized maximum value per signal segment may be a useful feature, but 

would require some form of calibration to be useful in an application over a range of 

different mice. 
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 The fourth and final feature that was calculated from the raw signal was the 

peakedness of the raw signal. The term “peakedness” is introduced here to describe a 

simple concept in the signals. In some behaviors, there is produced a high rate of change 

between signal values. The value itself is calculated as the sum absolute values of the 

gradient of the signal, or as 

 
| 1 | (3.7)

where N is equal to the total number of samples in the signal, and  is the normalized 

signal vector. It will be seen that this feature proved to be one of the more powerful 

features in the classifiers described below; however, this feature is sensitive to the 

bandwidth of the signal conditioning filters. For rhythmic behaviors like sleep, the 

peakedness of the signal is lower than that of the higher activity behaviors. The feature is 

performed on the normalized signal in an attempt to eliminate the variation in signals due 

strictly to amplitude, which could be indicative of mice of differing weights, calibration 

differences, or a combination of the two.  

3.6 Power Spectrum Features 
 Before any power spectrum features were obtained, the frequency values of the 

power spectrum function p(f) were limited to 0.5 Hz to 11 Hz, since all values above 

were filtered and suppressed. The values were converted to decibels, according to  

 
20 log  (3.8)

 

where P(f) represents the energy values in dB.  
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(a) (b) 
 

Figure 3.4 Examples of normalized pressure signals. (a) Mouse is in REM sleep. (b) 
Mouse is moving across cage floor. The peakedness value in the REM segment is 177.97, 
while the value in LOCOMOTION is 148.56. 

 

 The first feature calculated from the power spectrum was the peakedness of the 

values in the power spectrum. This feature was valuable in discerning behaviors with 

strong periodic components from those with less periodicity. A higher peakedness here 

would usually indicate a strong fundamental frequency component, and at times, 

harmonics. 

 Here, it is useful to define a feature related to the peakedness, called 

“deviatedness.” Like the peakedness, the deviatedness measures element-to-element 

variation in a signal. However, it captures a slightly different value by recording the 

standard deviation of the magnitude of the gradient of a signal, or, 

 
 (3.9)

Where | 1 |, the gradient of the PSD . The feature’s value lies in 

its ability to detect the variability, or lack thereof, in element-by-element transitions. In 



38 
 

terms of the PSD, the feature detects the variation in amplitude changes from frequency 

to frequency. If this value is large, it can be assumed that there is a large amount of 

energy at specific frequencies with respect to the rest of the spectrum, which could 

indicate breathing activity, or even detect the differences in breathing activities in sleep. 

 Another feature tested was the kurtosis of the PSD. The kurtosis is defined as the 

fourth central moment divided by the variance squared minus three, or, 

 
3 (3.10)

 

where  is the nth central moment and  is the variance of the signal. The nth central 

moment of a signal is defined as the expectation of a signal minus the signal’s mean 

raised to the nth
 power, or, 

 (3.11)
 

It was proposed that the kurtosis of the PSD could be beneficial in classifying behaviors 

with strong fundamental frequency peaks from those without, since the kurtosis is lower 

for signals that appear to have a stronger peak than those without. 

 The skewness of the PSD is a similar feature to the kurtosis in that it captures 

characteristics of the waveform in general. The skewness is defined as the third central 

moment divided by the standard deviation cubed, or, 

 
 (3.12)

 

While the kurtosis of a data segment quantifies the spread of the data from the mean, the 

skewness measures the asymmetry of data with respect to the mean. It was hypothesized 

that rhythmic signals indicative of a sleeping or resting mouse would be easily 
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differentiable from the active mouse, since the spread of energy for the active mouse is 

much more uniform for the frequencies of interests, leading to a smaller skewness. 

 The harmonic power ratio (HPR) was calculated as another feature from the 

power spectrum. As it takes a strong periodic signal to create harmonics, it was believed 

that the HPR could be yet another useful feature in differentiating the periodic behavior 

signal segments from the aperiodic behavior signal segments. The HPR calculation 

follows below as 

 ∑
 (3.13)

 

where  refers to the ith harmonic frequency and N is the highest harmonic frequency of 

interest. Since the breathing frequency range is 1.5 to 4.5 Hz, it was sufficient to use N = 

4 as a maximum harmonic value to test. 

 The fourth and fifth features computed in the power spectrum were the height and 

location of the frequency of the highest energy component. It was believed this feature 

could be useful in discerning NREM and REM sleep, since the two can have different 

breathing frequencies. It was also believed that using the max PSD height could be a 

useful feature in detecting active behaviors with periodic components, such as GROOM, 

in which the mouse can at times perform a vigorous cleaning motion at a higher 

frequency that other behaviors do not exhibit. 

3.7 Autocorrelation Features 
 The autocorrelation (AC) was another algorithm that produced valuable feature 

statistics for the classifier system. The most valuable feature that was found in the AC 

domain was by taking the standard deviation of the positive lags in the AC as such, 
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1

 (3.14)

 

where µ is the mean of the AC function , N is the total number of samples in , 

and  is the standard deviation of the AC function. This was a feature set that was 

 

  

(a) (b) 
Figure 3.5 Power spectra of (a) LOCOMOTION behavior piezo signal, and (b) REM 
sleep piezo signal, right. Notice the higher energy at all peaks in the LOCOMOTION 
signal, but the greater peak definition in the REM sleep signal. 

 

sensitive to periodic signals, and behaviors that produced signals of stronger periodicity 

were often easily separable using this feature alone. In order to limit the feature to 

analysis of only the frequencies of interest, only lags corresponding to frequencies 

between 0.5 Hz and 11 Hz were used in the feature computation. 

 The Teager energy was computed for the AC as well as the raw signal. It was 

believed that a signal with less Teager energy in the AC would be more likely to be an 

active signal, and thus it could be used in the initial sleep and wake classification step, or 
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in a later step, as in classifying quiet rest from the more active wakeful behaviors. The 

peakedness feature was also computed for the AC and served a similar purpose. 

 The peakedness feature was computed on the autocorrelation values using the 

same function as above. It was hypothesized that the peakedness would detect the peaks 

in the autocorrelation signal associated with a rhythmic signal. A higher value would 

indicate the subject was engaging in predictable manner, likely representing sleep or 

inactivity. 

 For the final feature that exploited the autocorrelation domain, the value of the 

standard deviation of the autocorrelation was divided by the deviatedness in the peak 

heights in the autocorrelation signal. For breathing signals, the autocorrelation signal is 

repetitive with peaks occurring at regular intervals. The deviatedness of that signal would 

thus produce a very low value, as compared with the AC from an observed wake signal. 

In a regular behavior like sleep, therefore, dividing the relatively higher value of the 

standard deviation of the AC by the low valued deviatedness results in a very high value 

for the feature, while an irregular behavior records a much lower value, since the 

numerator value is smaller and the denominator is higher, relative to the regular behavior. 
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(a) (b) 
Figure 3.6 Comparison of autocorrelations of differing behavior signals. (a) NREM Sleep 
signal. (b) Rearing piezo signal. Notice the much higher standard deviation in the NREM 
signal, and the greater number of peaks in the REAR signal. 

 

3.8 Signal Envelope Features 
 The final domain used to find features was that of the signal envelope. In general, 

signals with more variable peak heights relate to more active behaviors, thus leading to 

easier separation of low- and high-activity behaviors. Local maxima were found in the 

signal envelope, and three features were calculated using these maxima. 

 The first feature calculated using the maxima in the signal envelope was the 

standard deviation of the peak heights. Signals with greater variation in peak heights 

would correspond to active behaviors, and have higher standard deviation values than 

those of lower activity behaviors.  

Similarly, the second feature tracks the range of heights found in the signal 

envelope. Periodic behaviors should have a very small range in envelope peak heights 

while aperiodic behaviors like LOCOMOTION tend to have large peak height ranges, 

especially considering the sometimes strong strikes of the piezo sensor made in this high 

activity behavior. 
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 Another signal envelope feature tracks the rate of change of the local maxima in 

the envelope signal. If the differences in values from peak to peak are small, it is 

reasoned that behaviors have more energy located at one frequency than any other. Thus 

these signals are more likely to be breathing signals, indicating a state of low activity 

where the mouse is resting on the cage floor. 

 The final signal envelope feature is the 20th percentile value for ranked values in 

the envelope peak heights vector. The motivation for this feature is that, if the values for 

different behaviors are sorted from least to greatest value, the distributions of values will 

be characteristic to the individual behaviors, and that a certain percentile value will 

represent the greatest level of separation in the two classes. The 20th percentile value in 

particular was chosen for its level of separation in multiple cumulative distribution 

functions for the behaviors in question. 

 

  

(a) (b) 
Figure 3.7 Signal envelopes. (a) Grooming behavior signal envelope. (b) NREM sleep 
signal envelope. Notice the greater range of peaks and standard deviation of peaks in the 
GROOM envelope, left, as opposed to NREM sleep. 
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Chapter 4 – Classifier Design and Performance 

4.1 Introduction 
 The hypothesis of this work was that using a decision tree based classifier system, 

previous work could be improved by classifying successfully some the sub-states of 

sleep, offering a more in depth look into what the piezo pressure sensors generated by the 

mice subjects can tell us about behavior. This chapter will detail the over-arching view of 

the decision tree classifier and explain the features used for every stage, and how they 

affected the system by effectively separating behaviors in the feature space. The chapter 

is organized in a manner such that each classifier is described in its own subsection, 

following the system overview section below. 

4.2 System Overview 
 Figure 4.1 below shows the decision tree implementation of the classifier system. 

Each column shows a new layer of classification and indicates a different classifier has 

been used to reach that step. While many binary classifiers were designed and tested, it 

would have been unreasonable to exhaustively test every possible binary system using the 

8 states of behavior defined above. Instead, the decision tree follows an intuitive line of 

thought, and within that line, potential variations were tested to find the optimal systems 

there within.  

 The first stage of classification follows previous works and separates sleep and 

wake behavior. This step as the first step is somewhat obvious due to the radical 

difference between the two states, where sleep signals are low amplitude and periodic due 

to the principle breathing signal component, with active behaviors less predictable in 

amplitude and periodicity. Since this classifier was the most accurate classifier in its own 

right, of all those tested, it was  
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Figure 4.1 Overall decision tree system. Vertical columns represent stages in the 
classification system. 

  

logical to make it the first step. Errors propagate through the classifier system, so limiting 

these errors in the early stages of any decision tree system is an important issue. 

 The next step in classification was to differentiate the substates of sleep and wake. 

The substates of sleep were chosen to be NREM and REM sleep, while the substates of 

wake were chose to be “active behaviors” and “quiet rest.” The first step wake 

classification logically classified quiet rest first, as it was the lowest activity wake 

behavior and was easy to differentiate thanks to its periodic breathing signature. This 

state was not confused with sleeping behaviors thanks to its occasional spikes which 

occurred when the mice shifted in some way, and to its slightly differing breathing rate. 

 At this point, the active behaviors were classified again, this time into the 

“LOCOMOTION” and “medium activity” substates. Medium activity substates included 

EAT, DRINK, REAR, and GROOM. Various other classifiers were tested at this step, 

such as  
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Figure 4.2 Alternative representation of the decision tree classifier system. 

 

classifying feeding activities from non-feeding activities, but none yielded better results 

than the LOCOMOTION classification. An analogous way to look at the classifier 

follows below in Figure 4.2. 

4.3 Methods and Testing 
 Some discussion is necessary here to describe the testing method for the 

classifiers. All classifier training and testing was computed in Matlab. Data were 

organized into matrices based on the behavior they were observed in. Each behavior 

matrix had a column dimension size equivalent to the sampling rate used to obtain the 

data multiplied by the number of seconds that the recording lasted. The row dimension 

size was equivalent to the number of behavior segments observed; in other words, if the 

length of the REAR behavior segments were recorded at 8 seconds, and 62 of these 

behavior segments were observed, the matrix size would be 62 by 1024 samples. 

 Once a feature statistic was hypothesized to be a valuable classification metric for 

a set of behaviors, the Fisher’s linear discriminant [1] was calculated for that feature to 

find the level of separation it offered. This calculation was not infallible, but offered a 
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good idea for how valuable a feature could be. The Fisher’s linear discriminant equation 

follows as 

 
Δ

| |
 (4.1)

 

where  is the mean of the feature for class c,  is the variance for class c, and Δ  is 

the Fisher’s linear discriminant value. It was found that values above 0.3 meant a feature 

could be useful in the classifier, and values of 0.8 or more were almost certainly valuable. 

Mice behavior data was available in one of two formats, and unless otherwise 

noted, all analysis was conducted in Matlab. In the first, the NREM, REM, and WAKE  

data that was recorded by implanted EEG/EMG electrodes, and scored by trained scorers, 

was the main source of data for the sleep/wake classification step and the REM/NREM 

step. The EEG and EMG signals for a given mouse were recorded concurrently with the 

Piezo pressure sensor readings in Sirenia Sleep. Trained scorers divided the concurrent 

signals into 4-second epochs and labelled each Piezo segment as either NREM, REM, or 

WAKE . These scores were provided in a comma separated values (CSV) format for each 

respective mouse.  

A script was written to organize the Piezo data into behavior matrices of 8-second 

length. The Piezo data was first, however, filtered using a finite impulse response (FIR) 

bandpass filter (Order = 512, Lower cut-off = 0.5  Hz, Upper cut-off = 11 Hz) to 

eliminate high frequency noise unrelated to the signals of interest, and to eliminate the 

DC bias. Each time concurrent behavior segments were discovered in the Piezo data 

based on the labels, the two concurrent segments were stored as an 8-second segment, 
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and the next segment was considered. This was repeated for all data for each mouse to 

store the data. 

The second format for the data involved the visual scoring of WAKE behaviors, 

including GROOM, REAR, EAT, DRINK, LOCOMOTION, and quiet rest. This data 

was available from visual scorers in Excel (Microsoft, Redmond, WA), and a similar 

method to that above was used to capture those behaviors that occurred for 8-seconds to 

store in matrices. 

Once the behavior matrices were organized, another script was used to loop through each 

mouse’s matrix and calculate for each segment all the features of interest described 

above. This data was stored in feature matrices for each mouse.  

For the actual classification, a script was written to train and test an LDA 

classifier using the feature matrices obtained above. The script was structured such that 

an arbitrary number of Monte Carlo simulations could be tested; generally, 30 

simulations were performed for each classifier. The training set was populated by random 

sampling of the feature matrices for whichever two classes were of interest. Mean feature 

templates were computed, and a set of linear Fisher weights was obtained. These weights 

were applied to randomly sampled test feature vectors from each class, chosen to be 

mutually exclusive from the training set. To find the decision threshold resulting in 

optimization of classifier accuracy, 200 thresholds were tested for each classifier, and that 

which yielded the minimum error was chosen as the decision threshold. In general, the 

calculation for the minimum error assumed equal probability of each class occurring; 

however, in classifiers where the two class probabilities were unequal, the calculation for 

the minimum error weighted the more likely class sensitivity more heavily. In other 
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words, if a class A occurred 85% of the time and a second class, B, occurred the other 

15% of the time, the decision threshold was chosen so that the sensitivity of A was 

higher, since the same percentage of misclassifications of A as B would mean many more 

raw segments misclassified from A as class B than vice versa. In a case like this, the 

accuracy of the system would track closely the sensitivity of class A. 

The classification function calculated not only the sensitivity rates for each class 

and the overall system accuracy, but also produced the sets of Piezo segments for each 

classified class.  

 Two methods were employed for finding the best feature set for each classifier. 

The first method was used as a quick method for reducing the feature set for an individual 

classifier system. It involved testing N-1 permutations of the feature set, and finding the 

subset of features that produced the lowest error rate in classification. For example, if 

features 1, 2, and 3 were the original set, then this method would test 3 systems, utilizing 

features 1 and 2, then 2 and 3, and finally 1 and 3, and would report the lowest error rate 

generated using those subsets. If one of the subsets had the same or lower rate of 

incorrect classifications, the process was repeated on that subset. The process would be 

repeated until the feature set was minimized; i.e., when further reducing the number of 

features would adversely affect the error rate. 

 The second method of testing was an exhaustive testing of every possible 

permutation of feature subsets, and reporting the lowest error rate generated by some set 

of features. This method has the benefit of yielding the best possible classification rate 

and finding the features that generate that rate, while the first method uses only marginal 

improvements and assumes that in every case, the marginally better sets will yield the 
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best sets overall, which is not necessarily true. The problem with the exhaustive method, 

however, is the sheer amount of time necessary to run the classifier tests. With 16 

features, if every possible value of permutations of every feature length were tested, 

65,535 classifiers would need to be trained and tested, and each of those, 200 times, 

resulting in a total of 13 million systems. The exhaustive process takes hours to test all 

features for one system, and was not prudent to use in every case. 

 Usually, during exploratory testing, method 1 would be used. It might be 

hypothesized that classifying LOCOMOTION and GROOM behaviors from feeding and 

REAR behaviors might be possible, so method 1 would be used to marginally reduce the 

feature set. If an overall error rate was found below a certain acceptable value, then the 

exhaustive method would be employed to further clarify the system values. Generally this 

step was not necessary, however, as most classifiers tested yielded poor results from 

method 1. 

 

4.4 SLEEP/WAKE Classifier 
 The feature set used to classify sleep and wake behaviors follows below in Table 

4.1. The sleep state was defined as containing REM and NREM segments, while the 

WAKE state contained all other substates of behavior. The set below differs from that 

found by Donohue, et al, [2] offering another approach to Sleep/WAKE classification. It 

also exemplifies the robustness of LDA for the first classification step, as multiple 

approaches reach similar success rates. The accuracy of classification for all mice in 

differentiating the two behaviors was found to be 90%, with sleep sensitivity being 

89.3% and WAKE being 91.2% comparable to results reported by Donohue, et al.  
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Table 4.1 SLEEP/WAKE classifier feature set. 

 

 The first and most valuable feature in this classification step was found to be the 

standard deviation of the autocorrelation (AC). As discussed above, the AC was 

normalized and the standard deviation of the values corresponding to positive lags was 

computed. Signals that are highly periodic result high periodic self-correlation values, 

which in turn yield high standard deviation values. The more aperiodic WAKE state 

signals gave much lower values for this feature, since there was little correlation from 

time instance to time instance. This feature highly weights periodicities in the 

classification process, and further helps to separate WAKE and sleep in the feature 

subspace. 

 The second feature exploited the difference in skewness in the power spectrum to 

separate SLEEP and WAKE signals. In the case of mouse behavior analysis via Piezo 

signal acquisition, if the power spectrum (PSD) is treated as a probability density 

function, the skewness can be thought of as quantifying how much energy is focused in 

the frequencies of interest. For a mouse in the SLEEP state, most of the energy in the 

PSD is centered on the breathing rate, around 3 Hz. This would give the distribution a 

much longer “tail,” thus increasing the skewness value. In the WAKE states, the energy 

is less focused on any frequency, resulting in a smaller tail and a smaller skewness.   

 The third feature in the SLEEP/WAKE classifier is the peakedness of the peak 

heights in the envelope. The peakedness was a valuable feature here due to its ability to 
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detect a lack of periodicity in the signal. In the aperiodic WAKE signal, the distribution 

of peak heights in the envelope of the signal was unpredictable and often exhibited great 

variation from peak to peak. In the periodic SLEEP signals, the peak heights were much 

more uniform, leading to a lower peakedness value. 

The fourth feature was designed to exploit the perceived differing distributions in 

the signal envelopes. If the peak heights in the signal envelope are sorted from lowest 

value to highest value, the values resemble a cumulative distribution function (CDF). 

Since the WAKE signal envelope is much more variable, the resembled CDF should look 

much different than that of the SLEEP’s at various percentiles, thus producing a 

separable metric. 

Table 4.2 shows the accuracy and class sensitivities, with associated 95% 

confidence intervals, from the SLEEP/WAKE classifier. For each mouse, 200 Monte 

Carlo simulations were conducted for the classifier using different training and testing 

sets in each case. From that, a mean accuracy for the system and class sensitivity for each 

class was obtained, with associated standard deviations. The resulting mean values for 

each mouse were then used to compute a confidence interval for the mean system 

accuracy and class sensitivities across all mice. The goal was to provide a general view 

for how the classifier worked for different mice over a large amount of time. This method 

was used to calculate the results for the SLEEP/WAKE and NREM/REM classifier 

systems. Since observation data of active behaviors was available for only one mouse, the 

confidence interval values reported for the REST/Active WAKE and 

LOCOMOTION/Medium Active WAKE classifiers following are the result of the 200 

Monte Carlo runs for that mouse. 
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Confidence intervals for the N = 20 mice were computed using the t-statistic, 

given by 

 ̅
√

 (4.2)

 

Where  is the 95% confidence interval, ̅  is the mean across all mice,  is the t-

statistic based on N-1 degrees of freedom and 1 0.975 , and  is the sample 

standard deviation for the means for all mice. 

 

Table 4.2 SLEEP/WAKE classification results. 

 

 

Table 4.3 presents the system accuracy for each subject based on the respective 

200 Monte Carlo simulations, and using the produced standard deviations a 95% 

confidence interval as described above in the t-statistic computation. For all subjects, the 

system accuracy was over 86%, and standard deviations from Monte Carlo simulation to 

simulation were low, above 3% only in one case. This lack of variation in accuracy leads 

to the conclusion that this classifier is a robust means for discerning SLEEP and WAKE. 
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Table 4.3 SLEEP/WAKE system accuracy values for each subject, classified by LDA. 

SLEEP/WAKE Accuracy 95% Confidence Intervals 
Mouse 
Name Mean Standard Deviation Low High 

UK1 91.39% 0.36% 91.34% 91.44% 
UK2 90.12% 0.38% 90.06% 90.17% 
UK3 92.67% 0.67% 92.58% 92.76% 
UK4 90.94% 0.41% 90.89% 91.00% 
UK5 90.53% 0.57% 90.45% 90.61% 

UK14 89.74% 0.77% 89.64% 89.85% 
UK17 93.39% 0.45% 93.32% 93.45% 
UK18 86.76% 0.76% 86.66% 86.87% 
UK19 86.63% 0.65% 86.54% 86.73% 
UK20 88.22% 0.56% 88.14% 88.30% 
UK21 89.66% 0.86% 89.54% 89.77% 
UK22 91.46% 0.42% 91.40% 91.52% 
UK24 90.48% 0.74% 90.38% 90.58% 
UK26 89.58% 0.59% 89.50% 89.66% 
UK27 90.70% 0.45% 90.64% 90.77% 
UK29 86.25% 1.15% 86.09% 86.41% 
UK30 91.99% 0.65% 91.89% 92.08% 
UK31 89.86% 1.13% 89.71% 90.02% 
UK33 88.61% 0.62% 88.52% 88.69% 
Tom 92.03% 0.43% 91.97% 92.09% 

Totals 90.05% 1.97% 89.13% 90.97% 
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Table 4.4 SLEEP sensitivity values for each subject, classified by LDA. 

  SLEEP Sensitivity 95% Confidence Intervals 
Mouse 
Name Mean Standard Deviation Low High 

UK1 91.61% 1.10% 91.46% 91.76% 
UK2 92.56% 1.74% 92.32% 92.80% 
UK3 93.75% 1.22% 93.58% 93.92% 
UK4 90.22% 1.00% 90.08% 90.35% 
UK5 91.32% 1.11% 91.16% 91.47% 

UK14 90.50% 1.42% 90.31% 90.70% 
UK17 95.04% 0.55% 94.97% 95.12% 
UK18 90.43% 0.70% 90.34% 90.53% 
UK19 87.13% 1.42% 86.94% 87.33% 
UK20 90.24% 1.44% 90.04% 90.44% 
UK21 92.87% 0.91% 92.75% 93.00% 
UK22 91.38% 1.04% 91.24% 91.52% 
UK24 93.16% 0.82% 93.04% 93.27% 
UK26 89.43% 0.75% 89.33% 89.53% 
UK27 92.40% 1.00% 92.26% 92.54% 
UK29 91.22% 1.48% 91.02% 91.43% 
UK30 93.63% 0.98% 93.50% 93.77% 
UK31 93.77% 1.35% 93.58% 93.96% 
UK33 93.44% 0.87% 93.32% 93.56% 
Tom 94.46% 0.82% 94.34% 94.57% 

Totals 91.93% 1.94% 91.02% 92.84% 
 

Table 4.4 presents the SLEEP sensitivity means, standard deviations, and 95% 

confidence intervals for each subject, and Table 4.5 presents the associated values for 

WAKE sensitivity. In both SLEEP and WAKE, there was little variation from the mean 

for all subjects leading to the conclusion that the classifier is robust. 
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Table 4.5 WAKE sensitivity values for each subject, classified by LDA. 

  WAKE Sensitivity 95% Confidence Intervals 
Mouse 
Name Mean Standard Deviation Low High 

UK1 91.18% 0.91% 91.06% 91.31% 
UK2 87.31% 1.66% 87.08% 87.54% 
UK3 91.52% 1.29% 91.34% 91.69% 
UK4 91.63% 0.65% 91.54% 91.72% 
UK5 89.40% 1.13% 89.24% 89.56% 

UK14 88.86% 1.02% 88.71% 89.00% 
UK17 91.11% 1.13% 90.95% 91.26% 
UK18 84.35% 1.38% 84.16% 84.55% 
UK19 86.11% 1.74% 85.87% 86.35% 
UK20 87.17% 1.33% 86.99% 87.36% 
UK21 87.79% 1.61% 87.56% 88.01% 
UK22 91.54% 1.13% 91.38% 91.70% 
UK24 86.82% 1.71% 86.58% 87.06% 
UK26 89.71% 1.27% 89.53% 89.88% 
UK27 89.26% 1.18% 89.09% 89.42% 
UK29 80.85% 1.82% 80.60% 81.10% 
UK30 90.03% 1.35% 89.85% 90.22% 
UK31 85.13% 1.79% 84.88% 85.38% 
UK33 83.45% 1.24% 83.28% 83.62% 
Tom 88.56% 0.88% 88.43% 88.68% 

Totals 88.09% 2.98% 86.69% 89.48% 

 

4.5 NREM/REM Classifier 
 The feature set used to classify non-rapid eye movement sleep and rapid eye 

movement sleep is plotted below in Table 4.6. Unlike in the case of sleep and wake, the 

differences between REM and NREM, in the Piezo pressure signal, are much subtler, and 

the Fisher’s values in the table illustrate this. No single value is substantially higher than 

0.5, and the lowest values are minuscule. However, when this feature set is used, the 

accuracy in the classification of the substates of NREM and REM sleep on average for all 

mice is 81%, while NREM sensitivity is 84% and REM sensitivity is 64%. It should be 

noted that these values correspond to the case where ideal classification of sleep and 
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wake has occurred; i.e., all NREM and REM sleep segments exist in the set to be 

classified, and no other behavior segments exist in said set. As always it is important to 

remember that NREM and REM segments were scored by a trained EEG scorer, so the 

detections should be thought of as successfully matching what the trained scorer 

evaluated, and not necessarily the true substate values. 

 

Table 4.6 Feature set used to classifiy REM and NREM substates of sleep, with Fisher's 
Linear Discriminant values. 

 

 

 The Teager energy (TE) of the autocorrelation proved to be the most valuable 

feature in the NREM/REM classification step. REM sleep is the less periodic SLEEP 

state and thus has less pronounced peaks in its autocorrelation on average with respect to 

NREM sleep segments. The TE operator detects the greater amplitudes in the NREM 

segments and reports a higher energy on average for these segments than REM. 

However, Teager energy places more weight to energy present at higher frequencies, and 

in the AC, the REM segments generally exhibit more energy at those frequencies. Thus, 

the values for TE for REM can be higher as well, leading to a poorer separation than is 

desired.   

The second most valuable feature was originally two separate features, later 

combined to accentuate the difference between REM and NREM autocorrelations. As has 

been shown above, taking the standard deviation of the AC results in a higher value for 

1

2

3

4

St Dev (AC) / Deviatedness (AC Peak Heights) 0.4647

Peakedness (PSD) 0.0112

NREM vs REM Classifier Features Fisher's Linear Discriminant

Peakedness (Normalized Signal) 0.1025

Teager Energy (AC) 0.5036
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more periodic signals, and is thus a useful feature in discriminating those from aperiodic 

waveforms. However, REM sleep is a breathing signal as well, and can have moderately 

high values for that feature alone. Weighting the standard deviation (AC) feature with the 

inverse of the deviatedness of the peak heights in the autocorrelation provides resolution 

between the two classes by further accentuating the less periodic occurrence of peak 

heights in the AC of REM sleep. 

The peakedness in the normalized signal was utilized as a way to further capture 

the substantial breathing intakes associated with NREM sleep. The feature worked best in 

cases where the REM breathing was particularly erratic and produced a normalized signal 

with a lower gradient value. 

 The fourth and final feature used in this classifier was the peakedness in the 

power spectrum. It was hypothesized that due to the more variable nature of REM sleep 

in frequency and amplitude, the peakedness of the power spectrum would result in an 

effective metric. In fact, as the Fisher’s linear discriminant in Table 4.6 shows, this was 

generally not the case. However some benefit is added by using the feature from the PSD; 

this set of 4 features consistently produced the best separation of all feature set 

combinations possible. 

 As above, 95% confidence intervals were computed for means across all mice of 

system accuracy and class sensitivities. The results appear in Table 4.7. 
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Table 4.7 NREM/REM classification results. 

REM vs NREM Classifier Results 

  
Accuracy 

Std 
Dev 

95% Confidence 
Interval 

  Low High 

System 80.86% 3.03% 79.44% 82.28% 

  Sensitivity
Std 
Dev 

95% Confidence 
Interval 

  Low High 

NREM 83.64% 3.31% 82.09% 85.19% 

REM 64.21% 10.98% 59.07% 69.35% 

  

Table 4.8 presents the system accuracy for each subject based on the respective 

200 Monte Carlo simulations, and using the produced standard deviations a 95% 

confidence interval as described above in the t-statistic computation. For all but one 

subject, the system accuracy was over 75%, and standard deviations from Monte Carlo 

simulation to simulation were low, above 3% only in one case. This lack of variation in 

accuracy leads to the conclusion that this classifier is a robust means for discerning REM 

and NREM. 
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Table 4.8 Mean NREM/REM classification accuracy for each subject. 

  NREM/REM System Accuracy 95% Confidence Interval - Mean Accuracy 
Mouse 
Name Mean Standard Deviation Low High 

UK1 83.71% 1.42% 83.51% 83.91% 
UK2 82.96% 1.13% 82.80% 83.12% 
UK3 81.83% 1.80% 81.59% 82.08% 
UK4 80.57% 1.43% 80.37% 80.77% 
UK5 79.72% 1.89% 79.46% 79.98% 

UK14 83.95% 2.21% 83.65% 84.26% 
UK17 83.82% 1.19% 83.66% 83.99% 
UK18 72.83% 1.06% 72.68% 72.98% 
UK19 77.75% 1.25% 77.58% 77.92% 
UK20 82.88% 2.32% 82.56% 83.21% 
UK21 75.18% 3.13% 74.74% 75.61% 
UK22 80.65% 1.63% 80.42% 80.88% 
UK24 82.98% 2.28% 82.66% 83.29% 
UK26 79.77% 2.12% 79.47% 80.06% 
UK27 77.58% 1.85% 77.32% 77.83% 
UK29 81.58% 1.65% 81.35% 81.81% 
UK30 83.57% 2.01% 83.30% 83.85% 
UK31 80.71% 1.47% 80.51% 80.92% 
UK33 82.07% 1.65% 81.84% 82.29% 
Tom 83.11% 1.24% 82.94% 83.29% 

Totals 80.86% 3.03% 79.44% 82.28% 
 

Table 4.9 presents the NREM sensitivity means, standard deviations, and 95% 

confidence intervals for each subject, and Table 4.10 presents the associated values for 

REM sensitivity. While the NREM sensitivity values were generally classified well and 

had a low level of variation from the mean, REM sensitivity values varied greatly. Mean-

to-mean standard deviation was over 10%, and the 95% confidence interval is much 

wider. There are a number of factors that could lead to this increased level of disparity. 

REM is simply a difficult behavior to detect due to its lower level of prevalence and the 

subtle markers that indicate its distinct breathing signature. It is also simply a more 

difficult state for human observers to successfully score, and if signal quality in EEG or 
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EMG signals is poor, the human scoring accuracy will be decreased. It is worth pointing 

out again here that this classifier system attempts to find agreement with human scorers, 

which does not necessarily indicate agreement with the actual states of sleep. 

 

Table 4.9 NREM sensitivity values for each subject. 

NREM Sensitivity 
95% Confidence Interval - Mean NREM 

Sensitivity 
Mouse 
Name Mean Standard Deviation Low High 

UK1 86.65% 2.20% 86.35% 86.96% 
UK2 89.74% 1.94% 89.47% 90.01% 
UK3 85.45% 2.67% 85.08% 85.82% 
UK4 81.91% 2.17% 81.61% 82.21% 
UK5 82.34% 2.81% 81.95% 82.73% 

UK14 85.89% 2.95% 85.48% 86.30% 
UK17 85.50% 1.47% 85.30% 85.71% 
UK18 85.61% 2.53% 85.26% 85.96% 
UK19 80.85% 2.50% 80.51% 81.20% 
UK20 82.89% 2.89% 82.49% 83.29% 
UK21 76.39% 4.43% 75.77% 77.00% 
UK22 81.42% 2.13% 81.12% 81.71% 
UK24 86.14% 2.92% 85.74% 86.55% 
UK26 80.32% 2.76% 79.93% 80.70% 
UK27 78.00% 2.40% 77.67% 78.33% 
UK29 84.57% 2.25% 84.26% 84.88% 
UK30 84.85% 2.59% 84.50% 85.21% 
UK31 81.70% 1.82% 81.45% 81.95% 
UK33 84.57% 2.16% 84.27% 84.87% 
Tom 88.07% 1.79% 87.82% 88.32% 

Totals 83.64% 3.31% 82.09% 85.19% 
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Table 4.10 REM sensitivity values for each subject. 

REM Sensitivity 
95% Confidence Interval - Mean REM 

Sensitivity 
Mouse 
Name Mean Standard Deviation Low High 

UK1 66.36% 3.26% 65.91% 66.81% 
UK2 49.57% 3.02% 49.15% 49.99% 
UK3 59.45% 3.72% 58.93% 59.96% 
UK4 72.05% 3.35% 71.58% 72.51% 
UK5 62.59% 4.18% 62.01% 63.17% 

UK14 68.18% 3.87% 67.64% 68.71% 
UK17 63.89% 2.20% 63.58% 64.19% 
UK18 35.93% 3.34% 35.47% 36.39% 
UK19 67.76% 2.97% 67.35% 68.17% 
UK20 82.81% 4.12% 82.24% 83.38% 
UK21 66.63% 6.24% 65.76% 67.50% 
UK22 73.10% 3.39% 72.63% 73.57% 
UK24 58.60% 3.00% 58.19% 59.02% 
UK26 75.55% 3.07% 75.12% 75.98% 
UK27 74.40% 2.99% 73.99% 74.82% 
UK29 58.06% 3.54% 57.57% 58.55% 
UK30 71.64% 4.03% 71.08% 72.20% 
UK31 70.10% 3.17% 69.66% 70.53% 
UK33 61.40% 3.30% 60.94% 61.86% 
Tom 46.10% 3.12% 45.67% 46.53% 

Totals 64.21% 10.98% 59.07% 69.35% 
 

4.6 REST/Active WAKE Classifier 
 This classifier, also described as a low activity WAKE/active WAKE classifier, 

would be used to classify the WAKE data segments as classified by the SLEEP/WAKE 

system. The logical grouping for this step was to differentiate the segments where the 

mouse was quietly resting but awake, since these offer periodic breathing signals that are 

easily separable from the less periodic active WAKE behaviors. In fact, the feature set 

relies on features that exploit this very fact. The low active wake subset refers to the 

behavior substate also known as quiet rest,  
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Table 4.11 Low activity WAKE versus active WAKE classifier features. 

 

 

while the active wake subset of behaviors refers to the GROOM, LOCOMOTION, EAT, 

DRINK, and REAR substates. 

The most valuable feature in the set proved to be the peakedness in the Envelope Heights. 

The characteristic breathing signature produces a low value for the peakedness in the 

REST substate, in contrast to the erratic active WAKE signals and their greater variation 

in envelope peak heights. 

 The Teager energy of the AC offered some separation in the two classes by again 

capitalizing on the higher energy level in the AC of the less variable breathing rates. Due 

to shifts in posture as the mouse becomes more comfortable or sniffs the air in the cage, 

the breathing signal is corrupted by a noise-like component, which reduces the self-

similarity of the signal at increasing lags. However, the AC still detects the periodicity 

belying these motions, and thus will produce a higher value in Teager energy than will 

the active WAKE behaviors, which have comparatively little self-similarity. 

 In the domain of the power spectrum, the less periodic active WAKE signals 

contain less centralized energy in the region of interest, and thus produce a lower value of 

kurtosis than the REST signals. The feature offered some separation, but was slightly less 

valuable since in REST there is more energy outside the breathing frequency region, 

resulting from perturbations of a shifting mouse.  

1

2

3 Peakedness (Envelope Heights) 0.7172

REST vs Active WAKE Classifier Features Fisher's Linear Discriminant

Teager Energy (AC) 0.1821

Kurtosis (PSD) 0.1245
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 Given the small feature set and the low values for linear discriminants for the 

respective features, the active WAKE behaviors were classified successfully from low 

active, REST behaviors. The values presented in Table 4.12 show the classification 

system accuracy and class sensitivity means assuming the sleep/wake classification step 

was perfect. Since observation data of the active behaviors was available for only one 

mouse, the values reported show the average rates for 200 classifiers designed using 

varying subsets of behavior segments for the training and testing sets. 95% confidence 

intervals for the N = 200 Monte Carlo runs were computed via use of the z-statistic, as 

 ̅
√

 (5.2)

 

Where  is the 95% confidence interval, ̅ is the mean across all mice,  is the z-

statistic based on N = 200 Monte Carlo simulations and 1 0.95, and  is the 

sample standard deviation for the means for all mice. 

 

Table 4.12 REST/Active WAKE classification results. 

REST vs Active WAKE Classifier Results 

  
Accuracy 

Std 
Dev 

95% Confidence 
Interval 

  Low High 

System 91.75% 0.34% 91.70% 91.80% 

  Sensitivity
Std 
Dev 

95% Confidence 
Interval 

  Low High 

REST 93.66% 0.63% 93.57% 93.75% 

Active WAKE 90.24% 0.93% 90.11% 90.37% 

 

 



65 
 

4.7 LOCOMOTION/Medium Active WAKE Classifier 
 At this level in the decision tree, it was much less obvious which behavior 

substate, or set of substates, were most efficiently classified using the information 

presented. However, since the amount of behavior substates at this point was small 

enough, exhaustive testing was possible. Every reasonable combination of the five 

remaining substates – GROOM, LOCOMOTION, REAR, EAT, and DRINK – were 

tested in a binary classification scheme. To test this, for example, GROOM and 

LOCOMOTION and REAR were grouped together and classified against the feeding 

behaviors, to test one possible configuration. Using the feature superset of N total 

features, all combinations of features were tested exhaustively for each number of 

features. 

 The most effective classifier system proved to be a binary classification between 

high activity, or LOCOMOTION, and medium activity, or REAR, GROOM, EAT, and 

DRINK, substates. This is likely due to the fact that while in the LOCOMOTION 

substate, all four of the mouse’s feet are on the pressure sensor and the mouse is 

geospatially moving about the cage. In the medium activity substates, the mice are in the 

same location in the cage and are on their hind legs only for the majority of the behaviors.  

 

Table 4.13 Linear discriminants for the features in the high active WAKE and medium 
active WAKE classifiers. 

 

 

1

2

3

4

LOCOMOTION vs Medium Active WAKE Classifier Features Fisher's Linear Discriminant

Peakedness (Normalized Signal) 0.7119

Skewness (PSD) 0.1852

Peakedness (Envelope Heights) 0.7172

20% Ranked Value (Envelope Heights) 0.0714



66 
 

 Two features were exceptionally useful in this classifier and revolved around the 

use of the peakedness measure of differing domains. The peakedness measures of the 

normalized signal and of the envelope heights were found to be effective for the same 

reason. The LOCOMOTION substate was by far the most variable state in terms of its 

pressure signal produced. While in the medium active substates, the mouse is performing 

a somewhat repetitive motion. For example, while eating the mouse is on its hind legs in 

one position on the sensor, and either moving towards the food dispenser to get food, or 

sitting on its haunches eating. DRINK saw the same repetitive motion, as the mice 

discernibly perturbed the sensor at a higher frequency due to the reaching and licking 

motions. Grooming, too, was more periodic than the locomotion signal, as the mouse at 

times vigorously shook while using its paws to clean its fur or tail.  

 In the normalized signal, the LOCOMOTION signals had a much higher variation 

and produced a higher peakedness. Likewise, the LOCOMOTION envelope heights were 

more variable than the medium active WAKE substates and the value for peakedness was 

again higher.  

 Less valuable but still useful was the skewness in the PS. The skewness for the 

LOCOMOTION signals were generally slightly higher since more energy in these signals 

was concentrated outside the frequencies of highest energy.  

 Finally, the 20% ranked value in the envelope heights feature added separation in 

the two states by exploiting the difference in the cumulative distribution functions (CDF) 

for the two classes. It was assumed that the LOCOMOTION CDF was Gaussian, whereas 

the medium active WAKE CDF was less normal. Different percentiles were tested but at 
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20% the difference in the CDFs were greatest, and thus the feature provided useful 

separation. 

 Table 4.14 shows the means and confidence intervals for system accuracy and 

class sensitivities of the high active/medium active behavior classifier branch in the 

decision tree. The values in the table represent perfect classification in the preceding 

steps, and are meant to show the value of the features and their ability to classify these 

behaviors without the errors of the previous stages propagated through. As in the case of 

the REST/Active WAKE classifier, the z-statistic from Equation 5.2 was used to compute 

the 95% confidence intervals. 

 

Table 4.14 Classifier results for the high active (LOCOMOTION) and medium active 
(GROOM, EAT, DRINK, and GROOM) substates. 

LOCOMOTION vs Medium Active WAKE Classifier Results 

  
Accuracy 

Std 
Dev 

95% Confidence 
Interval 

  Low High 

System 78.26% 1.04% 78.12% 78.40% 

  Sensitivity
Std 
Dev 

95% Confidence 
Interval 

  Low High 

LOCOMOTION 80.02% 1.66% 79.79% 80.25% 

Medium Active 
WAKE 

77.15% 2.70% 76.78% 77.52% 

 

4.8 Conclusion 
 The overall decision tree classification scheme is shown below in Figure 4.1. The 

percentages next to each behavior group show the conditional probability of successful 

classification. In other words, given the preceding step classified its average rate of 
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successful classifications, the current step behavior classifies the segments presented and 

errors propagate through the system. So, in the case of NREM sleep, given all behaviors, 

74.79% are classified appropriately as NREM, and 25.21% of those segments classified 

as NREM are incorrect. Since the NREM step occurs after the SLEEP/WAKE step, some 

REM segments and some WAKE segments will be classified as NREM sleep, accounting 

for the 25.21% of the behavior.  

Further refinement was attempted but given the feature super set used for the 

preceding steps, no set was found that could further classify the behavior substates. 

Groupings were exhaustively tried, and new features were tried as well, but no 

satisfactory classifiers were developed at this point. 

 

Figure 4.3 Overall decision tree classifier system with percentages of classification 
successes, including propagated errors from previous steps. 

 

  It is worth noting that the SLEEP/WAKE system had a comparable system 

accuracy to the Piezo-based acquisition and classification system presented by Donohue, 

et al [2] using a different feature set, lending further validation to the use of LDA and 

PVDF sensors to detect breathing rates and automatically classify sleep from wake. The 

74.79%

89.27%

57.22%

85.39%

91.17%

65.83%

82.27%

63.47%

NREM
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REM
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WAKE

LOCOMOTION

Active WAKE

GROOM, DRINK, 

EAT, REAR
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NREM/REM system offers further promise in the automated classification of the 

substates of sleep based on breathing patterns, with its observed 81% system accuracy, 

and high level of sensitivities in as a cascaded classifier as in Figure 4.1.  
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Chapter 5 - Classifier Performance in the Presence of Noise, and 
Compared to Other Classifiers 

 

5.1 Introduction 
 As mentioned before, the decision tree classifier system presented was neither the 

first system tested nor the only configuration tested. In addition to the binary classifiers in 

the decision tree, 3-state, 4-state, and 8-state classifiers were designed and implemented 

as well and are presented below to give a basis for comparison to the success rates in the 

binary system. It was also desired to test the robustness of the decision tree binary system 

in the presence of differing types of noise and at differing levels of noise. The results of 

those tests are presented below as well. 

 There is a low-level baseline noise spectrum associated with the piezo sensor 

system which at the frequencies of interest is assumed to have a negligible effect on 

signals. This assumption is generally not a bad assumption, as usually even a low energy 

signal produced by a sleeping mouse will produce a spectrum on average 15 dB above 

the noise envelope. There is a peak around 8 Hz in the baseline noise spectrum, to be 

discussed at greater length below. 

 Signal-to-Noise Ratios (SNR) are used as the independent variable in the noise 

tests, and for this application are calculated by 

 
,

,
 (5.1)
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where ,  is the mean root-mean-square value of the behavior signal segments, and 

,  is the standard deviation of the additive noise signal. Prior to this calculation and 

the inclusion of the additive noise, the piezo pressure signals were normalized by their 

behavior’s respective mean standard deviation. This formula was ideal as a comparison 

tool since the noise applied was known and controlled explicitly. 

5.2 Noise Testing 

5.2.1 Additive Gaussian White Noise 
 The NREM/REM system was tested for the effects of noise on the success due to 

the nature of the two signals and their inherent similarities. Both signals feature a low 

amplitude signal dominated by breathing oscillations, lending to the periodic nature of 

the signals. The differences in the two states have been described at length above, but it is 

suspected that the presence of noise will disrupt the classifier’s ability to discern the two 

signals, since the classifier mainly relies on the assumption that REM breathing signals 

are slightly more variable than NREM breathing patterns. In the presence of white noise, 

NREM breathing patterns will show greater variability, leading to the disruption of the 

subtle differences that characterize these two states. 

To test the system, a Gaussian white noise signal of length ten times that of the 

piezo segments was generated using the pseudorandom number generator function 

randn.m (Matlab). The noise signal standard deviation was normalized to mean standard 

deviation of the REM and NREM signals. A portion of this noise signal, equivalent to the 

length of the piezo segments, was removed. This data sequence was used as the simulated 

noise component and was added element-wise to the NREM and REM segments prior to 

feature computation. The NREM and REM segments were normalized by the mean 
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standard deviation of the sleep behavior signals prior to the addition of the noise. The 

simulated noise component’s standard deviation was varied in order to test differing noise 

levels. Following the feature computation, the classifier was tested as above.  

Table 5.1 below shows the success rates for each substate, NREM and REM, in 

the presence of noise. The first entry showing “inf” SNR indicates the ideal case, where it 

is assumed the baseline noise is well below the signal energy. Representative figures also 

follow showing the noise corruption for a REM signal and a NREM signal at various 

amplitudes, as well as PSD plots for the noise and signal segments. 

Table 5.1 Classifier success rates in the presence of white noise, as categorized by signal 
to noise ratio (SNR). 

 
 

As seen, the classifier remains effective up to about an SNR of around 0 dB, and 

then begins to suffer the effects of the white noise. The NREM sensitivity remains the 

same and then begins to grow, but the REM segments begin to deteriorate quickly with 

decreasing SNR. Since NREM is so much more prevalent in sleep than REM, the 

accuracy remains constant as NREM increases slightly and REM sensitivity decreases 

drastically. Table 5.2 below illustrates the cause of this deterioration in quality. The 

Fisher’s Criterion was calculated for the five features used in the classifier in two cases; 

first, assuming no noise is present; and second, with the additive white noise such that the 

SNR was -3.72 dB. All features suffered drastically in the presence of the noise, with 

SNR (dB) System Accuracy NREM Sensitivity REM Sensitivity

No Noise Added 80.95% 83.78% 64.10%

6.02 79.08% 82.57% 61.37%

0 80.51% 84.47% 60.29%

‐13.98 76.94% 84.96% 36.39%

‐20 79.48% 90.99% 21.21%
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greatly reduced discriminant values. As higher levels of white noise are added to the 

signal, the low level variants that characterize and discern REM from NREM are washed 

out, and the classifier is unable to determine which segments are REM. 

Table 5.2 Fisher's Linear Discriminant values in the presence of Gaussian white noise. 

 
 

5.2.2 Noise at Specified Frequency 
In some cases the mouse cage data acquisition system recorded a specific noise 

peak at the 8 Hz segment. In a few of those cases, this noise peak was strong enough to 

corrupt the data enough to render the classifier ineffective. Using a slightly different 

signal acquisition circuit at the DAQ interface, much of this noise was blocked. However, 

the signals that characterize breathing in mice are so low in amplitude that even small 

amounts of systematic noise could affect the classification greatly. The robustness of the 

classifier was tested in the face of a specific noise component to find the maximum 

tolerable signal to noise ratio for the system. Table 5.3 illustrates the system’s response to 

increasing levels of noise relative to input signal.  

The 8 Hz noise component was generated by adding a cosine with frequency 2*π*8 and 

constant amplitude element-wise to the NREM and REM segments and classifying these 

new segments. This constant amplitude would be altered from test to test in order to 

change the signal-to-noise ratios. As above, the SNR was calculated by dividing the 

signal’s standard deviation by that of the noise, and then converting to decibels. 

Feature No Noise Noise

Teager Energy of Raw Signal 0.0568 0.0565

Peakedness of Raw Signal 0.1086 0.0701

Range, Envelope Peak Heights 0.0161 0.0071

Peakedness, Envelope Peak Heights 0.0175 0.0465

Teager Energy Autocorrelation 0.1722 0.0125
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Table 5.3 Classifier success rates in the presence of an 8 Hz noise signal at varying SNR 
values. 

 
 

Referring to Table 5.4, the linear discriminant values for the features again are 

reduced drastically with a high level of additive noise. However, the Teager Energy (AC) 

feature is not as adversely affected in this case. As stated above, the Teager Energy 

metric more heavily weights the energies at higher frequencies. In the case of white 

noise, there is uniform energy at every frequency, which would cause the TE to be higher 

for both NREM and REM. With an additive component of only 8 Hz, however, TE 

detects no noise at higher frequencies and thus is reduced less in a comparable SNR level. 

When it is considered that the subtle differences in REM and NREM states are 

detectable and only slightly reduced in the face of either type of noise at an SNR equal to 

zero, it must be concluded that the feature set for the classifier is robust. Generally, noise 

levels recorded are not so high that their affects cannot be filtered easily, or that certain 

components completely conceal the low-amplitude breathing signal, and in most cases it 

appears that the NREM/REM classifier is adequate. Since the other classifiers presented 

in the decision tree are either less subtle in their class differences or have higher 

amplitude behaviors, it is reasoned that they will be even less susceptible to the effects of 

noise than the NREM/REM subsystem. 

 

SNR (dB) System Accuracy NREM Sensitivity REM Sensitivity

No Noise Added 80.95% 83.78% 64.10%

6.02 81.53% 85.38% 62.08%

0 79.62% 82.97% 62.68%

‐13.98 80.12% 93.46% 12.87%

‐20 78.31% 89.23% 23.03%
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Table 5.4 Fisher's Linear Discriminant values in the presence of 8 Hz white noise, with 
SNR of -3.92. 

 

 

5.3 Alternative Classifier Configurations 
The following classifier configuration was designed to differentiate more than two 

classes at once. As such, linear discriminant analysis could not be used. Instead, the 

minimum distance Mahalanobis distance classifier was employed. The following system 

is included here to compare the accuracy and sensitivity of a three class minimum 

distance classifier system to differentiate NREM, REM, and WAKE to that of the LDA 

binary classification decision tree system presented above. 

5.3.1 Three Class System 
The first classifier system focuses on the two sleep substates and the general wake 

state, and could have been used to subvert the need for two steps to classify REM and 

NREM behavior states. This system could be useful in cases where only NREM, REM, 

and wake states are desired, as in the case of typical EEG analysis. Separating the states 

in one step could open the door to real-time classification as well, since the system would 

require less time than a two-step system. 

The program flow is much the same as the binary classifiers presented above. 

Features were computed for the three classes and stored for use in the classification 

Feature No Noise Noise

Teager Energy of Raw Signal 0.0568 0.0567

Peakedness of Raw Signal 0.1086 0.0952

Range, Envelope Peak Heights 0.0161 0.0161

Peakedness, Envelope Peak Heights 0.0175 0.0427

Teager Energy Autocorrelation 0.1722 0.0717
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algorithm. In the classification algorithm, three feature matrices were generated from 

random sampling the feature vectors of the respective classes, resulting in three training 

and three testing matrices. Three training covariance matrices were computed for the 

Mahalanobis classification step. The first major difference came in the calculation of 

which class a particular segment belonged to. Each behavior test segment was tested in 

the template designed for its class, and when the distance calculated was shorter to its 

particular class than to either of the other two classes, it was stored in a particular matrix. 

Incorrect classifications were stored in such a way that indicated which class a behavior 

was incorrectly classified into. 

As above, 200 Monte Carlo runs were computed with differing testing and 

training feature vectors, and sensitivity rates were recorded.  

The features that produced the most effective classifiers are reported in the table 

below. The features were determined by the iterative method used elsewhere of finding 

the best results from each feature set as determined by subtracting one feature from the 

superset. The feature set was similar to the SLEEP/WAKE and NREM/REM classifiers 

described above, in that the most useful features from the two binary classifiers were 

useful in the three-class classifier, as well. 
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Table 5.5 Feature set used in the NREM-REM-WAKE classifier. 

 

 

The number of features was greater than in any of the decision tree classifiers, as 

expected for the case of splitting three classes. The results are reported in Table 5.2. 

 

Table 5.6 Confusion matrix demonstrating sensitivity rates for the three behaviors. 

 

 

Clearly, the one step classifier is inferior to the cascaded binary classifiers 

presented in this work. REM sensitivity suffers, as half of the REM sleep state segments 

were lumped into the NREM class. The overall accuracy of the classifier was fairly high, 

however, at 91%. The vast majority of segments are NREM and WAKE, so accuracy 

tends to track closely with the sensitivity of those behaviors. Since REM detection is of 

1 Standard Deviation (AC)

2 Peakedness (Normalized Signal)

3 Teager Energy (AC)

4 Skewness (PS)

5 Kurtosis (PS)

6 Peakedness (Envelope Heights)

7 80% Ranked Value (Envelope Heights

Feature Set

NREM REM WAKE

6.32% 2.97% 90.71%

Predicted

Actual

NREM 92.19% 4.90% 2.91%

REM 51.45% 23.58% 24.97%

WAKE
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greatest interest, it would be preferable to isolate all SLEEP segments from WAKE 

before attempting to discern REM and NREM sleep.  
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Chapter 6 – Conclusions and Future Work 

6.1 Conclusions and Future Work 
 This work presented a decision tree, binary step classifier system for successfully 

differentiating mouse behavior and substates of those behaviors, using features obtained 

solely from the pressure signals generated by a mouse as it exhibits these behaviors atop 

a piezo pressure signal. The system presented was shown to adequately differentiate 

between sleep and wake, and also illustrated high rates of success in classifying sub 

behaviors such as non-rapid eye movement sleep and rapid eye movement sleep, quiet 

rest in the wakeful state, LOCOMOTION, and the remaining medium activity behaviors.  

 Due to the scope of the work, which involves the design of multiple classifier 

systems and associated selection of feature sets, a feature superset of 16 statistical metrics 

was used. These metrics were chosen based on both their intuitive theoretical application 

to the classification problem as well as their success in differentiating a sub behaviors. 

These features were chosen from four domains of signal representation in an attempt to 

add both breadth and depth to the training and testing of the signals. These 16 features 

were believed to be very good for the current application, but there is no way to say for 

sure if this was the best set that could have been used. Future studies could further inspect 

the feature superset here and perhaps add valuable metrics to those presented here. One 

area of statistics that these may come from are metrics that attempt to quantify the shape 

of distributions of values, such as skewness, interquartile ranges, etc. These features were 

tested in the preliminary phase, but that testing was abandoned as there were no clear 

metrics that were found that worked well enough to be included. This testing was not and 

could not be exhausted, so there is room to improve there. 
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 Another area of future research could be in the organization of the decision tree. It 

was shown that an alternative single step classifier could be designed without exhaustive 

feature testing that classified certain wake behaviors as well as or better than the decision 

tree. While this approach is difficult to implement since it is hard to find a small, robust 

feature set that sufficiently and explicitly differentiates each behavior from every other, it 

could be useful to design a decision tree based system that is not binary at every step, or, 

to design a classifier that assigns a confidence value to each branch, and selects a 

terminal node for a segment with the highest sum of the confidences for that trajectory. 

 The wake behaviors could be more closely scrutinized in future work. It is not 

clear how certain behaviors generate certain piezo signals, so future work to examine 

these behaviors could prove to be valuable. If it is known that GROOM, for example, 

produces a signal of certain power at certain frequencies due to the motions involved in 

that behavior, then features could be appropriately extracted to isolate the behavior. Some 

trends were observed in each of the active behaviors, but it would be outside the scope of 

this work to investigate the physical motion of the mouse and its corresponding pressure 

signal on a segment by segment basis. 

 It has been shown that differing strains of mice exhibit differing breathing rates in 

the phases of sleep, so some work could go to testing this system on many strains of 

mice, to see if there is any variation in the classification rates. Two strains were used to 

generate the piezo and EEG signals for this study, and these data were taken together and 

classified without respect to mouse strain. Since breathing rates differ, REM and NREM 

sleep classification, which relies on features that extract information about periodicities in 
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the pressure signals based on breathing rates, could improve or worsen from mouse strain 

to strain. 

 Overall, however, this system proved successful in its original goal, and 

differentiated behaviors based on a decision tree system quite well, especially with 

respect to determining the phases of sleep appropriately around 80% of the time on 

average.   
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